Science.gov

Sample records for spectral induced polarization

  1. Spectral Induced Polarization of Goethite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Moradi, S.; Zimmermann, E.; Bosch, J.; Vereecken, H.

    2014-12-01

    Goethite nanoparticles are being considered as a tool to enhance in situ remediation of aquifers contaminated with aromatic hydrocarbons. Injection of goethite nanoparticles into the plume is expected to enhance microbial iron reduction and associated beneficial oxidation of hydrocarbons in a cost-effective manner. Amongst others, current challenges associated with this novel approach are the monitoring of nanoparticle delivery and the nanoparticle and contaminant concentration dynamics over time. Obviously, non-invasive monitoring of these properties would be highly useful. In this study, we aim to evaluate whether spectral induced polarization (SIP) measurements of the complex electrical conductivity are suitable for such non-invasive characterization. In principle, this is not unreasonable because the electrical double layers of the goethite nanoparticles are expected to affect electrical polarization and thus the imaginary part of the complex electrical conductivity. In a first set of measurements, we determined the complex electrical conductivity of goethite nanoparticle suspensions with different nanoparticle concentrations, pH, and ionic strength in the mHz to kHz frequency range. In a second set of measurements, mixtures of sand and different concentrations of goethite nanoparticles and variable pH and ionic strengths were analyzed. Finally, flow experiments were monitored with SIP in a 1-m long laboratory column to investigate dynamic effects associated with goethite nanoparticle injection and delivery. The results showed that the imaginary part of the electrical conductivity was only affected in the high frequency range (Hz - kHz), which is expected from the small size of the goethite nanoparticles. Overall, we found that the goethite nanoparticles are associated with a small increase in the imaginary electrical conductivity at 1 kHz that can be measured in situ using recently improved borehole electrical impedance tomography measurement equipment that

  2. Spectral induced polarization for monitoring electrokinetic remediation processes

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Losito, Gabriella

    2015-12-01

    Electrokinetic remediation is an emerging technology for extracting heavy metals from contaminated soils and sediments. This method uses a direct or alternating electric field to induce the transport of contaminants toward the electrodes. The electric field also produces pH variations, sorption/desorption and precipitation/dissolution of species in the porous medium during remediation. Since heavy metal mobility is pH-dependent, the accurate control of pH inside the material is required in order to enhance the removal efficiency. The common approach for monitoring the remediation process both in laboratory and in the field is the chemical analysis of samples collected from discrete locations. The purpose of this study is the evaluation of Spectral Induced Polarization as an alternative method for monitoring geochemical changes in the contaminated mass during remediation. The advantage of this technique applied to field-scale is to offer higher resolution mapping of the remediation site and lower cost compared to the conventional sampling procedure. We carried out laboratory-scale electrokinetic remediation experiments on fine-grained marine sediments contaminated by heavy metal and we made Spectral Induced Polarization measurements before and after each treatment. Measurements were done in the frequency range 10- 3-103 Hz. By the deconvolution of the spectra using the Debye Decomposition method we obtained the mean relaxation time and total chargeability. The main finding of this work is that a linear relationship exists between the local total chargeability and pH, with good agreement. The observed behaviour of chargeability is interpreted as a direct consequence of the alteration of the zeta potential of the sediment particles due to pH changes. Such relationship has a significant value for the interpretation of induced polarization data, allowing the use of this technique for monitoring electrokinetic remediation at field-scale.

  3. Spectral induced polarization signatures of abiotic FeS precipitation

    SciTech Connect

    Ntarlagiannis, D.; Doherty, R.; Williams, K. H.

    2010-01-15

    In recent years, geophysical methods have been shown to be sensitive to microbial induced mineralization processes. The spectral induced polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from bio-mineralization processes. More specifically the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring, and decision making, tool for sustainable remediation of metals in contaminated soils and groundwater.

  4. Spectral induced polarization (SIP) response of mine tailings.

    PubMed

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.

  5. Spectral induced polarization (SIP) response of mine tailings

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000 Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.

  6. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  7. Temperature dependence of spectral induced polarization data: experimental results and membrane polarization theory

    NASA Astrophysics Data System (ADS)

    Bairlein, Katharina; Bücker, Matthias; Hördt, Andreas; Hinze, Björn

    2016-04-01

    Spectral induced polarization measurements are affected by temperature variations due to a variety of temperature-dependent parameters that control the complex electrical conductivity. Most important is the influence of the ion mobility, which increases with increasing temperature. It is responsible for the increase of the conductivity of the fluid in the pores with temperature and influences the electrical double layer on the mineral surface. This work is based on laboratory measurements of 13 sandstone samples from different sources with different geological and petrophysical characteristics. We measured the complex impedance in a frequency range from 0.01 to 100 Hz and a temperature range from 0 to 40 °C. The main observation is a decrease of the characteristic time (defined by the inverse of the frequency, at which the phase shift is maximum) with increasing temperature. The strength of this decrease differs from one sample to another. The temperature dependence of the phase shift magnitude cannot easily be generalized, as it depends on the particular sample. The experimental findings suggest that neglecting the influence of temperature on complex conductivity may lead to significant errors when estimating hydraulic conductivity from relaxation time. We also simulate the temperature dependence with a theoretical model of membrane polarization and review some of the model properties, with an emphasis on the temperature dependence of the parameters. The model reproduces several features characterizing the measured data, including the temperature dependence of the characteristic times. Computed tomography and microscope images of the pore structure of three samples also allow us to associate differences in the geometrical parameters used in the modelling with pore scale parameters of the actual samples.

  8. Spectral Induced Polarization Signatures of Ethanol in Sand-Clay Medium

    EPA Science Inventory

    The spectral Induced Polarization (SIP) method has previously been investigated as a tool for detecting physicochemical changes occurring as result of clay-organic interactions in porous media. We performed SIP measurements with a dynamic signal analyzer (NI-4551) on laboratory ...

  9. Salinity effect on the spectral induced polarization porosimetry: theory and experiment

    NASA Astrophysics Data System (ADS)

    Niu, Q.; Revil, A.; Saidian, M.; Prasad, M.

    2015-12-01

    Spectral induced polarization (SIP) porosimetry is a new technique for characterizing the pore size distribution of a porous medium. The induced polarization of porous media under low frequencies is mainly attributed to the relaxation of the mineral/fluid interface, i.e., the electrical double layer (EDL, including both Stern and diffuse layers). Currently, the salinity effect is not considered while applying the SIP porosimetry although a number of experiments have shown the water salinity could affect the relaxation of EDL. In this study, we conducted SIP measurement of a Portland sandstone sample with a broad range of salinities. The relaxation time distributions of the sample at different salinities are obtained by inverting the measured SIP responses using the least-square method with optimized damping parameter. The modal relaxation time shows a non-negligible dependence on the salinity/fluid conductivity. The salinity dependence can be explained by considering the ions exchange between Stern and diffuse layers during polarization, i.e., diffuse layer polarization (DLP). It is also shown that the SIP porosimetry could underestimate the pore size if only Stern layer polarization is considered. It is therefore suggested to include DLP while interpreting the SIP porosimetry data in order to give consistent pore size information with other techniques such as nuclear magnetic resonance and mercury injection capillary porosimetry.

  10. Relaxation Time Distribution (RTD) of Spectral Induced Polarization (SIP) data from environmental studies

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Ustra, A.; Slater, L. D.; Zhang, C.; Mendonça, C. A.

    2015-12-01

    In this work we present an alternative formulation of the Debye Decomposition (DD) of complex conductivity spectra, with a new set of parameters that are directly related to the continuous Debye relaxation model. The procedure determines the relaxation time distribution (RTD) and two frequency-independent parameters that modulate the induced polarization spectra. The distribution of relaxation times quantifies the contribution of each distinct relaxation process, which can in turn be associated with specific polarization processes and characterized in terms of electrochemical and interfacial parameters as derived from mechanistic models. Synthetic tests show that the procedure can successfully fit spectral induced polarization (SIP) data and accurately recover the RTD. The procedure was applied to different data sets, focusing on environmental applications. We focus on data of sand-clay mixtures artificially contaminated with toluene, and crude oil-contaminated sands experiencing biodegradation. The results identify characteristic relaxation times that can be associated with distinct polarization processes resulting from either the contaminant itself or transformations associated with biodegradation. The inversion results provide information regarding the relative strength and dominant relaxation time of these polarization processes.

  11. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  12. Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations

    NASA Astrophysics Data System (ADS)

    Slater, Lee; Ntarlagiannis, Dimitrios; Personna, Yves R.; Hubbard, Susan

    2007-11-01

    We measured spectral induced polarization (SIP) signatures in sand columns during (1) FeS biomineralization produced by sulfate reducing bacteria (Desulfovibrio vulgaris) under anaerobic conditions, and (2) subsequent biomineral dissolution upon return to an aerobic state. The low-frequency (0.1-10 Hz peak) relaxations produced during biomineralization can be modeled with a Cole-Cole formulation, from which the evolution of the polarization magnitude and relaxation length scale can be estimated. We find that the modeled time constant is consistent with the polarizable elements being biomineral encrusted pores. Evolution of the model parameters is consistent with FeS surface area increases and pore-size reduction during biomineral growth, and subsequent biomineral dissolution (FeS surface area decreases and pore expansion) upon return to the aerobic state. We conclude that SIP signatures are diagnostic of pore-scale geometrical changes associated with FeS biomineralization by sulfate reducing bacteria.

  13. Pore-scale spectral induced polarization (SIP) signaturesassociated with FeS biomineral transformations

    SciTech Connect

    Slater, Lee; Ntarlagiannis, Dimitrios; Personna, Yves R.; Hubbard, Susan

    2007-10-01

    The authors measured Spectral Induced Polarization (SIP) signatures in sand columns during (1) FeS biomineralization produced by sulfate reducing bacteria (D. vulgaris) under anaerboci conditions, and (2) subsequent biomineral dissolution upon return to an aerobic state. The low-frequency (0.1-10 Hz peak) relaxations produced during biomineralization can be modeled with a Cole-Cole formulation, from which the evolution of the polarization magnitude and relaxation length scale can be estimated. They find that the modeled time constant is consistent with the polarizable elements being biomineral encrused pores. Evolution of the model parameters is consistent with FeS surface area increases and pore-size reduction during biomineral growth, and subsequent biomineral dissolution (FeS surface area decreases and pore expansion) upon return to the aerobic state. They conclude that SIP signatures are diagnostic of pore-scale geometrical changes associated with FeS biomineralization by sulfate reducing bacteria.

  14. Spectral induced polarization signatures of hydroxide adsorption and mineral precipitation in porous media

    SciTech Connect

    Chi Zhang; Lee Slater; George Redden; Yoshiko Fujita; Timothy Johnson; Don Fox

    2012-04-01

    The spectral induced polarization (SIP) technique is a promising approach for delineating subsurface physical and chemical property changes in a minimally invasive manner. We investigated spatiotemporal variations in complex conductivity during evolution of urea hydrolysis and calcite precipitation reaction fronts within a silica gel column. The real and imaginary parts of complex conductivity were shown to be sensitive to changes in both solution chemistry and calcium carbonate precipitation. Distinct changes in imaginary conductivity coincided with increased hydroxide ion concentration during urea hydrolysis. In a separate experiment focused on the effect of hydroxide concentration on interfacial polarization of silica gel and well-sorted sand, we found a strong dependence of the polarization response on pH changes of the solution. We propose a conceptual model describing hydroxide ion adsorption behavior in silica gel and its control on interfacial polarizability. Our results demonstrate the utility of SIP for non-invasive monitoring of reaction fronts, and indicate its potential for quantifying geochemical processes that control the polarization responses of porous media at larger spatial scales in the natural environment.

  15. Spectral Induced Polarization Signatures of Hydroxide Adsorption and Mineral Precipitation in Porous Media

    SciTech Connect

    Zhang, Chi; Slater, Lee; Redden, George D.; Fujita, Yoshiko; Johnson, Timothy C.; Fox, Don

    2012-04-17

    The spectral induced polarization (SIP) technique is a promising approach for delineating subsurface physical and chemical property changes in a minimally invasive manner. To facilitate the understanding of position and chemical properties of reaction fronts that involve mineral precipitation in porous media, we investigated spatiotemporal variations in complex conductivity during evolution of urea hydrolysis and calcite precipitation reaction fronts within a silica gel column. The real and imaginary parts of complex conductivity were shown to be sensitive to changes in both solution chemistry and calcium carbonate precipitation. Distinct changes in imaginary conductivity coincided with increased hydroxide ion concentration during urea hydrolysis. In a separate experiment focused on the effect of hydroxide concentration on interfacial polarization of silica gel and well-sorted sand, we found a significant dependence of the polarization response on pH changes of the solution. We propose a conceptual model describing hydroxide ion adsorption behavior in silica gel and its control on interfacial polarizability. Our results demonstrate the utility of SIP for noninvasive monitoring of reaction fronts, and indicate its potential for quantifying geochemical processes that control the polarization responses of porous media at larger spatial scales in the natural environment.

  16. Evaluation of Surface Sorption Processes Using Spectral Induced Polarization and a (22)Na Tracer.

    PubMed

    Hao, Na; Moysey, Stephen M J; Powell, Brian A; Ntarlagiannis, Dimitrios

    2015-08-18

    We investigate mechanisms controlling the complex electrical conductivity of a porous media using noninvasive spectral induced polarization (SIP) measurements of a silica gel during a pH dependent surface adsorption experiment. Sorption of sodium on silica gel surfaces was monitored as the pH of a column was equilibrated at 5.0 and then successively raised to 6.5 and 8.0, but the composition of the 0.01 M NaCl solution was otherwise unchanged. SIP measurements show an increase in the imaginary conductivity of the sample (17.82 ± 0.07 μS/cm) in response to the pH change, interpreted as deprotonation of silanol groups on the silica gel surface followed by sorption of sodium cations. Independent measurements of Na(+) accumulation on grain surfaces performed using a radioactive (22)Na tracer support the interpretation of pH-dependent sorption as a dominant process controlling the electrical properties of the silica gel (R(2) = 0.99) and confirms the importance of grain polarization (versus membrane polarization) in influencing SIP measurements of silicate minerals. The number of surface sorption sites estimated by fitting a mechanistic, triple-layer model for the complex conductivity to the SIP data (13.22 × 10(16) sites/m(2)) was 2.8 times larger than that estimated directly by a (22)Na mass balance (5.13 × 10(16) sites/m(2)), suggesting additional contributions to polarization exist.

  17. Spectral induced polarization (SIP) response of biodegraded oil in porous media

    NASA Astrophysics Data System (ADS)

    Abdel Aal, Gamal Z.; Atekwana, Estella A.

    2014-02-01

    Laboratory experiments were conducted to investigate the effect of different oil saturation (0.2-0.8), wetting conditions (water-wet and oil-wet), and the addition of asphaltene on the spectral induced polarization (SIP) response of biodegraded and fresh crude oil in sand columns. In the water-wet case, no significant differences were observed for both the fresh and biodegraded oil and both displayed an increase in the magnitude of the phase (ϕ) and decrease in the magnitudes of the real (σ') and imaginary (σ'') conductivity components with increasing oil saturation. In this instance the SIP response is most likely controlled by the conduction and polarization of the electric double layer at the mineral-water interface. However, when oil is the wetting phase there were considerable differences in the magnitude of the SIP parameters between the fresh and biodegraded oil. The magnitude of ϕ and σ'' increased with increasing oil saturation, whereas σ' decreased. The magnitude of σ' and σ'' for the biodegraded oil-wetted sands were relatively higher compared to fresh oil-wetted sands. In experiments with fresh and biodegraded oil-wet sand, the addition of 1 per cent asphaltene increased σ' and σ'' with the biodegraded oil showing the highest magnitude. Asphaltenes are the most dipolar fraction of crude oil and increase in concentration with increasing biodegradation. Asphaltene creates a surface charge due to the ionization and complexation reactions of functional groups at interfaces. Therefore, the enhancement in the conduction and polarization observed with the biodegraded oil-wetted sands may be due to the increase in polar components (e.g. asphaltene) from the biodegradation process and the interactions of the polar components with the surfaces of water and mineral grains. Further studies are required to investigate the effect of other components in biodegraded oil such as resins, trace metals, biogenic metallic minerals (e.g. magnetite) and organic

  18. Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yong; Tan, Han-Dong; Wang, Kun-Peng; Lin, Chang-Hong; Zhang, Bin; Xie, Mao-Bi

    2016-03-01

    Traditional two-dimensional (2D) complex resistivity forward modeling is based on Poisson's equation but spectral induced polarization (SIP) data are the coproducts of the induced polarization (IP) and the electromagnetic induction (EMI) effects. This is especially true under high frequencies, where the EMI effect can exceed the IP effect. 2D inversion that only considers the IP effect reduces the reliability of the inversion data. In this paper, we derive differential equations using Maxwell's equations. With the introduction of the Cole-Cole model, we use the finite-element method to conduct 2D SIP forward modeling that considers the EMI and IP effects simultaneously. The data-space Occam method, in which different constraints to the model smoothness and parametric boundaries are introduced, is then used to simultaneously obtain the four parameters of the Cole—Cole model using multi-array electric field data. This approach not only improves the stability of the inversion but also significantly reduces the solution ambiguity. To improve the computational efficiency, message passing interface programming was used to accelerate the 2D SIP forward modeling and inversion. Synthetic datasets were tested using both serial and parallel algorithms, and the tests suggest that the proposed parallel algorithm is robust and efficient.

  19. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    NASA Astrophysics Data System (ADS)

    Personna, Yves Robert; Ntarlagiannis, Dimitrios; Slater, Lee; Yee, Nathan; O'Brien, Michael; Hubbard, Susan

    2008-06-01

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface. We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfovibrio vulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS-) sensitive silver-silver chloride (Ag-AgCl) electrodes (˜-630 mV) were diagnostic of induced transitions between anaerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed ˜10 mrad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  20. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    SciTech Connect

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  1. Spectral induced polarization and the hydraulic properties of New Zealand sands

    NASA Astrophysics Data System (ADS)

    Joseph, S.; Ingham, M.

    2014-12-01

    Laboratory measurements of spectral induced polarization (SIP) and permeability have been made on unconsolidated samples representative of shallow coastal aquifers in New Zealand. The samples consisted of sands sieved into different fractions ranging from a mean grain size of 1.0 mm to 0.125 mm. Although the occurrence in New Zealand natural sands of titomagnetite means that the magnitude of the SIP phase response is significantly greater than is generally found for "clean" sands, the peak in SIP phase shows a clear dependence on grain size. The SIP spectra have been represented in terms of a Cole-Cole model and the relaxation times derived from this show a strong linear correlation with the measured values of permeability. The SIP and permeability measurements are then extended to mixtures of sieved sands, sand with varying amount of clay, samples with varying amount of magnetic minerals and also natural samples from various locations in New Zealand.

  2. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (< 5 mrad) for locations with high BTEX concentrations, including the occurrence of free-phase product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  3. Laboratory monitoring of CO2 injection in saturated silica and carbonate sands using spectral induced polarization

    NASA Astrophysics Data System (ADS)

    Kremer, Thomas; Schmutz, Myriam; Maineult, Alexis; Agrinier, Pierre

    2016-11-01

    Series of experiments were performed to study the spectral induced polarization (SIP) response of sands fully saturated with water, into which gaseous CO2 or N2 was injected, in the frequency range 0.5 Hz-20 kHz. Three main observations were made. (1) SIP parameters were always most affected by gas injection when the frequency of the injected signal was in the intermediate range (1 < f < 20 kHz). This point emphasizes the interest of broadening the frequency range of SIP surveys toward intermediate frequencies. It also implies that more work is needed in order to understand and quantify the parasitic effects that occur at this frequency range (EM coupling and electrode polarization). (2) Through all the experiments performed, we were able to distinguish the parameters variations caused by a reduction of the water saturation level (invasion of a resistive gas phase in the porous space) from those resulting from dissolution processes (increase of the electrical conductivity of the saturating water). (3) The quadrature conductivity σ″, which is mainly linked to the capacitive properties and inductive response of the media, always shows relative variations stronger than the resistivity of the media, hence demonstrating the interest of the additional information provided by the SIP method as against the classical resistivity method.

  4. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Flores Orozco, A.; Kemna, A.; Oberdoerster, C.; Zschornack, L.; Leven, C.; Dietrich, P.; Weiss, H.

    2011-12-01

    In the framework of the EU FP7 project ModelPROBE, broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz for the characterization of a hydrocarbon contaminant plume. In the source area total concentrations of BTEX contaminants partly exceed 1.5 g/l. Previous studies at the laboratory scale have demonstrated the sensitivity of SIP measurements to different concentrations of organic minerals; however, only few studies have been conducted at the field scale. The aim of this study was to investigate the potential of SIP imaging to delineate areas with different BTEX concentrations. SIP measurements were performed in the frequency range from 60 mHz to 1 kHz along a 120 m profile across the area of the former hydrogenation plant. At a later stage, a trench was excavated along the location of the profile in order to remove pipes, foundations and different sources of anthropogenic noise associated with the hydrogenation plant. Thereafter, SIP measurements were repeated inside the trench to study the effect of anthropogenic noise on the SIP images. Computed images for the data collected before and after the excavation of the trench show similar results validating the proposed approach even in the presence of anthropogenic noise. SIP images, for frequencies below 100 Hz, exhibit two main anomalies: low phase shift values (~ 5 mrad) for locations with free phase product (BTEX concentrations > 1.7 g/l); whereas relatively high polarization values (> 10 mrad) were observed for lower BTEX concentrations (1 - 1.7 g/l). Moreover, the spectral response of the areas where free phase product was detected reveals a flattened spectrum; while the areas with lower concentrations exhibit a typical Cole-Cole response. Based on these results, SIP imaging appears to be a suitable tool to delineate source-zones at highly contaminated sites.

  5. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    SciTech Connect

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  6. The effect of organic contaminants on the spectral induced polarization response of porous media - mechanistic approach

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2012-12-01

    In recent years, there is a growing interest in using geophysical methods in general and spectral induced polarization (SIP) in particular as a tool to detect and monitor organic contaminants within the subsurface. The general idea of the SIP method is to inject alternating current through a soil volume and to measure the resultant potential in order to obtain the relevant soil electrical properties (e.g. complex impedance, complex conductivity/resistivity). Currently, a complete mechanistic understanding of the effect of organic contaminants on the SIP response of soil is still absent. In this work, we combine laboratory experiments with modeling to reveal the main processes affecting the SIP signature of soil contaminated with organic pollutant. In a first set of experiments, we investigate the effect of non-aqueous phase liquids (NAPL) on the complex conductivity of unsaturated porous media. Our results show that addition of NAPL to the porous media increases the real component of the soil electrical conductivity and decreases the polarization of the soil (imaginary component of the complex conductivity). Furthermore, addition of NAPL to the soil resulted in an increase of the electrical conductivity of the soil solution. Based on these results, we suggest that adsorption of NAPL to the soil surface, and exchange process between polar organic compounds in the NAPL and inorganic ions in the soil are the main processes affecting the SIP signature of the contaminated soil. To further support our hypothesis, the temporal change of the SIP signature of a soil as function of a single organic cation concentration was measured. In addition to the measurements of the soil electrical properties, we also measured the effect of the organic cation on the chemical composition of both the bulk and the surface of the soil. The results of those experiments again showed that the electrical conductivity of the soil increased with increasing contaminant concentration. In addition

  7. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  8. Preliminary results of spectral induced polarization measurements, Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Smith, Bruce D.; Tippens, C.L.; Flanigan, V.J.; Sadek, Hamdy

    1983-01-01

    Laboratory spectral induced polarization (SIP) measurements on 29 carbonaceous schist samples from the Wadi Bidah district show that most are associated with very long polarization decays or, equivalently, large time constants. In contrast, measurements on two massive sulfide samples indicate shorter polarization decays or smaller time constants. This difference in time constants for the polarization process results in two differences in the phase spectra in the frequency range of from 0.06 to 1Hz. First, phase values of carbonaceous rocks generally decrease as a function of increasing frequency. Second, phase values of massive sulfide-bearing rocks increase as a function of increasing frequency. These results from laboratory measurements agree well with those from other reported SIP measurements on graphites and massive sulfides from the Canadian Shield. Four SIP lines, measured by using a 50-m dipole-dipole array, were surveyed at the Rabathan 4 prospect to test how well the results of laboratory sample measurements can be applied to larger scale field measurements. Along one line, located entirely over carbonaceous schists, the phase values decreased as a function of increasing frequency. Along a second line, located over both massive sulfides and carbonaceous schists as defined by drilling, the phase values measured over carbonaceous schists decreased as a function of increasing frequency, whereas those measured over massive sulfides increased. In addition, parts of two lines were surveyed down the axes of the massive sulfide and carbonaceous units. The phase values along these lines showed similar differences between the carbonaceous schists and massive sulfides. To date, the SIP survey and the SIP laboratory measurements have produced the only geophysical data that indicate an electrical difference between the massive sulfide-bearing rocks and the surrounding carbonaceous rocks in the Wadi Bidah district. However, additional sample and field measurements in

  9. Spectral induced polarization response to nanoparticles in a saturated sand matrix

    NASA Astrophysics Data System (ADS)

    Joyce, Ryan A.; Glaser, Danney R.; Werkema, D. Dale; Atekwana, Estella A.

    2012-02-01

    Nanoparticles have grown in importance over the last decade with significant consumer and industrial applications. Yet, the behavior (fate and transport) of nanoparticles in the environment is virtually unknown. Research is needed to identify, characterize, and monitor nanomaterials in the subsurface. Here, we investigate the spectral induced polarization (SIP) response of nanometallic powders (nZVI, nAg, nTiO 2, nZnO, and nCeO 2) in porous geologic media. Our main objective is to determine the sensitivity of the SIP response (0.1-10,000 Hz) to the presence of nanoparticles (metals and metal oxides) in porous media. The SIP response was tested under various conditions: increasing particle concentration under constant solution chemistry; varying solution molarity (0.0 M-1.0 M), and varying solution valence (+ 1, + 2, + 3 valence) under constant particle volume. We examine the results in terms of phase shift and resistance magnitude. Our data suggest that the oxide nanoparticles do not show SIP responses to increasing particle concentration, solution valence, and molarity, while the metallic particles show a clear response to increasing particle concentration, and frequency. Silver was the only material to show any significant response to increasing solution molarity, valence, and frequency. Because of the high propensity of the nanoparticles to form aggregates, they essentially behave as colloidal and clay particles allowing us to apply conventional SIP theory to our interpretation. We suggest that the oxidation state of the metals diminishes their SIP response consistent with more recent studies that have documented that polarization decreases with oxidation of metallic particles. We infer from our results that nanoparticle crystalline composition and aggregation effects control the SIP response of nanoparticles in porous media.

  10. Temporal and spectral induced polarization contribution to ore body detection and differenciation.

    NASA Astrophysics Data System (ADS)

    Schmutz, M.; Camerlynck, C.; Ghorbani, A.; Parisot, J.

    2007-12-01

    The aim of this paper is to show complementarity of temporal and spectral induced polarization, applied to ore body detection and differenciation. Study had been lead into well known geological background through borings, geochemical measurements, and also through some electrical resistivity tomographies. Temporal induced polarization (TIP) material and carry out: TIP had been carried out in a quite original way by employed device, and technique. Measurements had been done with SYSCAL PRO (Iris Instrument, Ltd.) transformed into ELREC PRO: this make it possible to differenciate transmitter device (with VIP generator manufactured by IRIS) from receiver one. The main interests are (i) to avoid internal coupling effects and between transmittor/receptor cables on soil, and (ii) to obtain higher electrical power (until 3000 watt) necessary to reach 30-40m depth. Voltage measurement is done through non-polarizable electrodes. Electrical chargeability and resistivity tomographies had been obtained by lateral device displacement. Pole-dipole device had been chosen because it is the best compromise between minimizing coupling effects, getting enough power to reach wanted depth, and necessary lateral resolution. Spectral induced polarization (SIP) material and carry out : SIP FUCHS II device (manufactured by Radic Research) had been used. As the device is not configurated into a multielectrode way, and as one sounding is very time consuming (about 7 hours), only 2 soundings had been done, located on major chargeability anomalies. First results: A a first analysis, a 3 lauer model can be observed: very resistivive level between 0 and 5m depth (up to 1000 ohm.m), more conductive between 5 and 20-25m depth (50 ohm.m), and finally an increasing resistivity. A finer analysis indicates some big conductive zone 50m wide (50 ohm.m) from surface until 30m depth. This could be exlplained by clay or ore body presence. Chargeability analysis indicate us values very high chargeabilities

  11. Spectral-induced polarization measurements on sieved sands and the relationship to permeability

    NASA Astrophysics Data System (ADS)

    Joseph, Sheen; Ingham, Malcolm; Gouws, Gideon

    2016-06-01

    Laboratory measurements of the permeability and spectral-induced polarization (SIP) response of samples consisting of unconsolidated sands typical of those found in New Zealand aquifers have been made. After correction of measured formation factors to allow for the fact that some were measured at only one fluid conductivity, predictions of permeability from the grain size (d) of the samples are found to agree well with measured values of permeability. The Cole-Cole time constant (derived from the SIP measurements) is found, as expected, to depend upon d2, but can be affected by the inclusion of smaller grains in the sample. Measurements made on samples comprising of mixtures of grain sizes show that inclusion in a sample of even 10% of smaller grains can significantly reduce both the Cole-Cole time constant (τCC) and the permeability, and support theoretical derivation of how the permeability of a mixture of grain sizes varies with the content of the mixture. Proposed relationships for using τCC as a predictor for permeability are tested and found to be crucially dependent on the assumed relationship between the dynamic pore radius and grain size. The inclusion of a multiplicative constant to take account of numerical approximations results in good predictions for the permeability of the samples in this study. It seems unlikely, however, that there is a single global expression for predicting permeability from SIP data for all samples.

  12. A Web Interface for Software of Stochastic Inversion of Spectral Induced Polarization Data

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pullman, S.; Hubbard, S. S.; Peterson, J.

    2009-12-01

    The induced-polarization (IP) method has been used increasingly in environmental investigations because IP measurements are very sensitive to the low frequency capacitive properties of rocks and soils. The Cole-Cole model has been very useful for interpreting spectral IP data in terms of parameters, such as chargeability and time constant, which are used to estimate various subsurface properties. However, conventional methods for estimating Cole-Cole parameters use an iterative Gauss-Newton-based deterministic method, which has been shown that the obtained optimal solution depends on the choice of initial values and the estimated uncertainty information often is inaccurate or insufficient. Chen, Kemna, and Hubbard (2008) developed a Bayesian model for inverting spectral IP data for Cole-Cole parameters based on Markov chain Monte Carlo (MCMC) sampling methods. They have demonstrated that the MCMC-based inversion method provides extensive global information on unknown parameters, such as the marginal probability distribution functions, from which better estimates and tighter uncertainty bounds of the parameters can be obtained. Additionally, the results obtained with the MCMC method are almost independent of the choice of initial values. We have developed a web interface to the stochastic inversion software, which permits easy accessibility to the code. The web interface allows users to upload their own spectral IP data, specify prior ranges of unknown parameters, and remotely run the code in real time. After running the code (a few minutes), the interface provides a data file with all the statistics of each unknown parameter, including the median, mean, standard deviation, and 95% predictive intervals, and provides a data misfit file. The interface also allows users to visualize the histogram and posterior probability density of each unknown parameter as well as data misfits. For advanced users, the interface provides an option of producing time-series plots of all

  13. Spectral induced polarization of the three-phase system CO2 - brine - sand under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2016-10-01

    The spectral complex conductivity of a water-bearing sand during interaction with carbon dioxide (CO2) is influenced by multiple, simultaneous processes. These processes include partial saturation due to the replacement of conductive pore water with CO2 and chemical interaction of the reactive CO2 with the bulk fluid and the grain-water interface. We present a laboratory study on the spectral induced polarization (SIP) of water-bearing sands during exposure to and flow-through by CO2. Conductivity spectra were measured successfully at pressures up to 30 MPa and 80°C during active flow and at steady-state conditions concentrating on the frequency range between 0.0014 and 100 Hz. The frequency range between 0.1 and 100 Hz turned out to be most indicative for potential monitoring applications. The presented data show that the impact of CO2 on the electrolytic conductivity may be covered by a model for pore-water conductivity, which depends on salinity, pressure and temperature and has been derived from earlier investigations of the pore-water phase. The new data covering the three-phase system CO2-brine-sand further show that chemical interaction causes a reduction of surface conductivity by almost 20 per cent, which could be related to the low pH-value in the acidic environment due to CO2 dissolution and the dissociation of carbonic acid. The quantification of the total CO2 effect may be used as a correction during monitoring of a sequestration in terms of saturation. We show that this leads to a correct reconstruction of fluid saturation from electrical measurements. In addition, an indicator for changes of the inner surface area, which is related to mineral dissolution or precipitation processes, can be computed from the imaginary part of conductivity. The low frequency range between 0.0014 and 0.1 Hz shows additional characteristics, which deviate from the behaviour at higher frequencies. A Debye decomposition approach is applied to isolate the feature dominating

  14. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  15. A new model for the spectral induced polarization signature of bacterial growth in porous media

    NASA Astrophysics Data System (ADS)

    Revil, A.; Atekwana, E.; Zhang, C.; Jardani, A.; Smith, S.

    2012-09-01

    The complex conductivity of porous materials and colloidal suspensions comprises two components: an in-phase conductivity associated with electromigration of the charge carriers and a quadrature conductivity associated with the reversible storage of the charges at some polarization length scales. We developed a quantitative model to investigate the frequency domain induced polarization response of suspensions of bacteria and bacteria growth in porous media. Induced polarization of bacteria (α polarization) is related to the properties of the electrical double layer of the bacteria. Surface conductivity and α polarization are due to the Stern layer of counterions occurring in a brush of polymers coating the surface of the bacteria. These phenomena can be related to their cation exchange capacity. The mobility of the counterions in this Stern layer is found to be very small (4.7 × 10-10 m2 s-1 V-1 at 25°C). This implies a very low relaxation frequency for the αpolarization of the bacteria cells (typically around 0.1-5 Hz), in agreement with experimental observations. This new model can be coupled to reactive transport modeling codes in which the evolution of bacterial populations are usually described by Monod kinetics. We show that the growth rate and endogenous decay coefficients of bacteria in a porous sand can be inferred nonintrusively from time-lapse frequency domain induced polarization data.

  16. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  17. Spectral-induced polarization characteristics of rocks from Shinyemi deposit in Northeastern South Korea

    NASA Astrophysics Data System (ADS)

    Park, Samgyu; Shin, Seung Wook; Son, Jeong-Sul; Kim, Changryol

    2016-04-01

    Contact metasomatism between carbonate and igneous rocks leads to the formation of skarn deposits, and ore minerals are abundant. Geophysical methods that visualize the distributions of physical properties have been utilized to determine lithological boundaries in ore deposits. In particular, spectral-induced polarization (SIP) is the most effective of those methods for mineral exploration because it can obtain not only the boundaries but also the abundance and grain size of ore minerals. It is crucial to characterize the SIP responses of in situ rocks for a more realistic interpretation. Thus, typical rocks composed of igneous rock, skarn rock, skarn ore, and carbonate rock were sampled from drilling cores in the Shinyemi deposit, which is one of the well-known skarn deposits in Northeastern South Korea. The purpose of this study was to characterize the SIP responses of rocks by laboratory measurements. The characterization was performed by evaluating spectra and IP parameters. The IP properties were acquired from equivalent circuit analysis using a circuit model based on the electrochemical theory, and the analysis results of this circuit model were relatively well fit compared with those of the traditional Dias and Cole-Cole models. The frequency responses below 100 Hz in the spectra and the chargeability values of the skarn rocks and ores containing magnetite were relatively strong and high, respectively, compared with those of non-mineralized igneous and carbonate rocks. Therefore, it is considered that these characteristics are dependent on the abundance of magnetite. In case of the skarn ores with high magnetite content, the resistivity values were significantly low and the relaxation time values were influenced by the grain size of magnetite. On the other hand, it is considered that the DC resistivity and the relaxation time values of the igneous and carbonate rocks are slightly related to the porosity and the grade of hydrothermal alteration, respectively.

  18. A Comparison Between Deterministic and Stochastic Methods for Inverting Spectral Induced Polarization Data

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kemna, A.; Hubbard, S.

    2007-12-01

    Cole-Cole model parameters (e.g., chargeability and time constant), extracted from spectral induced polarization (SIP) data, are being increasingly used to characterize subsurface properties. However, fitting Cole-Cole models (especially nested Cole-Cole models) to SIP data is challenging because of nonlinearity and non-uniqueness of the Cole-Cole models. This study compares conventional deterministic approaches (i.e., iterative based estimation methods) with Markov chain Monte Carlo (MCMC) based stochastic approaches for estimating Cole- Cole model parameters. The results of those case studies show that although deterministic methods are able to provide single optimal solutions under certain criteria (e.g., the least squares of misfit) and require minimal computing power, they suffer from two main limitations. The first limitation is that the optimal solutions heavily depend on the choice of the initial values. Different initial values may yield different inversion results, and in many cases, the deterministic methods even cannot converge for the chosen initial values. The second limitation is that those methods provide inadequate or inaccurate information about uncertainty in the estimation. On the contrary, the MCMC-based stochastic approaches are insensitive to the choice of the initial values and can provide extensive information about uncertainty in the estimation. From the drawn large number of samples, we can obtain exhaustive information about unknown parameters, such as the mean, the median, the mode, and even entire probability distribution of each unknown Cole-Cole model parameter. Although MCMC-based stochastic methods typically require that the forward models be run for thousands of times, this is not an issue given the current computer power. Through presentation of extensive synthetic and laboratory case studies, we will illustrate the benefits of the different methods when used individually and in combination with each other.

  19. Characterizing petrophysical properties of carbonate rocks using nuclear magnetic resonance and spectral induced polarization

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Chi; Rankey, Eugene

    2016-04-01

    Unlike sandstones, with well-characterized correlations between porosity and permeability, carbonate rocks are well known for their highly complex petrophysical behaviors due to their intrinsically heterogeneous pore shape, pore size, and pore distributions and connectivity. The characterization of petrophysical properties of carbonate rocks, including rock properties and rock-fluid interactions, remains big challenges. This laboratory study focuses on integrating two geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to determine porosity, pore size distribution, and permeability of carbonate rocks. NMR measures the relaxation of hydrogen nuclei at pore scale. Samples with different pore structures saturated by fluids have molecular relaxation responses to the external magnetic field which could generate various NMR signals. Permeability estimation from NMR in siliciclastic rocks is routine, however, is problematic in carbonates. SIP determines complex resistivity of a sample across a wide range of frequency and is sensitive to variations in the properties of solid-fluid and fluid-fluid interfaces in porous media. Previous studies investigated the relationships between permeability and parameters derived from SIP data, but are restricted to narrow lithology range. Our study used carbonate core samples from three depositional environments: tidal zone, shallow marine, and platform/reef margin of an atoll. Samples were fully saturated by water for T2 relaxation measurements and complex conductivity measurements at low frequencies. We compare the pore volume to surface area ratio measured from NMR and SIP and assess the applicability of established petrophysical models to estimate permeability from NMR and SIP data. We hope to build a relationship between NMR signals, SIP responses and petrophysical properties in carbonate rocks. The results could also provide new data and help further understand the unique and complex pore

  20. Spectral Induced Polarization (SIP) measurements for monitoring toluene contamination in clayey soils

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Slater, L. D.; Ntarlagiannis, D.

    2010-12-01

    The Spectral Induced Polarization (SIP) method has previously shown potential for detecting hydrocarbons in the subsurface when clay minerals are present. However, results from recent studies of soils containing hydrocarbon contaminants are inconclusive, and further research is needed. In an effort to better constrain the sensitivity of SIP to toluene contamination in clayey soils, samples consisting of mixtures of quartzitic sand and montmorillonite (5 and 10% by weight) were contaminated with varying amounts of toluene (5, 10 and 20% by weight) and saturated with sodium nitrate solution (0.003 mol/L). The SIP response of the various samples was monitored for a period of about 40 days. An important aspect of this experimental work was to minimize measurement errors related with the experimental set up and uncertainty in the interpretation of effects of hydrocarbon presence that will result from any variations in sample packing. Errors from the experimental setup (electrodes, sample holder and data acquisition device) varied from 0.02 mrad (at 0.01 Hz) to 9 mrad (at 1000 Hz), as determined from calibration measurements on water samples with known electrical properties. Variations associated with the packing effect (based on repeated sample packs) were from 0.1 mrad (at 0.01 Hz) to 11 mrad (at 1000 Hz). The real and imaginary conductivities at specified frequencies and the integral chargeability and time constant (obtained from a Debye decomposition fitting) were correlated to toluene and clay content. Repeated SIP measurements suggest that the toluene contaminated samples may take significant time to come into equilibrium. Low frequency SIP measurements are significantly related to toluene content only during early stages of contamination, when the dependence of SIP on clay concentration is apparently suppressed. At later time, progress towards a steady state SIP response (interpreted to indicate equilibrium surface chemistry) results in loss of a significant

  1. Monitoring of CO2-induced geochemical changes in a shallow aquifer by time domain spectral induced polarization

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders V.; Cahill, Aaron G.; Jakobsen, Rasmus

    2014-05-01

    Contamination of potable groundwater by leaking CO2 is a potential risk of carbon sequestration. With the help of a field experiment, we investigate if surface monitoring of electrical resistivity and induced polarization can detect geochemical changes induced by CO2 in a shallow aquifer. For this purpose, we injected CO2 at a depth of 5 and 10 m and monitored its migration using 320 electrodes on a 126 m × 25 m surface grid. A fully automated acquisition system continuously collected direct current (DC) resistivity and full-decay induced polarization (IP) data and uploaded it into an online database. CO2 was injected for a period of 72 days and DC/IP monitoring started 20 days before and continued until 120 days after the beginning of the injection. The DC/IP data were supplemented by chemical analysis of water samples collected in 29 wells at time intervals of approximately 10 days. DC/IP data are inverted using a 2-D algorithm (AarhusInv) that incorporates the full voltage decay of the IP response to resolve DC resistivity, intrinsic chargeability and spectral IP content parameterized using the Cole-Cole model. Borehole information and a baseline inversion reveals the geology at the site consisting of aeolian sands near the surface, glacial sands between 5 and 10 m depth and marine sands below 10 m depth. Following the injection, we use a time-lapse inversion where differences in the DC/IP data are inverted for changes to the Cole-Cole parameters. Two different geochemical signatures that occur due to the injected CO2 are evident both in the geophysical inversions and the water samples. The first and clearest subsurface signal is a decrease in DC resistivity that moves advectively with the groundwater. The area of resistivity decrease expands with time in the direction of the groundwater flow and there is good correlation between geophysical and geochemical results. A chargeability decrease after the injection has been also observed, but in contrast to the

  2. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory EMSP Project No. 73836

    SciTech Connect

    Morgan, F. Dale

    2003-06-01

    This report summarizes the research work completed on the project between December 2001 and September 2002. (1) A model of all Spectral IP capacitive couplings revealed that potential bearing electrodes should be carefully chosen to obviate some of the capacitive coupling problems. This need becomes more important for borehole sampling. Thus, work had been done to design a porous pot electrode hat has all the desired characteristics (low input impedance = 100{Omega}, low noise = 1 {micro}V/{radical} z, low temperature sensitivity = 10{micro}V/{sup o}C) and that can be implanted in a borehole for up to two ears. Further constructional/fabrication details will be given in the final report. The attached pictures are rom a sample of the prototype electrode. Four strings, each consisting of 14 electrodes (7 potential electrodes alternated with 7 metallic-copper current electrodes, each electrode 6ft apart), were constructed and are to be employed into the four boreholes. (They were eventually deployed in Dec. 2002 and measurements acquired in March 2003). (2) The MIT's Earth Resources Laboratory (ERL) performed Spectral Induced Polarization SIP and Time Domain Induced Polarization (TDIP) measurements at the A-14 Outfall during the summer of Y01 as a participant in a DOE-sponsored exercise to assess the state-of-the-art in cross-borehole IP technology for delineating subsurface contaminants. To demonstrate the utility of SIP to map DNAPL contaminants, we inverted cross-borehole SIP data, taken within a very narrow frequency bandwidth of 1/32 o 9/32 Hz. The narrow bandwidth was selected after carefully studying when effects of emc, electrode polarization, etc. begin to set in. The upper frequency is limited by electromagnetic couplings (emc) and strong capacitive behavior observed for the electrodes and the low-frequency limit is set by the time to take measurements. Because below 9/32 Hz, the IP response seems to be greater than emc in all our measurements, the data was

  3. Characterizing structural and textural subsurface patterns using spectral induced polarization: Effects of saturation

    NASA Astrophysics Data System (ADS)

    Breede, K.; Esser, O.; Zimmermann, E.; Huisman, J. A.; Kemna, A.

    2010-05-01

    Groundwater is a vulnerable resource that is endangered by pollutants and contaminants. Soil is an important protective buffer for groundwater and, therefore, the understanding of flow and transport processes in soils is very important. However, the prediction capabilities of unsaturated flow and transport models in the vadose zone are often limited due to an insufficient knowledge about the structural and textural heterogeneity of the soil. To obtain more information about soil structure, texture and heterogeneity, as well as hydraulic parameters, non-invasive electrical methods may be employed in field-scale studies. To investigate the potential of the approach, a laboratory measurement setup was developed which allows combined electrical and hydraulic measurements. The latter are conducted via a multi-step outflow device. Various pressure steps are applied to a saturated sample and the outflow is recorded. When equilibrium is reached, spectral induced polarization (SIP) measurements are conducted before the next pressure step is applied. The electrical measurements are carried out with a high-accuracy impedance spectrometer. Combined electrical and hydraulic measurements were conducted on packed sand-clay mixtures. The measured resistivity magnitude and phase spectra and their dependence on water content are clearly different for each mixture. For pure sand, the phase values increase with decreasing water content over the entire frequency range and a phase peak is present for low water content. The increasing phase is due to the increasing resistivity and an associated increasing chargeability of the sample. The phase spectrum of a sand-clay mixture with 5 % clay shows the same behaviour like the pure sand; however, the shift of the phase peak to higher frequencies is much stronger. This shift suggests that relaxation time and length become smaller with decreasing water content, which is related to the smaller pores that are active at lower water content. The

  4. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  5. Influence of oil saturation upon spectral induced polarization of oil-bearing sands

    NASA Astrophysics Data System (ADS)

    Schmutz, M.; Revil, A.; Vaudelet, P.; Batzle, M.; Viñao, P. Femenía; Werkema, D. D.

    2010-10-01

    The induced polarization model developed recently by Revil and Florsch to understand the complex conductivity of fully saturated granular materials has been extended to partial saturation conditions. It is an improvement over previous models like the Vinegar and Waxman model, which do not account explicitly for the effect of frequency. The Vinegar and Waxman model can be considered as a limiting case of the Revil and Florsch model in the limit where the distribution of relaxation times is very broad. The extended model is applied to the case of unconsolidated sands partially saturated with oil and water. Laboratory experiments were performed to investigate the influence of oil saturation, frequency, grain size, and conductivity of the pore water upon the complex resistivity response of oil-bearing sands. The low-frequency polarization (below 100 Hz) is dominated by the polarization of the Stern layer (the inner part of the electrical double layer coating the surface of the grains in contact with water). The phase exhibits a well-defined relaxation peak with a peak frequency that is dependent on the mean grain diameter as predicted by the model. Both the resistivity and the magnitude of the phase increase with the relative saturation of the oil. The imaginary (quadrature) component of the complex conductivity is observed to decrease with the oil saturation. All these observations are reproduced by the new model.

  6. Accounting for the effects of pore fluid chemistry on spectral induced polarization (SIP) measurements: the specific polarizability concept

    NASA Astrophysics Data System (ADS)

    Slater, L. D.; Weller, A.; Zhang, C.; Breede, K.; Johnson, T. J.; Nordsiek, S.; Redden, G. D.; Fox, D. T.

    2011-12-01

    Recent spectral induced polarization (SIP) research has advanced our understanding of the controls of the physical and hydraulic properties of porous media on both the polarization magnitude and relaxation length scales in porous media. A critical current challenge is to improve our understanding of how pore fluid chemistry modifies the interfacial polarization measured with the SIP technique. We report results from two laboratory-scale experiments designed to advance this understanding. In the first experiment, we analyzed the influence of electrolyte concentration and valence on the interfacial polarization of three sandstones with differing porosity and permeability. A Debye decomposition (DD) approach was used to determine normalized chargeability and average relaxation time from spectral data. We find that SIP measurements of the polarization magnitude (single frequency imaginary conductivity and normalized chargeability derived from the DD) of sandstone samples can be described by the product of the pore space related internal surface and a quantity that represents the polarizability of the mineral-fluid interface and depends on electrolyte concentration and valence. We introduce a new parameter, the specific polarizability, describing this dependence. In the second experiment, we investigated the effect of pH and hydroxyl ion concentration on the interfacial polarization of both silica gel and well-sorted sand. We find a strong dependence of the polarization on pH in the silica gel. Evidence for the same dependence exists for the sand, although the signal is only just above the noise threshold (~0.1 mrad) of the instrument. We relate the weaker signal observed in the sands to the much smaller pore space related internal surface relative to silica gel, a unique substance with surface area in excess of 500 m2/g. These observations suggest that the specific polarizability is also a function of pH, although the pH dependence is likely to be weak in SIP

  7. Investigating the effect of electro-active ion concentration on spectral induced polarization signatures arising from biomineralization pathways

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Slater, L. D.; Williams, K. H.; Hubbard, S. S.; Wu, Y.

    2010-12-01

    Spectral induced polarization (SIP) is a proven geophysical method for detecting biomineral formation with promising applications for monitoring biogeochemical products during microbial induced sequestration of heavy metals and radionuclides in soils. SIP has been used to monitor the evolution of bioremediation-induced end-products at the uranium-contaminated U.S. Department of Energy Rifle Integrated Field Research Challenge site in Colorado. Although a significant SIP response was detected, the quantitative interpretation is non-trivial as the polarization of metallic minerals depends both on the mineral surface properties and the electrolyte chemistry. In previous experiments SIP mechanisms were studied under complex environments and individual source mechanisms could not be evaluated. Here we examine the role of electrolyte chemistry by comparing the effect of redox active / inactive ions on metallic polarization. In these abiotic experiments magnetite was used as a proxy biomineral and dispersed within columns packed with sand. Parallel columns were saturated with solutions of different concentrations of active (Fe2+) and inactive (Ca2+) ions (0.01mM-10mM) and SIP measurements made (0.1-1000 Hz). Experimental results show small, but detectable, differences in the effect of active ion and inactive ion concentration on the SIP response. To better characterize the effect of electro-active ions on metallic minerals we used a Cole - Cole type relaxation model, to describe the SIP responses. In order to better resolve the relaxation model parameters, we followed a two-step approach whereby we started with a Bayesian based inversion to resolve for the initial parameter estimates, and subsequently used these estimates as a starting model for a deterministic solution. Our results suggest that changes in the active ion concentration, in the presence of magnetite, alone are unlikely to fully explain recent SIP monitoring data from the Rifle site.

  8. On spectral dependence of polarization of asteroids

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.; Shkuratov, Yu. G.

    2016-09-01

    From the analysis of all of the data available on the spectral dependence of polarization of light reflected by asteroids, it has been shown that the slope of the spectral dependence of polarization of asteroids changes its sign, when moving from the negative branch of the phase curve of polarization to the positive one. This effect also manifests itself in the spectral behavior of polarization of the Moon and, probably, in the polarization of the other atmosphereless bodies. From the analysis of a population of asteroids of different types, a weak correlation between the spectral slopes of the polarization degree and the albedo has been found.

  9. Dependence of spectral-induced polarization response of sandstone on temperature and its relevance to permeability estimation

    NASA Astrophysics Data System (ADS)

    Zisser, N.; Kemna, A.; Nover, G.

    2010-09-01

    The possibility to estimate permeability from the electrical spectral induced polarization (SIP) response might be the most important benefit offered by SIP measurements. It can thus be deduced that, in the future, SIP measurements will be carried out more frequently at the field scale or in a well-logging context to estimate permeability. In the shallow subsurface, however, the temperature generally exhibits seasonal variability, and in the deeper subsurface, it usually increases with depth. Hence, knowledge about the dependence of the SIP response on temperature is necessary in order to avoid possible misinterpretation of datasets impacted by thermal effects. In our study, we present a semiempirical framework to describe the temperature dependence of the SIP response. We briefly introduce the SIP response and its relation to permeability in terms of an electrochemical polarization mechanism and combine this formulation with relationships for the dependence of ionic mobility on temperature. We compare the predictions of our formulation with the experimental data from SIP measurements performed on sandstone at temperatures from 0°C to 80°C. The measured SIP response was transformed into a relaxation time distribution, using the empirical Cole-Cole model and a regularized Debye decomposition procedure. The SIP response was found to be in good agreement with the theoretical model. The temperature dependence of both direct current conductivity and relaxation time is controlled mainly by the dependence of ionic mobility on temperature, and the shape of the relaxation time distribution of the investigated sandstone is almost independent of temperature. The temperature effect on the SIP response can therefore be easily corrected.

  10. Estimating the spatiotemporal distribution of geochemical parameters associated with biostimulation using spectral induced polarization data and hierarchical Bayesian models

    NASA Astrophysics Data System (ADS)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Flores Orozco, AdriáN.; Kemna, Andreas

    2012-05-01

    We developed a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado (USA). The SIP data were first inverted for Cole-Cole parameters, including chargeability, time constant, resistivity at the DC frequency, and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g., ferrous iron, sulfate, uranium) were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical submodels: (1) data model, providing links between geochemical and geophysical attributes, (2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and (3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters were estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtained the spatiotemporal distribution of ferrous iron, sulfate, and sulfide, and their associated uncertainty information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.

  11. Influence of Surface Sorption Processes on Spectral Induced Polarization Evaluated Using in-Situ Monitoring of a Na-22 Tracer

    NASA Astrophysics Data System (ADS)

    Hao, N.; Moysey, S. M.; Powell, B. A.; Ntarlagiannis, D.

    2014-12-01

    Spectral Induced Polarization (SIP) has been used to monitor subsurface biogeochemical processes in a variety of lab and field studies. However, there are several competing mechanisms that have been proposed to explain the SIP effect. This work targets the influence of ion sorption to mineral surfaces as a controlling factor on SIP utilizing a pH dependent surface adsorption experiment. In this experiment we use silica gel as an idealized medium where the number of available sites for cation sorption, which in this case is limited to Na+ and H+ ions, is influenced by changes in pH via protonation/deprotonation of silanol groups. The experiment uses 22Na as an in situ tracer as the radioactive decay of this nuclide can be continuously and non-invasively monitored using sensors placed outside of a column. The experiment was conducted by continuously pumping a 0.01M NaCl solution spiked with of 1μCi/L 22Na in to the column under three pH conditions (pH 5.0, 6.0 and 8.0). In the experiment, we observed an increasing number of gamma counts caused by the accumulation of sorbed 22Na in the column as we increased the pH from 5.0 to 6.5, and finally to 8.0. Simultaneously, we observed a linearly correlated (R2 = 0.99) rise in the imaginary conductivity response of the SIP measurements. Using the triple layer electrochemical polarization model for grain polarization to simulate our experimental SIP responses, we found that the estimated surface site density is within a factor of two of that estimated from the mass accumulation of sodium. Since the accumulation of sodium on the silica gel surface is responsible for both the increase in gamma radiation and the change in the electrical response, these observations support the theory that mobile ions in the Stern layer of mineral surfaces provide the primary control on SIP signals in silicate materials.

  12. Modelling the spectral induced polarization response of water-saturated sands in the intermediate frequency range (102-105 Hz) using mechanistic and empirical approaches

    NASA Astrophysics Data System (ADS)

    Kremer, Thomas; Schmutz, Myriam; Leroy, Philippe; Agrinier, Pierre; Maineult, Alexis

    2016-11-01

    The intermediate frequency range 102-105 Hz forms the transition range between the spectral induced polarization frequency domain and the dielectric spectroscopy frequency domain. Available experimental data showed that the spectral induced polarization response of sands fully saturated with water was particularly sensitive to variations of the saturating water electrical conductivity value in the intermediate frequency range. An empirical and a mechanistic model have been developed and confronted to this experimental data. This confrontation showed that the Maxwell Wagner polarization alone is not sufficient to explain the observed signal in the intermediate frequency range. The SIP response of the media was modelled by assigning relatively high dielectric permittivity values to the sand particle or high effective permittivity values to the media. Such high values are commonly observed in the dielectric spectroscopy literature when entering the intermediate frequency range. The physical origin of these high dielectric permittivity values is discussed (grain shape, electromagnetic coupling), and a preliminary study is presented which suggests that the high impedance values of the non-polarizable electrodes might play a significant role in the observed behaviour.

  13. Spectral and spectral-polarization characteristics of potato leaves

    NASA Astrophysics Data System (ADS)

    Belyaev, B. I.; Belyaev, Yu. V.; Chumakov, A. V.; Nekrasov, V. P.; Shuplyak, V. I.

    2000-07-01

    The results of laboratory investigations of the spectral and spectral-polarization characteristics of radiation reflected from the leaves of potato (Solanum tuberosum) of different varieties are discussed. During the vegetation season of 1997, the angular dependence of the degree and azimuth of polarization of radiation reflected from potato leaves as well as the scattering indicatrices in the range 380 1080 nm were determined by a specially developed method with the use of a laboratory goniometric setup. The relationship between the spectral polarization characteristics of radiation and biological parameters of the potato has been obtained with the help of different methods of statistical analysis and explained on the basis of the known physical mechanisms.

  14. Multiband stereometamaterial-based polarization spectral filter

    NASA Astrophysics Data System (ADS)

    Shi, J. H.; Ma, H. F.; Jiang, W. X.; Cui, T. J.

    2012-07-01

    We propose a kind of stereometamaterial composed of periodic structures with twisted asymmetrical split-ring (ASR) resonators. The proposed stereometamaterial has intrinsic chirality and can be used as a multiband polarization spectral filter. Full-wave simulation and experimental results demonstrate that the stereometamaterial with the twist angle of φ=90∘ exhibits three ripple-free cross-polarization transmission peaks at normal incidence of plane waves. The cross-polarization transmission bands are centered at the maxima of circular dichroism, accompanied by pairs of pure circular birefringence points. In physics, the near-field electric and magnetic coupling of orthogonal ASR molecules in parallel planes contributes to the conversion of two orthogonal linear polarizations. The transmission of the proposed multiband polarization spectral filter can be engineered via the mutual twist angle and asymmetry of the ASRs and the thickness of the dielectric spacer layer and also be tuned via the angle of incidence.

  15. A Hierarchical Bayesian Model for Estimating Remediation-induced Biogeochemical Transformations Using Spectral Induced Polarization Data: Development and Application to the Contaminated DOE Rifle (CO) Site

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hubbard, S. S.; Williams, K. H.; Tuglus, C.; Flores-Orozco, A.; Kemna, A.

    2010-12-01

    Although in-situ bioremediation is often considered as a key approach for subsurface environmental remediation, monitoring induced biogeochemical processes, needed to evaluate the efficacy of the treatments, is challenging over field relevant scales. In this study, we develop a hierarchical Bayesian model that builds on our previous framework for estimating biogeochemical transformations using geochemical and geophysical data obtained from laboratory column experiments. The new Bayesian model treats the induced biogeochemical transformations as both spatial and temporal (rather than just temporal) processes and combines time-lapse borehole ‘point’ geochemical measurements with inverted surface- or crosshole-based spectral induced polarization (SIP) data. This model consists of three levels of statistical sub-models: (1) data model (or likelihood function), which provides links between the biogeochemical end-products and geophysical attributes, (2) process model, which describes the spatial and temporal variability of biogeochemical properties in the disturbed subsurface systems, and (3) parameter model, which describes the prior distributions of various parameters and initial conditions. The joint posterior probability distribution is explored using Markov Chain Monte Carlo sampling methods to obtain the spatial and temporal distribution of the hidden parameters. We apply the developed Bayesian model to the datasets collected from the uranium-contaminated DOE Rifle site for estimating the spatial and temporal distribution of remediation-induced end products. The datasets consist of time-lapse wellbore aqueous geochemical parameters (including Fe(II), sulfate, sulfide, acetate, uranium, chloride, and bromide concentrations) and surface SIP data collected over 13 frequencies (ranging from 0.065Hz to 256Hz). We first perform statistical analysis on the multivariate data to identify possible patterns (or ‘diagnostic signatures’) of bioremediation, and then we

  16. Spectral degree of polarization uniformity for polarization-sensitive OCT

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K.

    2015-12-01

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT - such as the degree of polarization uniformity (DOPU) - rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris.

  17. A comparison between single- and multi-objective optimization to fit spectral induced polarization data from laboratory measurements on alluvial sediments

    NASA Astrophysics Data System (ADS)

    Inzoli, S.; Giudici, M.

    2015-11-01

    Spectral induced polarization measurements on unconsolidated and saturated alluvial samples, sand-clay mixtures and well sorted sandy samples, are modelled with the generalized Cole-Cole phenomenological model and two simplified models: the standard Cole-Cole and the Cole-Davidson model. The goodness of fit is evaluated, as a first step, through the root mean square error, weighted on the data errors of the real and the imaginary component. At a later stage a multi-objective optimization is proposed, based on two different indicators for the resistivity amplitude and phase misfit. The analysis of the misfits variations among all the tested parameters associations is conducted to identify the Pareto set of optimal solutions. Both procedures lead to model parameter estimates comparable with literature values. However, the multi-objective approach provides information about the uncertainty of the parameter estimates and highlights the presence of more than one characteristic value for the relaxation time and the frequency exponent in many samples, thus suggesting the possible occurrence of different polarization processes in the investigated frequency range.

  18. Measuring time-domain spectral induced polarization in the on-time: decreasing acquisition time and increasing signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Olsson, Per-Ivar; Dahlin, Torleif; Fiandaca, Gianluca; Auken, Esben

    2015-12-01

    Combined resistivity and time-domain direct current induced polarization (DCIP) measurements are traditionally carried out with a 50% duty cycle current waveform, taking the resistivity measurements during the on-time and the IP measurements during the off-time. One drawback with this method is that only half of the acquisition time is available for resistivity and IP measurements, respectively. In this paper, this limitation is solved by using a current injection with 100% duty cycle and also taking the IP measurements in the on-time. With numerical modelling of current waveforms with 50% and 100% duty cycles we show that the waveforms have comparable sensitivity for the spectral Cole-Cole parameters and that signal level is increased up to a factor of 2 if the 100% duty cycle waveform is used. The inversion of field data acquired with both waveforms confirms the modelling results and shows that it is possible to retrieve similar inversion models with either of the waveforms when inverting for the spectral Cole-Cole parameters with the waveform of the injected current included in the forward computations. Consequently, our results show that on-time measurements of IP can reduce the acquisition time by up to 50% and increase the signal-to-noise ratio by up to 100% almost without information loss. Our findings can contribute and have a large impact for DCIP surveys in general and especially for surveys where time and reliable data quality are important factors. Specifically, the findings are of value for DCIP surveys conducted in urban areas where anthropogenic noise is an issue and the heterogeneous subsurface demands time-consuming 3D acquisitions.

  19. A comparison between Gauss-Newton and Markov chain Monte Carlo basedmethods for inverting spectral induced polarization data for Cole-Coleparameters

    SciTech Connect

    Chen, Jinsong; Kemna, Andreas; Hubbard, Susan S.

    2008-05-15

    We develop a Bayesian model to invert spectral induced polarization (SIP) data for Cole-Cole parameters using Markov chain Monte Carlo (MCMC) sampling methods. We compare the performance of the MCMC based stochastic method with an iterative Gauss-Newton based deterministic method for Cole-Cole parameter estimation through inversion of synthetic and laboratory SIP data. The Gauss-Newton based method can provide an optimal solution for given objective functions under constraints, but the obtained optimal solution generally depends on the choice of initial values and the estimated uncertainty information is often inaccurate or insufficient. In contrast, the MCMC based inversion method provides extensive global information on unknown parameters, such as the marginal probability distribution functions, from which we can obtain better estimates and tighter uncertainty bounds of the parameters than with the deterministic method. Additionally, the results obtained with the MCMC method are independent of the choice of initial values. Because the MCMC based method does not explicitly offer single optimal solution for given objective functions, the deterministic and stochastic methods can complement each other. For example, the stochastic method can first be used to obtain the means of the unknown parameters by starting from an arbitrary set of initial values and the deterministic method can then be initiated using the means as starting values to obtain the optimal estimates of the Cole-Cole parameters.

  20. Polarization induced doped transistor

    DOEpatents

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  1. [Research on Spectral Polarization Imaging System Based on Static Modulation].

    PubMed

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng

    2015-04-01

    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection. PMID:26197616

  2. Considerations on sample holder design and custom-made non-polarizable electrodes for Spectral Induced Polarization measurements on unsaturated soils

    NASA Astrophysics Data System (ADS)

    Kaouane, C.; Chouteau, M. C.; Fauchard, C.; Cote, P.

    2014-12-01

    Spectral Induced Polarization (SIP) is a geophysical method sensitive to water content, saturation and grain size distribution. It could be used as an alternative to nuclear probes to assess the compaction of soils in road works. To evaluate the potential of SIP as a practical tool, we designed an experiment for complex conductivity measurements on unsaturated soil samples.Literature presents a large variety of sample holders and designs, each depending on the context. Although we might find some precise description about the sample holder, exact replication is not always possible. Furthermore, the potential measurements are often done using custom-made Ag/AgCl electrodes and very few indications are given on their reliability with time and temperature. Our objective is to perform complex conductivity measurements on soil samples compacted in a PVC cylindrical mould (10 cm-long, 5 cm-diameter) according to geotechnical standards. To expect homogeneous current density, electrical current is transmitted through the sample via chambers filled with agar gel. Agar gel is a good non-polarizable conductor within the frequency range (1 mHz -20kHz). Its electrical properties are slightly known. We measured increasing of agar-agar electrical conductivity in time. We modelled the influence of this variation on the measurement. If the electrodes are located on the sample, it is minimized. Because of the dimensions at stake and the need for simple design, potential electrodes are located outside the sample, hence the gel contributes to the measurements. Since the gel is fairly conductive, we expect to overestimate the sample conductivity. Potential electrodes are non-polarizable Ag/AgCl electrodes. To avoid any leakage, the KCl solution in the electrodes is replaced by saturated KCl-agar gel. These electrodes are low cost and show a low, stable, self-potential (<1mV). In addition, the technique of making electrode can be easily reproduced and storage and maintenance are simple

  3. Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector.

    PubMed

    Fu, Chen; Arguello, Henry; Sadler, Brian M; Arce, Gonzalo R

    2015-11-01

    A compressive spectral and polarization imager based on a pixelized polarizer and colored patterned detector is presented. The proposed imager captures several dispersed compressive projections with spectral and polarization coding. Stokes parameter images at several wavelengths are reconstructed directly from 2D projections. Employing a pixelized polarizer and colored patterned detector enables compressive sensing over spatial, spectral, and polarization domains, reducing the total number of measurements. Compressive sensing codes are specially designed to enhance the peak signal-to-noise ratio in the reconstructed images. Experiments validate the architecture and reconstruction algorithms.

  4. THE EFFECT OF SYSTEMATICS ON POLARIZED SPECTRAL INDICES

    SciTech Connect

    Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.

    2013-02-15

    We study four particularly bright polarized compact objects (Tau A, Vir A, 3C 273, and For A) in the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps, with the goal of understanding potential systematics involved in the estimation of foreground spectral indices. First, we estimate the spectral index, the polarization angle, the polarization fraction, and the apparent size and shape of these objects when smoothed to a nominal resolution of 1 Degree-Sign FWHM. Second, we compute the spectral index as a function of polarization orientation, {alpha}. Because these objects are approximately point sources with constant polarization angle, this function should be constant in the absence of systematics. However, for the K and Ka band WMAP data we find strong index variations for all four sources. For Tau A, we find a spectral index of {beta} = -2.59 {+-} 0.03 for {alpha} = 30 Degree-Sign , and {beta} = -2.03 {+-} 0.01 for {alpha} = 50 Degree-Sign . On the other hand, the spectral index between the Ka and Q bands is found to be stable. A simple elliptical Gaussian toy model with parameters matching those observed in Tau A reproduces the observed signal, and shows that the spectral index is particularly sensitive to the detector polarization angle. Based on these findings, we first conclude that estimation of spectral indices with the WMAP K band polarization data at 1 Degree-Sign scales is not robust. Second, we note that these issues may be of concern for ground-based and sub-orbital experiments that use the WMAP polarization measurements of Tau A for calibration of gain and polarization angles.

  5. BISIP I: A program for Bayesian inference of spectral induced polarization parameters, and application to mineral exploration at the Canadian Malartic gold deposit, Québec, CA

    NASA Astrophysics Data System (ADS)

    Lafrenière-Bérubé, Charles; Chouteau, Michel; Shamsipour, Pejman; Olivo, Gema R.

    2016-04-01

    Spectral induced polarization (SIP) parameters can be extracted from field or laboratory complex resistivity measurements, and even airborne or ground frequency domain electromagnetic data. With the growing interest in application of complex resistivity measurements to environmental and mineral exploration problems, there is a need for accurate and easy-to-use inversion tools to estimate SIP parameters. These parameters, which often include chargeability and relaxation time may then be studied and related to other rock attributes such as porosity or metallic grain content, in the case of mineral exploration. We present an open source program, available both as a standalone application or Python module, to estimate SIP parameters using Markov-chain Monte Carlo (MCMC) sampling. The Python language is a high level, open source language that is now widely used in scientific computing. Our program allows the user to choose between the more common Cole-Cole (Pelton), Dias, or Debye decomposition models. Simple circuits composed of resistances and constant phase elements may also be used to represent SIP data. Initial guesses are required when using more classic inversion techniques such as the least-squares formulation, and wrong estimates are often the cause of bad curve fitting. In stochastic optimization using MCMC, the effect of the starting values disappears as the simulation proceeds. Our program is then optimized to do batch inversion over large data sets with as little user-interaction as possible. Additionally, the Bayesian formulation allows the user to do quality control by fully propagating the measurement errors in the inversion process, providing an estimation of the SIP parameters uncertainty. This information is valuable when trying to relate chargeability or relaxation time to other physical properties. We test the inversion program on complex resistivity measurements of 12 core samples from the world-class gold deposit of Canadian Malartic. Results show

  6. [Research on New Type of Spectral Modulation Polarization Measurement Technology].

    PubMed

    Zhao, Jia; Zhou, Feng; Li, Huan; Zhao, Hai-bo

    2015-10-01

    Spectral Modulation Polarization Measurement technology (SMPM) is a new type of polarization modulation technology, with an achromatic /4 retarder, a multiple-order retarder and a polarizer the polarization information of incident light can be encoded into the spectral dimension, sinusoidal which amplitude scales with the degree of the linear polarization and phase scales with the angle of the linear polarization can be acquired directly. With a dedicated algorithm for the modulated spectrum, we can get degree and angle of the linear polarization, spectral information and radiation information of the target. This paper expounds the basic principle of SMPM and concrete implementation scheme is proposed. Demodulation algorithm is designed before experimental platform are set up. Experiment which verified the correctness on the SMPM has carried on. The experimental results show the correctness and feasibility of SMPM. Compared with traditional polarization modulate techniques no moving parts and electronic components are including in this scheme. It's also has the advantages of compact and low mass. We can get all the polarization information through one single measurement rather than get Stokes parameters for further calculations. This study provides a new kind of technological approaches for the development of new space polarization detecting sensor.

  7. [Research on New Type of Spectral Modulation Polarization Measurement Technology].

    PubMed

    Zhao, Jia; Zhou, Feng; Li, Huan; Zhao, Hai-bo

    2015-10-01

    Spectral Modulation Polarization Measurement technology (SMPM) is a new type of polarization modulation technology, with an achromatic /4 retarder, a multiple-order retarder and a polarizer the polarization information of incident light can be encoded into the spectral dimension, sinusoidal which amplitude scales with the degree of the linear polarization and phase scales with the angle of the linear polarization can be acquired directly. With a dedicated algorithm for the modulated spectrum, we can get degree and angle of the linear polarization, spectral information and radiation information of the target. This paper expounds the basic principle of SMPM and concrete implementation scheme is proposed. Demodulation algorithm is designed before experimental platform are set up. Experiment which verified the correctness on the SMPM has carried on. The experimental results show the correctness and feasibility of SMPM. Compared with traditional polarization modulate techniques no moving parts and electronic components are including in this scheme. It's also has the advantages of compact and low mass. We can get all the polarization information through one single measurement rather than get Stokes parameters for further calculations. This study provides a new kind of technological approaches for the development of new space polarization detecting sensor. PMID:26904842

  8. Camouflaged target detection based on polarized spectral features

    NASA Astrophysics Data System (ADS)

    Tan, Jian; Zhang, Junping; Zou, Bin

    2016-05-01

    The polarized hyperspectral images (PHSI) include polarization, spectral, spatial and radiant features, which provide more information about objects and scenes than traditional intensity or spectrum ones. And polarization can suppress the background and highlight the object, leading to the high potential to improve camouflaged target detection. So polarized hyperspectral imaging technique has aroused extensive concern in the last few years. Nowadays, the detection methods are still not very mature, most of which are rooted in the detection of hyperspectral image. And before using these algorithms, Stokes vector is used to process the original four-dimensional polarized hyperspectral data firstly. However, when the data is large and complex, the amount of calculation and error will increase. In this paper, tensor is applied to reconstruct the original four-dimensional data into new three-dimensional data, then, the constraint energy minimization (CEM) is used to process the new data, which adds the polarization information to construct the polarized spectral filter operator and takes full advantages of spectral and polarized information. This way deals with the original data without extracting the Stokes vector, so as to reduce the computation and error greatly. The experimental results also show that the proposed method in this paper is more suitable for the target detection of the PHSI.

  9. Spectral distortions in the cosmic microwave background polarization

    SciTech Connect

    Renaux-Petel, Sébastien; Fidler, Christian; Pitrou, Cyril; Pettinari, Guido W. E-mail: christian.fidler@port.ac.uk E-mail: g.pettinari@sussex.ac.uk

    2014-03-01

    We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and the flow of intergalactic electrons. This signal is of the y-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into E- and B-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that B-modes are of the same order of magnitude as E-modes. Both spectra are relatively flat, peaking around ℓ = 280, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zel'dovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.

  10. Study on backscattering spectral polarization characteristics of turbid medium

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Wang, Qinghua; Lai, Jiancheng; Li, Zhenhua

    2015-10-01

    Noninvasive monitoring of blood glucose is the current international academic research focus. Near-infrared (NIR) spectroscopy is the most prospective method of the present study, however, with the flaw of insufficient specificity to glucose. Tissue polarimetry has recently received considerable attention due to its specificity to glucose. Thus the glucose predicting accuracy would be improved by combining spectral intensity and polarization characteristics. However the backscattering spectral polarization characteristics of turbid media have not been reported within the wavelength range from visible to near-infrared light. In this paper, we simulated the backscattering spectral Mueller matrix of turbid medium by vector Monte Carlo. And the polarization characteristics, which are linear/circular degree of polarization (DOP) and linear/circular diattenuation, can be extracted from the simulated Mueller matrix by polar decomposition. Circular diattenuation is not discussed because it remains almost zero on the backscattering plane. While reduced scattering coefficient increases linearly with increasing wavelength, the spectral curves show distinct wavelength dependencies. Interestingly, the wavelength dependencies at center position are different from those at off-center position for linear/circular DOP and linear diattenuation. As expected, it is shown that both linear DOP and linear diattenuation increase with the increasing wavelength. However it is not the case for linear DOP in the central area around the incident point. In this area linear DOP decays approximately exponentially with increasing wavelength. As for circular DOP, it varies with wavelength non-monotonically. These results should be meaningful when spectral polarization characteristics are used to combine with spectral intensity to extract glucose concentration by chemometrics.

  11. Is there spectral variation in the polarized reflectance of leaves?

    NASA Astrophysics Data System (ADS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-05-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  12. Comment on: Tarasov, A. & Titov, K., 2013, On the use of the Cole-Cole equations in spectral induced polarization, Geophys. J. Int., 195, 352-356

    NASA Astrophysics Data System (ADS)

    Macnae, James

    2015-07-01

    A recent paper by Tarasov and Titov suggested that the Cole-Cole conductivity models should be preferred to the Pelton resistivity model in fitting induced polarization responses. Each model has four parameters: resistivity ρ (or its inverse conductivity σ), chargeability m, time parameter τ and frequency dependence c. Tarasov and Titov showed that in fitting experimental data, 3 of the parameters directly correspond across the two formulations, but that there is a difference between the Pelton and Cole-Cole model in that parameter τ is only the same at low frequency, but is an entangled function with m and c at high frequencies in the Pelton formulation. This claim of inconsistent τ was based on using the Pelton complex resistivity formulation and the Cole-Cole complex conductivity equation to analyse complex conductivity data as a function of frequency. However, if Pelton and Cole-Cole models are used to fit complex resistivity, rather than fitting conductivity, then it is the Cole-Cole model that has an entangled parameter at high chargeability m values. Simple testing shows that a Pelton model used to fit resistivity has all four model parameters directly corresponding with conductivity data fitted with a Cole-Cole model. The conclusion is that Cole-Cole and Pelton models in fact require identical independent parameters that can fit experimental or synthetic data, provided the Pelton resistivity formulation is restricted to fitting to resistivity data, and the Cole-Cole conductivity formulation is restricted to fitting conductivity results.

  13. Polarized nuclear target based on parahydrogen induced polarization

    NASA Astrophysics Data System (ADS)

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast (˜100 Hz) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  14. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  15. NON-ZEEMAN CIRCULAR POLARIZATION OF MOLECULAR ROTATIONAL SPECTRAL LINES

    SciTech Connect

    Houde, Martin; Jones, Scott; Rajabi, Fereshte; Hezareh, Talayeh

    2013-02-10

    We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably {sup 12}CO (J = 2 {yields} 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectral Line Polarimeter. We find levels of polarization of up to 1%-2% in general; for {sup 12}CO (J = 2 {yields} 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.

  16. Broad spectral range measurement of chromatic dispersion of polarization modes in holey fibers using spectral interferometry

    NASA Astrophysics Data System (ADS)

    Hlubina, P.; Ciprian, D.; Martynkien, T.; Mergo, P.; Urbańczyk, W.

    2011-05-01

    Chromatic dispersion of polarization modes in holey fibers is measured over a broad spectral range (e.g. 500-1600 nm) using two white-light spectral interferometric techniques. First, a technique employing an unbalanced Mach-Zehnder interferometer with a fiber in the test arm is used to measure the wavelength dependence of the differential group effective index, or equivalently the chromatic dispersion of one polarization mode supported by the fiber. Second, a technique employing a tandem configuration of a Michelson interferometer and the optical fiber under test is used to measure the group modal birefringence in the fiber. From these measurements, the chromatic dispersion of the other polarization mode supported by the fiber is retrieved. We measured by these techniques the chromatic dispersion of polarization modes in four air-silica holey fibers and revealed the dependence of zero-dispersion wavelength on the geometry of the holey fiber.

  17. Polarization of photons scattered by electrons in any spectral distribution

    SciTech Connect

    Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo

    2014-01-01

    On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incident bean is unpolarized, soft γ-rays can lead to about 15% polarization at viewing angles around π/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.

  18. An Integrated Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Thompson, K. E.

    1993-01-01

    A new type of image detector has been designed to simultaneously analyze the polarization of light at all picture elements in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. It should be capable of 1:10(exp 4) polarization discrimination. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Innovations in the IDID include (1) two interleaved 512 x 1024-pixel imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 6) electrons per pixel); (3) simultaneous readout of both images at 10 million pixels per second each; (4) on-chip analog signal processing to produce polarization maps in real time; (5) on-chip 10-bit A/D conversion. When used with a lithium-niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can collect and analyze simultaneous images at two wavelengths. Precise photometric analysis of molecular or atomic concentrations in the atmosphere is one suggested application. When used in a solar telescope, the IDID will charge the polarization, which can then be converted to maps of the vector magnetic fields on the solar surface.

  19. Method for induced polarization logging

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1987-04-14

    A method is described for generating a log of the formation phase shift, resistivity and spontaneous potential of an earth formation from data obtained from the earth formation with a multi-electrode induced polarization logging tool. The method comprises obtaining data samples from the formation at measurement points equally spaced in time of the magnitude and phase of the induced voltage and the magnitude and phase of the current supplied by a circuit through a reference resistance R/sub 0/ to a survey current electrode associated with the tool.

  20. Simultaneous Teleportation of the Spectral and Polarization States of a Photon

    SciTech Connect

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2008-01-01

    We describe how spectrally multimode, polarization-entangled photons simultaneously teleport quantum information encoded into the spectral and polarization degrees of freedom of a single photon using sum frequency generation to implement a Bell-state measurement.

  1. Spectral Signatures of Polar Stratospheric Clouds and Sulfate Aerosol.

    NASA Astrophysics Data System (ADS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-10-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm1 (10.8, 8.0, and 6.2 m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  2. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  3. Wavelength encoded polarization measurements for simultaneous spectral and polarimetric characterization in near field

    NASA Astrophysics Data System (ADS)

    Patel, H. S.; Swami, M. K.; Kushwaha, P. K.; Uppal, A.; Gupta, P. K.

    2016-08-01

    We report a scheme for polarization sensitive near field imaging of nanostructured samples by making use of broadband polarized near field illumination and detection of polarization states of scattered light by a spectrally encoded analyzer. The analyzer comprising a combination of polarizer, a multi-order waveplate and a broadband quarter waveplate allows analysis of the spectrally encoded polarization states of scattered light for characterization of the polarization properties of nano structures from a single image scan. The scheme was validated by measuring the near field polarization parameters of silver nanowires. The approach allows simultaneous measurement of polarization characteristics as well as spectral features of the nano materials.

  4. Polarized spectral complexes of optical functions of monovalent mercury iodide

    NASA Astrophysics Data System (ADS)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  5. Spectral and polarization properties of photospheric emission from stratified jets

    SciTech Connect

    Ito, Hirotaka; Nagataki, Shigehiro; Matsumoto, Jin; Lee, Shiu-Hang; Tolstov, Alexey; Mao, Jirong; Dainotti, Maria; Mizuta, Akira

    2014-07-10

    We explore the spectral and polarization properties of photospheric emissions from stratified jets in which multiple components, separated by sharp velocity shear regions, are distributed in lateral directions. Propagation of thermal photons injected at a high optical depth region are calculated until they escape from the photosphere. It is found that the presence of the lateral structure within the jet leads to the nonthermal feature of the spectra and significant polarization signal in the resulting emission. The deviation from thermal spectra, as well as the polarization degree, tends to be enhanced as the velocity gradient in the shear region increases. In particular, we show that emissions from multicomponent jet can reproduce the typical observed spectra of gamma-ray bursts irrespective of the position of the observer when a velocity shear region is closely spaced in various lateral (θ) positions. The degree of polarization associated with the emission is significant (>few percent) at a wide range of observer angles and can be higher than 30%.

  6. Radiative interactions with micromachined surfaces: Spectral polarized emittance

    SciTech Connect

    Zemel, J.N.

    1991-01-01

    The spectral, angular, polarized emittance (SAPE) is a simple means for observing the allowed electromagnetic energy states associated with periodic structures whose dimensions are comparable to the wavelength of the observed light. Other methods for measuring absorption are far more time consuming when a broad survey is of interest. An extensive body of SAPE data was obtained on 350-- 400{degrees}C intrinsic silicon lamellar gratings. Current approximations to the vector wave equation such as guided wave, modal and Bloch wave methods provided insight into our experiments. A qualitative picture of the stationary electromagnetic states (SES) of lamellar gratings has been developed which agrees with experiment for a number of polarizations, and angular orientations of the emission k vector relative to the gratings. However, one type of emission does not fit any simple model we have examined and raises intriguing questions about emission from grating structures. A new, higher angular resolution emissometer (0.8{degrees} instead of 5{degrees}) has been completed. This system significantly increases the wavelength range from the current 3--14 {mu}m range to 2-25{mu}m, a doubling of the spectral regime. The system is currently in a shakedown'' mode. Preliminary data indicates that the new emissometer meets the design goals. 24 refs., 10 figs.

  7. Compressive spectral polarization imaging with coded micropolarizer array

    NASA Astrophysics Data System (ADS)

    Fu, Chen; Arguello, Henry; Sadler, Brian M.; Arce, Gonzalo R.

    2015-05-01

    We present a compressive spectral polarization imager based on a prism which is rotated to different angles as the measurement shots are taken, and a colored detector with a micropolarizer array. The prism shears the scene along one spatial axis according to its wavelength components. The scene is then projected to different locations on the detector as measurement shots are taken. Composed of 0°, 45°, 90°, 135° linear micropolarizers, the pixels of the micropolarizer array matched to that of the colored detector, thus the first three Stokes parameters of the scene are compressively sensed. The four dimensional (4D) data cube is thus projected onto the two dimensional (2D) FPA. Designed patterns for the micropolarizer and the colored detector are applied so as to improve the reconstruction problem. The 4D spectral-polarization data cube is reconstructed from the 2D measurements via nonlinear optimization with sparsity constraints. Computer simulations are performed and the performance of designed patterns is compared with random patterns.

  8. The relationship between variable and polarized optical spectral components of luminous type 1 non-blazar quasars

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2016-08-01

    Optical spectropolarimetry by Kishimoto et al. (2004, MNRAS, 354, 1065) has shown that several luminous type 1 quasars show a strong decrease of the polarized continuum flux in the rest-frame near-ultraviolet (UV) wavelengths of λ < 4000 Å. In the literature, this spectral feature is interpreted as evidence of the broadened hydrogen Balmer absorption edge imprinted on the accretion disk thermal emission due to the disk atmospheric opacity effect. On the other hand, quasar flux variability studies have shown that the variable continuum component in UV-optical spectra of quasars, which is considered to be a good indicator of the intrinsic spectral shape of the accretion disk emission, generally has a significantly flat spectral shape throughout the near-UV to optical spectral range. To examine whether the disk continuum spectral shapes revealed as the polarized flux and as the variable component spectra are consistent with each other, we carry out multi-band photometric monitoring observations for a sample of four polarization-decreasing quasars of Kishimoto et al.'s (4C 09.72, 3C 323.1, Ton 202, and B2 1208+32) to derive the variable component spectra and compare the spectral shape of them with that of the polarized flux spectra. Contrary to expectation, we confirm that the two spectral components of these quasars have totally different spectral shapes, in that the variable component spectra are significantly bluer compared to the polarized flux spectra. This discrepancy between two spectral shapes may imply either (1) the decrease of polarization degree in the rest-frame UV wavelengths is not indicating the Balmer absorption edge feature but is induced by some unknown (de)polarization mechanisms, or (2) the UV-optical flux variability is occurring preferentially at the hot inner radii of the accretion disk and thus the variable component spectra do not reflect the whole accretion disk emission.

  9. THE IMPACT OF QUANTUM INTERFERENCE BETWEEN DIFFERENT J-LEVELS ON SCATTERING POLARIZATION IN SPECTRAL LINES

    SciTech Connect

    Belluzzi, Luca; Bueno, Javier Trujillo

    2011-12-10

    The spectral line polarization produced by optically pumped atoms contains a wealth of information on the thermal and magnetic structure of a variety of astrophysical plasmas, including that of the solar atmosphere. A correct decoding of such information from the observed Stokes profiles requires a clear understanding of the effects that radiatively induced quantum interference (or coherence) between pairs of magnetic sublevels produces on these observables, in the absence of and in the presence of magnetic fields of arbitrary strength. Here we present a detailed theoretical investigation of the role of coherence between pairs of sublevels pertaining to different fine-structure J-levels, clarifying when it can be neglected for facilitating the modeling of the linear polarization produced by scattering processes in spectral lines. To this end, we apply the quantum theory of spectral line polarization and calculate the linear polarization patterns of the radiation scattered at 90 Degree-Sign by a slab of stellar atmospheric plasma, both taking into account and neglecting the above-mentioned quantum interference. Particular attention is given to the {sup 2}S - {sup 2}P, {sup 5}S - {sup 5}P, and {sup 3}P - {sup 3}S multiplets. We point out the observational signatures of this kind of interference and analyze its sensitivity to the energy separation between the interfering levels, to the amount of emissivity in the background continuum radiation, to lower-level polarization, and to the presence of a magnetic field. Some interesting applications to the following spectral lines are also presented: Ca II H and K, Mg II h and k, Na I D{sub 1} and D{sub 2}, the Ba II 4554 #Angstrom# and 4934 #Angstrom# resonance lines, the Cr I triplet at 5207 #Angstrom#, the O I triplet at 7773 #Angstrom#, the Mg I b-lines, and the H{alpha} and Ly{alpha} lines of H I.

  10. Non-Zeeman circular polarization of molecular maser spectral lines

    SciTech Connect

    Houde, Martin

    2014-11-01

    We apply the anisotropic resonant scattering model developed to explain the presence of non-Zeeman circular polarization signals recently detected in the {sup 12}CO (J = 2 → 1) and (J = 1 → 0) transitions in molecular clouds to Stokes V spectra of SiO v = 1 and v = 2, (J = 1 → 0) masers commonly observed in evolved stars. It is found that the observed antisymmetric 'S'- and symmetric '∪'- or '∩'-shaped spectral profiles naturally arise when the maser radiation scatters off populations of foreground molecules located outside the velocity range covered by the background maser radiation. Using typical values for the relevant physical parameters, it is estimated that magnetic field strengths on the order of a few times 15 mG are sufficient to explain the observational results found in the literature.

  11. Optical Polarization and Spectral Variability in the M87 Jet

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; Georganopoulos, Markos; Sparks, William B.; Biretta, John A.

    2011-12-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from ~20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (αUV-O ~ 0.5, F νvpropν-α), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ upper limits of 0.5δ pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and "looping" in the (I, P) plane. The nucleus has a much steeper spectrum (αUV-O ~ 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  12. Optical Polarization and Spectral Variability in the M87 Jet

    NASA Technical Reports Server (NTRS)

    Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; Georganopoulos, Markos; Sparks, William B.; Biretta, John A.

    2011-01-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST -1 shows a highly significant correlation between flux and polarization, with P increasing from approx 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-l's optical-UV spectrum is very hard (alpha(sub uv-0) approx. 0.5, F(sub v) varies as (v(exp -alpha)), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2alpha upper limits of 0.5 delta parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ((alpha(sub uv-0) approx. 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  13. Induced polarization response of microbial induced sulfideprecipitation

    SciTech Connect

    Ntarlagiannis, Dimitrios; Williams, Kenneth Hurst; Slater, Lee; Hubbard, Susan

    2004-06-04

    A laboratory scale experiment was conducted to examine the use of induced polarization and electrical conductivity to monitor microbial induced sulfide precipitation under anaerobic conditions in sand filled columns. Three columns were fabricated; one for electrical measurements, one for geochemical sampling and a third non-inoculated column was used as a control. A continual upward flow of nutrients and metals in solution was established in each column. Desulfovibrio vulgaris microbes were injected into the middle of the geochemical and electrical columns. Iron and zinc sulfides precipitated along a microbial action front as a result of sulfate reduction due by Desulfovibrio vulgaris. The precipitation front initially developed near the microbial injection location, and subsequently migrated towards the nutrient inlet, as a result of chemotaxis by Desulfovibrio vulgaris. Sampling during and subsequent to the experiment revealed spatiotemporal changes in the biogeochemical measurements associated with microbial sulfate reduction. Conductivity measurements were insensitive to all biogeochemical changes occurred within the column. Changes in the IP response (of up to 14 mrad)were observed to coincide in place and in time with the active microbe respiration/sulfide precipitation front as determined from geochemical sampling. The IP response is correlated with the lactate concentration gradient, an indirect measurement of microbial metabolism, suggesting the potential of IP as a method for monitoring microbial respiration/activity. Post experimental destructive sample analysis and SEM imaging verified the geochemical results and supported our hypothesis that microbe induced sulfide precipitation is directly detectable using electrical methods. Although the processes not fully understood, the IP response appears to be sensitive to this anaerobic microbial precipitation, suggesting a possible novel application for the IP method.

  14. Spectral and polarization sensitivity of juvenile Atlantic salmon (Salmo salar): phylogenetic considerations.

    PubMed

    Hawryshyn, C W; Ramsden, S D; Betke, K M; Sabbah, S

    2010-09-15

    We were interested in comparing the characteristics of polarization sensitivity in Atlantic salmon to those in Pacific salmon. Here we show that the common ancestor to the clade containing Salmo salar, Oncorhynchus mykiss, O. nerka, O. clarkii and Salvelinus fontinalis has the trait of ultraviolet polarization sensitivity. We examined spectral and polarization sensitivity of juvenile Atlantic salmon (Salmo salar) using both optic nerve compound action potential (CAP) and electroretinogram (ERG) recordings. Our experiments employed photic manipulation to adjust the sensitivity of the four cone mechanisms of Atlantic salmon. A spectrally broad background was used to ensure a contribution of all cone mechanisms to both spectral and polarization sensitivity. Chromatic adaptation was used to isolate the sensitivity of each of the four cone mechanisms for both spectral and polarization sensitivity. Under spectrally broad conditions, UV sensitive (UVS), mid wavelength sensitive (MWS) and long wavelength sensitive (LWS) cone mechanisms contributed to polarization sensitivity. CAP recordings produced the typical 'W' shaped polarization sensitivity curve reflecting two active polarization detectors with peaks at e-vector orientations of 0 deg, 90 deg and 180 deg, and troughs at 30 deg and 150 deg. ERG recordings produced a four-peaked polarization sensitivity curve reflecting two active polarization detectors and negative feedback activity, with peaks at e-vectors 0 deg, 45 deg, 90 deg, 135 deg and 180 deg, and troughs at 30 deg, 60 deg, 120 deg and 150 deg. Polarization-sensitivity measurements of isolated cone mechanisms revealed two orthogonal polarization detector mechanisms in Atlantic salmon, identical to that found in rainbow trout and other Pacific salmonid fishes. Moreover, under spectrally broad background conditions, CAP and ERG polarization sensitivity of Atlantic salmon did not differ significantly from that reported in Pacific salmonids.

  15. SPECTRAL MAPPING OF THE INTERMEDIATE POLAR DQ HERCULIS

    SciTech Connect

    Saito, R. K.; Baptista, R.; Horne, K.; Martell, P.

    2010-06-15

    We report an eclipse-mapping study of the intermediate polar DQ Her based on time-resolved optical spectroscopy ({Delta}{lambda} {approx} 3800-5000 A) covering four eclipses. The spectra were sliced into 295 narrow passbands in the continuum and in the lines, and the corresponding light curves were analyzed to solve for a set of monochromatic maps of the disk brightness distribution and for the flux of an additional uneclipsed component in each band. Eclipse maps of the He II {lambda}4686 line indicate that an azimuthally and vertically extended bright spot at disk rim is an important source of the reprocessing of X-rays from the magnetic poles. The disk spectrum is flat with no Balmer or Helium lines in the inner regions, and shows double-peaked emission lines in the intermediate and outer disk regions, while the slope of the continuum becomes progressively redder with increasing radius. The inferred disk temperatures are in the range T {approx_equal} 13500-5000 K and can be reasonably well described by a steady-state disk with mass accretion rate of M-dot =(2.7{+-}1.0)x10{sup -9} M{sub sun} yr{sup -1}. A comparison of the radial intensity distribution for the Balmer lines reveals a linear correlation between the slope of the distribution and the transition energy. The spectrum of the uneclipsed light is dominated by Balmer and He I lines in emission (probably from the extended nova shell) with narrow absorption cores (likely from a collimated and optically thick wind from the accretion disk). The observed narrow and redshifted Ca II {lambda}3934 absorption line in the total light spectra plus the inverse P-Cygni profiles of the Balmer and He II {lambda}4686 emission lines in spectra of the asymmetric component indicate radial inflow of gas in the innermost disk regions and are best explained in terms of magnetically controlled accretion inside the white dwarf magnetosphere. We infer projected radial inflow velocities of {approx}200-500 km s{sup -1}, significantly

  16. Extracting the spectral index of the intergalactic magnetic field from radio polarizations

    NASA Astrophysics Data System (ADS)

    Tiwari, Prabhakar; Jain, Pankaj

    2016-08-01

    We explain the large-scale correlations in radio polarization in terms of the correlations of the galaxy supercluster magnetic field. Assuming that the polarization correlations closely follow the spatial correlations of the background magnetic field, we obtain the magnetic field spectral index as -2.74 ± 0.04. We discuss the possible physical scenarios in which the observed polarization alignment is plausible.

  17. A Compact Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Kumar, A.; Thompson, K. E.

    1993-01-01

    A new type of image detector will simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging Detector (IDID) consists of a polarizing beam splitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. The polarizing beam splitter can be either a Ronchi ruling, or an array of cylindrical lenslets, bonded to a birefringent wafer. The wafer, in turn, is bonded to the CCD so that light in the two orthogonal planes of polarization falls on adjacent pairs of pixels. The use of a high-index birefringent material, e.g., rutile, allows the IDID to operate at f-numbers as high as f/3.5. Other aspects of the detector are discussed.

  18. Polarization studies of Zeeman affected spectral lines using the MSFC magnetograph

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, K. S.; West, E. A.

    1990-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph records polarization images of absorption lines that are sensitive to magnetic fields. A method is presented for analyzing the Stokes spectral-line profiles of a photospheric Fe I absorption line (5250.2 A) which is influenced by the Zeeman effect. Using nonlinear least-square optimization, the observed Stokes profiles are compared with those generated from the theoretical solution of the polarized radiative transfer equations. The optimization process accounts for the spectral convolution of the source and the MSFC vector magnetograph. The resulting physical properties of the active region producing the polarized light are discussed.

  19. Induced Polarization methodology: application to a hydrocarbon contaminated site

    NASA Astrophysics Data System (ADS)

    Blondel, Amelie; Schmutz, Myriam; Tichane, Frederic; Franceschi, Michel; Carles, Margaux

    2013-04-01

    Induced Polarization (IP) is a promising method for environmental studies (Vaudelet et al., 2011; Abdel Aal et al., 2006). This method has already been successful for the study of contaminations in the laboratory scale (Vanhala, 1997; Revil et al., 2011; Schmutz et al., 2012) but is still not trivial on the field. Temporal IP seems relatively common for field studies. When contamination implies a significative change of the polarization parameters, successful studies have been lead (Fiandaca et al. 2012; Dahlin et al., 2002 on landfills). Otherwise hydrocarbon contamination may induce small changes on IP parameters (Vaudelet et al., 2011). Spectral induced polarization has not been widely used for field application yet: this method is sensitive to coupling effects and time consuming. Moreover, all the phenomenon responsible of the signal is not completely understood yet (Kemna et al., 2012). The main aim of our presentation is about IP methodology, applied on site affected by a hydrocarbon contamination. In this case, precautions have to be taken to get explicit answers from the contamination. Field investigations have been made: chargeability measurements in order to delineate the free phase contamination extension and spectral induced polarization soundings in order to characterize more precisely the contamination. We would like to provide recommendations to improve induced polarization measurements especially on three aspects, (i) propose a different measurement sequence to make chargeability measurements and (ii) evaluate the influence of the current injection time on chargeability measurements (iii) give general precautions to achieve SIP measurements. A different new chargeability sequence is proposed integrating the use of separated injection and measure cables to avoid coupling phenomena in multicore cables. Indeed, this kind of coupling can significantly decrease the signal / noise ratio (Dahlin et al., 2012). Direct and reverse measurements have been made

  20. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  1. Spectral Analysis of Cluster Induced Turbulence

    NASA Astrophysics Data System (ADS)

    Patel, Ravi; Ireland, Peter; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier

    2015-11-01

    Particle laden turbulent flows are an important feature of many industrial processes such as fluidized bed reactors. The study of cluster-induced turbulence (CIT), wherein particles falling under gravity generate turbulence in the carrier gas via fluctuations in particle concentration, may lead to better models for these processes. We present a spectral analysis of a database of statistically stationary CIT simulations. These simulations were previously performed using a two way coupled Eulerian-Lagrangian approach for various mass loadings and particle-scale Reynolds numbers. The Lagrangian particle data is carefully filtered to obtain Eulerian fields for particle phase volume fraction, velocity, and granular temperature. We perform a spectral decomposition of the particle and fluid turbulent kinetic energy budget. We investigate the contributions to the particle and fluid turbulent kinetic energy by pressure strain, viscous dissipation, drag exchange, viscous exchange, and pressure exchange over the range of wavenumbers. Results from this study may help develop closure models for large eddy simulation of particle laden turbulent flows.

  2. Spectral analyses of the dual polarization Doppler weather radar data

    NASA Astrophysics Data System (ADS)

    Bachmann, Svetlana Monakhova

    2007-12-01

    Echoes in clear air from biological scatterers mixed within the resolution volumes over a large region are presented. These echoes were observed with the polarimetric prototype of the forthcoming WSR-88D weather radar. The study case occurred in the evening of September 7, 2004, at the beginning of the bird migrating season. Novel polarimetric spectral analyses are used for distinguishing signatures of birds and insects in multimodal spectra. These biological scatterers were present at the same time in the radar resolution volumes over a large area. Spectral techniques for (1) data censoring, (2) wind retrieval and (3) estimation of intrinsic values/functions of polarimetric variables for different types of scatterers are presented. The technique for data censoring in the frequency domain allows detection of weak signals. Censoring is performed on the level of spectral densities, allowing exposure of contributions to the spectrum from multiple types of scatterers. The spectral techniques for wind retrieval allow simultaneous estimation of wind from the data that are severely contaminated by migrating birds, and assessment of bird migration parameters. The intrinsic polarimetric signatures associated with the variety of scatterers can be evaluated using presented methodology. Algorithms for echo classification can be built on these. The possibilities of spectral processing using parametric estimation techniques are explored for resolving contributions to the Doppler spectrum from the three types of scatterers: passive wind tracers, actively flying insects and birds. A combination of parametric and non-parametric polarimetric spectral analyses is used to estimate the small bias introduced to the wind velocity by actively flying insects.

  3. Inducing electric polarization in ultrathin insulating layers

    NASA Astrophysics Data System (ADS)

    Martinez-Castro, Jose; Piantek, Marten; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    Studies of ultrathin polar oxide films have attracted the interest of researchers for a long time due to their different properties compared to bulk materials. However they present several challenges such as the difficulty in the stabilization of the polar surfaces and the limited success in tailoring their properties. Moreover, recently developed Van der Waals materials have shown that the stacking of 2D-layers trigger new collective states thanks to the interaction between layers. Similarly, interface phenomena emerge in polar oxides, like induced ferroelectricity. This represents a promising way for the creation of new materials with customized properties that differ from those of the isolated layers. Here we present a new approach for the fabrication and study of atomically thin insulating films. We show that the properties of insulating polar layers of sodium chloride (NaCl) can be engineered when they are placed on top of a charge modulated template of copper nitride (Cu2N). STM studies carried out in ultra-high vacuum and at low temperatures over NaCl/Cu2N/Cu(001) show that we are able to build up and stabilize interfaces of polar surface at the limit of one atomic layer showing new properties not present before at the atomic scale.

  4. Tunable thin film polarizer for the vacuum ultraviolet and soft x-ray spectral regions

    SciTech Connect

    Yang, Minghong; Cobet, Christoph; Esser, Norbert

    2007-03-01

    A low pass polarizer that suppresses higher-order diffraction light from vacuum ultraviolet and soft x-ray monochromators is presented in this paper. This vacuum ultraviolet and soft x-ray polarizer is based on a concept of sandwiched metal-dielectric-metal triple reflection configuration. By appropriate optimization of material and angle of incidence, the proposed Au-SiC-Au polarizer demonstrates the capability of matching to desired cutoff edge of photon energy. Furthermore, the optimized soft x-ray polarizer shows the possibility to tune cutoff photon energy in a broadband spectral region ranging from 80 down to down to 20 eV.

  5. Smoking Induced Hemolysis: Spectral and microscopic investigations

    PubMed Central

    Masilamani, Vadivel; AlZahrani, Khalid; Devanesan, Sandhanasamy; AlQahtani, Hadi; AlSalhi, Mohamad Saleh

    2016-01-01

    Smoking is one of the major causes of lifestyle associated mortality and morbidity such as cancer of the oral cavity and lungs, and also cardiovascular diseases. In this study, we have provided evidences for the smoking-induced hemolysis using two methods: spectra of blood components and atomic force microscopic analysis of surface morphology. A total of 62 subjects (control = 31; smoker = 31: 21 male; 10 female in each set) were considered for the study. The findings indicate that smoking leads to potholes on the surface, swelling of shape, rupturing of erythrocytes, removal of hematoporphyrin and flushing into the plasma as metabolites of the erythrocyte. The overall morphology of the erythrocytes of the smoker group appears more like a Mexican hat. The mean surface roughness was 5.5 ± 3 nm for the smoker group, but 1.2 ± 0.2 nm for the control group. Such damages might help the toxins, (CO, peroxidants, aldehydes etc.,) to gain easy access and get strongly absorbed by the hemoglobin, leading to enhanced rates of hemolysis as shown by the spectral features of metabolites. This indicates that the average life span of the smoker’s erythrocytes is significantly less than that of the control group. PMID:26891995

  6. Radiative interactions with micromachined surfaces: Spectral polarized emittance. Final report

    SciTech Connect

    Zemel, J.N.

    1995-05-01

    This report covers work aimed at obtaining additional information on the electromagnetic emissions from heated, microstructured surface. Earlier work had established that thermal emission was a useful means for obtaining broad band information on the electromagnetic properties of these surfaces. Among the earlier results obtained was a demonstration that there was an increased amount of coherent radiation emitted from these structures. Also found was that the nature of the emission was dependent on the carrier concentration of the emitting material as well as the details of the geometry of surface structures. Described in this report is the normal polarized emissivity of undoped silicon gratings of different dimensions measured with a new emissometer. Deep grating fabrication, formation of a titanium silicide layer, and wafer cutting is described.

  7. Characterizing microstructural changes of skeletal muscle tissues using spectral transformed Mueller matrix polarization parameters

    NASA Astrophysics Data System (ADS)

    He, Chao; He, Honghui; Chang, Jintao; Ma, Hui

    2016-03-01

    Polarization imaging techniques are recognized as potentially powerful tools to detect the structural changes of biological tissues. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information, therefore can be applied in biomedical studies. In this paper, we adopt the polarization reflectance spectral imaging to analyze the microstructural changes of hydrolyzing skeletal muscle tissues. We measure the Mueller matrix, which is a comprehensive description of the polarization properties, of the bovine skeletal muscle samples in different periods of time, and analyze its behavior using the multispectral Mueller matrix transformation (MMT) technique. The experimental results show that for bovine skeletal muscle tissues, the backscattered spectral MMT parameters have different values and variation features at different stages. We can also find the experimental results indicate that the stages of hydrolysis for bovine skeletal muscle samples can be judged by the spectral MMT parameters. The results presented in this work show that combining with the spectral technique, the MMT parameters have the potential to be used as tools for meat quality detection and monitoring.

  8. Apparatus for focused electrode induced polarization logging

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1986-04-15

    An induced polarization logging tool is described for measuring parameters of a formation surrounding a borehole. The logging tool consists of: a non-conductive logging sonde; a plurality of electrodes disposed on the sonde, the electrodes including at least a survey current electrode and guard electrodes disposed on opposite sides of the survey current electrode, a non-polarizing voltage measuring electrode, a non-polarizing voltage reference electrode and a current return electrode, both the voltage reference and current return electrodes being located a greater distance from the survey current electrode than the guard electrodes; means connected to the survey current electrode and the guard electrodes for generating a signal representative of the potential difference in the formation between the survey current electrode and the guard electrodes; first control means directly coupled to the survey current electrode, the first control means controlling the current flow to the survey current electrode in response to the potential difference signal; a second control means directly coupled to the guard electrodes to control the current flow to the guard electrodes in response to the potential difference signal; a source of alternating current located at the surface, one end of the source being coupled to the two control means and the other to the current return electrode, the source supplying alternating current at various discrete frequencies between substantially 0.01 and 100 Hz; measurement means directly coupled to the voltage measurement and survey current electrodes to measure the amplitude and phase of the voltage induced in the formation and the amplitude and phase of the current flow to the survey electrode; and transmission means for transmitting the measurements to the surface.

  9. An imaging spectro-polarimeter for measuring hemispherical spectrally resolved down-welling sky polarization

    NASA Astrophysics Data System (ADS)

    Chenault, David B.; Pezzaniti, J. L.; Roche, Michael; Hyatt, Brian

    2016-05-01

    A full sky imaging spectro-polarimeter has been developed that measures spectrally resolved (~2.5 nm resolution) radiance and polarization (𝑠0, 𝑠1, 𝑠2 Stokes Elements) of natural sky down-welling over approximately 2π sr between 400nm and 1000nm. The sensor is based on a scanning push broom hyperspectral imager configured with a continuously rotating polarizer (sequential measurement in time polarimeter). Sensor control and processing software (based on Polaris Sensor Technologies Grave' camera control software) has a straight-forward and intuitive user interface that provides real-time updated sky down-welling spectral radiance/polarization maps and statistical analysis tools.

  10. TEMPORAL SPECTRAL SHIFT AND POLARIZATION OF A BAND-SPLITTING SOLAR TYPE II RADIO BURST

    SciTech Connect

    Du, Guohui; Chen, Yao; Lv, Maoshui; Kong, Xiangliang; Feng, Shiwei; Guo, Fan; Li, Gang

    2014-10-01

    In many type II solar radio bursts, the fundamental and/or the harmonic branches of the bursts can split into two almost parallel bands with similar spectral shapes and frequency drifts. However, the mechanisms accounting for this intriguing phenomenon remain elusive. In this study, we report a special band-splitting type II event in which spectral features appear systematically earlier on the upper band (with higher frequencies) than on the lower band (with lower frequencies) by several seconds. Furthermore, the emissions carried by the splitting band are moderately polarized with the left-hand polarized signals stronger than the right-hand ones. The polarization degree varies in a range of –0.3 to –0.6. These novel observational findings provide important constraints on the underlying physical mechanisms of band-splitting of type II radio bursts.

  11. Noninvasive Contaminant Site Characterization Using Geophysical Induced Polarization

    SciTech Connect

    Morgan, F.D.; Sogade, J.; Lesmes, D.; Coles, D.; Vichabian, Y.; Scira-Scappuzzo, F.; Shi, W.; Vandiver, A.; Rodi, W.

    2003-03-27

    Results of aspects of a broad foundational study of time domain IP (TDIP) and spectral IP (SIP) for contaminant site characterization are presented. This ongoing study encompassed laboratory studies of coupled effects of rock/soil microgeometry and contaminant chemistry on induced polarization (IP), an investigation of electromagnetic coupling (EMC) noise and development of 3D modeling and inversion codes. SIP requires extensions to higher frequencies (above the typical 100Hz threshold) and EMC becomes the major limitation for field implementation, because conventional correction methods are inadequate at required higher frequencies. A proposed methodology is outlined, based on a model of all EMC components, that addresses the EMC problem by coupling IP and electromagnetic induction in modeling and inversion. Examples of application of IP and SIP to contaminant mapping and detection for TDIP and SIP will be presented for FS-12 plume at Massachusetts Military Reservation and a suspected DNAPL plume at Savannah River Site.

  12. Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry

    NASA Astrophysics Data System (ADS)

    Hlubina, P.; Ciprian, D.; Kadulová, M.

    2010-04-01

    We report on a white-light interferometric technique for a broad spectral range measurement (e.g. 500-1600 nm) of chromatic dispersion of polarization modes in short-length optical fibres. The technique utilizes an unbalanced Mach-Zehnder interferometer with a fibre under test of known length inserted in one of the interferometer arms and the other arm with adjustable path length. We record a series of spectral interferograms by VIS-NIR and NIR fibre-optic spectrometers to measure the equalization wavelength as a function of the path length difference, or equivalently the differential group index dispersion of one polarization mode. The differential group dispersion of the other polarization mode is obtained from measurement of the group modal birefringence dispersion. We verify the applicability of the method by measuring the chromatic dispersion of polarization modes in a birefringent holey fibre. We apply a five-term power series fit to the measured data and confirm by its differentiation that the chromatic dispersion agrees well with that specified by the manufacturer. We also measure by this technique the chromatic dispersion of polarization modes in an elliptical-core fibre.

  13. Subsurface imaging using the spectral polarization difference technique and NIR illumination

    SciTech Connect

    Alfano, R R; Demos, S G; Radousky, H B

    1999-01-26

    A subsurface imaging system is utilized to test the ability of the spectral polarization difference imaging technique for deep subsurface imaging in tissues. The illumination of the system is derived from compact class III lasers in the red and NIR spectral region and, alternatively, from a white light source and selection of the appropriate illumination wavelength using band-pass optical filters. The experimental results demonstrate detection and imaging of a high-scattering object located up to 1.5 cm underneath the surface of a host chicken tissue.

  14. Induced polarization and self-potential geophysical signature of bacterial activity in porous media (Invited)

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2013-12-01

    The first part of the presentation will be dedicated to the spectral induced polarization signature of bacteria in porous media. We developed a quantitative model to investigate frequency-domain induced polarization response of suspensions of bacteria and bacteria growth in porous media. Induced polarization of bacteria (alpha-polarization) is related to the properties of the electrical double layer of the bacteria. Surface conductivity and alpha-polarization are due to the Stern layer of counterions occurring in a brush of polymers coating the surface of the bacteria. These phenomena can be related to the cation exchange capacity of the bacteria. The mobility of the counterions in this Stern layer is found to be very small (4.7×10-10 m2s-1 V-1 at 25°C). This implies a very low relaxation frequency for the alpha-polarization of the bacteria cells (typically around 0.1 to 5 Hertz) in agreement with experimental observations. This new model can be coupled to reactive transport modeling codes in which the evolution of bacterial populations are usually described by Monod kinetics. We show that the growth rate and endogenous decay coefficients of bacteria in a porous sand can be inferred non-intrusively from time lapse frequency-domain induced polarization data. The second part of the presentation will concern the biogeobattery mechanism showing new data, the concept of transient biogeobattery and the influence of the concentration of the electron acceptors in the process.

  15. Nonlinear spectral cleaning of few-cycle pulses via cross-polarized wave (XPW) generation

    NASA Astrophysics Data System (ADS)

    Jullien, A.; Durfee, C. G.; Trisorio, A.; Canova, L.; Rousseau, J.-P.; Mercier, B.; Antonucci, L.; Chériaux, G.; Albert, O.; Lopez-Martens, R.

    2009-08-01

    The characterization of a temporal filter based on cross-polarized wave generation working in the few-optical-cycle regime is presented. We show that this device dramatically improves the spectral quality of the ultrashort seed pulses, opening the way to the production of sub-10 fs pulses with high incoherent and coherent contrast. The dispersion compensation conditions for an optimized behavior of the process are experimentally and theoretically discussed.

  16. Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics

    NASA Astrophysics Data System (ADS)

    Scott, S. D.; Mumgaard, R. T.

    2016-11-01

    A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using a numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. The software suite is modular, parallelized, and portable to other facilities.

  17. Ir Spectral Mapping of the Martian South Polar Residual CAP Using Crism

    NASA Astrophysics Data System (ADS)

    Campbell, Jacqueline; Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are considered to be important in theories of abiogenesis (Allamandola, 2011) . There is evidence that PAHs have been detected on two icy Saturnian satellites using the Visual and Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft (Cruikshank et al., 2007). The hypothesised presence of PAHs in Mars south polar cap has not been systematically examined even though the Mars south polar cap may allow the preservation of organic molecules that are typically destroyed at the Martian surface by UV radiation (Dartnell et al. 2012). This hypothesis is supported by recent analyses of South Polar Residual Cap (SPRC) structural evolution (Thomas et al., 2009) that suggest the possibility that seasonal and long term sublimation may excavate dust particles from within the polar ice. Periodic sublimation is believed to be responsible for the formation of so-called "Swiss Cheese Terrain", a unique surface feature found only in the Martian south polar residual cap consisting of flat floored, circular depressions (Byrne, 2009). We show the first examples of work towards the detection of PAHs in Swiss Cheese Terrain, using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), on board NASA's Mars Reconnaissance Orbiter (MRO). CRISM is designed to search for mineralogical indications of past and present water, thus providing extensive coverage of the south polar cap. In this work, we discuss whether CRISM infrared spectra can be used to detect PAHs in Swiss Cheese Terrain and demonstrate a number of maps showing shifts in spectral profiles over the SPRC.

  18. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity.

    PubMed

    Levitt, James A; Chung, Pei-Hua; Suhling, Klaus

    2015-09-01

    Spectrally resolved confocal microscopy and fluorescence lifetime imaging have been used to measure the polarity of lipid-rich regions in living HeLa cells stained with Nile red. The emission peak from the solvatochromic dye in lipid droplets is at a shorter wavelength than other, more polar, stained internal membranes, and this is indicative of a low polarity environment. We estimate that the dielectric constant, ϵ , is around 5 in lipid droplets and 25<ϵ<40 in other lipid-rich regions. Our spectrally resolved fluorescence lifetime imaging microscopy (FLIM) data show that intracellular Nile red exhibits complex, multiexponential fluorescence decays due to emission from a short lifetime locally excited state and a longer lifetime intramolecular charge transfer state. We measure an increase in the average fluorescence lifetime of the dye with increasing emission wavelength, as shown using phasor plots of the FLIM data. We also show using these phasor plots that the shortest lifetime decay components arise from lipid droplets. Thus, fluorescence lifetime is a viable contrast parameter for distinguishing lipid droplets from other stained lipid-rich regions. Finally, we discuss the FLIM of Nile red as a method for simultaneously mapping both polarity and relative viscosity based on fluorescence lifetime measurements.

  19. Angle- and polarization-dependent spectral characteristics of circular grating filters.

    PubMed

    Wang, Wei; Zhu, Gangyi; Liu, Qifa; Li, Xin; Sa, Tongliang; Fang, Xiaojing; Zhu, Hongbo; Wang, Yongjin

    2016-05-16

    We design and implement one type of guided mode resonance (GMR) circular grating filters (CGFs) on an HfO2-on-silicon platform. Taking advantage of an angle-resolved micro-reflection measurement system, we achieve their incident angle- and polarization-dependent reflection spectra. For normal incident arbitrary linear polarization, a pair of reflection peaks is experimentally observed due to the coexistence of the azimuthal component Ea and the radial component Er of the incident wave electric field (E-field). For oblique incident s-polarization (E-field perpendicular to the incident plane), the peak excited by the Ea component splits into two sub-peaks due to the removal of degeneracy, while that excited by the Er component gradually fades away with the increase of the incident angle. For oblique incident p-polarization (E-field parallel to the incident plane), the spectrum appears to be reversed; that is, the peak corresponding to the Er component gets split while that corresponding to the Ea component gradually disappears when the incident angle increases. Moreover, we experimentally demonstrate the spectral relationships between CGFs and linear grating filters under not only normal incidence but also oblique incidence; these relationships greatly facilitate the spectral design and tailoring of the CGFs.

  20. Induced spectral gap and pairing correlations from superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  1. Nonequilibrium spin polarization induced charge Hall effect

    NASA Astrophysics Data System (ADS)

    Hou, Dazhi; Qiu, Z.; Iguchi, R.; Sato, K.; Uchida, K.; Bauer, G. W.; Saitoh, Eiji

    2015-03-01

    The nonequilibrium spin polarization lies at the heart of information processing in spin-based devices. The generation and manipulation of the spin polarization have been realized by various approaches, however, the spin polarization is usually considered to have negligible effect on the electric transport property, especially for systems of high electron concentration like metals (ɛF ~ eV). Here we show that the nonequilibrium spin polarization can cause a novel Hall voltage in a conventional metallic alloy at room temperature, which is due to a new mechanism and closely related to the spin Nernst effect.

  2. Induced and Form Birefringence in High-Frequency Polarization Gratings

    NASA Astrophysics Data System (ADS)

    Martinez-Ponce, Geminiano; Solano, Cristina

    2001-08-01

    High-frequency phase polarization gratings are fabricated holographically in dichromated gelatin dyed with malachite green. It is observed that the intensity of the -1 diffracted beam is a sinusoidal function of the incident polarization angle. In addition, we analyze the dependence of the diffracted order polarization on grating frequency. It is evident from our results that form birefringence becomes significant when the grating period is smaller than the illumination wavelength, thus modifying the optically induced birefringence. Then, in polarization hologram reconstruction, it is not possible to obtain the polarization distribution at the recording step for high-frequency objects.

  3. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  4. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  5. GLOBAL SPECTRAL ENERGY DISTRIBUTION OF THE CRAB NEBULA IN THE PROSPECT OF THE PLANCK SATELLITE POLARIZATION CALIBRATION

    SciTech Connect

    MacIas-Perez, J. F.; Mayet, F.; Aumont, J.

    2010-03-01

    Within the framework of the Planck satellite polarization calibration, we present a study of the Crab Nebula spectral energy distribution (SED) over more than six decades in frequency ranging from 1 to 10{sup 6} GHz (from 299 to 2.99 x 10{sup -4} mm). The Planck satellite mission observes the sky from 30 to 857 GHz (from 9.99 to 0.3498 mm) and therefore we focus on the millimeter region. We use radio and submillimeter data from the WMAP satellite between 23 and 94 GHz (from 13 to 3.18 mm), from the Archeops balloon experiment between 143 (2.1 mm) and 545 GHz (0.55 mm), and a compendium of other Crab Nebula observations. The Crab SED is compared to models including three main components: synchrotron that is responsible for the emission at low and high frequencies, dust that explains the excess of flux observed by the IRAS satellite, and an extra component on the millimeter regime. From this analysis, we conclude that the unpolarized emission of the Crab Nebula at microwave and millimeter wavelengths is the same synchrotron emission as the one observed in the radio domain. Therefore, we expect the millimeter emission of the Crab Nebula to be polarized with the same degree of polarization and orientation as the radio emission. We set upper limits on the possible errors induced by any millimeter extra component on the reconstruction of the degree and angle of polarization at the percent level as a maximum. This result strongly supports the choice by the Planck collaboration of the Crab Nebula emission for performing polarization cross-checks in the range 30 (299 mm) to 353 GHz (0.849 mm).

  6. The multi-spectral line-polarization MSE system on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mumgaard, R. T.; Scott, S. D.; Khoury, M.

    2016-11-01

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

  7. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Ma, P. F.; Wang, X. L.; Su, R. T.; Zhou, P.; Chen, J. B.

    2015-10-01

    The active coherent polarization beam combining (CPBC) technique has been experimentally proved to be a promising approach for the energy and power scaling of ultrashort laser pulses, despite the tremendous challenge in temporal synchronization, dispersion management and nonlinearity control. In order to develop a comprehensive theoretical model to investigate the influence of temporal-spectral effects on ultrafast fiber active CPBC systems, a generalized nonlinear Schrödinger equation carrying spectral factors is used to depict the propagation of ultrashort pulses in fiber amplifier channels and ultrashort-pulsed Gaussian beams (PGBs) carrying temporal-spatial factors are utilized to picture the propagation of ultrashort pulses in the free space. To the best of our knowledge, the influence of different temporal-spectral effects has been segregated for the first time and corresponding analytical equations have been strictly derived to link the combining efficiency with specific factors. Based on our analysis, the optical path difference (OPD) has the most detrimental impact on the combining efficiency because of the high controlling accuracy and anti-interference requirements. For instance, the OPD must be controlled in ~  ±14 μm to achieve a combining efficiency of above 95% for combining ultrashort laser pulses with a 3 dB spectral bandwidth of 13 nm centered at 1064 nm. Besides, the analytical expression also demonstrates that the impact of self-phase modulation on the combining efficiency has no dependence on spectral bandwidth and only depends on the B integral difference if neglecting the direct influence of the peak power difference. Our analysis also indicates that the group velocity dispersion has relatively small influence on the combining efficiency. These formulas can be used to diagnose the influence of temporal-spectral effects and provide useful guidelines for the design or optimization of the active CPBC system of ultrafast fiber chirped

  8. Decoupled polarization dynamics of incoherent waves and bimodal spectral incoherent solitons.

    PubMed

    Fusaro, A; Garnier, J; Michel, C; Xu, G; Fatome, J; Wright, L G; Wise, F W; Picozzi, A

    2016-09-01

    We consider the propagation of strongly incoherent waves in optical fibers in the framework of the vector nonlinear Schrödinger equation (VNLSE) accounting for the Raman effect. On the basis of the wave turbulence theory, we derive a kinetic equation that greatly simplifies the VNLSE and provides deep physical insight into incoherent wave dynamics. When applied to the study of polarization effects, the theory unexpectedly reveals that the linear polarization components of the incoherent wave evolve independently from each other, even in the presence of weak fiber birefringence. When applied to light propagation in bimodal fibers, the theory reveals that the incoherent modal components can be strongly coupled. After a complex transient, the modal components self-organize into a vector spectral incoherent soliton: The two solitons self-trap and propagate with a common velocity in frequency space. PMID:27607955

  9. High-power spectral beam combining of linearly polarized Tm:fiber lasers.

    PubMed

    Shah, Lawrence; Sims, R Andrew; Kadwani, Pankaj; Willis, Christina C C; Bradford, Joshua B; Sincore, Alex; Richardson, Martin

    2015-02-01

    To date, high-power scaling of Tm:fiber lasers has been accomplished by maximizing the power from a single fiber aperture. In this work, we investigate power scaling by spectral beam combination of three linearly polarized Tm:fiber MOPA lasers using dielectric mirrors with a steep transition from highly reflective to highly transmissive that enable a minimum wavelength separation of 6 nm between individual laser channels within the wavelength range from 2030 to 2050 nm. Maximum output power is 253 W with M(2)<2, ultimately limited by thermal lensing in the beam combining elements. PMID:25967785

  10. Spectral regularisation: induced gravity and the onset of inflation

    SciTech Connect

    Kurkov, Max A.; Sakellariadou, Mairi E-mail: mairi.sakellariadou@kcl.ac.uk

    2014-01-01

    Using spectral regularisation, we compute the Weyl anomaly and express the anomaly generating functional of the quantum effective action through a collective scalar degree of freedom of all quantum vacuum fluctuations. Such a formulation allows us to describe induced gravity on an equal footing with the anomaly-induced effective action, in a self-consistent way. We then show that requiring stability of the cosmological constant under loop quantum corrections, Sakharov's induced gravity and Starobinsky's anomaly-induced inflation are either both present or both absent, depending on the particle content of the theory.

  11. Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation

    PubMed Central

    Liu, Yuan; Zhao, Youbo; Lyngsø, Jens; You, Sixian; Wilson, William L.; Tu, Haohua; Boppart, Stephen A.

    2015-01-01

    The supercontinuum generated exclusively in the normal dispersion regime of a nonlinear fiber is widely believed to possess low optical noise and high spectral coherence. The recent development of flattened all-normal dispersion fibers has been motivated by this belief to construct a general-purpose broadband coherent optical source. Somewhat surprisingly, we identify a large short-term polarization noise in this type of supercontinuum generation that has been masked by the total-intensity measurement in the past, but can be easily detected by filtering the supercontinuum with a linear polarizer. Fortunately, this hidden intrinsic noise and the accompanied spectral decoherence can be effectively suppressed by using a polarization-maintaining all-normal dispersion fiber. A polarization-maintaining coherent supercontinuum laser is thus built with a broad bandwidth (780–1300 nm) and high spectral power (~1 mW/nm). PMID:26166939

  12. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  13. Ferroelectric domain wall motion induced by polarized light.

    PubMed

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F

    2015-03-17

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO₃ single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO₃ at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light.

  14. Ferroelectric domain wall motion induced by polarized light.

    PubMed

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO₃ single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO₃ at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  15. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  16. White dwarf mass estimation with a new comprehensive X-ray spectral model of intermediate polars

    NASA Astrophysics Data System (ADS)

    Hayashi, Takayuki; Ishida, Manabu

    A white dwarf (WD) mass is important astrophysical quantity because the WD explodes as a type Ia supernova when its mass reaches the Chandrasekhar mass limit of 1.4 solar mass. Many WD masses in intermediate polars (IPs) were measured with their X-ray spectra emitted from plasma flows channeled by strong magnetic fields of the WDs. For the WD mass estimation, multi-temperature X-ray spectral models have been used which made by summing up X-ray spectra emitted from the top to the bottom of the plasma flow. However, in previous studies, distributions of physical quantities such as temperature and density etc., which are base of the X-ray spectral model, were calculated with assumptions of accretion rate per unit area (call "specific accretion rate") a = 1 g cm(-2) s(-1) and cylindrical geometry for the plasma flows. In fact, a part of the WD masses estimated with the X-ray spectral model is not consistent with that dynamically measured. Therefore, we calculated the physical quantity distributions with the dipolar geometry and the wide range of the specific accretion rate a = 0.0001 - 100 g cm(-2) s(-1) . The calculations showed that the geometrical difference changes the physical quantity distributions and the lower specific accretion rate leads softer X-ray spectrum under a critical specific accretion rate. These results clearly indicate that the previous assumptions are not good approximation for low accretion IPs. We made a new spectral model of the plasma flow with our physical quantity distributions and applied that to Suzaku observations of high and low accretion rate IPs V1223 Sagittarii and EX Hydrae. As a results, our WD masses are almost consistent with the those dynamically measured. We will present the summary of our theoretical calculation and X-ray spectral model, and application to the {¥it Suzaku} observations.

  17. High spectral resolution imager for solar induced fluorescence observation

    NASA Astrophysics Data System (ADS)

    Barducci, A.; Guzzi, D.; Lastri, C.; Marcoionni, P.; Nardino, V.; Pippi, I.; Raimondi, V.; Sandri, P.

    2011-11-01

    The use of high-resolution imagers for determination of solar-induced fluorescence of natural bodies by observing the infilling of Fraunhofer lines has been frequently adopted as a tool for vegetation characterization. The option to perform those measurements from airborne platforms was addressed in the past. In-field observations gave evidence of the main requirements for an imaging spectrometer to be used for Sun-induced fluorescence measurements such as high spectral resolution and fine radiometric accuracy needed to resolve the shape of observed Fraunhofer lines with a high level of accuracy. In this paper, some solutions for the design of a high spectral resolution push-broom imaging spectrometer for Sun-induced fluorescence measurements are analysed. The main constraints for the optical design are a spectral resolution better than 0.01 nm and a wide field of view. Due to the fine instrumental spectral resolution, bidimensional focal plane arrays characterized by high quantum efficiency, low read-out noise, and high sensitivity are requested. The development of a lightweight instrument is a benefit for aerospace implementations of this technology. First results coming from laboratory measurements and optical simulations are presented and discussed taking into account their feasibility.

  18. Spectral Cloud-Filtering of AIRS Data: Non-Polar Ocean

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Barron, Diana

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) is a grating array spectrometer which covers the thermal infrared spectral range between 640 and 1700/cm. In order to retain the maximum radiometric accuracy of the AIRS data, the effects of cloud contamination have to be minimized. We discuss cloud filtering which uses the high spectral resolution of AIRS to identify about 100,000 of 500,000 non-polar ocean spectra per day as relatively "cloud-free". Based on the comparison of surface channels with the NCEP provided global real time sst (rtg.sst), AIRS surface sensitive channels have a cold bias ranging from O.5K during the day to 0.8K during the night. Day and night spatial coherence tests show that the cold bias is due to cloud contamination. During the day the cloud contamination is due to a 2-3% broken cloud cover at the 1-2 km altitude, characteristic of low stratus clouds. The cloud-contamination effects surface sensitive channels only. Cloud contamination can be reduced to 0.2K by combining the spectral filter with a spatial coherence threshold, but the yield drops to 16,000 spectra per day. AIRS was launched in May 2002 on the Earth Observing System (EOS) Aqua satellite. Since September 2002 it has returned 4 million spectra of the globe each day.

  19. Spectral Induced Polarization Measurements of Nanoparticles in Laboratory Column Experiments

    EPA Science Inventory

    Nano sized materials are prevalent in consumer goods, manufacturing, industrial processes, and remediation technologies. The intentional and accidental introduction of nanoparticles (NP) into the subsurface pose a potential risk to the environment and public health. This resea...

  20. Spectral albedo and emissivity of CO sub 2 in Martian polar caps: Model results

    SciTech Connect

    Warren, S.G. ); Wiscombe, W.J. ); Firestone, J.F. )

    1990-08-30

    A model originally developed to explain the spectral albedo and emissivity of terrestrial snow is extended to the case of carbon dioxide snow on Mars. The variation of albedo and emissivity with wavelength is caused by the spectral variation of the absorption coefficient of solid CO{sub 2}. The most important variables controlling the radiative properties are grain size and contamination by dust or water. Solar zenith angle and snowpack thickness are of less importance. The observation that red albedo is higher than blue albedo in the Martian south polar cap indicates that the snow is contaminated with red dust. The interband absorption coefficient of CO{sub 2} ice in the thermal infrared is 2-3 orders of magnitude smaller than that of H{sub 2}O ice, due to the absence of hydrogen bonding in CO{sub 2}. This allows CO{sub 2} snow emissivity to be sensitive to grain size, emission angle, and impurities, in contrast to water snow which is nearly a blackbody under all conditions. The emissivity of CO{sub 2} snow varies substantially with wavelength, so energy budget modeling should be done in spectral detail. The addition of a thin layer of water frost over CO{sub 2} snow dramatically raises the thermal emissivity but causes little change to the spectrally averaged albedo unless the underlying CO{sub 2} snow is dirty. Remote sensing of CO{sub 2} grain size, H{sub 2}O content, and dust content may be possible. However, the design of a remote-sensing strategy awaits more accurate laboratory determination of the optical constants of CO{sub 2} ice.

  1. Active tunable plasmonically induced polarization conversion in the THz regime

    NASA Astrophysics Data System (ADS)

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-10-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications.

  2. Active tunable plasmonically induced polarization conversion in the THz regime

    PubMed Central

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-01-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications. PMID:27734912

  3. Theory of Electric Polarization Induced by Inhomogeneity in Crystals

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Shi, Junren; Clougherty, Dennis; Niu, Qian

    2008-03-01

    We develop a general theory of electric polarization induced by inhomogeneity in crystals. We show that contributions to polarization can be classified in powers of the gradient of the order parameter. The zeroth order contribution reduces to the well-known result obtained by King-Smith and Vanderbilt for uniform systems. The first order contribution, when expressed in a two- point formula, takes the Chern-Simons 3-form of the vector potentials derived from the Bloch wave functions. Using the relation between polarization and charge density, we demonstrate our formula by studying charge fractionalization in a two-dimensional dimer model recently proposed.

  4. Measurement of chromatic dispersion of polarization modes in holey fibers by white-light spectral interferometric techniques

    NASA Astrophysics Data System (ADS)

    Kadulová, M.; Hlubina, P.; Ciprian, D.; Martynkien, T.; Mergo, P.; Urbańczyk, W.

    2011-05-01

    We present two white-light spectral interferometric techniques for measurement of the chromatic dispersion of polarization modes in holey fibers over a broad spectral range (e.g. 500-1600 nm). First, a technique employing an unbalanced Mach-Zehnder interferometer with a fiber in the test arm is used to measure the wavelength dependence of the differential group effective index, or equivalently the chromatic dispersion of one polarization mode supported by the fiber. Second, a technique employing a tandem configuration of a Michelson interferometer and the optical fiber under test is used to measure the group modal birefringence in the fiber. From these measurements, the chromatic dispersion of the other polarization mode supported by the fiber is retrieved. We measured by these techniques the chromatic dispersion of polarization modes in three air-silica holey fibers and revealed the dependence of zero-dispersion wavelength on the geometry of the holey fiber.

  5. Kinetic Sunyaev-Zeldovich effect in an anisotropic CMB model: Measuring low multipoles of the CMB at higher redshifts using intensity and polarization spectral distortions

    NASA Astrophysics Data System (ADS)

    Yasini, Siavash; Pierpaoli, Elena

    2016-07-01

    We present a novel mathematical formalism that allows us to easily compute the expected kinetic Sunyaev-Zeldovich (kSZ) signal in intensity and polarization due to an anisotropic primordial cosmic microwave background (CMB). We derive the expected intensity and polarization distortions in the direction of nonmoving galaxy clusters, and then we generalize our calculations for nonzero peculiar velocity. We show that, in the direction of moving clusters, low CMB multipoles impose intensity and polarization spectral distortions with different frequency dependences. The polarization signal primarily probes the quadrupole moment of the CMB, with a significant contribution from the primordial dipole and octupole moments. For a typical cluster velocity of 1000 km /s , corrections to the quadrupole-induced polarization of a nonmoving cluster are of the order of 2%-10% between 200-600 GHz, and depend on cluster's position on the sky, velocity magnitude, and direction of motion. We also find that the angular dependence of the signal varies with frequency of observation. The distinct frequency and angular dependences of the polarization induced by the primordial dipole and octupole can be exploited to measure them despite other physical effects and foregrounds. Contrary to polarization, intensity distortions are affected by all the CMB multipoles, so they cannot be readily used to probe the low multipoles at higher redshifts. However, correlations between intensity and polarization signals can be used to enhance the signal to noise ratio for the measurements of the primordial dipole, quadrupole, and octupole. The more general calculation of the aberration kernel presented in this work has applications reaching beyond the SZ cluster science addressed here. For example, it can be exploited to the deboost/deaberrate CMB multipoles as observed in our local frame.

  6. Three-dimensional induced polarization data inversion for complex resistivity

    SciTech Connect

    Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.

    2011-03-15

    The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.

  7. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    NASA Astrophysics Data System (ADS)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  8. Assessing Cd-induced stress from plant spectral response

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  9. Slippage in stacking of graphene nanofragments induced by spin polarization.

    PubMed

    Lei, Yanyu; Jiang, Wanrun; Dai, Xing; Song, Ruixia; Wang, Bo; Gao, Yang; Wang, Zhigang

    2015-01-01

    Spin polarization and stacking are interesting effects in complex molecular systems and are both presented in graphene-based materials. Their possible combination may provide a new perspective in understanding the intermolecular force. The nanoscale graphene structures with zigzag edges could possess spin-polarized ground states. However, the mechanical effect of spin polarization in stacking of graphene nanofragments is not clear. Here we demonstrate the displacement between two stacked rhombic graphene nanofragments induced by spin polarization, using first-principles density-functional methods. We found that, in stacking of two rhombic graphene nanofragments, a spin-polarized stacked conformation with zero total spin is energetically more favorable than the closed-shell stacking. The spin-polarized conformation gives a further horizontal interlayer displacement within 1 angstrom compared with the closed-shell structure. This result highlights that, besides the well-known phenomenologically interpreted van der Waals forces, a specific mechanism dependent on the monomeric spin polarization may lead to obvious mechanical effects in some intermolecular interactions. PMID:26078005

  10. Spatial variations in the spectral index of polarized synchrotron emission in the 9 yr WMAP sky maps

    SciTech Connect

    Fuskeland, U.; Eriksen, H. K.; Næss, S. K.; Wehus, I. K. E-mail: h.k.k.eriksen@astro.uio.no E-mail: i.k.wehus@fys.uio.no

    2014-08-01

    We estimate the spectral index, β, of polarized synchrotron emission as observed in the 9 yr Wilkinson Microwave Anisotropy Probe sky maps using two methods, linear regression ({sup T}-T plot{sup )} and maximum likelihood. We partition the sky into 24 disjoint sky regions and evaluate the spectral index for all polarization angles between 0° and 85° in steps of 5°. Averaging over polarization angles, we derive a mean spectral index of β{sup all-sky} = –2.99 ± 0.01 in the frequency range of 23-33 GHz. We find that the synchrotron spectral index steepens by 0.14 from low to high Galactic latitudes, in agreement with previous studies, with mean spectral indices of β{sup plane} = –2.98 ± 0.01 and β{sup high-lat} = –3.12 ± 0.04. In addition, we find a significant longitudinal variation along the Galactic plane with a steeper spectral index toward the Galactic center and anticenter than toward the Galactic spiral arms. This can be well modeled by an offset sinusoidal, β(l) = –2.85 + 0.17sin (2l – 90°). Finally, we study synchrotron emission in the BICEP2 field, in an attempt to understand whether the claimed detection of large-scale B-mode polarization could be explained in terms of synchrotron contamination. Adopting a spectral index of β = –3.12, typical for high Galactic latitudes, we find that the most likely bias corresponds to about 2% of the reported signal (r = 0.003). The flattest index allowed by the data in this region is β = –2.5, and under the assumption of a straight power-law frequency spectrum, we find that synchrotron emission can account for at most 20% of the reported BICEP2 signal.

  11. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    PubMed

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  12. Polarization and spectral characteristics of the two-photon luminescence from colloidal gold nanoparticles excited by tunable laser radiation

    SciTech Connect

    Yashunin, D. A. Korytin, A. I.; Stepanov, A. N.

    2015-12-15

    We have experimentally studied two-photon luminescence from a colloidal solution of spherical gold nanoparticles by tuning the wavelength of the exciting radiation. The measured polarization and spectral characteristics of the two-photon luminescence signal show that the observed nonlinear optical response is determined by the dimers present in the solution with a concentration of a few percent of total nanoparticle number.

  13. Potential applications of near infrared auto-fluorescence spectral polarized imaging for assessment of food quality

    NASA Astrophysics Data System (ADS)

    Zhou, Kenneth J.; Chen, Jun

    2016-03-01

    The current growing of food industry for low production costs and high efficiency needs for maintenance of high-quality standards and assurance of food safety while avoiding liability issues. Quality and safety of food depend on physical (texture, color, tenderness etc.), chemical (fat content, moisture, protein content, pH, etc.), and biological (total bacterial count etc.) features. There is a need for a rapid (less than a few minutes) and accurate detection system in order to optimize quality and assure safety of food. However, the fluorescence ranges for known fluorophores are limited to ultraviolet emission bands, which are not in the tissue near infrared (NIR) "optical window". Biological tissues excited by far-red or NIR light would exhibit strong emission in spectral range of 650-1,100 nm although no characteristic peaks show the emission from which known fluorophores. The characteristics of the auto-fluorescence emission of different types of tissues were found to be different between different tissue components such as fat, high quality muscle food. In this paper, NIR auto-fluorescence emission from different types of muscle food and fat was measured. The differences of fluorescence intensities of the different types of muscle food and fat emissions were observed. These can be explained by the change of the microscopic structure of physical, chemical, and biological features in meat. The difference of emission intensities of fat and lean meat tissues was applied to monitor food quality and safety using spectral polarized imaging, which can be detect deep depth fat under the muscle food up to several centimeter.

  14. Spectrally resolved laser-induced fluorescence for bioaerosols standoff detection

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Stadnyk, Laurie; Rowsell, Susan; Simard, Jean-Robert; Ho, Jim; Déry, Bernard; McFee, John

    2007-09-01

    An efficient standoff biological warfare detection capability could become an important asset for both defence and security communities based on the increasing biological threat and the limits of the presently existing protection systems. Defence R&D Canada (DRDC) has developed, by the end of the 90s, a standoff bioaerosol sensor prototype based on intensified range-gated spectrometric detection of Laser Induced Fluorescence (LIF). This LIDAR system named SINBAHD monitors the spectrally resolved LIF originating from inelastic interactions with bioaerosols present in atmospheric cells customizable in size and in range. SINBAHD has demonstrated the capability of near real-time detection and classification of bioaerosolized threats at multi-kilometre ranges. In spring 2005, DRDC has initiated the BioSense demonstration project, which combines the SINBAHD technology with a geo-referenced Near InfraRed (NIR) LIDAR cloud mapper. SINBAHD is now being used to acquire more signatures to add in the spectral library and also to optimize and test the new BioSense algorithm strategy. In September 2006, SINBAHD has participated in a two-week trial held at DRDC-Suffield where different open-air wet releases of live and killed bioagent simulants, growth media and obscurants were performed. An autoclave killing procedure was performed on two biological materials (Bacillus subtilis var globigii or BG, and Bacillus thuringiensis or Bt) before being aerosolized, disseminated and spectrally characterized with SINBAHD. The obtained results showed no significant impact of this killing process on their normalised spectral signature in comparison with their live counterparts. Correlation between the detection signals from SINBAHD, an array of slit samplers and a FLuorescent Aerosol Particle Sensor (C-FLAPS) was obtained and SINBAHD's sensitivity could then be estimated. At the 2006 trial, a detection limit of a few tens of Agent Containing Particles per Liter of Air (ACPLA) was obtained

  15. Dynamic nuclear polarization from current-induced electron spin polarization in n-InGaAs

    NASA Astrophysics Data System (ADS)

    Trowbridge, Christopher; Norman, Benjamin; Kato, Yuichiro; Awschalom, David; Sih, Vanessa

    2014-03-01

    Control of the nuclear spin system could prove useful for applications in spintronics or spin-based quantum computation for intermediate term data storage and for the suppression of electron spin dephasing resulting from hyperfine coupling. We investigate the role of nuclear spins in materials with electrically generated spin polarization. The electron spin polarization generated by electrical current in a non-magnetic semiconductor is transferred via dynamic nuclear polarization to the nuclei. The resulting nuclear field is interrogated using Larmor magnetometry. We measure the nuclear field as a function of applied magnetic field, current magnitude and direction, and temperature. An unexpected spatial asymmetry in saturated nuclear field is found. The direction of the nuclear polarization is determined by the directions of the electron spin alignment and external magnetic field, allowing electronic control over the sign of the nuclear alignment direction. Careful study of the nuclear field also enables characterization of the current-induced electron spin polarization in situations that are otherwise experimentally inaccessible. Work supported by AFOSR, NSF and ONR.

  16. SWIR spectral mapping of the Martian South Polar Residual Cap using CRISM

    NASA Astrophysics Data System (ADS)

    Campbell, Jacqueline; Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2016-10-01

    The Martian South Polar Residual Cap (SPRC) exhibits unique CO2 ice sublimation features that cover the surface. These flat floored, circular depressions are highly dynamic, with scarp retreat rates of up to 8m per Martian Year. As the scarps sublimate in Martian Southern Hemisphere spring, they expose dust particles previously trapped within the ice during winter. This allows a window of opportunity to analyse the dust for fragile organic molecules that might otherwise be rapidly destroyed when subjected to ultraviolet radiation at the Martian surface. Polycyclic aromatic hydrocarbons (PAHs) are one such type of organic compound that have not yet been reported as detected on Mars. PAHs are considered to be important in astrobiology as they potentially play a role in abiogenesis, and are a biomarker for extant life. PAHs are abundant on Earth, in deep space and in recent years have been identified on the Saturnian moons Iapetus and Phoebe.Utilising data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA's Mars Reconnaissance Orbiter (MRO), SPRC features have been spectrally mapped, the effects of H2O and CO2 ice on infrared spectra eliminated, and regions with obvious dust particles analysed to establish their mineral composition, and signatures indicative of PAHs compared to Mars data.Spectral mapping has identified compositional differences between depression rims and the majority of the SPRC, allowing regions of spectral interest to be selected for in-depth analysis. CRISM spectra have been compared with known Martian mineralogy and PAH laboratory data, with results suggesting Magnesium Carbonate dust content in depression rims, and rims have been found to have higher water content than regions of featureless ice. CO2 ice has been found to be the most limiting factor in looking for PAH diagnostic signatures on the SPRC. Further work is being undertaken with more detailed results to be presented in the future.The research leading

  17. Tomographic and spectral views on the lifecycle of polar mesospheric clouds from Odin/OSIRIS

    NASA Astrophysics Data System (ADS)

    Hultgren, Kristoffer; Gumbel, Jörg

    2014-12-01

    Vertical and horizontal structures of Polar Mesospheric Clouds (PMC) have been recovered by tomographic retrieval from the OSIRIS instrument aboard the Odin satellite. The tomographic algorithm has been used to return local scattering coefficients at seven wavelengths in the ultraviolet. This spectral information is used to retrieve PMC particle sizes, number density, and ice mass density. While substantial horizontal variations are found, local vertical structures are overall consistent with the idea of a growth-sedimentation process leading to a visible cloud. Large numbers of small particles are present near the top of the observed cloud layer. Toward lower altitudes, particle sizes increase while particle number densities decrease. A close relationship is found between the distribution of local PMC scattering coefficient and ice mass density. The bottom of the cloud often features large particles with mode radii exceeding 70 nm that rain out of the cloud before sublimating. The number density of these large particles is small, and they do not contribute significantly to the overall cloud brightness. As a consequence, the presence of these large particles can be difficult to identify for remote sensing techniques that integrate over the entire cloud column. When it comes to deriving absolute values of particle mode radius and number density, there is a strong sensitivity to assumptions on the mathematical form of the particle size distribution. We see a continued strong need to resolve this issue by co-analysis of various remote sensing techniques and observation geometries.

  18. Spectral and photometric studies of the polar USNO-A2.0 0825-18396733

    NASA Astrophysics Data System (ADS)

    Gabdeev, M. M.; Borisov, N. V.; Shimansky, V. V.; Spiridonova, O. I.

    2015-03-01

    Results of photometric and spectral studies of the new magnetic cataclysmic variable (polar) USNO-A2.0 0825-18396733 are presented. Photometric data in the B, V, and R c filters show that this object exhibits a red excess of R c - V = 1 m . A red continuum with superposed strong single-peaked Balmer emission lines and HeII λ4686 Å emission, weak lines of neutral helium, and lines of heavy elements are observed in the object's spectra. Doppler maps constructed using the hydrogen and ionized-helium lines indicate that these lines form near the inner Lagrangian point, and that their formation is associated with an accretion stream. The spectra and radial-velocity curves indicate the eclipse of the white dwarf in the system to be partial. Radial-velocity curves derived for emission lines are used to estimate the component masses. The mass of the white dwarf is estimated to be 0.71-0.78 M ⊙, and the mass of the red dwarf to be 0.18-0.20 M ⊙.

  19. Perceptual Spaces Induced by Cochlear Implant All-Polar Stimulation Mode.

    PubMed

    Marozeau, Jeremy; McKay, Colette M

    2016-01-01

    It has been argued that a main limitation of the cochlear implant is the spread of current induced by each electrode, which activates an inappropriately large range of sensory neurons. To reduce this spread, an alternative stimulation mode, the all-polar mode, was tested with five participants. It was designed to activate all the electrodes simultaneously with appropriate current levels and polarities to recruit narrower regions of auditory nerves at specific intracochlear electrode positions (denoted all-polar electrodes). In this study, the all-polar mode was compared with the current commercial stimulation mode: the monopolar mode. The participants were asked to judge the sound dissimilarity between pairs of two-electrode pulse-train stimuli that differed in the electrode positions and were presented in either monopolar or all-polar mode with pulses on the two electrodes presented either sequentially or simultaneously. The dissimilarity ratings were analyzed using a multidimensional scaling technique and three-dimensional stimulus perceptual spaces were produced. For all the conditions (mode and simultaneity), the first perceptual dimension was highly correlated with the position of the most apical activated electrode of the electrical stimulation and the second dimension with the position of the most basal electrode. In both sequential and simultaneous conditions, the monopolar and all-polar stimuli were significantly separated by a third dimension, which may indicate that all-polar stimuli have a perceptual quality that differs from monopolar stimuli. Overall, the results suggest that both modes might successfully represent spectral information in a sound processing strategy. PMID:27604784

  20. Perceptual Spaces Induced by Cochlear Implant All-Polar Stimulation Mode

    PubMed Central

    McKay, Colette M.

    2016-01-01

    It has been argued that a main limitation of the cochlear implant is the spread of current induced by each electrode, which activates an inappropriately large range of sensory neurons. To reduce this spread, an alternative stimulation mode, the all-polar mode, was tested with five participants. It was designed to activate all the electrodes simultaneously with appropriate current levels and polarities to recruit narrower regions of auditory nerves at specific intracochlear electrode positions (denoted all-polar electrodes). In this study, the all-polar mode was compared with the current commercial stimulation mode: the monopolar mode. The participants were asked to judge the sound dissimilarity between pairs of two-electrode pulse-train stimuli that differed in the electrode positions and were presented in either monopolar or all-polar mode with pulses on the two electrodes presented either sequentially or simultaneously. The dissimilarity ratings were analyzed using a multidimensional scaling technique and three-dimensional stimulus perceptual spaces were produced. For all the conditions (mode and simultaneity), the first perceptual dimension was highly correlated with the position of the most apical activated electrode of the electrical stimulation and the second dimension with the position of the most basal electrode. In both sequential and simultaneous conditions, the monopolar and all-polar stimuli were significantly separated by a third dimension, which may indicate that all-polar stimuli have a perceptual quality that differs from monopolar stimuli. Overall, the results suggest that both modes might successfully represent spectral information in a sound processing strategy. PMID:27604784

  1. Macroscopic rotation of photon polarization induced by a single spin.

    PubMed

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-01-01

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network. PMID:25687134

  2. Measurement of energy contrast of amplified ultrashort pulses using cross-polarized wave generation and spectral interferometry.

    PubMed

    Iliev, Marin; Meier, Amanda K; Galloway, Benjamin; Adams, Daniel E; Squier, Jeff A; Durfee, Charles G

    2014-07-28

    We present a method using spectral interferometry (SI) to characterize a pulse in the presence of an incoherent background such as amplified spontaneous emission (ASE). The output of a regenerative amplifier is interfered with a copy of the pulse that has been converted using third-order cross-polarized wave generation (XPW). The ASE shows as a pedestal background in the interference pattern. The energy contrast between the short-pulse component and the ASE is retrieved. The spectra of the interacting beams are obtained through an improvement to the self-referenced spectral interferometry (SRSI) analysis. PMID:25089416

  3. COSMIC MICROWAVE BACKGROUND INDUCED POLARIZATION FROM SINGLE SCATTERING BY CLUSTERS OF GALAXIES AND FILAMENTS

    SciTech Connect

    Ramos, Elsa P. R. G.; Da Silva, Antonio J. C.; Liu, Guo-Chin

    2012-09-20

    We present light-cone-integrated simulations of the cosmic microwave background (CMB) polarization signal induced by a single scattering in the direction of clusters of galaxies and filaments. We characterize the statistical properties of the induced polarization signals from the presence of the CMB quadrupole component (pqiCMB) and as the result of the transverse motion of ionized gas clouds with respect to the CMB rest frame (p{beta}{sup 2}{sub t}SZ). From adiabatic N-body/hydrodynamic simulations, we generated 28 random sky patches integrated along the light cone, each with about 0.86 deg{sup 2} and angular resolution of 6''. Our simulation method involves a box-stacking scheme that allows to reconstruct the CMB quadrupole component and the gas physical properties along the line of sight. We find that the linear polarization degree in the logarithmic scale of both effects follows approximately a Gaussian distribution and the mean total signal is about 10{sup -8} and 10{sup -10} for the pqiCMB and p{beta}{sup 2}{sub t}SZ effects, respectively. The polarization angle is consistent with a flat distribution in both cases. From the mean distributions of the polarization degree with redshift, the highest peak is found at z {approx_equal} 1 for the induced CMB quadrupole and at z {approx_equal} 0.5 for the kinematic component. Our results suggest that most of the contribution for the total polarization signal arises from z {approx}< 4 for the pqiCMB and z {approx}< 3 for p{beta}{sup 2}{sub t}SZ. The spectral dependency of both integrated signals is strong, increasing with the frequency, especially in the case of the p{beta}{sup 2}{sub t}SZ signal, which increases by a factor of 100 from 30 GHz to 675 GHz. The maxima values found at the highest frequency are about 3 {mu}K and 13 {mu}K for the pqiCMB and p{beta}{sup 2}{sub t}SZ, respectively. The angular power spectra of these effects peak at large multipoles l > 10{sup 4}, being of the order of 10{sup -5} {mu}K{sup 2

  4. Polarization induced two dimensional confinement of carriers in wedge shaped polar semiconductors

    PubMed Central

    Deb, S.; Bhasker, H. P.; Thakur, Varun; Shivaprasad, S. M.; Dhar, S.

    2016-01-01

    A novel route to achieve two dimensional (2D) carrier confinement in a wedge shaped wall structure made of a polar semiconductor has been demonstrated theoretically. Tapering of the wall along the direction of the spontaneous polarization leads to the development of charges of equal polarity on the two inclined facades of the wall. Polarization induced negative (positive) charges on the facades can push the electrons (holes) inward for a n-type (p-type) material which results in the formation of a 2D electron (hole) gas at the central plane and ionized donors (acceptors) at the outer edges of the wall. The theory shows that this unique mode of 2D carrier confinement can indeed lead to a significant enhancement of carrier mobility. It has been found that the reduced dimensionality is not the only cause for the enhancement of mobility in this case. Ionized impurity scattering, which is one of the major contributer to carrier scattering, is significantly suppressed as the carriers are naturally separated from the ionized centers. A recent experimental finding of very high electron mobility in wedge shaped GaN nanowall networks has been analyzed in the light of this theoretical reckoning. PMID:27210269

  5. Polarization induced two dimensional confinement of carriers in wedge shaped polar semiconductors

    NASA Astrophysics Data System (ADS)

    Deb, S.; Bhasker, H. P.; Thakur, Varun; Shivaprasad, S. M.; Dhar, S.

    2016-05-01

    A novel route to achieve two dimensional (2D) carrier confinement in a wedge shaped wall structure made of a polar semiconductor has been demonstrated theoretically. Tapering of the wall along the direction of the spontaneous polarization leads to the development of charges of equal polarity on the two inclined facades of the wall. Polarization induced negative (positive) charges on the facades can push the electrons (holes) inward for a n-type (p-type) material which results in the formation of a 2D electron (hole) gas at the central plane and ionized donors (acceptors) at the outer edges of the wall. The theory shows that this unique mode of 2D carrier confinement can indeed lead to a significant enhancement of carrier mobility. It has been found that the reduced dimensionality is not the only cause for the enhancement of mobility in this case. Ionized impurity scattering, which is one of the major contributer to carrier scattering, is significantly suppressed as the carriers are naturally separated from the ionized centers. A recent experimental finding of very high electron mobility in wedge shaped GaN nanowall networks has been analyzed in the light of this theoretical reckoning.

  6. Polarization induced two dimensional confinement of carriers in wedge shaped polar semiconductors.

    PubMed

    Deb, S; Bhasker, H P; Thakur, Varun; Shivaprasad, S M; Dhar, S

    2016-01-01

    A novel route to achieve two dimensional (2D) carrier confinement in a wedge shaped wall structure made of a polar semiconductor has been demonstrated theoretically. Tapering of the wall along the direction of the spontaneous polarization leads to the development of charges of equal polarity on the two inclined facades of the wall. Polarization induced negative (positive) charges on the facades can push the electrons (holes) inward for a n-type (p-type) material which results in the formation of a 2D electron (hole) gas at the central plane and ionized donors (acceptors) at the outer edges of the wall. The theory shows that this unique mode of 2D carrier confinement can indeed lead to a significant enhancement of carrier mobility. It has been found that the reduced dimensionality is not the only cause for the enhancement of mobility in this case. Ionized impurity scattering, which is one of the major contributer to carrier scattering, is significantly suppressed as the carriers are naturally separated from the ionized centers. A recent experimental finding of very high electron mobility in wedge shaped GaN nanowall networks has been analyzed in the light of this theoretical reckoning. PMID:27210269

  7. EXSAA: Environmentally-Induced X-ray Spectral Analysis Automation

    NASA Astrophysics Data System (ADS)

    Fallon, F. W.; Clark, P. E.; Rilee, M. L.; Truszkowski, W.

    2005-05-01

    X-ray fluorescence (XRF) spectrometry is one of the principal means of compositional analysis in the lab and in the field: it will be a central tool in NASA's Exploration Initiative (EI) missions. No currently available XRF software has the generic functionality to provide the basis for XRF experiment design, instrument development, and data interpretation for the suite of prospective EI missions. In response to this need, we have developed EXSAA (Environmentally-induced X-ray Spectral Analysis Automation), a generic, fast, interactive spectral simulation tool which can be used in assessing broadband continuous spectra being generated and detected during reconnaissance missions and field campaigns involving planetary surfaces. The software produces model spectra of detectable environmentally-induced X-ray spectra from fundamental principles for target characteristics and conditions likely to be experienced in remote or in situ planetary missions. Fluorescence is modeled following Jenkins and DeVries (1967); coherent and Compton scattering following Hubbell (1969). The modeling provided is extensible, and a user interface provides for selection of source, detector characteristics, compositional components, and geometry for known targets. An immediate application of the tool is the prediction for mission planning purposes of X-ray flux to be expected for a range of targets and instrumentation. A longer-term application is the model basis for the recovery of surface composition from actual missions, where some parameters (e.g. source flux) will be known, and others obtained from a Bayesian analysis of the observations. Ultimately, EXSAA could function as part of the agent-based SAA Toolkit being developed by a group of physical scientists, systems engineers, and AI practitioners to automate portions of the spectral analysis process. EXSAA could be called on by human or machine agents to provide an understanding of XRF phenomena for tasks including specifically (1

  8. Current-induced spin polarization on metal surfaces probed by spin-polarized positron beam

    PubMed Central

    Zhang, H. J.; Yamamoto, S.; Fukaya, Y.; Maekawa, M.; Li, H.; Kawasuso, A.; Seki, T.; Saitoh, E.; Takanashi, K.

    2014-01-01

    Current-induced spin polarization (CISP) on the outermost surfaces of Au, Cu, Pt, Pd, Ta, and W nanoscaled films were studied using a spin-polarized positron beam. The Au and Cu surfaces showed no significant CISP. In contrast, the Pt, Pd, Ta, and W films exhibited large CISP (3~15% per input charge current of 105 A/cm2) and the CISP of Ta and W were opposite to those of Pt and Pd. The sign of the CISP obeys the same rule in spin Hall effect suggesting that the spin-orbit coupling is mainly responsible for the CISP. The magnitude of the CISP is explained by the Rashba-Edelstein mechanism rather than the diffusive spin Hall effect. This settles a controversy, that which of these two mechanisms dominates the large CISP on metal surfaces. PMID:24776781

  9. Para-hydrogen induced polarization in heterogeneous hydrogenationreactions

    SciTech Connect

    Koptyug, Igor V.; Kovtunov, Kirill; Burt, Scott R.; Anwar, M.Sabieh; Hilty, Christian; Han, Song-I; Pines, Alexander; Sagdeev, Renad Z.

    2007-01-31

    We demonstrate the creation and observation ofpara-hydrogen-induced polarization in heterogeneous hydrogenationreactions. Wilkinson's catalyst, RhCl(PPh3)3, supported on eithermodified silica gel or a polymer, is shown to hydrogenate styrene intoethylbenzene and to produce enhanced spin polarizations, observed throughNMR, when the reaction was performed with H2 gas enriched in the paraspinisomer. Furthermore, gaseous phase para-hydrogenation of propylene topropane with two catalysts, the Wilkinson's catalyst supported onmodified silica gel and Rh(cod)(sulfos) (cod = cycloocta-1,5-diene;sulfos) - O3S(C6H4)CH2C(CH2PPh2)3) supported on silica gel, demonstratesheterogeneous catalytic conversion resulting in large spin polarizations.These experiments serve as a direct verification of the mechanism ofheterogeneous hydrogenation reactions involving immobilized metalcomplexes and can be potentially developed into a practical tool forproducing catalyst-free fluids with highly polarized nuclear spins for abroad range of hyperpolarized NMR and MRI applications.

  10. Mars Polar Volatiles: IR Spectral Mapping Results from the Oppositions of 1999 (Ls=130) and 2001 (Ls=182,195)

    NASA Astrophysics Data System (ADS)

    Glenar, D. A.; Samuelson, R. E.; Pearl, J. C.; Bjoraker, G. L.; Blaney, D. L.

    2002-09-01

    We present an update of an on-going program of ground based, whole-disk Mars drift scan measurements using infrared grating spectrometers at KPNO (Cryogenic Spectrometer, CRSP) and the IRTF (SpeX), and spanning 1.9-4.0 microns wavelength. Data sets are reformatted into image cubes having two spatial and one spectral dimension, with moderately high spectral resolution (R = 700-2200) and corrected for telluric absorption. Ground based spectral imaging of Mars provides hemispherical and diurnal coverage, which is not achievable using sun-synchronous orbiting spacecraft, despite their other advantages. This makes such measurements well suited to studies of clouds and surface ice, both large scale and time-variable phenomena. Seasonal coverage includes the 1999 aphelion season at Ls=130, and 2001 northern fall, just prior to (Ls=182) and during (Ls=195) the early season dust storm. Band strength maps of CO2 ice spectral features near 2 microns show the spatial distribution of ice grains near the south polar cap. The presence of narrow but fully resolved "forbidden" spectral features of CO2 ice near 2.3 microns indicate larger grain sizes and can be used to separate the surface ice component from CO2 clouds. Water ice at the north polar cap is observed and mapped using the spectral shape of the strong 3 micron band, also grain size dependent. We discuss the process (and challenges) of data reduction, reformatting and the supporting modeling work now in progress. This work is supported by the NASA Planetary Astronomy Program, RTOP 344-32-51-02.

  11. Eustatic sea level fluctuations induced by polar wander

    NASA Technical Reports Server (NTRS)

    Sabadini, Roberto; Doglioni, Carlo; Yuen, David A.

    1990-01-01

    It is shown here that polar wander of a viscoelastic, stratified earth can induce global sea level fluctuations comparable to the short-term component in eustatic sea-level curves. The sign of these fluctuations, which are very sensitive to the rheological stratification, depends on the geographical location of the observation point; rises and falls in sea level can thus be coeval in different parts of the world. This finding is a distinct contrast to the main assumption underlying the reconstruction of eustatic curves, namely that global sea-level events produce the same depositional sequence everywhere. It is proposed that polar wander should be added to the list of geophysical mechanisms that can control the third-order cycles in sea level.

  12. Design and fabrication of thin-film polarizer at wavelength of 1540 nm and investigation of its laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Sahraee, Masoume; Fallah, Hamid Reza; Moradi, Badri; Zabolian, Hosein; Mahmoodzade, Morteza Haji

    2014-12-01

    In this paper a thin-film polarizer at a wavelength of 1540 nm was designed and fabricated. These types of polarizer are usually used in laser systems to obtain linearly polarized light beams. Our design consists of a system of eighteen dielectric thin-film layers from repeated pairs of titanium dioxide and silicon dioxide layers that are deposited on a BK7 glass substrate. Design was carried out based on theoretical principles and computer calculations. Thin-film design software was used for designing the polarizer. The angle of incidence was supposed to be 56° that is the Browster angle for BK7 glass. Performance and laser-induced damage threshold of the polarizer were enhanced by a suitable selection of various parameters including thickness of each layer, their number and the electric field distribution of layers. After several designs, fabrications and refinement of parameters, the final polarizer was designed. Then the final sample of the polarizer was prepared using the electron beam evaporation (EBE) technique with Balzers BAK 760 coating machine. Spectral transmittance of the sample was measured by Shimadzu 3100 UV-VIS-NIR spectrophotometer. Investigation of spectral transmittance showed that at a wavelength of 1540nm, the transmission of P polarization is 87.82 and the transmission of S polarization is 0.43 which show a ratio ( T P / T S of 204. So, this ratio is an acceptable value for our desired polarizer.

  13. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy

    SciTech Connect

    Moran, Andrew M.; Nome, Rene A.; Scherer, Norbert F.

    2007-11-14

    The experimental design and theoretical description of a novel five-pulse laser spectroscopy is presented with an application to a pyridinium charge transfer complex in acetonitrile and methanol. In field-resolved polarizability response spectroscopy (PORS), an electronically resonant laser pulse first excites a solvated chromophore (reactant) and off-resonant Raman spectra of the resulting nuclear motions are measured as a function of the reaction time. The present apparatus differs from our earlier design by performing the Raman probe measurement (with fixed pulse delays) in the frequency domain. In addition, the full electric fields of the signals are measured by spectral interferometry to separate nonresonant and Raman responses. Our theoretical model shows how the PORS signal arises from nuclear motions that are displaced/driven by the photoinduced reaction. The field-resolved off-resonant (of the solute's electronic transitions) probing favors detection of solvent (as opposed to solute) dynamics coupled to the reaction. The sign of the signal represents the relative strengths of polarization responses associated with the ground and photoexcited solutions. Signatures of nonresonant and PORS signal contributions to the experimental results are analyzed with numerical calculations based on a theoretical model we have developed for reaction-induced PORS. Our model identifies two mechanisms of PORS signal generation: (i) structural relaxation induced resonance; (ii) dephasing induced resonance. In the charge transfer reaction investigated, the solvent-dependent and time-evolving (solvent) polarizability spectral density (PSD) is readily obtained. The general trend of an initial broadband inertial nuclear response followed by a decrease in the linewidth of the PSD establishes that the measured PSD is inconsistent with the approximation of a linear response. Furthermore, the explicit time evolution of the PSD is important for properly describing solvent control of

  14. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, Andrew M.; Nome, Rene A.; Scherer, Norbert F.

    2007-11-01

    The experimental design and theoretical description of a novel five-pulse laser spectroscopy is presented with an application to a pyridinium charge transfer complex in acetonitrile and methanol. In field-resolved polarizability response spectroscopy (PORS), an electronically resonant laser pulse first excites a solvated chromophore (reactant) and off-resonant Raman spectra of the resulting nuclear motions are measured as a function of the reaction time. The present apparatus differs from our earlier design by performing the Raman probe measurement (with fixed pulse delays) in the frequency domain. In addition, the full electric fields of the signals are measured by spectral interferometry to separate nonresonant and Raman responses. Our theoretical model shows how the PORS signal arises from nuclear motions that are displaced/driven by the photoinduced reaction. The field-resolved off-resonant (of the solute's electronic transitions) probing favors detection of solvent (as opposed to solute) dynamics coupled to the reaction. The sign of the signal represents the relative strengths of polarization responses associated with the ground and photoexcited solutions. Signatures of nonresonant and PORS signal contributions to the experimental results are analyzed with numerical calculations based on a theoretical model we have developed for reaction-induced PORS. Our model identifies two mechanisms of PORS signal generation: (i) structural relaxation induced resonance; (ii) dephasing induced resonance. In the charge transfer reaction investigated, the solvent-dependent and time-evolving (solvent) polarizability spectral density (PSD) is readily obtained. The general trend of an initial broadband inertial nuclear response followed by a decrease in the linewidth of the PSD establishes that the measured PSD is inconsistent with the approximation of a linear response. Furthermore, the explicit time evolution of the PSD is important for properly describing solvent control of

  15. How much information on permeability can we expect from induced polarization methods? (Invited)

    NASA Astrophysics Data System (ADS)

    Binley, A. M.; Slater, L. D.

    2013-12-01

    Recognizing the significance of permeability heterogeneity on solute transport in groundwater, the determination of qualitative and quantitative information on permeability has been a major focus in the field of hydrogeophysics for some time. This drive has been particularly encouraged due to the minimal invasive method of most geophysical techniques, and the ability to produce spatially dense datasets of geophysical properties. Whilst DC resistivity, as a method, has matured into an extremely robust and flexible technique, and despite its wide use for mapping lithologies, translation of DC resistivity, as a property, to permeability is extremely limited, principally because of the sensitivity to pore fluid states (e.g. salinity) and grain surface electrical conductivity. Induced polarization (IP), in contrast, is sensitive to properties related to the grain surface and/or pore throat geometry, and thus it is intuitive to assume that the permeability and induced polarization response may be closely linked. Spectral IP (SIP) potentially adds further valuable information, given the measure of distribution of polarization length scales. In fact, IP as a tool for hydrogeological studies has been recognized for over 50 years, although it is only over the past two decades that significant advances have been made in both methodology (e.g. instruments, data inversion, etc.) and hydrogeological interpretation. Attempts to link IP (including SIP) and permeability have been explored through laboratory, field and model studies. Mechanistic models have been proposed, along with several empirical relationships. Despite these efforts, the ability to link permeability to IP measurements remains challenging. Formation-specific relationships have been demonstrated, and yet a universal link continues to be elusive. Here, we discuss the principal constraints, illustrated using laboratory and field datasets from a number of studies. We highlight specific challenges, including

  16. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  17. N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping

    SciTech Connect

    Verma, Jai; Simon, John; Protasenko, Vladimir; Kosel, Thomas; Xing, Huili Grace; Jena, Debdeep

    2011-10-24

    Nitrogen-polar III-nitride heterostructures present unexplored advantages over Ga(metal)-polar crystals for optoelectronic devices. This work reports N-polar III-nitride quantum-well ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy that integrate polarization-induced p-type doping by compositional grading from GaN to AlGaN along N-face. The graded AlGaN layer simultaneously acts as an electron blocking layer while facilitating smooth injection of holes into the active region, while the built-in electric field in the barriers improves carrier injection into quantum wells. The enhanced doping, carrier injection, and light extraction indicate that N-polar structures have the potential to exceed the performance of metal-polar ultraviolet light-emitting diodes.

  18. Role of methyl-induced polarization in ion binding

    PubMed Central

    Rossi, Mariana; Tkatchenko, Alexandre; Rempe, Susan B.; Varma, Sameer

    2013-01-01

    The chemical property of methyl groups that renders them indispensable to biomolecules is their hydrophobicity. Quantum mechanical studies undertaken here to understand the effect of point substitutions on potassium (K-) channels illustrate quantitatively how methyl-induced polarization also contributes to biomolecular function. K- channels regulate transmembrane salt concentration gradients by transporting K+ ions selectively. One of the K+ binding sites in the channel’s selectivity filter, the S4 site, also binds Ba2+ ions, which blocks K+ transport. This inhibitory property of Ba2+ ions has been vital in understanding K-channel mechanism. In most K-channels, the S4 site is composed of four threonine amino acids. The K channels that carry serine instead of threonine are significantly less susceptible to Ba2+ block and have reduced stabilities. We find that these differences can be explained by the lower polarizability of serine compared with threonine, because serine carries one less branched methyl group than threonine. A T→S substitution in the S4 site reduces its polarizability, which, in turn, reduces ion binding by several kilocalories per mole. Although the loss in binding affinity is high for Ba2+, the loss in K+ binding affinity is also significant thermodynamically, which reduces channel stability. These results highlight, in general, how biomolecular function can rely on the polarization induced by methyl groups, especially those that are proximal to charged moieties, including ions, titratable amino acids, sulfates, phosphates, and nucleotides. PMID:23878238

  19. Spectral-domain measurement of the strain sensitivity of phase modal birefringence of polarization-maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Cezary

    2016-09-01

    The paper presents a new and simple method of measuring the strain sensitivity of phase modal birefringence (dΔn/dε) of polarization maintaining fibers (PMFs). The method is based on measuring the spectral strain sensitivity of a strain sensor in the configuration of a Sagnac interferometer with a PMF. The measured spectral strain sensitivity of the sensor is used to determine the strain sensitivity of phase modal birefringence and the polarimetric strain sensitivity of the PMF. In addition, a new procedure for determining the sign of the strain sensitivity of phase and group modal birefringence of a PMF. Using this method, measurements of the strain sensitivity of modal birefringence of PMFs were performed: a PM-PCF and a Bow-Tie fiber, in the wavelength range 1460-1600 nm. A comparison of the results of these measurements with results obtained using other methods for the same types of fibers is presented.

  20. Single-Shot Measurement of Temporally-Dependent Polarization State of Femtosecond Pulses by Angle-Multiplexed Spectral-Spatial Interferometry.

    PubMed

    Lin, Ming-Wei; Jovanovic, Igor

    2016-01-01

    We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses. PMID:27596951

  1. Single-Shot Measurement of Temporally-Dependent Polarization State of Femtosecond Pulses by Angle-Multiplexed Spectral-Spatial Interferometry

    PubMed Central

    Lin, Ming-Wei; Jovanovic, Igor

    2016-01-01

    We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses. PMID:27596951

  2. Single-Shot Measurement of Temporally-Dependent Polarization State of Femtosecond Pulses by Angle-Multiplexed Spectral-Spatial Interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Wei; Jovanovic, Igor

    2016-09-01

    We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses.

  3. Imaging ambipolar two-dimensional carriers induced by the spontaneous electric polarization of a polar semiconductor BiTeI

    NASA Astrophysics Data System (ADS)

    Kohsaka, Y.; Kanou, M.; Takagi, H.; Hanaguri, T.; Sasagawa, T.

    2015-06-01

    Two-dimensional (2D) mobile carriers are a wellspring of quantum phenomena. Among various 2D-carrier systems, such as field effect transistors and heterostructures, polar materials hold a unique potential; the spontaneous electric polarization in the bulk could generate positive and negative 2D carriers at the surface. Although several experiments have shown ambipolar carriers at the surface of a polar semiconductor BiTeI, their origin is yet to be specified. Here we provide compelling experimental evidences that the ambipolar 2D carriers at the surface of BiTeI are induced by the spontaneous electric polarization. By imaging electron standing waves with spectroscopic imaging scanning tunneling microscopy, we find that positive or negative carriers with Rashba-type spin splitting emerge at the surface corresponding to the polar directions in the bulk. The electron densities at the surface are constant independently of those in the bulk, corroborating that the 2D carriers are induced by the spontaneous electric polarization. We also successfully image that lateral p -n junctions are formed along the boundaries of submicron-scale domains with opposite polar directions. Our study presents a means to endow nonvolatile, spin-polarized, and ambipolar 2D carriers as well as, without elaborate fabrication, lateral p -n junctions of those carriers at atomically sharp interfaces.

  4. Cytoskeletal tension induces the polarized architecture of the nucleus.

    PubMed

    Kim, Dong-Hwee; Wirtz, Denis

    2015-04-01

    The nuclear lamina is a thin filamentous meshwork that provides mechanical support to the nucleus and regulates essential cellular processes such as DNA replication, chromatin organization, cell division, and differentiation. Isolated horizontal imaging using fluorescence and electron microscopy has long suggested that the nuclear lamina is composed of structurally different A-type and B-type lamin proteins and nuclear lamin-associated membrane proteins that together form a thin layer that is spatially isotropic with no apparent difference in molecular content or density between the top and bottom of the nucleus. Chromosomes are condensed differently along the radial direction from the periphery of the nucleus to the nuclear center; therefore, chromatin accessibility for gene expression is different along the nuclear radius. However, 3D confocal reconstruction reveals instead that major lamin protein lamin A/C forms an apically polarized Frisbee-like dome structure in the nucleus of adherent cells. Here we show that both A-type lamins and transcriptionally active chromatins are vertically polarized by the tension exercised by the perinuclear actin cap (or actin cap) that is composed of highly contractile actomyosin fibers organized at the apical surface of the nucleus. Mechanical coupling between actin cap and lamina through LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes induces an apical distribution of transcription-active subnucleolar compartments and epigenetic markers of transcription-active genes. This study reveals that intranuclear structures, such as nuclear lamina and chromosomal architecture, are apically polarized through the extranuclear perinuclear actin cap in a wide range of somatic adherent cells.

  5. Self-phase-modulation induced spectral broadening in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  6. Self-phase-modulation induced spectral broadening in silicon waveguides.

    PubMed

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm(2) peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  7. Affective-cognitive consistency and thought-induced attitude polarization.

    PubMed

    Chaiken, S; Yates, S

    1985-12-01

    Subjects whose preexperimental attitudes toward either capital punishment or censorship were high or low in affective-cognitive consistency were identified. These four groups thought about their attitudes by writing two essays, one on the topic for which consistency had been assessed (relevant essay) and one on the unassessed topic (distractor essay). In accord with the hypothesis that thought-induced attitude polarization requires the presence of a well-developed knowledge structure, high-consistency subjects evidenced greater polarization than low-consistency subjects only on the relevant topic after writing the relevant essay. Content analyses of subjects' relevant essays yielded additional data confirming Tesser's ideas regarding mediation: High (vs. low) consistency subjects expressed a greater proportion of cognitions that were evaluatively consistent with their prior affect toward the attitude object and a smaller proportion of evaluatively inconsistent and neutral cognitions. Moreover, although high-and low-consistency subjects did not differ in the amount of attitudinally relevant information they possessed or their awareness of inconsistent cognitions, their method of dealing with discrepant information diverged: High-consistency subjects evidenced a greater tendency to assimilate discrepant information by generating refutational thoughts that discredited or minimized the importance of inconsistent information.

  8. Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Jia, Huaiting; Tian, Xiaocheng; Yuan, Haoyu; Zhu, Na; Su, Jingqin; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo

    2016-10-01

    In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and implemented on the SG-III laser facility. After using these techniques, the far field distribution of SG-Ⅲ laser facility can be adjusted, controlled and repeated accurately. The output spectrums of the cascade phase modulators used for Multi-FM SSD were stable and the FM-to-AM effect can be restrained. Experiments on SG-III laser facility indicate that when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of preamplifier and main amplifiers with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, 0.57 with CPP+PS and 0.84 with only CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied. The PS plates were manufactured and equipped on SG-III laser facility for LPI research. Combined beam smoothing and polarization manipulation were also studied to solve the LPI problem. Results indicate that through adjusting dispersion directions of SSD beams in a quad, two dimensional SSD can be obtained. Using polarization control plate (PCP), polarization on the near field and far field can be manipulated, providing new method to solve LPI problem in indirect drive laser fusion.

  9. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-01

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a "double bun" structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  10. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    SciTech Connect

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-15

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a “double bun” structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  11. Spectral line polarization with angle-dependent partial frequency redistribution. III. Single scattering approximation for the Hanle effect

    NASA Astrophysics Data System (ADS)

    Sampoorna, M.

    2011-08-01

    Context. The solar limb observations in spectral lines display evidence of linear polarization, caused by non-magnetic resonance scattering process. This polarization is modified by weak magnetic fields - the process of the Hanle effect. These two processes serve as diagnostic tools for weak solar magnetic field determination. In modeling the polarimetric observations the partial frequency redistribution (PRD) effects in line scattering have to be accounted for. For simplicity, it is common practice to use PRD functions averaged over all scattering angles. For weak fields, it has been established that the use of angle-dependent PRD functions instead of angle-averaged functions is essential. Aims: We introduce a single scattering approximation to the problem of polarized line radiative transfer in weak magnetic fields with an angle-dependent PRD. This helps us to rapidly compute an approximate solution to the difficult and numerically expensive problem of polarized line formation with angle-dependent PRD. Methods: We start from the recently developed Stokes vector decomposition technique combined with the Fourier azimuthal expansion for angle-dependent PRD with the Hanle effect. In this decomposition technique, the polarized radiation field (I, Q, U) is decomposed into an infinite set of cylindrically symmetric Fourier coefficients tilde I(k)K_Q, where K = 0,2, with - K ≤ Q ≤ + K, and k is the order of the Fourier coefficients (k takes values from - ∞ to + ∞). In the single scattering approximation, the effect of the magnetic field on the Stokes I is neglected, so that it can be computed using the standard non-local thermodynamic equilibrium (non-LTE) scalar line transfer equation. In the case of angle-dependent PRD, we further assume that the Stokes I is cylindrically symmetric and given by its dominant term tilde I(0)0_0. Keeping only the contribution from tilde I(0)0_0 in the source terms for the K = 2 components (which give rise to Stokes Q and U), the

  12. Self-induced spectral splits in supernova neutrino fluxes

    SciTech Connect

    Raffelt, Georg G.; Smirnov, Alexei Yu.

    2007-10-15

    In the dense-neutrino region above the neutrino sphere of a supernova (r < or approx. 400 km), neutrino-neutrino refraction causes collective flavor transformations. They can lead to 'spectral splits' where an energy E{sub split} splits the transformed spectrum sharply into parts of almost pure but different flavors. Unless there is an ordinary MSW resonance in the dense-neutrino region, E{sub split} is determined by flavor-lepton number conservation alone. Spectral splits are created by an adiabatic transition between regions of large and small neutrino density. We solve the equations of motion in the adiabatic limit explicitly and provide analytic expressions for a generic example.

  13. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  14. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  15. Spectral-Polarization Properties and Light Resistance of Polyvinyl-Alcohol Films Colored With Disazo Dyes

    NASA Astrophysics Data System (ADS)

    Fillipovich, L. N.; Ariko, N. G.; Agabekov, V. E.; Malashko, P. M.

    2005-09-01

    Polarizers containing disazo dyes from the group of azobenzene-azonaphthalene have been developed. It has been established that their polarizing ability is determined by the mutual disposition of the azo group and electron-donor substituents in the naphthalene ring. On diazo coupling of γ acid into the α position relative to the oxy group, the M1 and M3 dyes are formed, the polarizing ability of which in uniaxially oriented polyvinyl-alcohol films is higher than in the M2 dye produced as a result of diazo coupling into the α position relative to the amino group. On irradiation by UV light, the dyes are subjected to photodestruction, which, in the case of M2, proceeds through trans-cis-isomerization. The rate of photodestruction depends on the aggregation of the dye molecules, and it increases in the presence of a free-radical initiator. The UV absorber (substituted benzotriazole) and the uniaxial orientation of the film retard this process.

  16. Phase-resolved X-ray spectroscopy and spectral energy distribution of the X-ray soft polar RS Caeli

    NASA Astrophysics Data System (ADS)

    Traulsen, I.; Reinsch, K.; Schwope, A. D.; Schwarz, R.; Walter, F. M.; Burwitz, V.

    2014-02-01

    Context. RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Aims: Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. Methods: We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results: Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36 eV and 7 keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d ≳ 750 pc. Conclusions: The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated. Based on observations obtained with XMM-Newton, an ESA science mission with

  17. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone

    NASA Astrophysics Data System (ADS)

    Lesmes, David P.; Frye, Kevin M.

    2001-01-01

    The spectral induced-polarization (IP) response of rocks and soils is a complex function of pore solution chemistry, sample microgeometry, and surface chemical properties. We measure the complex conductivity and the time domain IP responses of Berea sandstone as a function of pore fluid ionic strength and pH. Complex conductivity is measured over the frequency range 10-3 to 106 Hz, and chargeability is computed using a time window of 0.16 to 1.74 s. The field IP parameters: phase, percent frequency effect, and chargeability are functions of both the surface and bulk electrical properties of the sample and are observed to decrease with increasing solution conductivity. Dividing these parameters by the sample resistivity yields normalized IP parameters (quadrature conductivity, metal factor, normalized chargeability) that are proportional to the imaginary component of the complex surface conductivity. Normalized IP parameters increase with ionic strength up to concentrations of 10-1 M NaCl and show a reduced response at pH 3, the point of zero charge for quartz-dominated systems. For concentrations >10-1 M NaCl, the normalized parameters decrease with increasing concentration. This decrease in surface polarization may indicate a decrease in the effective mobility of polarizing charges at high solution concentration. Our data indicate that normalized IP parameters are directly related to the physiochemical parameters that control the surface conductivity responses of rocks and soils. Normalization of IP measurements in environmental investigations should increase the effectiveness of IP surveys, especially in high-conductivity environments.

  18. Fluorescence in situ hybridization and spectral imaging analysisof human oocytes and first polar bodies

    SciTech Connect

    Weier, Heinz-Ulli G.; Weier, Jingly F.; Oter Renom, Maria; Zheng,Xuezhong; Colls, Pere; Nureddin, Aida; Pham, Chau D.; Chu, Lisa W.; Racowsky, Catherine; Munne, Santiago

    2004-10-06

    We investigated the frequencies of abnormalities involving either chromosome 1, 16, 18 or 21 in failed-fertilized human oocytes.While abnormalities involving chromosome 16 showed an age-dependant increase, results for the other chromosomes did not show statistically significant differences between the three age groups <35 yrs, 35-39 yrs, and >39 yrs. The scoring of four chromosomes is likely to underestimate the true rate of aneuploid cells. Thus, for a pilot study investigating a more comprehensive analysis of oocytes and their corresponding first polar bodies (1PBs), we developed a novel 8-probe chromosome enumeration scheme using FISH and SIm.

  19. Spectral-Content Readout Of Stress-Induced Birefringence

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.; Voloshin, Arkady S.

    1992-01-01

    Spectrum of transmitted light indicates stress in sensor or specimen. Photoelastic apparatus demonstrates feasibility of analysis of spectrum of transmitted light to quantify birefringence in transparent specimen. By augmenting conventional photoelastic analysis with spectral sensors and automating it with computer control and processing of data, technique made more versatile and useful. Potential uses include measurement of stresses in optical fibers and transparent materials in general.

  20. Time-resolved spectral investigations of laser light induced microplasma

    NASA Astrophysics Data System (ADS)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  1. Darkfield orthogonal polarized spectral imaging for studying endovascular laser-tissue interactions in vivo a preliminary study

    NASA Astrophysics Data System (ADS)

    Heger, Michal; Beek, Johan F.; Stenback, Karin; Faber, Dirk J.; van Gemert, Martin J. C.; Ince, Can

    2005-02-01

    Due to the limited number of suitable intravital microscopy techniques, relatively little is known about the opto-thermal (endo)vascular responses to selective photothermolysis, used as a default treatment modality for superficial vascular anomalies such as port wine stains, telangiectasias, and hemangiomas. In this preliminary study we present a novel microscopy technique for studying (endo)vascular laser-tissue interactions in vivo, in which conventional orthogonal polarized spectral (OPS) imaging is combined with darkfield (DF) illumination. DFOPS imaging of rat mesenteric vasculature irradiated at increasing powers revealed the following (tissular) responses: formation of translucent aggregates, retrograde flow, gradual and immediate hemostasis, reinstatement of flow, vessel disappearance, and perivascular collagen damage. DFOPS imaging therefore constitutes a useful tool for examining (endo)vascular events following selective photothermolysis.

  2. Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals

    SciTech Connect

    Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine

    2013-11-14

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  3. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report)

    SciTech Connect

    Moysey, Stephen; Dean, Delphine; Dimitrios, Ntarlagiannis

    2013-11-13

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  4. Spectral analysis of dike-induced earthquakes in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Tepp, Gabrielle; Ebinger, Cynthia J.; Yun, Sang-Ho

    2016-04-01

    Shallow dike intrusions may be accompanied by fault slip above the dikes, a superposition which complicates seismic and geodetic data analyses. The diverse volcano-tectonic and low-frequency local earthquakes accompanying the 2005-2010 large-volume dike intrusions in the Dabbahu-Manda Hararo rift (Afar), some with fault displacements of up to 3 m at the surface, provide an opportunity to examine the relations among the earthquakes, dike intrusions, and surface ruptures. We apply the frequency index (FI) method to characterize the spectra of swarm earthquakes from six of the dikes. These earthquakes often have broad spectra with multiple peaks, making the usual peak frequency classification method unreliable. Our results show a general bimodal character with high FI earthquakes associated with deeper dikes (top > 3 km subsurface) and low FI earthquakes associated with shallow dikes, indicating that shallow dikes result in earthquakes with more low-frequency content and larger-amplitude surface waves. Low FI earthquakes are more common during dike emplacement, suggesting that interactions between the dike and faults may lead to lower FI. Taken together, likely source processes for low FI earthquakes are shallow hypocenters (<3 km) possibly with surface rupture, slow rupture velocities, and interactions with dike fluids. Strong site effects also heavily influence the earthquake spectral content. Additionally, our results suggest a continuum of spectral responses, implying either that impulsive volcano-tectonic earthquakes and the unusual, emergent earthquakes have similar source processes or that simple spectral analyses, such as FI, cannot distinguish different source processes.

  5. Method And Apparatus For Examining A Tissue Using The Spectral Wing Emission Therefrom Induced By Visible To Infrared Photoexcitation.

    DOEpatents

    Alfano, Robert R.; Demos, Stavros G.; Zhang, Gang

    2003-12-16

    Method and an apparatus for examining a tissue using the spectral wing emission therefrom induced by visible to infrared photoexcitation. In one aspect, the method is used to characterize the condition of a tissue sample and comprises the steps of (a) photoexciting the tissue sample with substantially monochromatic light having a wavelength of at least 600 nm; and (b) using the resultant far red and near infrared spectral wing emission (SW) emitted from the tissue sample to characterize the condition of the tissue sample. In one embodiment, the substantially monochromatic photoexciting light is a continuous beam of light, and the resultant steady-state far red and near infrared SW emission from the tissue sample is used to characterize the condition of the tissue sample. In another embodiment, the substantially monochromatic photoexciting light is a light pulse, and the resultant time-resolved far red and near infrared SW emission emitted from the tissue sample is used to characterize the condition of the tissue sample. In still another embodiment, the substantially monochromatic photoexciting light is a polarized light pulse, and the parallel and perpendicular components of the resultant polarized time-resolved SW emission emitted from the tissue sample are used to characterize the condition of the tissue sample.

  6. Voltage-induced conversion of helical to uniform nuclear spin polarization in a quantum wire

    NASA Astrophysics Data System (ADS)

    Kornich, Viktoriia; Stano, Peter; Zyuzin, Alexander A.; Loss, Daniel

    2015-05-01

    We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on nonequilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear spin helix polarization in semiconducting quantum wires.

  7. Parahydrogen Induced polarization by homogeneous catalysis: theory and applications.

    PubMed

    Buljubasich, Lisandro; Franzoni, María Belén; Münnemann, Kerstin

    2013-01-01

    The alignment of the nuclear spins in parahydrogen can be transferred to other molecules by a homogeneously catalyzed hydrogenation reaction resulting in dramatically enhanced NMR signals. In this chapter we introduce the involved theoretical concepts by two different approaches: the well known, intuitive population approach and the more complex but more complete density operator formalism. Furthermore, we present two interesting applications of PHIP employing homogeneous catalysis. The first demonstrates the feasibility of using PHIP hyperpolarized molecules as contrast agents in (1)H MRI. The contrast arises from the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via PHIP. It allows for the discrimination of a small amount of hyperpolarized molecules from a large background signal and may open up unprecedented opportunities to use the standard MRI nucleus (1)H for, e.g., metabolic imaging in the future. The second application shows the possibility of continuously producing hyperpolarization via PHIP by employing hollow fiber membranes. The continuous generation of hyperpolarization can overcome the problem of fast relaxation times inherent in all hyperpolarization techniques employed in liquid-state NMR. It allows, for instance, the recording of a reliable 2D spectrum much faster than performing the same experiment with thermally polarized protons. The membrane technique can be straightforwardly extended to produce a continuous flow of a hyperpolarized liquid for MRI enabling important applications in natural sciences and medicine.

  8. Shearing microscopy using polarized optical microscope with shear stage and spectral analyser to study liquid crystalline polymers.

    PubMed

    Tanaka, K; Yonetake, K; Masuko, T; Akiyama, R

    2002-01-01

    In-situ polarized optical microscopy using a shear stage and a spectral analyser as well as a CCD camera were applied to study the phase transition under shear flow for a thermotropic and side-chain-type liquid crystalline polysiloxane. The onset of the appearance of anisotropic texture of the polysiloxane was observed under shear flow using the CCD camera at temperatures much higher than the isotropic-liquid crystalline phase transition temperature if the polysiloxane was cooled from the isotropic phase in the quiescent state. Both the onset temperature and the temperature for full development of the anisotropic texture across the field of view became higher as the shear rate increased. The transmitted light intensity was also measured using a spectral analyser with crossed polarisers at wavelengths from 300 nm to 800 nm, and the integrated intensity of the spectrum was calculated. Changes in the spectrum and the integrated intensity against temperature in the cooling process were compared with observation using the CCD camera. Temperature dependence of the integrated intensity showed that the onset of the appearance of the anisotropic texture under high shear rates was detected at temperatures slightly higher than that observed using the CCD camera. PMID:11856377

  9. Polarization force-induced changes in the dust sheath formation

    SciTech Connect

    Mayout, Saliha; Bentabet, Karima; Tribeche, Mouloud

    2015-09-15

    The modifications arising in the dusty plasma sheath structure due to the presence of polarization forces acting on the dust grains are investigated. The corresponding appropriate Bohm criterion for sheath formation is obtained. It is found that the critical Mach number, beyond which the dusty plasma electrostatic sheath sets in, decreases whenever the polarization effects become important. In addition, when the polarization force dominates over the electrical one, the dust plasma sheath cannot set in. This happens whenever the dust grain size exceeds a critical threshold. Moreover, the sheath electrostatic potential-gradient becomes abruptly steep, and the sheath thickness becomes broader as the polarization force effects strengthen.

  10. Adaptation of the University of Wisconsin High Spectral Resolution Lidar for Polarization and Multiple Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P. K.

    1996-01-01

    Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.

  11. Spectral Modifications and Polarization Dependent Coupling in Tailored Assemblies of Quantum Dots and Plasmonic Nanowires

    PubMed Central

    2013-01-01

    The coupling of optical emitters with a nanostructured environment is at the heart of nano- and quantum optics. We control this coupling by the lithographic positioning of a few (1–3) quantum dots (QDs) along plasmonic silver nanowires with nanoscale resolution. The fluorescence emission from the QD-nanowire systems is probed spectroscopically, by microscopic imaging and decay time measurements. We find that the plasmonic modes can strongly modulate the fluorescence emission. For a given QD position, the local plasmon field dictates the coupling efficiency, and thus the relative weight of free space radiation and emission into plasmon modes. Simulations performed with a generic few-level model give very good agreement with experiment. Our data imply that the 2D degenerate emission dipole orientation of the QD can be forced to predominantly emit to one polarization component dictated by the nanowire modes. PMID:23968490

  12. Electron impact polarization of atomic spectral lines. I - A general theoretical scheme

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Degl'innocenti, Egidio L.

    1992-01-01

    A suitable theoretical scheme able to describe, in a wide variety of astrophysical situations, the phenomenon of atomic line polarization by electron impact is developed. Starting from the general principles of quantum mechanics and assuming the Born approximation, the rate equations for the density matrix elements of a multilevel atomic system, interacting with a nonrelativistic electron beam having any kind of angular distribution, are derived in full generality. The resulting theory generalizes the previous ones by accounting for the collisional rates and the cross sections concerning both inelastic and superelastic collisions (in any geometrical situation), and, moreover, by taking into account the coherences among Zeeman sublevels split by a magnetic field. As an example of particular relevance, the general formulas derived in the first sections of the paper are subsequently particularized to the case of the electric dipole interaction.

  13. Polarization properties of fiber lasers with twist-induced circular birefringence

    SciTech Connect

    Kim, Ho Young; Lee, El Hang Kim, Byoung Yoon

    1997-09-01

    We have experimentally observed and theoretically analyzed the polarization properties of fiber lasers with twist-induced birefringence. Twisting a fiber induces the circular birefringence of a fiber laser cavity, and this birefringence reduces the effects of intrinsic linear birefringence on the polarization properties of fiber lasers. The frequencies of their polarization eigenmodes coincide with each other gradually as the twist rate increases, and the directions of polarization eigenmodes deviate from the birefringence axis at a much larger twist rate than the magnitude of intrinsic linear birefringence. We describe the successful experimental results for Nd and Er fiber lasers. {copyright} 1997 Optical Society of America

  14. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  15. Ocean color spectral variability studies using solar-induced chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Swift, Robert N.

    1987-01-01

    It is suggested that chlorophyll-induced ocean color spectral variability can be studied using only a passive airborne spectroradiometer instrument, with solar-induced chlorophyll fluorescence used as the standard against which all correlations are performed. The intraspectral correlation (ISC) method is demonstrated with results obtained during an airborne mapping mission in the New York Bight. The curvature algorithm is applied to the solar-induced chlorophyll fluorescence at about 690 nm, and good agreement is found with results obtained using active-passive correlation spectroscopy. The ISC method has application to spectral variability and resulting chlorophyll concentration measurement in different environmental conditions and in different water types.

  16. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE PAGES

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  17. Spectral changes induced by a phase modulator acting as a time lens

    SciTech Connect

    Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phase shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.

  18. Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells

    NASA Astrophysics Data System (ADS)

    Hawkins, R. J.; Bénichou, O.; Piel, M.; Voituriez, R.

    2009-10-01

    Many cellular processes require a polarization axis which generally initially emerges as an inhomogeneous distribution of molecular markers in the cell. We present a simple analytical model of a general mechanism of cell polarization taking into account the positive feedback due to the coupled dynamics of molecular markers and cytoskeleton filaments. We find that the geometry of the organization of cytoskeleton filaments, nucleated on the membrane (e.g., cortical actin) or from a center in the cytoplasm (e.g., microtubule asters), dictates whether the system is capable of spontaneous polarization or polarizes only in response to external asymmetric signals. Our model also captures the main features of recent experiments of cell polarization in two considerably different biological systems, namely, mating budding yeast and neuron growth cones.

  19. Spectral energy distribution, radio maps and polarization of Cygnus X-1: a lepto-hadronic model

    NASA Astrophysics Data System (ADS)

    Vila, G. S.; Pepe, C.; Romero, G. E.

    2016-08-01

    The microquasar Cygnus X-1 is one of the most studied astrophysical sources. Several radiative models for the non-thermal broadband emission of Cygnus X-1 are available. For the jet emission in particular, only leptonic models have been considered despite the observational evidence of the presence of hadrons in the jets of other microquasars. In this work, we present an inhomogeneous, lepto-hadronic jet model for the non-thermal broadband emission of Cygnus X-1. We calculate the contribution to the spectrum of both relativistic electrons and protons, taking into account their interaction with the magnetic field, matter and photon fields internal and external to the jet. We obtain best-fit models for the spectrum that reproduce the observations from radio to gamma rays, including the MeV tail whose origin is still disputed. We also produce synthetic radio maps of the jet and compare them to actual interferometric observations of the source. Finally, we present preliminary results for the degree of polarization of the jet radiation in the MeV band.

  20. Spectral albedo and emissivity of CO2 in Martian polar caps - Model results

    NASA Technical Reports Server (NTRS)

    Warren, Stephen G.; Wiscombe, Warren J.; Firestone, John F.

    1990-01-01

    In this paper, a snow albedo model previously developed for terrestrial snow is extended to the case of CO2 snow on Mars. Pure CO2 snow is calculated to have high albedo at visible wavelengths but not as high as that of water snow. At any given wavelength, the primary variable controlling albedo and emissivity is the snow grain size, with albedo decreasing and emissivity increasing as grain size increases. Observations that red albedo is much higher than blue albedo in the Martian south polar cap indicates that the snow or the atmosphere is contaminated with red dust. The absorption coefficient of CO2 ice in the thermal infrared is two to three orders of magnitude smaller than that measured for H2O ice. CO2 snow emissivity is therefore much lower than H2O snow, varying substantially with wavelength and quite sensitive to grain size and emission angle. Factors tending to increase emissivity are large grain size, small emission angle, and large concentrations of dust or water.

  1. A holistic view of a black hole binary: bringing together spectral, timing, and polarization analysis of Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria

    2014-01-01

    The microquasar Cygnus X-1 is a persistent high mass X-ray binary, consisting of an O-type supergiant and a stellar mass black hole, and therefore one of those systems which are often considered downscaled versions of AGN, an analogy supported in Cyg X-1 by observations of radio jets. The size and proximity of such systems allow us to observe phenomena on time-scales which are not accessible in their supermassive siblings. Cyg X-1 shows distinct X-ray states, characterized by X-ray spectral and timing properties. Radio behavior is strongly correlated with the X-ray states and a jet-break exists in the mid-IR range in the hard state. The source state is therefore essential for the interpretation of data at all wavelengths. For most observations lacking broadband X-ray coverage, however, the exact state determination proves challenging. In this work, I will present a recently developed novel approach that uses data from all sky monitors such as RXTE-ASM, MAXI, Swift-BAT, and Fermi-GBM to define states and state transitions on a timescales of a few hours over a period of more than 17 years. This approach can be used to investigate the context of high resolution observations of Cyg X-1 with Chandra and XMM, and to conduct state-resolved polarization analysis with INTEGRAL. I then combine spectral and model-independent X-ray timing analysis of over 1900 RXTE orbits over 14 years and investigate the evolution of Fourier-dependent timing parameters such as power spectra, coherence, and time lag at different photon energies over all spectral states. Results include a correlation between the shape of the power and time lag spectra in all hard and intermediate states, a photon-energy dependent increase of the fractional rms in the soft state, and a strong energy-dependency of the power spectra shapes during state transitions. The findings are crucial for constraining physical models for accretion and ejection in compact objects and for comparisons with other accreting

  2. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    NASA Astrophysics Data System (ADS)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  3. Defect-Induced Changes in the Spectral Properties of HIGH-Tc Cuprates

    NASA Astrophysics Data System (ADS)

    Vobornik, I.; Berger, H.; Rullier-Albenque, F.; Margaritondo, G.; Pavuna, D.; Grioni, L. Forroand M.

    Superconductivity in high-Tc cuprates is particularly sensitive to disorder due to the unconventional d-wave pairing symmetry. We investigated effects of disorder on the spectral properties of Bi2Sr2CaCu2O8+x high-Tc superconductor. We found that already small defect densities suppress the characteristic spectral signature of the superconducting state. The spectral line shape clearly reflects new excitations within the gap, as expected for defect-induced pair breaking. At the lowest defect concentrations the normal state remains unaffected, while increased disorder leads to suppression of the normal quasiparticle peaks.

  4. Dynamic index modulation mechanism in polarization-maintained fiber Bragg gratings induced by transverse acoustic waves.

    PubMed

    Miao, Ren; Zhang, Wei; Feng, Xue; Zhao, Jianhui; Liu, Xiaoming

    2009-08-20

    A novel index modulation mechanism of polarization-maintained fiber Bragg gratings based on the microbend of stress members induced by a transverse acoustic wave is proposed and investigated experimentally. The index modulation leads to a series of ghost gratings with specific polarization, whose wavelengths can be tuned by the acoustic wave frequency and whose intensities depend on the vibration direction of the transverse acoustic wave. Our method provides a novel way to achieve polarization-dependent narrowband acousto-optic tunable filters.

  5. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Bi, Lei; Baum, Bryan A.; Liou, Kuo-Nan; Kattawar, George W.; Mishchenko, Michael I.; Cole, Benjamin

    2013-01-01

    A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 microns. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10,000 microns in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

  6. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOEpatents

    Ward, Stanley H.

    1989-01-01

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth.

  7. Reprint of : Spin polarization induced by an electric field in the presence of weak localization effects

    NASA Astrophysics Data System (ADS)

    Guerci, Daniele; Borge, Juan; Raimondi, Roberto

    2016-08-01

    We evaluate the spin polarization (Edelstein or inverse spin galvanic effect) and the spin Hall current induced by an applied electric field by including the weak localization corrections for a two-dimensional electron gas. We show that the weak localization effects yield logarithmic corrections to both the spin polarization conductivity relating the spin polarization and the electric field and to the spin Hall angle relating the spin and charge currents. The renormalization of both the spin polarization conductivity and the spin Hall angle combine to produce a zero correction to the total spin Hall conductivity as required by an exact identity. Suggestions for the experimental observation of the effect are given.

  8. Neuronal polarity selection by topography-induced focal adhesion control.

    PubMed

    Ferrari, Aldo; Cecchini, Marco; Serresi, Michela; Faraci, Paolo; Pisignano, Dario; Beltram, Fabio

    2010-06-01

    Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with nanogratings (alternating lines of ridges and grooves of submicron size) promotes bipolarity and alignment to the substrate topography. Here, we investigate the role of focal adhesions, cell contractility, and actin dynamics in this process. Exploiting nanoimprint lithography techniques and a cyclic olefin copolymer, we engineered biocompatible nanostructured substrates designed for high-resolution live-cell microscopy. Our results reveal that neuronal polarization and contact guidance are based on a geometrical constraint of focal adhesions resulting in an angular modulation of their maturation and persistence. We report on ROCK1/2-myosin-II pathway activity and demonstrate that ROCK-mediated contractility contributes to polarity selection during neuronal differentiation. Importantly, the selection process confined the generation of actin-supported membrane protrusions and the initiation of new neurites at the poles. Maintenance of the established polarity was independent from NGF stimulation. Altogether our results imply that focal adhesions and cell contractility stably link the topographical configuration of the extracellular environment to a corresponding neuronal polarity state. PMID:20304485

  9. Laser induced breakdown spectroscopy and hyper-spectral imaging analysis of pigments on an illuminated manuscript

    NASA Astrophysics Data System (ADS)

    Melessanaki, K.; Papadakis, V.; Balas, C.; Anglos, D.

    2001-12-01

    Laser induced breakdown spectroscopy (LIBS) was used for the first time in the in-situ identification of pigments in an illuminated manuscript dated from the 12th-13th century AD. Spectral data are presented from the analysis performed on the illumination of an initial letter ‘T’ and on the gold paint used in several parts of the writing. Identification of most pigments, in a nearly non-destructive way, was achieved. In parallel to LIBS, hyper-spectral imaging analysis was performed, which enabled the mapping of the pigments’ spatial distribution on the basis of their characteristic, visible and near infrared absorption spectral features. The identification of the red pigment based on hyper-spectral imaging analysis is demonstrated. Identification of pigments and inks is of great importance for the dating and systematic characterization of illuminated manuscripts and, as shown in this work, a combined analytical approach can provide important and useful information.

  10. Spectral-mismatch-induced resolution limit of interferometric fiber Fabry-Perot sensor system

    NASA Astrophysics Data System (ADS)

    Niu, Siliang; Ma, Lina; Xiong, Shuidong; Hu, Yongming

    2011-12-01

    The mismatch of fiber Bragg gratings (FBGs) in spectral profiles can lead to a severe degraded resolution of the constructed fiber Fabry-Perot (FFP) sensor system through its effect on the fringe visibility. The variation of visibility induced by spectral mismatch and the corresponding phase resolution limit are analyzed theoretically and experimentally. Theoretical analyses are based on the approximation of Gaussian profiles to the reflection spectra of weak FBGs, especially with consideration of side lobes. The investigation provides an insight into the evolution of the fringe visibility caused by spectral mismatch, and shows good agreement with experimental results. An optimum phase resolution of about 55 μrad/Hz 1/2 above 100 Hz is achieved for a nearly 4 m-long FFP sensor by matching spectral profiles of the gratings and balancing path length differences of the tandem interferometers.

  11. A new strategy for in vivo spectral editing. Application to GABA editing using selective homonuclear polarization transfer spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Yang, Jehoon; Choi, In-Young; Li, Shizhe Steve; Chen, Zhengguang

    2004-10-01

    A novel single-shot in vivo spectral editing method is proposed in which the signal to be detected, is regenerated anew from the thermal equilibrium magnetization of a source to which it is J-coupled. The thermal equilibrium magnetization of the signal to be detected together with those of overlapping signals are suppressed by single-shot gradient dephasing prior to the signal regeneration process. Application of this new strategy to in vivo GABA editing using selective homonuclear polarization transfer allows complete suppression of overlapping creatine and glutathione while detecting the GABA-4 methylene resonance at 3.02 ppm with an editing yield similar to that of conventional editing methods. The NAA methyl group at 2.02 ppm was simultaneously detected and can be used as an internal navigator echo for correcting the zero order phase and frequency shifts and as an internal reference for concentration. This new method has been demonstrated for robust in vivo GABA editing in the rat brain and for study of GABA synthesis after acute vigabatrin administration.

  12. Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing

    NASA Astrophysics Data System (ADS)

    Zhao, Haitao; Major, Arkady

    2016-06-01

    Simultaneous dual-wavelength laser oscillation with orthogonal polarizations has been observed and analyzed in a continuous wave N g-cut Yb:KGW oscillator. Without inserting any optical elements for polarization control, the N m- and N p-polarized modes, each of which possessed a distinct wavelength, coexisted and switched twice in two power regimes as the pump power was varied. The two wavelengths and their separation slightly depended on output coupling level. The wavelength switching and coexistence was studied and explained by considering the thermal and spectral anisotropy of the Yb:KGW crystals, which led to polarization-dependent reabsorption loss in the unpumped regions of the crystal. The maximum average output power obtained in the dual-wavelength regime was 4.6 W.

  13. Proximity-Induced Spin Polarization of Graphene in Contact with Half-Metallic Manganite.

    PubMed

    Sakai, Seiji; Majumdar, Sayani; Popov, Zakhar I; Avramov, Pavel V; Entani, Shiro; Hasegawa, Yuri; Yamada, Yoichi; Huhtinen, Hannu; Naramoto, Hiroshi; Sorokin, Pavel B; Yamauchi, Yasushi

    2016-08-23

    The role of proximity contact with magnetic oxides is of particular interest from the expectations of the induced spin polarization and weak interactions at the graphene/magnetic oxide interfaces, which would allow us to achieve efficient spin-polarized injection in graphene-based spintronic devices. A combined approach of topmost-surface-sensitive spectroscopy utilizing spin-polarized metastable He atoms and ab initio calculations provides us direct evidence for the magnetic proximity effect in the junctions of single-layer graphene and half-metallic manganite La0.7Sr0.3MnO3 (LSMO). It is successfully demonstrated that in the graphene/LSMO junctions a sizable spin polarization is induced at the Fermi level of graphene in parallel to the spin polarization direction of LSMO without giving rise to a significant modification in the π band structure. PMID:27438899

  14. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning.

    PubMed

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J; Lu, Haidong; Lee, Jung-Woo; Zhou, Hua; Chang, Wansoo; Mahanthappa, Mahesh K; Tsymbal, Evgeny Y; Gruverman, Alexei; Eom, Chang-Beom

    2016-04-13

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. PMID:26901570

  15. Ultraviolet irradiation induced polarization restoration in electrically fatigued ferroelectric polymer films

    SciTech Connect

    Fu Shaosong; Hu Jinghang; Zhu Guodong; Yu Hao; Ding Shijin; Jiang Yulong; Cheng Qian

    2013-03-21

    Polarization fatigue is a kind of phenomenon usually observed in most ferroelectric films, which severely degrades the electrical performance of ferroelectric devices. How to restore those degraded polarization as well as how to improve fatigue endurance has been attracting much attention. Here, we report the observation of ultraviolet (UV) irradiation induced polarization restoration in ferroelectric polymer films. Large numbers of experiments indicate that the simultaneous application of UV irradiation and DC bias voltage will result in polarization restoration, which is dependent on both electrical polarity of DC bias and the UV intensity. Repeated fatigue and restoration measurements are also conducted. Based on fatigue mechanism in ferroelectric polymer films, UV-induced restoration is discussed.

  16. Nonvolatile data storage using mechanical force-induced polarization switching in ferroelectric polymer

    SciTech Connect

    Chen, Xin; Tang, Xin; Chen, Xiang-Zhong; Chen, Yu-Lei; Shen, Qun-Dong; Guo, Xu; Ge, Hai-Xiong

    2015-01-26

    Ferroelectric polymers offer the promise of low-cost and flexible electronic products. They are attractive for information storage due to their spontaneous polarization which is usually switched by electric field. Here, we demonstrate that electrical signals can be readily written on ultra-thin ferroelectric polymer films by strain gradient-induced polarization switching (flexoelectric effect). A force with magnitude as small as 64nN is enough to induce highly localized (40 nm feature size) change in the polarization states. The methodology is capable of realizing nonvolatile memory devices with miniaturized cell size and storage density of tens to hundreds Gbit per square inch.

  17. Circularly polarized laser emission induced in isotropic and achiral dye systems

    PubMed Central

    Cerdán, Luis; García-Moreno, Sara; Costela, Angel; García-Moreno, Inmaculada; de la Moya, Santiago

    2016-01-01

    The production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles. A complete polarimetric characterization of the polarization state of conventional dye laser oscillators as a function of different experimental parameters is performed and it is shown that the generated light always possesses a certain level of circularity that changes in a distinctive way with pump energy and polarization. These results demonstrate that it is possible to generate and modulate CP laser light from efficient and photostable conventional laser dyes. PMID:27350073

  18. POLARIZATION OF THE CHARGE-EXCHANGE X-RAYS INDUCED IN THE HELIOSPHERE

    SciTech Connect

    Gacesa, M.; Kharchenko, V.; Mueller, H.-R.; Cote, R.

    2011-05-10

    We report results of a theoretical investigation of polarization of the X-ray emissions induced in charge-exchange collisions of fully stripped solar wind (SW) ions C{sup 6+} and O{sup 8+} with the heliospheric hydrogen atoms. The polarization of X-ray emissions has been computed for line-of-sight observations within the ecliptic plane as a function of SW ion velocities, including a range of velocities corresponding to the slow and fast SW, and coronal mass ejections. To determine the variability of polarization of heliospheric X-ray emissions, the polarization has been computed for solar minimum conditions with self-consistent parameters of the SW plasma and heliospheric gas and compared with the polarization calculated for an averaged solar activity. We predict the polarization of charge-exchange X-rays to be between 3% and 8%, depending on the line-of-sight geometry, SW ion velocity, and the selected emission lines.

  19. Circularly polarized laser emission induced in isotropic and achiral dye systems

    NASA Astrophysics Data System (ADS)

    Cerdán, Luis; García-Moreno, Sara; Costela, Angel; García-Moreno, Inmaculada; de La Moya, Santiago

    2016-06-01

    The production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles. A complete polarimetric characterization of the polarization state of conventional dye laser oscillators as a function of different experimental parameters is performed and it is shown that the generated light always possesses a certain level of circularity that changes in a distinctive way with pump energy and polarization. These results demonstrate that it is possible to generate and modulate CP laser light from efficient and photostable conventional laser dyes.

  20. Circularly polarized laser emission induced in isotropic and achiral dye systems.

    PubMed

    Cerdán, Luis; García-Moreno, Sara; Costela, Angel; García-Moreno, Inmaculada; de la Moya, Santiago

    2016-01-01

    The production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles. A complete polarimetric characterization of the polarization state of conventional dye laser oscillators as a function of different experimental parameters is performed and it is shown that the generated light always possesses a certain level of circularity that changes in a distinctive way with pump energy and polarization. These results demonstrate that it is possible to generate and modulate CP laser light from efficient and photostable conventional laser dyes. PMID:27350073

  1. Circularly polarized laser emission induced in isotropic and achiral dye systems.

    PubMed

    Cerdán, Luis; García-Moreno, Sara; Costela, Angel; García-Moreno, Inmaculada; de la Moya, Santiago

    2016-06-28

    The production of efficient, tunable, and switchable circularly polarized laser emission would have far reaching implications in optical communications or biophotonics. In this work, it is demonstrated the direct generation of circularly polarized (CP) laser emission in achiral and isotropic dye laser systems without the use of extracavity polarizing elements, and without resorting to chiral dyes, chiral liquid crystal matrices, or interferometric methods. The origin of this ellipticity arises from the dynamic birefringence induced by the strong and polarized laser pumping and the subsequent orientation anisotropy of the excited molecular dipoles. A complete polarimetric characterization of the polarization state of conventional dye laser oscillators as a function of different experimental parameters is performed and it is shown that the generated light always possesses a certain level of circularity that changes in a distinctive way with pump energy and polarization. These results demonstrate that it is possible to generate and modulate CP laser light from efficient and photostable conventional laser dyes.

  2. Possible methane-induced polar warming in the early Eocene.

    PubMed

    Sloan, L C; Walker, J C; Moore, T C; Rea, D K; Zachos, J C

    1992-05-28

    Reconstructions of early Eocene climate depict a world in which the polar environments support mammals and reptiles, deciduous forests, warm oceans and rare frost conditions. At the same time, tropical sea surface temperatures are interpreted to have been the same as or slightly cooler than present values. The question of how to warm polar regions of Earth without noticeably warming the tropics remains unresolved; increased amounts of greenhouse gases would be expected to warm all latitudes equally. Oceanic heat transport has been postulated as a mechanism for heating high latitudes, but it is difficult to explain the dynamics that would achieve this. Here we consider estimates of Eocene wetland areas and suggest that the flux of methane, an important greenhouse gas, may have been substantially greater during the Eocene than at present. Elevated methane concentrations would have enhanced early Eocene global warming, and also might specifically have prevented severe winter cooling of polar regions because of the potential of atmospheric methane to promote the formation of optically thick, polar stratospheric ice clouds.

  3. Probing Field-Induced Tissue Polarization Using Transillumination Fluorescent Imaging

    PubMed Central

    Caldwell, Bryan J.; Wellner, Marcel; Mitrea, Bogdan G.; Pertsov, Arkady M.; Zemlin, Christian W.

    2010-01-01

    Despite major successes of biophysical theories in predicting the effects of electrical shocks within the heart, recent optical mapping studies have revealed two major discrepancies between theory and experiment: 1), the presence of negative bulk polarization recorded during strong shocks; and 2), the unexpectedly small surface polarization under shock electrodes. There is little consensus as to whether these differences result from deficiencies of experimental techniques, artifacts of tissue damage, or deficiencies of existing theories. Here, we take advantage of recently developed near-infrared voltage-sensitive dyes and transillumination optical imaging to perform, for the first time that we know of, noninvasive probing of field effects deep inside the intact ventricular wall. This technique removes some of the limitations encountered in previous experimental studies. We explicitly demonstrate that deep inside intact myocardial tissue preparations, strong electrical shocks do produce considerable negative bulk polarization previously inferred from surface recordings. We also demonstrate that near-threshold diastolic field stimulation produces activation of deep myocardial layers 2–6 mm away from the cathodal surface, contrary to theory. Using bidomain simulations we explore factors that may improve the agreement between theory and experiment. We show that the inclusion of negative asymmetric current can qualitatively explain negative bulk polarization in a discontinuous bidomain model. PMID:20923639

  4. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers

    NASA Astrophysics Data System (ADS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-06-01

    We present an investigation on the threshold of thermal-induced mode instability (MI) in ytterbium-doped polarization-maintaining and non-polarization-maintaining active fibers. By taking both electric fields along the two principal axes into consideration, we extend a previous steady-state theoretical model to analyze the polarization effect on MI. Based on the model, we analyzed whether maintaining the fiber’s polarization direction has an effect on the MI threshold, which showed that, for practical high power fiber laser systems, the MI threshold is nearly the same for polarization-maintaining and non-polarization-maintaining active fibers. Experimental validation of the theoretical analysis is presented with experimental results agreeing with the theoretical results, in which polarization-maintained and non-polarization-maintained fiber lasers with similar core/inner cladding diameters are employed.

  5. Cyclooxygenase-2 inhibition attenuates hypoxic cancer cells induced m2-polarization of macrophages.

    PubMed

    Dubey, P; Shrivastava, R; Tripathi, C; Jain, N K; Tewari, B N; Lone, M-U-D; Baghel, K S; Kumar, V; Misra, S; Bhadauria, S; Bhatt, M L B

    2014-09-12

    Tumor-associated macrophages (TAMs), represent a major subpopulation of tumor infiltrating immune cells. These alternatively activated M2-polarized macrophages are well known for their pro-tumor functions. Owing to their established role in potentiating tumor-neovasculogenesis and metastasis, TAMs have emerged as promising target for anti-cancer immunotherapy. One of the key TAMs related phenomenon that is amenable to therapeutic intervention is their phenotype switching into alternatively activated M2-polarized macrophages. Hindering macrophage polarization towards a pro-tumor M2 phenotype, or better still reprogramming the M2 like TAMs towards M1 subtype is being considered a beneficial anti-cancer strategy. Hypoxic tumor milieu has been proposed as one of the most plausible factor governing M2-polarization of macrophages. We recently demonstrated that hypoxic tumor cells imparted a pro—angiogenic M2 skewed phenotype to macrophages. Furthermore, sizeable body of data indicates for participation of cyclooxygenase-2 (COX-2) in macrophage polarization. Concordantly, inhibition of COX-2 is associated with impaired macrophage polarization. Prompted by this in the current study we decided to explore if inhibition of COX-2 activity via chemical inhibitors may prevent hypoxic cancer cell induced M2-polarization of macrophages. We observed that treatment with Flunixin meglumine, an established preferential inhibitor of COX-2 activity markedly inhibited hypoxic cancer cell induced of M2-polarization of macrophages thereby indicating for usage of COX-2 inhibition as possible anti-cancer treatment modality.

  6. MSX3 Switches Microglia Polarization and Protects from Inflammation-Induced Demyelination.

    PubMed

    Yu, Zhongwang; Sun, Dingya; Feng, Jifeng; Tan, Weixing; Fang, Xue; Zhao, Ming; Zhao, Xiaolin; Pu, Yingyan; Huang, Aijun; Xiang, Zhenghua; Cao, Li; He, Cheng

    2015-04-22

    The major challenge for progressive multiple sclerosis therapy is the promotion of remyelination from inflammation-induced demyelination. A switch from an M1- to an M2-dominant polarization of microglia is critical in these repair processes. In this study, we identified the homeobox gene msh-like homeobox-3 (Msx3) as a new pivotal regulator for microglial polarization. MSX3 was induced during microglia M2 polarization and repressed in M1 cells. The expression of MSX3 in microglia was dynamically regulated during experimental autoimmune encephalomyelitis (EAE), which is an animal model of multiple sclerosis. The overexpression of MSX3 in microglia promoted M2 but impeded M1 polarization. Interrupting MSX3 expression in microglia accelerated inflammation-induced demyelination and neurodegeneration. The conditioned medium from MSX3-transduced microglia promoted oligodendrocyte progenitor survival, differentiation, and neurite outgrowth. The adoptive transfer of MSX3-transduced microglia suppressed EAE and facilitated remyelination within the murine CNS in EAE and the LPC model. Mechanically, chromatin immunoprecipitation assays also indicated that MSX3 directly regulated three key genes associated with microglia M2 polarization, including Pparg, Stat6, and Jak3. Importantly, we found that overexpression of MSX3 in human-derived microglia represents the M2 phenotype and ameliorated EAE after intraventricular injection. Our findings suggest a new homeobox protein-dependent mechanism for driving microglia M2 polarization and identify MSX3 as an attractive therapeutic approach for preventing inflammation-induced demyelination and promoting remyelination.

  7. Enhancement of self-phase modulation induced spectral broadening in silicon suspended membrane waveguides

    NASA Astrophysics Data System (ADS)

    Zhang, Yaojing; Cheng, Zhenzhou; Liu, Linghai; Zhu, Bingqing; Wang, Jiaqi; Zhou, Wen; Wu, Xinru; Tsang, Hon Ki

    2016-05-01

    We experimentally observed a possibly enhanced self-phase modulation (SPM) in silicon suspended membrane waveguides (SMWs) by measuring the spectral broadening of optical pulses. The nonlinear coefficient n 2 and the two-photon absorption coefficient β 2 of silicon SMWs were measured to be (4.6 ± 0.9) × 10-18 m2 W-1 and 0.46 cm GW-1 at 1555 nm wavelength. We also proposed a method of using SPM-induced spectral broadening to obtain the coupling loss of a single grating coupler and experimentally compared the spectra of two grating couplers in silicon SMWs and in silicon-on-insulator waveguides.

  8. Elemental analysis of laser induced breakdown spectroscopy aided by an empirical spectral database

    SciTech Connect

    Rock, Steven; Marcano, Aristides; Markushin, Yuri; Sabanayagam, Chandran; Melikechi, Noureddine

    2008-11-01

    Laser induced breakdown spectroscopy (LIBS) is commonly used to identify elemental compositions of various samples. To facilitate this task, we propose the use of an elemental spectral library for single-pulsed, nanosecond LIBS in the spectral range 198-968 nm. This spectroscopic library is generated by measuring optical emissions from plasmas of 40 pure elements. To demonstrate the usefulness of the proposed database, we measure and analyze the LIBS spectra of pure iron and of ethanol and show that we identify these samples with a high degree of certainty.

  9. Eyestalk movements induced by polarized light in the ghost crab, Ocypode quadrata.

    PubMed

    SCHOENE, H; SCHOENE, H

    1961-09-01

    Differential visual sensitivity to vertical and horizontal linear polarization is shown in the light-induced eyestalk deviations of Ocypode quadrata. Responses with the e-vector vertical averaged about 6 degrees greater than those with e-vector horizontal. This difference approximates the relative eyestalk deviation induced by unpolarized light intensities having a ratio of 3:1

  10. Protonation-induced red-coloured circularly polarized luminescence of [5]carbohelicene fused by benzimidazole.

    PubMed

    Sakai, Hayato; Kubota, Takako; Yuasa, Junpei; Araki, Yasuyuki; Sakanoue, Tomo; Takenobu, Taishi; Wada, Takehiko; Kawai, Tsuyoshi; Hasobe, Taku

    2016-07-12

    Benzimidazole-fused [5]carbohelicene ([5]HeliBI) was newly synthesized to examine the spectroscopic and chiroptical properties. The reversible protonation and deprotonation processes of [5]HeliBI were successfully investigated using (1)H NMR, absorption and fluorescence spectral measurements. We also confirmed the circularly polarized luminescence of protonated [5]HeliBI (H(+)-[5]HeliBI). This is the first observation of red-coloured CPL of a helicene derivative. PMID:27319321

  11. Interference of spin states in resonant photoemission induced by circularly polarized light from magnetized Gd

    SciTech Connect

    Mueller, N.; Khalil, T.; Pohl, M.; Uphues, T.; Heinzmann, U.; Polcik, M.; Rader, O.; Heigl, F.; Starke, K.; Fritzsche, S.; Kabachnik, N. M.

    2006-10-15

    We have observed the spin-state interference by measuring the photoelectron spin polarization in the resonant preedge 4d{yields}4f photoemission from magnetized Gd. The photoemission is induced by circularly polarized light which determines one preferential direction of electron spin orientation due to polarization transfer and spin-orbit interaction. Another direction perpendicular to the first one is determined by the target electron spin orientation connected with the target magnetization. We have measured the component of spin polarization perpendicular to those two directions which can only appear due to spin-state interference which implies coherence of the spin states produced by the two mechanisms of the photoelectron spin polarization.

  12. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility.

  13. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility. PMID:25607157

  14. The application of induced polarization techniques to detect metal-bearing offshore anthropogenic waste and unexploded ordnance

    USGS Publications Warehouse

    Wynn, Jeff; Roberts, William

    2009-01-01

    Raw sewage and industrial waste have been dumped into sensitive estuaries, bays, and sounds for centuries. The full extents of the resulting sludge deposits are largely unknown, because they move in response to tidal and long‐shore currents, and because they are often buried by younger inert sediments. USGS field and laboratory measurements of toxic mine waste and organic effluent samples suggest that anthropogenic wastes typically contain finely‐divided metal and metal‐sulfide particles. The anoxic environment provided by anthropogenic wastes promotes the growth of anaerobic bacteria, creating a self‐reducing environment. We suggest that the finely‐divided metal and metal‐sulfide particles are the products of bacterial reduction and precipitation. The fine‐grained metallic precipitates are ideal targets for a surface‐effect electrochemical detection methodology called Induced Polarization (IP). A USGS‐patented (1998/2001) marine IP streamer technology has recently been commercialized and used to map “black smoker” sulfide deposits and their disseminated halos in the Bismarck Sea (2005), and titanium‐sand deposits offshore of South Africa (2007). The marine induced polarization system can do this mapping in three dimensions, more rapidly (it is towed at 3 knots), and with far higher resolution that land‐based measurements or vibracoring. Laboratory‐scale studies at the USGS suggest that anthropogenic wastes may display a specific multi‐frequency IP spectral signature that may be applicable to waste‐deposit mapping.

  15. Evaluating the use of Spectral Induced Conductivity to Detect Biofilm Development within Porous Media

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Atekwana, E. A.; Price, A.; Sharma, S.; Patrauchan, M.

    2015-12-01

    Microbial biomass accumulation in subsurface sediments dynamically alters porosity/permeability; factors critical to contaminant transport and management of bioremediation efforts. Current methodologies (i.e. plate counts, tracer/slug tests) offer some understanding of biofilm effect on subsurface hydrology, yet do not provide real-time information regarding biofilm development. Due to these limitations there is interest in assessing the near surface geophysical technique Spectral Induced Polarization (SIP), to measure biofilm formation. Our study assesses the influence of cell density and biofilm production on SIP response. Laboratory experiments monitored changes in SIP, measured colony forming units (CFU), and cellular protein levels on sand packed columns inoculated with either Pseudomonas aeruginosa PAO1 (non-mucoid strain) or Pseudomonas aeruginosa FRD1 (biofilm-overproducing mucoid strain) cells over one month. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to confirm the presence of biofilm. Our results indicate that phase and imaginary conductivity remained stable in PAO1 treatments as cell densities and cellular protein levels remained low (1.7x105 CFUml-1; 111 μg ml-1). However, we observed a significant decrease in both phase (0.5 to -0.20 mrad) and imaginary conductivity (0.0 to -3.0x10-5 S m-1) when both cell densities and cellular protein levels increased. In FRD1 treatments we observed an immediate decrease in phase (0.1 mrad) and imaginary conductivity (-2.0x10-6 S m-1) as cell densities were an order of magnitude greater then PAO1 treatments and cellular protein levels surpassed 500 μg ml-1. CLSM and SEM analysis confirmed the presence of biofilm and cells within both PAO1 and FRD1 treatments. Our findings suggest that the ratio of cells to cellular protein production is an important factor influencing both phase and imaginary conductivity response. However, our results are not in agreement with

  16. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection.

    PubMed

    Zhang, Jinjing; Zhang, Tao

    2015-02-01

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N(2)) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm. PMID:25725879

  17. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection

    SciTech Connect

    Zhang, Jinjing; Zhang, Tao

    2015-02-15

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N{sup 2}) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  18. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection.

    PubMed

    Zhang, Jinjing; Zhang, Tao

    2015-02-01

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N(2)) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  19. Polarization of an electroactive functional film on titanium for inducing osteogenic differentiation

    PubMed Central

    Zhou, Zhengnan; Li, Weiping; He, Tianrui; Qian, Lei; Tan, Guoxin; Ning, Chengyun

    2016-01-01

    To enhance the surface bioactivity of titanium (Ti) prostheses, an electroactive polyvinylidene fluoride (PVDF) film was prepared on a Ti substrate to provide a mimetic of the electrical microenvironment, which facilitated the performance of cell functions. The results of cell proliferation and differentiation assays indicated that polarization of the PVDF-Ti (PTi) altered its surface charge, thus inducing adhesion, proliferation and osteogenic differentiation of cells. The polarized PVDF-Ti (PPTi) may therefore find applications in bone regeneration. PMID:27762318

  20. Discretely tunable thulium-doped fiber-based polarization-maintaining master oscillator power amplifier using fiber Bragg grating arrays as spectral filters

    NASA Astrophysics Data System (ADS)

    Tiess, Tobias; Junaid, Saher; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2016-06-01

    Thulium (Tm)-doped fiber lasers offer a broad emission bandwidth in the 2-μm region, providing the perfect basis to develop broadly tunable laser sources, e.g., for spectroscopic applications. Recently, a tuning principle for pulsed fiber lasers has been reported, which is based on a fiber Bragg grating (FBG) array as a discrete spectral filter. This concept uniquely combines an unrivaled spectral freedom for tailored tuning ranges with a monolithic layout preserving the inherent advantages of fiber-integrated systems. In this study, we investigate this discrete tuning method using a Tm-doped fiber laser in the spectral domain around 1950 nm. While the laser emits linearly polarized light based on a polarization-maintaining (PM) resonator, we also examine the possibility of using standard FBG arrays inscribed in non-PM fiber. In order to highlight the prospect for tunable high-power operation, the tunable seed laser is implemented in a master oscillator power amplifier configuration scaling the average power to ˜28 W. With a tuning range of up to 76 nm, the emission characteristics of the system are investigated showing pulse durations down to 11 ns and a very good spectral signal contrast with narrow linewidth.

  1. Discretely tunable thulium-doped fiber-based polarization-maintaining master oscillator power amplifier using fiber Bragg grating arrays as spectral filters

    NASA Astrophysics Data System (ADS)

    Tiess, Tobias; Junaid, Saher; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2016-06-01

    Thulium (Tm)-doped fiber lasers offer a broad emission bandwidth in the 2-μm region, providing the perfect basis to develop broadly tunable laser sources, e.g., for spectroscopic applications. Recently, a tuning principle for pulsed fiber lasers has been reported, which is based on a fiber Bragg grating (FBG) array as a discrete spectral filter. This concept uniquely combines an unrivaled spectral freedom for tailored tuning ranges with a monolithic layout preserving the inherent advantages of fiber-integrated systems. In this study, we investigate this discrete tuning method using a Tm-doped fiber laser in the spectral domain around 1950 nm. While the laser emits linearly polarized light based on a polarization-maintaining (PM) resonator, we also examine the possibility of using standard FBG arrays inscribed in non-PM fiber. In order to highlight the prospect for tunable high-power operation, the tunable seed laser is implemented in a master oscillator power amplifier configuration scaling the average power to ˜28 W. With a tuning range of up to 76 nm, the emission characteristics of the system are investigated showing pulse durations down to 11 ns and a very good spectral signal contrast with narrow linewidth.

  2. Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization.

    PubMed

    Namgaladze, Dmitry; Brüne, Bernhard

    2014-09-01

    Macrophage polarization elicits various metabolic alterations which in turn influence the polarized phenotype. Activation of glycolytic metabolism accompanies and supports macrophage pro-inflammatory M1 polarization. In contrast, M2 polarization of murine macrophages in response to the Th2 cytokine interleukin-4 (IL-4) was linked to the up-regulation of mitochondrial oxidative metabolism and fatty acid oxidation (FAO), which was necessary for coining an IL-4-polarized phenotype. Here we investigated whether similar mechanisms operate in human macrophages stimulated with IL-4. IL-4 causes only moderate changes of mitochondrial oxidative metabolism and FAO, correlating with an unaltered expression of peroxisome proliferator-activated receptor-γ coactivator 1 α/β (PGC-1α/β), the master transcriptional regulators of mitochondrial biogenesis. Furthermore, attenuating FAO had no effect on IL-4-induced polarization-associated gene expression. Apparently, FAO is dispensable for IL-4-induced polarization of human macrophages, pointing to fundamental differences in the metabolic requirements of macrophage phenotype alterations between mice and humans.

  3. Observation of linear-polarization-sensitivity in the microwave-radiation-induced magnetoresistance oscillations

    SciTech Connect

    Mani, R. G.; Ramanayaka, A. N.; Wegscheider, W.

    2013-12-04

    We examine the linear polarization sensitivity of the radiation- induced magneto-resistance oscillations by investigating the effect of rotating in-situ the electric field of linearly polarized microwaves relative to the current, in the GaAs/AlGaAs system. We find that the frequency and the phase of the photo-excited magneto-resistance oscillations are insensitive to the polarization. On the other hand, the amplitude of the resistance oscillations are strongly sensitive to the relative orientation between the microwave antenna and the current-axis in the specimen.

  4. Polarization induced resistance switching effect in ferroelectric vinylidene-fluoride/trifluoroethylene copolymer ultrathin films

    SciTech Connect

    Usui, S. Nakajima, T.; Hashizume, Y.; Okamura, S.

    2014-10-20

    We observed a clear polarization reversal-induced resistance switching effect in ferroelectric Vinylidene-fluoride (VDF)/Trifluoroethylene (TrFE) copolymer thin films. Pt and Au were used as the bottom and top electrodes, respectively, and the thickness of the VDF/TrFE copolymer film was adjusted to be 10 nm. The conduction current was 100 times higher in the case of the spontaneous polarization of the VDF/TrFE film towards the Au electrode than that in the case of the opposite direction. This resistance switching was confirmed to be reproducible after 10 successive polarization reversals.

  5. In-Plane Electric Polarization of Bilayer Graphene Nanoribbons Induced by an Interlayer Bias Voltage.

    PubMed

    Okugawa, Ryo; Tanaka, Junya; Koretsune, Takashi; Saito, Susumu; Murakami, Shuichi

    2015-10-01

    We theoretically show that an interlayer bias voltage in the AB-stacked bilayer graphene nanoribbons with armchair edges induces an electric polarization along the ribbon. Both tight-binding and ab initio calculations consistently indicate that when the bias voltage is weak, the polarization shows opposite signs depending on the ribbon width modulo three. This nontrivial dependence is explained using a two-band effective model. A strong limit of the bias voltage in the tight-binding model shows either one-third or zero polarization, which agrees with the topological argument. PMID:26550741

  6. Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer WS2

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert; Arora, Ashish; Plechinger, Gerd; Nagler, Philipp; Granados del Águila, Andrés; Ballottin, Mariana V.; Christianen, Peter C. M.; Michaelis de Vasconcellos, Steffen; Schüller, Christian; Korn, Tobias; Bratschitsch, Rudolf

    2016-08-01

    We control the linear polarization of emission from the coherently emitting K+ and K- valleys (valley coherence) in monolayer WS2 with an out-of-plane magnetic field of up to 25 T. The magnetic-field-induced valley Zeeman splitting causes a rotation of the emission polarization with respect to the excitation by up to 35° and reduces the polarization degree by up to 16%. We explain both of these phenomena with a model based on two noninteracting coherent two-level systems. We deduce that the coherent light emission from the valleys decays with a time constant of τc=260 fs .

  7. In-Plane Electric Polarization of Bilayer Graphene Nanoribbons Induced by an Interlayer Bias Voltage.

    PubMed

    Okugawa, Ryo; Tanaka, Junya; Koretsune, Takashi; Saito, Susumu; Murakami, Shuichi

    2015-10-01

    We theoretically show that an interlayer bias voltage in the AB-stacked bilayer graphene nanoribbons with armchair edges induces an electric polarization along the ribbon. Both tight-binding and ab initio calculations consistently indicate that when the bias voltage is weak, the polarization shows opposite signs depending on the ribbon width modulo three. This nontrivial dependence is explained using a two-band effective model. A strong limit of the bias voltage in the tight-binding model shows either one-third or zero polarization, which agrees with the topological argument.

  8. Modulated nematic structures induced by chirality and steric polarization

    NASA Astrophysics Data System (ADS)

    Longa, Lech; PajÄ k, Grzegorz

    2016-04-01

    What kind of one-dimensional modulated nematic structures (ODMNS) can form nonchiral and chiral bent-core and dimeric materials? Here, using the Landau-de Gennes theory of nematics, extended to account for molecular steric polarization, we study a possibility of formation of ODMNS, both in nonchiral and intrinsically chiral liquid crystalline materials. Besides nematic and cholesteric phases, we find four bulk ODMNS for nonchiral materials, two of which, to the best of our knowledge, have not been reported so far. These two structures are longitudinal (NLP) and transverse (NTP) periodic waves where the polarization field being periodic in one dimension stays parallel and perpendicular, respectively, to the wave vector. The other two phases are the twist-bend nematic phase (NTB) and the splay-bend nematic phase (NSB), but their fine structure appears more complex than that considered so far. The presence of molecular chirality converts nonchiral NTP and NSB into new NTB phases. Surprisingly, the nonchiral NLP phase can stay stable even in the presence of intrinsic chirality.

  9. Modulated nematic structures induced by chirality and steric polarization.

    PubMed

    Longa, Lech; Pająk, Grzegorz

    2016-04-01

    What kind of one-dimensional modulated nematic structures (ODMNS) can form nonchiral and chiral bent-core and dimeric materials? Here, using the Landau-de Gennes theory of nematics, extended to account for molecular steric polarization, we study a possibility of formation of ODMNS, both in nonchiral and intrinsically chiral liquid crystalline materials. Besides nematic and cholesteric phases, we find four bulk ODMNS for nonchiral materials, two of which, to the best of our knowledge, have not been reported so far. These two structures are longitudinal (N_{LP}) and transverse (N_{TP}) periodic waves where the polarization field being periodic in one dimension stays parallel and perpendicular, respectively, to the wave vector. The other two phases are the twist-bend nematic phase (N_{TB}) and the splay-bend nematic phase (N_{SB}), but their fine structure appears more complex than that considered so far. The presence of molecular chirality converts nonchiral N_{TP} and N_{SB} into new N_{TB} phases. Surprisingly, the nonchiral N_{LP} phase can stay stable even in the presence of intrinsic chirality. PMID:27176241

  10. Light-Induced Polar pH Changes in Leaves of Elodea canadensis1

    PubMed Central

    Elzenga, J. Theo M.; Prins, Hidde B. A.

    1989-01-01

    Leaves of the submerged aquatic Elodea canadensis Michx. exhibit a light induced polar pH reaction. In this study, the effects of light intensity and dissolved inorganic carbon concentration on this polar reaction were examined. At a light intensity of 100 watts per square meter the leaf showed a polar pH response when the dissolved inorganic carbon concentration was less than about 1 millimolar. The polar reaction was suppressed at a higher dissolved inorganic carbon concentration. This suppression was not due to the buffering capacity of bicarbonate. Because another weak acid, acetate, did not inhibit the polarity, but even had a small stimulatory effect, the effect of bicarbonate is also not due to acidification of the cytoplasm. The suppression of the polar reaction by CO2/HCO3− was relieved when the light intensity was increased. Apparently there is competition for product(s) of the photosynthetic light reactions between processes generating the polar reaction and the carbon fixation reactions. The possibility that the redox state of the cell regulates the generation of the polar reaction is discussed. PMID:16667044

  11. Spectral properties of optical anisotropy induced by laser radiation in dye solutions

    SciTech Connect

    Pikulik, L G; Chernyavskii, V A; Grib, A F

    2000-06-30

    Spectral studies of induced quasi-crystal properties (which can be quantitatively characterised by the difference in the refractive indices of ordinary and extraordinary waves, {Delta}n=n{sub o}-n{sub e}) in Rhodamine 6G and Rhodamine 4C solutions in glycerine excited in the visible and UV ranges of the absorption spectrum are presented. It is demonstrated that the observed spectral dependences of {Delta}n of these dye solutions excited in the visible (long-wavelength) and UV (short-wavelength) ranges of the absorption spectrum can be interpreted in terms of an oscillator model of a molecule. The proposed method for the analysis of induced optical anisotropy in solutions of organic compounds allows the relative orientation of oscillators in a molecule and, thus, the relative orientation of electronic transitions in a molecule to be determined in a reliable way. (iv international conference on atom and molecular pulsed lasers (ampl'99))

  12. Electrically-Induced Polarization and the Spin Hall Effect in Semiconductors at Room Temperature

    NASA Astrophysics Data System (ADS)

    Stern, Nathaniel

    2007-03-01

    The capability to generate and manipulate spin polarization through the spin-orbit interaction inspires growing interest in all-electrical techniques to exploit electron spins for applications in semiconductor spintronics. Experiments show spin polarization can be electrically generated by current- induced spin polarization from internal magnetic fields in the bulk of a conducting channel, or accumulation of spin polarization near sample edges due to transverse spin currents generated by the spin Hall. These spin currents can drive spin accumulation over micron length scales in semiconductor arms transverse to a conducting channel. More recently, we investigate electrical generation of spin polarization in n-ZnSe epilayers using Kerr rotation spectroscopy The internal magnetic field is studied and found to only be measurable in strained layers, likely due to the weak spin-orbit interaction in ZnSe. Despite this, unstrained n-ZnSe layers exhibit both in-plane bulk current-induced spin polarization and an out-of-plane spin accumulation of opposite sign on opposite edges of a conducting channel indicative of the spin Hall effect. The spin Hall conductivity is estimated according to a spin accumulation model and is found to be consistent with the extrinsic spin- dependent scattering mechanism. Both the current-induced spin polarization and the spin Hall effect are robust to room temperature in ZnSe. These results suggest the potential for practical utilization of electrically generated spin polarization in room temperature semiconductor devices. V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard and D. D. Awschalom, Phys. Rev. Lett. 97, 096605 (2006). N.P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. 97, 126603 (2006).

  13. Induced spin polarization effect in graphene by ferromagnetic nanocontact

    SciTech Connect

    Mandal, Sumit; Saha, Shyamal K.

    2015-03-07

    Chemically synthesized graphene contains large number of defects which act as localized spin moments at the defect sites. Cobalt nanosheets of variable thickness are grown on graphene surface to investigate spin/magnetotransport through graphene sheets containing large number of localized spins. Negative magnetoresistance (MR) is observed over the entire temperature range (5–300 K) for thin cobalt sheets, while a cross-over from negative to positive MR with increasing temperature is noticed for thicker cobalt sheets. The observed MR results are explained on the basis of recently reported spin polarization effect in graphene due to the presence of ferromagnetic atoms on the surface considering a spin valve like Co/graphene/Co nanostructures.

  14. Spin Manipulation in Graphene by Chemically Induced Pseudospin Polarization.

    PubMed

    Van Tuan, Dinh; Roche, Stephan

    2016-03-11

    Spin manipulation is one of the most critical challenges to realize spin-based logic devices and spintronic circuits. Graphene has been heralded as an ideal material to achieve spin manipulation, but so far new paradigms and demonstrators are limited. Here we show that certain impurities such as fluorine adatoms, which locally break sublattice symmetry without the formation of strong magnetic moment, could result in a remarkable variability of spin transport characteristics. The impurity resonance level is found to be associated with a long-range sublattice pseudospin polarization, which by locally decoupling spin and pseudospin dynamics provokes a huge spin lifetime electron-hole asymmetry. In the dilute impurity limit, spin lifetimes could be tuned electrostatically from 100 ps to several nanoseconds, providing a protocol to chemically engineer an unprecedented spin device functionality. PMID:27015500

  15. Induced spin polarization effect in graphene by ferromagnetic nanocontact

    NASA Astrophysics Data System (ADS)

    Mandal, Sumit; Saha, Shyamal K.

    2015-03-01

    Chemically synthesized graphene contains large number of defects which act as localized spin moments at the defect sites. Cobalt nanosheets of variable thickness are grown on graphene surface to investigate spin/magnetotransport through graphene sheets containing large number of localized spins. Negative magnetoresistance (MR) is observed over the entire temperature range (5-300 K) for thin cobalt sheets, while a cross-over from negative to positive MR with increasing temperature is noticed for thicker cobalt sheets. The observed MR results are explained on the basis of recently reported spin polarization effect in graphene due to the presence of ferromagnetic atoms on the surface considering a spin valve like Co/graphene/Co nanostructures.

  16. Contact-induced spin polarization in BNNT(CNT)/TM (TM=Co, Ni) nanocomposites

    SciTech Connect

    Kuzubov, Alexander A.; Kovaleva, Evgenia A. Avramov, Paul; Kuklin, Artem V.; Mikhaleva, Natalya S.; Tomilin, Felix N.; Sakai, Seiji; Entani, Shiro; Matsumoto, Yoshihiro; Naramoto, Hiroshi

    2014-08-28

    The interaction between carbon and BN nanotubes (NT) and transition metal Co and Ni supports was studied using electronic structure calculations. Several configurations of interfaces were considered, and the most stable ones were used for electronic structure analysis. All NT/Co interfaces were found to be more energetically favorable than NT/Ni, and conductive carbon nanotubes demonstrate slightly stronger bonding than semiconducting ones. The presence of contact-induced spin polarization was established for all nanocomposites. It was found that the contact-induced polarization of BNNT leads to the appearance of local conductivity in the vicinity of the interface while the rest of the nanotube lattice remains to be insulating.

  17. Spectral broadening induced by intense ultra-short pulse in 4H-SiC crystals

    NASA Astrophysics Data System (ADS)

    Chun-hua, Xu; Teng-fei, Yan; Gang, Wang; Wen-jun, Wang; Jing-kui, Liang; Xiao-long, Chen

    2016-06-01

    We report the observation of spectral broadening induced by 200 femtosecond laser pulses with the repetition rate of 1 kHz at the wavelength of 532 nm in semi-insulating 4H-SiC single crystals. It is demonstrated that the full width at half maximum of output spectrum increases linearly with the light propagation length and the peak power density, reaching a maximum 870 cm-1 on a crystal of 19 mm long under an incident laser with a peak power density of 60.1 GW/cm2. Such spectral broadening can be well explained by the self-phase modulation model which correlates time-dependent phase change of pulses to intensity-dependent refractive index. The nonlinear refractive index n 2 is estimated to be 1.88×10-15 cm2/W. The intensity-dependent refractive index is probably due to both the nonlinear optical polarizability of the bound electrons and the increase of free electrons induced by the two-photon absorption process. Super continuum spectra could arise as crystals are long enough to induce the self-focusing effect. The results show that SiC crystals may find applications in spectral broadening of high power lasers. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA041402) and the National Natural Science Foundation of China (Grant Nos. 51272276 and 51322211).

  18. Spectral broadening induced by intense ultra-short pulse in 4H–SiC crystals

    NASA Astrophysics Data System (ADS)

    Chun-hua, Xu; Teng-fei, Yan; Gang, Wang; Wen-jun, Wang; Jing-kui, Liang; Xiao-long, Chen

    2016-06-01

    We report the observation of spectral broadening induced by 200 femtosecond laser pulses with the repetition rate of 1 kHz at the wavelength of 532 nm in semi-insulating 4H–SiC single crystals. It is demonstrated that the full width at half maximum of output spectrum increases linearly with the light propagation length and the peak power density, reaching a maximum 870 cm‑1 on a crystal of 19 mm long under an incident laser with a peak power density of 60.1 GW/cm2. Such spectral broadening can be well explained by the self-phase modulation model which correlates time-dependent phase change of pulses to intensity-dependent refractive index. The nonlinear refractive index n 2 is estimated to be 1.88×10‑15 cm2/W. The intensity-dependent refractive index is probably due to both the nonlinear optical polarizability of the bound electrons and the increase of free electrons induced by the two-photon absorption process. Super continuum spectra could arise as crystals are long enough to induce the self-focusing effect. The results show that SiC crystals may find applications in spectral broadening of high power lasers. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA041402) and the National Natural Science Foundation of China (Grant Nos. 51272276 and 51322211).

  19. Rho1-Wnd signaling regulates loss-of-cell polarity-induced cell invasion in Drosophila.

    PubMed

    Ma, X; Chen, Y; Zhang, S; Xu, W; Shao, Y; Yang, Y; Li, W; Li, M; Xue, L

    2016-02-18

    Both cell polarity and c-Jun N-terminal kinase (JNK) activity are essential to the maintenance of tissue homeostasis, and disruption of either is commonly seen in cancer progression. Despite the established connection between loss-of-cell polarity and JNK activation, much less is known about the molecular mechanism by which aberrant cell polarity induces JNK-mediated cell migration and tumor invasion. Here we show results from a genetic screen using an in vivo invasion model via knocking down cell polarity gene in Drosophila wing discs, and identify Rho1-Wnd signaling as an important molecular link that mediates loss-of-cell polarity-triggered JNK activation and cell invasion. We show that Wallenda (Wnd), a protein kinase of the mitogen-activated protein kinase kinase kinase family, by forming a complex with the GTPase Rho1, is both necessary and sufficient for Rho1-induced JNK-dependent cell invasion, MMP1 activation and epithelial-mesenchymal transition. Furthermore, Wnd promotes cell proliferation and tissue growth through wingless production when apoptosis is inhibited by p35. Finally, Wnd shows oncogenic cooperation with Ras(V12) to trigger tumor growth in eye discs and causes invasion into the ventral nerve cord. Together, our data not only provides a novel mechanistic insight on how cell polarity loss contributes to cell invasion, but also highlights the value of the Drosophila model system to explore human cancer biology.

  20. Symmetry breaking and electrical frustration during tip-induced polarization switching in the non-polar cut of lithium niobate single crystals

    DOE PAGES

    Ievlev, Anton; Alikin, Denis O.; Morozovska, A. N.; Varenyk, O. V.; Eliseev, E. A.; Kholkin, Andrei; Shur, Vladimir Ya.; Kalinin, Sergei V.

    2014-12-15

    Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching in the non-polar cuts of uniaxial ferroelectrics. In this case, in-plane component of polarization vector switches, allowing for detailed observations of resultant domain morphologies. We observe surprising variability of resultant domain morphologies stemming from fundamental instability of formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling vertical tip position allows the polarity of the switching to be controlled. This represents very unusual formmore » of symmetry breaking where mechanical motion in vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.« less

  1. Symmetry breaking and electrical frustration during tip-induced polarization switching in the non-polar cut of lithium niobate single crystals

    SciTech Connect

    Ievlev, Anton; Alikin, Denis O.; Morozovska, A. N.; Varenyk, O. V.; Eliseev, E. A.; Kholkin, Andrei; Shur, Vladimir Ya.; Kalinin, Sergei V.

    2014-12-15

    Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching in the non-polar cuts of uniaxial ferroelectrics. In this case, in-plane component of polarization vector switches, allowing for detailed observations of resultant domain morphologies. We observe surprising variability of resultant domain morphologies stemming from fundamental instability of formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling vertical tip position allows the polarity of the switching to be controlled. This represents very unusual form of symmetry breaking where mechanical motion in vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.

  2. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Zhou, Xilong; Dong, Shuxiang; Luo, Haosu; Li, Faxin

    2014-07-01

    Controlling electric polarization (or magnetization) in multiferroic materials with external magnetic fields (or electric fields) is very important for fundamental physics and spintronic devices. Although there has been some progress on magnetic-field-induced polarization reversal in single-phase multiferroics, such behavior has so far never been realized in composites. Here we show that it is possible to reverse ferroelectric polarization using magnetic fields in a bilayer Terfenol-D/PMN-33%PT composite. We realized this by ferroelectric domain imaging using piezoresponse force microscopy (PFM) under applied magnetic field loading. The internal electric field caused by the magnetoelectric (ME) effect in the PMN-PT crystal is considered as the driving force for the 180° polarization switching, and its existence is verified by switching spectroscopy PFM testing under a series of external magnetic fields. A quantitative method is further suggested to estimate the local ME coefficient based on the switching spectroscopy PFM testing results.

  3. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy.

    PubMed

    Miao, Hongchen; Zhou, Xilong; Dong, Shuxiang; Luo, Haosu; Li, Faxin

    2014-08-01

    Controlling electric polarization (or magnetization) in multiferroic materials with external magnetic fields (or electric fields) is very important for fundamental physics and spintronic devices. Although there has been some progress on magnetic-field-induced polarization reversal in single-phase multiferroics, such behavior has so far never been realized in composites. Here we show that it is possible to reverse ferroelectric polarization using magnetic fields in a bilayer Terfenol-D/PMN-33%PT composite. We realized this by ferroelectric domain imaging using piezoresponse force microscopy (PFM) under applied magnetic field loading. The internal electric field caused by the magnetoelectric (ME) effect in the PMN-PT crystal is considered as the driving force for the 180° polarization switching, and its existence is verified by switching spectroscopy PFM testing under a series of external magnetic fields. A quantitative method is further suggested to estimate the local ME coefficient based on the switching spectroscopy PFM testing results. PMID:24953042

  4. Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease.

    PubMed

    Chen, Teng; Hou, Ruihua; Xu, Shujun; Wu, Chengyuan

    2015-10-21

    1-Methyl-4-phenylpyridinium (MPP+) induces microglial activation and degeneration of dopaminergic (DAergic) neurons. Donepezil is a well-known acetylcholinesterase inhibitor used clinically to treat cognitive dysfunction in Alzheimer's disease (AD). In the present study, we tested the hypothesis that MPP+ promotes microglial M1 polarization and suppresses M2 polarization and that this can be restored by donepezil. Results indicate that MPP+ treatment in microglial BV2 cells promotes microglial polarization toward the M1 state. However, pretreatment with donepezil inhibited MPP+-induced M1 polarization in microglia by suppressing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor (TNF)-α. Importantly, we found that MPP+ inhibited microglial M2 polarization by suppressing expression of Arg-1, Fizz1, and Ym1, which was also rescued by pretreatment with donepezil. In addition, IL-4-mediated induction of anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 (TGF-β2) were significantly attenuated by MPP+ in BV2 cells, which was restored by pretreatment with donepezil in a concentration-dependent manner. Mechanistically, we found that the addition of MPP+ reduced the intensity of phosphorylated signal transducer and activator of transcription 6 (STAT6) but not total STAT6 in IL-4-stimulated BV2 cells. Importantly, pretreatment of microglial BV2 cells with donepezil 3 h prior to administration of MPP+ rescued the reduction of STAT6 phosphorylation induced by MPP+.

  5. Dynamics of microvortices induced by ion concentration polarization.

    PubMed

    de Valença, Joeri C; Wagterveld, R Martijn; Lammertink, Rob G H; Tsai, Peichun Amy

    2015-09-01

    We investigate the coupled dynamics of the local hydrodynamics and global electric response of an electrodialysis system, which consists of an electrolyte solution adjacent to a charge selective membrane under electric forcing. Under a dc electric current, counterions transport through the charged membrane while the passage of co-ions is restricted, thereby developing ion concentration polarization (ICP) or gradients. At sufficiently large currents, simultaneous measurements of voltage drop and flow field reveal several distinct dynamic regimes. Initially, the electrodialysis system displays a steady Ohmic voltage difference (ΔV_{ohm}), followed by a constant voltage jump (ΔV_{c}). Immediately after this voltage increase, microvortices set in and grow both in size and speed with time. After this growth, the resultant voltage levels off around a fixed value. The average vortex size and speed stabilize as well, while the individual vortices become unsteady and dynamic. These quantitative results reveal that microvortices set in with an excess voltage drop (above ΔV_{ohm}+ΔV_{c}) and sustain an approximately constant electrical conductivity, destroying the initial ICP with significantly low viscous dissipation. PMID:26465416

  6. Dynamics of microvortices induced by ion concentration polarization

    NASA Astrophysics Data System (ADS)

    de Valença, Joeri C.; Wagterveld, R. Martijn; Lammertink, Rob G. H.; Tsai, Peichun Amy

    2015-09-01

    We investigate the coupled dynamics of the local hydrodynamics and global electric response of an electrodialysis system, which consists of an electrolyte solution adjacent to a charge selective membrane under electric forcing. Under a dc electric current, counterions transport through the charged membrane while the passage of co-ions is restricted, thereby developing ion concentration polarization (ICP) or gradients. At sufficiently large currents, simultaneous measurements of voltage drop and flow field reveal several distinct dynamic regimes. Initially, the electrodialysis system displays a steady Ohmic voltage difference (Δ Vohm ), followed by a constant voltage jump (Δ Vc) . Immediately after this voltage increase, microvortices set in and grow both in size and speed with time. After this growth, the resultant voltage levels off around a fixed value. The average vortex size and speed stabilize as well, while the individual vortices become unsteady and dynamic. These quantitative results reveal that microvortices set in with an excess voltage drop (above Δ Vohm+Δ Vc ) and sustain an approximately constant electrical conductivity, destroying the initial ICP with significantly low viscous dissipation.

  7. Modeling Yeast Cell Polarization Induced by Pheromone Gradients

    NASA Astrophysics Data System (ADS)

    Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing

    2007-07-01

    Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.

  8. Polarization-induced Zener tunnel diodes in GaN/InGaN/GaN heterojunctions

    SciTech Connect

    Yan, Xiaodong; Li, Wenjun; Islam, S. M.; Pourang, Kasra; Fay, Patrick; Xing, Huili; Jena, Debdeep

    2015-10-19

    By the insertion of thin In{sub x}Ga{sub 1−x}N layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the strongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium composition in the InGaN layer is systematically varied to demonstrate the increase in the interband tunneling current. Comparing the experimentally measured tunneling currents to a model helps identify the specific challenges in potentially taking such junctions towards nitride-based polarization-induced tunneling field-effect transistors.

  9. Early detection of oil-induced stress in crops using spectral and thermal responses

    NASA Astrophysics Data System (ADS)

    Emengini, Ebele Josephine; Blackburn, George Alan; Theobald, Julian Charles

    2013-01-01

    Oil pollution is a major source of environmental degradation, and requires accurate monitoring and timely detection for an effective control of its occurrence. This paper examines the potential of a remote sensing approach using the spectral and thermal responses of crops for the early detection of stress caused by oil pollution. In a glasshouse, pot-grown maize was treated with oil at sublethal and lethal applications. Thereafter, leaf thermal, spectral and physiological measurements were taken every two to three days to monitor the development of stress responses. Our results indicate that absolute leaf temperature was a poor indicator of developing stress. However, a derived thermal index (IG) responded consistently in the early stages of physiological damage. Various spectral reflectance features were highly sensitive to oil-induced stress. A narrow-band index using wavelengths in the near-infrared and red-edge region, (R755-R716)/(R755+R716), was optimal for previsual detection of oil-induced stress. This index had a strong linear relationship with photosynthetic rate. This indicates that by detecting vegetation stress, thermal and hyperspectral remote sensing has considerable potential for the timely detection of oil pollution in the environment.

  10. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].

    PubMed

    Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao

    2016-01-01

    The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding. PMID:27228732

  11. On the global polarity reversal of the induced magnetosphere of Venus: a statistical study

    NASA Astrophysics Data System (ADS)

    Vech, Daniel; Stenberg, Gabriella; Nilsson, Hans; Edberg, Niklas; Opitz, Andrea; Szego, Karoly; Zhang, Tielong; Futaana, Yoshifumi

    2016-04-01

    In this study we present the first statistical analysis on the effects of Interplanetary Magnetic Field (IMF) sector boundary crossings on the induced magnetosphere of Venus. These events are of particular interest because they lead to the reconfiguration of the induced magnetosphere with opposite polarity. IMF sector boundary crossings can occur after Heliospheric Current Sheet (HCS) crossings and often after the passages of Interplanetary Coronal Mass Ejections (ICME) and Corotating Interaction Regions (CIR). The results show that the HCS crossings cause significant erosion of the dayside ionosphere and in this region the average heavy ion flux was reduced by a factor of 0.63 compared to the undisturbed cases. The heavy ion flux on the nightside changed by a factor of 0.81. On the nightside ion heating was observed and the average heavy ion temperature increased by the factor of 1.63 compared to the undisturbed cases. The ICME/CIR events were sorted into two groups depending on the polarity reversal of the induced magnetosphere. We found significant differences between them: the cases with polarity reversal showed significant ion heating and increased heavy ion flux upon arrival of the ICME/CIR event. We conclude that the observations are similar to the previous comet studies and the polarity reversal of the induced magnetosphere might be accompanied with dayside reconnection.

  12. Salmonella typhimurium-induced M1 macrophage polarization is dependent on the bacterial O antigen.

    PubMed

    Luo, Fengling; Sun, Xiaoming; Qu, Zhen; Zhang, Xiaolian

    2016-02-01

    Recently, macrophages were shown to be capable of differentiating toward two phenotypes after antigen stimulation: a classically activated (M1) or an alternatively activated phenotype (M2). To investigate the effect of Salmonella enteric serovar typhimurium (S. typhimurium) on macrophage differentiation, we compared macrophage phenotypes after infection of murine bone marrow-derived macrophages with wild-type S. typhimurium and its isogenic rfc mutant. S. typhimurium C5 induced M1 macrophage polarization and enhanced inducible nitric oxide synthase expression by macrophages; this induction was dependent on Toll-like receptor 4. In contrast, the Δrfc mutant (S. typhimurium C5 rfc::Km(r)) lost this function and induced an M2 response in the macrophages. Here, we propose that S. typhimurium C5 is capable of polarizing macrophages towards the M1 phenotype and that this polarization is dependent on the O antigen encoded by rfc. Our finding indicates that M1 macrophage polarization induced by S. typhimurium may be related to the ability of this intracellular bacterium to survive and replicate within macrophages, which is essential for systemic disease.

  13. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOEpatents

    Ward, S.H.

    1989-10-17

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth. 30 figs.

  14. Comparison of hydrological and GRACE-based excitation functions of polar motion in the seasonal spectral band

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2008-04-01

    Understanding changes in the global balance of the Earths angular momentum due to the mass redistribution of geophysical fluids is needed to explain the observed polar motion. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation (hydrological angular momentum-HAM), is still inadequately known. Although estimates of HAM have been made from several models of global hydrology based upon the observed distribution of surface water, snow, and soil moisture, the relatively sparse observation network and the presence of errors in the data and the geophysical fluid models preclude a full understanding of the HAM influence on polar motion variations. Recently the GRACE mission monitoring Earths time variable gravity field has allowed us to determine the mass term of polar motion excitation functions and compare them with the mass term derivable as a residual from the geodetic excitation functions and geophysical fluid motion terms on seasonal time scales. Differences between these mass terms in the years 2004 - 2005.5 are still on the order of 20 mas. Besides the overall mass excitation of polar motion comparisons with GRACE (RL04-release), we also intercompare the non-atmospheric, non-oceanic signals in the mass term of geodetic polar motion excitation with hydrological excitation of polar motion.

  15. Spectral Broadening of Excitation induced by Ultralong-range Interaction in a Cold Gas of Rydberg Atoms

    SciTech Connect

    Loboda, A. V.; Mischenko, E. V.; Gurnitskaya, E. P.; Glushkov, A. V.; Khetselius, O. Yu.

    2008-10-22

    Preliminary results of calculating the broadening of spectral lines of excited atoms induced by ultralong- range (100 Bohr radii) interactions in a cold gas of Rb atoms within the 'own pressure' approximation and perturbation theory formalism are presented.

  16. Characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy.

    PubMed

    Li, Kuohu; Guo, Lianbo; Li, Xiangyou; Hao, Zhongqi; Li, Jiaming; Yang, Xinyan; Shen, Meng; Zeng, Qingdong; Lu, Yongfeng; Zeng, Xiaoyan

    2016-09-10

    To study the characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy, the changes in the spectral line intensities of iron (Fe) and chromium (Cr) during the development of craters were investigated. Images of the plasmas formed during crater development were captured, and the temperatures and electron densities of the plasmas were calculated. The results showed that when a crater developed, the intensities of the ion lines decreased and the intensities of the atomic lines increased. This is because the plasmas generated in the crater have a higher initial emission intensity and experience more rapid cooling as the crater develops. These two effects lead to changes in the rates of decrease of ion and atomic line intensities over time. Therefore, the changes in intensities of ion lines caused by crater development differ from which of atomic lines.

  17. Spectral shift and dephasing of electromagnetically induced transparency in an interacting Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jingshan; Vogt, Thibault; Li, Wenhui

    2016-10-01

    We perform spectroscopic measurements of electromagnetically induced transparency (EIT) in a strongly interacting Rydberg gas. We observe a significant spectral shift and attenuation of the transparency resonance due to the presence of interactions between Rydberg atoms. We characterize the attenuation as the result of an effective dephasing and show that the shift and the dephasing rate increase versus atomic density, probe Rabi frequency, and principal quantum number of Rydberg states. Moreover, we find that the spectral shift is reduced if the size of a Gaussian atomic cloud is increased and that the dephasing rate increases with the EIT pulse duration at large-parameter regimes. We simulate our experiment with a semianalytical model, which yields results in good agreement with our experimental data.

  18. Characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy.

    PubMed

    Li, Kuohu; Guo, Lianbo; Li, Xiangyou; Hao, Zhongqi; Li, Jiaming; Yang, Xinyan; Shen, Meng; Zeng, Qingdong; Lu, Yongfeng; Zeng, Xiaoyan

    2016-09-10

    To study the characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy, the changes in the spectral line intensities of iron (Fe) and chromium (Cr) during the development of craters were investigated. Images of the plasmas formed during crater development were captured, and the temperatures and electron densities of the plasmas were calculated. The results showed that when a crater developed, the intensities of the ion lines decreased and the intensities of the atomic lines increased. This is because the plasmas generated in the crater have a higher initial emission intensity and experience more rapid cooling as the crater develops. These two effects lead to changes in the rates of decrease of ion and atomic line intensities over time. Therefore, the changes in intensities of ion lines caused by crater development differ from which of atomic lines. PMID:27661384

  19. Polarization-Induced Charge Distribution at Homogeneous Zincblende/Wurtzite Heterostructural Junctions in ZnSe Nanobelts

    SciTech Connect

    Li, L.; Jin, L.; Wang, J.; Smith, D. J.; Yin, W. J.; Yan, Y.; Sang, H.; Choy, W. C. H.; McCartney, M. R.

    2012-03-08

    Homogeneous heterostructural wurtzite (WZ)/zincblende (ZB) junctions are successfully fabricated in ZnSe nanobelts. Polarity continuity across the ZB/WZ interface is demonstrated. The saw-tooth-like potential profile induced by spontaneous polarization across the WZ/ZB/WZ interfaces is identified directly at the nanoscale. The polarization-induced charge distribution across the homogeneous heterostructural interfaces is proposed as a viable alternative approach towards charge tailoring in semiconductor nanostructures.

  20. Non-photochemical light-induced nucleation and control of polymorphism through polarization-switching

    NASA Astrophysics Data System (ADS)

    Matic, Jelena

    This dissertation examines the effect of polarization, intensity and wavelength on crystallization from supersaturated solutions using non-photochemical light-induced nucleation (NPLIN). Using NPLIN crystal structure can be controlled. Intense pulses of linearly-polarized laser light induce the nucleation of the gamma-glycine polymorph, which otherwise does not form under the same conditions. Moreover, intense pulses of circularly-polarized light induce the alpha-glycine polymorph to crystallize from solutions prepared using the same procedure. The observation that polymorphism could be controlled by changing between linear and circular polarization was named polarization-switching. It represents the strongest evidence to date that the mechanism involved in NPLIN is indeed non-photochemical. The interaction of light and matter responsible for the phenomenon is discussed, as well as the implication of the results of NPLIN experiments on the current understanding of the structure of supersaturated solutions and nucleation. The success rate of NPLIN shows a non-linear dependence on intensity, with a threshold value of 0.02--0.03 GW/cm2. Nucleation could successfully be induced at two different wavelengths, lending further support to the non-photochemical mechanism hypothesis. Green light was shown to be more effective than near-IR light at inducing nucleation. The difference was attributed to the lower absorption of water at the visible wavelength. The potential for use of NPLIN in fundamental studies of nucleation through pump-probe experiments is explored. In addition, evidence is presented that NPLIN has the potential to create unknown polymorphs. The powder x-ray diffraction pattern of a new polymorph of L-alanine is presented and discussed.

  1. Influence of the illuminance and spectral composition of surround fields on spatially induced blackness.

    PubMed

    Shinomori, K; Nakano, Y; Uchikawa, K

    1994-09-01

    The influence of the illuminance and spectral composition of monochromatic surround fields on spatially induced blackness was investigated. The amount of induced blackness in a white 50' central field was measured as a function of the illuminance of monochromatic 64'-120' surround fields with a color-naming method. The function relating induced blackness to log surround illuminance was described by either the logistic function or the Weibull function. Action spectra for blackness were determined from those functions and were also measured directly with the method of adjustment. These action spectra indicated that blackness induction was determined only by the illuminance of the surround, regardless of the blackness level at the criteria and the wavelength of the surround. It was concluded that there is no chromatic contribution from the chromatic surround to blackness induction.

  2. Magnon emission and radiation induced by spin-polarized current

    NASA Astrophysics Data System (ADS)

    Zholud, Andrei; Freeman, Ryan; Cao, Rongxing; Urazhdin, Sergei

    The spin-torque effect due to spin injection into ferromagnets can affect their effective dynamical damping, and modify the magnon populations. The latter leads to the onset of nonlinear damping that can prevent spontaneous current-induced magnetization oscillations. It has been argued that these nonlinear processes can be eliminate by the radiation of magnons excited by local spin injection in extended magnetic films. To test these effects, studied of the effects of spin injection on the magnon populations in nanoscale spin valves and magnetic point contacts. Measurements of the giant magnetoresistance show a significant resistance component that is antisymmetric in current, and linearly dependent on temperature T. This component is significantly larger for the nanopatterned ferromagnets than for point contacts. We interpret our observations in terms of stimulated generation of magnons by the spin current, and their radiation in point contacts. Supported by NSF ECCS-1305586, ECCS-1509794.

  3. Evolution of polarization dependent microstructures induced by high repetition rate femtosecond laser irradiation in glass.

    PubMed

    Zhang, Fangteng; Gecevičius, Mindaugas; Chen, Qiuqun; Zhang, Hang; Dai, Ye; Qiu, Jianrong

    2016-09-19

    We report the observation of an anomalous polarization dependent process in an isotropic glass induced by long time stationary irradiation of a high repetition rate near-infrared femtosecond laser. Two distinctive types of polarization dependent microstructures were induced at different irradiation stages. At early stage (a few seconds), a dumbbell-shaped structure elongated perpendicularly to the laser polarization formed at the top of the modified region, which was later erased by further irradiation. At later stage (above 30 s), bubbles filled with O2 formed by the irradiation, which were distributed along the laser polarization at a distance far beyond the radius of the laser beam. Based on a simple modeling of light reflection on boundaries, a thermal accumulation process was proposed to explain the formation and evolution of the dumbbell-shaped microstructure. The possible factors responsible for polarization dependent distribution of bubbles are discussed, which needs further systematic investigations. The results may be helpful in the development of femtosecond laser microprocessing for various applications. PMID:27661877

  4. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, E.; Bdikin, I.; Ivanov, M.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-01

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  5. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    SciTech Connect

    Seyedhosseini, E. Ivanov, M.; Bdikin, I.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  6. Identification of Genes Required for Normal Pheromone-Induced Cell Polarization in Saccharomyces Cerevisiae

    PubMed Central

    Chenevert, J.; Valtz, N.; Herskowitz, I.

    1994-01-01

    In response to mating pheromones, cells of the yeast Saccharomyces cerevisiae adopt a polarized ``shmoo'' morphology, in which the cytoskeleton and proteins involved in mating are localized to a cell-surface projection. This polarization is presumed to reflect the oriented morphogenesis that occurs between mating partners to facilitate cell and nuclear fusion. To identify genes involved in pheromone-induced cell polarization, we have isolated mutants defective in mating to an enfeebled partner and studied a subset of these mutants. The 34 mutants of interest are proficient for pheromone production, arrest in response to pheromone, mate to wild-type strains, and exhibit normal cell polarity during vegetative growth. The mutants were divided into classes based on their morphological responses to mating pheromone. One class is unable to localize cell-surface growth in response to mating factor and instead enlarges in a uniform manner. These mutants harbor special alleles of genes required for cell polarization during vegetative growth, BEM1 and CDC24. Another class of mutants forms bilobed, peanut-like shapes when treated with pheromone and defines two genes, PEA1 and PEA2. PEA1 is identical to SPA2. A third class forms normally shaped but tiny shmoos and defines the gene TNY1. A final group of mutants exhibits apparently normal shmoo morphology. The nature of their mating defect is yet to be determined. We discuss the possible roles of these gene products in establishing cell polarity during mating. PMID:8013906

  7. Polarized Exocytosis Induces Compensatory Endocytosis by Sec4p-Regulated Cortical Actin Polymerization

    PubMed Central

    Johansen, Jesper; Alfaro, Gabriel; Beh, Christopher T.

    2016-01-01

    Polarized growth is maintained by both polarized exocytosis, which transports membrane components to specific locations on the cell cortex, and endocytosis, which retrieves these components before they can diffuse away. Despite functional links between these two transport pathways, they are generally considered to be separate events. Using live cell imaging, in vivo and in vitro protein binding assays, and in vitro pyrene-actin polymerization assays, we show that the yeast Rab GTPase Sec4p couples polarized exocytosis with cortical actin polymerization, which induces endocytosis. After polarized exocytosis to the plasma membrane, Sec4p binds Las17/Bee1p (yeast Wiskott—Aldrich Syndrome protein [WASp]) in a complex with Sla1p and Sla2p during actin patch assembly. Mutations that inactivate Sec4p, or its guanine nucleotide exchange factor (GEF) Sec2p, inhibit actin patch formation, whereas the activating sec4-Q79L mutation accelerates patch assembly. In vitro assays of Arp2/3-dependent actin polymerization established that GTPγS-Sec4p overrides Sla1p inhibition of Las17p-dependent actin nucleation. These results support a model in which Sec4p relocates along the plasma membrane from polarized sites of exocytic vesicle fusion to nascent sites of endocytosis. Activated Sec4p then promotes actin polymerization and triggers compensatory endocytosis, which controls surface expansion and kinetically refines cell polarization. PMID:27526190

  8. Eliminating spectral distinguishability in ultrafast spontaneous parametric down-conversion

    SciTech Connect

    Poh, Hou Shun; Lim, Jiaqing; Lamas-Linares, Antia; Kurtsiefer, Christian; Marcikic, Ivan

    2009-10-15

    Generation of polarization-entangled photon pairs with a precise timing through down-conversion of femtosecond pulses is often faced with a degraded polarization entanglement quality. In a previous experiment, we have shown that this degradation is induced by spectral distinguishability between the two decay paths, in accordance with theoretical predictions. Here, we present an experimental study of the spectral compensation scheme proposed and first implemented by Kim and Grice [J. Mod. Opt. 49, 2309 (2002)]. By measuring the joint spectral properties of the polarization correlations of the photon pairs, we show that the spectral distinguishability between the down-converted components is eliminated. This scheme results in a polarization visibility of 97.9{+-}0.5% without any spectral filtering.

  9. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined.

  10. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. PMID:27590551

  11. Epitaxial-strain-induced polar-to-nonpolar transitions in layered oxides

    NASA Astrophysics Data System (ADS)

    Lu, Xue-Zeng; Rondinelli, James M.

    2016-09-01

    Epitaxial strain can induce collective phenomena and new functionalities in complex oxide thin films. Strong coupling between strain and polar lattice modes can stabilize new ferroelectric phases from nonpolar dielectrics or enhance electric polarizations and Curie temperatures. Recently, strain has also been exploited to induce novel metal-insulator transitions and magnetic reconstructions through its coupling to nonpolar modes, including rotations of BO6 transition-metal octahedra. Although large strains are thought to induce ferroelectricity, here we demonstrate a polar-to-nonpolar transition in (001) films of layered A3B2O7 hybrid-improper ferroelectrics with experimentally accessible biaxial strains. We show the origin of the transition originates from the interplay of trilinear-related lattice mode interactions active in the layered oxides, and those interactions are directly strain tunable. Our results call for a careful re-examination of the role of strain-polarization coupling in ferroelectric films with nontrivial anharmonicities and offer a route to search for new functionalities in layered oxides.

  12. Parahydrogen-induced polarization at zero magnetic field

    NASA Astrophysics Data System (ADS)

    Butler, Mark C.; Kervern, Gwendal; Theis, Thomas; Ledbetter, Micah P.; Ganssle, Paul J.; Blanchard, John W.; Budker, Dmitry; Pines, Alexander

    2013-06-01

    We use symmetry arguments and simple model systems to describe the conversion of the singlet state of parahydrogen into an oscillating sample magnetization at zero magnetic field. During an initial period of free evolution governed by the scalar-coupling Hamiltonian HJ, the singlet state is converted into scalar spin order involving spins throughout the molecule. A short dc pulse along the z axis rotates the transverse spin components of nuclear species I and S through different angles, converting a portion of the scalar order into vector order. The development of vector order can be described analytically by means of single-transition operators, and it is found to be maximal when the transverse components of I are rotated by an angle of ±π/2 relative to those of S. A period of free evolution follows the pulse, during which the vector order evolves as a set of oscillating coherences. The imaginary parts of the coherences represent spin order that is not directly detectable, while the real parts can be identified with oscillations in the z component of the molecular spin dipole. The dipole oscillations are due to a periodic exchange between Iz and Sz, which have different gyromagnetic ratios. The frequency components of the resulting spectrum are imaginary, since the pulse cannot directly induce magnetization in the sample; it is only during the evolution under HJ that the vector order present at the end of the pulse evolves into detectable magnetization.

  13. Linear polarization study of microwave-radiation-induced magnetoresistance oscillations: Comparison of power dependence to theory

    NASA Astrophysics Data System (ADS)

    Ye, Tianyu; Iñarrea, Jesús; Wegscheider, W.; Mani, R. G.

    2016-07-01

    We present an experimental study of the microwave power and the linear polarization angle dependence of the microwave-induced magnetoresistance oscillations in the high-mobility GaAs/AlGaAs two-dimensional electron system. Experimental results show the sinusoidal dependence of the oscillatory magnetoresistance extrema as a function of the polarization angle. Yet, as the microwave power increases, the angular dependence includes additional harmonic content, and it begins to resemble the absolute value of the cosine function. We present a theory to explain such peculiar behavior.

  14. MAUVE/SWIPE: an imaging instrument concept with multi-angular, -spectral, and -polarized capability for remote sensing of aerosols, ocean color, clouds, and vegetation from space

    NASA Astrophysics Data System (ADS)

    Frouin, Robert; Deschamps, Pierre-Yves; Rothschild, Richard; Stephan, Edward; Leblanc, Philippe; Duttweiler, Fred; Ghaemi, Tony; Riedi, Jérôme

    2006-12-01

    The Monitoring Aerosols in the Ultraviolet Experiment (MAUVE) and the Short-Wave Infrared Polarimeter Experiment (SWIPE) instruments have been designed to collect, from a typical sun-synchronous polar orbit at 800 km altitude, global observations of the spectral, polarized, and directional radiance reflected by the earth-atmosphere system for a wide range of applications. Based on the heritage of the POLDER radiometer, the MAUVE/SWIPE instrument concept combines the merits of TOMS for observing in the ultra-violet, MISR for wide field-of-view range, MODIS, for multi-spectral aspects in the visible and near infrared, and the POLDER instrument for polarization. The instruments are camera systems with 2-dimensional detector arrays, allowing a 120-degree field-of-view with adequate ground resolution (i.e., 0.4 or 0.8 km at nadir) from satellite altitude. Multi-angle viewing is achieved by the along-track migration at spacecraft velocity of the 2-dimensional field-of-view. Between the cameras' optical assembly and detector array are two filter wheels, one carrying spectral filters, the other polarizing filters, allowing measurements of the first three Stokes parameters, I. Q, and V, of the incident radiation in 16 spectral bands optimally placed in the interval 350-2200 nm. The spectral range is 350-1050 nm for the MAUVE instrument and 1050-2200 nm for the SWIPE instrument. The radiometric requirements are defined to fully exploit the multi-angular, multi-spectral, and multi-polarized capability of the instruments. These include a wide dynamic range, a signal-to-noise ratio above 500 in all channels at maximum radiance level, i.e., when viewing a surface target of albedo equal to 1, and a noise-equivalent-differential reflectance better than 0.0005 at low signal level for a sun at zenith. To achieve daily global coverage, a pair of MAUVE and SWIPE instruments would be carried by each of two mini-satellites placed on interlaced orbits. The equator crossing time of the

  15. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK)*

    PubMed Central

    Chan, Kenny L.; Pillon, Nicolas J.; Sivaloganathan, Darshan M.; Costford, Sheila R.; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-01-01

    A rise in tissue-embedded macrophages displaying “M1-like” proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues. PMID:25987561

  16. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK).

    PubMed

    Chan, Kenny L; Pillon, Nicolas J; Sivaloganathan, Darshan M; Costford, Sheila R; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-07-01

    A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.

  17. Spectral analysis of photo-induced delayed luminescence from human skin in vivo

    NASA Astrophysics Data System (ADS)

    Musumeci, Francesco; Lanzanò, Luca; Privitera, Simona; Tudisco, Salvatore; Scordino, Agata

    2007-07-01

    The UVA induced Delayed Luminescence (DL), has been measured in vivo in the forearm skin of some healthy volunteers of different sex and age during several periods of the year. An innovative instrument able to detect, in single photon counting mode, the spectrum and the time trend of the DL emission has been used. The measured differences in the time trends of the spectral components may be related to the sex and the age. The potential development of a new analysis technique based on this phenomenon is discussed.

  18. Dual-band wavelength tunable nonlinear polarization rotation mode-locked Erbium-doped fiber lasers induced by birefringence variation and gain curvature alteration.

    PubMed

    Lin, Sheng-Fong; Lin, Gong-Ru

    2014-09-01

    With the combining effects of the fiber birefringence induced round-trip phase variation and the gain profile reshaping induced spectral filtering in the Erbium-doped fiber laser (EDFL) cavity, the mechanism corresponding to the central wavelength tunability of the EDFL passively mode-locked by nonlinear polarization rotation is explored. Bending the intracavity fiber induces the refractive index difference between orthogonal axes, which enables the dual-band central wavelength shift of 2.9 nm at 1570 nm region and up to 10.2 nm at 1600 nm region. The difference between the wavelength shifts at two bands is attributed to the gain dispersion decided by the gain spectral curvature of the EDFA, and the spacing between two switchable bands is provided by the birefringence induced variation on phase delay which causes transmittance variation. In addition, the central wavelength shift can also be controlled by varying the pumping geometry. At 1570 nm regime, an offset of up to 5.9 nm between the central wavelengths obtained under solely forward or backward pumping condition is observed, whereas the bidirectional pumping scheme effectively compensates the gain spectral reshaping effects to minimize the central wavelength shift. In contrast, the wavelength offset shrinks to only 1.1 nm when mode-locking at 1600 nm under single-sided pumping, as the gain profile strongly depends on the spatial distribution of the excited erbium ions under different pumping schemes. Except the birefringence variation and the gain spectral filtering phenomena, the gain-saturation mechanism induced refractive index change and its influence to the dual-band central wavelength tunability are also observed and analyzed.

  19. [Experiment results of conduction, spectral induced polarization and dielectric characteristics for chrome-contaminated soil].

    PubMed

    Nai, Chang-Xin; Liu, Yu-Qiang; Liu, Hao-Rui; Dong, Lu

    2011-03-01

    The resistivity, complex resistivity and complex permittivity of the chrome-contaminated soil were studied. Under the different pollution concentration and water content in the soil samples conditions, the relations between the resistivity, complex resistivity and complex permittivity of the chrome-contaminated soil and water content and the concentration of pollution were analyzed. When adding chrome pollution with different concentrations and water content, the experimental results show that the resistivity and complex resistivity of all the soil samples decreased with the pollution concentration and water content increased; but the phase of complex resistivity, which reflects the soil's capacitance, decreased below the 20 kHz and increase above the 20 kHz frequency. The real part and imaginary part of complex resostivity increased with the increase of pollution concentration and water content. The concentration of chrome pollutions and water content were the two main factor to determine the soil electrical characteristics.

  20. Influence of Oil Saturation Upon Spectral Induced Polarization of Oil Bearing Sands

    EPA Science Inventory

    The presence of oil in an unconsolidated granular porous material such as sand changes both the resistivity of the material and the value of the phase shift between the low-frequency current and the voltage. The resistivity and the phase angle can be written as a complex-valued r...

  1. Spectral Induced Polarization Response of Unconsolidated Saturated Sand and Surfactant Solutions

    EPA Science Inventory

    Dense non-aqueous phase liquids (DNAPL), such as chlorinated solvents, are common groundwater contaminants. Traditional pump-and-treat methods are often not effective at removing residual DNAPL from the subsurface. Surfactant-enhanced aquifer remediation is a promising remediatio...

  2. Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data

    NASA Astrophysics Data System (ADS)

    Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.

    2011-12-01

    M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi

  3. Beyond intensity: Spectral features effectively predict music-induced subjective arousal.

    PubMed

    Gingras, Bruno; Marin, Manuela M; Fitch, W Tecumseh

    2014-01-01

    Emotions in music are conveyed by a variety of acoustic cues. Notably, the positive association between sound intensity and arousal has particular biological relevance. However, although amplitude normalization is a common procedure used to control for intensity in music psychology research, direct comparisons between emotional ratings of original and amplitude-normalized musical excerpts are lacking. In this study, 30 nonmusicians retrospectively rated the subjective arousal and pleasantness induced by 84 six-second classical music excerpts, and an additional 30 nonmusicians rated the same excerpts normalized for amplitude. Following the cue-redundancy and Brunswik lens models of acoustic communication, we hypothesized that arousal and pleasantness ratings would be similar for both versions of the excerpts, and that arousal could be predicted effectively by other acoustic cues besides intensity. Although the difference in mean arousal and pleasantness ratings between original and amplitude-normalized excerpts correlated significantly with the amplitude adjustment, ratings for both sets of excerpts were highly correlated and shared a similar range of values, thus validating the use of amplitude normalization in music emotion research. Two acoustic parameters, spectral flux and spectral entropy, accounted for 65% of the variance in arousal ratings for both sets, indicating that spectral features can effectively predict arousal. Additionally, we confirmed that amplitude-normalized excerpts were adequately matched for loudness. Overall, the results corroborate our hypotheses and support the cue-redundancy and Brunswik lens models.

  4. Beyond intensity: Spectral features effectively predict music-induced subjective arousal.

    PubMed

    Gingras, Bruno; Marin, Manuela M; Fitch, W Tecumseh

    2014-01-01

    Emotions in music are conveyed by a variety of acoustic cues. Notably, the positive association between sound intensity and arousal has particular biological relevance. However, although amplitude normalization is a common procedure used to control for intensity in music psychology research, direct comparisons between emotional ratings of original and amplitude-normalized musical excerpts are lacking. In this study, 30 nonmusicians retrospectively rated the subjective arousal and pleasantness induced by 84 six-second classical music excerpts, and an additional 30 nonmusicians rated the same excerpts normalized for amplitude. Following the cue-redundancy and Brunswik lens models of acoustic communication, we hypothesized that arousal and pleasantness ratings would be similar for both versions of the excerpts, and that arousal could be predicted effectively by other acoustic cues besides intensity. Although the difference in mean arousal and pleasantness ratings between original and amplitude-normalized excerpts correlated significantly with the amplitude adjustment, ratings for both sets of excerpts were highly correlated and shared a similar range of values, thus validating the use of amplitude normalization in music emotion research. Two acoustic parameters, spectral flux and spectral entropy, accounted for 65% of the variance in arousal ratings for both sets, indicating that spectral features can effectively predict arousal. Additionally, we confirmed that amplitude-normalized excerpts were adequately matched for loudness. Overall, the results corroborate our hypotheses and support the cue-redundancy and Brunswik lens models. PMID:24215647

  5. Doping-induced spectral shifts in two-dimensional metal oxides

    NASA Astrophysics Data System (ADS)

    Ylvisaker, E. R.; Pickett, W. E.

    2013-03-01

    Doping of strongly layered ionic oxides is an established paradigm for creating novel electronic behavior. This is nowhere more apparent than in superconductivity, where doping gives rise to high-temperature superconductivity in cuprates (hole doped) and to surprisingly high Tc in HfNCl (Tc = 25.5 K, electron doped). First-principles calculations of hole doping of the layered delafossite CuAlO2 reveal unexpectedly large doping-induced shifts in spectral density, strongly in opposition to the rigid-band picture that is widely used as an accepted guideline. These spectral shifts, of similar origin as the charge transfer used to produce negative electron affinity surfaces and adjust Schottky barrier heights, drastically alter the character of the Fermi level carriers, leading in this material to an O-Cu-O molecule-based carrier (or polaron, at low doping) rather than a nearly pure-Cu hole as in a rigid-band picture. First-principles linear response electron-phonon coupling (EPC) calculations reveal, as a consequence, net weak EPC and no superconductivity rather than the high Tc obtained previously using rigid-band expectations. These specifically two-dimensional dipole-layer-driven spectral shifts provide new insights into materials design in layered materials for functionalities besides superconductivity.

  6. Resonant optical control of the electrically induced spin polarization by periodic excitation

    NASA Astrophysics Data System (ADS)

    Hernandez, F. G. G.; Gusev, G. M.; Bakarov, A. K.

    2014-07-01

    We show that the electron spin polarization generated by an electrical current may have its direction controlled and magnitude amplified by periodic optical excitation. The electrical and optical spin control methods were combined and implemented in a two-dimensional electron gas. By Kerr rotation in an external transverse magnetic field, we demonstrate unexpected long-lived coherent spin oscillations of the current-induced signal in a system with large spin-orbit interaction. Using a single linearly polarized pulse for spin manipulation and detection, we found a strong dependence on the pulse optical power and sample temperature indicating the relevance of the hole spin in the electron spin initialization. The signal was mapped in a Hall bar as function of the position relative to the injection contact. Finally, the presence of an in-plane spin polarization was directly verified by rotating the experimental geometry.

  7. Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer WS_{2}.

    PubMed

    Schmidt, Robert; Arora, Ashish; Plechinger, Gerd; Nagler, Philipp; Granados Del Águila, Andrés; Ballottin, Mariana V; Christianen, Peter C M; Michaelis de Vasconcellos, Steffen; Schüller, Christian; Korn, Tobias; Bratschitsch, Rudolf

    2016-08-12

    We control the linear polarization of emission from the coherently emitting K^{+} and K^{-} valleys (valley coherence) in monolayer WS_{2} with an out-of-plane magnetic field of up to 25 T. The magnetic-field-induced valley Zeeman splitting causes a rotation of the emission polarization with respect to the excitation by up to 35° and reduces the polarization degree by up to 16%. We explain both of these phenomena with a model based on two noninteracting coherent two-level systems. We deduce that the coherent light emission from the valleys decays with a time constant of τ_{c}=260  fs. PMID:27563997

  8. Polarization and collision-induced coherence in the beam-foil light source

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Bashkin, S.; Church, D. A.

    1974-01-01

    Monatomic systems were excited by the beam-foil method in order to re-examine the possibility that a particular magnetic substate was preferentially populated. O II, Ar II and He I levels were used. The results reveal that: (1) with a tilted foil substantial polarization (up to 15%) may be achieved, (2) the polarization is due to the foil, (3) the foil induces coherence among Zeeman substates with the appearance of quantum beats among these substates and that their coherence is due to the externally applied magnetic field perpendicular to the beam direction, and (4) the angular momentum of the emitted photon is perpendicular to the ion velocity. The possibility for detecting separate effects of alignment and polarization is noted.

  9. Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4.

    PubMed

    Park, Soo-Jin; Lee, Kyoung-Pil; Kang, Saeromi; Lee, Jaewon; Sato, Koichi; Chung, Hae Young; Okajima, Fumikazu; Im, Dong-Soon

    2014-10-01

    Sphingosine 1-phosphate (S1P) has been implicated in anti-atherogenic properties of high-density lipoproteins. However, the roles and signaling of S1P in macrophages, the main contributor to atherosclerosis, have not been well studied. Furthermore, pro-inflammatory M1 and anti-inflammatory M2 macrophage phenotypes may influence the development of atherosclerosis. Therefore, we investigated the effects of S1P on macrophage phenotypes, especially on M2 polarization and its signaling in relation to the anti-atherogenic properties of S1P. It was found that S1P induced anti-inflammatory M2 polarization via IL-4 secretion and its signaling, and induced IL-4Rα and IL-2Rγ. In addition, down-stream signalings, such as, stat-6 phosphorylation, SOCS1 induction, and SOCS3 suppression were also observed in macrophages in response to S1P. Furthermore, S1P-induced ERK activation, and the inhibitions of p38 MAPK and JNK were found to be key signals for IL-4 induction. Moreover, the anti-atherogenic effect of S1P in HDL was confirmed by the observation that oxidized LDL-induced lipid accumulation was attenuated in S1P-treated M2 macrophages. Furthermore, the atheroprotective effect of S1P was demonstrated by its anti-apoptotic effect on S1P-treated macrophages. The present study shows that S1P-induced M2 polarization of macrophages could be mediated via IL-4 signaling, and suggests that M2 polarization by S1P is responsible for the anti-atherogenic and atheroprotective properties of high-density lipoproteins in vivo.

  10. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells

    PubMed Central

    Kleine-Vehn, Jürgen; Ding, Zhaojun; Jones, Angharad R.; Tasaka, Masao; Morita, Miyo T.; Friml, Jiří

    2010-01-01

    Auxin is an essential plant-specific regulator of patterning processes that also controls directional growth of roots and shoots. In response to gravity stimulation, the PIN3 auxin transporter polarizes to the bottom side of gravity-sensing root cells, presumably redirecting the auxin flux toward the lower side of the root and triggering gravitropic bending. By combining live-cell imaging techniques with pharmacological and genetic approaches, we demonstrate that PIN3 polarization does not require secretion of de novo synthesized proteins or protein degradation, but instead involves rapid, transient stimulation of PIN endocytosis, presumably via a clathrin-dependent pathway. Moreover, gravity-induced PIN3 polarization requires the activity of the guanine nucleotide exchange factors for ARF GTPases (ARF-GEF) GNOM-dependent polar-targeting pathways and might involve endosome-based PIN3 translocation from one cell side to another. Our data suggest that gravity perception acts at several instances of PIN3 trafficking, ultimately leading to the polarization of PIN3, which presumably aligns auxin fluxes with gravity vector and mediates downstream root gravitropic response. PMID:21135243

  11. Multilayer Thin Film Polarizer Design for Far Ultraviolet using Induced Transmission and Absorption Technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Park, Jung Ho; Torr, Douglas G.

    1994-01-01

    Good theoretical designs of far ultraviolet polarizers have been reported using a MgF2/Al/MgF2 three layer structure on a thick Al layer as a substrate. The thicknesses were determined to induce transmission and absorption of p-polarized light. In these designs Al optical constants were used from films produced in ultrahigh vacuum (UHV: 10(exp -10) torr). Reflectance values for polarizers fabricated in a conventional high vacuum (p approx. 10(exp -6 torr)) using the UHV design parameters differed dramatically from the design predictions. Al is a highly reactive material and is oxidized even in a high vacuum chamber. In order to solve the problem other metals have been studied. It is found that a larger reflectance difference is closely related to higher amplitude and larger phase difference of Fresnel reflection coefficients between two polarizations at the boundary of MgF2/metal. It is also found that for one material a larger angle of incidence from the surface normal brings larger amplitude and phase difference. Be and Mo are found good materials to replace Al. Polarizers designed for 121.6 nm with Be at 60 deg and with Mo at 70 deg are shown as examples.

  12. Suppression of the antiferroelectric phase during polarization cycling of an induced ferroelectric phase

    SciTech Connect

    Liu, Xiaoming; Tan, Xiaoli

    2015-08-17

    The ceramic Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.57}Sn{sub 0.43}){sub 0.92}Ti{sub 0.08}]{sub 0.98}O{sub 3} can exist in either an antiferroelectric or a ferroelectric phase at room temperature, depending on the thermal and electrical history. The antiferroelectric phase can be partially recovered from the induced ferroelectric phase when the applied field reverses polarity. Therefore, polarization cycling of the ferroelectric phase in the ceramic under bipolar fields at room temperature is accompanied with repeated phase transitions. In this letter, the stability of the recovered antiferroelectric phase upon electrical cycling of the ceramic is investigated. Ex-situ X-ray diffraction reveals that bipolar cycling suppresses the antiferroelectric phase; this is indirectly supported by piezoelectric coefficient d{sub 33} measurements. It is speculated that the accumulated charged point defects during polarization cycling stabilize the polar ferroelectric phase. The findings presented are important to the fundamental studies of electric fatigue and field-induced phase transitions in ferroelectrics.

  13. [INVITED] Self-induced polarization tracking, tunneling effect and modal attraction in optical fiber

    NASA Astrophysics Data System (ADS)

    Guasoni, M.; Morin, P.; Bony, P.-Y.; Wabnitz, S.; Fatome, J.

    2016-06-01

    In this paper, we report the observation and exploitation of the capability of light to self-organize its state-of-polarization, upon propagation in optical fibers, by means of a device called Omnipolarizer. The principle of operation of this system consists in a counter-propagating four-wave mixing interaction between an incident signal and its backward replica generated at the fiber output thanks to a reflective fiber loop. We have exploited this self-induced polarization tracking phenomenon for all-optical data processing and successfully demonstrated the spontaneous repolarization of a 40-Gbit/s On-Off keying optical signal without noticeable impairments. Moreover, the strong local coupling between the two counter-propagating waves has also revealed a fascinating aspect of the Omnipolarizer called polarization-based tunneling effect. This intrinsic property enables us to instantaneously let "jump" a polarization information onto the reflected signal, long before the expected time-of-flight induced by the round-trip along the fiber span. Finally, we discuss how the concept of self-organization could be generalized to multimode fibers, which paves the way to new important applications in the framework of spatial-mode-multiplexing.

  14. Suppression of the antiferroelectric phase during polarization cycling of an induced ferroelectric phase

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Tan, Xiaoli

    2015-08-01

    The ceramic Pb0.99Nb0.02[(Zr0.57Sn0.43)0.92Ti0.08]0.98O3 can exist in either an antiferroelectric or a ferroelectric phase at room temperature, depending on the thermal and electrical history. The antiferroelectric phase can be partially recovered from the induced ferroelectric phase when the applied field reverses polarity. Therefore, polarization cycling of the ferroelectric phase in the ceramic under bipolar fields at room temperature is accompanied with repeated phase transitions. In this letter, the stability of the recovered antiferroelectric phase upon electrical cycling of the ceramic is investigated. Ex-situ X-ray diffraction reveals that bipolar cycling suppresses the antiferroelectric phase; this is indirectly supported by piezoelectric coefficient d33 measurements. It is speculated that the accumulated charged point defects during polarization cycling stabilize the polar ferroelectric phase. The findings presented are important to the fundamental studies of electric fatigue and field-induced phase transitions in ferroelectrics.

  15. B-mode polarization induced by gravitational waves from kinks on infinite cosmic strings

    SciTech Connect

    Kawasaki, Masahiro; Miyamoto, Koichi; Nakayama, Kazunori

    2010-11-15

    We investigate the effect of the stochastic gravitational wave (GW) background produced by kinks on infinite cosmic strings, whose spectrum was derived in our previous work, on the B-mode power spectrum of the cosmic microwave background (CMB) anisotropy. We find that the B-mode polarization due to kinks is comparable to that induced by the motion of the string network and hence the contribution of GWs from kinks is important for estimating the B-mode power spectrum originating from cosmic strings. If the tension of cosmic strings {mu} is large enough, i.e., G{mu} > or approx. 10{sup -8}, B-mode polarization induced by cosmic strings can be detected by future CMB experiments.

  16. Measurement of the Induced Proton Polarization Pn in the 12C(e, e', p) reaction

    SciTech Connect

    Woo, R J; Barkhuff, David; Bertozzi, William; Chen, Jian-ping; Dale, Dan; Dodson, G; Dow, K A; Epstein, Marty; Farkhondeh, Manouchehr; Finn, Mike; Gilad, Shalev; Jones, Mark K; Joo, Kyungseon; Kelly, James; Kowalski, Stanley; Lourie, Bob; Madey, Richard; Margaziotis, Dimitri; Markowitz, Pete; McIntyre, Justin; Mertz, Christoph; Milbrath, Brian; Mitchell, Joseph; Perdrisat, Charles F; Punjabi, Vina; Rutt, Paul; Sarty, Adam; Tieger, D; Tschalaer, C; Turchinetz, William; Ulmer, Paul E; Van Verst, S P; Vellidis, C; Warren, Glen; Weinstein, Lawrence

    1998-01-19

    The first measurements of the induced proton polarization Pn for the 12C(e,e',p) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (w,q) = (294 MeV, 765 MeV/c) and sampled a missing momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. The distorted-wave impulse approximation provides good agreement with data for the 1 p3/2 shell. The data for the continuum suggest that both the 1s1/2 shell and underlying l > 1 configurations contribute.

  17. Strong polarization-induced reduction of addition energies in single-molecule nanojunctions.

    PubMed

    Kaasbjerg, Kristen; Flensberg, Karsten

    2008-11-01

    We address polarization-induced renormalization of molecular levels in solid-state based single-molecule transistors and focus on an organic conjugate molecule where a surprisingly large reduction of the addition energy has been observed. We have developed a scheme that combines a self-consistent solution of a quantum chemical calculation with a realistic description of the screening environment. Our results indeed show a large reduction, and we explain this to be a consequence of both (a) a reduction of the electrostatic molecular charging energy and (b) polarization induced level shifts of the HOMO and LUMO levels. Finally, we calculate the charge stability diagram and explain at a qualitative level general features observed experimentally.

  18. Efficient design of polarization insensitive polymer optical waveguide devices considering stress-induced effects.

    PubMed

    Hossain, Md Faruque; Chan, Hau Ping; Kouzani, Abbas Z

    2014-04-21

    We present an approach for the efficient design of polarization insensitive polymeric optical waveguide devices considering stress-induced effects. In this approach, the stresses induced in the waveguide during the fabrication process are estimated first using a more realistic model in the finite element analysis. Then we determine the perturbations in the material refractive indices caused by the stress-optic effect. It is observed that the stresses cause non-uniform optical anisotropy in the waveguide materials, which is then incorporated in the modal analysis considering a multilayer structure of waveguide. The approach is exploited in the design of a Bragg grating on strip waveguide. Excellent agreement between calculated and published experimental results confirms the feasibility of our approach in the accurate design of polarization insensitive polymer waveguide devices.

  19. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  20. Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields.

    PubMed

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    2015-05-01

    Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified.

  1. Objective interpretation of induced polarization tomography using a quantitative approach for the investigation of periglacial environments

    NASA Astrophysics Data System (ADS)

    Banville, David Roy; Fortier, Richard; Dupuis, Christian

    2016-07-01

    The objective interpretation of induced polarization tomography for applications in periglacial environments is sometimes challenging using smoothness-regularized least square inversion because strong resistivity contrasts are often present. Ambiguities arise from the regularization process which smooths the contrast between layers and from artifacts created by the inversion. In periglacial environments, where frozen and thawed ground can coexist with large resistivity contrasts, such artefacts are often found in the models of electrical resistivity. To assess reliable cryohydrogeological models from the inversion of induced polarization tomography, quantitative interpretation criteria are needed. The present work describes a methodology based on forward-inverse modeling to build a cryohydrogeological model from induced polarization data and prior information using the resistivity and chargeability gradients to map transitions between adjacent layers. This methodology is tested on field-data acquired over a coarse grained aquifer within a glaciomarine deposit and ice-rich permafrost mounds within marine sediments. Delineation of the permafrost base is achieved despite the presence of an inversion artefact. The results of the interpretation are used to further constrain the inversion in order to map the ice-content based on the resistivity model and an empirical relationship. The proposed methodology provides a way to extract quantitative information even in difficult environmental settings.

  2. Interpreting current-induced spin polarization in topological insulator surface states

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian

    2016-06-01

    Several recent experiments on three-dimensional topological insulators claim to observe a large charge current-induced nonequilibrium ensemble spin polarization of electrons in the helical surface state. We present a comprehensive criticism of such claims, using both theory and experiment: First, we clarify the interpretation of quantities extracted from these measurements by deriving standard expressions from a Boltzmann transport equation approach in the relaxation-time approximation at zero and finite temperature to emphasize our assertion that, despite high in-plane spin projection, obtainable current-induced ensemble spin polarization is minuscule. Second, we use a simple experiment to demonstrate that magnetic field-dependent open-circuit voltage hysteresis (identical to those attributed to current-induced spin polarization in topological insulator surface states) can be generated in analogous devices where current is driven through thin films of a topologically trivial metal. This result ipso facto discredits the naive interpretation of previous experiments with TIs, which were used to claim observation of helicity, i.e., spin-momentum locking in the topologically protected surface state.

  3. A low cost design to eliminate polarization induced phase shift for dual Mach-Zehnder fiber interferometer

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liang, Sheng; Liu, Qianzhe; Xiao, Wen

    2015-08-01

    In dual Mach-Zehnder interferometer (DMZI) system, polarization induced phase shift (PIPS) leads to a big location error. Traditional approaches adopt polarization controller (PC) to eliminate PIPS by controlling polarization state (PS) of light source. Through establishing the influence model of input light PS and equivalent polarization parameters of sensing cable on interference signals, an approach using a simplified polarization controller (PC) to obtain high location accuracy is proposed. The simplified PC is composed of a polarizer and a fiber-fused half-wave plate and can provide a linearly polarized light with azimuth angle controlled. Simulation and experiment indicate that the proposed method and PC design not only has capability of eliminating PIPS, but also has the benefits of low cost and easy control.

  4. Induced circularly polarized luminescence arising from anion or protein binding to racemic emissive lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Carr, Rachel; Puckrin, Robert; McMahon, Brian K.; Pal, Robert; Parker, David; Pålsson, Lars-Olof

    2014-06-01

    A circularly polarized luminescence (CPL) spectrometer has been built and used to study the binding interaction of lactate and four different proteins with racemic EuIII and TbIII complexes in aqueous solution. Lactate binding gives rise to strong induced CPL spectra, and the observed emission dissymmetry factors vary linearly with enantiomeric composition. Particularly strong induced TbIII CPL also characterizes the binding interaction of alpha-1-acid glycoprotein with a dissociation constant, Kd, of 2.5 μM.

  5. The spectral-angular and polarization characteristics of radiation from an electron beam traversing an inhomogeneous electromagnetic wave

    SciTech Connect

    Koltsov, A.V.; Serov, A.V.

    1995-12-31

    The generation of frequency harmonics of a radiation when the electron beam traverse the inhomogeneous electromagnetic wave was investigated. The electromagnetic wave are linearly polarized. The plane beam of particles enters the wave at right angle with respect to the direction of propogation of the wave and the vector E of the wave. The spartial distribution of radiation from the higher harmonics and the power density contours are caculated.

  6. Spectral line polarization with angle-dependent partial frequency redistribution. I. A Stokes parameters decomposition for Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Frisch, H.

    2010-11-01

    Context. The linear polarization of a strong resonance lines observed near the solar limb is created by a multiple-scattering process. Partial frequency redistribution (PRD) effects must be accounted for to explain the polarization profiles. The redistribution matrix describing the scattering process is a sum of terms, each containing a PRD function multiplied by a Rayleigh type phase matrix. A standard approximation made in calculating the polarization is to average the PRD functions over all the scattering angles, because the numerical work needed to take the angle-dependence of the PRD functions into account is large and not always needed for reasonable evaluations of the polarization. Aims: This paper describes a Stokes parameters decomposition method, that is applicable in plane-parallel cylindrically symmetrical media, which aims at simplifying the numerical work needed to overcome the angle-average approximation. Methods: The decomposition method relies on an azimuthal Fourier expansion of the PRD functions associated to a decomposition of the phase matrices in terms of the Landi Degl'Innocenti irreducible spherical tensors for polarimetry T^K_Q(i, Ω) (i Stokes parameter index, Ω ray direction). The terms that depend on the azimuth of the scattering angle are retained in the phase matrices. Results: It is shown that the Stokes parameters I and Q, which have the same cylindrical symmetry as the medium, can be expressed in terms of four cylindrically symmetrical components I_Q^K (K = Q = 0, K = 2, Q = 0, 1, 2). The components with Q = 1, 2 are created by the angular dependence of the PRD functions. They go to zero at disk center, ensuring that Stokes Q also goes to zero. Each component I_Q^K is a solution to a standard radiative transfer equation. The source term S_Q^K are significantly simpler than the source terms corresponding to I and Q. They satisfy a set of integral equations that can be solved by an accelerated lambda iteration (ALI) method.

  7. Nonlinear temperature dependence of glue-induced birefringence in polarization maintaining FBG sensors

    NASA Astrophysics Data System (ADS)

    Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2016-05-01

    Glue-induced stresses decrease the accuracy of surface-mounted fiber Bragg gratings (FBG). Significant temperature dependent glue-induced birefringence was verified when a thermally cured epoxy-based bonding technique had been used. Determining the peak separation of two azimuthally aligned FBGs in PM fibers combined with a polarization resolved measurement set-up in a temperature range between -30°C and 150°C revealed high glue-induced stresses at low temperatures. Peak separations of about 60 pm and a nonlinear temperature dependence of the glue-induced birefringence due to stress relaxation processes and a visco-elastic behavior of the used adhesive have been shown.

  8. Spectral analysis of bilateral or alternate-site kindling-induced afterdischarges in the rabbit hippocampi.

    PubMed

    Tsuchiya, Komei; Kogure, Shinichi

    2012-09-01

    Kindling is one of the popular animal models of temporal lobe epilepsy. In the present study following the previous results obtained using unilateral hippocampal kindling (UK), we performed spectral analysis of bilateral or alternate-site kindling-induced afterdischarges (ADs) in the rabbit hippocampi. Eight and ten adult rabbits were used for bilateral kindling (BK) and alternate-site kindling (AK), respectively. Kindling stimuli consisted of a train of biphasic pulses (1ms duration each) of 50Hz for 1s, with suprathreshold intensity for AD. The stimulations were applied simultaneously to the bilateral hippocampi in the BK and were delivered to the right and left hippocampus once every 24h in the AK. Motor responses were classified into five stages according to the conventional criteria. All animals in BK as well as AK developed stage 5 convulsions. This contrasts to the result of UK (kindled: 50%; incomplete: 50%). We normalized power spectral density (PSD) and monitored the changes in the proportion of lower frequency band component (LFB: 0-9Hz) and the higher frequency band (HFB: 12-30Hz). BK animals showed a significantly large decrement (0.5 times, p<0.01) in LFB component at the final stage compared to the initial stage, but a very large increment (4.7 times) in HFB component. Likewise, AK animals exhibited a significantly large decrement (0.6 times, p<0.01) in LFB component at the final stage, but a very large increment (3.6 times) in HFB component. Correlation analyses were performed between the HFB component and AD duration, interictal discharge frequency, and behavioral stages during kindling progression. Very strong positive correlations were found in both kindling animals. Chronological spectral analysis of seizure discharges, resulting in a pattern of LFB decrement accompanied by HFB increment, is a convenient tool to investigate epileptic disorders and diagnose epileptic states.

  9. Influence of non-aqueous phase liquid configuration on induced polarization parameters: Conceptual models applied to a time-domain field case study

    NASA Astrophysics Data System (ADS)

    Johansson, Sara; Fiandaca, Gianluca; Dahlin, Torleif

    2015-12-01

    Resistivity and induced polarization (IP) measurements on soil contaminated with non-aqueous phase liquids (NAPLs) show a great variety in results in previous research. Several laboratory studies have suggested that the presence of NAPLs in soil samples generally decrease the magnitude of the IP-effect, while others have indicated the opposite. A number of conceptual models have been proposed suggesting that NAPLs can alter the pore space in different ways, e.g. by coating the grain surfaces and thus inhibiting grain polarization, or by changing the pore throat size and thus affecting the membrane polarization mechanism. The main aim of this paper is to review previously published conceptual models and to introduce some new concepts of possible residual NAPL configurations in the pore space. Time domain induced polarization measurements were performed at a NAPL contaminated field site, and the data were inverted using the Constant Phase Angle (CPA) model and the Cole-Cole model respectively. No significant phase anomalies were observed in the source area of the contamination when the CPA inverted profiles were compared with soil sampling results of free-phase contaminant concentrations. However, relatively strong phase and normalized phase anomalies appeared next to the source area, where residual free-phase presence could be expected according to the chemical data. We conclude that depending on the NAPL configuration, different spectral IP responses can be expected. In previous research, the NAPL configurations in different samples or field sites are often unknown, and this may to some extent explain why different results have been achieved by different authors. In our field case, we believe that the NAPL forms a more or less continuous phase in the pore space of the source zone leading to an absence of IP anomalies. The increase in phase and normalized phase angle observed next to the source zone is interpreted as a degradation zone. The ongoing biodegradation

  10. Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics.

    PubMed

    Li, Xiaoming; Fang, Hui; Weng, Xiaoyu; Zhang, Lichao; Dou, Xiujie; Yang, Aiping; Yuan, Xiaocong

    2015-11-16

    The hydrodynamic theory is a powerful tool to study the nonlocal effects in metallic nanostructures that are too small to obey classical electrodynamics while still too large to be handled with a full quantum-mechanical theory. The existing hydrodynamic model can give accurate quantitative predictions for the plasmonic resonance shifts in metallic nanoplasmonics, yet is not able to predict the spectral width which is usually taken as a pre-set value instead. By taking account the fact that due to electron density spill-out from a surface, the Coulomb interaction screening is less efficient close the surface thus leads to a higher electron-electron scattering rate in this paper, we study how the electron-density-related damping rate induced by such Coulomb interaction will affect the plasmonic spectral broadening. We perform the simulation on a Na nanowire, which shows that the absorption spectra width is wider when the size of the nanowire becomes smaller. This result is consistent well with the reported experiment. Therefore, our theoretical model extends the existing hydrodynamic model and can provide much more quantum insight about nonlocal effects in metallic nanostructures. PMID:26698456

  11. Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics.

    PubMed

    Li, Xiaoming; Fang, Hui; Weng, Xiaoyu; Zhang, Lichao; Dou, Xiujie; Yang, Aiping; Yuan, Xiaocong

    2015-11-16

    The hydrodynamic theory is a powerful tool to study the nonlocal effects in metallic nanostructures that are too small to obey classical electrodynamics while still too large to be handled with a full quantum-mechanical theory. The existing hydrodynamic model can give accurate quantitative predictions for the plasmonic resonance shifts in metallic nanoplasmonics, yet is not able to predict the spectral width which is usually taken as a pre-set value instead. By taking account the fact that due to electron density spill-out from a surface, the Coulomb interaction screening is less efficient close the surface thus leads to a higher electron-electron scattering rate in this paper, we study how the electron-density-related damping rate induced by such Coulomb interaction will affect the plasmonic spectral broadening. We perform the simulation on a Na nanowire, which shows that the absorption spectra width is wider when the size of the nanowire becomes smaller. This result is consistent well with the reported experiment. Therefore, our theoretical model extends the existing hydrodynamic model and can provide much more quantum insight about nonlocal effects in metallic nanostructures.

  12. Induced polarized state in intentionally grown oxygen deficient KTaO{sub 3} thin films

    SciTech Connect

    Mota, D. A.; Romaguera-Barcelay, Y.; Tkach, A.; Agostinho Moreira, J.; Almeida, A.; Perez de la Cruz, J.; Vilarinho, P. M.; Tavares, P. B.

    2013-07-21

    Deliberately oxygen deficient potassium tantalate thin films were grown by RF magnetron sputtering on Si/SiO{sub 2}/Ti/Pt substrates. Once they were structurally characterized, the effect of oxygen vacancies on their electric properties was addressed by measuring leakage currents, dielectric constant, electric polarization, and thermally stimulated depolarization currents. By using K{sub 2}O rich KTaO{sub 3} targets and specific deposition conditions, KTaO{sub 3-{delta}} oxygen deficient thin films with a K/Ta = 1 ratio were obtained. Room temperature X-ray diffraction patterns show that KTaO{sub 3-{delta}} thin films are under a compressive strain of 2.3% relative to KTaO{sub 3} crystals. Leakage current results reveal the presence of a conductive mechanism, following the Poole-Frenkel formalism. Furthermore, dielectric, polarization, and depolarization current measurements yield the existence of a polarized state below T{sub pol} {approx} 367 Degree-Sign C. A Cole-Cole dipolar relaxation was also ascertained apparently due to oxygen vacancies induced dipoles. After thermal annealing the films in an oxygen atmosphere at a temperature above T{sub pol}, the aforementioned polarized state is suppressed, associated with a drastic oxygen vacancies reduction emerging from annealing process.

  13. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P < 0.05) in the CH 2 asymmetric to CH 3 asymmetric stretching band peak intensity ratios for the flaxseed. There were linear and quadratic effects ( P < 0.05) of the treatment time from 0, 20, 40 and 60 min on the ratios of the CH 2 asymmetric to CH 3 asymmetric stretching vibration intensity. Autoclaving had no significant effect ( P > 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study

  14. Serum from patients with systemic vasculitis induces alternatively activated macrophage M2c polarization.

    PubMed

    Ohlsson, Susanne M; Linge, Carl Petrus; Gullstrand, Birgitta; Lood, Christian; Johansson, Asa; Ohlsson, Sophie; Lundqvist, Andrea; Bengtsson, Anders A; Carlsson, Fredric; Hellmark, Thomas

    2014-01-01

    Anti-neutrophil cytoplasmic antibody associated vasculitides (AAV) are conditions defined by an autoimmune small vessel inflammation. Dying neutrophils are found around the inflamed vessels and the balance between infiltrating neutrophils and macrophages is important to prevent autoimmunity. Here we investigate how sera from AAV patients may regulate macrophage polarization and function. Macrophages from healthy individuals were differentiated into M0, M1, M2a, M2b or M2c macrophages using a standardized protocol, and phenotyped according to their expression surface markers and cytokine production. These phenotypes were compared with those of macrophages stimulated with serum from AAV patients or healthy controls. While the healthy control sera induced a M0 macrophage, AAV serum promoted polarization towards the M2c subtype. No sera induced M1, M2a or M2b macrophages. The M2c subtype showed increased phagocytosis capacity compared with the other subtypes. The M2c polarization found in AAV is consistent with previous reports of increased levels of M2c-associated cytokines.

  15. A non-linear induced polarization effect on transient electromagnetic soundings

    NASA Astrophysics Data System (ADS)

    Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel

    2016-10-01

    In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.

  16. 2D Resistivity and Induced Polarization Measurement for Manganese Ore Exploration

    NASA Astrophysics Data System (ADS)

    Srigutomo, Wahyu; Trimadona; Pratomo, Prihandhanu M.

    2016-08-01

    2D Resistivity and Induced Polarization (IP) survey was conducted to delineate the presence of minerals containing manganese in form of manganese ore. The resistivity method concerns with resistivity (ohm.m) of rocks which indicates the electrical properties in terms of ability to resist the flow of electrical current. The presence of manganese in rocks generally lowers the resistivity. The Induced Polarization (IP) method deals with chargeability (in msec) which indicates the strength of polarization effects experienced by ions in the vicinity of metallic grains in rock. The presence of manganese in rocks increases the chargeability of the rock when measured using IP method. The low resistivity zones (< 5 ohm.m) are situated in the western part, central part, and eastern part of the investigated area. These zones may strongly correlate to the presence of manganese ore. However, these low resistivity zones may have been influenced by the presence of clay or weathered soil. In this case, the high chargeability zones will help in confirming the prospective zones caused by manganese ore. The thicknesses of the manganese ore layer vary from about 5 to 20 m based on the cross-sections. Based on the results, we estimated the geometry of the associated manganese prospective zones for resistivity (< 5 ohm.m) and chargeability (>10 msec).

  17. Spectral domain polarization sensitive optical coherence tomography at 1.55 μm: novel developments and applications for dynamic studies in materials science

    NASA Astrophysics Data System (ADS)

    Stifter, David; Leiss-Holzinger, Elisabeth; Heise, Bettina; Bouchot, Jean-Luc; Major, Zoltan; Pircher, Michael; Götzinger, Erich; Baumann, Bernhard; Hitzenberger, Christoph K.

    2011-03-01

    In this paper it is demonstrated, how research in optical coherence tomography (OCT) for biomedical diagnostics successfully triggered new developments in the field of mechanical material testing. With the help of a specifically designed, compact and robust spectral domain polarization sensitive OCT (SD-PS-OCT) setup, which is operating at 1.55 μm, dynamic investigations of technical materials - like bulk polymers and composite samples - can be performed under various conditions. Already by evaluating the speckle pattern of the standard SD-OCT images with advanced image processing methods, valuable information on the deformation and flow characteristics of samples subjected to tensile tests can be obtained. By additionally taking the birefringence properties into account, complementary knowledge on the evolvement of the internal stress situation is obtained in a spatially resolved way.

  18. Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1982-11-16

    An apparatus is disclosed for borehole measurements of the induced polarization of earth formations. The apparatus consists of an induced polarization logger capable of measuring both in-phase and quadrature conductivities in the frequency domain. A method is described which uses these measurements to determine cation exchange capacity per unit pore volume, Qv, brine conductivity, Cw, and oil and water saturations, So and Sw, in shaly sands.

  19. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  20. Ferroelectric polarization-induced memristive hysteresis behaviors in Ti- and Mn-codoped ZnO

    NASA Astrophysics Data System (ADS)

    An, Namhyun; Lee, Hwauk; Sharma, Sanjeev K.; Lee, Youngmin; Kim, Deuk Young; Lee, Sejoon

    2016-04-01

    ZnTiMnO layers grown on Pt (111)/Al2O3 (0001) substrates exhibit lattice displacement-induced ferroelectric features, which arise from a modulation in the lattice translation symmetry and originate from the substitution of Ti and Mn ions at Zn sites in ZnO's host lattices. After annealing at 900°C, the ZnTiMnO layer shows a clear hysteresis loop, where the maximum polarization is fully saturated within wide electric-field regions. The top-to-bottom Pt/ZnTiMnO/Pt device reveals a polarization-dependent asymmetric hysteresis ( i.e., ferroelectric memristive-switching); in addition, the device shows > 60% data-retention per 10 years. These results suggest that ZnTiMnO holds great promise for use in ferroelectric memristive-switching devices.

  1. Semiclassical description of TRI asymmetry in ternary fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E.; Kadmensky, S. G.

    2011-11-15

    The possibility of semiclassically describing T-even TRI-type asymmetry in ternary fission induced by polarized neutrons is considered on the basis of employing Coriolis interaction that takes into account the coupling of a light charged particle to the collective rotation of a polarized fissile nucleus. It is shown that allowance for this interaction makes it possible to explain qualitatively the magnitudes of two asymmetry effects observed in light-charge-particle emission both within the semiclassical and within the quantum-mechanical approach. The difference in the relative magnitudes and signs of the effects between different target nuclei is associated with the interference contributions to the cross section from neighboring neutron resonances and therefore cannot be explained within the semiclassical approach.

  2. Flexoelectric polarization changes induced by light in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Hermann, D. S.; Rudquist, P.; Ichimura, K.; Kudo, K.; Komitov, L.; Lagerwall, S. T.

    1997-03-01

    In a nematic liquid crystal where the director field has a splay-bend deformation mediated by the boundary conditions there is a certain intrinsic polarization density distribution characteristic of the flexoelectric properties of the medium. By application of an electric field perpendicular to the director, a twist is induced which is a measure of the flexoelectric anisotropy [I. Dozov, Ph. Martinot-Lagarde, and G. Durand, J. Phys. (Paris) Lett. 43, L-365 (1982)]. We show that in molecules susceptible to a photoinduced configurational change we may change the volume polarization by UV illumination and relate the change in flexoelectric coefficients to the configurational change in the molecule. In the experiment we use the British Drug House (Merck) nematic mixture E7 doped with 5 wt % of the dye 4-hexyloxy-(4'-hexyl)azobenzene. The photoinduced trans-cis configurational change leads to an increase by 40% in the flexoelectric anisotropy (es-eb)/K.

  3. A comparison of laser-induced-damage-threshold of two types of dielectric polarizing beam splitters

    NASA Astrophysics Data System (ADS)

    Å koda, Václav

    2013-11-01

    Laser-induced-damage-threshold (LIDT) of polarizing Brewster-angle beam splitters based on two different layer system designs was measured using a laser apparatus working at 1060 nm wavelength with 10 ns pulse length and 1-on-1 test mode. Two sets of samples with different design of layer system using TiO2/SiO2 coating materials were examined. Both BK7 and fused silica substrate materials were used for manufacturing of samples. The measured damage thresholds in S- and P-polarization were compared with computed values of the internal electric field inside of the layer system and with computed values of absorption as a measure of integral interaction of laser beam throughout the layer system.

  4. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    SciTech Connect

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  5. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light

    SciTech Connect

    Yudin, V. I.; Taichenachev, A. V.; Dudin, Y. O.; Velichansky, V. L.; Zibrov, A. S.; Zibrov, S. A.

    2010-09-15

    We develop a generalized principle of electromagnetically induced transparency (EIT) vector magnetometry based on high-contrast EIT resonances and the symmetry of atom-light interaction in the linearly polarized bichromatic fields. Operation of such vector magnetometer on the D{sub 1} line of {sup 87}Rb has been demonstrated. The proposed compass-magnetometer has an increased immunity to shifts produced by quadratic Zeeman and ac-Stark effects, as well as by atom-buffer gas and atom-atom collisions. In our proof-of-principle experiment the detected angular sensitivity to magnetic field orientation is 10{sup -3} deg/Hz{sup 1/2}, which is limited by laser intensity fluctuations, light polarization quality, and magnitude of the magnetic field.

  6. Strain-induced phase transition and electron spin-polarization in graphene spirals

    PubMed Central

    Zhang, Xiaoming; Zhao, Mingwen

    2014-01-01

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices. PMID:25027550

  7. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism

    SciTech Connect

    Nunes, J.A.; Tong, W.G.; Chandler, D.W.; Rahn, L.A.

    1995-04-01

    A novel four-wave mixing technique for the detection of circular dichroism in optically active liquid samples is demonstrated. When two cross-polarized laser beams are crossed at a small angle in a circular dichroic liquid a weak thermal grating is produced with a phase depending on the sign of the circular dichroism. The authors show that the polarization of one of the beams can be modified to allow coherent interference with an intensity-grating induced thermal grating. A probe beam scattering from the composite grating results in a signal that reveals the sign and magnitude of the circular dichroism. The use of this technique to optimize the signal-to-noise ratio in the presence of scattered light and laser intensity noise is discussed.

  8. X-ray polarimetric signatures induced by spectral variability in the framework of the receding torus model

    NASA Astrophysics Data System (ADS)

    Marin, F.; Goosmann, R. W.; Petrucci, P.-O.

    2016-06-01

    Context. Obscuring circumnuclear dust is a well-established constituent of active galactic nuclei (AGN). Traditionally referred to as the receding dusty torus, its inner radius and angular extension should depend on the photo-ionizing luminosity of the central source. Aims: We quantify the expected time-dependent near-infrared (NIR), optical, ultraviolet (UV) and X-ray polarization of a receding dusty torus as a function of the variable X-ray flux level and spectral shape. Methods: Using a Monte Carlo approach, we simulate the radiative transfer between the multiple components of an AGN adopting model constraints from the bright Seyfert galaxy NGC 4151. We compare our model results to the observed NIR to UV polarization of the source and predict its X-ray polarization. Results: We find that the 2-8 keV polarization fraction of a standard AGN model varies from less then a few percent along polar viewing angles up to tens of percent at equatorial inclinations. At viewing angles around the type-1/type-2 transition, there is a different X-ray polarization variability in a static or a receding torus scenario. In the former case, the expected 2-8 keV polarization of NGC 4151 is found to be 1.21% ± 0.34% with a constant polarization position angle, while in the latter scenario it varies from 0.1% to 6% depending on the photon index of the primary radiation. Additionally, an orthogonal rotation of the polarization position angle with photon energy appears for very soft primary spectra. Conclusions: Future X-ray polarimetry missions will be able to test whether the receding model is valid for Seyfert galaxies seen at a viewing angle close to the torus horizon. The overall stability of the polarization position angle for photon indexes softer than Γ = 1.5 ensures that reliable measurements of X-ray polarization are possible. We derive a long-term observational strategy for NGC 4151 assuming observations with a small to medium-sized X-ray polarimetry satellite.

  9. Observation of spectral composition and polarization of sub-terahertz emission from dense plasma during relativistic electron beam–plasma interaction

    SciTech Connect

    Arzhannikov, A. V.; Burmasov, V. S.; Ivanov, I. A.; Kuznetsov, S. A.; Postupaev, V. V.; Sinitsky, S. L.; Vyacheslavov, L. N.; Burdakov, A. V.; Gavrilenko, D. E.; Kasatov, A. A.; Mekler, K. I.; Rovenskikh, A. F.; Polosatkin, S. V.; Sklyarov, V. F.

    2014-08-15

    The paper presents results of measurements of sub-terahertz electromagnetic emission from magnetized plasma during injection of a powerful relativistic electron beam of microsecond duration in plasma with the density of 3 × 10{sup 14 }cm{sup −3}. It was found that the spectrum of the radiation concentrated in three distinct regions with high level of spectral power density. The first region is located near f{sub 1} = 100 GHz; the second one is in the vicinity of 190 GHz, and the third region is in the frequency interval f{sub 3} = 280–340 GHz. Polarization vectors of the emission in the first and third regions (f{sub 1} and f{sub 3}) are directed mainly perpendicular to the magnetic field in the plasma. At the same time, the polarization of the radiation in the vicinity of f{sub 2} = 190 GHz is parallel to the magnetic field. The most likely mechanism of electromagnetic wave generation in the frequency regions f{sub 1} and f{sub 2} is the linear conversion of the plasma oscillations into the electromagnetic waves on strong gradients of the plasma density. The third region is situated in the vicinity of second harmonic of electron plasma frequency, and we explain this emission by the coalescence of the upper-hybrid oscillations at high level turbulence in plasma.

  10. Suppression effects of dental glass-ceramics with polarization-induced highly dense surface charges against bacterial adhesion.

    PubMed

    Nozaki, Kosuke; Koizumi, Hiroki; Horiuchi, Naohiro; Nakamura, Miho; Okura, Toshinori; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    This study investigated the surface characteristics and antibacterial ability capacity of surface-improved dental glass-ceramics by an electrical polarization process. Commercially available dental glass-ceramic materials were electrically polarized to induce surface charges in a direct current field by heating. The surface morphology, chemical composition, crystal structure, and surface free energy (SFE) were evaluated using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and water droplet methods, respectively. The antibacterial capacity was assessed by a bacterial adhesion test using Streptococcus mutans. Although the surface morphology, chemical composition, and crystal structure were not affected by electrical polarization, the polar component and total SFE were enhanced. After 24 h incubation at 37ºC, bacterial adhesion to the polarized samples was inhibited. The electrical polarization method may confer antibacterial properties on prosthetic devices, such as porcelain fused to metal crowns or all ceramic restorations, without any additional bactericidal agents.

  11. Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration.

    PubMed

    Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M

    2015-09-01

    Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth.

  12. Fourier transform infrared spectral detection of life in polar subsurface environments and its application to Mars exploration.

    PubMed

    Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M

    2015-09-01

    Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth. PMID:26414525

  13. Temporal and spectral cloud screening of polar winter aerosol optical depth (AOD): impact of homogeneous and inhomogeneous clouds and crystal layers on climatological-scale AODs

    NASA Astrophysics Data System (ADS)

    O'Neill, Norman T.; Baibakov, Konstantin; Hesaraki, Sareh; Ivanescu, Liviu; Martin, Randall V.; Perro, Chris; Chaubey, Jai P.; Herber, Andreas; Duck, Thomas J.

    2016-10-01

    We compared star-photometry-derived, polar winter aerosol optical depths (AODs), acquired at Eureka, Nunavut, Canada, and Ny-Ålesund, Svalbard, with GEOS-Chem (GC) simulations as well as ground-based lidar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) retrievals over a sampling period of two polar winters. The results indicate significant cloud and/or low-altitude ice crystal (LIC) contamination which is only partially corrected using temporal cloud screening. Spatially homogeneous clouds and LICs that remain after temporal cloud screening represent an inevitable systematic error in the estimation of AOD: this error was estimated to vary from 78 to 210 % at Eureka and from 2 to 157 % at Ny-Ålesund. Lidar analysis indicated that LICs appeared to have a disproportionately large influence on the homogeneous coarse-mode optical depths that escape temporal cloud screening. In principle, spectral cloud screening (to yield fine-mode or submicron AODs) reduces pre-cloud-screened AODs to the aerosol contribution if one assumes that coarse-mode (super-micron) aerosols are a minor part of the AOD. Large, low-frequency differences between these retrieved values and their GC analogue appeared to be often linked to strong, spatially extensive planetary boundary layer events whose presence at either site was inferred from CALIOP profiles. These events were either not captured or significantly underestimated by the GC simulations. High-frequency AOD variations of GC fine-mode aerosols at Ny-Ålesund were attributed to sea salt, while low-frequency GC variations at Eureka and Ny-Ålesund were attributable to sulfates. CALIOP profiles and AODs were invaluable as spatial and temporal redundancy support (or, alternatively, as insightful points of contention) for star photometry retrievals and GC estimates of AOD.

  14. Macro- and microscopic spectral-polarization characteristics of the structure of normal and abnormally located chordae tendianeae of left ventricular

    NASA Astrophysics Data System (ADS)

    Malyk, Yu. Yu.; Prydij, O. G.; Zymnyakov, D. A.; Alonova, M. V.; Ushakova, O. V.

    2013-12-01

    The morphological peculiarities of TS mitral valve of the heart of man in normal and abnormal spaced strings of the left ventricle and the study of their structural features depending on the location was studied. There are given the results of comparative statistics, correlation and fractal study population Mueller-matrix images (MMI) of healthy and abnormal (early forms that are not diagnosed by histological methods) BT normal and abnormally located tendon strings left ventricle of the human heart. Abnormalities in the structure of the wings, tendon strings (TS), mastoid muscle (MM) in inconsistencies elements and harmonized operation of all valve complex shown in the features of the polarization manifestations of it laser images.

  15. Growth and polarized spectral properties of Sm3+ doped in Ca3La2(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Wang, Yeqing; Chen, Aixi; Tu, Chaoyang

    2015-09-01

    A Sm3+-doped Ca3La2(BO3)4 single crystal was grown by the Czochralski method. Its polarized absorption, emission spectra and fluorescence lifetime measurements were carried out at room temperature. Based on the Judd-Ofelt theory, the spectroscopic parameters Ωt (t = 2, 4, 6), radiative transition probabilities, radiative lifetime and fluorescence branching ratios were obtained. The stimulated emission cross section, the fluorescence lifetime and the quantum efficiency of the promising laser transition were also calculated and compared with other reported crystals. The results showed that Sm3+:Ca3La2(BO3)4 is a promising candidate for the orange-yellow laser emission.

  16. Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating.

    PubMed

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-06-01

    The determination of stress profiles created by transverse loads was proved to be important in different domains, such as structural health monitoring and biomechanics, and, more specifically, in the prostheses domain. In this paper, we report an original method to estimate the transverse load profile from the polarization-dependent loss (PDL) spectrum of a chirped fiber Bragg grating (CFBG). This method makes use of the relationship between the integration of the PDL of a CFBG, and the force profile has the advantage of not requiring any iterative method to estimate the transverse load profile. The relationship linking the integration of the PDL and the force profile is demonstrated using an analytical approximation of the transmission spectrum of CFBGs. The validity of this method for the determination of non-uniform load profiles is then shown using a numerical analysis. An experimental demonstration is finally reported using a 48 mm-long CFBG subject to different step transverse load profiles. PMID:27411174

  17. Direct transverse load profile determination using the polarization-dependent loss spectral response of a chirped fiber Bragg grating.

    PubMed

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-06-01

    The determination of stress profiles created by transverse loads was proved to be important in different domains, such as structural health monitoring and biomechanics, and, more specifically, in the prostheses domain. In this paper, we report an original method to estimate the transverse load profile from the polarization-dependent loss (PDL) spectrum of a chirped fiber Bragg grating (CFBG). This method makes use of the relationship between the integration of the PDL of a CFBG, and the force profile has the advantage of not requiring any iterative method to estimate the transverse load profile. The relationship linking the integration of the PDL and the force profile is demonstrated using an analytical approximation of the transmission spectrum of CFBGs. The validity of this method for the determination of non-uniform load profiles is then shown using a numerical analysis. An experimental demonstration is finally reported using a 48 mm-long CFBG subject to different step transverse load profiles.

  18. Cytokine responses induced by diesel exhaust particles are suppressed by PAR-2 silencing and antioxidant treatment, and driven by polar and non-polar soluble constituents.

    PubMed

    Bach, Nicolai; Bølling, Anette Kocbach; Brinchmann, Bendik C; Totlandsdal, Annike I; Skuland, Tonje; Holme, Jørn A; Låg, Marit; Schwarze, Per E; Øvrevik, Johan

    2015-10-14

    Adsorbed soluble organics seem to be the main drivers of inflammatory responses induced by diesel exhaust particles (DEP). The specific compounds contributing to this process and the cellular mechanisms behind DEP-induced inflammation are not well known. We have assessed pro-inflammatory effects of DEP and various soluble DEP fractions, in human bronchial epithelial cells (BEAS-2B). DEP increased the expression of interleukin (IL)-6 and CXCL8. Silencing of the aryl hydrocarbon receptor (AhR) by siRNA or pretreatment with AhR-antagonists did not attenuate DEP-induced IL-6 and CXCL8 responses. However, the halogenated aromatic hydrocarbon (HAH)-selective AhR antagonist CH223191 caused a considerable reduction in DEP-induced CYP1A1 expression indicating that this response may be due to dioxin or dioxin-like constituents in DEP. Knock-down of protease activated receptor (PAR)-2 attenuated IL-6 responses without affecting CXCL8. Antioxidants did not affect IL-6 expression after 4h DEP-exposure and only partly reduced CXCL8 expression. However, after 24h exposure antioxidant treatment partly suppressed IL-6 protein release and completely blocked CXCL8 release. Furthermore, a heptane-soluble (non-polar) extract of DEP induced both IL-6 and CXCL8 release, whereas a PBS-soluble (highly polar) extract induced only IL-6. Thus, pro-inflammatory responses in DEP-exposed epithelial cells appear to be the result of both reactive oxygen species and receptor signaling, mediated through combinatorial effects between both non-polar and polar constituents adhered to the particle surface.

  19. Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography.

    PubMed

    Fan, Shanhui; Sun, Yong; Dai, Cuixia; Zheng, Haihua; Ren, Qiushi; Jiao, Shuliang; Zhou, Chuanqing

    2014-09-01

    To research retinal stretching or distortion with accommodation, accommodation-induced changes in retinal thickness (RT) in the macular area were investigated in a population of young adults (n = 23) by using a dual-channel spectral domain optical coherence tomography (SD-OCT) system manufactured in-house for this study. This dual-channel SD-OCT is capable of imaging the cornea and retina simultaneously with an imaging speed of 24 kHz A-line scan rate, which can provide the anatomical dimensions of the eye, including the RT and axial length. Thus, the modification of the RT with accommodation can be calculated. A significant decrease in the RT (13.50 ± 1.25 μm) was observed during maximum accommodation. In the 4 mm × 4 mm macular area centered at the fovea, we did not find a significant quadrant-dependent difference in retinal volume change, which indicates that neither retinal stretching nor distortion was quadrant-dependent during accommodation. We speculate that the changes in RT with maximum accommodation resulted from accommodation-induced ciliary muscle contractions.

  20. The Spectral Emission Characteristics of Laser Induced Plasma on Tea Samples

    NASA Astrophysics Data System (ADS)

    Zheng, Peichao; Shi, Minjie; Wang, Jinmei; Liu, Hongdi

    2015-08-01

    Laser induced breakdown spectroscopy (LIBS) provides a useful technique for food security as well as determining nutrition contents. In this paper, optical emission studies of laser induced plasma on commercial tea samples were carried out. The spectral intensities of Mg, Mn, Ca, Al, C and CN vibration bands varying with laser energy and the detection delay time of an intensified charge coupled device were studied. In addition, the relative concentrations of six microelements, i.e., Mg, Mn, Ca, Al, Na and K, were analyzed semi-quantitatively as well as H, for four kinds of tea samples. Moreover, the plasma parameters were explored, including electron temperature and electron number density. The electron temperature and electron number density were around 11000 K and 1017 cm-3, respectively. The results show that it is reasonable to consider the LIBS technique as a new method for analyzing the compositions of tea leaf samples. supported by National Natural Science Foundation of China (No. 61205149), the Scientific and Technological Talents Training Project of Chongqing, China (No. CSTC2013kjrc-qnrc40002), the Scientific and Technological Project of Nan'an District (2011) and the Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology at Chongqing University, China (No. 2007DA10512714409)

  1. Accommodation-induced variations in retinal thickness measured by spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Sun, Yong; Dai, Cuixia; Zheng, Haihua; Ren, Qiushi; Jiao, Shuliang; Zhou, Chuanqing

    2014-09-01

    To research retinal stretching or distortion with accommodation, accommodation-induced changes in retinal thickness (RT) in the macular area were investigated in a population of young adults (n=23) by using a dual-channel spectral domain optical coherence tomography (SD-OCT) system manufactured in-house for this study. This dual-channel SD-OCT is capable of imaging the cornea and retina simultaneously with an imaging speed of 24 kHz A-line scan rate, which can provide the anatomical dimensions of the eye, including the RT and axial length. Thus, the modification of the RT with accommodation can be calculated. A significant decrease in the RT (13.50±1.25 μm) was observed during maximum accommodation. In the 4 mm×4 mm macular area centered at the fovea, we did not find a significant quadrant-dependent difference in retinal volume change, which indicates that neither retinal stretching nor distortion was quadrant-dependent during accommodation. We speculate that the changes in RT with maximum accommodation resulted from accommodation-induced ciliary muscle contractions.

  2. Proteomic Analysis of Acetaminophen-Induced Changes in Mitochondrial Protein Expression Using Spectral Counting

    PubMed Central

    Stamper, Brendan D.; Mohar, Isaac; Kavanagh, Terrance J.; Nelson, Sidney D.

    2011-01-01

    Comparative proteomic analysis following treatment with acetaminophen (APAP) was performed on two different models of APAP-mediated hepatocellular injury in order to both identify common targets for adduct formation and track drug-induced changes in protein expression. Male C57BL/6 mice were used as a model for APAP-mediated liver injury in vivo and TAMH cells were used as a model for APAP-mediated cytotoxicity in vitro. SEQUEST was unable to identify the precise location of sites of adduction following treatment with APAP in either system. However, semiquantitative analysis of the proteomic datasets using spectral counting revealed a downregulation of P450 isoforms associated with APAP bioactivation, and an upregulation of proteins related to the electron transport chain by APAP compared to control. Both mechanisms are likely compensatory in nature as decreased P450 expression is likely to attenuate toxicity associated with N-acetyl-p-quinoneimine (NAPQI) formation, whereas APAP-induced electron transport chain component upregulation may be an attempt to promote cellular bioenergetics. PMID:21329376

  3. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    SciTech Connect

    Heo, Deok Rim; Shin, Sung Jae; Kim, Woo Sik; Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee; Park, Won Sun; Lee, Min-Goo; Kim, Daejin; Shin, Yong Kyoo; Jung, In Duk; Park, Yeong-Min

    2011-08-05

    Highlights: {yields} Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. {yields} Rv0462 induces the activation of MAPKs. {yields} Rv0462-treated DCs enhances the proliferation of CD4{sup +} T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4{sup +} and CD8{sup +} T cells to secrete IFN-{gamma} in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  4. M2 macrophage polarization modulates epithelial-mesenchymal transition in cisplatin-induced tubulointerstitial fibrosis.

    PubMed

    Yu, Chia-Cherng; Chien, Chiang-Ting; Chang, Tzu-Ching

    2016-03-01

    Cisplatin-induced nephrotoxicity leaded to apoptosis of tubular epithelial cells (ECs) and tubulointerstitial fibrosis through ROS stress and inflammatory cytokines. Tubulointerstitial fibrosis caused by cisplatin might be via activation of resident fibroblasts and epithelial-mesenchymal transition (EMT) of tubular ECs. Inflammatory niche was crucial for progression of fibroblast activation or EMT. It had been reported that M1/M2 macrophage polarization regulated pro-inflammation or pro-resolving phase in damage repairing. However, the role of macrophage polarization on cisplatin-induced EMT of tubular ECs had not been well elucidated. In this study, we used co-cultured cell model and condition medium to examine the interaction between tubular ECs, fibroblasts and M1/M2 macrophages. Our data showed that cisplatin alone induced incomplete EMT of tubular ECs, whereas fibroblasts co-cultured with cisplatin-treated ECs could lead to fibroblast activation by detection of α-SMA and collagen-1. Moreover, decrease of iNOS and increase of argenase-1 and CD206 expression indicated that macrophages co-cultured with cisplatin-treated ECs would turn to M2 phenotype. Finally, we found that condition medium of M2 macrophages could promote complete EMT of cisplatin-treated ECs. Taken together, cisplatin created an inflammatory niche via tubular ECs to activate fibroblasts and stimulated M2 macrophage polarization. M2 macrophages could turn back to promote EMT of cisplatin-treated ECs. These results revealed the cooperative roles of tubular ECs, fibroblast and M2 macrophages to facilitate the progression of renal fibroblasis.

  5. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    SciTech Connect

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao E-mail: volkan@stanfordalumni.org; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  6. Altered Landscapes and Groundwater Sustainability — Exploring Impacts with Induced Polarization, DC Resistivity, and Thermal Tracing

    NASA Astrophysics Data System (ADS)

    Eddy-Miller, C.; Caldwell, R.; Wheeler, J.; McCarthy, P.; Binley, A. M.; Constantz, J. E.; Stonestrom, D. A.

    2009-12-01

    Anthropogenically impacted landscapes constitute rising proportions of the Earth’s surface that are characterized by generally elevated nutrient and sediment loadings concurrent with increased consumptive water withdrawals. In recent years a growing number of hydraulically engineered riparian habitat restoration projects have attempted to ameliorate negative impacts of land use on groundwater-surface water systems resulting, e.g., from agricultural practices and urban development. Often the nature of groundwater-surface water interactions in pre- and minimally altered systems is poorly known, making it difficult to assess the impacts of land use and restoration projects on groundwater sustainability. Traditional assessments of surface water parameters (flow, temperature, dissolved oxygen, biotic composition, etc.) can be complemented by hydraulic and thermal measurements to better understand the important role played by groundwater-surface water interactions. Hydraulic and thermal measurements are usually limited to point samples, however, making non-invasive and spatially extensive geophysical characterizations an attractive additional tool. Groundwater-surface water interactions along the Smith River, a tributary to the Missouri River in Montana, and Fish Creek and Flat Creek, tributaries to the Snake River in Wyoming, are being examined using a combination of hydraulic measurements, thermal tracing, and electrical-property imaging. Ninety-two direct-current (DC) resistivity and induced polarization cross sections were obtained at stream transects covering a wide variety of hydrogeologic settings ranging from shallow bedrock to thick alluvial sequences, nature of groundwater-surface water interactions (always gaining, always losing, or seasonally varying) and anthropogenic impacts (minimal low-intensity agriculture to major landscape engineering, including channel reconstruction). DC resistivity and induced polarization delineated mutually distinct features

  7. Frequency-dependent polarization-angle-phase-shift in the microwave-induced magnetoresistance oscillations

    SciTech Connect

    Liu, Han-Chun; Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2015-02-14

    Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.

  8. Shear wave induced resonance elastography of spherical masses with polarized torsional waves

    NASA Astrophysics Data System (ADS)

    Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-01

    Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  9. Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro

    PubMed Central

    da Silva, Thiago Aparecido; Roque-Barreira, Maria Cristina; Casadevall, Arturo; Almeida, Fausto

    2016-01-01

    Extracellular vesicles (EVs) released by eukaryotes, archaea, and bacteria contain proteins, lipids, polysaccharides, and other molecules. The cargo analysis of EVs shows that they contain virulence factors suggesting a role in the pathogenesis of infection. The proteome, lipidome, RNA content, and carbohydrate composition of EVs from Paracoccidioides brasiliensis and Paracoccidioides lutzii were characterized. However, the effects of P. brasiliensis EVs on the host immune system have not yet been investigated. Herein, we verified that EVs from P. brasiliensis induce the production of proinflammatory mediators by murine macrophages in a dose-dependent manner. Addition of EV to macrophages also promoted transcription of the M1-polarization marker iNOs and diminish that of the M2 markers Arginase-1, Ym-1, and FIZZ-1. Furthermore, the augmented expression of M2-polarization markers, stimulated by IL-4 plus IL-10, was reverted toward an M1 phenotype in response to secondary stimulation with EVs from P. brasiliensis. The ability of EVs from P. brasiliensis to promote M1 polarization macrophages favoring an enhanced fungicidal activity, demonstrated by the decreased CFU recovery of internalized yeasts, with comparable phagocytic efficacy. Our results suggest that EVs from P. brasiliensis can modulate the innate immune response and affect the relationship between P. brasiliensis and host immune cells. PMID:27775058

  10. Detection of gravity-induced polarity of cytoplasmic streaming in Chara

    NASA Technical Reports Server (NTRS)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1995-01-01

    Gravity induces a polarity of cytoplasmic streaming in vertically-oriented internodal cells of characean algae. The motive force that powers cytoplasmic streaming is generated at the ectoplasmic/endoplasmic interface. The velocity of streaming, which is about 100 micrometers/s at this interface, decreases with distance from the interface on either side of the cell to 0 micrometers/s near the middle. Therefore, when discussing streaming velocity it is necessary to specify the tangential plane through the cell in which streaming is being measured. This is easily done with a moderate resolution light microscope (which has a lateral resolution of 0.6 micrometers and a depth of field of 1.4 micrometers), but is obscured when using any low resolution technique, such as low magnification light microscopy or laser Doppler spectroscopy. In addition, the effect of gravity on the polarity of cytoplasmic streaming declines with increasing physiological age of isolated cells. Using a classical mechanical analysis, we show that the effect of gravity on the polarity of cytoplasmic streaming cannot result from the effect of gravity acting directly on individual cytoplasmic particles. We suggest that gravity may best be perceived by the entire cell at the plasma membrane-extracellular matrix junction.

  11. Nuclear Lamin A/C Deficiency Induces Defects in Cell Mechanics, Polarization, and Migration

    PubMed Central

    Lee, Jerry S. H.; Hale, Christopher M.; Panorchan, Porntula; Khatau, Shyam B.; George, Jerry P.; Tseng, Yiider; Stewart, Colin L.; Hodzic, Didier; Wirtz, Denis

    2007-01-01

    Lamin A/C is a major constituent of the nuclear lamina, a thin filamentous protein layer that lies beneath the nuclear envelope. Here we show that lamin A/C deficiency in mouse embryonic fibroblasts (Lmna−/− MEFs) diminishes the ability of these cells to polarize at the edge of a wound and significantly reduces cell migration speed into the wound. Moreover, lamin A/C deficiency induces significant separation of the microtubule organizing center (MTOC) from the nuclear envelope. Investigations using ballistic intracellular nanorheology reveal that lamin A/C deficiency also dramatically affects the micromechanical properties of the cytoplasm. Both the elasticity (stretchiness) and the viscosity (propensity of a material to flow) of the cytoplasm in Lmna−/− MEFs are significantly reduced. Disassembly of either the actin filament or microtubule networks in Lmna+/+ MEFs results in decrease of cytoplasmic elasticity and viscosity down to levels found in Lmna−/− MEFs. Together these results show that both the mechanical properties of the cytoskeleton and cytoskeleton-based processes, including cell motility, coupled MTOC and nucleus dynamics, and cell polarization, depend critically on the integrity of the nuclear lamina, which suggest the existence of a functional mechanical connection between the nucleus and the cytoskeleton. These results also suggest that cell polarization during cell migration requires tight mechanical coupling between MTOC and nucleus, which is mediated by lamin A/C. PMID:17631533

  12. Magnetically-induced electric polarization in an organo-metallic magnet

    SciTech Connect

    Zapf, W S; Fabris, F W; Balakirev, F F; Francoual, S M; Kenzelmann, M; Chen, Y

    2009-01-01

    The coupling between magnetic order and ferroelectricity has been under intense investigation in a wide range of transition metal oxides. The strongest coupling is obtained in so-called magnetically induced multiferroics where ferroelectricity arises directly from magnetic order that breaks inversion symmetry. However, it has been difficult to find non-oxide based materials in which these effects occur. Here we present a study of copper dimethyl sulfoxide dichloride (CDC), an organometallic quantum magnet containing S =1/1 Cu spins, in which a switchable electric polarization arises from field-tuned magnetic order. Fast magnetic field pulses allow us to perform sensitive measurements of the electric polarization and demonstrate that the electric state is present only if the magnetic order is non-collinear. Furthermore, we show that the electric polarization can be switched in a stunning hysteretic fashion. Because the magnetic order in CDC is mediated by large organic molecules, our study shows that magnetoelectric interactions can exist in this important class of materials, opening the road to designing magnetoelectrics and multiferroics using large molecules as building blocks. Further, we demonstrate that CDC undergoes a magnetoelectric quantum phase transition -the first of its kind, where both ferroelectric and magnetic order emerge simultaneously as a function of magnetic field at very low temperatures.

  13. Inhibition of cyclophosphamide-induced oxidative stress in rat brain by polar and non-polar extracts of Annatto (Bixa orellana) seeds.

    PubMed

    Oboh, Ganiyu; Akomolafe, Toyin L; Adefegha, Stephen A; Adetuyi, Abayomi O

    2011-03-01

    Annatto (Bixa orellana) seeds are widely distributed throughout the Tropics and have been used to provide both colour and flavour to food. This study sought to assess the ability of dietary inclusion of polar (water) and non-polar (chloroform) extracts of Annatto (B. orellana) seeds on cyclophosphamide-induced oxidative stress in rat brain. The total phenol content and antioxidant activities of polar (water) and non-polar (chloroform) extracts of Annatto seeds were determined in vitro and in vivo. The results of the study showed that intraperitoneal administration of cyclophosphamide (75 mg/kg of body weight) caused a significant increase (P<0.05) in the malondialdehyde (MDA) content of the brain; however, dietary inclusion of Annatto seed extracts (0.1% and 0.2%) caused dose-dependent significant decrease (P<0.05) in the MDA content of the brain. Likewise, the extracts also caused dose-dependent inhibition of the elevated serum glutamate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase and total bilirubin. However, the non-polar extract had significantly higher inhibitory effects on the elevated MDA production in brain and serum liver function markers. This higher protective effect of the non-polar extract could be attributed to its higher antioxidant properties as typified by its significantly higher (P<0.05) reducing power, free-radical scavenging and Fe (II) chelating ability. Therefore, dietary inclusion of Annato seed extracts as food colourant could prevent oxidative stress occasioned by cyclophosphamide administration, but the non-polar extract is a better protectant. PMID:20137904

  14. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  15. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material.

    PubMed

    Makino, Kotaro; Saito, Yuta; Fons, Paul; Kolobov, Alexander V; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2016-01-01

    Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c-axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c-axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics. PMID:26805401

  16. Controlling pulse delay by light and low magnetic fields: slow light in emerald induced by transient spectral hole-burning.

    PubMed

    Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander

    2013-11-15

    Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time. PMID:24322070

  17. Wave trains induced by circularly polarized electric fields in cardiac tissues.

    PubMed

    Feng, Xia; Gao, Xiang; Tang, Juan-Mei; Pan, Jun-Ting; Zhang, Hong

    2015-01-01

    Clinically, cardiac fibrillation caused by spiral and turbulent waves can be terminated by globally resetting electric activity in cardiac tissues with a single high-voltage electric shock, but it is usually associated with severe side effects. Presently, a promising alternative uses wave emission from heterogeneities induced by a sequence of low-voltage uniform electric field pulses. Nevertheless, this method can only emit waves locally near obstacles in turbulent waves and thereby requires multiple obstacles to globally synchronize myocardium and thus to terminate fibrillation. Here we propose a new approach using wave emission from heterogeneities induced by a low-voltage circularly polarized electric field (i.e., a rotating uniform electric field). We find that, this approach can generate circular wave trains near obstacles and they propagate outwardly. We study the characteristics of such circular wave trains and further find that, the higher-frequency circular wave trains can effectively suppress spiral turbulence.

  18. Wave trains induced by circularly polarized electric fields in cardiac tissues

    PubMed Central

    Feng, Xia; Gao, Xiang; Tang, Juan-Mei; Pan, Jun-Ting; Zhang, Hong

    2015-01-01

    Clinically, cardiac fibrillation caused by spiral and turbulent waves can be terminated by globally resetting electric activity in cardiac tissues with a single high-voltage electric shock, but it is usually associated with severe side effects. Presently, a promising alternative uses wave emission from heterogeneities induced by a sequence of low-voltage uniform electric field pulses. Nevertheless, this method can only emit waves locally near obstacles in turbulent waves and thereby requires multiple obstacles to globally synchronize myocardium and thus to terminate fibrillation. Here we propose a new approach using wave emission from heterogeneities induced by a low-voltage circularly polarized electric field (i.e., a rotating uniform electric field). We find that, this approach can generate circular wave trains near obstacles and they propagate outwardly. We study the characteristics of such circular wave trains and further find that, the higher-frequency circular wave trains can effectively suppress spiral turbulence. PMID:26302781

  19. Humidity effects on tip-induced polarization switching in lithium niobate

    SciTech Connect

    Ievlev, A. V.; Morozovska, A. N.; Shur, V. Ya.; Kalinin, S. V.

    2014-03-03

    In the last several decades, ferroelectrics have attracted much attention as perspective materials for nonlinear optics and data storage devices. Scanning probe microscopy (SPM) has emerged as a powerful tool both for studies of domain structures with nanoscale spatial resolution and for writing the isolated nanodomains by local application of the electric field. Quantitative analysis of the observed behavior requires understanding the role of environmental factors on imaging and switching process. Here, we study the influence of the relative humidity in the SPM chamber on tip-induced polarization switching. The observed effects are attributed to existence of a water meniscus between the tip and the sample surface in humid atmosphere. These results are important for a deeper understanding of complex investigations of ferroelectric materials and their applications and suggest the necessity for fundamental studies of electrocapillary phenomena at the tip-surface junction and their interplay with bias-induced materials responses.

  20. Self-induced polar order of active Brownian particles in a harmonic trap.

    PubMed

    Hennes, Marc; Wolff, Katrin; Stark, Holger

    2014-06-13

    Hydrodynamically interacting active particles in an external harmonic potential form a self-assembled fluid pump at large enough Péclet numbers. Here, we give a quantitative criterion for the formation of the pump and show that particle orientations align in the self-induced flow field in surprising analogy to ferromagnetic order where the active Péclet number plays the role of inverse temperature. The particle orientations follow a Boltzmann distribution Φ(p) ∼ exp(Ap(z)) where the ordering mean field A scales with the active Péclet number and polar order parameter. The mean flow field in which the particles' swimming directions align corresponds to a regularized Stokeslet with strength proportional to swimming speed. Analytic mean-field results are compared with results from Brownian dynamics simulations with hydrodynamic interactions included and are found to capture the self-induced alignment very well.

  1. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel-Nafion-membrane system

    NASA Astrophysics Data System (ADS)

    Park, Sinwook; Yossifon, Gilad

    2016-06-01

    The presence of a floating electrode array located within the depletion layer formed due to concentration polarization across a microchannel-membrane interface device may produce not only induced-charge electro-osmosis (ICEO) but also bipolar current resulting from the induced Faradaic reaction. It has been shown that there exists an optimal thickness of a thin dielectric coating that is sufficient to suppress bipolar currents but still enables ICEO vortices that stir the depletion layer, thereby affecting the system's current-voltage response. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the depletion layer length.

  2. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel-Nafion-membrane system.

    PubMed

    Park, Sinwook; Yossifon, Gilad

    2016-06-01

    The presence of a floating electrode array located within the depletion layer formed due to concentration polarization across a microchannel-membrane interface device may produce not only induced-charge electro-osmosis (ICEO) but also bipolar current resulting from the induced Faradaic reaction. It has been shown that there exists an optimal thickness of a thin dielectric coating that is sufficient to suppress bipolar currents but still enables ICEO vortices that stir the depletion layer, thereby affecting the system's current-voltage response. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the depletion layer length. PMID:27415327

  3. Edge-induced spin polarization in two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Bokes, P.; Horváth, F.

    2010-03-01

    We characterize the role of the spin-orbit coupling between electrons and the confining potential of the edge in nonequilibrium two-dimensional homogeneous electronic gas. We derive a simple analytical result for the magnitude of the current-induced spin polarization at the edge and prove that it is independent of the details of the confinement edge potential and the electronic density within realistic values of the parameters of the considered models. While the amplitude of the spin accumulation is comparable to the experimental values of extrinsic spin-Hall effect in similar samples, the spatial extent of edge-induced effect is restricted to the distances on the order of Fermi wavelength (˜10nm) .

  4. Humidity effects on tip-induced polarization switching in lithium niobate

    SciTech Connect

    Ievlev, Anton; Morozovska, A. N.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2014-01-01

    In the last several decades, ferroelectrics have attracted much attention as perspective materials for nonlinear optics and data storage devices. Scanning probe microscopy (SPM) has emerged as a powerful tool both for studies of domain structures with nanoscale spatial resolution and for writing the isolated nanodomains by local application of the electric field. Quantitative analysis of the observed behavior requires understanding the role of environmental factors on imaging and switching process. Here we study the influence of the relative humidity in the SPM chamber on tip-induced polarization switching. The observed effects are attributed to existence of a water meniscus between the tip and the sample surface in humid atmosphere. These results are important for a deeper understanding of complex investigations of ferroelectric materials and their applications, and suggest the necessity for fundamental studies of electrocapillary phenomena at the tip-surface junction and their interplay with bias-induced materials responses.

  5. Tight-binding model study of substrate induced pseudo-spin polarization and magnetism in mono-layer graphene

    NASA Astrophysics Data System (ADS)

    Sahu, Sivabrata; Rout, G. C.

    2016-06-01

    We present here a tight-binding model study of generation of magnetism and pseudo-spin polarization in monolayer graphene arising due to substrate, impurity and Coulomb correlation effects. The model Hamiltonian contains the first-, second- and third-nearest-neighbor hopping integrals for π electrons of graphene besides substrate induced gap, impurity interactions and Coulomb correlation of electrons. The Hubbard type Coulomb interactions present in both the sub-lattices A and B are treated within the mean-field approximation. The electronic Green's functions are calculated by using Zubarev's technique and hence the electron occupancies of both sub-lattices are calculated for up and down spins separately. These four temperature dependent occupancies are calculated numerically and self-consistently. Then we have calculated the temperature dependent pseudo-spin polarization, ferromagnetic and anti-ferromagnetic magnetizations. We observe that there exists pseudo-spin polarization for lower Coulomb energy, u < 2.2t1 and pseudo-spin polarization is enhanced with substrate induced gap and impurity effect. For larger Coulomb energy u > 2.5t1, there exists pseudo-spin polarization (p); while ferromagnetic (m) and antiferromagnetic (pm) magnetizations exhibit oscillatory behavior. With increase of the substrate induced gap, the ferromagnetic and antiferromagnetic transition temperatures are enhanced with increase of the substrate induced gap; while polarization (p) is enhanced in magnitude only.

  6. Paracoccin Induces M1 Polarization of Macrophages via Interaction with TLR4.

    PubMed

    Freitas, Mateus S; Oliveira, Aline F; da Silva, Thiago A; Fernandes, Fabrício F; Gonçales, Relber A; Almeida, Fausto; Roque-Barreira, Maria C

    2016-01-01

    The fungal human pathogen Paracoccidioides brasiliensis contains paracoccin (PCN), a multi-domain protein that has lectin and N-acetyl-glucosaminidase activities, which account for its effects on the growth and morphogenesis of the fungus and on the activation of host macrophages through its interaction with TLR N-glycans. With the purpose of detailing the knowledge on the effects of PCN on macrophages, we used recombinant PCN expressed in Pichia pastoris (p-rPCN) to stimulate isolated murine peritoneal macrophages. The activation of these cells manifested through the release of high levels of inflammatory mediators, such as nitric oxide, TNF-α, IL-12p40, and IL-6. Furthermore, peritoneal macrophages stimulated with p-rPCN increased the relative expression of STAT1, SOCS3, and iNOS2 mRNA (M1 polarization markers). However, the expression of Arginase-1, Ym-1, and FIZZ1 (M2 polarization markers) remained at basal levels. Interestingly, the observed M1 macrophages' polarization triggered by p-rPCN was abolished in cells obtained from knockout Toll-like receptor-4 mice. In this case, the p-rPCN-induced production of pro-inflammatory mediators was blocked too. These results demonstrate that the classical activation of macrophages induced by paracoccin depends on TLR4. Taken together, the results of our study indicate that paracoccin acts as a TLR agonist able to modulate immunity and exerts biological activities that favor its applicability as an immunotherapeutic agent to combat systemic fungal infections. PMID:27458431

  7. Paracoccin Induces M1 Polarization of Macrophages via Interaction with TLR4

    PubMed Central

    Freitas, Mateus S.; Oliveira, Aline F.; da Silva, Thiago A.; Fernandes, Fabrício F.; Gonçales, Relber A.; Almeida, Fausto; Roque-Barreira, Maria C.

    2016-01-01

    The fungal human pathogen Paracoccidioides brasiliensis contains paracoccin (PCN), a multi-domain protein that has lectin and N-acetyl-glucosaminidase activities, which account for its effects on the growth and morphogenesis of the fungus and on the activation of host macrophages through its interaction with TLR N-glycans. With the purpose of detailing the knowledge on the effects of PCN on macrophages, we used recombinant PCN expressed in Pichia pastoris (p-rPCN) to stimulate isolated murine peritoneal macrophages. The activation of these cells manifested through the release of high levels of inflammatory mediators, such as nitric oxide, TNF-α, IL-12p40, and IL-6. Furthermore, peritoneal macrophages stimulated with p-rPCN increased the relative expression of STAT1, SOCS3, and iNOS2 mRNA (M1 polarization markers). However, the expression of Arginase-1, Ym-1, and FIZZ1 (M2 polarization markers) remained at basal levels. Interestingly, the observed M1 macrophages’ polarization triggered by p-rPCN was abolished in cells obtained from knockout Toll-like receptor-4 mice. In this case, the p-rPCN-induced production of pro-inflammatory mediators was blocked too. These results demonstrate that the classical activation of macrophages induced by paracoccin depends on TLR4. Taken together, the results of our study indicate that paracoccin acts as a TLR agonist able to modulate immunity and exerts biological activities that favor its applicability as an immunotherapeutic agent to combat systemic fungal infections. PMID:27458431

  8. The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2014-12-01

    The use of most conventional electrode configurations in electrical resistivity survey is often time consuming and labour intensive, especially when using manual data acquisition systems. Often, data acquisition teams tend to reduce data density so as to speed up field operation thereby reducing the survey cost; but this could significantly degrade the quality and resolution of the inverse models. In the present work, the potential of using the multiple-gradient array, a non-conventional electrode configuration, for practical cost effective and rapid subsurface resistivity and induced polarization mapping was evaluated. The array was used to conduct 2D resistivity and time-domain induced polarization imaging along two traverses in a study site at Ota, southwestern Nigeria. The subsurface was characterised and the main aquifer delineated using the inverse resistivity and chargeability images obtained. The performance of the multiple-gradient array was evaluated by correlating the 2D resistivity and chargeability images with those of the conventional Wenner array as well as the result of some soundings conducted along the same traverses using Schlumberger array. The multiple-gradient array has been found to have the advantage of measurement logistics and improved image resolution over the Wenner array.

  9. Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature

    NASA Astrophysics Data System (ADS)

    Hanzig, Juliane; Zschornak, Matthias; Hanzig, Florian; Mehner, Erik; Stöcker, Hartmut; Abendroth, Barbara; Röder, Christian; Talkenberger, Andreas; Schreiber, Gerhard; Rafaja, David; Gemming, Sibylle; Meyer, Dirk C.

    2013-07-01

    Local reversible structural changes in SrTiO3 single crystals in an external electric field are induced by oxygen redistribution. We present in situ x-ray diffraction measurements during and immediately after electroformation. Several reflections are monitored and show an elongation of the cubic unit cell of strontium titanate. Raman investigations verify that the expansion of the unit cell involves a transition from the centrosymmetric to a lower symmetry phase. During a complete formation cycle, including the hold time of the electric field and relaxation time without field, two different dynamics are observed for the reversible transitions from cubic symmetry to tetragonal distortion: a slow one during the increase of the lattice constant in field direction and a fast one after switching off the electric field. Based on the experimental data, we propose the formation of a polar strontium titanate unit cell at room temperature stabilized by the electric field, which is referred to as migration-induced field-stabilized polar phase.

  10. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals.

    PubMed

    Ievlev, Anton V; Alikin, Denis O; Morozovska, Anna N; Varenyk, Olexander V; Eliseev, Eugene A; Kholkin, Andrei L; Shur, Vladimir Ya; Kalinin, Sergei V

    2015-01-27

    Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching at nonpolar cuts of uniaxial ferroelectrics. In this case, the in-plane component of the polarization vector switches, allowing for detailed observations of the resultant domain morphologies. We observe a surprising variability of resultant domain morphologies stemming from a fundamental instability of the formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling the vertical tip position allows the polarity of the switching to be controlled. This represents a very unusual form of symmetry breaking where mechanical motion in the vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.

  11. The role of polarization fields in Auger-induced efficiency droop in nitride-based light-emitting diodes

    SciTech Connect

    Vaxenburg, Roman; Lifshitz, Efrat; Rodina, Anna; Efros, Alexander L.

    2013-11-25

    The rates of non-radiative Auger recombination (AR) and radiative recombination (RR) in polar GaN/AlN quantum wells (QWs) are calculated. It is shown that in these QWs the polarization field not only suppresses the RR but also strongly enhances the rate of AR. As a result, the polarization field triggers the Auger-induced efficiency droop, which, according to the calculations, does not exist in non-polar GaN/AlN QWs. We demonstrate that in polar QWs the droop can be overcome by suppression of AR using a gradual variation of the QW layer composition, which compensates the effect of the electric field acting on holes.

  12. Stress-induced birefringence and fabrication of in-fiber polarization devices by controlled femtosecond laser irradiations.

    PubMed

    Yuan, Lei; Cheng, Baokai; Huang, Jie; Liu, Jie; Wang, Hanzheng; Lan, Xinwei; Xiao, Hai

    2016-01-25

    Optical birefringence was created in a single-mode fiber by introducing a series of symmetric cuboid stress rods on both sides of the fiber core along the fiber axis using a femtosecond laser. The stress-induced birefringence was estimated to be 2.4 × 10(-4) at the wavelength of 1550 nm. By adding the desired numbers of stressed rods, an in-fiber quarter waveplate was fabricated with a insertion loss of 0.19 dB. The stress-induced birefringence was further explored to fabricate in-fiber polarizers based on the polarization-dependent long-period fiber grating (LPFG) structure. A polarization extinction ratio of more than 20 dB was observed at the resonant wavelength of 1523.9 nm. The in-fiber polarization devices may be useful in optical communications and fiber optic sensing applications. PMID:26832490

  13. Polar lipids from the marine macroalga Palmaria palmata inhibit lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells.

    PubMed

    Banskota, Arjun H; Stefanova, Roumiana; Sperker, Sandra; Lall, Santosh P; Craigie, James S; Hafting, Jeff T; Critchley, Alan T

    2014-05-01

    The EtOAc soluble fraction of a MeOH/CHCl3 extract of Palmaria palmata showed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide (LPS)-induced NO production in murine RAW264.7 cells. NO inhibition-guided isolation led to identification of three new polar lipids including a sulfoquinovosyl diacylglycerol (SQDG) (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol (1) and two phosphatidylglycerols, 1-O-eicosapentaenoyl-2-O-trans-3-hexadecenoyl-3-phospho-(1'-glycerol)-glycerol (3) and 1-O-eicosapentaenoyl-2-O-palmitoyl-3-phospho-(1'-glycerol)-glycerol (4) from the EtOAc fraction. Seven known lipids were also isolated including a SQDG (2), a phospholipid (5) and five galactolipids (6-10). Structures of the isolated lipids were elucidated by spectral analyses. The isolated SQDGs, phosphatidylglycerols and phospholipid possessed strong and dose-dependent NO inhibitory activity compared to N(G)-methyl-L-arginine acetate salt (L-NMMA), a well-known NO inhibitor used as a positive control. Further study suggested that these polar lipids suppressed NO production through down-regulation of inducible nitric oxide synthase (iNOS). PMID:24569177

  14. Statistical features of the global polarity reversal of the Venusian induced magnetosphere in response to the polarity change in interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Vech, Daniel; Stenberg, Gabriella; Nilsson, Hans; Edberg, Niklas J. T.; Opitz, Andrea; Szegő, Károly; Zhang, Tielong; Futaana, Yoshifumi

    2016-05-01

    In this study we present the first statistical analysis on the effects of heliospheric current sheet crossings on the induced magnetosphere of Venus. These events are of particular interest because they lead to the reconfiguration of the induced magnetosphere with opposite polarity. We use a statistical approach based on 117 orbit pairs, and we study the spatial distribution of the heavy ion flux measurements in the plasma environment of Venus. The average and median heavy ion flux measurements are compared before and after the polarity reversal events. The results show that after the events the average and median heavy ion fluxes in the magnetotail are reduced by the factors of 0.75 ± 0.09 and 0.52, respectively. We find that even if a passage of a current sheet is a short time scale event lasting about 10 min, its effect on the near-Venus plasma environment lasts for a few hours. We conclude that the observations show similarities to the previous comet studies and the polarity reversal of the induced magnetosphere might be accompanied with dayside reconnection and magnetic disconnection of the plasma tail from the planetary ionosphere.

  15. Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation

    PubMed Central

    Redente, Elizabeth F.; Higgins, David M.; Dwyer-Nield, Lori D.; Orme, Ian M.; Gonzalez-Juarrero, Mercedes; Malkinson, Alvin M.

    2010-01-01

    Alveolar macrophages and BDMCs undergo sequential biochemical changes during the chronic inflammatory response to chemically induced lung carcinogenesis in mice. Herein, we examine two chronic lung inflammation models—repeated exposure to BHT and infection with Mycobacterium tuberculosis—to establish whether similar macrophage phenotype changes occur in non-neoplastic pulmonary disease. Exposure to BHT or M. tuberculosis results in pulmonary inflammation characterized by an influx of macrophages, followed by systemic effects on the BM and other organs. In both models, pulmonary IFN-γ and IL-4 production coincided with altered polarization of alveolar macrophages. Soon after BHT administration or M. tuberculosis infection, IFN-γ content in BALF increased, and BAL macrophages became classically (M1) polarized, as characterized by increased expression of iNOS. As inflammation progressed in both models, the amount of BALF IFN-γ content and BAL macrophage iNOS expression decreased, and BALF IL-4 content and macrophage arginase I expression rose, indicating alternative/M2 polarization. Macrophages present in M. tuberculosis-induced granulomas remained M1-polarized, implying that these two pulmonary macrophage populations, alveolar and granuloma-associated, are exposed to different activating cytokines. BDMCs from BHT-treated mice displayed polarization profiles similar to alveolar macrophages, but BDMCs in M. tuberculosis-infected mice did not become polarized. Thus, only alveolar macrophages in these two models of chronic lung disease exhibit a similar progression of polarization changes; polarization of BDMCs was specific to BHT-induced pulmonary inflammation, and polarization of granuloma macrophages was specific to the M. tuberculosis infection. PMID:20360403

  16. The X-ray spectrum and spectral energy distribution of FIRST J155633.8+351758: a LoBAL quasar with a probable polar outflow

    NASA Astrophysics Data System (ADS)

    Berrington, Robert C.; Brotherton, Michael S.; Gallagher, Sarah C.; Ganguly, Rajib; Shang, Zhaohui; DiPompeo, Michael; Chatterjee, Ritaban; Lacy, Mark; Gregg, Michael D.; Hall, Patrick B.; Laurent-Muehleisen, S. A.

    2013-12-01

    We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD Imaging Spectrometer S-array (ACIS-S) observation of the reddened, radio-selected, highly polarized `FeLoBAL' quasar FIRST J1556+3517. We investigated a number of models of varied sophistication to fit the 531-photon spectrum. These models ranged from simple power laws to power laws absorbed by hydrogen gas in differing ionization states and degrees of partial covering. Preferred fits indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity, i.e. an intrinsic, dereddened and unabsorbed optical to X-ray spectral index of -1.7. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter at a >99 per cent confidence for a neutral hydrogen absorber model). Absorption is present, with a column density a few times 1023 cm-2, with both partially ionized models and partially covering neutral hydrogen models providing good fits. We present several lines of argument that suggest the fraction of X-ray emissions associated with the radio jet is not large. We combine our Chandra data with observations from the literature to construct the spectral energy distribution of FIRST J1556+3517 from radio to X-ray energies. We make corrections for Doppler beaming for the pole-on radio jet, optical dust reddening and X-ray absorption, in order to recover a probable intrinsic spectrum. The quasar FIRST J1556+3517 seems to be an intrinsically normal radio-quiet quasar with a reddened optical/UV spectrum, a Doppler-boosted but intrinsically weak radio jet and an X-ray absorber not dissimilar from that of other broad absorption line quasars.

  17. Study case - Induced Polarization response from a BTEX contaminated site in Brazil

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Elis, V.; Minozzo, M.

    2011-12-01

    A hydrocarbon contaminated site in Brazil was investigated using DC-resistivity and Induced Polarization (IP) methods. The study area is a chemical industry facility that manufactures paint for automobiles. The industrial process involves the use of many hydrocarbon derivative products, including BTEX (benzene, toluene, ethyl benzene and xylene) and organic chlorides. The area was contaminated by some (not documented) accidental spills of BTEX throughout many years. Monitoring wells revealed concentrations from a few ppm to hundreds ppm of BTEX around the area, as well as other compounds. Two soil samples were collected from an area where some spills where known to have happened. Soil analyses of these samples found the presence of microbes, and therefore biodegradation is believed to be occurring at the site. The objective of this study is to relate the IP response distribution to the presence of contamination and/or microbial activity. The geophysical survey consisted in a rectangular mesh composed of 15 parallel lines with 60 meters of extension, using dipole-dipole array. Lines were spaced by 3 meters. Metallic electrodes were used for current injection, and non-polarizing electrodes (Cu/CuSO4) for potential measurement. Current was injected in cycles of 2 seconds. IP measurements were recorded after 160 milliseconds delay of current shut off, and integration time windows were 120, 220, 420, and 820 milliseconds. All data were concatenated into a single data set and submitted to 3D inversion routine. A conductive zone (resistivity less than 100 ohm.m and chargeability less than 2mV/V) was observed where microbes were found. This feature was interpreted as possibly due to natural biodegradation process, that increases total dissolved salts as a result of mineral weathering by organic acids produced in the degradation process. Normalized chargeability (chargeability divided by resistivity) showed an enhanced polarization zone where microbes were detected. This

  18. Macrophage Polarization in IL-10 Treatment of Particle-Induced Inflammation and Osteolysis.

    PubMed

    Jiang, Jianhao; Jia, Tanghong; Gong, Weiming; Ning, Bin; Wooley, Paul H; Yang, Shang-You

    2016-01-01

    This study investigated the therapeutic influence and potential mechanism of IL-10 in ameliorating orthopedic debris particle-induced inflammation and osteolysis. A murine air pouch with bone implantation and polyethylene particles was also used to evaluate the therapeutic effects of IL-10. The data suggested that the particle challenges significantly promoted macrophage activation and osteoclastogenesis, with dramatically increased macrophage infiltration into the pouch membranes and elevated tartrate-resistant acid phosphatase-positive cell deposition. Immunohistochemical stains revealed a significantly higher ratio of induced nitric oxide synthase-expressing cells in the particle-challenged group; treatment with IL-10 resulted in marked switching to CD163(+) cells. Also, IL-10 effectively reduced tartrate-resistant acid phosphatase-positive stained cells in the pouch membranes, and minimized the bone mineral density loss compared with untreated samples. Real-time PCR and Western blot examination indicated that IL-10 treatment significantly diminished the particle-induced IL-1β expression but promoted expression of CD163, transforming growth factor-β1, and CCR2. Furthermore, IL-10 significantly inhibited the ultra-high-molecular-weight polyethylene particle-elevated phospho-STAT1 and phospho-NF-κB p65 productions, and promoted phospho-STAT3 expression. Overall, the data indicate the pivotal effects of IL-10 on macrophage polarization. The effects of IL-10 in ameliorating local inflammation and osteolysis may be associated with macrophage polarization through the up-regulation of the Janus activating kinase/STAT3 signaling pathway, and the down-regulation of NF-κB and Janus activating kinase/STAT1 expression.

  19. A Comparison of Propofol- and Dexmedetomidine-induced Electroencephalogram Dynamics Using Spectral and Coherence Analysis

    PubMed Central

    Akeju, Oluwaseun; Pavone, Kara J.; Westover, M. Brandon; Vazquez, Rafael; Prerau, Michael J.; Harrell, Priscilla G.; Hartnack, Katharine E.; Rhee, James; Sampson, Aaron L.; Habeeb, Kathleen; Lei, Gao; Pierce, Eric T.; Walsh, John L.; Brown, Emery N.; Purdon, Patrick L.

    2014-01-01

    Background Electroencephalogram patterns observed during sedation with dexmedetomidine appear similar to those observed during general anesthesia with propofol. This is evident with the occurrence of slow (0.1–1 Hz), delta (1–4 Hz), propofol-induced alpha (8–12 Hz), and dexmedetomidine-induced spindle (12–16 Hz) oscillations. However, these drugs have different molecular mechanisms and behavioral properties, and are likely accompanied by distinguishing neural circuit dynamics. Methods We measured 64-channel electroencephalogram under dexmedetomidine (n = 9) and propofol (n = 8) in healthy volunteers, 18–36 years of age. We administered dexmedetomidine with a 1mcg/kg loading bolus over 10 minutes, followed by a 0.7mcg/kg/hr infusion. For propofol, we used a computer controlled infusion to target the effect-site concentration gradually from and 0 µg/mL to 5 µg/mL. Volunteers listened to auditory stimuli and responded by button-press to determine unconsciousness. We analyzed the electroencephalogram using multitaper spectral and coherence analysis. Results Dexmedetomidine was characterized by spindles with maximum power and coherence at ~13 Hz, (mean±std; power, −10.8dB±3.6; coherence, 0.8±0.08), while propofol was characterized with frontal alpha oscillations with peak frequency at ~11 Hz (power, 1.1dB±4.5; coherence, 0.9±0.05). Notably, slow oscillation power during a general anesthetic state under propofol (power, 13.2dB±2.4) was much larger than during sedative states under both propofol (power, −2.5dB±3.5) and dexmedetomidine (power, −0.4dB±3.1). Conclusion Our results indicate that dexmedetomidine and propofol place patients into different brain states, and suggests that propofol enables a deeper state of unconsciousness by inducing large amplitude slow oscillations that produce prolonged states of neuronal silence. PMID:25187999

  20. The MSHA strain of Pseudomonas aeruginosa (PA-MSHA) inhibits gastric carcinoma progression by inducing M1 macrophage polarization.

    PubMed

    Wang, Changming; Hu, Zunqi; Zhu, Zhenxin; Zhang, Xin; Wei, Ziran; Zhang, Yu; Hu, Dali; Cai, Qingping

    2016-05-01

    Macrophages play crucial roles in promoting tumor development and progression. In the present study, we found that the mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA) was efficient in inducing M1 macrophage polarization. PA-MSHA treatment increases expression of M1-related cytokines and promotes activation of murine peritoneal macrophages (MPM). Interestingly, PA-MSHA inhibits cell proliferation and migration and induces the apoptosis of gastric carcinoma cells. These effects of PA-MSHA on M1 polarization were associated with activation of NF-κB expression. Thus, inducing polarization of M1 by PA-MSHA may be one potential strategy for inhibiting gastric carcinoma progression in mice.

  1. Induced polarization dependence on pore space geometry: Empirical observations and mechanistic predictions

    NASA Astrophysics Data System (ADS)

    Weller, A.; Slater, L. D.

    2015-12-01

    We use an extensive database to compare empirical observations and previously proposed empirical models against recently developed mechanistic formulations for the induced polarization (IP) response in porous media as a function of pore space geometry and interfacial chemistry. These comparisons support the argument that the pore-volume normalized internal surface (Spor) is the most important geometric parameter influencing the polarization. The specific polarizability derived from the empirical relationship between imaginary conductivity σ″ and Spor is independent of the porosity. By contrast, equivalent specific polarizability terms in recently proposed mechanistic models are found to be significantly correlated with porosity, and thus do not appear to represent an interfacial chemistry factor independent of the pore space geometry. Furthermore, the database shows no evidence for a significant decrease in the counterion mobility of clayey materials relative to clay-free materials, as postulated in recent studies. On the contrary, a single value of cp is consistent with no significant differences in ionic mobility given that all samples were saturated with a NaCl solution close to a common salinity of about 100 mS/m.

  2. Influence of physical parameters to time domain induced polarization (TDIP) response

    NASA Astrophysics Data System (ADS)

    Yatini, Santoso, D.; Laesanpura, A.; Sulistijo, B.

    2016-03-01

    Induced Polarization (IP) method is one of geophysical method. This method is develop the resistivity method with additional measurement in ability of the ground to store electrical charge. Electrode polarization process is a major factor to the IP response in medium that contain metallic minerals. The relationship between the metallic mineral content and TDIP will be quantized. The TDIP response is influenced by porosity, grainsize, clay and metallic mineral content. Measurement is performed of artificial samples that made of iron ore mixed with quartz and cement. The samples are varied in iron ore content (0%-80%), grainsize (65-300) micron and clay content (0%-25%). If Fe-total content greather, then rise exponentially in chargeability M=1.53exp(0.029Fe). When the density becomes larger, chargeability rise exponentially M=0.347exp(0.852Dens). The presence of clay will enlarge the chargeability and minimize resistivity exponentially Rho=15.06exp(0.02C). Chargeability is lower and resistivity is higher for larger grainsize. Increasing water saturation will reduce the value of resistivity Rho=600,7exp(-0.028W) and Rho=191.4exp(- 0.025W) for Fe-total content of 28.3% and 21.2%, respectively.

  3. Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings

    SciTech Connect

    Genin, F.Y.; Stolz, C.J.

    1996-08-01

    Hafnium-silica multilayer mirrors and polarizers were deposited by e-beam evaporation onto BK7 glass substrates. The mirrors and polarizers were coated for operation at 1053 nm at 45{degree} and at Brewster`s angle (56{degree}), respectively. They were tested with a single 3-ns laser pulse. Morphology of the laser-induced damage was characterized by optical and scanning electron microscopy. Four distinct damage morphologies were found: pits, flatbottom pits, scalds, and delaminates. The pits and flat bottom pits (<30{mu}m dia) were detected at lower fluences (as low as 5 J/cm{sup 2}). The pits seemed to result from ejection of nodular defects by causing local enhancement of the electric field. Scalds and delaminates could be observed at higher fluences (above 13 J/cm{sup 2}) and seemed to result from the formation of plasmas on the surface. These damage types often originated at pits and were less than 300 {mu}m diameter; their size increased almost linearly with fluence. Finally, effects of the damage on the beam (reflectivity degradation and phase modulations) were measured.

  4. Low shear stress induces M1 macrophage polarization in murine thin-cap atherosclerotic plaques.

    PubMed

    Seneviratne, Anusha N; Cole, Jennifer E; Goddard, Michael E; Park, Inhye; Mohri, Zahra; Sansom, Stephen; Udalova, Irina; Krams, Rob; Monaco, Claudia

    2015-12-01

    Macrophages, a significant component of atherosclerotic plaques vulnerable to acute complications, can be pro-inflammatory (designated M1), regulatory (M2), lipid- (Mox) or Heme-induced (Mhem). We showed previously that low (LSS) and oscillatory (OSS) shear stress cause thin-cap fibroatheroma and stable smooth muscle cell-rich plaque formation respectively in ApoE-knockout (ApoE(-/-)) mice. Here we investigated whether different shear stress conditions relate to specific changes in macrophage polarization and plaque morphology by applying a shear stress-altering cast to the carotid arteries of high fat-fed ApoE(-/-) mice. The M1 markers iNOS and IRF5 were highly expressed in macrophage-rich areas of LSS lesions compared to OSS lesions 6weeks after cast placement, while the M2 marker Arginase-1, and Mox/Mhem markers HO-1 and CD163 were elevated in OSS lesions. Our data indicates shear stress could be an important determinant of macrophage polarization in atherosclerosis, with low shear promoting M1 programming.

  5. Errors induced when polarization is neglected in radiance calculations for an atmosphere-ocean system

    NASA Astrophysics Data System (ADS)

    Kattawar, George W.; Adams, Charles N.

    1992-12-01

    Virtually all calculations to date dealing with radiance calculations in an atmosphere-ocean system have been performed using a scalar theory approach where polarization effects have been neglected. This approach is always in error; however, neither the nature nor the magnitude of the errors induced has been studied. We have written a large scale Monte Carlo program to calculate the complete four component Stokes vector at any region in a fully inhomogenous atmosphere-ocean system with inclusion of a wind ruffled stochastic interface. The program uses as input the Mueller matrices for both the aerosols in the atmosphere as well as the hydrosols in the ocean. The Mueller matrix for the stochastic interface is also accurately accounted for. The correlated sampling technique is used to compute radiance distributions for both the scalar and the Stokes vector formulations in a single computer run, thus allowing a direct comparison of the errors induced. Results are presented for a realistic atmosphere-ocean system to show the effects of the volume scattering function, the dielectric interface, and waves on the induced errors.

  6. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    PubMed Central

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  7. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots.

    PubMed

    Tohgha, Urice; Deol, Kirandeep K; Porter, Ashlin G; Bartko, Samuel G; Choi, Jung Kyu; Leonard, Brian M; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2013-12-23

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by postsynthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Time Dependent Density Functional Theory (TDDFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The origin of the induced chirality is consistent with the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand.

  8. A precise extraction of the induced polarization in the 4He(e,e'p)3H reaction

    SciTech Connect

    S.P. Malace, M. Paolone, S. Strauch

    2011-01-01

    We measured with unprecedented precision the induced polarization Py in 4He(e,e'p)3H at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2. The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are over-estimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin independent charge-exchange term in the latter calculation.

  9. The Cdc42/Par6/aPKC polarity complex regulates apoptosis-induced compensatory proliferation in epithelia

    PubMed Central

    Warner, Stephen J.; Yashiro, Hanako; Longmore, Gregory D.

    2010-01-01

    Summary Background In response to stress- or tissue damage-induced apoptosis, unaffected epithelial cells undergo compensatory proliferation to maintain the integrity of the epithelium. Proximal signals regulating this response are not fully appreciated, but JNK activity appears to be critical for both apoptosis and compensatory proliferation. Since disruption of epithelial cell apical-basal polarity, as can occur in early cancer development and is correlated with increased proliferation by means not fully characterized, we considered whether disruption of the various polarity complexes could provide signals identifying damaged epithelial cells, and thus lead to apoptosis-induced compensatory proliferation. Results We identify the Cdc42/Par6/aPKC Par polarity complex as uniquely and specifically regulating apoptosis-induced compensatory proliferation in Drosophila epithelia. Genetic depletion of individual components or disruption of complex formation and localization, but not other polarity complexes, induces JNK-dependent apoptosis and JNK-dependent compensatory proliferation following radiation injury. When apoptosis execution is blocked, by P35 expression, Cdc42/Par6/aPKC depleted tissues uniquely hyperproliferate leading to tissue/organ overgrowth. Disruption of Cdc42/Par6/aPKC leads to activation of JNK through increased Rho1-Rok activity, and Rok’s capacity to activate Myosin, but not F-actin. Conclusions We show that the Cdc42/Par6/aPKC polarity complex influences both a physiologic compensatory proliferation response after irradiation injury as well as a contrived compensatory non-cell autonomous hyperproliferation response when cell autonomous apoptosis, resulting from Cdc42/Par6/aPKC disruption, is inhibited. These results suggest the possibility that in cancer where apoptotic regulation is disrupted, loss of the Cdc42/Par6/aPKC polarity complex organization or localization could contribute to tumor hyperproliferation and explain how polarity

  10. Chiral Selective Chemistry Induced by Natural Selection of Spin-Polarized Electrons.

    PubMed

    Rosenberg, Richard A; Mishra, Debabrata; Naaman, Ron

    2015-06-15

    The search to understand the origin of homochirality in nature has been ongoing since the time of Pasteur. Previous work has shown that DNA can act as a spin filter for low-energy electrons and that spin-polarized secondary electrons produced by X-ray irradiation of a magnetic substrate can induce chiral selective chemistry. In the present work it is demonstrated that secondary electrons from a substrate that are transmitted through a chiral overlayer cause enantiomeric selective chemistry in an adsorbed adlayer. We determine the quantum yields (QYs) for dissociation of (R)- or (S)-epichlorohydrin adsorbed on a chiral self-assembled layer of DNA on gold and on bare gold (for control). The results show that there is a significant difference in the QYs between the two enantiomers when adsorbed on DNA, but none when they are adsorbed on bare Au. We propose that the effect results from natural spin filtering effects cause by the chiral monolayer.

  11. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  12. COMPLEX RESISTIVITY OF FAULT GOUGE AND ITS SIGNIFICANCE FOR EARTHQUAKE LIGHTS AND INDUCED POLARIZATION.

    USGS Publications Warehouse

    Lockner, David A.; Byerlee, James D.

    1985-01-01

    The authors measured complex resistivity of 2 water-saturated San Andreas fault gouges from 10** minus **3 to 10**6 Hz and confining pressures of 0. 2 to 200 MPa. Consistent with earlier observations of clays and common rocks, large low-frequency permittivities were observed in all cases. Comparisons were made to induced polarization (IP) measurements by inversion of the data into the time domain, where it was found that principal features of the IP response curves were due to these large low-frequency permittivities. The results also suggest that following large earthquakes, significant electrical charge could remain for many seconds and could result in a variety of reported electromagnetic effects. Refs.

  13. Theory of magnetic-field-induced polarization flop in spin-spiral multiferroics

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masahito

    2015-12-01

    The magnetic-field-induced 90∘ flop of ferroelectric polarization P in a spin-spiral multiferroic material TbMnO3 is theoretically studied based on a microscopic spin model. I find that the direction of the P flop or the choice of +Pa or -Pa after the flop is governed by magnetic torques produced by the applied magnetic field H acting on the Mn spins and thus is selected in a deterministic way, in contradistinction to the naively anticipated probabilistic flop. This mechanism resolves a puzzle of the previously reported memory effect in the P direction depending on the history of the magnetic-field sweep, and enables controlled switching of multiferroic domains by externally applied magnetic fields. My Monte-Carlo analysis also uncovers that the magnetic structure in the P ∥a phase under H ∥b is not a previously anticipated simple a b -plane spin cycloid but a conical spin structure.

  14. Electric field induced spin and valley polarization within a magnetically confined silicene channel

    SciTech Connect

    Liu, Yiman; Zhou, Xiaoying; Zhou, Ma; Zhou, Guanghui; Long, Meng-Qiu

    2014-12-28

    We study the electronic structure and transport properties of Dirac electrons along a channel created by an exchange field through the proximity of ferromagnets on a silicene sheet. The multiple total internal reflection induces localized states in the channel, which behaves like an electron waveguide. An effect of spin- and valley-filtering originating from the coupling between valley and spin degrees is predicted for such a structure. Interestingly, this feature can be tuned significantly by locally applying electric and exchange fields simultaneously. The parameter condition for observing fully spin- and valley-polarized current is obtained. These findings may be observable in todays' experimental technique and useful for spintronic and valleytronic applications based on silicene.

  15. Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions.

    PubMed

    Bavali, A; Parvin, P; Mortazavi, S Z; Mohammadian, M; Mousavi Pour, M R

    2014-08-20

    Red/blue shifts of laser-induced fluorescence (LIF) are investigated using several guest dielectric nanoscatterers, such as TiO2, ZnO, Al2O3, and SiO2, in the host Rd6G, RdB, Coumarin 4, and Coumarin 7 ethanolic solutions. A couple of inflection points are identified varying nanoparticle (NP) density into dye solutions based on LIF spectroscopy. The inflection of the spectral shift exhibits that the suspension of NPs in dye solutions significantly involves a couple of competitive chemical and optical mechanisms during photon traveling in scattering media regarding ballistic and diffusive transport. It is shown that the low, medium, and high NP additives in fluorescent suspension induce blue, red, and blue spectral shifts, respectively.

  16. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

    DOE PAGES

    Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-03-24

    Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less

  17. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

    SciTech Connect

    Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-03-24

    Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantities from the actual GCP water model.

  18. 193-nm-laser-induced spectral shift in HR coated mirrors

    NASA Astrophysics Data System (ADS)

    Cho, Byungil; Rudisill, J. Earl; Danielewicz, Edward

    2012-12-01

    High-reflectance mirrors, fabricated by use of fluoride coating materials, were irradiated for extended periods by a 193-nm kilohertz repetitive laser source. This irradiation promoted a spectral shift in the reflectance band towards shorter wavelengths. In efforts to determine the mechanism for the observed spectral shifts, various models were investigated by employing such techniques as spectrophotometry, surface profile interferometry, coating design simulation, and x-ray diffraction. The result of the investigation indicates that layers near the top surface of the coating structure underwent densification, which resulted in the observed spectral shift.

  19. Enhancing Inhibition-Induced Plasticity in Tinnitus – Spectral Energy Contrasts in Tailor-Made Notched Music Matter

    PubMed Central

    Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts. PMID:25951605

  20. Enhancing inhibition-induced plasticity in tinnitus--spectral energy contrasts in tailor-made notched music matter.

    PubMed

    Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts.

  1. Spectral lineshapes of collision-induced absorption (CIA) and collision-induced light scattering (CILS) for molecular nitrogen using isotropic intermolecular potential. New insights and perspectives

    NASA Astrophysics Data System (ADS)

    El-Kader, M. S. A.; Mostafa, S. I.; Bancewicz, T.; Maroulis, G.

    2014-08-01

    The rototranslational collision-induced absorption (CIA) at different temperatures and collision-induced light scattering (CILS) at room temperature of nitrogen gas are analyzed in terms of new isotropic intermolecular potential, multipole-induced dipole functions and interaction-induced pair polarizability models, using quantum spectral lineshape computations. The irreducible spherical form for the induced operator of light scattering mechanisms was determined. The high frequency wings are discussed in terms of the collision-induced rotational Rayleigh effect and estimates for the dipole-octopole polarizability E4, is obtained and checked with the ab initio theoretical value. The quality of the present potential has been checked by comparing between calculated and experimental thermo-physical and transport properties over a wide temperature range, which are found to be in good agreement.

  2. Non-coherent continuum scattering as a line polarization mechanism

    SciTech Connect

    Del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J. E-mail: rsainz@iac.es

    2014-03-20

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  3. Revisiting the time domain induced polarization technique, from linearization to inversion

    NASA Astrophysics Data System (ADS)

    Kang, S.; Oldenburg, D.

    2015-12-01

    The induced polarization (IP) technique has been successful in mineral exploration, particularly for finding disseminated sulphide or porphyry deposits, but also in helping solve geotechnical and environmental problems. Electrical induced polarization (EIP) surveys use grounded electrodes and take measurements of the electric field while the current is both "on" and "off". Currently, 2D and 3D inversions of EIP data are generally carried out by first finding a background conductivity from the asymptotic "on-time" measurements. The DC resistivity problem is then linearized about that conductivity to obtain a linear relationship between the off-time data and the "pseudo-chargeability". The distribution of pseudo-chargeability in the earth is then interpreted within the context of the initial geoscience problem pursued. Despite its success, the current EIP implementation does have challenges. A fundamental assumption, that there is no electromagnetic induction (EM) effect, breaks down when the background is conductive. This is especially problematic in regions having conductive overburden. EM induction complicates, and sometimes overwhelms, the IP signal. To ameliorate this effect, we estimate the inductive signal, subtract it from the "off-time" data and invert the resultant IP data using the linearized formulation. We carefully examine the conditions under which this works. We also investigate the potential alterations to the linearized sensitivity function that are needed to allow a linearized inversion to be carried out. Inversions of EIP data recover a "chargeability" but this is not a uniquely defined quantity. There are multiple definitions of this property because there are a diverse number of ways in which an IP datum is defined. In time domain IP surveys, the data might be mV/V or a time-integrated voltage with units of ms. In reality however, data from an EIP survey have many time channels and each one can be inverted separately to produce a chargeability

  4. Field Trials of the Multi-Source Approach for Resistivity and Induced Polarization Data Acquisition

    NASA Astrophysics Data System (ADS)

    LaBrecque, D. J.; Morelli, G.; Fischanger, F.; Lamoureux, P.; Brigham, R.

    2013-12-01

    Implementing systems of distributed receivers and transmitters for resistivity and induced polarization data is an almost inevitable result of the availability of wireless data communication modules and GPS modules offering precise timing and instrument locations. Such systems have a number of advantages; for example, they can be deployed around obstacles such as rivers, canyons, or mountains which would be difficult with traditional 'hard-wired' systems. However, deploying a system of identical, small, battery powered, transceivers, each capable of injecting a known current and measuring the induced potential has an additional and less obvious advantage in that multiple units can inject current simultaneously. The original purpose for using multiple simultaneous current sources (multi-source) was to increase signal levels. In traditional systems, to double the received signal you inject twice the current which requires you to apply twice the voltage and thus four times the power. Alternatively, one approach to increasing signal levels for large-scale surveys collected using small, battery powered transceivers is it to allow multiple units to transmit in parallel. In theory, using four 400 watt transmitters on separate, parallel dipoles yields roughly the same signal as a single 6400 watt transmitter. Furthermore, implementing the multi-source approach creates the opportunity to apply more complex current flow patterns than simple, parallel dipoles. For a perfect, noise-free system, multi-sources adds no new information to a data set that contains a comprehensive set of data collected using single sources. However, for realistic, noisy systems, it appears that multi-source data can substantially impact survey results. In preliminary model studies, the multi-source data produced such startling improvements in subsurface images that even the authors questioned their veracity. Between December of 2012 and July of 2013, we completed multi-source surveys at five sites

  5. Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection

    SciTech Connect

    Gatare, I.; Panajotov, K.; Sciamanna, M.

    2007-02-15

    We report theoretically on a pure frequency-induced polarization bistability in a vertical-cavity surface-emitting laser (VCSEL) subject to orthogonal optical injection, i.e., the master laser light polarization is orthogonal to that of the slave VCSEL. As the frequency detuning is scanned from negative to positive values and for a fixed injected power, the VCSEL exhibits two successive and possibly bistable polarization switchings. The first switching (from the slave laser polarization to the injected light polarization) exhibits a bistable region whose width is maximum for a given value of the injected power. Such a dependency of hysteresis width on the injected power is similar to that recently found experimentally by Hong et al.[Electron. Lett. 36, 2019 (2000)]. The bistability accompanying the second switching (from the injected light polarization back to the slave laser free-running polarization) exhibits, however, significantly different features related to the occurrence of optical chaos. Interestingly, the width of the bistable region can be tuned over a large range not only by modifying the injection parameters but also by modifying the device parameters, in particular the VCSEL linewidth enhancement factor.

  6. Laser induced infrared spectral shift of the MgB2:Cr superconductor films.

    PubMed

    AlZayed, N S; Kityk, I V; Soltan, S; El-Naggar, A M; Shahabuddin, M

    2015-02-01

    During illumination of the MgB2:Cr2O3 films it was established substantial spectral shift of the infrared spectra in the vicinity of 20-50cm(-1). The excitations were performed by nanosecond Er:glass laser operating at 1.54μm and by microsecond 10.6μm CO2 laser. The spectral shifts of the IR maxima were in opposite spectral directions for the two types of lasers. This one observed difference correlates well with spectral shift of their critical temperatures. The possible explanation is given by performance of DFT calculations of the charge density redistribution and the time kinetics of the photovoltaic response. To understand the kinetics of the photoinduced processes the time kinetics of photoresponse was done for the particular laser wavelengths.

  7. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    PubMed Central

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  8. The X-ray Spectrum and Spectral Energy Distribution of FIRST J155633.8+351758: A Beamed Radio-Quiet Quasar with a Polar Outflow

    NASA Astrophysics Data System (ADS)

    Berrington, Robert C.; Brotherton, M. S.; Gallagher, S. C.; Ganguly, R.; Shang, Z.; Lacy, M.; Gregg, M. D.; Hall, P. B.; Laurent-Muehleisen, S. A.

    2007-12-01

    We report the results of a 60 ks Chandra X-ray Observatory ACIS-S observation of the reddened, radio-selected, highly polarized "FeLoBAL" quasar FIRST J155633.8+351758. Our analyses of the 531 photon spectrum indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter). No iron K-α line is detected, and the X-rays appear to be down by only an order of magnitude below their intrinsic unabsorbed levels. Absorption is present with both partially ionized models and neutral hydrogen models with partial covering providing good fits. The level of partial covering in the latter model is consistent with the rest-frame ultraviolet maximum polarization of 13%, in the sense that light scattered by electrons around the X-ray absorber could account for both results. We present the spectral energy distribution (SED) of FIRST J155633.8+351758 from radio through X-ray energies, and make corrections for Doppler beaming for the pole-on radio-quiet jet, optical dust reddening, and X-ray absorption. The corrected SED appears to be that of a luminous radio-quiet quasar deficient in the mid and far-infrared, suggesting that the dust covering fraction of the quasar is not large and that star formation is not excessive. FIRST J155633.8+351758 seems to be an intrinsically normal radio-quiet quasar with an X-ray absorber not dissimilar from that of other broad absorption line quasars studied in detail at X-ray wavelengths. We acknowledge support from Chandra Award No. GO6-7105X, from the US NSF (grant AST 05-07781), from NASA under the grant NNG05GD03G, and from the National Natural Science Foundation of China (grant 10643001). This work was performed under the auspices of the US DOE by the University of California, LLNL (Contract No. W-7405-Eng-48).

  9. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN

    NASA Astrophysics Data System (ADS)

    Li, Shibin; Ware, Morgan; Wu, Jiang; Minor, Paul; Wang, Zhiming; Wu, Zhiming; Jiang, Yadong; Salamo, Gregory J.

    2012-09-01

    We propose a type of pn-junction not formed by impurity-doping, but rather by grading the Al composition in an AlxGa1-xN thin film, resulting in alternating p and n conducting regions due to polarization charge. By linearly grading AlxGa1-xN from 0% to x (x ≤ 30%) and back to 0% Al, a polarization induced pn-junction is formed, even in the absence of any impurity doping. X-ray diffraction reciprocal space maps are used to determine the strain state of the different graded composition samples. Polarization induced doping also provides a solution to the problem of p-type doping efficiency for III-nitrides.

  10. Multi-vortical flow inducing electrokinetic instability in ion concentration polarization layer.

    PubMed

    Kim, Sung Jae; Ko, Sung Hee; Kwak, Rhokyun; Posner, Jonathan D; Kang, Kwan Hyoung; Han, Jongyoon

    2012-12-01

    In this work, we investigated multiple vortical flows inside the ion concentration polarization (ICP) layer that forms due to a coupling of applied electric fields and the semipermeable nanoporous junction between microchannels. While only a primary vortex near perm-selective membrane is traditionally known to lead to electrokinetic instability, multiple vortexes induced by the primary vortex were found to play a major role in the electrokinetic instability. The existence of multiple vortexes was directly confirmed by experiments using particle tracers and interdigitated electrodes were used to measure the local concentration profile inside the ICP layer. At larger applied electric fields, we observed aperiodic fluid motion due to electrokinetic instabilities which develop from a coupling of applied electric fields and electrical conductivity gradients induced by the ICP. The electrokinetic instability at micro-nanofluidic interfaces is important in the development of various electro-chemical-mechanical applications such as fuel cells, bio-analytical preconcentration methods, water purification/desalination and the fundamental study of ion electromigration through nanochannels and nonporous perm-selective membranes. PMID:23085964

  11. Multi-vortical flow inducing electrokinetic instability in ion concentration polarization layer.

    PubMed

    Kim, Sung Jae; Ko, Sung Hee; Kwak, Rhokyun; Posner, Jonathan D; Kang, Kwan Hyoung; Han, Jongyoon

    2012-12-01

    In this work, we investigated multiple vortical flows inside the ion concentration polarization (ICP) layer that forms due to a coupling of applied electric fields and the semipermeable nanoporous junction between microchannels. While only a primary vortex near perm-selective membrane is traditionally known to lead to electrokinetic instability, multiple vortexes induced by the primary vortex were found to play a major role in the electrokinetic instability. The existence of multiple vortexes was directly confirmed by experiments using particle tracers and interdigitated electrodes were used to measure the local concentration profile inside the ICP layer. At larger applied electric fields, we observed aperiodic fluid motion due to electrokinetic instabilities which develop from a coupling of applied electric fields and electrical conductivity gradients induced by the ICP. The electrokinetic instability at micro-nanofluidic interfaces is important in the development of various electro-chemical-mechanical applications such as fuel cells, bio-analytical preconcentration methods, water purification/desalination and the fundamental study of ion electromigration through nanochannels and nonporous perm-selective membranes.

  12. Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres

    NASA Technical Reports Server (NTRS)

    Mishchenko, M. I.; Lacis, A. A.; Travis, L. D.

    1994-01-01

    Although neglecting polarization and replacing the rigorous vector radiative transfer equation by its approximate scalar counterpart has no physical background, it is a widely used simplification when the incident light is unpolarized and only the intensity of the reflected light is to be computed. We employ accurate vector and scalar multiple-scattering calculations to perform a systematic study of the errors induced by the neglect of polarization in radiance calculations for a homogeneous, plane-parallel Rayleigh-scattering atmosphere (with and without depolarization) above a Lambertian surface. Specifically, we calculate percent errors in the reflected intensity for various directions of light incidence and reflection, optical thicknesses of the atmosphere, single-scattering albedos, depolarization factors, and surface albedos. The numerical data displayed can be used to decide whether or not the scalar approximation may be employed depending on the parameters of the problem. We show that the errors decrease with increasing depolarization factor and/or increasing surface albedo. For conservative or nearly conservative scattering and small surface albedos, the errors are maximum at optical thicknesses of about 1. The calculated errors may be too large for some practical applications, and, therefore, rigorous vector calculations should be employed whenever possible. However, if approximate scalar calculations are used, we recommend to avoid geometries involving phase angles equal or close to 0 deg and 90 deg, where the errors are especially significant. We propose a theoretical explanation of the large vector/scalar differences in the case of Rayleigh scattering. According to this explanation, the differences are caused by the particular structure of the Rayleigh scattering matrix and come from lower-order (except first-order) light scattering paths involving right scattering angles and right-angle rotations of the scattering plane.

  13. Application of time domain induced polarization to the mapping of lithotypes in a landfill site

    NASA Astrophysics Data System (ADS)

    Gazoty, A.; Fiandaca, G.; Pedersen, J.; Auken, E.; Christiansen, A. V.; Pedersen, J. K.

    2012-01-01

    A DC resistivity (DC) and Time Domain Induced Polarization (TDIP) survey was undertaken at a decommissioned landfill site situated in Hørløkke, Denmark, for the purpose of mapping the waste deposits and to discriminate important geological units that control the hydrology of the surrounding area. It is known that both waste deposits and clay have clear signatures in TDIP data, making possible to enhance the resolution of geological structures, when compared to DC surveys alone. Four DC/TDIP profiles were carried out crossing the landfill and another seven profiles in the surroundings, giving a dense coverage over the entire area. The whole dataset was inverted using a 1-D Laterally Constrained Inversion scheme, recently implemented for IP data, in order to use the entire decay curves for reconstructing the electrical parameters of the soil in terms of the Cole-Cole polarization model. Results show that it is possible to both resolve the geometry of the buried waste body and key geological structures. In particular, it was possible to find a silt/clay lens at depth, which correlates with the flow direction of the pollution plume spreading out from the landfill, and to map a shallow sandy layer rich in clay that likely has a strong influence on the hydrology of the site. This interpretation of the geophysical findings was constrained by boreholes data, in terms of geology and gamma ray logging. The results of this study are important for the impact that the resolved geological units have in the hydrology of the area, making it possible to construct more realistic scenarios of the variation of the pollution plume as a function of the climate change.

  14. Application of time domain induced polarization to the mapping of lithotypes in a landfill site

    NASA Astrophysics Data System (ADS)

    Gazoty, A.; Fiandaca, G.; Pedersen, J.; Auken, E.; Christiansen, A. V.; Pedersen, J. K.

    2012-06-01

    A direct current (DC) resistivity and time domain induced polarization (TDIP) survey was undertaken at a decommissioned landfill site situated in Hørløkke, Denmark, for the purpose of mapping the waste deposits and to discriminate important geological units that control the hydrology of the surrounding area. It is known that both waste deposits and clay have clear signatures in TDIP data, making it possible to enhance the resolution of geological structures compared to DC surveys alone. Four DC/TDIP profiles were carried out crossing the landfill, and another seven profiles in the surroundings provide a sufficiently dense coverage of the entire area. The whole dataset was inverted using a 1-D laterally constrained inversion scheme, recently implemented for TDIP data, in order to use the entire decay curves for reconstructing the electrical parameters of the soil in terms of the Cole-Cole polarization model. Results show that it is possible to resolve both the geometry of the buried waste body and key geological structures. In particular, it was possible to find a silt/clay lens at depth that correlates with the flow direction of the pollution plume spreading out from the landfill and to map a shallow sandy layer rich in clay that likely has a strong influence on the hydrology of the site. This interpretation of the geophysical findings was constrained by borehole data, in terms of geology and gamma ray logging. The results of this study are important for the impact of the resolved geological units on the hydrology of the area, making it possible to construct more realistic scenarios of the variation of the pollution plume as a function of the climate change.

  15. Over-limiting currents and deionization "shocks" in current-induced polarization: local-equilibrium analysis.

    PubMed

    Yaroshchuk, Andriy

    2012-11-15

    The problem is considered theoretically of dynamics of current-induced concentration polarization of interfaces between ideally perm-selective and non-ideally perm-selective ("leaky") ion-exchange media in binary electrolyte solutions under galvanostatic conditions and at negligible volume flow. In contrast to the previous studies, the analysis is systematically carried out in terms of local thermodynamic equilibrium in the approximation of local electric neutrality in virtual solution. For macroscopically homogeneous media, this enables one to obtain model-independent results in quadratures for the stationary state as well as an approximate scaling-form solution for the transient response to the step-wise increase in electric-current density. These results are formulated in terms of such phenomenological properties of the "leaky" medium as ion transport numbers, diffusion permeability to salt and specific chemical capacity. An easy-to-solve numerically 1D PDE is also formulated in the same terms. A systematic parametric study is carried out within the scope of fine-pore model of "leaky" medium in terms of such properties as volumetric concentration of fixed electric charges and diffusivities of ions of symmetrical electrolyte. While previous studies paid principal attention to the shape and propagation rate of the so-called deionization "shocks", we also consider in detail the time evolution of voltage drop and interface salt concentration. Our analysis confirms the previously predicted pattern of propagating deionization "shocks" within the "leaky" medium but also reveals several novel features. In particular, we demonstrate that the deionization-shock pattern is really pronounced only at intermediate ratios of fixed-charge concentration to the initial salt concentration and at quite high steady-state voltages where the model used in this and previous studies is applicable only at relatively early stages of concentration-polarization process. PMID:22947188

  16. Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients

    SciTech Connect

    Slater, L.D.; Sandberg, S.K.

    2000-04-01

    The authors demonstrate the use of resistivity/induced polarization (IP) monitoring of salt transport under natural hydraulic loads. Electrical monitoring of saline tracer transport during forced injection has been demonstrated previously. Detection of tracer transport under natural hydraulic loading is difficult because neither the hydraulic load nor the tracer resistivity can be controlled. In one study, the authors identify the electrical response to salt transport in a dynamic beach environment. Resistivity/IP imagine resolved the structure of the saltwater-freshwater interface and evidence for tide-induced groundwater transport. Resistivity increases in the near surface and at depth, upbeach of the high-tide mark, accompanied by tidal transgression. They attribute this to desaturation and decreasing salinity in the near surface and to decreasing salinity at depth, despite tidal transgression. Monitoring of groundwater levels indicates a phase lag between the tide level and groundwater level, supporting the electrical data. IP was insensitive to groundwater salinity variation. In a second study, the authors identify the electrical response to recharge-induced salt transport from a road-sale storage facility. Conductivity and IP models for monitoring lines, located on the basis of an EM31 survey, resolved the subsurface salt distribution, IP modeling resolved the sediment-bedrock interface. Modeling of monthly conductivity differences revealed conductivity increases and decreases at the locations of salt contamination, which correlate with the recharge pattern. They attribute near-surface conductivity increases after heavy rainfall to increasing saturation and ion dissolution. Corresponding conductivity decreases at depth are attributed to flushing of the bedrock with freshwater. Essentially, the opposite response was observed during a quiet monitoring period following heavy recharge. Near-surface IP changes are consistent with this interpretation. Salt

  17. Switching of charge-current-induced spin polarization in the topological insulator BiSbTeSe2

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Ghatak, Subhamoy; Taskin, A. A.; Segawa, Kouji; Ando, Yuichiro; Shiraishi, Masashi; Kanai, Yasushi; Matsumoto, Kazuhiko; Rosch, Achim; Ando, Yoichi

    2016-08-01

    The charge-current-induced spin polarization is a key property of topological insulators for their applications in spintronics. However, topological surface states are expected to give rise to only one type of spin polarization for a given current direction, which has been a limiting factor for spin manipulations. Here, we report that in devices based on the bulk-insulating topological insulator BiSbTeSe2, an unexpected switching of spin polarization was observed upon changing the chemical potential. The spin polarization expected from the topological surface states was detected in a heavily electron-doped device, whereas the opposite polarization was reproducibly observed in devices with low carrier densities. We propose that the latter type of spin polarization stems from topologically trivial two-dimensional states with a large Rashba spin splitting, which are caused by a strong band bending at the surface of BiSbTeSe2 beneath the ferromagnetic electrode used as a spin detector. This finding paves the way for realizing the "spin transistor" operation in future topological spintronic devices.

  18. GAMMA-RAY POLARIZATION INDUCED BY COLD ELECTRONS VIA COMPTON PROCESSES

    SciTech Connect

    Chang Zhe; Jiang Yunguo; Lin Hainan E-mail: jiangyg@ihep.ac.cn

    2013-05-20

    The polarization measurement is an important tool to probe the prompt emission mechanism in gamma-ray bursts (GRBs). The synchrotron photons can be scattered by cold electrons in the outflow via Compton scattering (CS) processes. The observed polarization depends on both the photon energy and the viewing angle. With the typical bulk Lorentz factor {Gamma} {approx} 200, photons with energy E > 10 MeV tend to have smaller polarization than photons with energy E < 1 MeV. At the right viewing angle, i.e., {theta} {approx} {Gamma}{sup -1}, the polarization achieves its maximal value, and the polarization angle changes 90 Degree-Sign relative to the initial polarization direction. Thus, the synchrotron radiation plus CS model can naturally explain the 90 Degree-Sign change of the polarization angle in GRB 100826A.

  19. NK-derived IFN-γ/IL-4 triggers the sexually disparate polarization of macrophages in CVB3-induced myocarditis.

    PubMed

    Liu, Li; Yue, Yan; Xiong, Sidong

    2014-11-01

    Coxsackievirus B3 (CVB3) is a common etiology of myocarditis with an increased morbidity and mortality in males. We previously reported that differential polarization of macrophages contributed to sexually dimorphic susceptibility of mice to CVB3-induced myocarditis. However, the underlying kinetics, impetus as well as the molecular mechanism remain unclear. Here, we demonstrated that myocardial macrophages started to polarize at as early as day 5 post CVB3 infection in both genders of BALB/c mice, with M1 phenotype detected in males and M2a phenotype in females, and this trend was further amplified at day 7 when myocarditis reached peak. In addition, we identified that prevailed IFN-γ in males and dominant IL-4 in females were critical myocardial cytokines for the disparate macrophage polarization, which respectively activated JAK1-STAT1 and JAK3-STAT6 pathways. Strikingly, we found that the main source of IFN-γ and IL-4 cytokines in both genders were myocardial infiltrating NK cells, which differentially secreted cytokines in various microenvironments manifested synergistically by sex hormones and CVB3 infection. Consistently, depletion of NK cells significantly impeded the myocardial macrophage polarization in both genders of CVB3-infected mice. Collectively, these data indicated that myocardial NK-derived IFN-γ/IL-4 was critical for the differential polarization of macrophages in CVB3-induced myocarditis via activating JAK1-STAT1 and JAK3-STAT6 pathways respectively. Our study may help understand the mechanism of sexually differential polarization of macrophages and provide clues for the gender bias in CVB3-induced myocarditis.

  20. Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra.

    PubMed

    Dalton, Brian E; Lu, Jessica; Leips, Jeff; Cronin, Thomas W; Carleton, Karen L

    2015-08-01

    Critical behaviours such as predation and mate choice often depend on vision. Visual systems are sensitive to the spectrum of light in their environment, which can vary extensively both within and among habitats. Evolutionary changes in spectral sensitivity contribute to divergence and speciation. Spectral sensitivity of the retina is primarily determined by visual pigments, which are opsin proteins bound to a chromophore. We recently discovered that photoreceptors in different regions of the retina, which view objects against distinct environmental backgrounds, coexpress different pairs of opsins in an African cichlid fish, Metriaclima zebra. This coexpression tunes the sensitivity of the retinal regions to the corresponding backgrounds and may aid in detection of dark objects, such as predators. Although intraretinal regionalization of spectral sensitivity in many animals correlates with their light environments, it is unknown whether variation in the light environment induces developmentally plastic alterations of intraretinal sensitivity regions. Here, we demonstrate with fluorescent in situ hybridization and qPCR that the spectrum and angle of environmental light both influence the development of spectral sensitivity regions by altering the distribution and level of opsins across the retina. Normally, M. zebra coexpresses LWS opsin with RH2Aα opsin in double cones of the ventral but not the dorsal retina. However, when illuminated from below throughout development, adult M. zebra coexpressed LWS and RH2Aα in double cones both dorsally and ventrally. Thus, environmental background spectra alter the spectral sensitivity pattern that develops across the retina, potentially influencing behaviours and related evolutionary processes such as courtship and speciation. PMID:26175094

  1. Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra

    PubMed Central

    Dalton, Brian E.; Lu, Jessica; Leips, Jeff; Cronin, Thomas W.; Carleton, Karen L.

    2015-01-01

    Critical behaviors such as predation and mate choice often depend on vision. Visual systems are sensitive to the spectrum of light in their environment, which can vary extensively both within and among habitats. Evolutionary changes in spectral sensitivity contribute to divergence and speciation. Spectral sensitivity of the retina is primarily determined by visual pigments, which are opsin proteins bound to a chromophore. We recently discovered that photoreceptors in different regions of the retina, which view objects against distinct environmental backgrounds, coexpress different pairs of opsins in an African cichlid fish, Metriaclima zebra. This coexpression tunes the sensitivity of the retinal regions to the corresponding backgrounds and may aid detection of dark objects, such as predators. Although intraretinal regionalization of spectral sensitivity in many animals correlates with their light environments, it is unknown whether variation in the light environment induces developmentally plastic alterations of intraretinal sensitivity regions. Here, we demonstrate with fluorescent in situ hybridization and qPCR that the spectrum and angle of environmental light both influence the development of spectral sensitivity regions by altering the distribution and level of opsins across the retina. Normally M. zebra coexpresses LWS opsin with RH2Aα opsin in double cones of the ventral but not the dorsal retina. However, when illuminated from below throughout development, adult M. zebra coexpressed LWS and RH2Aα in double cones both dorsally and ventrally. Thus, environmental background spectra alter the spectral sensitivity pattern that develops across the retina, potentially influencing behaviors and related evolutionary processes such as courtship and speciation. PMID:26175094

  2. Gamma-ray burst polarization reduction induced by the Lorentz invariance violation

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Li, Xin; Chang, Zhe

    2016-08-01

    It has been observed that photons in the prompt emission of some gamma-ray bursts (GRBs) are highly polarized. The high polarization is used by some authors to give a strict constraint on the Lorentz invariance violation (LIV). If the Lorentz invariance is broken, the polarization vector of a photon may rotate during its propagation. The rotation angle of polarization vector depends on both the photon energy and the distance of source. It is believed that if high polarization is observed, then the relative rotation angle (denoted by α) of polarization vector of the highest energy photon with respect to that of the lowest energy photon should be no more than π/2. Otherwise, the net polarization will be severely suppressed, thus couldn't be as high as what was actually observed. In this paper, we will give a detailed calculation on the evolution of GRB polarization arising from LIV effect duration the propagation. It is shown that the polarization degree rapidly decrease as α increases, and reaches a local minimum at α ≈ π, then increases until α ≈ 3π/2, after that decreases again until α ≈ 2π, etc. The polarization degree as a function of α oscillates with a quasi-period T ≈ π, while the oscillating amplitude gradually deceases to zero. Moreover, we find that a considerable amount (more than 60% of the initial polarization) of polarization degree can be conserved when α ≈ π/2. The polarization observation in a higher and wider energy band, a softer photon spectrum, and a higher redshift GRB is favorable in order to tightly constrain LIV effect.

  3. Gamma-ray burst polarization reduction induced by the Lorentz invariance violation

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Li, Xin; Chang, Zhe

    2016-11-01

    It has been observed that photons in the prompt emission of some gamma-ray bursts (GRBs) are highly polarized. The high polarization is used by some authors to give a strict constraint on the Lorentz invariance violation (LIV). If the Lorentz invariance is broken, the polarization vector of a photon may rotate during its propagation. The rotation angle of polarization vector depends on both the photon energy and the distance of source. It is believed that if high polarization is observed, then the relative rotation angle (denoted by α) of polarization vector of the highest energy photon with respect to that of the lowest energy photon should be no more than π/2. Otherwise, the net polarization will be severely suppressed, thus could not be as high as what was actually observed. In this paper, we will give a detailed calculation on the evolution of GRB polarization arising from LIV effect duration the propagation. It is shown that the polarization degree rapidly decrease as α increases, and reaches a local minimum at α ≈ π, then increases until α ≈ 3π/2, after that decreases again until α ≈ 2π, etc. The polarization degree as a function of α oscillates with a quasi-period T ≈ π, while the oscillating amplitude gradually decreases to zero. Moreover, we find that a considerable amount (more than 60 per cent of the initial polarization) of polarization degree can be conserved when α ≈ π/2. The polarization observation in a higher and wider energy band, a softer photon spectrum, and a higher redshift GRB is favourable in order to tightly constrain LIV effect.

  4. p16INK4a deficiency promotes IL-4-induced polarization and inhibits proinflammatory signaling in macrophages

    PubMed Central

    Cudejko, Céline; Wouters, Kristiaan; Fuentes, Lucía; Hannou, Sarah Anissa; Paquet, Charlotte; Bantubungi, Kadiombo; Bouchaert, Emmanuel; Vanhoutte, Jonathan; Fleury, Sébastien; Remy, Patrick; Tailleux, Anne; Chinetti, Giulia; Dombrowicz, David; Staels, Bart; Paumelle, Réjane

    2011-01-01

    The CDKN2A locus, which contains the tumor suppressor gene p16INK4a, is associated with an increased risk of age-related inflammatory diseases, such as cardiovascular disease and type 2 diabetes, in which macrophages play a crucial role. Monocytes can polarize towards classically (CAMφ) or alternatively (AAMφ) activated macrophages. However, the molecular mechanisms underlying the acquisition of these phenotypes are not well defined. Here, we show that p16INK4a-deficiency (p16−/−) modulates the macrophage phenotype. Transcriptome analysis revealed that p16−/− bone marrow-derived macrophages (BMDM) exhibit a phenotype resembling interleukin (IL)-4-induced macrophage polarization. In line with this observation, p16−/− BMDM displayed a decreased response to classically polarizing IFNγ and LPS and an increased sensitivity to alternative polarization by IL-4. Furthermore, mice transplanted with p16−/− bone marrow displayed higher hepatic AAMφ marker expression levels upon Schistosoma mansoni infection, an in vivo model of AAMφ phenotype-skewing. Surprisingly, p16−/− BMDM did not display increased IL-4-induced STAT6 signaling, but decreased IFNγ-induced STAT1 and LPS-induced IKKα,β phosphorylation. This decrease correlated with decreased JAK2 phosphorylation and with higher levels of inhibitory acetylation of STAT1 and IKKα,β. These findings identify p16INK4a as a modulator of macrophage activation and polarization via the JAK2-STAT1 pathway with possible roles in inflammatory diseases. PMID:21636855

  5. Characterization of Natural Attenuation in a uranium-contaminated site by means of Induced Polarization Imaging

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrián; Bücker, Matthias; Williams, Kenneth

    2014-05-01

    Field experiments at the U.S. Department of Energy's (DOE) Integrated Field Research Challenge site (IFRC) in Rifle, Colorado (USA) have repeatedly demonstrated the ability of microorganisms to reductively immobilize uranium (U) in U tailings-contaminated groundwater accompanying organic carbon amendment. At the same time, geophysical monitoring during such amendment experiments has proven that Induced Polarization (IP) datasets can provide valuable information regarding geochemical changes induced by stimulated microbial activity, such as precipitation of metallic minerals (e.g. FeS) and accumulation of reactive, electroactive ions (Fe[II]). Based on these findings, we present a novel, modified application of the IP imaging method. Specifically, we utilized an IP characterization approach to delineate areas where fluvially deposited organic material, within aquifer sediments, naturally stimulates the activity of subsurface microflora, leading to both the natural immobilization of uranium and accumulation of reduced end-products (minerals and pore fluids) capable of generating anomalous IP signatures. These so-called 'naturally reduced zones' (NRZ's) are characterized by elevated rates of microbial activity relative to sediments having a lower concentration of organic matter. As noted and based on our previous experiments at the site, the accumulation of metallic minerals represents suitable targets for the exploration with IP tomographic methods. Here, we explore the application of the IP imaging method for the characterization of NRZ's at the scale of the floodplain. We present imaging results obtained through the inversion of 70 independent lines distributed along the floodplain (~600 m2). Imaging results are validated through comparisons with lithological data obtained from wells drilled at the site and laboratory analysis of sediment and groundwater samples. Our results show the applicability of the IP method for characterizing regions of the subsurface having

  6. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    PubMed Central

    Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang

    2013-01-01

    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943

  7. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 (13C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13C based endogenous contrast agents used in molecular imaging.

  8. Gravity-Induced Polar Transport of Calcium across Root Tips of Maize 1

    PubMed Central

    Lee, June S.; Mulkey, Timothy J.; Evans, Michael L.

    1983-01-01

    Calcium movement across primary roots of maize (Zea mays, L.) was determined by application of 45Ca2+ to one side of the root and collection of radioactivity in an agar receiver block on the opposite side. Ca movement across the root tip was found to be at least 20 times greater than movement across the elongation zone. The rapid movement of Ca across the tip was severely inhibited in roots from which the root cap had been removed. Ca movement across the tip was also strongly retarded in roots pretreated with 2,4-dinitrophenol or potassium cyanide. Orientation of roots horizontally had no effect on Ca movement across the elongation zone but caused a strong asymmetry in the pattern of Ca movement across the tip. In gravistimulated roots, the movement of Ca from top to bottom increased while movement from bottom to top decreased. The data indicate that gravistimulation induces polar movement of Ca toward the lower side of the root cap. An earlier report (Lee, Mulkey, Evans 1983 Science 220: 1375-1376) from this laboratory showed that artificial establishment of calcium gradients at the root tip can cause gravitropic-like curvature. Together, the two studies indicate that Ca plays a key role in linking gravistimulation to the gravitropic growth response in roots. PMID:16663333

  9. Efficacy of electrical resistivity and induced polarization methods for revealing fluoride contaminated groundwater in granite terrain.

    PubMed

    Mondal, Nepal C; Rao, Ananda V; Singh, Vijay P

    2010-09-01

    The accumulation of fluoride (F) in groundwater is a common phenomenon in India and worldwide. Its location can be identified through a direct hydrochemical analysis, which was carried out in Kurmapalli watershed (located 60 km SE of Hyderabad city), Nalgonda district, Andhra Pradesh, India affected by F contamination. The results of the hydrochemical analysis showed that F varied from 0.71 to 19.01 mg/l and its concentration exceeded the permissible limit (i.e., 1.5 mg/l) in 78% of the total 32 samples analyzed. The highest F value (19.01 mg/l) was found near Madnapur village, which is located in the central part of the watershed. Resistivity and induced polarization (IP) surveys were also carried out to reveal the zones where elevated F-contaminated groundwater exists. The objective of this paper was to highlight the utility of resistivity and IP surveys, using hydrochemical constituents as constraint, for the successful delineation of such contaminated/polluted groundwater zones in the granite area.

  10. Impacts of Polar Changes on the UV-induced Mineralization of Terrigenous Dissolved Organic Matter.

    PubMed

    Sulzberger, Barbara; Arey, J Samuel

    2016-07-01

    Local climates in the Northern and Southern Hemisphere are influenced by Arctic Amplification and by interactions of the Antarctic ozone hole with climate change, respectively. Polar changes may affect hydroclimatic conditions in temperate regions, for example, by increasing the length and intensity of precipitation events at Northern Hemisphere midlatitudes. Additionally, global warming has led to the thawing of ancient permafrost soils, particularly in Arctic regions, due to Arctic Amplification. Both heavy precipitation events and thawing of permafrost are increasing the net transfer of terrestrially derived dissolved organic matter (DOM) from land to surface waters. In aquatic ecosystems, UV-induced oxidation of terrigenous DOM (tDOM) produces atmospheric CO2 and this process is one of several mechanisms by which natural organic matter in aquatic and soil environments may play an important role in climate feedbacks. The Arctic is particularly affected by these processes: for example, melting of Arctic sea ice allows solar UV radiation to penetrate into the ice-free Arctic Ocean and to cause photochemical reactions that result in bleaching and mineralization of tDOM. Open questions, in addition to those shown in the Graphical Abstract, remain regarding the resulting contributions of tDOM photomineralization to CO2 production and global warming.

  11. Impacts of Polar Changes on the UV-induced Mineralization of Terrigenous Dissolved Organic Matter.

    PubMed

    Sulzberger, Barbara; Arey, J Samuel

    2016-07-01

    Local climates in the Northern and Southern Hemisphere are influenced by Arctic Amplification and by interactions of the Antarctic ozone hole with climate change, respectively. Polar changes may affect hydroclimatic conditions in temperate regions, for example, by increasing the length and intensity of precipitation events at Northern Hemisphere midlatitudes. Additionally, global warming has led to the thawing of ancient permafrost soils, particularly in Arctic regions, due to Arctic Amplification. Both heavy precipitation events and thawing of permafrost are increasing the net transfer of terrestrially derived dissolved organic matter (DOM) from land to surface waters. In aquatic ecosystems, UV-induced oxidation of terrigenous DOM (tDOM) produces atmospheric CO2 and this process is one of several mechanisms by which natural organic matter in aquatic and soil environments may play an important role in climate feedbacks. The Arctic is particularly affected by these processes: for example, melting of Arctic sea ice allows solar UV radiation to penetrate into the ice-free Arctic Ocean and to cause photochemical reactions that result in bleaching and mineralization of tDOM. Open questions, in addition to those shown in the Graphical Abstract, remain regarding the resulting contributions of tDOM photomineralization to CO2 production and global warming. PMID:27110903

  12. Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement

    NASA Astrophysics Data System (ADS)

    Idris, Nasrullah; Lahna, Kurnia; Abdulmadjid, Syahrun Nur; Ramli, Muliadi; Suyanto, Hery; Marpaung, Alion Mangasi; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Suliyanti, Maria Margaretha; Lie, Zener Sukra; Lie, Tjung Jie; Kagawa, Kiichiro; Tjia, May On; Kurniawan, Koo Hendrik

    2015-06-01

    We report in this paper the results of an experimental study on the spectral and dynamical characteristics of plasma emission induced by 1 mJ picoseconds (ps) Nd-YAG laser using spatially resolved imaging and time resolved measurement of the emission intensities of copper sample. This study has provided the experimental evidence concerning the dynamical characteristics of the excitation mechanisms in various stages of the plasma formation, which largely consolidate the basic scenarios of excitation processes commonly accepted so far. However, it is also clearly shown that the duration of the shock wave excitation process induced by ps laser pulses is much shorter than those observed in laser induced breakdown spectroscopy employing nanosecond laser at higher output energy. This allows the detection of atomic emission due exclusively to He assisted excitation in low pressure He plasma by proper gating of the detection time. Furthermore, the triplet excited state associated with He I 587.6 nm is shown to be the one most likely involved in the process responsible for the excellent spectral quality as evidenced by its application to spectrochemical analysis of a number of samples. The use of very low energy laser pulses also leads to minimal destructive effect marked by the resulted craters of merely about 10 μm diameter and only 10 nm deep. It is especially noteworthy that the excellent emission spectrum of deuterium detected from D-doped titanium sample is free of spectral interference from the undesirable ubiquitous water molecules without a precleaning procedure as applied previously and yielding an impressive detection limit of less than 10 μg/g. Finally, the result of this study also shows a promising application to depth profiling of impurity distribution in the sample investigated.

  13. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films.

    PubMed

    Becher, Carsten; Maurel, Laura; Aschauer, Ulrich; Lilienblum, Martin; Magén, César; Meier, Dennis; Langenberg, Eric; Trassin, Morgan; Blasco, Javier; Krug, Ingo P; Algarabel, Pedro A; Spaldin, Nicola A; Pardo, José A; Fiebig, Manfred

    2015-08-01

    Local perturbations in complex oxides, such as domain walls, strain and defects, are of interest because they can modify the conduction or the dielectric and magnetic response, and can even promote phase transitions. Here, we show that the interaction between different types of local perturbations in oxide thin films is an additional source of functionality. Taking SrMnO3 as a model system, we use nonlinear optics to verify the theoretical prediction that strain induces a polar phase, and apply density functional theory to show that strain simultaneously increases the concentration of oxygen vacancies. These vacancies couple to the polar domain walls, where they establish an electrostatic barrier to electron migration. The result is a state with locally structured room-temperature conductivity consisting of conducting nanosized polar domains encased by insulating domain boundaries, which we resolve using scanning probe microscopy. Our 'nanocapacitor' domains can be individually charged, suggesting stable capacitance nanobits with a potential for information storage technology. PMID:26030653

  14. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films.

    PubMed

    Becher, Carsten; Maurel, Laura; Aschauer, Ulrich; Lilienblum, Martin; Magén, César; Meier, Dennis; Langenberg, Eric; Trassin, Morgan; Blasco, Javier; Krug, Ingo P; Algarabel, Pedro A; Spaldin, Nicola A; Pardo, José A; Fiebig, Manfred

    2015-08-01

    Local perturbations in complex oxides, such as domain walls, strain and defects, are of interest because they can modify the conduction or the dielectric and magnetic response, and can even promote phase transitions. Here, we show that the interaction between different types of local perturbations in oxide thin films is an additional source of functionality. Taking SrMnO3 as a model system, we use nonlinear optics to verify the theoretical prediction that strain induces a polar phase, and apply density functional theory to show that strain simultaneously increases the concentration of oxygen vacancies. These vacancies couple to the polar domain walls, where they establish an electrostatic barrier to electron migration. The result is a state with locally structured room-temperature conductivity consisting of conducting nanosized polar domains encased by insulating domain boundaries, which we resolve using scanning probe microscopy. Our 'nanocapacitor' domains can be individually charged, suggesting stable capacitance nanobits with a potential for information storage technology.

  15. In situ extraction of polar product of whole cell microbial transformation with polyethylene glycol-induced cloud point system.

    PubMed

    Wang, Zhilong; Xu, Jian-He; Zhang, Wenzhi; Zhuang, Baohua; Qi, Hanshi

    2008-01-01

    A novel polyethylene glycol-induced cloud point system (PEG-CPS) was developed for in situ extraction of moderate polar product by setting a microbial transformation of benzaldehyde into L-phenylacetylcarbinol (L-PAC) with Saccharomyces cerevisiae (baker's yeast) as a model reaction. The biocompatibility of the microorganism in PEG-CPS was comparatively studied with a series of water-organic solvent two-phase partitioning systems. The tolerance of microorganism to the toxic substrate benzaldehyde was increased and the moderate polar product L-PAC was extracted into the surfactant-rich phase in the PEG-CPS. The novel PEG-CPS fills the gap of in situ extraction of polar product in microbial transformation left by water-organic solvent two-phase partitioning system. At the same time, the application of PEG-CPS in a microbial transformation also avoids expensive solvent when compared with that of aqueous two-phase system or CPS.

  16. Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass.

    PubMed

    Han, Yanhua; Zhao, Xiuli; Qu, Shiliang

    2011-09-26

    We report on the formation of polarization dependent ripples on ZF(6) glass by femtosecond laser irradiation. Two kinds of polarization dependent ripples are formed on the laser modified region. The ripples with direction parallel to laser polarization distribute in a pit in the center of laser modified region, the period of the ripples increases with the increasing pulse number. The ripples with direction perpendicular to laser polarization spread around the pit, the period of the ripples (~750 nm) almost keeps constant with the increasing pulse number.

  17. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    SciTech Connect

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  18. Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores.

    PubMed Central

    Molitoris, B A; Wilson, P D; Schrier, R W; Simon, F R

    1985-01-01

    To determine if ischemia induces alterations in renal proximal tubule surface membranes, brush border (BBM) and basolateral membranes (BLM) were isolated simultaneously from the same cortical homogenate after 50 min of renal pedicle clamping. Ischemia caused a selective decrease in the specific activity of BBM marker enzymes leucine aminopeptidase and alkaline phosphatase, but did not effect enrichment (15 times). Neither specific activity nor enrichment (10 times) of BLM NaK-ATPase was altered by ischemia. Contamination of BBM by intracellular organelles was also unchanged, but there was an increase in the specific activity (41.1 vs. 60.0, P less than 0.01) and enrichment (2.3 vs. 4.3, P less than 0.01) of NaK-ATPase in the ischemic BBM fraction. Ischemia increased BLM lysophosphatidylcholine (1.3 vs. 2.5%, P less than 0.05) and phosphatidic acid (0.4 vs. 1.3%, P less than 0.05). Ischemia also decreased BBM sphingomyelin (38.5 vs. 29.6%, P less than 0.01) and phosphatidylserine (16.1 vs. 11.4%, P less than 0.01), and increased phosphatidylcholine (17.2 vs. 29.7%, P less than 0.01), phosphatidylinositol (1.8 vs. 4.6%, P less than 0.01), and lysophosphatidylcholine (1.0 vs. 1.8%, P less than 0.05). The large changes in BBM phospholipids did not result from new phospholipid synthesis, since the specific activity (32P dpm/nmol Pi) of prelabeled individual and total phospholipids was unaltered by ischemia. We next evaluated if these changes were due to inability of ischemic cells to maintain surface membrane polarity. Cytochemical evaluation showed that while NaK-ATPase could be detected only in control BLM, specific deposits of reaction product were present in the BBM of ischemic kidneys. Furthermore, using continuous sucrose gradients, the enzymatic profile of ischemic BBM NaK-ATPase shifted away from ischemic BLM NaK-ATPase and toward the BBM enzymatic marker leucine aminopeptidase. Taken together, these data suggest that NaK-ATPase activity determined enzymatically

  19. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro.

    PubMed

    Huang, Zikun; Luo, Qing; Guo, Yang; Chen, Jie; Xiong, Guoliang; Peng, Yiping; Ye, Jianqing; Li, Junming

    2015-01-01

    The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis) infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.

  20. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues.

    PubMed

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  1. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    PubMed

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation.

  2. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  3. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  4. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    SciTech Connect

    Alikin, D. O.; Turygin, A. P.; Lobov, A. I.; Shur, V. Ya.; Ievlev, A. V.; Kalinin, S. V.

    2015-05-04

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  5. Free radicals induced by sunlight in different spectral regions - in vivo versus ex vivo study.

    PubMed

    Lohan, Silke B; Müller, Robert; Albrecht, Stephanie; Mink, Kathrin; Tscherch, Kathrin; Ismaeel, Fakher; Lademann, Jürgen; Rohn, Sascha; Meinke, Martina C

    2016-05-01

    Sunlight represents an exogenous factor stimulating formation of free radicals which can induce cell damage. To assess the effect of the different spectral solar regions on the development of free radicals in skin, in vivo electron paramagnetic resonance (EPR) investigations with human volunteers and ex vivo studies on excised human and porcine skin were carried out. For all skin probes, the ultraviolet (UV) spectral region stimulates the most intensive radical formation, followed by the visible (VIS) and the near infrared (NIR) regions. A comparison between the different skin models shows that for UV light, the fastest and highest production of free radicals could be detected in vivo, followed by excised porcine and human skin. The same distribution pattern was found for the VIS/NIR spectral regions, whereby the differences in radical formation between in vivo and ex vivo were less pronounced. An analysis of lipid composition in vivo before and after exposure to UV light clearly showed modifications in several skin lipid components; a decrease of ceramide subclass [AP2] and an increase of ceramide subclass [NP2], sodium cholesterol sulphate and squalene (SQ) were detectable. In contrast, VIS/NIR irradiation led to an increase of ceramides [AP2] and SCS, and a decrease of SQ. These results, which are largely comparable for the different skin models investigated in vivo and ex vivo, indicate that radiation exposure in different spectral regions strongly influences radical production in skin and also results in changes in skin lipid composition, which is essential for barrier function.

  6. Simultaneous electromagnetically induced transparency for two circularly polarized lasers coupled to the same linearly polarized laser in a four-level atomic system in the W scheme

    SciTech Connect

    Bahrim, Cristian; Nelson, Chris

    2011-03-15

    Electromagnetic induced transparency (EIT) can be produced in a four-level atomic system in the W scheme using a linearly polarized optical field for simultaneously slowing down two {sigma}{sup +} and {sigma}{sup -} circularly polarized optical fields. This four-level atomic system can be set up with a |{sup 1}S{sub 0}> ground state and three Zeeman levels of the |{sup 1}P{sub 1}> excited state of any alkali-metal atom placed in a weak magnetic field. We apply our W scheme to ultracold magnesium atoms for neglecting the collisional dephasing. Atomic coherences are reported after solving a density matrix master equation including radiative relaxations from Zeeman states of the |{sup 1}P{sub 1}> multiplet to the |{sup 1}S{sub 0}> ground state. The EIT feature is analyzed using the transit time between the normal dispersive region and the EIT region. The evolution of the EIT feature with the variation of the coupling field is discussed using an intuitive dressed-state representation. We analyze the sensitivity of an EIT feature to pressure broadening of the excited Zeeman states.

  7. Thin-film polarizer for high power laser system in China

    NASA Astrophysics Data System (ADS)

    Shao, Jianda; Yi, Kui; Zhu, Meiping

    2016-07-01

    Thin-film polarizers are essential components of large laser systems, switching the beam out of the primary laser cavity and/or protecting the system from back-reflected light. The requirements for a polarizer include specific spectral performance, high laser-induced damage resistance and low surface figure deformation. Generally speaking, a polarizer coating has a thicker thickness than a mirror coating, and a narrower bandwidth that fulfills the specific spectral specification, which makes the design and fabrication of polarizer coating challenging. Large aperture (up to ~900 mm in diameter) polarizer coating deposited on both BK7 and fused silica substrates with p-polarized transmittance higher than 98%, s-polarized reflectance higher than 99% at 1053 nm, and can tolerance a fluence higher than 17 J/cm2 (9 ns) at 1053 nm has been achieved.

  8. Evolution of the linear-polarization-angle-dependence of the radiation-induced magnetoresistance-oscillations with microwave power

    SciTech Connect

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2014-11-10

    We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-induced magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.

  9. Spectral Moments of Collision-Induced Absorption of CO2 Pairs: The Role of the Intermolecular Potential

    NASA Technical Reports Server (NTRS)

    Gruszka, Marcin; Borysow, Aleksandra

    1994-01-01

    In this paper we examine the role of the anisotropy of the intermolecular potential in the rototranslational collision-induced absorption of the CO2 pairs. Using newly developed formulas that include the effects of anisotropy of the potential to all orders, we calculate the two lowest spectral moments gamma(prime), and alpha(prime), for four different classes of C02 pair potentials and compare the results with the experimental values. We assumed only multipolar induction in the process of forming the induced dipole, with the second-order contributions included. Using a site-site LJ and a site-site semi-ab initio intermolecular potentials we were able to reproduce the experimental values of gamma(prime), and alpha(prime) moments over entire temperature range from 230 to 330 K. Also, the role of an electrostatic interaction between two C02 molecules and its impact on the spectral moments is thoroughly investigated. An isotropic core with a point quadrupole centered at each molecule is shown to be an inadequate representation of the C02-CO2 potential. Additionally, we show the results obtained with the first- and second-order perturbation theory to be more than twice too small.

  10. Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers

    NASA Astrophysics Data System (ADS)

    Somekawa, Toshihiro; Otsuka, Masataka; Maeda, Yoshinobu; Fujita, Masayuki

    2016-05-01

    Femtosecond double-pulse laser induced breakdown spectroscopy (LIBS) has been performed with a double-pulse configuration composed of two polarizers. The effect of interpulse separation on the Cu I line at 510.55, 515.32, and 521.82 nm showed an optimum enhancement at 50-150 ps delays, which is more than 3-5 times greater compared with the single-pulse excitation case. This enhanced emission may open new possibilities for remote LIBS detection.

  11. Challenges for Induced Polarization Measurements in Single and Cross Borehole Configurations

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Slater, L. D.; Curatola, F.; Evdokimov, K.

    2013-12-01

    Induced polarization (IP) surveys have been traditionally used for mineral exploration. These surveys involve large surface arrays, cover wide areas and target strong signals from metallic minerals (e.g. sulfides). In recent years, the IP method has increasingly been used for environmental applications where smaller arrays are employed to measure smaller signals. Due to its unique sensitivity to interfacial properties, the IP method might be used to track and identify processes associated with remediation efforts, and also characterize and delineate contaminant plumes. Recent laboratory experiments have significantly advanced the IP method, improving the detection and interpretation of relatively small signals. However, IP data acquisition from a borehole, either as a vertical profile down a string of electrodes installed in a well or in a cross borehole configuration is more challenging. This is in part due to higher noise levels associated with coupling effects between wiring and earth in the borehole. In this study, we simulated borehole conditions in the laboratory and examined sources of noise during borehole IP measurements. We simulated a vertical array of electrodes, with electrodes placed around a PVC pipe, and performed measurements in a 3D tank. While in traditional single borehole configurations (e.g. Wenner, Schlumberger) the IP data were contaminated with low frequency errors associated with electrode arrangement. Modifications on the electrode configurations and the potential electrode design, led to acquisition of high quality data comparable to that obtained in the laboratory. We show that, while borehole IP measurements can be challenging, appropriate consideration of electrode placement and design permits acquisition of high quality data that can be used to sense variations in interfacial properties around a borehole.

  12. Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.

    2012-12-01

    An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho < 100 ohm.m), where high chargeabilities were also measured (m > 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location

  13. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    SciTech Connect

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  14. Electromagnetically Induced Transparency Experiments for the Advanced Undergraduate Laboratory: Suppression of Polarization Impurity and Stray Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Campbell, Kaleb; Jackson, Richard; van Vleet, Matthew; Kuhnash, Kodi; Worth, Bradley; Day, Amanda; Bali, Samir

    2014-05-01

    We investigate electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) in rubidium vapor using a single laser beam and a scanning magnetic field co-aligned with the laser propagation direction. We show that polarization impurity, stray magnetic fields and imperfect optical alignments cause broadening of the EIT/EIA signal and other spurious effects. We describe a systematic approach to minimizing these undesired effects, which produces EIT/EIA signals nearly two orders of magnitude narrower than the natural linewidth. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.

  15. Wire-grid polarizer using galvanic growth technology: demonstration of a wide spectral and angular bandwidth component with high extinction ratio

    NASA Astrophysics Data System (ADS)

    Verrier, Isabelle; Kämpfe, Thomas; Celle, Frederic; Cazier, Anthony; Guttmann, Markus; Matthis, Barbara; Laukkanen, Janne; Lacour, Frédéric; Veillas, Colette; Reynaud, Stéphanie; Parriaux, Olivier; Jourlin, Yves

    2015-04-01

    Functional demonstration of a wide band, wide angular width wire-grid polarizer has been made in the framework of a user project of the European project ACTMOST (Access To Micro-Optics Expertise, Services and Technologies). The polarization function relies on linear polarizers using the wire-grid polarizer principle by means of a metal grating of unusually large period, exhibiting a large extinction of the transmission of the TE polarization in the 850-nm wavelength range. This grating achieves a broadband and especially high angular aperture reflection with low loss and permits resorting to very low cost incoherent light sources for the transmitted TM polarization. This paper will describe the design, the modeling and optimization, as well as the complete technological process chain, that has been used, starting with the photoresist grating printing using phase-mask UV-based lithography to the uniform galvanic growth of a very shallow gold grating on transparent conductive layer deposited on a glass substrate. Transmission curves for both polarizations performed on the first demonstrators will be presented.