Sample records for spectral lag evolution

  1. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  2. Spectral lags in different episodes of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Jia, LanWei; Yi, TingFeng; Liang, EnWei

    2013-08-01

    A systematical analysis of the spectral lags in different episodes within a gamma-ray burst (GRB) for the BATSE GRB sample is given. The identified episodes are usually a single pulse with mixing of small fluctuations. The spectral lags were calculated for lightcurves in the 25-55 keV and 110-320 keV bands. No universal spectral lag evolution feature in different episodes within a GRB were found for most GRBs. Among 362 bright GRBs that have at least three well-identified episodes, 19 of them show long-to-short lag and 19 of them show short-to-long lag in successive episodes. The other 324 GRBs have no clear evolution trend. Defining the specified lag with the ratio of the spectral lag to the episode duration in 110-320 keV band, no prominent case of specified lag was found showing clear evolution features. The results suggest that the observed spectral lag may contribute to the dynamics and/or the radiation physics of a given emission episode.

  3. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical frameworkmore » that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.« less

  4. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.

    2004-01-01

    Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.

  5. Long-Lag, Wide-pulse Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargie, J. D.; Hakkila, J.; Giblin, T. W.

    2005-01-01

    The best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine observed GRB pulse evolution, including at least: jet opening angle, profiles of Lorentz factor and matter/field density, distance of emission region from central source, and viewing angle. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. We have analyzed the temporal and spectral behavior of wide pulses in 24 long-lag bursts from the BATSE sample, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systemtically lower peaks in nu*F(nu), harder low-energy spectra and softer high-energy spectra. These five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior, roughly commensurate with the theoretical phase space. However, we do find that pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low nu*F(nu) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swiift will detect many such bursts.

  6. Investigation of Spectral Lag and Epeak as Joint Luminosity Indicators in GRBs

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Norris, Jay P.

    2003-01-01

    Models for gamma-ray bursts which invoke jetted, colliding shells would appear to have at least two determinants for luminosity, e.g., observer viewing angle and Lorentz factor, or possibly shell mass. The latter two internal physical parameters may vary from pulse to pulse within a burst, and such variation might be reflected in evolution of observables such as spectral lag and peak in the spectral energy distribution. We analyze bright BATSE bursts using the 16-channel medium energy resolution (MER) data, with time resolutions of 16 and 64 ms, measuring spectral lags and peak energies for significant pulse structures within a burst, identified using a Bayesian block algorithm. We then explore correlations between the measured parameters and total flux for the individual pulse structures.

  7. Temporal studies of black hole X-ray transients during outburst decay

    NASA Astrophysics Data System (ADS)

    Kalemci, Emrah

    Galactic black holes (GBH) are a class of astrophysical sources with X-ray emission that is powered by accretion from a companion star. An important goal of GBH research is to understand the accretion structure and the nature of the variability of these systems. The GBHs sometimes show significant changes in the X-ray emission properties, and these changes are called state transitions. The transitions are believed to be caused by variation of the mass accretion rate and changes in accretion geometry. Thus, their study provides valuable information on the nature of the accretion structure. In this thesis work, I present results from studying the spectral and temporal evolution of all GBH transients that have been observed with NASA's Rossi X-ray Timing Explorer during outburst decay. I explore the physical conditions before, during and after the state transition, characterize the quasi-periodic oscillations (QPO) and continuum of power spectral density (PSD) in different energy bands, and study the correlations between spectral and temporal fit parameters. I also analyze the evolution of the cross- spectral parameters during and after the transition. I show that the appearance of the broad band variability is coincident with an increase of power-law flux. The evolution of the characteristic frequencies and the spectral parameters after the transition are consistent with retreating of the inner accretion disk. The energy dependent PSD analysis shows that the level of variability increases with energy when there is significant soft flux from the optically thick accretion disk. The variability level also increases with energy if the absorption column density to the source is high. This may be a result of small angle scatterings of lower energy X-ray photons with the ISM dust around these sources. I find global correlations between the spectral index and three temporal fit parameters: the QPO frequency, the overall level of variability and the integrated time lag. The relation between the spectral index and the time lags are interpreted within the context of the average number of Compton scatterings and the temperature of the scattering medium. During the transitions, the average lag is higher and average coherence is lower. I discuss whether a hybrid accretion model, for which the hot electron corona is the base of an optically thin outflow or a jet, can explain the physical properties during the transition.

  8. Temporal evolution of photon energy emitted from two-component advective flows: origin of time lag

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri

    2017-12-01

    X-ray time lag of black hole candidates contains important information regarding the emission geometry. Recently, study of time lags from observational data revealed very intriguing properties. To investigate the real cause of this lag behavior with energy and spectral states, we study photon paths inside a two-component advective flow (TCAF) which appears to be a satisfactory model to explain the spectral and timing properties. We employ the Monte Carlo simulation technique to carry out the Comptonization process. We use a relativistic thick disk in Schwarzschild geometry as the CENtrifugal pressure supported BOundary Layer (CENBOL) which is the Compton cloud. In TCAF, this is the post-shock region of the advective component. Keplerian disk on the equatorial plane which is truncated at the inner edge i.e. at the outer boundary of the CENBOL, acts as the soft photon source. Ray-tracing code is employed to track the photons to a distantly located observer. We compute the cumulative time taken by a photon during Comptonization, reflection and following the curved geometry on the way to the observer. Time lags between various hard and soft bands have been calculated. We study the variation of time lags with accretion rates, CENBOL size and inclination angle. Time lags for different energy channels are plotted for different inclination angles. The general trend of variation of time lag with QPO frequency and energy as observed in satellite data is reproduced.

  9. Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.; Gallo, L. C.; Silva, C. V.; Costantini, E.; Brandt, W. N.; Kriss, G. A.

    2017-11-01

    X-ray spectral timing analysis is presented of XMM-Newton observations of the narrow-line Seyfert 1 galaxy I Zwicky 1 taken in 2015 January. After exploring the effect of background flaring on timing analyses, X-ray time lags between the reflection-dominated 0.3-1.0 keV energy and continuum-dominated 1.0-4.0 keV band are measured, indicative of reverberation off the inner accretion disc. The reverberation lag time is seen to vary as a step function in frequency; across lower frequency components of the variability, 3 × 10-4-1.2 × 10-3 Hz a lag of 160 s is measured, but the lag shortens to (59 ± 4) s above 1.2 × 10-3 Hz. The lag-energy spectrum reveals differing profiles between these ranges with a change in the dip showing the earliest arriving photons. The low-frequency signal indicates reverberation of X-rays emitted from a corona extended at low height over the disc, while at high frequencies, variability is generated in a collimated core of the corona through which luminosity fluctuations propagate upwards. Principal component analysis of the variability supports this interpretation, showing uncorrelated variation in the spectral slope of two power-law continuum components. The distinct evolution of the two components of the corona is seen as a flare passes inwards from the extended to the collimated portion. An increase in variability in the extended corona was found preceding the initial increase in X-ray flux. Variability from the extended corona was seen to die away as the flare passed into the collimated core leading to a second sharper increase in the X-ray count rate.

  10. Implications of Lag-Luminosity Relationship for Unified GRB Paradigms

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Spectral lags (tau(sub lag)) are deduced for 1437 long (T(sub 90) greater than 2 s) BATSE gamma-ray bursts (GRBs) with peak flux F(sub p) greater than 0.25 photons cm(sup -2)/s, near to the BATSE trigger threshold. The lags are modeled to approximate the observed distribution in the F(sub p)-T(sub lag) plane, realizing a noise-free representation. Assuming a two-branch lag-luminosity relationship, the lags are self-consistently corrected for cosmological effects to yield distributions in luminosity, distance, and redshift. The results have several consequences for GRB populations and for unified gamma-ray/afterglow scenarios which would account for afterglow break times and gamma-ray spectral evolution in terms of jet opening angle, viewing angle, or a profiled jet with variable Lorentz factor: A component of the burst sample is identified - those with few, wide pulses, lags of a few tenths to several seconds, and soft spectra - whose Log[N]-Log[F(sub p)] distribution approximates a -3/2 power-law, suggesting homogeneity and thus relatively nearby sources. The proportion of these long-lag bursts increases from negligible among bright BATSE bursts to approx. 50% at trigger threshold. Bursts with very long lags, approx. 1-2 less than tau(sub lag) (S) less than 10, show a tendency to concentrate near the Supergalactic Plane with a quadrupole moment of approx. -0.10 +/- 0.04. GRB 980425 (SN 1998bw) is a member of this subsample of approx. 90 bursts with estimated distances less than 100 Mpc. The frequency of the observed ultra-low luminosity bursts is approx. 1/4 that of SNe Ib/c within the same volume. If truly nearby, the core-collapse events associated with these GRBs might produce gravitational radiation detectable by LIGO-II. Such nearby bursts might also help explain flattening of the cosmic ray spectrum at ultra-high energies, as observed by AGASA.

  11. GRB 050717: A Long, Short-Lag Burst Observed by Swift and Konus

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Hurkett, C.; Pal'shin, V.; Norris, J. P.; Zhang, B.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.; Golenetskii, S.; Osborne, J. P.; hide

    2005-01-01

    The long burst GRB 050717 was observed simultaneously by the Burst Alert Telescope (BAT) on Swift and the Konus instrument on Wind. Significant hard to soft spectral evolution was seen. Early gamma-ray and X-ray emission was detected by both BAT and the X-Ray Telescope (XRT) on Swift. The XRT continued to observe the burst for 7.1 days and detect it for 1.4 days. The X-ray light curve showed a classic decay pattern including evidence of the onset of the external shock emission at approx. 50 s after the trigger; the afterglow was too faint for a jet break to be detected. No optical, infrared or ultraviolet counterpart was discovered despite deep searches within 14 hours of the burst. The spectral lag for GRB 050717 was determined to be 2.5 +/- 2.6 ms, consistent, with zero and unusually short for a long burst. This lag measurement suggests that this burst has a high intrinsic luminosity and hence is at high redshift (z > 2.7). 050717 provides a good example of classic prompt and afterglow behavior for a gamma-ray burst.

  12. Signatures of Steady Heating in Time Lag Analysis of Coronal Emission

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2016-01-01

    Among the multitude of methods used to investigate coronal heating, the time lag method of Viall Klimchuk is becoming increasingly prevalent as an analysis technique that is complementary to those that are traditionally used.The time lag method cross correlates light curves at a given spatial location obtained in spectral bands that sample different temperature plasmas. It has been used most extensively with data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We have previously applied the time lag method to entire active regions and surrounding the quiet Sun and created maps of the results. We find that the majority of time lags are consistent with the cooling of coronal plasma that has been impulsively heated. Additionally, a significant fraction of the map area has a time lag of zero. This does not indicate a lack of variability. Rather, strong variability must be present, and it must occur in phase between the different channels. We have previously shown that these zero time lags are consistent with the transition region response to coronal nanoflares, although other explanations are possible. A common misconception is that the zero time lag indicates steady emission resulting from steady heating. Using simulated and observed light curves, we demonstrate here that highly correlated light curves at zero time lag are not compatible with equilibrium solutions. Such light curves can only be created by evolution

  13. Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Denman, Kenneth L.; Abbott, Mark R.

    1994-01-01

    We have selected square subareas (110 km on a side) from coastal zone color scanner (CZCS) and advanced very high resolution radiometer (AVHRR) images for 1981 in the California Current region off northern California for which we could identify sequences of cloud-free data over periods of days to weeks. We applied a two-dimensional fast Fourier transformation to images after median filtering, (x, y) plane removal, and cosine tapering. We formed autospectra and coherence spectra as functions of a scalar wavenumber. Coherence estimates between pairs of images were plotted against time separation between images for several wide wavenumber bands to provide a temporal lagged coherence function. The temporal rate of loss of correlation (decorrelation time scale) in surface patterns provides a measure of the rate of pattern change or evolution as a function of spatial dimension. We found that patterns evolved (or lost correlation) approximately twice as rapidly in upwelling jets as in the 'quieter' regions between jets. The rapid evolution of pigment patterns (lifetime of about 1 week or less for scales of 50-100 km) ought to hinder biomass transfer to zooplankton predators compared with phytoplankton patches that persist for longer times. We found no significant differences between the statistics of CZCS and AVHRR images (spectral shape or rate of decorrelation). In addition, in two of the three areas studied, the peak correlation between AVHRR and CZCS images from the same area occurred at zero lag, indicating that the patterns evolved simutaneously. In the third area, maximum coherence between thermal and pigment patterns occurred when pigment images lagged thermal images by 1-2 days, mirroring the expected lag of high pigment behind low temperatures (and high nutrients) in recently upwelled water. We conclude that in dynamic areas such as coastal upwelling systems, the phytoplankton cells (identified by pigment color patterns) behave largely as passive scalars at the mesoscale and that growth, death, and sinking of phytoplankton collectively play at most a mariginal role in determining the spectral statistics of the pigment patterns.

  14. EVOLUTION OF THE CROSS-CORRELATION AND TIME LAG OF 4U 1735-44 ALONG THE BRANCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei Yajuan; Zhang Haotong; Zhang Chengmin

    We analyze the cross-correlation function between the soft and hard X-rays of atoll source 4U 1735-44 with RXTE data, and find anti-correlated soft and hard time lags of about a hecto-second. In the island state, the observations do not show any obvious correlations, and most observations of the banana branch show a positive correlation. However, anti-correlations are detected in the upper banana branch. These results are different from those of Z-sources (Cyg X-2, GX 5-1), where anti-correlations are detected in the horizontal branch and upper normal branch. In this case, the lag timescales of both this atoll and Z-sources aremore » found to be similar, at a magnitude of several tens to hundreds of seconds. As a comparison, it is noted that anti-correlated lags lasting thousands of seconds have been reported from several black hole candidates in their intermediate states. In addition, for an observation containing four segments that show positive or anti-correlation, we analyze the spectral evolution with the hybrid model. In the observation, the anti-correlation is detected at the highest flux. The fitting results show that the Comptonized component is not the lowest at the highest flux, which suggests that the anti-correlation corresponds to the transition between the soft and hard states. Finally, we compare the corresponding results of atoll source 4U 1735-44 with those observed in Z-sources and black hole candidates, and the possible origins of the anti-correlated time lags are discussed.« less

  15. The Lag-Luminosity Relation in the GRB Source Frame: An Investigation with Swift BAT Bursts

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Dhuga, K. S.; Stamatikos, M.; Dermer, C. D.; Sakamoto, T.; Sonbas, E.; Parke, W. C.; Maximon, L. C.; Linnemann, J. T.; Bhat, P. N.; hide

    2011-01-01

    Spectral lag. which is defined as the difference in time of arrival of high- and low-energy photons. is a common feature in gamma-ray bursts (GRBs). Previous investigations have shown a correlation between this lag and the isotropic peak luminosity for long duration bursts. However. most of the previous investigations used lags extracted in the observer frame only. In this work (based on a sample of 43 Swift long GRBs with known redshifts). we present an analysis of the lag-luminosity relation in the GRB source frame. Our analysis indicates a higher degree of correlation -0.82 +/- 0.05 (chance probability of approx. 5.5 x 10(exp -5) between the spectral lag and the isotropic peak luminosity, L(sub iso). with a best-fitting power-law index of -1.2 +/- 0.2. In addition, there is an anticorrelation between the source-frame spectral lag and the source-frame peak energy of the burst spectrum.

  16. The Lag-Luminosity Relation in the GRB Source-Frame: An Investigation with Swift BAT Bursts

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Dhuga, K. S.; Stamatikos, M.; Dermer, C. D.; Sakamoto, T.; Sonbas, E.; Parke, W. C.; Maximon, L. C.; Linnemann, J. T.; Bhat, P. N.; hide

    2012-01-01

    Spectral lag, which is defined as the difference in time of arrival of high and low energy photons, is a common feature in Gamma-ray Bursts (GRBs). Previous investigations have shown a correlation between this lag and the isotropic peak luminosity for long duration bursts. However, most of the previous investigations used lags extracted in the observer-frame only. In this work (based on a sample of 43 Swift long GRBs with known redshifts), we present an analysis of the lag-luminosity relation in the GRB source-frame. Our analysis indicates a higher degree of correlation -0.82+/-0.05 (chance probability of approx 5.5 X 10(exp -5) between the spectral lag and the isotropic peak luminosity, L(sub iso), with a best-fit power-law index of -1.2 +/- 0.2, such that L(sub iso) varies as lag(exp -1.2). In addition, there is an anti-correlation between the source-frame spectral lag and the source-frame peak energy of the burst spectrum, E(sub pk)(1 + z).

  17. Constraining Anisotropic Lorentz Violation via the Spectral-lag Transition of GRB 160625B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jun-Jie; Wu, Xue-Feng; Shao, Lang

    Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons with different energies arising from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-definedmore » transition from positive lags to negative lags, providing a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including the first bounds on Lorentz-violating effects from operators of mass dimension 10 in the photon sector.« less

  18. Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.

    PubMed

    Prats, Clara; Giró, Antoni; Ferrer, Jordi; López, Daniel; Vives-Rego, Josep

    2008-05-07

    The lag phase is the initial phase of a culture that precedes exponential growth and occurs when the conditions of the culture medium differ from the pre-inoculation conditions. It is usually defined by means of cell density because the number of individuals remains approximately constant or slowly increases, and it is quantified with the lag parameter lambda. The lag phase has been studied through mathematical modelling and by means of specific experiments. In recent years, Individual-based Modelling (IbM) has provided helpful insights into lag phase studies. In this paper, the definition of lag phase is thoroughly examined. Evolution of the total biomass and the total number of bacteria during lag phase is tackled separately. The lag phase lasts until the culture reaches a maximum growth rate both in biomass and cell density. Once in the exponential phase, both rates are constant over time and equal to each other. Both evolutions are split into an initial phase and a transition phase, according to their growth rates. A population-level mathematical model is presented to describe the transitional phase in cell density. INDividual DIScrete SIMulation (INDISIM) is used to check the outcomes of this analysis. Simulations allow the separate study of the evolution of cell density and total biomass in a batch culture, they provide a depiction of different observed cases in lag evolution at the individual-cell level, and are used to test the population-level model. The results show that the geometrical lag parameter lambda is not appropriate as a universal definition for the lag phase. Moreover, the lag phase cannot be characterized by a single parameter. For the studied cases, the lag phases of both the total biomass and the population are required to fully characterize the evolution of bacterial cultures. The results presented prove once more that the lag phase is a complex process that requires a more complete definition. This will be possible only after the phenomena governing the population dynamics at an individual level of description, and occurring during the lag and exponential growth phases, are well understood.

  19. Lag and light-transfer characteristics of amorphous selenium photoconductive film with tellurium-doped layer

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2016-07-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.

  20. AN INVESTIGATION OF TIME LAG MAPS USING THREE-DIMENSIONAL SIMULATIONS OF HIGHLY STRATIFIED HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winebarger, Amy R.; Lionello, Roberto; Downs, Cooper

    2016-11-10

    The location and frequency of coronal energy release provide a significant constraint on the coronal heating mechanism. The evolution of the intensity observed in coronal structures found from time lag analysis of Atmospheric Imaging Assembly (AIA) data has been used to argue that heating must occur sporadically. Recently, we have demonstrated that quasi-steady, highly stratified (footpoint) heating can produce results qualitatively consistent with the evolution of observed coronal structures. The goals of this paper are to demonstrate that time lag analysis of 3D simulations of footpoint heating are qualitatively consistent with time lag analysis of observations and to use themore » 3D simulations to further understand whether time lag analysis is a useful tool in defining the evolution of coronal structures. We find the time lag maps generated from simulated data are consistent with the observed time lag maps. We next investigate several example points. In some cases, the calculated time lag reflects the evolution of a unique loop along the line of sight, though there may be additional evolving structures along the line of sight. We confirm that using the multi-peak AIA channels can produce time lags that are difficult to interpret. We suggest using a different high temperature channel, such as an X-ray channel. Finally, we find that multiple evolving structures along the line of sight can produce time lags that do not represent the physical properties of any structure along the line of sight, although the cross-correlation coefficient of the lightcurves is high. Considering the projected geometry of the loops may reduce some of the line-of-sight confusion.« less

  1. Inclination dependence of QPO phase lags in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Ingram, A.; Uttley, P.; Motta, S. E.; Belloni, T. M.; Gardenier, D. W.

    2017-01-01

    Quasi-periodic oscillations (QPOs) with frequencies from ˜0.05to30 Hz are a common feature in the X-ray emission of accreting black hole binaries. As the QPOs originate from the innermost accretion flow, they provide the opportunity to probe the behaviour of matter in extreme gravity. In this paper, we present a systematic analysis of the inclination dependence of phase lags associated with both type-B and type-C QPOs in a sample of 15 Galactic black hole binaries. We find that the phase lag at the type-C QPO frequency strongly depends on inclination, both in evolution with the QPO frequency and sign. Although we find that the type-B QPO soft lags are associated with high-inclination sources, the source sample is too small to confirm that this as a significant inclination dependence. These results are consistent with a geometrical origin of type-C QPOs and a different origin for type-B and type-C QPOs. We discuss the possibility that the phase lags originate from a pivoting spectral power law during each QPO cycle, while the inclination dependence arises from differences in dominant relativistic effects. We also search for energy dependences in the type-C QPO frequency. We confirm this effect in the three known sources (GRS 1915+105, H1743-322 and XTE J1550-564) and newly detect it in XTE J1859+226. Lastly, our results indicate that the unknown inclination sources XTE J1859+226 and MAXI J1543-564 are most consistent with a high inclination.

  2. A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins.

    PubMed

    Topilina, Natalya I; Ermolenkov, Vladimir V; Sikirzhytski, Vitali; Higashiya, Seiichiro; Lednev, Igor K; Welch, John T

    2010-07-01

    A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.

  3. SPECTRAL-TIMING ANALYSIS OF THE LOWER kHz QPO IN THE LOW-MASS X-RAY BINARY AQUILA X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyer, Jon S.; Cackett, Edward M., E-mail: jon.troyer@wayne.edu

    2017-01-10

    Spectral-timing products of kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binary (LMXB) systems, including energy- and frequency-dependent lags, have been analyzed previously in 4U 1608-52, 4U 1636-53, and 4U 1728-34. Here, we study the spectral-timing properties of the lower kHz QPO of the neutron star LMXB Aquila X-1 for the first time. We compute broadband energy lags as well as energy-dependent lags and the covariance spectrum using data from the Rossi X-ray Timing Explorer . We find characteristics similar to those of previously studied systems, including soft lags of ∼30 μ s between the 3.0–8.0 keV and 8.0–20.0 keVmore » energy bands at the average QPO frequency. We also find lags that show a nearly monotonic trend with energy, with the highest-energy photons arriving first. The covariance spectrum of the lower kHz QPO is well fit by a thermal Comptonization model, though we find a seed photon temperature higher than that of the mean spectrum, which was also seen in Peille et al. and indicates the possibility of a composite boundary layer emitting region. Lastly, we see in one set of observations an Fe K component in the covariance spectrum at 2.4- σ confidence, which may raise questions about the role of reverberation in the production of lags.« less

  4. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    NASA Technical Reports Server (NTRS)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  5. The Evolution of the Phase Lags Associated with the Type-C Quasi-periodic Oscillation in GX 339-4 during the 2006/2007 Outburst

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Wang, Yanan; Méndez, Mariano; Chen, Li; Qu, Jinlu; Altamirano, Diego; Belloni, Tomaso

    2017-08-01

    We present the evolution of the phase lags associated with the type-C QPO in GX 339-4 during the rising phase of the 2006/2007 outburst. We find that the phase lags at the QPO frequency are always positive (hard) and show very different behavior between QPOs with frequencies below and above ˜1.7 Hz: when the QPO frequency is below ˜1.7 Hz, the phase lags increase both with QPO frequency and energy, while when the QPO frequency is above ˜1.7 Hz, the phase lags remain more or less constant. When the QPO frequency is higher than ˜1.7 Hz, a broad feature is always present in the lag-energy spectra at around 6.5 keV, suggesting that the reflection component may have a significant contribution to the phase lags. Below ˜1.7 Hz, the QPO rms first decreases with energy and then turns to almost flat, while above ˜1.7 Hz, the QPO rms increases with energy. During the transition from the low-hard state to the hard-intermediate state, the second harmonic and subharmonic of this QPO appear in the power density spectra. The second-harmonic and subharmonic phase lags show very similar evolutions for their centroid frequencies. However, the energy dependence of the second-harmonic and subharmonic phase lags are quite different. Our results suggest that, at different phases of the outburst, different mechanisms may be responsible for the phase lags of the QPO. We briefly discuss the possible scenarios for producing the lags.

  6. THE SPECTRAL-TIMING PROPERTIES OF UPPER AND LOWER kHz QPOs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peille, Philippe; Barret, Didier; Uttley, Phil, E-mail: philippe.peille@irap.omp.eu

    2015-10-01

    Soft lags from the emission of the lower kilohertz quasi-periodic oscillations (kHz QPOs) of neutron star low-mass X-ray binaries have been reported from 4U1608-522 and 4U1636-536. Those lags hold prospects for constraining the origin of the QPO emission. In this paper, we investigate the spectral-timing properties of both the lower and upper kHz QPOs from the neutron star binary 4U1728-34, using the entire Rossi X-Ray Timing Explorer archive on this source. We show that the lag-energy spectra of the two QPOs are systematically different: while the lower kHz QPO shows soft lags, the upper kHz QPO shows either a flatmore » lag-energy spectrum or hard variations lagging softer variations. This suggests two different QPO-generation mechanisms. We also performed the first spectral deconvolution of the covariance spectra of both kHz QPOs. The QPO spectra are consistent with Comptonized blackbody emission, similar to the one found in the time-averaged spectrum, but with a higher seed-photon temperature, suggesting that a more compact inner region of the Comptonization layer (boundary/spreading layer, corona) is responsible for the QPO emission. Considering our results together with other recent findings, this leads us to the hypothesis that the lower kHz QPO signal is generated by coherent oscillations of the compact boundary layer region itself. The upper kHz QPO signal may then be linked to less-coherent accretion-rate variations produced in the inner accretion disk, and is then detected when they reach the boundary layer.« less

  7. The Evolution of the Phase Lags Associated with the Type-C Quasi-periodic Oscillation in GX 339–4 during the 2006/2007 Outburst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liang; Chen, Li; Wang, Yanan

    2017-08-20

    We present the evolution of the phase lags associated with the type-C QPO in GX 339–4 during the rising phase of the 2006/2007 outburst. We find that the phase lags at the QPO frequency are always positive (hard) and show very different behavior between QPOs with frequencies below and above ∼1.7 Hz: when the QPO frequency is below ∼1.7 Hz, the phase lags increase both with QPO frequency and energy, while when the QPO frequency is above ∼1.7 Hz, the phase lags remain more or less constant. When the QPO frequency is higher than ∼1.7 Hz, a broad feature ismore » always present in the lag–energy spectra at around 6.5 keV, suggesting that the reflection component may have a significant contribution to the phase lags. Below ∼1.7 Hz, the QPO rms first decreases with energy and then turns to almost flat, while above ∼1.7 Hz, the QPO rms increases with energy. During the transition from the low-hard state to the hard-intermediate state, the second harmonic and subharmonic of this QPO appear in the power density spectra. The second-harmonic and subharmonic phase lags show very similar evolutions for their centroid frequencies. However, the energy dependence of the second-harmonic and subharmonic phase lags are quite different. Our results suggest that, at different phases of the outburst, different mechanisms may be responsible for the phase lags of the QPO. We briefly discuss the possible scenarios for producing the lags.« less

  8. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barret, Didier, E-mail: didier.barret@irap.omp.eu; CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of themore » lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.« less

  9. Catching Up on State Transitions in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Boeck, Moritz; Hanke, Manfred; Wilms, Joern; Pirner, Stefan; Grinberg, Victoria; Markoff, Sera; Pottschmidt, Katja; Nowak, Michael A.; Pooley, Guy

    2008-01-01

    In 2005 February we observed Cygnus X-1 over a period of 10 days quasi-continuously with the Rossi X-ray Timing Explorer and the Ryle telescope. We present the results of the spectral and timing analysis on a timescale of 90 min and show that the behavior of Cyg X-1 is similar to that found during our years long monitoring campaign. As a highlight we present evidence for a full transition from the hard to the soft state that happened during less than three hours. The observation provided a more complete picture of a state transition than before, especially concerning the evolution of the time lags, due to unique transition coverage and analysis with high time resolution.

  10. An Overdetermined System for Improved Autocorrelation Based Spectral Moment Estimator Performance

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1996-01-01

    Autocorrelation based spectral moment estimators are typically derived using the Fourier transform relationship between the power spectrum and the autocorrelation function along with using either an assumed form of the autocorrelation function, e.g., Gaussian, or a generic complex form and applying properties of the characteristic function. Passarelli has used a series expansion of the general complex autocorrelation function and has expressed the coefficients in terms of central moments of the power spectrum. A truncation of this series will produce a closed system of equations which can be solved for the central moments of interest. The autocorrelation function at various lags is estimated from samples of the random process under observation. These estimates themselves are random variables and exhibit a bias and variance that is a function of the number of samples used in the estimates and the operational signal-to-noise ratio. This contributes to a degradation in performance of the moment estimators. This dissertation investigates the use autocorrelation function estimates at higher order lags to reduce the bias and standard deviation in spectral moment estimates. In particular, Passarelli's series expansion is cast in terms of an overdetermined system to form a framework under which the application of additional autocorrelation function estimates at higher order lags can be defined and assessed. The solution of the overdetermined system is the least squares solution. Furthermore, an overdetermined system can be solved for any moment or moments of interest and is not tied to a particular form of the power spectrum or corresponding autocorrelation function. As an application of this approach, autocorrelation based variance estimators are defined by a truncation of Passarelli's series expansion and applied to simulated Doppler weather radar returns which are characterized by a Gaussian shaped power spectrum. The performance of the variance estimators determined from a closed system is shown to improve through the application of additional autocorrelation lags in an overdetermined system. This improvement is greater in the narrowband spectrum region where the information is spread over more lags of the autocorrelation function. The number of lags needed in the overdetermined system is a function of the spectral width, the number of terms in the series expansion, the number of samples used in estimating the autocorrelation function, and the signal-to-noise ratio. The overdetermined system provides a robustness to the chosen variance estimator by expanding the region of spectral widths and signal-to-noise ratios over which the estimator can perform as compared to the closed system.

  11. Response of spectral vegetation indices to soil moisture in grasslands and shrublands

    USGS Publications Warehouse

    Zhang, Li; Ji, Lei; Wylie, Bruce K.

    2011-01-01

    The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.

  12. Discovery of a Time Lag between the Soft X-Ray and Radio Emission of the Tidal Disruption Flare ASASSN-14li: Evidence for Linear Disk–Jet Coupling

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; van Velzen, Sjoert

    2018-03-01

    The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. Here we report a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3–1 keV) and 16 GHz radio flux of the tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of {12}-5+6 days. This demonstrates that the soft X-ray-emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. We show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power.

  13. Modelling the energy dependence of black hole binary flows

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ra'ad D.; Done, Chris

    2018-01-01

    We build a full spectral-timing model for the low/hard state of black hole binaries assuming that the spectrum of the X-ray hot flow can be produced by two Comptonization zones. Slow fluctuations generated at the largest radii/softest spectral region of the flow propagate down to modulate the faster fluctuations produced in the spectrally harder region close to the black hole. The observed spectrum and variability are produced by summing over all regions in the flow, including its emission reflected from the truncated disc. This produces energy-dependent Fourier lags qualitatively similar to those in the data. Given a viscous frequency prescription, the model predicts Fourier power spectral densities and lags for any energy bands. We apply this model to archival Rossi X-ray Timing Explorer data from Cyg X-1, using the time-averaged energy spectrum together with an assumed emissivity to set the radial bounds of the soft and hard Comptonization regions. We find that the power spectra cannot be described by any smooth model of generating fluctuations, instead requiring that there are specific radii in the flow where noise is preferentially produced. We also find fluctuation damping between spectrally distinct regions is required to prevent all the variability power generated at large radii being propagated into the inner regions. Even with these additions, we can fit either the power spectra at each energy or the lags between energy bands, but not both. We conclude that either the spectra are more complex than two zone models, or that other processes are important in forming the variability.

  14. Microbial detection method based on sensing molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.

    1974-01-01

    A simple method for detecting bacteria, based on the time of hydrogen evolution, was developed and tested against various members of the Enterobacteriaceae group. The test system consisted of (1) two electrodes, platinum and a reference electrode, (2) a buffer amplifier, and (3) a strip-chart recorder. Hydrogen evolution was measured by an increase in voltage in the negative (cathodic) direction. A linear relationship was established between inoculum size and the time hydrogen was detected (lag period). Lag times ranged from 1 h for 1 million cells/ml to 7 h for 1 cell/ml. For each 10-fold decrease in inoculum, length of the lag period increased 60 to 70 min. Based on the linear relationship between inoculum and lag period, these results indicate the potential application of the hydrogen-sensing method for rapidly detecting coliforms and other gas-producing microorganisms in a variety of clinical, food, and other samples.

  15. Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics.

    PubMed

    Shi, Ping; Hu, Sijung; Yu, Hongliu

    2018-02-01

    The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms 2 ), HF(ms 2 ), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot.

  16. Evolution of Accretion Disc Geometry of GRS 1915+105 during its χ state as revealed by TCAF solution

    NASA Astrophysics Data System (ADS)

    Dutta, Broja G.; Pal, Partha Sarathi; Chakrabarti, Sandip K.

    2018-06-01

    The evolution of the C-type low frequency quasi-periodic oscillations (LFQPOs) and associated time lag in transient black hole sources as a function of time can be explained by variation of the Compton cloud size in a Two Component Advective Flow solution (TCAF). A similar study of a persistent source, GRS 1915+105, has not been attempted. We fit the evolution of QPOs with propagatory oscillating shock (POS) solution for two sets of so-called χ-state observations and find that the shock steadily recedes with almost constant velocity when QPO frequency is decreasing and the spectrum is hardening. The shock moves inward with a constant velocity v0 = 473.0 cm s-1 and v0 = 400.0 cm s-1 respectively in these two cases, when the QPO frequency is increasing and the spectrum softens. This behavior is similar to what was observed in XTE J1550-564 during the 1998 outburst. The time lag measured at the QPO frequency varies in a similar way as the size of the Compton cloud. Most interestingly, in both the cases, the lag switches sign (hard lag to soft lag) at a QPO frequency of ˜2.3 - 2.5 Hz irrespective of the energy of photons. We find, at very low frequencies <1 Hz, the Comptonizing Efficiency (CE) increases with QPO frequency and at higher QPO frequencies the trend is opposite. The time lags become mostly positive at all energies when CE is larger than ˜0.85% for both the sources.

  17. The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode

    NASA Astrophysics Data System (ADS)

    Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal'shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; Aptekar, R.

    2017-12-01

    In this catalog, we present the results of a systematic study of gamma-ray bursts (GRBs) with reliable redshift estimates detected in the triggered mode of the Konus-Wind (KW) experiment during the period from 1997 February to 2016 June. The sample consists of 150 GRBs (including 12 short/hard bursts) and represents the largest set of cosmological GRBs studied to date over a broad energy band. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with two model functions, the total energy fluences, and the peak energy fluxes. Based on the GRB redshifts, which span the range 0.1≤slant z≤slant 5, we estimate the rest-frame, isotropic-equivalent energy, and peak luminosity. For 32 GRBs with reasonably constrained jet breaks, we provide the collimation-corrected values of the energetics. We consider the behavior of the rest-frame GRB parameters in the hardness-duration and hardness-intensity planes, and confirm the “Amati” and “Yonetoku” relations for Type II GRBs. The correction for the jet collimation does not improve these correlations for the KW sample. We discuss the influence of instrumental selection effects on the GRB parameter distributions and estimate the KW GRB detection horizon, which extends to z˜ 16.6, stressing the importance of GRBs as probes of the early universe. Accounting for the instrumental bias, we estimate the KW GRB luminosity evolution, luminosity and isotropic-energy functions, and the evolution of the GRB formation rate, which are in general agreement with those obtained in previous studies.

  18. A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Xue, Yongquan; Cai, Zhenyi; Guo, Hengxiao

    2018-04-01

    NGC 5548 has been intensively monitored by the AGN Space Telescope and Optical Reverberation Mapping collaboration. Approximately after half of the light curves, the correlation between the broad emission lines and the lag-corrected ultraviolet (UV) continua becomes weak. This anomalous behavior is accompanied by an increase of soft X-ray emission. We propose a simple model to understand this anomalous behavior, i.e., the corona might fall down, thereby increasing the covering fraction of the inner disk. Therefore, X-ray and extreme-UV emission suffer from spectral variations. The UV continua variations are driven by both X-ray and extreme-UV variations. Consequently, the spectral variability induced by the falling corona would dilute the correlation between the broad emission lines and the UV continua. Our model can explain many additional observational facts, including the dependence of the anomalous behavior on velocity and ionization energy. We also show that the time lag and correlation between the X-ray and the UV variations change as NGC 5548 displays the anomalous behavior. The time lag is dramatically longer than the expectation from disk reprocessing if the anomalous behavior is properly excluded. During the anomalous state, the time lag approaches the light-travel timescale of disk reprocessing albeit with a much weaker correlation. We speculate that the time lag in the normal state is caused by reprocessing of the broad line region gas. As NGC 5548 enters the abnormal state, the contribution of the broad line region gas is smaller; the time lag reflects disk reprocessing. We also discuss alternative scenarios.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Wug-Dong; Tanioka, Kenkichi

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a longmore » wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.« less

  20. Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-11-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.

  1. THE TEMPORAL AND SPECTRAL CHARACTERISTICS OF 'FAST RISE AND EXPONENTIAL DECAY' GAMMA-RAY BURST PULSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Z. Y.; Ma, L.; Yin, Y.

    2010-08-01

    In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior.more » In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (E{sub p}) in the {nu}f{sub {nu}} spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.« less

  2. Modelling the work to be done by Escherichia coli to adapt to sudden temperature upshifts.

    PubMed

    Swinnen, I A M; Bernaerts, K; Van Impe, J F

    2006-05-01

    This paper studies and models the effect of the amplitude of a sudden temperature upshift DeltaT on the adaptation period of Escherichia coli, in terms of the work to be done by the cells during the subsequent lag phase (i.e., the product of growth rate mumax and lag phase duration lambda). Experimental data are obtained from bioreactor experiments with E. coli K12 MG1655. At a predetermined time instant during the exponential growth phase, a sudden temperature upshift is applied (no other environmental changes take place). The length of the (possibly) induced lag phase and the specific growth rate after the shift are quantified with the growth model of Baranyi and Roberts (Int J Food Microbiol 23, 1994, 277). Different models to describe the evolution of the product lambda x mumax as a function of the amplitude of the temperature shift are statistically compared. The evolution of lambda x mumax is influenced by the amplitude of the temperature shift DeltaT and by the normal physiological temperature range. As some cut-off is observed, the linear model with translation is preferred to describe this evolution. This work contributes to the characterization of microbial lag phenomena, in this case for E. coli K12 MG1655, in view of accurate predictive model building.

  3. Spectral Processing Analysis System (SPANS).

    DTIC Science & Technology

    1980-11-01

    Approximately 750 pounds Temperature Range: 60 - 80 degrees Farenheit Humidity: 40 - 70 percent (relative) Duty Cycle: Continuous Power Requirements: 5 wire, 3...displayed per display frame, local or absolute scaling, number of display points per line and waveform av- A eraging. A typical display is shown in Figure 3...the waveform. In the case of white noise, a high degree of correlation is found at zero lag only with the remaining lags showing little correlation

  4. Time evolution of interhemispheric coupling in a model of focal neocortical epilepsy in mice

    NASA Astrophysics Data System (ADS)

    Vallone, F.; Vannini, E.; Cintio, A.; Caleo, M.; Di Garbo, A.

    2016-09-01

    Epilepsy is characterized by substantial network rearrangements leading to spontaneous seizures and little is known on how an epileptogenic focus impacts on neural activity in the contralateral hemisphere. Here, we used a model of unilateral epilepsy induced by injection of the synaptic blocker tetanus neurotoxin (TeNT) in the mouse primary visual cortex (V1). Local field potential (LFP) signals were simultaneously recorded from both hemispheres of each mouse in acute phase (peak of toxin action) and chronic condition (completion of TeNT effects). To characterize the neural electrical activities the corresponding LFP signals were analyzed with several methods of time series analysis. For the epileptic mice, the spectral analysis showed that TeNT determines a power redistribution among the different neurophysiological bands in both acute and chronic phases. Using linear and nonlinear interdependence measures in both time and frequency domains, it was found in the acute phase that TeNT injection promotes a reduction of the interhemispheric coupling for high frequencies (12 -30 Hz) and small time lag (<20 ms), whereas an increase of the coupling is present for low frequencies (0.5 -4 Hz) and long time lag (>40 ms). On the other hand, the chronic period is characterized by a partial or complete recovery of the interhemispheric interdependence level. Granger causality test and symbolic transfer entropy indicate a greater driving influence of the TeNT-injected side on activity in the contralateral hemisphere in the chronic phase. Lastly, based on experimental observations, we built a computational model of LFPs to investigate the role of the ipsilateral inhibition and exicitatory interhemispheric connections in the dampening of the interhemispheric coupling. The time evolution of the interhemispheric coupling in such a relevant model of epilepsy has been addressed here.

  5. Time evolution of interhemispheric coupling in a model of focal neocortical epilepsy in mice.

    PubMed

    Vallone, F; Vannini, E; Cintio, A; Caleo, M; Di Garbo, A

    2016-09-01

    Epilepsy is characterized by substantial network rearrangements leading to spontaneous seizures and little is known on how an epileptogenic focus impacts on neural activity in the contralateral hemisphere. Here, we used a model of unilateral epilepsy induced by injection of the synaptic blocker tetanus neurotoxin (TeNT) in the mouse primary visual cortex (V1). Local field potential (LFP) signals were simultaneously recorded from both hemispheres of each mouse in acute phase (peak of toxin action) and chronic condition (completion of TeNT effects). To characterize the neural electrical activities the corresponding LFP signals were analyzed with several methods of time series analysis. For the epileptic mice, the spectral analysis showed that TeNT determines a power redistribution among the different neurophysiological bands in both acute and chronic phases. Using linear and nonlinear interdependence measures in both time and frequency domains, it was found in the acute phase that TeNT injection promotes a reduction of the interhemispheric coupling for high frequencies (12-30 Hz) and small time lag (<20 ms), whereas an increase of the coupling is present for low frequencies (0.5-4 Hz) and long time lag (>40 ms). On the other hand, the chronic period is characterized by a partial or complete recovery of the interhemispheric interdependence level. Granger causality test and symbolic transfer entropy indicate a greater driving influence of the TeNT-injected side on activity in the contralateral hemisphere in the chronic phase. Lastly, based on experimental observations, we built a computational model of LFPs to investigate the role of the ipsilateral inhibition and exicitatory interhemispheric connections in the dampening of the interhemispheric coupling. The time evolution of the interhemispheric coupling in such a relevant model of epilepsy has been addressed here.

  6. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marco, B.; Ponti, G.; Nandra, K.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less

  7. Evolution of genuine cross-correlation strength of focal onset seizures.

    PubMed

    Müller, Markus F; Baier, Gerold; Jiménez, Yurytzy López; Marín García, Arlex O; Rummel, Christian; Schindler, Kaspar

    2011-10-01

    To quantify the evolution of genuine zero-lag cross-correlations of focal onset seizures, we apply a recently introduced multivariate measure to broad band and to narrow-band EEG data. For frequency components below 12.5 Hz, the strength of genuine cross-correlations decreases significantly during the seizure and the immediate postseizure period, while higher frequency bands show a tendency of elevated cross-correlations during the same period. We conclude that in terms of genuine zero-lag cross-correlations, the electrical brain activity as assessed by scalp electrodes shows a significant spatial fragmentation, which might promote seizure offset.

  8. Spectral-luminosity evolution of active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    The origin of the cosmic X-ray and gamma-ray backgrounds is explained via the mechanism of AGN spectral-luminosity evolution. The spectral evolution of precursor active galaxies into AGN, and Newton-Raphson input and output parameters are discussed.

  9. New Probe of Early Phases of Jet Formation and Evolution using Stellar Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Ranga Reddy Pasham, Dheeraj; van Velzen, Sjoert

    2018-01-01

    The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. I will talk about a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3-1 keV) and 16 GHz radio flux of Rosetta Stone tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of about 13 days. This demonstrates that soft X-ray emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. I will show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power. I will also discuss how future tidal disruption events can help us understand how jets form and evolve in general.

  10. Steep Decay Phase Shaped by the Curvature Effect. II. Spectral Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Da-Bin; Mu, Hui-Jun; Lu, Rui-Jing

    We derive a simple analytical formula to describe the evolution of spectral index β in the steep decay phase shaped by the curvature effect with the assumption that the spectral parameters and Lorentz factor of the jet shell are the same for different latitudes. Here, the value of β is estimated in the 0.3−10 keV energy band. For a spherical thin shell with a cutoff power-law (CPL) intrinsic radiation spectrum, the spectral evolution can be read as a linear function of observer time. For the situation with the Band function intrinsic radiation spectrum, the spectral evolution may be complex. Ifmore » the observed break energy of the radiation spectrum is larger than 10 keV, the spectral evolution is the same as that shaped by jet shells with a CPL spectrum. If the observed break energy is less than 0.3 keV, the value of β would be a constant. For others, the spectral evolution can be approximated as a logarithmal function of the observer time in general.« less

  11. Can the relativistic light-bending model explain X-ray spectral variations of Seyfert galaxies?

    NASA Astrophysics Data System (ADS)

    Mizumoto, Misaki; Moriyama, Kotaro; Ebisawa, Ken; Mineshige, Shin; Kawanaka, Norita; Tsujimoto, Masahiro

    2018-04-01

    Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic light-bending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (≳10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ˜40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.

  12. Can the relativistic light-bending model explain X-ray spectral variations of Seyfert galaxies?

    NASA Astrophysics Data System (ADS)

    Mizumoto, Misaki; Moriyama, Kotaro; Ebisawa, Ken; Mineshige, Shin; Kawanaka, Norita; Tsujimoto, Masahiro

    2018-06-01

    Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic light-bending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (≳10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ˜40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.

  13. Temperature Responses to Spectral Solar Variability on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter

    2010-01-01

    Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.

  14. Multi-time-scale X-ray reverberation mapping of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  15. TEMPORAL VARIABILITY FROM THE TWO-COMPONENT ADVECTIVE FLOW SOLUTION AND ITS OBSERVATIONAL EVIDENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-10

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclinationmore » black hole source GX 339-4 during its 2006–07 outburst using RXTE /PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν {sub c}) of ∼3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.« less

  16. Asymmetric correlation matrices: an analysis of financial data

    NASA Astrophysics Data System (ADS)

    Livan, G.; Rebecchi, L.

    2012-06-01

    We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.

  17. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution, appendix 4

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1989-01-01

    The power spectrum for a stationary random process can be defined with the Wiener-Khintchine Theorem, which says that the power spectrum and the auto correlation function are a Fourier transform pair. To implement this theorem for signals that are discrete and of finite length we can use the Blackman-Tukey method. Blackman and Tukey (1958) show that a function w(tau), called a lag window, can be applied to the auto correlation estimates to obtain power spectrum estimates that are statistically stable. The Fourier transform of w(r) is called a spectral window. Typical choices for spectral windows show a distinct trade-off between the main lobe width and side lobe strength. A new idea for designing windows by taking linear combinations of the standard windows to produce hybrid windows was introduced by Smith (1985). We implement Smith's idea to obtain spectral windows with narrow main lobes and smaller (compared with typical windows) near side lobes. One of the main contributions of this thesis is that we show that Smith's problem is equivalent to a Quadratic Programming (QP) problem with linear equality and inequality constraints. A computer program was written to produce hybrid windows by setting up and solving the QP problem. We also developed and solved two variations of the original problem. The two variations involved changing the inequality constraints in both cases from non negativity on the combination coefficients to non negativity on the hybrid lag window itself. For the second variation, the window functions used to construct the hybrid window were changed to a frequency-variable set of truncated cosinusoids. A series of tests was run with the three computer programs to investigate the behavior of the hybrid spectral and lag windows. Emphasis was put on obtaining spectral windows with both relatively narrow main lobes and the lowest possible (for these algorithms) near side lobes. Some success was achieved for this goal. A 10 dB peak side lobe reduction over the rectangular spectral window without significant main lobe broadening was achieved. Also, average side lobe levels of -117 dB were reached at a cost of doubling the main lobe width (at the -3 dB point).

  18. The Chaotic Light Curves of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    We present model light curves for accreting Black Hole Candidates (BHC) based on a recently developed model of these sources. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals and the stochastic nature of the Comptonization process in converting these soft photons to the observed high energy radiation. The additional assumption of our model is that the Comptonization process takes place in an extended but non-uniform hot plasma corona surrounding the compact object. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model reproduces the observed light curves well, in that it provides good fits to their overall morphology (as manifest by the autocorrelation and time skewness) and also to their PSDs and time lags, by producing most of the variability power at time scales 2 a few seconds, while at the same time allowing for shots of a few msec in duration, in accordance with observation. We suggest that refinement of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.

  19. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    PubMed

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  20. A study of the cross-correlation and time lag in black hole X-ray binary XTE J1859+226

    NASA Astrophysics Data System (ADS)

    Pei, Songpeng; Ding, Guoqiang; Li, Zhibing; Lei, Yajuan; Yuen, Rai; Qu, Jinlu

    2017-07-01

    With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. Anti-correlations and positive correlations and their respective soft and hard X-ray lags are only detected in the first 100 days of the outburst when the luminosity is high. This suggests that the cross-correlations may be related to high luminosity. Positive correlations are detected in every state of XTE J1859+226, viz., hard state, hard-intermediate state (HIMS), soft-intermediate state (SIMS) and soft state. However, anti-correlations are only detected in HIMS and SIMS, anti-correlated hard lags are only detected in SIMS, while anti-correlated soft lags are detected in both HIMS and SIMS. Moreover, the ratio of the observations with anti-correlated soft lags to hard lags detected in XTE J1859+226 is significantly different from that in neutron star low-mass X-ray binaries (NS LMXBs). So far, anti-correlations are never detected in the soft state of BHXBs but detected in every branch or state of NS LMXBs. This may be due to the origin of soft seed photons in BHXBs is confined to the accretion disk and, for NS LMXBs, from both accretion disk and the surface of the NS. We notice that the timescale of anti-correlated time lags detected in XTE J1859+226 is similar with that of other BHXBs and NS LMXBs. We suggest that anti-correlated soft lag detected in BHXB may result from fluctuation in the accretion disk as well as NS LMXB.

  1. A numerical study on the evolution of the wind-driven circulation in the Yellow Sea in winter

    NASA Astrophysics Data System (ADS)

    Tak, Y. J.; Cho, Y. K.

    2016-02-01

    The Yellow Sea is a semi-enclosed marginal sea and its circulation in winter is affected by the winter monsoon. In previous studies, it was found that the circulation of the Yellow Sea in winter consists of downwind and upwind currents. Downwind currents consisting of the Korean Coast Current (KCC) and the Chinese Coast Current (CCC) flow along the boundary of the Yellow Sea, whereas an upwind current consisting of the Yellow Sea Warm Current (YSWC) flows along the central trough of the Yellow Sea. Although some characteristics of such currents and the driving forces of the circulation have been studied by many scientists, the evolution of these currents has received little attention. So, the wind-driven circulation in the Yellow Sea was simulated to explain the changing pattern of these currents in winter and their evolutions were explored by the time-lagged correlation for winter season. According to the lagged correlation, downwind currents occurred in surface layer without a time lag. These downwind currents were more sensitive in the Chinese coast than that in the Korean coast. There is one day time-lag between the wind and the upwind flow developing in the Yellow Sea trough. The YSWC was shifted to the west of the trough after two days and then the KCC strengthened at the same time. It implied the westward shift of the YSWC and the clockwise circulation is developed, two days after the wind blows. The clockwise circulation was one of the reasons that the KCC was stronger than the CCC although the CCC was more sensitive to the wind than the KCC. The clockwise circulation also made the YSWC stronger in the inner YS than it at the entrance of the YS.

  2. Phycoerythrin evolution and diversification of spectral phenotype in marine Synechococcus and related picocyanobacteria.

    PubMed

    Everroad, R Craig; Wood, A Michelle

    2012-09-01

    In marine Synechococcus there is evidence for the adaptive evolution of spectrally distinct forms of the major light harvesting pigment phycoerythrin (PE). Recent research has suggested that these spectral forms of PE have a different evolutionary history than the core genome. However, a lack of explicit statistical testing of alternative hypotheses or for selection on these genes has made it difficult to evaluate the evolutionary relationships between spectral forms of PE or the role horizontal gene transfer (HGT) may have had in the adaptive phenotypic evolution of the pigment system in marine Synechococcus. In this work, PE phylogenies of picocyanobacteria with known spectral phenotypes, including newly co-isolated strains of marine Synechococcus from the Gulf of Mexico, were constructed to explore the diversification of spectral phenotype and PE evolution in this group more completely. For the first time, statistical evaluation of competing evolutionary hypotheses and tests for positive selection on the PE locus in picocyanobacteria were performed. Genes for PEs associated with specific PE spectral phenotypes formed strongly supported monophyletic clades within the PE tree with positive directional selection driving evolution towards higher phycourobilin (PUB) content. The presence of the PUB-lacking phenotype in PE-containing marine picocyanobacteria from cyanobacterial lineages identified as Cyanobium is best explained by HGT into this group from marine Synechococcus. Taken together, these data provide strong examples of adaptive evolution of a single phenotypic trait in bacteria via mutation, positive directional selection and horizontal gene transfer. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.

    2018-03-01

    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.

  4. Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards.

    PubMed

    Srikulnath, Kornsorn; Matsubara, Kazumi; Uno, Yoshinobu; Nishida, Chizuko; Olsson, Mats; Matsuda, Yoichi

    2014-12-01

    The sand lizard (Lacerta agilis, Lacertidae) has a chromosome number of 2n = 38, with 17 pairs of acrocentric chromosomes, one pair of microchromosomes, a large acrocentric Z chromosome, and a micro-W chromosome. To investigate the process of karyotype evolution in L. agilis, we performed chromosome banding and fluorescent in situ hybridization for gene mapping and constructed a cytogenetic map with 86 functional genes. Chromosome banding revealed that the Z chromosome is the fifth largest chromosome. The cytogenetic map revealed homology of the L. agilis Z chromosome with chicken chromosomes 6 and 9. Comparison of the L. agilis cytogenetic map with those of four Toxicofera species with many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) showed highly conserved linkage homology of L. agilis chromosomes (LAG) 1, 2, 3, 4, 5(Z), 7, 8, 9, and 10 with macrochromosomes and/or macrochromosome segments of the four Toxicofera species. Most of the genes located on the microchromosomes of Toxicofera were localized to LAG6, small acrocentric chromosomes (LAG11-18), and a microchromosome (LAG19) in L. agilis. These results suggest that the L. agilis karyotype resulted from frequent fusions of microchromosomes, which occurred in the ancestral karyotype of Toxicofera and led to the disappearance of microchromosomes and the appearance of many small macrochromosomes.

  5. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  6. Experimental Investigation of Spectra of Dynamical Maps and their Relation to non-Markovianity

    NASA Astrophysics Data System (ADS)

    Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Meng, Yu; Li, Zhi-Peng; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2018-02-01

    The spectral theorem of von Neumann has been widely applied in various areas, such as the characteristic spectral lines of atoms. It has been recently proposed that dynamical evolution also possesses spectral lines. As the most intrinsic property of evolution, the behavior of these spectra can, in principle, exhibit almost every feature of this evolution, among which the most attractive topic is non-Markovianity, i.e., the memory effects during evolution. Here, we develop a method to detect these spectra, and moreover, we experimentally examine the relation between the spectral behavior and non-Markovianity by engineering the environment to prepare dynamical maps with different non-Markovian properties and then detecting the dynamical behavior of the spectral values. These spectra will lead to a witness for essential non-Markovianity. We also experimentally verify another simplified witness method for essential non-Markovianity. Interestingly, in both cases, we observe the sudden transition from essential non-Markovianity to something else. Our work shows the role of the spectra of evolution in the studies of non-Makovianity and provides the alternative methods to characterize non-Markovian behavior.

  7. The Reverberation Lag in the Low-mass X-ray Binary H1743-322

    NASA Astrophysics Data System (ADS)

    De Marco, Barbara; Ponti, Gabriele

    2016-07-01

    The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.

  8. VizieR Online Data Catalog: Spectral evolution of 4U 1543-47 in 2002 (Lipunova+, 2017)

    NASA Astrophysics Data System (ADS)

    Lipunova, G. V.; Malanchev, K. L.

    2017-08-01

    Evolution of the spectral parameters obtained from the fitting of the spectral data obtained with RXTE/PCA in the 2.9-25keV energy band. Some spectral parameters are plotted in Figure 1 of the paper. The black hole mass is 9.4 solar masses, the Kerr parameter is 0.4, the disc inclination is 20.7 grad. The spectral fitting is done using XSPEC 12.9.0. The XSPEC spectral model consists of the following spectral components: TBabs((simpl*kerrbb+laor)smedge). Full description of the spectral parameters can be found in Table A1 and Appendix A of the paper. (1 data file).

  9. A Comprehensive Study of Short Bursts from SGR1806-20 and SGR1900+14 Detected by HETE-2

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yujin E.; Yoshida, Atsumasa; Hurley, Kevin; Atteia, Jean-Luc; Maetou, Miki; Tamagawa, Toru; Suzuki, Motoko; Yamazaki, Tohru; Tanaka, Kaoru; Kawai, Nobuyuki; Shirasaki, Yuji; Pelangeon, Alexandre; Matsuoka, Masaru; Vanderspek, Roland; Crew, Geoff B.; Villasenor, Joel S.; Sato, Rie; Sugita, Satoshi; Kotoku, Jun'ichi; Arimoto, Makoto; Pizzichini, Graziella; Doty, John P.; Ricker, George R.

    2007-06-01

    Temporal and spectral studies of short bursts (≲ a few hundred milliseconds) are presented for the soft gamma repeaters (SGRs) 1806-20 and 1900+14 using the HETE-2 samples. In five years from 2001 to 2005, HETE-2 localized 50 bursts from SGR1806-20 and 5 bursts from SGR1900+14. The cumulative number-intensity distribution of SGR1806-20 in the active year 2004 is well described by a power-law model with an index of -1.1±0.6. It is consistent with previous studies, but burst data taken in other years clearly give a steeper distribution. This may suggest that more energetic bursts could occur more frequently in periods of greater activity. From the data, the spectral evolution during bursts with a time scale of ≳ 20ms does not seem to be common in the HETE-2 sample. The spectra of all short bursts are well reproduced by a two blackbody function with temperatures of ˜ 4 and ˜ 11keV. From a timing analysis to the SGR1806-20 data, a time lag of 2.2±0.4ms is found between the 30-100keV and 2-10keV radiation bands. This may imply (1) a very rapid spectral softening and energy reinjection, (2) diffused (elongated) emission plasma along the magnetic field lines in pseudo-equilibrium with multi-temperatures, or (3) a separate (located at ≲ 700km) emission region of a softer component (say, ˜ 4keV), which could be reprocessed X-rays by higher energy (≳ 11keV) photons from an emission region near the stellar surface.

  10. Comparison of spectral estimators for characterizing fractionated atrial electrograms

    PubMed Central

    2013-01-01

    Background Complex fractionated atrial electrograms (CFAE) acquired during atrial fibrillation (AF) are commonly assessed using the discrete Fourier transform (DFT), but this can lead to inaccuracy. In this study, spectral estimators derived by averaging the autocorrelation function at lags were compared to the DFT. Method Bipolar CFAE of at least 16 s duration were obtained from pulmonary vein ostia and left atrial free wall sites (9 paroxysmal and 10 persistent AF patients). Power spectra were computed using the DFT and three other methods: 1. a novel spectral estimator based on signal averaging (NSE), 2. the NSE with harmonic removal (NSH), and 3. the autocorrelation function average at lags (AFA). Three spectral parameters were calculated: 1. the largest fundamental spectral peak, known as the dominant frequency (DF), 2. the DF amplitude (DA), and 3. the mean spectral profile (MP), which quantifies noise floor level. For each spectral estimator and parameter, the significance of the difference between paroxysmal and persistent AF was determined. Results For all estimators, mean DA and mean DF values were higher in persistent AF, while the mean MP value was higher in paroxysmal AF. The differences in means between paroxysmals and persistents were highly significant for 3/3 NSE and NSH measurements and for 2/3 DFT and AFA measurements (p<0.001). For all estimators, the standard deviation in DA and MP values were higher in persistent AF, while the standard deviation in DF value was higher in paroxysmal AF. Differences in standard deviations between paroxysmals and persistents were highly significant in 2/3 NSE and NSH measurements, in 1/3 AFA measurements, and in 0/3 DFT measurements. Conclusions Measurements made from all four spectral estimators were in agreement as to whether the means and standard deviations in three spectral parameters were greater in CFAEs acquired from paroxysmal or in persistent AF patients. Since the measurements were consistent, use of two or more of these estimators for power spectral analysis can be assistive to evaluate CFAE more objectively and accurately, which may lead to improved clinical outcome. Since the most significant differences overall were achieved using the NSE and NSH estimators, parameters measured from their spectra will likely be the most useful for detecting and discerning electrophysiologic differences in the AF substrate based upon frequency analysis of CFAE. PMID:23855345

  11. USSR Report, International Affairs.

    DTIC Science & Technology

    1986-09-22

    evolution ; by the beginning of the imperialist epoch they were not colonies as a rule, but they were lagging behind in their development and for...Metis population) and resource potential; they have undergone an extensive evolution from patriarchy to capitalist modernization deformed by foreign...territories of these countries for their own purposes—as "hotels," which attract foreign tourists , as locations for corporate and bank headquarters

  12. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-03-01

    Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.

  13. An out of phase coupling between the atmosphere and the ocean over the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ribera, Pedro; Ordoñez, Paulina; Gallego, David; Peña-Ortiz, Cristina

    2017-04-01

    An oscillation band, with a period ranging between 40 and 60 years, has been identified as the most intense signal over the North Atlantic Ocean using several oceanic and atmospheric reanalyses between 1856 and the present. This signal represents the Atlantic Multidecadal Oscillation, an oscillation between warmer and colder than normal conditions in SST. Simultaneously, those changes in SST are accompanied by changes in atmospheric conditions represented by surface pressure, temperature and circulation. In fact, the evolution of the surface pressure pattern along this oscillation shows a North Atlantic Oscillation-like pattern, suggesting the existence of an out of phase coupling between atmospheric and oceanic conditions. Further analysis shows that the evolution of the oceanic SST distribution modifies atmospheric baroclinic conditions in the mid to high latitudes of the North Atlantic and leads the atmospheric variability by 6-7 years. If AMO represents the oceanic conditons and NAO represents the atmospheric variability then it could be said that AMO of one sign leads NAO of the opposite sign with a lag of 6-7 years. On the other hand, the evolution of atmospheric conditions, represented by pressure distribution patterns, favors atmospheric circulation anomalies and induces a heat advection which tends to change the sign of the existing SST distribution and oceanic conditions with a lag of 16-17 years. In this case, NAO of one sign leads AMO of the same sign with a lag of 16-17 years.

  14. A longer vernal window: the role of winter coldness and snowpack in driving spring transitions and lags.

    PubMed

    Contosta, Alexandra R; Adolph, Alden; Burchsted, Denise; Burakowski, Elizabeth; Green, Mark; Guerra, David; Albert, Mary; Dibb, Jack; Martin, Mary; McDowell, William H; Routhier, Michael; Wake, Cameron; Whitaker, Rachel; Wollheim, Wilfred

    2017-04-01

    Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  15. X-ray Variability Characteristics of the Narrow line SEYFERT 1 MKN 766 I: Energy Dependent Timing Properties

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  16. On the Nature of QPO Phase Lags in Black Hole Candidates

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nikolai

    2012-01-01

    Observations of quasi-periodic oscillations (QPOs) in X-ray binaries hold a key to understanding many aspects of these enigmatic systems. Complex appearance of the Fourier phase lags related to QPOs is one of the most puzzling observational effects in accreting black holes. In this Letter we show that QPO properties, including phase lags, can be explained in a framework of a simple scenario, where the oscillating media provides a feedback on the emerging spectrum. We demonstrate that the QPO waveform is presented by the product of a perturbation and a time delayed response factors, where the response is energy dependent. The essential property of this effect is its non-linear and multiplicative nature. Our multiplicative reverberation model successfully describes the QPO components in energy dependent power spectra as well as the appearance of the phase lags between signal in different energy bands. We apply our model to QPOs observed by Rossi X-ray Timing Explorer in BH candidate XTE J1550-564. We briefly discuss the implications of the observed energy dependence of the QPO reverberation times and amplitudes to the nature of the power law spectral component and its variability.

  17. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  18. Interpretation of spectrophotometric surface properties of comet 67P/Churyumov-Gerasimenko by laboratory simulations of cometary analogs

    NASA Astrophysics Data System (ADS)

    Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2015-11-01

    The OSIRIS imaging system [1] onboard European Space Agency’s Rosetta mission has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014. It provides an enormous quantity of high resolution images of the nucleus in the visible spectral range. 67P revealed an unexpected diversity of complex surface structures and spectral properties have also been measured [2].To better interpret this data, a profound knowledge of laboratory analogs of cometary surfaces is essential. For this reason we have set up the LOSSy laboratory (Laboratory for Outflow Studies of Sublimating Materials) to study the spectrophotometric properties of ice-bearing cometary nucleus analogs. The main focus lies on the characterization of the surface evolution under simulated space conditions. The laboratory is equipped with two facilities: the PHIRE-2 radio-goniometer [3], designed to measure the bidirectional visible reflectance of samples under a wide range of geometries and the SCITEAS simulation chamber [4], designed to study the evolution of icy samples subliming under low pressure/temperature conditions by hyperspectral imaging in the VIS-NIR range. Different microscopes complement the two facilities.We present laboratory data of different types of fine grained ice particles mixed with non-volatile components (complex organic matter and minerals). As the ice sublimes, a deposition lag of non-volatile constituents is built-up on top of the ice, possibly mimic a cometary surface. The bidirectional reflectance of the samples have been characterized before and after the sublimation process.A comparison of our laboratory findings with recent OSIRIS data [5] will be presented.[1] Keller, H. U., et al., 2007, Space Sci. Rev., 128, 26[2] Thomas, N. , 2015, Science, 347, Issue 6220, aaa0440[3] Jost, B., submitted, Icarus[4] Pommerol, A., et al., 2015. Planet Space Sci 109:106-122.[5] Fornasier, S., et al., in press. Icarus, arXiv:1505.06888

  19. Unveiling the mystery of mitochondrial DNA replication in yeasts.

    PubMed

    Chen, Xin Jie; Clark-Walker, George Desmond

    2018-01-01

    Conventional DNA replication is initiated from specific origins and requires the synthesis of RNA primers for both the leading and lagging strands. In contrast, the replication of yeast mitochondrial DNA is origin-independent. The replication of the leading strand is likely primed by recombinational structures and proceeded by a rolling circle mechanism. The coexistent linear and circular DNA conformers facilitate the recombination-based initiation. The replication of the lagging strand is poorly understood. Re-evaluation of published data suggests that the rolling circle may also provide structures for the synthesis of the lagging-strand by mechanisms such as template switching. Thus, the coupling of recombination with rolling circle replication and possibly, template switching, may have been selected as an economic replication mode to accommodate the reductive evolution of mitochondria. Such a replication mode spares the need for conventional replicative components, including those required for origin recognition/remodelling, RNA primer synthesis and lagging-strand processing. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  20. ON THE PUZZLING HIGH-ENERGY PULSATIONS OF THE ENERGETIC RADIO-QUIET γ-RAY PULSAR J1813–1246

    DOE PAGES

    Marelli, M.; Harding, A.; Pizzocaro, D.; ...

    2014-10-28

    In this study, we have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813–1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available Fermi ephemeris to five years. We found two glitches. The γ-ray light curve is characterized by twomore » peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the γ-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and γ-ray emission of J1813. The unique X-ray and γ-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.« less

  1. On the Puzzling High-Energy Pulsations of the Energetic Radio-Quiet -Ray Pulsar J1813-1246

    NASA Technical Reports Server (NTRS)

    Marelli, M.; Harding, Alice K.; Pizzocaro, D.; De Luca, A.; Wood, K. S.; Caraveo, P.; Salvetti, D.; Parkinson, P. M.; Acero, F.

    2014-01-01

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813-1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase.We extended the available Fermi ephemeris to five years.We found two glitches. The gamma-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the gamma-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and gamma-ray emission of J1813. The unique X-ray and gamma-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  2. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.

    PubMed

    Lande, Russell

    2009-07-01

    Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.

  3. Structure and evolution of plant centromeres.

    PubMed

    Nagaki, Kiyotaka; Walling, Jason; Hirsch, Cory; Jiang, Jiming; Murata, Minoru

    2009-01-01

    Investigations of centromeric DNA and proteins and centromere structures in plants have lagged behind those conducted with yeasts and animals; however, many attractive results have been obtained from plants during this decade. In particular, intensive investigations have been conducted in Arabidopsis and Gramineae species. We will review our understanding of centromeric components, centromere structures, and the evolution of these attributes of centromeres among plants using data mainly from Arabidopsis and Gramineae species.

  4. Aggressive tumor growth and clinical evolution in a patient with X-linked acro-gigantism syndrome.

    PubMed

    Naves, Luciana A; Daly, Adrian F; Dias, Luiz Augusto; Yuan, Bo; Zakir, Juliano Coelho Oliveira; Barra, Gustavo Barcellos; Palmeira, Leonor; Villa, Chiara; Trivellin, Giampaolo; Júnior, Armindo Jreige; Neto, Florêncio Figueiredo Cavalcante; Liu, Pengfei; Pellegata, Natalia S; Stratakis, Constantine A; Lupski, James R; Beckers, Albert

    2016-02-01

    X-linked acro-gigantism (X-LAG) syndrome is a newly described disease caused by microduplications on chromosome Xq26.3 leading to copy number gain of GPR101. We describe the clinical progress of a sporadic male X-LAG syndrome patient with an Xq26.3 microduplication, highlighting the aggressive natural history of pituitary tumor growth in the absence of treatment. The patient first presented elsewhere aged 5 years 8 months with a history of excessive growth for >2 years. His height was 163 cm, his weight was 36 kg, and he had markedly elevated GH and IGF-1. MRI showed a non-invasive sellar mass measuring 32.5 × 23.9 × 29.1 mm. Treatment was declined and the family was lost to follow-up. At the age of 10 years and 7 months, he presented again with headaches, seizures, and visual disturbance. His height had increased to 197 cm. MRI showed an invasive mass measuring 56.2 × 58.1 × 45.0 mm, with compression of optic chiasma, bilateral cavernous sinus invasion, and hydrocephalus. His thyrotrope, corticotrope, and gonadotrope axes were deficient. Surgery, somatostatin analogs, and cabergoline did not control vertical growth and pegvisomant was added, although vertical growth continues (currently 207 cm at 11 years 7 months of age). X-LAG syndrome is a new genomic disorder in which early-onset pituitary tumorigenesis can lead to marked overgrowth and gigantism. This case illustrates the aggressive nature of tumor evolution and the challenging clinical management in X-LAG syndrome.

  5. Aggressive tumor growth and clinical evolution in a patient with X-linked acro-gigantism syndrome

    PubMed Central

    Naves, Luciana A.; Daly, Adrian F.; Dias, Luiz Augusto; Yuan, Bo; Zakir, Juliano Coelho Oliveira; Barra, Gustavo Barcellos; Palmeira, Leonor; Villa, Chiara; Trivellin, Giampaolo; Jreige, Armindo; Neto, Florêncio Figueiredo Cavalcante; Liu, Pengfei; Pellegata, Natalia S.; Stratakis, Constantine A.; Lupski, James R.

    2017-01-01

    X-linked acro-gigantism (X-LAG) syndrome is a newly described disease caused by microduplications on chromosome Xq26.3 leading to copy number gain of GPR101. We describe the clinical progress of a sporadic male X-LAG syndrome patient with an Xq26.3 microduplication, highlighting the aggressive natural history of pituitary tumor growth in the absence of treatment. The patient first presented elsewhere aged 5 years 8 months with a history of excessive growth for >2 years. His height was 163 cm, his weight was 36 kg, and he had markedly elevated GH and IGF-1. MRI showed a non-invasive sellar mass measuring 32.5 × 23.9 × 29.1 mm. Treatment was declined and the family was lost to follow-up. At the age of 10 years and 7 months, he presented again with headaches, seizures, and visual disturbance. His height had increased to 197 cm. MRI showed an invasive mass measuring 56.2 × 58.1 × 45.0 mm, with compression of optic chiasma, bilateral cavernous sinus invasion, and hydrocephalus. His thyrotrope, corticotrope, and gonadotrope axes were deficient. Surgery, somatostatin analogs, and cabergoline did not control vertical growth and pegvisomant was added, although vertical growth continues (currently 207 cm at 11 years 7 months of age). X-LAG syndrome is a new genomic disorder in which early-onset pituitary tumorigenesis can lead to marked overgrowth and gigantism. This case illustrates the aggressive nature of tumor evolution and the challenging clinical management in X-LAG syndrome. PMID:26607152

  6. Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field

    NASA Astrophysics Data System (ADS)

    Van de Put, Maarten L.; Sorée, Bart; Magnus, Wim

    2017-12-01

    The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non-locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time-evolution of a one-dimensional resonant tunneling diode driven out of equilibrium.

  7. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less

  8. Empirical evidence of climate's role in Rocky Mountain landscape evolution

    NASA Astrophysics Data System (ADS)

    Riihimaki, Catherine A.; Reiners, Peter W.

    2012-06-01

    Climate may be the dominant factor affecting landscape evolution during the late Cenozoic, but models that connect climate and landscape evolution cannot be tested without precise ages of landforms. Zircon (U-Th)/He ages of clinker, metamorphosed rock formed by burning of underlying coal seams, provide constraints on the spatial and temporal patterns of Quaternary erosion in the Powder River basin of Wyoming and Montana. The age distribution of 86 sites shows two temporal patterns: (1) a bias toward younger ages because of erosion of older clinker and (2) periodic occurrence of coal fires likely corresponding with particular climatic regimes. Statistical t tests of the ages and spectral analyses of the age probability density function indicate that these episodes of frequent coal fires most likely correspond with times of high eccentricity in Earth's orbit, possibly driven by increased seasonality in the region causing increased erosion rates and coal exhumation. Correlation of ages with interglacial time periods is weaker. The correlations between climate and coal fires improve when only samples greater than 50 km from the front of the Bighorn Range, the site of the nearest alpine glaciation, are compared. Together, these results indicate that the interaction between upstream glaciation and downstream erosion is likely not the dominant control on Quaternary landscape evolution in the Powder River basin, particularly since 0.5 Ma. Instead, incision rates are likely controlled by the response of streams to climate shifts within the basin itself, possibly changes in local precipitation rates or frequency-magnitude distributions, with no discernable lag time between climate changes and landscape responses. Clinker ages are consistent with numerical models in which stream erosion is driven by fluctuations in stream power on thousand year timescales within the basins, possibly as a result of changing precipitation patterns, and is driven by regional rock uplift on million year timescales.

  9. The lead-lag relationship between stock index and stock index futures: A thermal optimal path method

    NASA Astrophysics Data System (ADS)

    Gong, Chen-Chen; Ji, Shen-Dan; Su, Li-Ling; Li, Sai-Ping; Ren, Fei

    2016-02-01

    The study of lead-lag relationship between stock index and stock index futures is of great importance for its wide application in hedging and portfolio investments. Previous works mainly use conventional methods like Granger causality test, GARCH model and error correction model, and focus on the causality relation between the index and futures in a certain period. By using a non-parametric approach-thermal optimal path (TOP) method, we study the lead-lag relationship between China Securities Index 300 (CSI 300), Hang Seng Index (HSI), Standard and Poor 500 (S&P 500) Index and their associated futures to reveal the variance of their relationship over time. Our finding shows evidence of pronounced futures leadership for well established index futures, namely HSI and S&P 500 index futures, while index of developing market like CSI 300 has pronounced leadership. We offer an explanation based on the measure of an indicator which quantifies the differences between spot and futures prices for the surge of lead-lag function. Our results provide new perspectives for the understanding of the dynamical evolution of lead-lag relationship between stock index and stock index futures, which is valuable for the study of market efficiency and its applications.

  10. Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows

    NASA Astrophysics Data System (ADS)

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2015-11-01

    Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.

  11. Solar-cycle dependence of a model turbulence spectrum using IMP and ACE observations over 38 years

    NASA Astrophysics Data System (ADS)

    Burger, R. A.; Nel, A. E.; Engelbrecht, N. E.

    2014-12-01

    Ab initio modulation models require a number of turbulence quantities as input for any reasonable diffusion tensor. While turbulence transport models describe the radial evolution of such quantities, they in turn require observations in the inner heliosphere as input values. So far we have concentrated on solar minimum conditions (e.g. Engelbrecht and Burger 2013, ApJ), but are now looking at long-term modulation which requires turbulence data over at a least a solar magnetic cycle. As a start we analyzed 1-minute resolution data for the N-component of the magnetic field, from 1974 to 2012, covering about two solar magnetic cycles (initially using IMP and then ACE data). We assume a very simple three-stage power-law frequency spectrum, calculate the integral from the highest to the lowest frequency, and fit it to variances calculated with lags from 5 minutes to 80 hours. From the fit we then obtain not only the asymptotic variance at large lags, but also the spectral index of the inertial and the energy, as well as the breakpoint between the inertial and energy range (bendover scale) and between the energy and cutoff range (cutoff scale). All values given here are preliminary. The cutoff range is a constraint imposed in order to ensure a finite energy density; the spectrum is forced to be either flat or to decrease with decreasing frequency in this range. Given that cosmic rays sample magnetic fluctuations over long periods in their transport through the heliosphere, we average the spectra over at least 27 days. We find that the variance of the N-component has a clear solar cycle dependence, with smaller values (~6 nT2) during solar minimum and larger during solar maximum periods (~17 nT2), well correlated with the magnetic field magnitude (e.g. Smith et al. 2006, ApJ). Whereas the inertial range spectral index (-1.65 ± 0.06) does not show a significant solar cycle variation, the energy range index (-1.1 ± 0.3) seems to be anti-correlated with the variance (Bieber et al. 1993, JGR); both indices show close to normal distributions. In contrast, the variance (e.g. Burlaga and Ness, 1998, JGR), and both the bendover scale (see Ruiz et al. 2014, Solar Physics) and cutoff scale appear to be log-normal distributed.

  12. Spectral evolution of weakly nonlinear random waves: kinetic description vs direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2016-04-01

    We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution, we find a good agreement between our DNS-ZE results and simulations by Xiao et al (2013), both for the evolution of frequency spectra and for the directional spreading. In the long term, all three approaches demonstrate very close evolution of integral characteristics of spectra, approaching for large time the theoretical asymptotes of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-dimensional spectrum A the KE overestimates the amplitude of the spectral peak. Meanwhile, the DNS-ZE results show considerably wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the rates of change of the spectra obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of evolution, rather than the statistical timescale of both kinetic equations.

  13. A spring forward for hominin evolution in East Africa.

    PubMed

    Cuthbert, Mark O; Ashley, Gail M

    2014-01-01

    Groundwater is essential to modern human survival during drought periods. There is also growing geological evidence of springs associated with stone tools and hominin fossils in the East African Rift System (EARS) during a critical period for hominin evolution (from 1.8 Ma). However it is not known how vulnerable these springs may have been to climate variability and whether groundwater availability may have played a part in human evolution. Recent interdisciplinary research at Olduvai Gorge, Tanzania, has documented climate fluctuations attributable to astronomic forcing and the presence of paleosprings directly associated with archaeological sites. Using palaeogeological reconstruction and groundwater modelling of the Olduvai Gorge paleo-catchment, we show how spring discharge was likely linked to East African climate variability of annual to Milankovitch cycle timescales. Under decadal to centennial timescales, spring flow would have been relatively invariant providing good water resource resilience through long droughts. For multi-millennial periods, modelled spring flows lag groundwater recharge by 100 s to 1000 years. The lag creates long buffer periods allowing hominins to adapt to new habitats as potable surface water from rivers or lakes became increasingly scarce. Localised groundwater systems are likely to have been widespread within the EARS providing refugia and intense competition during dry periods, thus being an important factor in natural selection and evolution, as well as a vital resource during hominin dispersal within and out of Africa.

  14. Fast Variability and Millimeter/IR Flares in GRMHD Models of Sgr A* from Strong-field Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Medeiros, Lia; Marrone, Daniel; Saḑowski, Aleksander; Narayan, Ramesh

    2015-10-01

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  15. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares,more » which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.« less

  16. AIRSAR Data for Geological and Geomorphological Mapping in the Great Sandy Desert and Pilbara Regions of Western Australia

    NASA Technical Reports Server (NTRS)

    Tapley, Ian J.

    1996-01-01

    Enhancements of AIRSAR data have demonstrated the benefits of synthetic aperture radar (SAR) for revealing an additional and mich higher level of information about the composition of the terrain than enhancements f either SPOT-PAN or Landsat TM data. With appropriate image processing techniques, surface and near surface geological structures, hydrological systems (both current and ancient) and landform features, have been evidenced in a diverse range of landscapes. In the Great Sandy Desert region where spectral variability is minimal, radar's sensitivity to the micromorphology of sparse exposures of subcrop and lag gravels has provided a new insight into the region's geological framework, its landforms, and their evolution. In the Pilbara region, advanced processing of AIRSAR data to unmix the backscatter between and within the three frequencies of data has highlighted subsurface extensions of greenstone lithologies below sand cover and morphological evidence of past flow conditions under former climate regimes. On the basis of these observations, it is recommend that radar remote sensing technology involving the use of high resolution, polarimetric data be seriously considered as a viable tool for exploration in erosional and depositional environments located within Australia's mineral and oil-prospective provinces.

  17. The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Lee, Shiu-Hang; Slane, Patrick O.; Badenes, Carles; Nagataki, Shigehiro; Ellison, Donald C.; Milisavljevic, Dan

    2017-11-01

    There is now substantial evidence that the progenitors of some core-collapse supernovae undergo enhanced or extreme mass loss prior to explosion. The imprint of this mass loss is observed in the spectra and dynamics of the expanding blast wave on timescales of days to years after core collapse, and the effects on the spectral and dynamical evolution may linger long after the supernova has evolved into the remnant stage. In this paper, we present, for the first time, largely self-consistent end-to-end simulations for the evolution of a massive star from the pre-main sequence, up to and through core collapse, and into the remnant phase. We present three models and compare and contrast how the progenitor mass-loss history impacts the dynamics and spectral evolution of the supernovae and supernova remnants. We study a model that only includes steady mass loss, a model with enhanced mass loss over a period of ˜5000 yr prior to core collapse, and a model with extreme mass loss over a period of ˜500 yr prior to core collapse. The models are not meant to address any particular supernova or supernova remnant, but rather to highlight the important role that the progenitor evolution plays in the observable qualities of supernovae and supernova remnants. Through comparisons of these three different progenitor evolution scenarios, we find that the mass loss in late stages (during and after core carbon burning) can have a profound impact on the dynamics and spectral evolution of the supernova remnant centuries after core collapse.

  18. Simultaneous NuSTAR and XMM-Newton 0.5-80 KeV Spectroscopy of the Narrow-Line Seyfert 1 Galaxy SWIFT J2127.4+5654

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.; hide

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.

  19. FOURIER ANALYSIS OF BLAZAR VARIABILITY: KLEIN–NISHINA EFFECTS AND THE JET SCATTERING ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finke, Justin D.; Becker, Peter A., E-mail: justin.finke@nrl.navy.mil, E-mail: pbecker@gmu.edu

    The strong variability of blazars can be characterized by power spectral densities (PSDs) and Fourier frequency-dependent time lags. In previous work, we created a new theoretical formalism for describing the PSDs and time lags produced via a combination of stochastic particle injection and emission via the synchrotron, synchrotron self-Compton, and external Compton (EC) processes. This formalism used the Thomson cross section and simple δ-function approximations to model the synchrotron and Compton emissivities. Here we expand upon this work, using the full Compton cross section and detailed and accurate emissivities. Our results indicate good agreement between the PSDs computed using themore » δ-function approximations and those computed using the accurate expressions, provided the observed photons are produced primarily by electrons with energies exceeding the lower limit of the injected particle population. Breaks are found in the PSDs at frequencies corresponding to the cooling timescales of the electrons primarily responsible for the observed emission, and the associated time lags are related to the difference in electron cooling timescales between the two energy channels, as expected. If the electron cooling timescales can be determined from the observed time lags and/or the observed EC PSDs, then one could in principle use the method developed here to determine the energy of the external seed photon source for EC, which is an important unsolved problem in blazar physics.« less

  20. A comprehensive study of high-energy gamma-ray and radio emission from Cyg X-3

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Malyshev, Denys; Dubus, Guillaume; Pooley, Guy G.; Johnson, Tyrel; Frankowski, Adam; de Marco, Barbara; Chernyakova, Maria; Rao, A. R.

    2018-06-01

    We study high-energy γ-rays observed from Cyg X-3 by the Fermi Large Area Telescope and the 15-GHz emission observed by the Ryle Telescope and the Arcminute Microkelvin Imager. We measure the γ-ray spectrum averaged over strong flares much more accurately than before, and find it well modelled by Compton scattering of stellar radiation by relativistic electrons with the power law index of ≃3.5 and a low-energy cutoff at the Lorentz factor of ˜103. We find a weaker spectrum in the soft spectral state, but only upper limits in the hard and intermediate states. We measure strong orbital modulation during the flaring state, well modelled by anisotropic Compton scattering of blackbody photons from the donor by jet relativistic electrons. We discover a weaker orbital modulation of the 15 GHz radio emission, which is well modelled by free-free absorption by the stellar wind. We then study cross-correlations between radio, γ-ray and X-ray emissions. We find the cross-correlation between the radio and γ-ray emissions peaks at a lag less than 1 d, while we detect a distinct radio lag of ˜50 d with respect to the soft X-rays in the soft spectral state.

  1. Constrained signal reconstruction from wavelet transform coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1991-12-31

    A new method is introduced for reconstructing a signal from an incomplete sampling of its Discrete Wavelet Transform (DWT). The algorithm yields a minimum-norm estimate satisfying a priori upper and lower bounds on the signal. The method is based on a finite-dimensional representation theory for minimum-norm estimates of bounded signals developed by R.E. Cole. Cole`s work has its origins in earlier techniques of maximum-entropy spectral estimation due to Lang and McClellan, which were adapted by Steinhardt, Goodrich and Roberts for minimum-norm spectral estimation. Cole`s extension of their work provides a representation for minimum-norm estimates of a class of generalized transformsmore » in terms of general correlation data (not just DFT`s of autocorrelation lags, as in spectral estimation). One virtue of this great generality is that it includes the inverse DWT. 20 refs.« less

  2. ACCRETION FLOW DYNAMICS OF MAXI J1659-152 FROM THE SPECTRAL EVOLUTION STUDY OF ITS 2010 OUTBURST USING THE TCAF SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Dipak; Molla, Aslam Ali; Chakrabarti, Sandip K.

    2015-04-20

    Transient black hole candidates are interesting objects to study in X-rays as these sources show rapid evolutions in their spectral and temporal properties. In this paper, we study the spectral properties of the Galactic transient X-ray binary MAXI J1659-152 during its very first outburst after discovery with the archival data of RXTE Proportional Counter Array instruments. We make a detailed study of the evolution of accretion flow dynamics during its 2010 outburst through spectral analysis using the Chakrabarti–Titarchuk two-component advective flow (TCAF) model as an additive table model in XSPEC. Accretion flow parameters (Keplerian disk and sub-Keplerian halo rates, shockmore » location, and shock strength) are extracted from our spectral fits with TCAF. We studied variations of these fit parameters during the entire outburst as it passed through three spectral classes: hard, hard-intermediate, and soft-intermediate. We compared our TCAF fitted results with standard combined disk blackbody (DBB) and power-law (PL) model fitted results and found that variations of disk rate with DBB flux and halo rate with PL flux are generally similar in nature. There appears to be an absence of the soft state, unlike what is seen in other similar sources.« less

  3. Observational aspects of outbursting black hole sources: Evolution of spectro-temporal features and X-ray variability

    NASA Astrophysics Data System (ADS)

    Sreehari, H.; Nandi, Anuj; Radhika, D.; Iyer, Nirmal; Mandal, Samir

    2018-02-01

    We report on our attempt to understand the outbursting profile of Galactic Black Hole sources, keeping in mind the evolution of temporal and spectral features during the outburst. We present results of evolution of quasi-periodic oscillations, spectral states and possible connection with jet ejections during the outburst phase. Further, we attempt to connect the observed X-ray variabilities (i.e., `class'/`structured' variabilities, similar to GRS 1915+105) with spectral states of black hole sources. Towards these studies, we consider three black hole sources that have undergone single (XTE J1859+226), a few (IGR J17091-3624) and many (GX 339-4) outbursts since the start of RXTE era. Finally, we model the broadband energy spectra (3-150 keV) of different spectral states using RXTE and NuSTAR observations. Results are discussed in the context of two-component advective flow model, while constraining the mass of the three black hole sources.

  4. OncoNEM: inferring tumor evolution from single-cell sequencing data.

    PubMed

    Ross, Edith M; Markowetz, Florian

    2016-04-15

    Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for inferring intra-tumor evolutionary lineage trees from somatic single nucleotide variants of single cells. OncoNEM identifies homogeneous cellular subpopulations and infers their genotypes as well as a tree describing their evolutionary relationships. In simulation studies, we assess OncoNEM's robustness and benchmark its performance against competing methods. Finally, we show its applicability in case studies of muscle-invasive bladder cancer and essential thrombocythemia.

  5. Catching the radio flare in CTA 102. I. Light curve analysis

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.; Perucho, M.; Ros, E.; Savolainen, T.; Lobanov, A. P.; Zensus, J. A.; Aller, M. F.; Aller, H. D.; Gurwell, M. A.; Lähteenmäki, A.

    2011-07-01

    Context. The blazar CTA 102 (z = 1.037) underwent a historical radio outburst in April 2006. This event offered a unique chance to study the physical properties of the jet. Aims: We used multifrequency radio and mm observations to analyze the evolution of the spectral parameters during the flare as a test of the shock-in-jet model under these extreme conditions. Methods: For the analysis of the flare we took into account that the flaring spectrum is superimposed on a quiescent spectrum. We reconstructed the latter from archival data and fitted a synchrotron self-absorbed distribution of emission. The uncertainties of the derived spectral parameters were calculated using Monte Carlo simulations. The spectral evolution is modeled by the shock-in-jet model, and the derived results are discussed in the context of a geometrical model (varying viewing angle) and shock-shock interaction Results: The evolution of the flare in the turnover frequency-turnover flux density (νm - Sm) plane shows a double peak structure. The nature of this evolution is dicussed in the frame of shock-in-jet models. We discard the generation of the double peak structure in the νm - Sm plane purely based on geometrical changes (variation of the Doppler factor). The detailed modeling of the spectral evolution favors a shock-shock interaction as a possible physical mechanism behind the deviations from the standard shock-in-jet model.

  6. Single-shot spectroscopy of broadband Yb fiber laser

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2017-02-01

    We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.

  7. Time lag between deformation and seismicity along monogenetic volcanic unrest periods: The case of El Hierro Island (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Lamolda, Héctor; Felpeto, Alicia; Bethencourt, Abelardo

    2017-07-01

    Between 2011 and 2014 there were at least seven episodes of magmatic intrusion in El Hierro Island, but only the first one led to a submarine eruption in 2011-2012. In order to study the relationship between GPS deformation and seismicity during these episodes, we compare the temporal evolution of the deformation with the cumulative seismic energy released. In some of the episodes both deformation and seismicity evolve in a very similar way, but in others a time lag appears between them, in which the deformation precedes the seismicity. Furthermore, a linear correlation between decimal logarithm of intruded magma volume and decimal logarithm of total seismic energy released along the different episodes has been observed. Therefore, if a future magmatic intrusion in El Hierro Island follows this behavior with a proper time lag, we could have an a priori estimate on the order of magnitude the seismic energy released would reach.

  8. No evidence for the radiation time lag model after whole genome duplications in Teleostei

    PubMed Central

    Laurent, Sacha; Salamin, Nicolas

    2017-01-01

    The short and long term effects of polyploidization on the evolutionary fate of lineages is still unclear despite much interest. First recognized in land plants, it has become clear that polyploidization is widespread in eukaryotes, notably at the origin of vertebrates and teleost fishes. Many hypotheses have been proposed to link the species richness of lineages and whole genome duplications. For instance, the radiation time lag model suggests that paleopolyploidy would favour the apparition of new phenotypic traits, although the radiation of the lineage would not occur before a later dispersion event. Some results indicate that this model may be observed during land plant evolution. In this work, we test predictions of the radiation time lag model using both fossil data and molecular phylogenies in ancient and more recent teleost whole genome duplications. We fail to find any evidence of delayed increase of the species number after any of these events and conclude that paleopolyploidization still remains to be unambiguously linked to taxonomic diversity in teleosts. PMID:28426792

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29more » s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.« less

  10. Stress transfer around a broken fiber in unidirectional fiber-reinforced composites considering matrix damage evolution and interface slipping

    NASA Astrophysics Data System (ADS)

    Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang

    2011-02-01

    A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.

  11. Optical Polarization and Spectral Variability in the M87 Jet

    NASA Technical Reports Server (NTRS)

    Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; hide

    2011-01-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST -1 shows a highly significant correlation between flux and polarization, with P increasing from approx 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-l's optical-UV spectrum is very hard (alpha(sub uv-0) approx. 0.5, F(sub v) varies as (v(exp -alpha)), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2alpha upper limits of 0.5 delta parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ((alpha(sub uv-0) approx. 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  12. A global study of type B quasi-periodic oscillation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Gao, H. Q.; Zhang, Liang; Chen, Yupeng; Zhang, Zhen; Chen, Li; Zhang, Shuang-Nan; Zhang, Shu; Ma, Xiang; Li, Zi-Jian; Bu, Qing-Cui; Qu, JinLu

    2017-04-01

    We performed a global study on the timing and spectral properties of type-B quasi-periodic oscillations (QPOs) in the outbursts of black hole X-ray binaries. The sample is built based on the observations of Rossi X-ray Timing Explorer (RXTE), via searching in the literature in RXTE era for all the identified type-B QPOs. To enlarge the sample, we also investigated some type-B QPOs that are reported but not yet fully identified. Regarding to the time lag and hard/soft flux ratio, we found that the sources with type-B QPOs behave in two subgroups. In one subgroup, type-B QPO shows a hard time lag that first decreases and then reverse into a soft time lag along with softening of the energy spectrum. In the other subgroup, type-B QPOs distribute only in a small region with hard time lag and relatively soft hardness. These findings may be understood with a diversity of the homogeneity showing up for the hot inner flow of different sources. We confirm the universality of a positive relation between the type-B QPO frequency and the hard component luminosity in different sources. We explain the results by considering that the type-B QPO photons are produced in the inner accretion flow around the central black hole, under a local Eddington limit. Using this relationship, we derived a mass estimation of 9.3-27.1 M⊙ for the black hole in H 1743-322.

  13. Fast Fourier transformation results from gamma-ray burst profiles

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.

    1992-01-01

    Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.

  14. African Easterly Waves and Their Association with Precipitation

    NASA Technical Reports Server (NTRS)

    Gu, Guo-Jun; Adler, Robert F.; Huffman, George J.; Curtis, Scott

    2003-01-01

    Summer tropical synoptic-scale waves over West Africa are quantified by the 850 mb meridional wind component from the NCEP/NCAR reanalysis project. Their relationships with surface precipitation patterns are further explored by applying the data from the Tropical Rainfall Measuring Mission (TRMM) satellite in combination with other satellite observations during 1998-2002. Evident wavelet spectral power peaks are seen within a period of 2.5 - 6 days in both meridional wind and precipitation. The most intense wave signals in meridional wind are concentrated along 15 deg N- 25 deg N. Wave signals in precipitation and corresponding wavelet cross-spectral signals between these two variables, however, are primarily located at 5 deg N- 15 deg N, the latitudes of major summer rain events. There is a tendency for the perturbations in meridional wind component to lag (lead) precipitation signals south (north) of 15 deg N. In some cases, either an in-phase or out-of-phase relationship can even be found between these two variables, suggesting a latitude-dependent horizontal structure for these waves and probably implying two distinct wave-convective coupling mechanisms. Moreover, the lagging relationship (and/or the out-of-phase tendency) is only observed south of 15 deg N during July-September, indicating a strong seasonal preference. This phase relationship is generally consistent with the horizontal wave structures from a composite analysis.

  15. Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Song, Y. D.; Sun, Y. C.

    2015-07-01

    The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress-strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress-strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress-strain curves of cross-ply C/SiC composites agreed with experimental data.

  16. A Study on the Response of Non-photosynthetic Vegetation (NPV) towards the Anomalies of Climate in the Southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Jia, S.; Okin, G. S.

    2014-12-01

    Non-photosynthetic vegetation (NPV), including the standing dead leaves and trunks of plants, is not only a crucial component of aboveground biomass in the dry ecosystems but also an effective indicator of drought, since the photosynthetic plants (PV) usually degrade to NPV after drought. With the multiple-endmember spectral mixture (MESMA) analysis, it is possible to extract the NPV coverage to a selected baseline date from MODIS MOD43 NBAR data. In this study, we used a baseline image derived based on JHU Spectral Library to obtain the NPV, PV and bare soil of southwest U.S. from 2000 to 2012. To investigate the response of NPV, we then calculated the lagged and non-lagged correlation between the anomalies of land cover and climate variables. The major land use categories are also employed to investigate the spatial pattern of the response. The more significant correlation between NPV or PV and precipitation than temperature indicates the importance of moisture in the study site. In addition, there is an asymmetric response between NPV to the drought and the increased precipitation. In drier inland, the most significant response of NPV after a deficit of precipitation occurs later than after an increase. The increase of temperature, especially under the deficits of moisture, facilitates the presence of NPV with lag, which is due to the response time of detectable withering of PV. The response of NPV also varies between the different land cover categories. In southwest U.S., the NPV from shrubs and grassland have more sensitive feedbacks on the dynamics of climate than wetter region. The nature of the ecosystems can partly explain the difference, but finer scale studies are necessary for further investigation of specific regions. Considering the increase of drought in southwest U.S., obtaining a better understanding on the response of vegetation is crucial to further evaluate its impacts on the dry ecosystems. This study provides a perspective by examining NPV, another direct indicator of drought. For further studies, temporal and spatial patterns of NPV response to the climate need more scrutiny, such as the spatial pattern of the lags, hotspots of change, and regional-specific feedbacks. Different indicators of extreme events, such as the U.S. Drought Monitor may also be employed to provide more direct evaluation.

  17. Underutilized Resources for Studying the Evolution of Invasive Species During Their Introduction, Establishment, and Lag Phases

    USDA-ARS?s Scientific Manuscript database

    The early phases of biological invasions are poorly understood. In particular, it is not known if and/or how much evolutionary change must take place for an introduced species to transition from established to expanding. In this paper, we highlight three disparate data sources that may provide ins...

  18. a Comparative Study of the Timing and the Spectral Properties during Two Recent Outbursts (2010 and 2011) of H 1743-322

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip. K.; Nandi, Anuj

    2015-01-01

    The Galactic black hole candidate (BHC) H 1743-322 recently exhibited two outbursts in X-rays in August 2010 & April 2011. The nature (outburst profile, evolution of quasi-periodic oscillation (QPO) frequency and spectral states, etc.) of these two successive outbursts, which continued for around two months each, are very similar. We present the results obtained from a comparative study on the temporal and the spectral properties of the source during these two outbursts. The evolutions of QPOs observed in both the outbursts were well fitted with propagating oscillatory shock (POS) model. During both the outbursts, the observed spectral states (i.e, hard, hard-intermediate, soft-intermediate and soft) follow the `standard' type of hysteresis-loop, which could be explained with two component advective flow (TCAF) model.

  19. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  20. Life Cycle of Midlatitude Deep Convective Systems in a Lagrangian Framework

    NASA Technical Reports Server (NTRS)

    Feng, Zhe; Dong, Xiquan; Xie, Baike; McFarlane, Sally A.; Kennedy, Aaron; Lin, Bing; Minnis, Patrick

    2012-01-01

    Deep Convective Systems (DCSs) consist of intense convective cores (CC), large stratiform rain (SR) regions, and extensive non-precipitating anvil clouds (AC). This study focuses on the evolution of these three components and the factors that affect convective AC production. An automated satellite tracking method is used in conjunction with a recently developed multi-sensor hybrid classification to analyze the evolution of DCS structure in a Lagrangian framework over the central United States. Composite analysis from 4221 tracked DCSs during two warm seasons (May-August, 2010-2011) shows that maximum system size correlates with lifetime, and longer-lived DCSs have more extensive SR and AC. Maximum SR and AC area lag behind peak convective intensity and the lag increases linearly from approximately 1-hour for short-lived systems to more than 3-hours for long-lived ones. The increased lag, which depends on the convective environment, suggests that changes in the overall diabatic heating structure associated with the transition from CC to SR and AC could prolong the system lifetime by sustaining stratiform cloud development. Longer-lasting systems are associated with up to 60% higher mid-tropospheric relative humidity and up to 40% stronger middle to upper tropospheric wind shear. Regression analysis shows that the areal coverage of thick AC is strongly correlated with the size of CC, updraft strength, and SR area. Ambient upper tropospheric wind speed and wind shear also play an important role for convective AC production where for systems with large AC (radius greater than 120-km) they are 24% and 20% higher, respectively, than those with small AC (radius=20 km).

  1. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  2. Multiwavelength Spectral Variability of Mkn 501 in Outburst

    NASA Astrophysics Data System (ADS)

    Hempfling, Christina

    2012-10-01

    We propose simultaneous multiwavelength observations of the blazar Mrk501 in flaring state with XMM-Newton, FACT and Swift. Bright TeV gamma-ray flares have been detected repeatedly from Mrk501. Leptonic blazar models predict an simultaneous increase in the gamma-ray and X-ray bands. However, Mrk 501 also showed so-called orphan flares, as well as flares featuring time lags that are hard to explain by current models. Available data lack detailed light curves and hence are not sufficient to make strong statements on the nature of the responsible processes. These observations of a flare of Mrk501 in the gamma-ray and X-ray band with high spectral sensitivity and time resolution will yield a big contribution to the comprehension of blazar emission processes.

  3. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    PubMed

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  4. Evolution of the reverberation lag in GX 339-4 at the end of an outburst

    NASA Astrophysics Data System (ADS)

    De Marco, B.; Ponti, G.; Petrucci, P. O.; Clavel, M.; Corbel, S.; Belmont, R.; Chakravorty, S.; Coriat, M.; Drappeau, S.; Ferreira, J.; Henri, G.; Malzac, J.; Rodriguez, J.; Tomsick, J. A.; Ursini, F.; Zdziarski, A. A.

    2017-10-01

    We studied X-ray reverberation lags in the Black hole X-ray binary (BHXRB) GX 339-4 at the end of the 2014-2015 outburst. We analysed data from an XMM-Newton campaign covering the end of the transition from the soft to hard state, and the decrease of luminosity in the hard state. During all the observations we detected, at high frequencies, significant disc variability, responding to variations of the power-law emission with an average time delay of ∼0.009 ± 0.002 s. These new detections of disc thermal reverberation add to those previously obtained and suggest the lag to be always present in hard and hard-intermediate states. Our study reveals a net decrease of lag amplitude as a function of luminosity. We ascribe this trend to variations of the inner flow geometry. A possible scenario implies a decrease of the inner disc truncation radius as the luminosity increases at the beginning of the outburst, followed by an increase of the inner disc truncation radius as the luminosity decreases at the end of the outburst. Finally, we found hints of FeK reverberation (∼3σ significance) during the best quality observation of the XMM monitoring. The lag at the FeK energy has similar amplitude as that of the thermally reprocessed component, as expected if the same irradiated region of the disc is responsible for producing both the thermalized and reflected components. This finding suggests FeK reverberation in BHXRBs to be at the reach of current detectors provided observations of sufficiently long exposure are available.

  5. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change.

    PubMed

    Epps, Clinton W; Keyghobadi, Nusha

    2015-12-01

    Landscape genetics seeks to determine the effect of landscape features on gene flow and genetic structure. Often, such analyses are intended to inform conservation and management. However, depending on the many factors that influence the time to reach equilibrium, genetic structure may more strongly represent past rather than contemporary landscapes. This well-known lag between current demographic processes and population genetic structure often makes it challenging to interpret how contemporary landscapes and anthropogenic activity shape gene flow. Here, we review the theoretical framework for factors that influence time lags, summarize approaches to address this temporal disconnect in landscape genetic studies, and evaluate ways to make inferences about landscape change and its effects on species using genetic data alone or in combination with other data. Those approaches include comparing correlation of genetic structure with historical versus contemporary landscapes, using molecular markers with different rates of evolution, contrasting metrics of genetic structure and gene flow that reflect population genetic processes operating at different temporal scales, comparing historical and contemporary samples, combining genetic data with contemporary estimates of species distribution or movement, and controlling for phylogeographic history. We recommend using simulated data sets to explore time lags in genetic structure, and argue that time lags should be explicitly considered both when designing and interpreting landscape genetic studies. We conclude that the time lag problem can be exploited to strengthen inferences about recent landscape changes and to establish conservation baselines, particularly when genetic data are combined with other data. © 2015 John Wiley & Sons Ltd.

  6. Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex.

    PubMed

    Chapman, Clare L; Wright, James J; Bourke, Paul D

    2002-07-01

    Zero-lag synchronisation arises between points on the cerebral cortex receiving concurrent independent inputs; an observation generally ascribed to nonlinear mechanisms. Using simulations of cerebral cortex and Principal Component Analysis (PCA) we show patterns of zero-lag synchronisation (associated with empirically realistic spectral content) can arise from both linear and nonlinear mechanisms. For low levels of activation, we show the synchronous field is described by the eigenmodes of the resultant damped wave activity. The first and second spatial eigenmodes (which capture most of the signal variance) arise from the even and odd components of the independent input signals. The pattern of zero-lag synchronisation can be accounted for by the relative dominance of the first mode over the second, in the near-field of the inputs. The simulated cortical surface can act as a few millisecond response coincidence detector for concurrent, but uncorrelated, inputs. As cortical activation levels are increased, local damped oscillations in the gamma band undergo a transition to highly nonlinear undamped activity with 40 Hz dominant frequency. This is associated with "locking" between active sites and spatially segregated phase patterns. The damped wave synchronisation and the locked nonlinear oscillations may combine to permit fast representation of multiple patterns of activity within the same field of neurons.

  7. Hyperspectral Probing of Exciton dynamics and Multiplication in PbSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gdor, I.; Sachs, H.; Roitblat, A.; Strasfeld, D.; Bawendi, M. G.; Ruhman, S.

    2013-03-01

    Height time hyperspectral near IR probing providing broad-band coverage is employed on PbSe nanocrystals, uncovering spectral evolution following high energy photo-excitation due to hot exciton relaxation and recombination. Separation of single, double and triple exciton state contributions to these spectra is demonstrated, and the mechanisms underlying the course of spectral evolution are investigated. In addition no sign of MEG was detected in this sample up to a photon energy 3.7 times that of the band gap.

  8. Spectral evolution in young active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Boldt, E.; Leiter, D.

    1986-01-01

    The spectral evolution of AGNs is discussed within the context of a scenario where the cosmic X-ray background (CXB) is dominated by these sources. Attention is draqwn to the fact that the individually observed AGN X-ray spectra are significantly steeper than that of the CXB. The remarkably flat spectrum thereby required for the 'as-yet' unresolved sources of the residual CXB is interpreted as an observational constraint on an earlier stage of AGN evolution. Assuming black hole disk accretion, a picture emerges where young AGNs are compact Eddington limited thermal X-ray sources and where canonical AGNs represent later stages in which they have become appreciably less compact, exhibiting the importance of nonthermal disk-dynamo processes.

  9. Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BASTE

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadus, Jan; Briggs, Michael S.; Wilson, C. A.; Deal, Kim; Harmon, B. A.; Fishman, G. J.; Lewin, W. H. G.; Kommers, J.

    1999-01-01

    One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on BATSE (Burst and Transient Source Experiment) observations of both the persistent and burst emission for this second outburst and draw comparisons with the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux, and burst fluence were all reduced in amplitude by a factor of approximately 1.7. Despite these differences, the two outbursts were very similar with respect to the burst occurrence rate, the durations and spectra of bursts, the absence of spectral evolution during bursts, and the evolution of the ratio alpha of average persistent to burst luminosity. Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.

  10. Spectral effects in the propagation of chirped laser pulses in uniform underdense plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Naveen; Zhidkov, Alexei; Hosokai, Tomonao; Kodama, Ryosuke

    2018-01-01

    Propagation of linearly chirped and linearly polarized, powerful laser pulses in uniform underdense plasma with their duration exceeding the plasma wave wavelength is examined via 3D fully relativistic particle-in-cell simulations. Spectral evolution of chirped laser pulses, determined by Raman scattering, essentially depends on the nonlinear electron evacuation from the first wake bucket via modulation of the known parameter /n e ( r ) ω0 2 γ . Conversely, the relative motion of different spectral components inside a pulse changes the evolution of the pulse length and, therefore, the ponderomotive forces at the pulse rear. Such longitudinal dynamics of the pulse length provoke a parametric resonance in the laser wake with continuous electron self-injection for any chirped pulses. However, the total charge of accelerated electrons and their energy distribution essentially depends on the chirp. Besides, negatively chirped laser pulses are shown to be useful for spatially resolved measurements of the plasma density profiles and for rough estimations of the laser pulse intensity evolution in underdense plasma.

  11. On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Hong, Siyu

    2018-07-01

    In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.

  12. Time-dependent spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cole, Justin T.; Musslimani, Ziad H.

    2017-11-01

    The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.

  13. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Douglas, Ronald H; Kodandaramaiah, Ullasa; Casewell, Nicholas R; Harrison, Robert A; Hart, Nathan S; Partridge, Julian C; Hunt, David M; Gower, David J

    2016-10-01

    Much of what is known about the molecular evolution of vertebrate vision comes from studies of mammals, birds and fish. Reptiles (especially snakes) have barely been sampled in previous studies despite their exceptional diversity of retinal photoreceptor complements. Here, we analyze opsin gene sequences and ocular media transmission for up to 69 species to investigate snake visual evolution. Most snakes express three visual opsin genes (rh1, sws1, and lws). These opsin genes (especially rh1 and sws1) have undergone much evolutionary change, including modifications of amino acid residues at sites of known importance for spectral tuning, with several tuning site combinations unknown elsewhere among vertebrates. These changes are particularly common among dipsadine and colubrine "higher" snakes. All three opsin genes are inferred to be under purifying selection, though dN/dS varies with respect to some lineages, ecologies, and retinal anatomy. Positive selection was inferred at multiple sites in all three opsins, these being concentrated in transmembrane domains and thus likely to have a substantial effect on spectral tuning and other aspects of opsin function. Snake lenses vary substantially in their spectral transmission. Snakes active at night and some of those active by day have very transmissive lenses, whereas some primarily diurnal species cut out shorter wavelengths (including UVA). In terms of retinal anatomy, lens transmission, visual pigment spectral tuning and opsin gene evolution the visual system of snakes is exceptionally diverse compared with all other extant tetrapod orders. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069

    NASA Astrophysics Data System (ADS)

    Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.

    2018-04-01

    GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.

  15. Cosine-Gaussian Schell-model sources.

    PubMed

    Mei, Zhangrong; Korotkova, Olga

    2013-07-15

    We introduce a new class of partially coherent sources of Schell type with cosine-Gaussian spectral degree of coherence and confirm that such sources are physically genuine. Further, we derive the expression for the cross-spectral density function of a beam generated by the novel source propagating in free space and analyze the evolution of the spectral density and the spectral degree of coherence. It is shown that at sufficiently large distances from the source the degree of coherence of the propagating beam assumes Gaussian shape while the spectral density takes on the dark-hollow profile.

  16. Modeling for Matrix Multicracking Evolution of Cross-ply Ceramic-Matrix Composites Using Energy Balance Approach

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.

  17. Time Resolved Spectroscopy, High Sensitivity Power Spectrum & a Search for the X-Ray QPO in NGC 5548

    NASA Astrophysics Data System (ADS)

    Yaqoob, Tahir

    1999-09-01

    Controversy surrounds the EXOSAT discovery of a QPO (period ~500 s) in NGC 5548 due to the data being plagued by high background and instrumental systematics. If the NGC 5548 QPO is real, the implications for the physics of the X-ray emission mechanism and inner-most disk/black-hole system are enormous. AXAF provides the first opportunity to settle the issue, capable of yielding power spectra with unprecedented sensitivity, pushing the limit on finding new features. Using HETG/ACIS we will also perform time-resolved spectroscopy of the ionized absorption features and Fe-K emission line, search for energy-dependent time lags in the continuum, between the continuum and spectral features, and between the spectral features. These data will provide powerful constraints on models of AGN.

  18. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the radio through X-ray spectra. I will conclude with an outlook on a truly multi-instrument observing campaign of Cygnus X-1 that was performed in 2008 April in order to better constrain the jet models mentioned above (and provide a unique data set for cross-calibration).

  19. Concerted evolution of life stage performances signals recent selection on yeast nitrogen use.

    PubMed

    Ibstedt, Sebastian; Stenberg, Simon; Bagés, Sara; Gjuvsland, Arne B; Salinas, Francisco; Kourtchenko, Olga; Samy, Jeevan K A; Blomberg, Anders; Omholt, Stig W; Liti, Gianni; Beltran, Gemma; Warringer, Jonas

    2015-01-01

    Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Modeling the X-Ray Timing Properties of Cygnus X-1 Caused by Waves Propagating in a Transition Disk

    NASA Astrophysics Data System (ADS)

    Misra, R.

    2000-02-01

    We show that waves propagating in a transition disk can explain the short-term temporal behavior of Cygnus X-1. In the transition-disk model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broadband spectrum of this source better than that predicted by the soft-photon Comptonization model. Here we consider a simple model in which waves are propagating cylindrically symmetrically in the transition disk with a uniform propagation speed (cp). We show that this model can qualitatively explain (1) the variation of the power spectral density with energy, (2) the hard lags as a function of frequency, and (3) the hard lags as a function of energy for various frequencies. Thus, the transition-disk model can explain the average spectrum and the short-term temporal behavior of Cyg X-1.

  1. Inflammatory Papillitis in Uveitis: Response to Treatment and Use of Optic Nerve Optical Coherence Tomography for Monitoring.

    PubMed

    Cho, Heeyoon; Pillai, Parvathy; Nicholson, Laura; Sobrin, Lucia

    2016-01-01

    To describe the clinical course of uveitis-associated inflammatory papillitis and evaluate the utility and reproducibility of optic nerve spectral domain optical coherence tomography (SD-OCT). Data on 22 eyes of 14 patients with uveitis-related papillitis and optic nerve imaging were reviewed. SD-OCT measure reproducibility was determined and parameters were compared in active vs. inactive uveitis. Papillitis resolution lagged behind uveitis resolution in three patients. For SD-OCT measures, the intraclass correlation coefficients were 99.1-100% and 86.9-100% for intraobserver and interobserver reproducibility, respectively. All SD-OCT optic nerve measures except inferior and nasal peripapillary retinal thicknesses were significantly higher in active vs. inactive uveitis after correction for multiple hypotheses testing. Mean optic nerve central thickness decreased from 545.1 to 362.9 µm (p = 0.01). Resolution of inflammatory papillitis can lag behind resolution of uveitis. SD-OCT assessment of papillitis is reproducible and correlates with presence vs. resolution of uveitis.

  2. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

    PubMed Central

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-01-01

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination. DOI: http://dx.doi.org/10.7554/eLife.15675.001 PMID:27402384

  3. Time-resolved spectral analysis of Radachlorin luminescence in water

    NASA Astrophysics Data System (ADS)

    Belik, V. P.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-05-01

    We report results of spectral- and time-resolved study of Radachlorin photosensitizer luminescence in water in the spectral range of 950-1350nm and for determination of the photosensitizer triplet state and the singlet oxygen lifetimes responsible for singlet oxygen generation and degradation. At any wavelength within the explored spectral range the luminescence decay contained two major contributions: a fast decay at the ns time scale and a slow evolution at the μs time scale. The fast decay was attributed to electric dipole fluorescence transitions in photosensitizer molecules and the slow evolution to intercombination phosphorescence transitions in singlet oxygen and photosensitizer molecules. Relatively high-amplitude ns peak observed at all wavelengths suggests that singlet oxygen monitoring with spectral isolation methods alone, without additional temporal resolution can be controversial. In the applied experimental conditions the total phosphorescence signal at any wavelength contained a contribution from the photosensitizer triplet state decay, while at 1274nm the singlet oxygen phosphorescence dominated. The results obtained can be used for optimization of the methods of singlet oxygen monitoring and imaging.

  4. Reconstructing Anaximander's biological model unveils a theory of evolution akin to Darwin's, though centuries before the birth of science.

    PubMed

    Trevisanato, Siro Igino

    2016-08-01

    Anaximander's fragments on biology report a theory of evolution, which, unlike the development of other biological systems in the ancient Aegean, is naturalistic and is not based on metaphysics. According to Anaximander, evolution affected all living beings, including humans. The first biological systems formed in an aquatic environment, and were encased in a rugged and robust envelope. Evolution progressed with modifications that enabled the formation of more dynamic biological systems. For instance, after reaching land, the robust armors around aquatic beings dried up, and became brittle, This led to the loss of the armor and the development of more mobile life forms. Anaximander's theory combines observations of animals with speculations, and as such mirrors the more famous theory of evolution by Charles Darwin expressed 24 centuries later. The poor reception received by Anaximander's model in his time, illustrates a zeitgeist that would explain the contemporary lag phase in the development of biology and, as a result, medicine, in the ancient western world.

  5. Infrared circumstellar shells - Origins, and clues to the evolution of massive stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Pesce, Joseph E.; Bauer, Wendy Hagen

    1989-01-01

    The infrared fluxes, spatial and spectral characteristics for a sample of 111 supergiant stars of spectral types F0 through M5 are tabulated, and correlations examined with respect to the nature of their circumstellar envelopes. One-fourth of these objects were spatialy resolved by IRAS at 60 microns and possess extended circumstellar shell material, with implied expansion ages of about 10 to the 5th yr. Inferences about the production of dust, mass loss, and the relation of these characteristics of the evolution of massive stars, are discussed.

  6. TRIADS: A phase-resolving model for nonlinear shoaling of directional wave spectra

    NASA Astrophysics Data System (ADS)

    Sheremet, Alex; Davis, Justin R.; Tian, Miao; Hanson, Jeffrey L.; Hathaway, Kent K.

    2016-03-01

    We investigate the performance of TRIADS, a numerical implementation of a phase-resolving, nonlinear, spectral model describing directional wave evolution in intermediate and shallow water. TRIADS simulations of shoaling waves generated by Hurricane Bill, 2009 are compared to directional spectral estimates based on observations collected at the Field Research Facility of the US Army Corps Of Engineers, at Duck, NC. Both the ability of the model to capture the processes essential to the nonlinear wave evolution, and the efficiency of the numerical implementations are analyzed and discussed.

  7. Identification and characterization of a second CD4-like gene in teleost fish.

    PubMed

    Dijkstra, Johannes Martinus; Somamoto, Tomonori; Moore, Lindsey; Hordvik, Ivar; Ototake, Mitsuru; Fischer, Uwe

    2006-02-01

    In fish, T cell subdivision is not well studied, although CD8 and CD4 homologues have been reported. This study describes a second teleost CD4-like gene, CD4-like 2 (CD4L-2). Two rainbow trout copies of this gene were found, -2a and -2b, encoding molecules sharing 81% aa identity. The 2a/2b duplication may be related to tetraploid ancestry of salmonid fishes. In the Fugu genome CD4L-2 lies head to tail with an earlier reported, very different CD4-like gene [Suetake, H., Araki, K., Suzuki, Y., 2004. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics 56, 368-374], which was designated CD4L-1 in the present article. The flanking genes of the Fugu CD4L-1 and CD4L-2 are reminiscent of the genes surrounding CD4 and LAG-3 in mammals. However, neither synteny nor phylogenetic analysis could decide between CD4 and LAG-3 identity for the fish CD4L genes. CD4L-1 and CD4L-2 share a tyrosine protein kinase p56(lck) binding motif in the cytoplasmic tail with CD4 but not with LAG-3. Trout CD4L-2 expression is highest in the thymus, similar to mammalian and chicken CD4, whereas Fugu CD4L-1 expression was highest in the spleen. However, CD4L-2 encodes only two IG-like domains, whereas CD4L-1, CD4 and LAG-3 encode four. The CD4-like genes 1 and 2 in fish apparently went through an evolution different from that of LAG-3 and CD4 in higher vertebrates.

  8. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing

    2018-01-01

    The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

  9. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    NASA Astrophysics Data System (ADS)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  10. Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.

    2016-01-01

    We present a model of technological evolution due to interaction between multiple countries and the resultant effects on the corresponding macro variables. The world consists of a set of economies where some countries are leaders and some are followers in the technology ladder. All of them potentially gain from technological breakthroughs. Applying Lotka-Volterra (LV) equations to model evolution of the technology frontier, we show that the way technology diffuses creates repercussions in the partner economies. This process captures the spill-over effects on major macro variables seen in the current highly globalized world due to trickle-down effects of technology.

  11. A Conversational Mass Spectral Search System. IV. The Evolution of a System for the Retrieval of Mass Spectral Information

    ERIC Educational Resources Information Center

    Heller, Stephen R.; And Others

    1973-01-01

    A prototype of an interactive, conversational mass spectral search system, developed at the National Institutes of Health, has been tested since September 1971 and is now being used by more than 200 scientists in the U.S. and Canada, and will soon be used by the international mass spectrometry community. (17 references) (SJ)

  12. Detecting signatures of cosmological recombination and reionization in the cosmic radio background

    NASA Astrophysics Data System (ADS)

    Subrahmanyan, Ravi; Shankar Narayana Rao, Udaya; Sathyanarayana Rao, Mayuri; Singh, Saurabh

    2015-08-01

    Evolution of the baryons during the Epochs of cosmological Recombination and Reionization has left traces in the cosmic radio background in the form of spectral distortions (Sunyaev & Chluba 2008 Astron. Nachrichten, 330, 657; Pritchard & Loeb 2012 Rep Prog Phys 75(8):086901). The spectral signature depends on the evolution in the ionization state in hydrogen and helium and on the spin temperature of hydrogen. These probe the physics of energy release beyond the last scattering surface at redshifts exceeding 1090 and the nature of the first sources and gas evolution down to redshift about 6. The spectral distortions are sensitive to the nature of the first stars, ultra-dwarf galaxies, accreting compact objects, and the evolving ambient radiation field: X-rays and UV from the first sources. Detection of the all-sky or global spectral distortions in the radio background is hence a probe of cosmological recombination and reionization.We present new spectral radiometers that we have purpose designed for precision measurements of spectral distortions at radio wavelengths. New antenna elements include frequency independent and electrically small fat-dipole (Raghunathan et al. 2013 IEEE TAP, 61, 3411) and monopole designs. Receiver configurations have been devised that are self-calibratable (Patra et al. 2013 Expt Astron, 36, 319) so that switching of signal paths and of calibration noise sources provide real time calibration for systematics and receiver noise. Observing strategies (Patra et al. arXiv:1412.7762) and analysis methods (Satyanarayana Rao et al. arXiv:1501.07191) have been evolved that are capable of discriminating between the cosmological signals and the substantially brighter foregrounds. We have also demonstrated the value of system designs that exploit advantages of interferometer detection (Mahesh et al. arXiv:1406.2585) of global spectral distortions.Finally we discuss how the Square Kilometer Array stations may be outfitted with precision spectral radiometer outriggers (Subrahmanyan et al. arXiv:1501.04340) to provide the zero-spacing measurement sets, complement the interferometer visibilities and give the SKA a capability for measurements of cosmic radio background spectral distortions.

  13. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution, appendix 2

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1988-01-01

    This thesis reviews the technique established to clear channels in the Power Spectral Estimate by applying linear combinations of well known window functions to the autocorrelation function. The need for windowing the auto correlation function is due to the fact that the true auto correlation is not generally used to obtain the Power Spectral Estimate. When applied, the windows serve to reduce the effect that modifies the auto correlation by truncating the data and possibly the autocorrelation has on the Power Spectral Estimate. It has been shown in previous work that a single channel has been cleared, allowing for the detection of a small peak in the presence of a large peak in the Power Spectral Estimate. The utility of this method is dependent on the robustness of it on different input situations. We extend the analysis in this paper, to include clearing up to three channels. We examine the relative positions of the spikes to each other and also the effect of taking different percentages of lags of the auto correlation in the Power Spectral Estimate. This method could have application wherever the Power Spectrum is used. An example of this is beam forming for source location, where a small target can be located next to a large target. Other possibilities extend into seismic data processing. As the method becomes more automated other applications may present themselves.

  14. Swift captures the spectrally evolving prompt emission of GRB070616

    NASA Astrophysics Data System (ADS)

    Starling, R. L. C.; O'Brien, P. T.; Willingale, R.; Page, K. L.; Osborne, J. P.; de Pasquale, M.; Nakagawa, Y. E.; Kuin, N. P. M.; Onda, K.; Norris, J. P.; Ukwatta, T. N.; Kodaka, N.; Burrows, D. N.; Kennea, J. A.; Page, M. J.; Perri, M.; Markwardt, C. B.

    2008-02-01

    The origins of gamma-ray burst (GRB) prompt emission are currently not well understood and in this context long, well-observed events are particularly important to study. We present the case of GRB070616, analysing the exceptionally long-duration multipeaked prompt emission, and later afterglow, captured by all the instruments on-board Swift and by Suzaku Wide-Band All-Sky Monitor (WAM). The high-energy light curve remained generally flat for several hundred seconds before going into a steep decline. Spectral evolution from hard to soft is clearly taking place throughout the prompt emission, beginning at 285s after the trigger and extending to 1200s. We track the movement of the spectral peak energy, whilst observing a softening of the low-energy spectral slope. The steep decline in flux may be caused by a combination of this strong spectral evolution and the curvature effect. We investigate origins for the spectral evolution, ruling out a superposition of two power laws and considering instead an additional component dominant during the late prompt emission. We also discuss origins for the early optical emission and the physics of the afterglow. The case of GRB070616 clearly demonstrates that both broad-band coverage and good time resolution are crucial to pin down the origins of the complex prompt emission in GRBs. This paper is dedicated to the memory of Dr Francesca Tamburelli who died during its production. Francesca played a fundamental role within the team which is in charge of the development of the Swift X-Ray Telescope (XRT) data analysis software at the Italian Space Agency's Science Data Centre in Frascati. She is sadly missed. E-mail: rlcs1@star.le.ac.uk

  15. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: RMS Spectrum Evolution, BH Mass and the Source Distance

    NASA Technical Reports Server (NTRS)

    Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  16. Statistically Self-Consistent and Accurate Errors for SuperDARN Data

    NASA Astrophysics Data System (ADS)

    Reimer, A. S.; Hussey, G. C.; McWilliams, K. A.

    2018-01-01

    The Super Dual Auroral Radar Network (SuperDARN)-fitted data products (e.g., spectral width and velocity) are produced using weighted least squares fitting. We present a new First-Principles Fitting Methodology (FPFM) that utilizes the first-principles approach of Reimer et al. (2016) to estimate the variance of the real and imaginary components of the mean autocorrelation functions (ACFs) lags. SuperDARN ACFs fitted by the FPFM do not use ad hoc or empirical criteria. Currently, the weighting used to fit the ACF lags is derived from ad hoc estimates of the ACF lag variance. Additionally, an overcautious lag filtering criterion is used that sometimes discards data that contains useful information. In low signal-to-noise (SNR) and/or low signal-to-clutter regimes the ad hoc variance and empirical criterion lead to underestimated errors for the fitted parameter because the relative contributions of signal, noise, and clutter to the ACF variance is not taken into consideration. The FPFM variance expressions include contributions of signal, noise, and clutter. The clutter is estimated using the maximal power-based self-clutter estimator derived by Reimer and Hussey (2015). The FPFM was successfully implemented and tested using synthetic ACFs generated with the radar data simulator of Ribeiro, Ponomarenko, et al. (2013). The fitted parameters and the fitted-parameter errors produced by the FPFM are compared with the current SuperDARN fitting software, FITACF. Using self-consistent statistical analysis, the FPFM produces reliable or trustworthy quantitative measures of the errors of the fitted parameters. For an SNR in excess of 3 dB and velocity error below 100 m/s, the FPFM produces 52% more data points than FITACF.

  17. Evidence for hot clumpy accretion flow in the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Dallilar, Y.; Garner, A.; Eikenberry, S.; Veledina, A.; Gandhi, P.

    2018-06-01

    We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r΄- and Ks-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switching (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anticorrelation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron star's magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flow material is channelled on to the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.

  18. Spherulitic Growth of Hematite Under Hydrothermal Conditions: Insights into the Growth Mechanism of Hematite Spherules at Meridiani Planum Mars.

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.; Morris, R. V.

    2010-01-01

    Hematite-rich spherules were discovered embedded in sulfate-rich outcrop rock and as lag deposits of whole and broken spherules by the Opportunity rover at Meridiani Planem [1-6]. The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES), which has a wider spectral range compared to the Mars Exploration Rover Mini-TES, provided an important constraint that hematite-rich spherules are dominated by emission along the crystallographic c-axis [7-10]. We have previously synthesized hematite spherules whose mineralogic, chemical, and crystallographic properties are strikingly similar to those for the hematite-rich spherules at Meridiani Planum [11]. The spherules were synthesized in the laboratory along with hydronium jarosite and minor hydronium alunite from Fe-Al-Mg-S-Cl acid sulfate solutions under hydrothermal conditions. The reaction sequence was (1) precipitation of hydronium jarosite, (2) jarosite dissolution and precipitation of hematite spherules, and (3) precipitation of hydronium alunite upon depletion of hydronium jarosite. The spherules exhibit a radial growth texture with the crystallographic c-axis aligned along the radial direction, so that thermal emission spectra have no hematite emissivity minimum at approx.390/cm similar to the emission spectra returned by MGS TES. The objective of this paper is to expand on our initial studies [11] to examine the morphological evolution during growth of spherules starting from sub-micrometer crystals to spherules many orders of magnitude in size.

  19. VizieR Online Data Catalog: New spectral lag measurements of 50 Fermi/GBM GRBs (Shao+, 2017)

    NASA Astrophysics Data System (ADS)

    Shao, L.; Zhang, B.-B.; Wang, F.-R.; Wu, X.-F.; Cheng, Y.-H.; Zhang, Xi; Yu, B.-Y.; Xi, B.-J.; Wang, X.; Feng, H.-X.; Zhang, M.; Xu, D.

    2018-03-01

    This work made extensive use of the data from the Gamma-Ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. For the first step, we searched in the official GBM online burst catalog (Gruber+ 2014ApJS..211...12G ; von Kienlin+ 2014, J/ApJS/211/13) for bright bursts with a total fluence F>5x10-6erg/cm-2 in 10-1000keV. See section 2 for the details on the sample selection. (1 data file).

  20. X-Ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2005-12-01

    We have characterized the energy-dependent X-ray variability properties of the Seyfert 1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-Ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening toward higher energies. Light-curve cross-correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6×10-8-1×10-4 Hz; this range includes the temporal frequency of the low-frequency PSD break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any active galactic nucleus to date. Coherence is generally near unity at these temporal frequencies, although it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short timescales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.

  1. The Evolution of the Spectrum of Solar Wind Velocity Fluctuations from 0.3 to 5 AU

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2011-01-01

    Recent work has shown that at 1 AU from the Sun the power spectrum of the solar wind magnetic field has the -5/3 spectral slope expected for Kolmogorov turbulence, but that the velocity has closer to a -3/2 spectrum. This paper traces the changes in solar wind velocity spectra from 0.3 to 5 AU using data from the Helios and Ulysses spacecraft to show that this is a transient stage in solar-wind evolution. The spectrum of the velocity is found to be flatter than that of the magnetic field for the higher frequencies examined for all cases until the slopes become equal (at -5/3) well past 1 AU when the wind is relatively nonAlfvenic. In some respects, in particular in the evolution of the frequency at which the spectrum changes from flatter at larger scales to a "turbulent" spectrum at smaller scales, the velocity field evolves more rapidly than the magnetic, and this is associated with the dominance of the magnetic energy over the kinetic at "inertial range" scales. The speed of the flow is argued to be largely unrelated to the spectral slopes, consistent with previous work, whereas high Alfvenicity appears to slow the spectral evolution, as expected from theory. This study shows that, for the solar wind, the idea of a simple "inertial range" with uniform spectral properties is not realistic, and new phenomenologies will be needed to capture the true situation. It is also noted that a flattening of the velocity spectrum often occurs at small scales.

  2. [Spatial-temporal evolution characteristic of coordination between urbanization and eco-environment in Jilin Province, Northeast China].

    PubMed

    Tan, Jun-tao; Zhang, Ping-yu; Li, Jing; Liu, Shi-wei

    2015-12-01

    By building urbanization and eco-environment evaluation index systems, the levels of urbanization and eco-environment, and the degree of their coupling coordination of Jilin Province from 2000 to 2012 were evaluated. The level of comprehensive urbanization showed a continued growth trend, and the economic urbanization contributed the largest share. The eco-environment comprehensive level fluctuated upward. The eco-environment state, response and pressure increased faster since the implementation of the strategy of revitalizing Northeast China and other old industrial regions. Coupling coordination degree between urbanization and eco-environment increased continuously, from uncoordinated status to advanced coordinated status, changing from eco-environment lagged to urbanization lagged. The level of urbanization in central region was higher than east and west regions in Jilin Province, but its eco-environment level was low. Coupling coordination degree in Changchun was the highest, and that of Baishan was the lowest. Coupling coordination degree of Chang-Ji integrated region was always at the leading level, but the level of eco-environment lagged behind was growing since 2000. Coupling coordination degree of Siping, Liaoyuan, Songyuan and Yanbian increased, but that of Baicheng decreased.

  3. Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; González-Gaitan, Santiago; Stritzinger, Maximilian D.; Phillips, Mark M.; Galbany, Lluis; Folatelli, Gastón; Dessart, Luc; Contreras, Carlos; Della Valle, Massimo; Freedman, Wendy L.; Hsiao, Eric Y.; Krisciunas, Kevin; Madore, Barry F.; Maza, José; Suntzeff, Nicholas B.; Prieto, Jose Luis; González, Luis; Cappellaro, Enrico; Navarrete, Mauricio; Pizzella, Alessandro; Ruiz, Maria T.; Smith, R. Chris; Turatto, Massimo

    2017-11-01

    We present 888 visual-wavelength spectra of 122 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post-explosion. In this first paper, we outline our observations and data reduction techniques, together with a characterization based on the spectral diversity of SNe II. A statistical analysis of the spectral matching technique is discussed as an alternative to nondetection constraints for estimating SN explosion epochs. The time evolution of spectral lines is presented and analyzed in terms of how this differs for SNe of different photometric, spectral, and environmental properties: velocities, pseudo-equivalent widths, decline rates, magnitudes, time durations, and environment metallicity. Our sample displays a large range in ejecta expansion velocities, from ˜9600 to ˜1500 km s-1 at 50 days post-explosion with a median {{{H}}}α value of 7300 km s-1. This is most likely explained through differing explosion energies. Significant diversity is also observed in the absolute strength of spectral lines, characterized through their pseudo-equivalent widths. This implies significant diversity in both temperature evolution (linked to progenitor radius) and progenitor metallicity between different SNe II. Around 60% of our sample shows an extra absorption component on the blue side of the {{{H}}}α P-Cygni profile (“Cachito” feature) between 7 and 120 days since explosion. Studying the nature of Cachito, we conclude that these features at early times (before ˜35 days) are associated with Si II λ 6355, while past the middle of the plateau phase they are related to high velocity (HV) features of hydrogen lines. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526).

  4. Lagging adaptation to warming climate in Arabidopsis thaliana.

    PubMed

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-03

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.

  5. Lagging adaptation to warming climate in Arabidopsis thaliana

    PubMed Central

    Wilczek, Amity M.; Cooper, Martha D.; Korves, Tonia M.; Schmitt, Johanna

    2014-01-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species’ native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species’ native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  6. Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2016-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. We present a case study of the temporal evolution of H+, He+, and O+ spectral structures throughout the geomagnetic storm of 2 October 2013. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer onboard Van Allen Probe A to analyze the spectral structures in the energy range of 1- 50 keV. We find that the characteristics of the ion structures follow a cyclic pattern, the observed features changing dramatically as the storm starts and then returning to its initial pre-storm state. Quiet, pre-storm times are characterized by multiple and often complex flux structures at narrow energy bands. During the storm main phase, the observed features become simple, with no nose structures or only one nose structure present in the energy-time spectrograms. As the inner magnetosphere recovers from the storm, more complex structures appear once again. Additionally, the heavy ion spectral features are generally more complex than the H+ features, with multiple noses being observed more often in the heavy ion spectra. We use a model of ion drift and losses due to charge exchange to understand the formation of the spectral features and their species dependence.

  7. The Energy-Dependent X-Ray Timing Characteristics of the Narrow Line Seyfert 1 MKN 766

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Papadakis, I.; Arevalo, P.; Turner, T. J.; Miller, L.; Reeves, J. N.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  8. Spectral and Temporal Analysis of 1H1934-0617: Observing an “Eclipsed” AGN with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2017-01-01

    1H1934-0617 is a low-mass (3×106 M⊙) NLS1 which was ranked as 7th in excess variance among AGN comprising the CAIXA catalogue (Ponti 2012). Similar to its high-ranking and oft-studied counterparts, this AGN is extremely time-variable, luminous, and displays strong reflection features. We present spectral and temporal analyses of concurrent XMM-Newton and NuSTAR observations (120 ks), during which we explore a dramatic dip in flux, similar to that of Fairall 9 (Lohfink 2012, 2016). The transit-like dip appears in the NuSTAR band, and the spectral shape of the 0.3-2 keV band remains constant throughout the flux varied observation, ruling out a strong absorber. XMM-Newton’s large effective area and NuSTAR’s constraints on the 10-79 keV band combine to inform us about the source geometry, black hole spin, and emission/absorption processes as we speculate on the nature of the variability of this scarcely-studied AGN. Preliminary spectral modeling indicates that the dip in flux can be understood as a decrease in the height of the corona, and preliminary timing analysis shows hints of an iron K reverberation lag.

  9. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain

    PubMed Central

    Heer, Dominik; Sauer, Uwe

    2008-01-01

    Summary The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase. PMID:21261870

  10. Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America

    PubMed Central

    Phillips, Ben L.; Puschendorf, Robert

    2013-01-01

    The virulence of a pathogen can vary strongly through time. While cyclical variation in virulence is regularly observed, directional shifts in virulence are less commonly observed and are typically associated with decreasing virulence of biological control agents through coevolution. It is increasingly appreciated, however, that spatial effects can lead to evolutionary trajectories that differ from standard expectations. One such possibility is that, as a pathogen spreads through a naive host population, its virulence increases on the invasion front. In Central America, there is compelling evidence for the recent spread of pathogenic Batrachochytrium dendrobatidis (Bd) and for its strong impact on amphibian populations. Here, we re-examine data on Bd prevalence and amphibian population decline across 13 sites from southern Mexico through Central America, and show that, in the initial phases of the Bd invasion, amphibian population decline lagged approximately 9 years behind the arrival of the pathogen, but that this lag diminished markedly over time. In total, our analysis suggests an increase in Bd virulence as it spread southwards, a pattern consistent with rapid evolution of increased virulence on Bd's invading front. The impact of Bd on amphibians might therefore be driven by rapid evolution in addition to more proximate environmental drivers. PMID:23843393

  11. Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America.

    PubMed

    Phillips, Ben L; Puschendorf, Robert

    2013-09-07

    The virulence of a pathogen can vary strongly through time. While cyclical variation in virulence is regularly observed, directional shifts in virulence are less commonly observed and are typically associated with decreasing virulence of biological control agents through coevolution. It is increasingly appreciated, however, that spatial effects can lead to evolutionary trajectories that differ from standard expectations. One such possibility is that, as a pathogen spreads through a naive host population, its virulence increases on the invasion front. In Central America, there is compelling evidence for the recent spread of pathogenic Batrachochytrium dendrobatidis (Bd) and for its strong impact on amphibian populations. Here, we re-examine data on Bd prevalence and amphibian population decline across 13 sites from southern Mexico through Central America, and show that, in the initial phases of the Bd invasion, amphibian population decline lagged approximately 9 years behind the arrival of the pathogen, but that this lag diminished markedly over time. In total, our analysis suggests an increase in Bd virulence as it spread southwards, a pattern consistent with rapid evolution of increased virulence on Bd's invading front. The impact of Bd on amphibians might therefore be driven by rapid evolution in addition to more proximate environmental drivers.

  12. Vertical cross-spectral phases in atmospheric flow

    NASA Astrophysics Data System (ADS)

    Chougule, A.; Mann, J.; Kelly, M.

    2014-11-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Høvsøre test site under diabatic conditions. These phases represent the degree to which turbulence sensed at one height leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity. The phase angles for all atmospheric stabilities show similar order in phasing. The phase angles from the Høvsøre observations under neutral condition are compared with a rapid distortion theory model which show similar order in phase shift.

  13. Hydrocarbons on the Icy Satellites of Saturn

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2010-01-01

    The Visible-Infrared Mapping Spectrometer on the Cassini Spacecraft has obtained spectral reflectance maps of the satellites of Saturn in the wavelength region 0.4-5.1 micrometers since its insertion into Saturn orbit in late 2004. We have detected the spectral signature of the C-H stretching molecular mode of aromatic and aliphatic hydrocarbons in the low albedo material covering parts of several of Saturn's satellites, notably Iapetus and Phoebe (Cruikshank et al. 2008). The distribution of this material is complex, and in the case of Iapetus we are seeking to determine if it is related to the native grey-colored materials left as lag deposits upon evaporation of the ices, or represents in-fall from an external source, notably the newly discovered large dust ring originating at Phoebe. This report covers our latest exploration of the nature and source of this organic material.

  14. Variations of the Blazar AO 0235+164 in 2006-2015

    NASA Astrophysics Data System (ADS)

    Hagen-Thorn, V. A.; Larionov, V. M.; Morozova, D. A.; Arkharov, A. A.; Hagen-Thorn, E. I.; Shablovinskaya, E. S.; Prokop'eva, M. S.; Yakovleva, V. A.

    2018-02-01

    The results of optical, radio, and gamma-ray observations of the blazar AO 0235+16 are presented, including photometric ( BV RIJHK) and polarimetric ( R)monitoring carried out at St. Petersburg State University and the Central (Pulkovo) Astronomical Observatory in 2007-2015, 43 GHz Very Long Baseline Interferometry radio observations processed at Boston University, and a gamma-ray light curve based on observationswith the Fermi space observatory are presented. Two strong outbursts were detected. The relative spectral energy distributions of the variable components responsible for the outbursts are determined; these follow power laws, but with different spectral indices. The degree of polarization was high in both outbursts; only an average relationship between the brightness and polarization can be found. There was no time lag between the variations in the optical and gamma-ray, suggesting that the sources of the radiation in the optical and gamma-ray are located in the same region of the jet.

  15. Age discrimination among basalt flows using digitally enhanced LANDSAT imagery. [Saudi Arabia

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Brown, G. F.

    1984-01-01

    Digitally enhanced LANDSAT MSS data were used to discriminate among basalt flows of historical to Tertiary age, at a test site in Northwestern Saudi Arabia. Spectral signatures compared favorably with a field-defined classification that permits discrimination among five groups of basalt flows on the basis of geomorphic criteria. Characteristics that contributed to age definition include: surface texture, weathering, color, drainage evolution, and khabrah development. The inherent gradation in the evolution of geomorphic parameters, however, makes visual extrapolation between areas subjective. Therefore, incorporation of spectrally-derived volcanic units into the mapping process should produce more quantitatively consistent age groupings.

  16. Delayed fungal evolution did not cause the Paleozoic peak in coal production.

    PubMed

    Nelsen, Matthew P; DiMichele, William A; Peters, Shanan E; Boyce, C Kevin

    2016-03-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea.

  17. Delayed fungal evolution did not cause the Paleozoic peak in coal production

    PubMed Central

    Nelsen, Matthew P.; DiMichele, William A.; Peters, Shanan E.; Boyce, C. Kevin

    2016-01-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea. PMID:26787881

  18. Evolution in the Dust Lane Fraction of Edge-on L* V Spiral Galaxies Since z = 0.8

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Dalcanton, J. J.; Radburn-Smith, D.; de Jong, R. S.; Guhathakurta, P.; Koekemoer, A.; Allen, R. J.; Böker, T.

    2012-07-01

    The presence of a well-defined and narrow dust lane in an edge-on spiral galaxy is the observational signature of a thin and dense molecular disk, in which gravitational collapse has overcome turbulence. Using a sample of galaxies out to z ~ 1 extracted from the COSMOS survey, we identify the fraction of massive (L* V ) disks that display a dust lane. Our goal is to explore the evolution in the stability of the molecular interstellar medium (ISM) disks in spiral galaxies over a cosmic timescale. We check the reliability of our morphological classifications against changes in rest-frame wavelength, resolution, and cosmic dimming with (artificially redshifted) images of local galaxies from the Sloan Digital Sky Survey. We find that the fraction of L* V disks with dust lanes in COSMOS is consistent with the local fraction (≈80%) out to z ~ 0.7. At z = 0.8, the dust lane fraction is only slightly lower. A somewhat lower dust lane fraction in starbursting galaxies tentatively supports the notion that a high specific star formation rate can efficiently destroy or inhibit a dense molecular disk. A small subsample of higher redshift COSMOS galaxies display low internal reddening (E[B - V]), as well as a low incidence of dust lanes. These may be disks in which the growth of the dusty ISM disk lags behind that of the stellar disk. We note that at z = 0.8, the most massive galaxies display a lower dust lane fraction than lower mass galaxies. A small contribution of recent mergers or starbursts to this most massive population may be responsible. The fact that the fraction of galaxies with dust lanes in COSMOS is consistent with little or no evolution implies that models to explain the spectral energy distribution or the host galaxy dust extinction of supernovae based on local galaxies are still applicable to higher redshift spirals. It also suggests that dust lanes are long-lived phenomena or can be reformed over very short timescales.

  19. EVOLUTION IN THE DUST LANE FRACTION OF EDGE-ON L*{sub V} SPIRAL GALAXIES SINCE z = 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holwerda, B. W.; Boeker, T.; Dalcanton, J. J.

    2012-07-01

    The presence of a well-defined and narrow dust lane in an edge-on spiral galaxy is the observational signature of a thin and dense molecular disk, in which gravitational collapse has overcome turbulence. Using a sample of galaxies out to z {approx} 1 extracted from the COSMOS survey, we identify the fraction of massive (L*{sub V}) disks that display a dust lane. Our goal is to explore the evolution in the stability of the molecular interstellar medium (ISM) disks in spiral galaxies over a cosmic timescale. We check the reliability of our morphological classifications against changes in rest-frame wavelength, resolution, andmore » cosmic dimming with (artificially redshifted) images of local galaxies from the Sloan Digital Sky Survey. We find that the fraction of L*{sub V} disks with dust lanes in COSMOS is consistent with the local fraction ( Almost-Equal-To 80%) out to z {approx} 0.7. At z = 0.8, the dust lane fraction is only slightly lower. A somewhat lower dust lane fraction in starbursting galaxies tentatively supports the notion that a high specific star formation rate can efficiently destroy or inhibit a dense molecular disk. A small subsample of higher redshift COSMOS galaxies display low internal reddening (E[B - V]), as well as a low incidence of dust lanes. These may be disks in which the growth of the dusty ISM disk lags behind that of the stellar disk. We note that at z = 0.8, the most massive galaxies display a lower dust lane fraction than lower mass galaxies. A small contribution of recent mergers or starbursts to this most massive population may be responsible. The fact that the fraction of galaxies with dust lanes in COSMOS is consistent with little or no evolution implies that models to explain the spectral energy distribution or the host galaxy dust extinction of supernovae based on local galaxies are still applicable to higher redshift spirals. It also suggests that dust lanes are long-lived phenomena or can be reformed over very short timescales.« less

  20. Constraining Galaxy Evolution With Hubble's Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Heap, S.; Lindler, D. J.

    2009-03-01

    We present Hubble's Next Generation Spectral Library, a library of UV-optical spectra (0.2-1.0 μ) of 378 stars. We show that the mid-UV spectrum can be used to constrain the ages and metallicities of high-redshift galaxies presently being observed with large, ground-based telescopes.

  1. Detection of Spectral Evolution in the Bursts Emitted During the 2008-2009 Active Episode of SGR J1550 - 5418

    NASA Technical Reports Server (NTRS)

    von Kienlin, Andreas; Gruber, David; Kouveliotou, Chryssa; Granot, Jonathan; Baring, Matthew G.; Gogus, Ersin; Huppenkothen, Daniela; Kaneko, Yuki; Lin, Lin; Watts, Anna L.; hide

    2012-01-01

    In early October 2008, the Soft Gamma Repeater SGRJ1550 - 5418 (1E1547.0 - 5408, AXJ155052 - 5418, PSR J1550 - 5418) became active, emitting a series of bursts which triggered the Fermi Gamma-ray Burst Monitor (GBM) after which a second especially intense activity period commenced in 2009 January and a third, less active period was detected in 2009 March-April. Here we analyze the GBM data of all the bursts from the first and last active episodes. We performed temporal and spectral analysis for all events and found that their temporal characteristics are very similar to the ones of other SGR bursts, as well the ones reported for the bursts of the main episode (average burst durations 170ms). In addition, we used our sample of bursts to quantify the systematic uncertainties of the GBM location algorithm for soft gamma-ray transients to less than or equal to 8 degrees. Our spectral analysis indicates significant spectral evolution between the first and last set of events. Although the 2008 October events are best fit with a single blackbody function, for the 2009 bursts an Optically Thin Thermal Bremsstrahlung (OTTB) is clearly preferred. We attribute this evolution to changes in the magnetic field topology of the source, possibly due to effects following the very energetic main bursting episode.

  2. A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    NASA Astrophysics Data System (ADS)

    Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.

    2018-06-01

    We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.

  3. NGEE Arctic Canopy Spectral Reflectance, Barrow, Alaska, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawn Serbin; Wil Lieberman-Cribbin; Kim Ely

    Measurements of full-spectrum (i.e. 350-2500nm) canopy spectral reflectance of Arctic plant species within the BEO, Barrow, Alaska. Spectra were collected using an Spectra Vista Corporation (SVC) HR-2014i and Spectral Evolution (SE) PSR+ instrument mounted on a tripod or monopod together with a Spectralon white plate to calibrate each measurement under variable illumination conditions. Data were collected in Barrow, Alaska during the 2014 to 2016 period.

  4. Arranging eukaryotic nuclear DNA polymerases for replication: Specific interactions with accessory proteins arrange Pols α, δ, and ϵ in the replisome for leading-strand and lagging-strand DNA replication.

    PubMed

    Kunkel, Thomas A; Burgers, Peter M J

    2017-08-01

    Biochemical and cryo-electron microscopy studies have just been published revealing interactions among proteins of the yeast replisome that are important for highly coordinated synthesis of the two DNA strands of the nuclear genome. These studies reveal key interactions important for arranging DNA polymerases α, δ, and ϵ for leading and lagging strand replication. The CMG (Mcm2-7, Cdc45, GINS) helicase is central to this interaction network. These are but the latest examples of elegant studies performed in the recent past that lead to a much better understanding of how the eukaryotic replication fork achieves efficient DNA replication that is accurate enough to prevent diseases yet allows evolution. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  5. Dynamics of Monsoon-Induced Biennial Variability in ENSO

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The mechanism of the quasi-biennial tendency in El Nino Southern Oscillation (ENSO)-monsoon coupled system is investigated using an intermediate coupled model. The monsoon wind forcing is prescribed as a function of Sea Surface Temperature (SST) anomalies based on the relationship between zonal wind anomalies over the western Pacific to sea level change in the equatorial eastern Pacific. The key mechanism of quasi-biennial tendency in El Nino evolution is found to be in the strong coupling of ENSO to monsoon wind forcing over the western Pacific. Strong boreal summer monsoon wind forcing, which lags the maximum SST anomaly in the equatorial eastern Pacific approximately 6 months, tends to generate Kelvin waves of the opposite sign to anomalies in the eastern Pacific and initiates the turnabout in the eastern Pacific. Boreal winter monsoon forcing, which has zero lag with maximum SST in the equatorial eastern Pacific, tends to damp the ENSO oscillations.

  6. Mid-Ocean Ridge Melt Supply and Glacial Cycles: A 3D EPR Study of Crustal Thickness, Layer 2A, and Bathymetry

    NASA Astrophysics Data System (ADS)

    Boulahanis, B.; Aghaei, O.; Carbotte, S. M.; Huybers, P. J.; Langmuir, C. H.; Nedimovic, M. R.; Carton, H. D.; Canales, J. P.

    2017-12-01

    Recent studies suggest that eustatic sea level fluctuations induced by glacial cycles in the Pleistocene may influence mantle-melting and volcanic eruptions at mid-ocean ridges (MOR), with models predicting variation in oceanic crustal thickness linked to sea level change. Previous analyses of seafloor bathymetry as a proxy for crustal thickness show significant spectral energy at frequencies linked to Milankovitch cycles of 1/23, 1/41, and 1/100 ky-1, however the effects of faulting in seafloor relief and its spectral characteristics are difficult to separate from climatic signals. Here we investigate the hypothesis of climate driven periodicity in MOR magmatism through spectral analysis, time series comparisons, and statistical characterization of bathymetry data, seismic layer 2A thickness (as a proxy for extrusive volcanism), and seafloor-to-Moho thickness (as a proxy for total magma production). We utilize information from a three-dimensional multichannel seismic study of the East Pacific Rise and its flanks from 9°36`N to 9°57`N. We compare these datasets to the paleoclimate "LR04" benthic δ18O stack. The seismic dataset covers 770 km2 and provides resolution of Moho for 92% of the imaged region. This is the only existing high-resolution 3-D image across oceanic crust, making it ideal for assessing the possibility that glacial cycles modulate magma supply at fast spreading MORs. The layer 2A grid extends 9 km (170 ky) from the ridge axis, while Moho imaging extends to a maximum of 16 km (310 ky). Initial results from the East Pacific Rise show a relationship between sea level and both crustal thickness and sea floor depth, consistent with the hypothesis that magma supply to MORs may be modulated by glacial cycles. Analysis of crustal thickness and bathymetry data reveals spectral peaks at Milankovitch frequencies of 1/100 ky-1 and 1/41 ky-1 where datasets extend sufficiently far from the ridge. The layer 2A grid does not extend sufficiently far from the ridge to be conclusive. Correlations between sea level and crustal thickness suggest a lag of 65 ky between sea level forcing and crustal thickness response. A further lag of 25 ky is observed between crustal thickness variations and seafloor depth change, which we attribute to the finite width of the crustal formation zone.

  7. Numerical modelling of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.; Truitt, J. L.

    2000-10-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a newly developed 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to the experimental results obtained from the experiment. The code, Dynamo, is in Fortran90 and allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the Navier-Stokes equation governing V are solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependant kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Initial results on magnetic field saturation, generated by the simultaneous evolution of magnetic and velocity fields be presented using a variety of mechanical forcing terms.

  8. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  9. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less

  10. Evidence for different accretion regimes in GRO J1008-57

    NASA Astrophysics Data System (ADS)

    Kühnel, Matthias; Fürst, Felix; Pottschmidt, Katja; Kreykenbohm, Ingo; Ballhausen, Ralf; Falkner, Sebastian; Rothschild, Richard E.; Klochkov, Dmitry; Wilms, Jörn

    2017-11-01

    We present a comprehensive spectral analysis of the BeXRB GRO J1008-57 over a luminosity range of three orders of magnitude using NuSTAR, Suzaku, and RXTE data. We find significant evolution of the spectral parameters with luminosity. In particular, the photon index hardens with increasing luminosity at intermediate luminosities in the range 1036-1037 erg s-1. This evolution is stable and repeatedly observed over different outbursts. However, at the extreme ends of the observed luminosity range, we find that the correlation breaks down, with a significance level of at least 3.7σ. We conclude that these changes indicate transitions to different accretion regimes, which are characterized by different deceleration processes, such as Coulomb or radiation breaking. We compare our observed luminosity levels of these transitions to theoretical predications and discuss the variation of those theoretical luminosity values with fundamental neutron star parameters. Finally, we present detailed spectroscopy of the unique "triple peaked" outburst in 2014/15 which does not fit in the general parameter evolution with luminosity. The pulse profile on the other hand is consistent with what is expected at this luminosity level, arguing against a change in accretion geometry. In summary, GRO J1008-57 is an ideal target to study different accretion regimes due to the well-constrained evolution of its broad-band spectral continuum over several orders of magnitude in luminosity.

  11. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip

    2017-10-20

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders ofmore » magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.« less

  12. Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves.

    PubMed

    Cuevas-Maraver, J; Kevrekidis, P G; Frantzeskakis, D J; Karachalios, N I; Haragus, M; James, G

    2017-07-01

    In the present work, we aim at taking a step towards the spectral stability analysis of Peregrine solitons, i.e., wave structures that are used to emulate extreme wave events. Given the space-time localized nature of Peregrine solitons, this is a priori a nontrivial task. Our main tool in this effort will be the study of the spectral stability of the periodic generalization of the Peregrine soliton in the evolution variable, namely the Kuznetsov-Ma breather. Given the periodic structure of the latter, we compute the corresponding Floquet multipliers, and examine them in the limit where the period of the orbit tends to infinity. This way, we extrapolate towards the stability of the limiting structure, namely the Peregrine soliton. We find that multiple unstable modes of the background are enhanced, yet no additional unstable eigenmodes arise as the Peregrine limit is approached. We explore the instability evolution also in direct numerical simulations.

  13. Fourier analysis of blazar variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finke, Justin D.; Becker, Peter A., E-mail: justin.finke@nrl.navy.mil

    Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and timemore » lag behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission components, from submillimeter to γ-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We also find that FSRQs should have steeper γ-ray PSD power-law indices than BL Lac objects at Fourier frequencies ≲ 10{sup –4} Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.« less

  14. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  15. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  16. High Resolution X-ray Spectroscopy and Star Formation: HETG Observations of the Pre-Main Sequence Stellar Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Principe, David; Huenemoerder, David P.; Schulz, Norbert; Kastner, Joel H.; Weintraub, David; Preibisch, Thomas

    2018-01-01

    We present Chandra High Energy Transmission Grating (HETG) observations of the ∼3 Myr old pre-main sequence (pre-MS) stellar cluster IC 348. With 400-500 cluster members at a distance of ∼300 pc, IC 348 is an ideal target to observe a large number of X-ray sources in a single pointing and is thus an extremely efficient use of Chandra-HETG. High resolution X-ray spectroscopy offers a means to investigate detailed spectral characteristic of X-ray emitting plasmas and their surrounding environments. We present preliminary results where we compare X-ray spectral signatures (e.g., luminosity, temperature, column density, abundance) of the X-ray brightest pre-MS stars in IC 348 with spectral type, multiwavelength signatures of accretion, and the presence of circumstellar disks at multiple stages of pre-MS stellar evolution. Assuming all IC 348 members formed from the same primordial molecular cloud, any disparity between coronal abundances of individual members, as constrained by the identification and strength of emission lines, will constrain the source(s) of coronal chemical evolution at a stage of pre-MS evolution vital to the formation of planets.

  17. Highlights in the study of exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Burrows, Adam S.

    2014-09-01

    Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends.

  18. Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates

    NASA Astrophysics Data System (ADS)

    Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.

    2015-12-01

    The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic wedges.

  19. Spectral decomposition of asteroid Itokawa based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  20. Spatio-temporally resolved spectral measurements of laser-produced plasma and semiautomated spectral measurement-control and analysis software

    NASA Astrophysics Data System (ADS)

    Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.

    2018-02-01

    A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.

  1. Spectral mixture modeling - A new analysis of rock and soil types at the Viking Lander 1 site. [on Mars

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Smith, M. O.; Johnson, P. E.

    1986-01-01

    A Viking Lander 1 image was modeled as mixtures of reflectance spectra of palagonite dust, gray andesitelike rock, and a coarse rocklike soil. The rocks are covered to varying degrees by dust but otherwise appear unweathered. Rocklike soil occurs as lag deposits in deflation zones around stones and on top of a drift and as a layer in a trench dug by the lander. This soil probably is derived from the rocks by wind abrasion and/or spallation. Dust is the major component of the soil and covers most of the surface. The dust is unrelated spectrally to the rock but is equivalent to the global-scale dust observed telescopically. A new method was developed to model a multispectral image as mixtures of end-member spectra and to compare image spectra directly with laboratory reference spectra. The method for the first time uses shade and secondary illumination effects as spectral end-members; thus the effects of topography and illumination on all scales can be isolated or removed. The image was calibrated absolutely from the laboratory spectra, in close agreement with direct calibrations. The method has broad applications to interpreting multispectral images, including satellite images.

  2. A Teaching Module about Stellar Structure and Evolution

    ERIC Educational Resources Information Center

    Colantonio, Arturo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella; Testa, Italo

    2017-01-01

    In this paper, we present a teaching module about stellar structure, functioning and evolution. Drawing from literature in astronomy education, we designed the activities around three key ideas: spectral analysis, mechanical and thermal equilibrium, energy and nuclear reactions. The module is divided into four phases, in which the key ideas for…

  3. Effects of distributions of energy of transfer rates on spectral hole burning in photosynthetic pigment-protein complexes

    NASA Astrophysics Data System (ADS)

    Ahmouda, Somaya

    To perform photosynthesis, plants, algae and bacteria possess well organized and closely coupled photosynthetic pigment-protein complexes. Information on energy transfer in photosynthetic complexes is important to understand their functioning and possibly to design new and improved photovoltaic devices. The information on energy transfer processes contained in the narrow zero-phonon lines at low temperatures is hidden under the inhomogeneous broadening. Thus, it has been proven difficult to analyze the spectroscopic properties of these complexes in sufficient detail by conventional spectroscopy methods. In this context the high resolution spectroscopy techniques such as Spectral Hole Burning are powerful tools designed to get around the inhomogeneous broadening. Spectral Hole Burning involves selective excitation by a laser which removes molecules with the zero-phonon transitions resonant with this laser. This thesis focuses on the effects of the distributions of the energy transfer rates (homogeneous line widths) on the evolution of spectral holes. These distributions are a consequence of the static disorder in the photosynthetic pigment-protein complexes. The qualitative effects of different types of the line width distributions on the evolution of spectral holes have been and explored by numerical simulations, an example of analysis of the original experimental data has been presented as well.

  4. Hubble Space Telescope studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends

    NASA Astrophysics Data System (ADS)

    Maguire, K.; Sullivan, M.; Ellis, R. S.; Nugent, P. E.; Howell, D. A.; Gal-Yam, A.; Cooke, J.; Mazzali, P.; Pan, Y.-C.; Dilday, B.; Thomas, R. C.; Arcavi, I.; Ben-Ami, S.; Bersier, D.; Bianco, F. B.; Fulton, B. J.; Hook, I.; Horesh, A.; Hsiao, E.; James, P. A.; Podsiadlowski, P.; Walker, E. S.; Yaron, O.; Kasliwal, M. M.; Laher, R. R.; Law, N. M.; Ofek, E. O.; Poznanski, D.; Surace, J.

    2012-11-01

    We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 Å) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models rather than improving the use of SNe Ia as cosmological probes.

  5. Detecting Non-Markovianity of Quantum Evolution via Spectra of Dynamical Maps.

    PubMed

    Chruściński, Dariusz; Macchiavello, Chiara; Maniscalco, Sabrina

    2017-02-24

    We provide an analysis on non-Markovian quantum evolution based on the spectral properties of dynamical maps. We introduce the dynamical analog of entanglement witness to detect non-Markovianity and we illustrate its behavior with several instructive examples. It is shown that for several important classes of dynamical maps the corresponding evolution of singular values and/or eigenvalues of the map provides a simple non-Markovianity witness.

  6. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers.

    PubMed

    Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D

    2015-02-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. Quantum adiabatic computation with a constant gap is not useful in one dimension.

    PubMed

    Hastings, M B

    2009-07-31

    We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).

  8. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    PubMed Central

    Motsa, S. S.; Magagula, V. M.; Sibanda, P.

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  9. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  10. Radial evolution of power spectra of interplanetary Alfvenic turbulence

    NASA Technical Reports Server (NTRS)

    Bavassano, B.; Dobrowolny, M.; Mariani, F.; Ness, N. F.

    1981-01-01

    The radial evolution of the power spectra of the MHD turbulence within the trailing edge of high speed streams in the solar wind was investigated with the magnetic field data of Helios 1 and 2 for heliocentric distance between 0.3 and 0.9 AU. In the analyzed frequency range (.00028 Hz to .0083 Hz) the computed spectra have, near the Earth, values of the spectral index close to that predicted for an incompressible hydromagnetic turbulence in a stationary state. Approaching the Sun the spectral slope remains unchanged for frequencies f or approximately .00 Hz, whereas at lower frequencies, a clear evolution toward a less steep fall off with frequency is found. The radial gradient of the power in Alfvenic fluctuations depends on frequency and it increases upon increasing frequency. For frequencies f or approximately .00 Hz, however, the radial gradient remains approximately the same. Possible theoretical implications of the observational features are discussed.

  11. Reaction mechanisms of methylene-blue degradation in three-dimensionally integrated micro-solution plasma

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Ishida, Yodai; Nomura, Ayano; Hayashi, Yui; Goto, Motonobu

    2017-06-01

    We have performed matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) on methylene-blue aqueous solutions treated with three-dimensionally integrated micro-solution plasma, in which we have acquired the time evolution of mass spectra as a function of treatment time. The time evolution of mass spectral peak intensities for major detected species has clearly indicated that the parent methylene-blue molecules are degraded through consecutive reactions. The primary reaction is the oxidation of the parent molecules. The oxidized species still have two benzene rings in the parent molecules. The secondary reactions are the separation of the oxidized species and the formation of compounds with one benzene ring. We have also performed the numerical fitting of the time evolution of the mass spectral peak intensities, the results of which have indicated that we must assume additional primary reactions before the primary oxidation for better agreement with experimental results.

  12. Evolution of Lamb Vector as a Vortex Breaking into Turbulence.

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Lu, X. Y.

    1996-11-01

    In an incompressible flow, either laminar or turbulent, the Lamb vector is solely responsible to nonlinear interactions. While its longitudinal part is balanced by stagnation enthalpy, its transverse part is the unique source (as an external forcing in spectral space) that causes the flow to evolve. Moreover, in Reynolds-averaged flows the turbulent force can be derived exclusively from the Lamb vector instead of the full Reynolds stress tensor. Therefore, studying the evolution of the Lamb vector itself (both longitudinal and transverse parts) is of great interest. We have numerically examined this problem, taking the nonlinear distabilization of a viscous vortex as an example. In the later stage of this evolution we introduced a forcing to keep a statistically steady state, and observed the Lamb vector behavior in the resulting fine turbulence. The result is presented in both physical and spectral spaces.

  13. Running of scalar spectral index in multi-field inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jinn-Ouk, E-mail: jinn-ouk.gong@apctp.org

    We compute the running of the scalar spectral index in general multi-field slow-roll inflation. By incorporating explicit momentum dependence at the moment of horizon crossing, we can find the running straightforwardly. At the same time, we can distinguish the contributions from the quasi de Sitter background and the super-horizon evolution of the field fluctuations.

  14. Spectral-Timing Analysis of Kilohetrz Quasi-Periodic Osciallations in Neutron Star Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Cackett, Edward; Troyer, Jon; Peille, Philippe; Barret, Didier

    2018-01-01

    Kilohertz quasi-periodic oscillations or kHz QPOs are intensity variations that occur in the X-ray band observed in neutron star low-mass X-ray binary (LMXB) systems. In such systems, matter is transferred from a secondary low-mass star to a neutron star via the process of accretion. kHz QPOs occur on the timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2 ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively. No model derived from these techniques has been able to illuminate the origin of kHz QPOs. Spectral-timing is an analysis technique that can be used to derive information about the nature of physical processes occurring within the accretion flow on the timescale of the kHz QPO. To date, kHz QPOs of (4) neutron star LMXB systems have been studied with spectral-timing techniques. We present a comprehensive study of spectral-timing products of kHz QPOs from systems where data is available in the RXTE archive to demonstrate the promise of this technique to gain insights regarding the origin of kHz QPOs. Using data averaged over the entire RXTE archive, we show correlated time-lags as a function of QPO frequency and energy, as well as energy-dependent covariance spectra for the various LMXB systems where spectral-timing analysis is possible. We find similar trends in all average spectral-timing products for the objects studied. This suggests a common origin of kHz QPOs.

  15. A Nonlinear Dynamical Systems based Model for Stochastic Simulation of Streamflow

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.; Rajagopalan, B.; Zagona, E. A.

    2014-12-01

    Traditional time series methods model the evolution of the underlying process as a linear or nonlinear function of the autocorrelation. These methods capture the distributional statistics but are incapable of providing insights into the dynamics of the process, the potential regimes, and predictability. This work develops a nonlinear dynamical model for stochastic simulation of streamflows. In this, first a wavelet spectral analysis is employed on the flow series to isolate dominant orthogonal quasi periodic timeseries components. The periodic bands are added denoting the 'signal' component of the time series and the residual being the 'noise' component. Next, the underlying nonlinear dynamics of this combined band time series is recovered. For this the univariate time series is embedded in a d-dimensional space with an appropriate lag T to recover the state space in which the dynamics unfolds. Predictability is assessed by quantifying the divergence of trajectories in the state space with time, as Lyapunov exponents. The nonlinear dynamics in conjunction with a K-nearest neighbor time resampling is used to simulate the combined band, to which the noise component is added to simulate the timeseries. We demonstrate this method by applying it to the data at Lees Ferry that comprises of both the paleo reconstructed and naturalized historic annual flow spanning 1490-2010. We identify interesting dynamics of the signal in the flow series and epochal behavior of predictability. These will be of immense use for water resources planning and management.

  16. Beach response dynamics of a littoral cell using a 17-year single-point time series of sand thickness

    USGS Publications Warehouse

    Barnard, P.L.; Hubbard, D.M.; Dugan, J.E.

    2012-01-01

    A 17-year time series of near-daily sand thickness measurements at a single intertidal location was compared with 5. years of semi-annual 3-dimensional beach surveys at the same beach, and at two other beaches within the same littoral cell. The daily single point measurements correlated extremely well with the mean beach elevation and shoreline position of ten high-spatial resolution beach surveys. Correlations were statistically significant at all spatial scales, even for beach surveys 10s of kilometers downcoast, and therefore variability at the single point monitoring site was representative of regional coastal behavior, allowing us to examine nearly two decades of continuous coastal evolution. The annual cycle of beach oscillations dominated the signal, typical of this region, with additional, less intense spectral peaks associated with seasonal wave energy fluctuations (~. 45 to 90. days), as well as full lunar (~. 29. days) and semi-lunar (~. 13. days; spring-neap cycle) tidal cycles. Sand thickness variability was statistically linked to wave energy with a 2. month peak lag, as well as the average of the previous 7-8. months of wave energy. Longer term anomalies in sand thickness were also apparent on time scales up to 15. months. Our analyses suggest that spatially-limited morphological data sets can be extremely valuable (with robust validation) for understanding the details of beach response to wave energy over timescales that are not resolved by typical survey intervals, as well as the regional behavior of coastal systems. ?? 2011.

  17. RXTE Observation of Cygnus X-1. Report 2; TIming Analysis

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, Brian A.; Wilms, Joern; Dove, James B.; Begelman, Mitchell C.

    1998-01-01

    We present timing analysis for a Rossi X-ray Timing Explorer (RXTE) observation of Cygnus X-1 in its hard/low state. This was the first RXTE observation of Cyg X-1 taken after it transited back to this state from its soft/high state. RXTE's large effective area, superior timing capabilities, and ability to obtain long, uninterrupted observations have allowed us to obtain measurements of the power spectral density (PSD), coherence function, and Fourier time lags to a decade lower in frequency and half a decade higher in frequency than typically was achieved with previous instruments. Notable aspects of our observations include a weak 0.005 Hz feature in the PSD coincident with a coherence recovery; a 'hardening' of the high-frequency PSD with increasing energy; a broad frequency range measurement of the coherence function, revealing rollovers from unity coherence at both low and high frequency; and an accurate determination of the Fourier time lags over two and a half decades in frequency. As has been noted in previous similar observations, the time delay is approximately proportional to f(exp -0.7), and at a fixed Fourier frequency the time delay of the hard X-rays compared to the softest energy channel tends to increase logarithmically with energy. Curiously, the 0.01-0.2 Hz coherence between the highest and lowest energy bands is actually slightly greater than the coherence between the second highest and lowest energy bands. We carefully describe all of the analysis techniques used in this paper, and we make comparisons of the data to general theoretical expectations. In a companion paper, we make specific comparisons to a Compton corona model that we have successfully used to describe the energy spectral data from this observation.

  18. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  19. Cardiovascular response to acute stress in freely moving rats: time-frequency analysis.

    PubMed

    Loncar-Turukalo, Tatjana; Bajic, Dragana; Japundzic-Zigon, Nina

    2008-01-01

    Spectral analysis of cardiovascular series is an important tool for assessing the features of the autonomic control of the cardiovascular system. In this experiment Wistar rats ecquiped with intraarterial catheter for blood pressure (BP) recording were exposed to stress induced by blowing air. The problem of non stationary data was overcomed applying the Smoothed Pseudo Wigner Villle (SPWV) time-frequency distribution. Spectral analysis was done before stress, during stress, immediately after stress and later in recovery. The spectral indices were calculated for both systolic blood pressure (SBP) and pulse interval (PI) series. The time evolution of spectral indices showed perturbed sympathovagal balance.

  20. Spectral measurements of cosmic gamma-ray bursts with the Konus-Wind and Konus-A instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.

    1998-05-16

    The Konus gamma-ray burst instrumentation on board the US GGS-Wind spacecraft and the near-Earth Russian satellite Kosmos-2326 makes it possible to make spectral measurements and comparisons between 12 keV to 10 MeV. Since November 1994, over 370 bursts have been observed in the triggered mode, for which detailed spectral measurements are available. Incident photon spectra are derived from the count rate spectra of a number of bright bursts for which the celestial source position or the angle relative to the sensor axis is known. The spectral evolution of these bursts and the possible existence of spectral features in both themore » soft and hard energy bands are discussed.« less

  1. Swift monitoring observations of 1H 1743-322 and its evolution towards a state transition

    NASA Astrophysics Data System (ADS)

    Yan, Zhen; Lin, Jie; Yu, Wenfei; Zhang, Wenda; Zhang, Hui; Mao, Dongming

    2016-03-01

    Following the report of the new outburst of black hole X-ray binary H1743-322 (ATel #8751), we requested a series of Swift ToO observations to monitor the X-ray temporal and spectral evolution and potential jet contribution to the UV flux during the outburst.

  2. Non-Equilibrium Turbulence and Two-Equation Modeling

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  3. Numerical modeling of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Wright, J. C.; Forest, C. B.; O'Connell, R.

    2002-11-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations will be compared to results obtained from the experiment. The code, Dynamo (Fortran90), allows for full evolution of the magnetic and velocity fields. The induction equation governing B and the curl of the momentum equation governing V are separately or simultaneously solved. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James (M.L. Dudley and R.W. James, Time-dependent kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, p. 407 (1989)). Power balance in the system has been verified in both mechanically driven and perturbed hydrodynamic, kinematic, and dynamic cases. Evolution of the vacuum magnetic field has been added to facilitate comparison with the experiment. Modeling of the Madison Dynamo eXperiment will be presented.

  4. Observing the Fast X-ray Spectral Variability of NLS1 1H1934-063 with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2017-08-01

    The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena. They can exhibit dramatic variability in the X-ray band on a range of timescales down to a few minutes. We present the exemplifying case study of 1H1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectral and temporal analyses of a concurrent XMM-Newton and NuSTAR observation taken in 2015 and lasting 120 ks, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail here. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is quite X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability observed even at NuSTAR energies. We compare detailed time-resolved spectral fitting with Fourier-based timing analysis in order to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1 - 4 keV) and its relativistically-blurred reflection off the inner accretion flow (0.3 - 1 keV).

  5. Generation and evolution of anisotropic turbulence and related energy transfer in a multi-species solar wind

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Poedts, Stefaan

    2017-04-01

    The electromagnetic fluctuations in the solar wind represent a zoo of plasma waves with different properties, whose wavelengths range from largest fluid scales to the smallest dissipation scales. By nature the power spectrum of the magnetic fluctuations is anisotropic with different spectral slopes in parallel and perpendicular directions with respect to the background magnetic field. Furthermore, the magnetic field power spectra steepen as one moves from the inertial to the dissipation range and we observe multiple spectral breaks with different slopes in parallel and perpendicular direction at the ion scales and beyond. The turbulent dissipation of magnetic field fluctuations at the sub-ion scales is believed to go into local ion heating and acceleration, so that the spectral breaks are typically associated with particle energization. The gained energy can be in the form of anisotropic heating, formation of non-thermal features in the particle velocity distributions functions, and redistribution of the differential acceleration between the different ion populations. To study the relation between the evolution of the anisotropic turbulent spectra and the particle heating at the ion and sub-ion scales we perform a series of 2.5D hybrid simulations in a collisionless drifting proton-alpha plasma. We neglect the fast electron dynamics and treat the electrons as an isothermal fluid electrons, whereas the protons and a minor population of alpha particles are evolved in a fully kinetic manner. We start with a given wave spectrum and study the evolution of the magnetic field spectral slopes as a function of the parallel and perpendicular wave¬numbers. Simultaneously, we track the particle response and the energy exchange between the parallel and perpendicular scales. We observe anisotropic behavior of the turbulent power spectra with steeper slopes along the dominant energy-containing direction. This means that for parallel and quasi-parallel waves we have steeper spectral slope in parallel direction, whereas for highly oblique waves the dissipation occurs predominantly in perpendicular direction and the spectral slopes are steeper across the background magnetic field. The value of the spectral slopes depends on the angle of propagation, the spectral range, as well as the plasma properties. In general the dissipation is stronger at small scales and the corresponding spectral slopes there are steeper. For parallel and quasi-parallel propagation the prevailing energy cascade remains along the magnetic field, whereas for initially isotropic oblique turbulence the cascade develops mainly in perpendicular direction.

  6. The correlation of solar flare hard X-ray bursts with Doppler blueshifted soft X-ray flare emission

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Doschek, G. A.; Simnett, G. M.; Rilee, M. L.; Mariska, J. T.; Culhane, J. L.; Kosugi, T.; Watanabe, T.

    1994-01-01

    We have investigated the temporal correlation between hard X-ray bursts and the intensity of Doppler blueshifted soft X-ray spectral line emission. We find a strong correlation for many events that have intense blueshifted spectral signatures and some correlation in events with modest blueshifts. The onset of hard X-rays frequently coincides to within a few seconds with the onset of blueshifted emission. The peak intensity of blueshifted emission is frequently close in time to the peak of the hard X-ray emission. Decay rates of the blueshifted and hard X-ray emission are similar, with the decay of the blueshifted emission tending to lag behind the hard X-ray emission in some cases. There are, however, exceptions to these conclusions, and, therefore, the results should not be generalized to all flares. Most of the data for this work were obtained from instruments flown on the Japanese Yohkoh solar spacecraft.

  7. Investigation of phase synchronization of interictal EEG in right temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Cai, Lihui; Wu, Xinyu; Song, Zhenxi; Wang, Jiang; Xia, Zijie; Liu, Jing; Cao, Yibin

    2018-02-01

    Epilepsy is commonly associated with abnormally synchronous activity of neurons located in epileptogenic zones. In this study, we investigated the synchronization characteristic of right temporal lobe epilepsy (RTLE). Multichannel electroencephalography (EEG) data were recorded from the RTLE patients during interictal period and normal controls. Power spectral density was first used to analyze the EEG power for two groups of subjects. It was found that the power of epileptics is increased in the whole brain compared with that of the control. We calculated phase lag index (PLI) to measure the phase synchronization between each pair of EEG signals. A higher degree of synchronization was observed in the epileptics especially between distant channels. In particular, the regional synchronization degree was negatively correlated with power spectral density and the correlation was weaker for epileptics. Moreover, the synchronization degree decayed with the increase of relative distance of channels for both the epilepsy and control, but the dependence was weakened in the former. The obtained results may provide new insights into the generation mechanism of epilepsy.

  8. Dynamics of modulated beams in spectral domain

    DOE PAGES

    Yampolsky, Nikolai A.

    2017-07-16

    General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less

  9. Correlation Analysis of Prompt Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Pothapragada, Sriharsha

    Prompt emission from gamma-ray bursts (GRBs) exhibits very rapid, complicated temporal and spectral evolution. This diverse variability in the light-curves reflects the complicated nature of the underlying physics, in which inter-penetrating relativistic shells in the outflow are believed to generate strong magnetic fields that vary over very small scales. We use the theory of jitter radiation to model the emission from such regions and the resulting overall prompt gamma ray emission from a series of relativistic collisionless shocks. We present simulated GRB light-curves developed as a series of "pulses" corresponding to instantaneously illuminated "thin-shell" regions emitting via the jitter radiation mechanism. The effects of various geometries, viewing angles, and bulk Lorentz factor profiles of the radiating outflow jets on the spectral features and evolution of these light-curves are explored. Our results demonstrate how an anisotropic jitter radiation pattern, in conjunction with relativistic shock kinematics, can produce certain features observed in the GRB prompt emission spectra, such as the occurrence of hard, synchrotron violating spectra, the "tracking" of observed flux with spectral parameters, and spectral softening below peak energy within individual episodes of the light curve. We highlight predictions in the light of recent advances in the observational sphere of GRBs.

  10. Cloud structure evolution of heavy rain events from the East-West Pacific Ocean: a combined global observation analysis

    NASA Astrophysics Data System (ADS)

    Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.

    2018-04-01

    Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.

  11. Quantitative genetic versions of Hamilton's rule with empirical applications

    PubMed Central

    McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.

    2014-01-01

    Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930

  12. Density-lag anomaly patterns in backshore sands along a paraglacial barrier spit

    NASA Astrophysics Data System (ADS)

    Pupienis, Donatas; Buynevich, Ilya; Jarmalavičius, Darius; Fedorovič, Julija; Žilinskas, Gintautas; Ryabchuk, Daria; Kovaleva, Olga; Sergeev, Alexander; Cichon-Pupienis, Anna

    2016-04-01

    The Curonian Spit, located along the southeast Baltic Sea coast, is one of the longest paraglacial mega-barriers in the world (~100 km) and is characteried by microtidal sandy beaches and unbroken foredune ridge emplaced by human activities in historical times. Both are dominated by quartzo-feldpathic sand, with various fractions of heavy minerals that may be concentrated as density lag. Such heavy-mineral concentrations (HMCs) may be distributed weither randomly or regularly along the coast, depending on the geological framework, hydro-aeolian processes, and human activities (e.g., steel elements of coastal engineering structures, military installations, etc.). In this study, we focus on the longshore patterns in HMC distribution and relative magnitude (mainly the concentration of ferrimagnetic components). Along the entire Curonian Spit coast (Russia-Lithuania), a total of 184 surface sand samples were collected at 1 km interval from the berm and foredune toe (seaward base). HMCs were characterized in the laboratory using bulk low-field magnetic susceptibility (MS). The Wavelength and Lomb spectral analysis were used to assess the spatial rhythmicity of their longshore distribution. Generally, quartz sand is characterised by low MS values of ĸ<50 μSI, whereas higher values ĸ>150 μSI are typical for heavy mineral-rich sand. MS values on the berm and foredune toe range from 11.2-4977.9 μSI and from 9.2-3153.0 μSI, respectively. Density lag anomalies had MS values exceeding an average value by ≥3 times. Wavelength and Lomb spectral analysis allowed to identify several clusters of periodicities with wavelength varying from 2-12 km, with power spectra having statistically significant values (>95 % CI). Along the modern Curonian Spit coast, two scales of rhythmic pattern variation are evident: macroscale (≤12 km) and mesoscale (2-3 km). The former can be attributed to localized expressions of geological framework (iron-rich components) and engineering structures (especially within the southern part of the spit), whereas the mesoscale patterns reflect spatial distribution of short-term hydro-aeolian forcing (erosional-accretionary cells) that may shift temporally. This research was supported by Lithuanian Science Council (Grant No. MIP-039/2014), the Internationalization Program Award, Temple University and Russian Scientific Fund (Grant No. 14-37-00047).

  13. Education and Science in Africa: Possible Ways of Improvement in the Next Decade. International Commission on Education for the Twenty-First Century, Working Group on Education and Science (Paris, France, January 10-11, 1994).

    ERIC Educational Resources Information Center

    Wandiga, Shem O.

    This paper analyzed the evolution of formal education in Africa with emphasis on the weaknesses and strengths of the system identified. Although the roots of modern education can be found in the early institutions of learning and libraries of Alexandria and Timbuktu in Africa, the continent today lags behind in all the fields of formal education.…

  14. The roles of federal legislation and evolving health care systems in promoting medical-dental collaboration.

    PubMed

    Edelstein, Burton L

    2014-01-01

    Recent federal health care legislation contains explicit and implicit drivers for medical-dental collaboration. These laws implicitly promote health care evolution through value-based financing, "big data" and health information technology, increased number of care providers and a more holistic approach. Additional changes--practice aggregation, consumerism and population health perspectives--may also influence dental care. While dentistry will likely lag behind medicine toward value-based and accountable care organizations, dentists will be affected by changing consumer expectations.

  15. Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution

    DTIC Science & Technology

    2007-12-29

    ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Naval Observatory ,3450 Massachusetts Ave,Washington,DC,20392-5420 8. PERFORMING ORGANIZATION REPORT NUMBER 9...circumstances only the principal tidal frequency (4) will matter . 2. Quality Factor Q and the Geometric Lag Angle d [7] During tidal flexure, the...correct. The inaccuracy in notations has not prevented Bills et al. [2005] from arriving at a reasonable value of the Martian quality factor, 85.58 ± 0.37

  16. Image science team

    NASA Technical Reports Server (NTRS)

    Ando, K.

    1982-01-01

    A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.

  17. The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, G.; Williams, W. L.; Hardcastle, M. J.; Duncan, K.; Röttgering, H. J. A.; Best, P. N.; Brüggen, M.; Chyży, K. T.; Conselice, C. J.; de Gasperin, F.; Engels, D.; Gürkan, G.; Intema, H. T.; Jarvis, M. J.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Prandoni, I.; Sabater, J.; Smith, D. J. B.; Tasse, C.; van der Werf, P. P.; White, G. J.

    2017-08-01

    We present a study of the low-frequency radio properties of star-forming (SF) galaxies and active galactic nuclei (AGNs) up to redshift z = 2.5. The new spectral window probed by the Low Frequency Array (LOFAR) allows us to reconstruct the radio continuum emission from 150 MHz to 1.4 GHz to an unprecedented depth for a radio-selected sample of 1542 galaxies in ˜ 7 deg2 of the LOFAR Boötes field. Using the extensive multiwavelength data set available in Boötes and detailed modelling of the far-infrared to ultraviolet spectral energy distribution (SED), we are able to separate the star formation (N = 758) and the AGN (N = 784) dominated populations. We study the shape of the radio SEDs and their evolution across cosmic time and find significant differences in the spectral curvature between the SF galaxy and AGN populations. While the radio spectra of SF galaxies exhibit a weak but statistically significant flattening, AGN SEDs show a clear trend to become steeper towards lower frequencies. No evolution of the spectral curvature as a function of redshift is found for SF galaxies or AGNs. We investigate the redshift evolution of the infrared-radio correlation for SF galaxies and find that the ratio of total infrared to 1.4-GHz radio luminosities decreases with increasing redshift: q1.4 GHz = (2.45 ± 0.04) (1 + z)-0.15 ± 0.03. Similarly, q150 MHz shows a redshift evolution following q150 GHz = (1.72 ± 0.04) (1 + z)-0.22 ± 0.05. Calibration of the 150 MHz radio luminosity as a star formation rate tracer suggests that a single power-law extrapolation from q1.4 GHz is not an accurate approximation at all redshifts.

  18. Spectral classification of selected ISOGAL sources using Himalayan Chandra Telescope

    NASA Astrophysics Data System (ADS)

    Joshi, U. C.; Ganesh, S.; Baliyan, K. S.; Parthasarathy, M.; Schultheis, M.; Rajpurohit, A.; Simon, G.; Omont, A.

    The ISOGAL survey (Omont et al. 1999) is devoted to the observation of selected regions of the Galactic plane in the mid-infrared with ISOCAM. More than 240 fields were observed at 7 and 15 micron wave-bands with ISOCAM at an angular resolution of 6'' which has provided a complete census, in the areas surveyed, of the stars in the late stages (RGB/AGB phases) of stellar evolution. Optical counterparts are detected for some of the ISOGAL sources in the directions where the extinction is relatively lower. We obtained optical spectra of ˜100 such sources with the Himalayan Chandra Telescope (HCT), India and estimated their spectral classes. Optical spectroscopy together with mid-IR data is expected to allow us to obtain the spectral-type vs mass-loss relation which are important parameters to understand the late stages of stellar evolution. In this paper, we present a set of spectra taken in the field FC97 for which ISOGAL survey is complete.

  19. Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadijs, Jan; Briggs, Michael S.; Hurley, Kevin; Gogus, Ersin; Preece, Robert D.; Giblin, Timothy W.; Thompson, Christopher; Duncan, Robert C.

    1999-01-01

    We present evidence for burst emission from SGR 1900 + 14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of approximately > 10(exp 11) between these bursts from SGR 1900 + 14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

  20. THE SPECTRAL EVOLUTION OF CONVECTIVE MIXING WHITE DWARFS, THE NON-DA GAP, AND WHITE DWARF COSMOCHRONOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Eugene Y.; Hansen, Brad M. S., E-mail: eyc@mail.utexas.edu, E-mail: hansen@astro.ucla.edu

    The spectral distribution of field white dwarfs shows a feature called the 'non-DA gap'. As defined by Bergeron et al., this is a temperature range (5100-6100 K) where relatively few non-DA stars are found, even though such stars are abundant on either side of the gap. It is usually viewed as an indication that a significant fraction of white dwarfs switch their atmospheric compositions back and forth between hydrogen-rich and helium-rich as they cool. In this Letter, we present a Monte Carlo model of the Galactic disk white dwarf population, based on the spectral evolution model of Chen and Hansen.more » We find that the non-DA gap emerges naturally, even though our model only allows white dwarf atmospheres to evolve monotonically from hydrogen-rich to helium-rich through convective mixing. We conclude by discussing the effects of convective mixing on the white dwarf luminosity function and the use thereof for Cosmochronology.« less

  1. Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es

    Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended timemore » integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.« less

  2. Accretion flow dynamics during 1999 outburst of XTE J1859+226—modeling of broadband spectra and constraining the source mass

    NASA Astrophysics Data System (ADS)

    Nandi, Anuj; Mandal, S.; Sreehari, H.; Radhika, D.; Das, Santabrata; Chattopadhyay, I.; Iyer, N.; Agrawal, V. K.; Aktar, R.

    2018-05-01

    We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (˜166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3-150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\\dot{m}d), sub-Keplerian accretion rate (\\dot{m}h), shock location (rs) and black hole mass (M_{bh}) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as L^{obs}_{jet} ˜3-6 ×10^{37} erg s^{-1} during one of the observed radio flares which indicates that jet power corresponds to 8-16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (˜14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2-7.9 M_{⊙} with 90% confidence.

  3. A Study of Pulse Shape Evolution and X-Ray Reprocessing in Her X-1

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1998-01-01

    This study focused on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium". More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in HerX-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  4. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  5. BL-Lacs in X-Ray Outburst

    NASA Technical Reports Server (NTRS)

    Remillard, Ronald A.; Urry, C. Megan; Aharonian, Felix; Pian, Elena; Sambruna, Rita; Coppi, Paolo

    2000-01-01

    We conducted a multifrequency campaign for the TeV blazar Markarian 421 in 1998 April. The campaign started from a pronounced high-amplitude flare recorded by BeppoSAX and Whipple; the Advanced Satellite for Cosmology and Astrophysics (ASCA) observation started three days later. In the X-ray data, we detected multiple flares, occurring on timescales of about one day. ASCA data clearly reveal spectral variability. The comparison of the data from ASCA, the Extreme Ultraviolet Explorer, and the Rossi X-Ray Timing Explorer indicates that the variability amplitudes in the low-energy synchrotron component are larger at higher photon energies. In TeV and gamma-rays, large intraday variations-which were correlated with the X-ray flux-were observed when results from three Cerenkov telescopes were combined. The rms variability of TeV and gamma-rays was similar to that observed in hard X-rays, above ten keV. The X-ray light curve reveals flares that are almost symmetric for most cases, implying that the dominant timescale is the light crossing time through the emitting region. The structure function analysis based on the continuous X-ray light curve of seven days indicates that the characteristic timescale is approx. 0.5 days. The analysis of ASCA light curves in various energy bands appears to show both soft (positive) and hard (negative) lags. These may not be real, as systematic effects could also produce these lags, which are all much smaller than an orbit. If the lags of both signs are real, these imply that the particle acceleration and X-ray cooling timescales are similar.

  6. Receiver discriminability drives the evolution of complex sexual signals by sexual selection.

    PubMed

    Cui, Jianguo; Song, Xiaowei; Zhu, Bicheng; Fang, Guangzhan; Tang, Yezhong; Ryan, Michael J

    2016-04-01

    A hallmark of sexual selection by mate choice is the evolution of exaggerated traits, such as longer tails in birds and more acoustic components in the calls of birds and frogs. Trait elaboration can be opposed by costs such as increased metabolism and greater predation risk, but cognitive processes of the receiver can also put a brake on trait elaboration. For example, according to Weber's Law traits of a fixed absolute difference will be more difficult to discriminate as the absolute magnitude increases. Here, we show that in the Emei music frog (Babina daunchina) increases in the fundamental frequency between successive notes in the male advertisement call, which increases the spectral complexity of the call, facilitates the female's ability to compare the number of notes between calls. These results suggest that female's discriminability provides the impetus to switch from enhancement of signaling magnitude (i.e., adding more notes into calls) to employing a new signal feature (i.e., increasing frequency among notes) to increase complexity. We suggest that increasing the spectral complexity of notes ameliorates some of the effects of Weber's Law, and highlights how perceptual and cognitive biases of choosers can have important influences on the evolution of courtship signals. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  7. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data

    NASA Astrophysics Data System (ADS)

    Hwang, James Ho-Jin; Duran, Adam

    2016-08-01

    Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC) simulation. The MC simulation identifies combinations of the PR and decays that can meet the SRS requirement at each band center frequency. Decomposed input time histories are produced by summing the converged damped sinusoids with the MC simulation of the phase lag distribution.

  8. Neuronal Control of Swimming Behavior: Comparison of Vertebrate and Invertebrate Model Systems

    PubMed Central

    Mullins, Olivia J.; Hackett, John T.; Buchanan, James T.; Friesen, W. Otto

    2010-01-01

    Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over forty years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function. PMID:21093529

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Changshuo; Wang Jianmin, E-mail: wangjm@ihep.ac.c

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the H{alpha}, H{beta}, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can bemore » intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to {approx}1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of {approx}10{sup 8} yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as {approx}100 km s{sup -1} in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of H{alpha}, H{beta}, [O III], and [N II], and H{alpha} brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive rings independently evolving are able to reproduce the main dynamical and emission properties of the two galaxies, such as the Baldwin-Phillips-Terlevich diagram, the relation between line ratios, and H{alpha} brightness. The observed relation between turbulent velocity and the H{alpha} brightness can be explained by the present model. High viscosity excited by SNexp is able to efficiently transport the gas into a bulge to maintain high SFRs or to form a stellar ring close enough to the bulge so that it immigrates into the bulge of its host galaxy. This leads to a fast growing bulge. Implications and future work of the present models have been extensively discussed for galaxy formation in high-z universe.« less

  10. Spectral Evolution of Intensive Microwave Bursts at Centimeter-Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Melnikov, V. F.; Magun, A.

    The dynamics of the frequency spectrum of intensive broad band microwave bursts with one spectral maximum and simple time profiles are investigated. The aim of the study is to correlate the temporal evolution of the microwave burst spectrum above and below the spectral peak frequency f_p, as well as to compare these features with theoretical expectations. The analysis was carried out by using the data from the patrol instruments of IAP, Bern University and NIRFI, Nizhnii Novgorod (10 fixed frequencies in the range 1-50 GHz). It has been found for the majority of these bursts that: a) during the rise phase of the burst flux there is an anticorrelation of the absolute values of the spectral indices above and below peak frequency whereas a good correlation during the decay phase was found; b) time delays between flux profiles at neighbouring frequencies change sign under the transition from low to high frequencies. As a rule the lower frequency emission is delayed at frequencies below f_p whereas at high frequencies (f>f_p) the higher frequency emission is delayed (see also Melnikov and Magun, 1998). Qualitatively these results fit well the calculated spectral evolution of the gyrosynchrotron if one takes into account the flattening of the electron energy spectrum in a flare loop (Melnikov and Magun, 1996) due to Coulomb collisions (Vilmer et al., 1982), and uses values for the background plasma density derived from hard X-ray data (Aschwanden et al., 1997). For some of the bursts, however, quantitative discrepancies with the predictions of the homogeneous model have been found. For these bursts the absolute value of the spectral index at low frequencies is remarkably smaller, and the time delay remarkably higher than expected. We have investigated several possibilities to obtain an agremeent between theory and observations. Special attention is paid to model calculations taking into account the dynamics of energetic electrons in flare loops with an inhomogeneous magnetic field and plasma density. In this context the capabilities of the models for the diagnostics of the physical conditions in flare loops using observations with high spatial

  11. Evolution of magnetic field turbulence as observed by the Voyagers in the heliosheath and in the local interstellar medium.

    NASA Astrophysics Data System (ADS)

    Fraternale, F.; Iovieno, M.; Pogorelov, N.; Richardson, J. D.; Tordella, D.

    2017-12-01

    Voyager 1 (V1) left the heliosheath (HS) and entered the Local Interstellar Medium (LISM) in August 2012. At the same time, Voyager 2 (V2) was inside the HS and it is currently approaching the heliopause. The nature of the mainly compressive and "turbulent" fluctuations observed in the HS and in the LISM is still unclear. The presented study aims at describing the spatial and temporal evolution of turbulence in the HS and in the LISM. It shows a collection of power spectra of magnetic field fluctuations computed from consecutive periods since 2009. Unlike previous analysis, the highest resolution data (48 s) available are used to observe up to five frequency decades. Proper spectral recovery techniques applied in a previous work [Gallana et al, JGR 2016] are exploited to overcome the problem of missing data. Inside the HS, the achieved results are consistent with an anisotropic, mainly inertial, energy cascade in the frequency range [10-5,5·10-4] Hz, with spectral index ranging from -1.65 (V2) to -2 (V1) and energy spectral transfer around 10-19 erg/(cm3s). Anisotropy is significantly higher at V1 than at V2. In 2009 and 2010, tangential magnetic field fluctuations at V1 contain half of the fluctuating magnetic energy, which is not observed at V2. Large scales prior to the spectral break (f<10-5 Hz) are featured by a mild spectral decay with index between -0.95 and -1.5. Observations of small scales (5·10-4-2 Hz) are limited by the onboard magnetometer's accuracy, though some kinetic effects are still visible. LISM spectra in 2013.36 - 2014.65 are in agreement with previous observations [Burlaga, Florinski & Ness ApJ Lett, 2015]. A slightly flatter spectral trend than the Kolmogorov's is observed for the radial fluctuations at [10-7, 10-6] Hz. However, the tangential and normal components show nearly a f-1 decay. The evolution of turbulent spectra in the LISM is investigated.

  12. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  13. Long Term Temporal and Spectral Evolution of Point Sources in Nearby Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Durmus, D.; Guver, T.; Hudaverdi, M.; Sert, H.; Balman, Solen

    2016-06-01

    We present the results of an archival study of all the point sources detected in the lines of sight of the elliptical galaxies NGC 4472, NGC 4552, NGC 4649, M32, Maffei 1, NGC 3379, IC 1101, M87, NGC 4477, NGC 4621, and NGC 5128, with both the Chandra and XMM-Newton observatories. Specifically, we studied the temporal and spectral evolution of these point sources over the course of the observations of the galaxies, mostly covering the 2000 - 2015 period. In this poster we present the first results of this study, which allows us to further constrain the X-ray source population in nearby elliptical galaxies and also better understand the nature of individual point sources.

  14. Reevaluating Old Stellar Populations

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Eldridge, J. J.

    2018-05-01

    Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.

  15. Galaxy Evolution Spectroscopic Explorer (GESE): Science Rationale, Optical Design, and Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Purves, Lloyd

    2014-01-01

    One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 micrometers (0.1-0.2 micrometers as emitted by galaxies at a redshift, z approximately 1) at a spectral resolution of delta lambda=6 A.

  16. Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning

    PubMed Central

    2017-01-01

    This paper provides evidence on the usefulness of very high spatial resolution (VHR) imagery in gathering socioeconomic information in urban settlements. We use land cover, spectral, structure and texture features extracted from a Google Earth image of Liverpool (UK) to evaluate their potential to predict Living Environment Deprivation at a small statistical area level. We also contribute to the methodological literature on the estimation of socioeconomic indices with remote-sensing data by introducing elements from modern machine learning. In addition to classical approaches such as Ordinary Least Squares (OLS) regression and a spatial lag model, we explore the potential of the Gradient Boost Regressor and Random Forests to improve predictive performance and accuracy. In addition to novel predicting methods, we also introduce tools for model interpretation and evaluation such as feature importance and partial dependence plots, or cross-validation. Our results show that Random Forest proved to be the best model with an R2 of around 0.54, followed by Gradient Boost Regressor with 0.5. Both the spatial lag model and the OLS fall behind with significantly lower performances of 0.43 and 0.3, respectively. PMID:28464010

  17. Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning.

    PubMed

    Arribas-Bel, Daniel; Patino, Jorge E; Duque, Juan C

    2017-01-01

    This paper provides evidence on the usefulness of very high spatial resolution (VHR) imagery in gathering socioeconomic information in urban settlements. We use land cover, spectral, structure and texture features extracted from a Google Earth image of Liverpool (UK) to evaluate their potential to predict Living Environment Deprivation at a small statistical area level. We also contribute to the methodological literature on the estimation of socioeconomic indices with remote-sensing data by introducing elements from modern machine learning. In addition to classical approaches such as Ordinary Least Squares (OLS) regression and a spatial lag model, we explore the potential of the Gradient Boost Regressor and Random Forests to improve predictive performance and accuracy. In addition to novel predicting methods, we also introduce tools for model interpretation and evaluation such as feature importance and partial dependence plots, or cross-validation. Our results show that Random Forest proved to be the best model with an R2 of around 0.54, followed by Gradient Boost Regressor with 0.5. Both the spatial lag model and the OLS fall behind with significantly lower performances of 0.43 and 0.3, respectively.

  18. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  19. SPECTRAL EVOLUTION OF ANOMALOUS COSMIC RAYS AT VOYAGER 1 BEYOND THE TERMINATION SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senanayake, U. K.; Florinski, V.; Cummings, A. C.

    When the Voyager 1 spacecraft crossed the termination shock (TS) on 2004 December 16, the energy spectra of anomalous cosmic rays (ACRs) could not have been produced by steady-state diffusive shock acceleration. However, over the next few years, in the declining phase of the solar cycle, the spectra began to evolve into the expected power-law profile. Observations at the shock led to a broad range of alternative theories for ACR acceleration. In spite of that, in this work we show that the observations could be explained by assuming ACRs are accelerated at the TS. In this paper, we propose thatmore » the solar cycle had an important effect on the unrolling of the spectra in the heliosheath. To investigate the spectral evolution of ACRs, a magnetohydrodynamic background model with stationary solar-wind inner boundary conditions was used to model the transport of helium and oxygen ions. We used a backward-in-time stochastic integration technique where phase-space trajectories are integrated until the so-called “injection energy” is reached. Our simulation results were compared with Voyager 1 observations using three different diffusion models. It is shown that the spectral evolution of ACRs in the heliosheath at Voyager 1 could be explained by an increase in the source strength and an enhancement in diffusion as a result of a decrease of the turbulent correlation length in the declining phase of the solar cycle. At the same time, drift effects seem to have had a smaller effect on the evolution of the spectra.« less

  20. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.

    PubMed

    van Hazel, Ilke; Sabouhanian, Amir; Day, Lainy; Endler, John A; Chang, Belinda S W

    2013-11-13

    One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type ancestor. The re-evolution of UVS from a VS type pigment has not previously been predicted elsewhere in the vertebrate phylogeny.

  1. ERRATIC FLARING OF BL LAC IN 2012–2013: MULTIWAVELENGTH OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrle, Ann E.; Grupe, Dirk; Jorstad, Svetlana G.

    2016-01-10

    BL Lac, the eponymous blazar, flared to historically high levels at millimeter, infrared, X-ray, and gamma-ray wavelengths in 2012. We present observations made with Herschel, Swift, NuSTAR, Fermi, the Submillimeter Array, CARMA, and the VLBA in 2012–2013, including three months with nearly daily sampling at several wavebands. We have also conducted an intensive campaign of 30 hr with every-orbit observations by Swift and NuSTAR, accompanied by Herschel, and Fermi observations. The source was highly variable at all bands. Time lags, correlations between bands, and the changing shapes of the spectral energy distributions can be explained by synchrotron radiation and inversemore » Compton emission from nonthermal seed photons originating from within the jet. The passage of four new superluminal very long baseline interferometry knots through the core and two stationary knots about 4 pc downstream accompanied the high flaring in 2012–2013. The seed photons for inverse Compton scattering may arise from the stationary knots and from a Mach disk near the core where relatively slow-moving plasma generates intense nonthermal radiation. The 95 spectral energy distributions obtained on consecutive days form the most densely sampled, broad wavelength coverage for any blazar. The observed spectral energy distributions and multi-waveband light curves are similar to simulated spectral energy distributions and light curves generated with a model in which turbulent plasma crosses a conical shock with a Mach disk.« less

  2. The red/infrared evolution in galaxies - Effect of the stars on the asymptotic giant branch

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1987-01-01

    The effect of including the asymptotic giant branch (AGB) population in a spectral synthesis model of galaxy evolution is examined. Stars on the AGB are luminous enough and also evolve rapidly enough to affect the evolution of red and infrared colors in galaxies. The validity of using infrared colors as distance indicators to galaxies is then investigated in detail. It is found that for z of 1 or less infrared colors of model galaxies behave linearly with redshift.

  3. Thermal Evolution and Radiative Output of Solar Flares Observed by the EUV Variability Experiment (EVE)

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.; Milligan, R. O.; Woods, T. N.

    2012-01-01

    This paper describes the methods used to obtain the thermal evolution and radiative output during solar flares as observed by the Extreme u ltraviolet Variability Experiment (EVE) onboard the Solar Dynamics Ob servatory (SDO). Presented and discussed in detail are how EVE measur ements, due to its temporal cadence, spectral resolution and spectral range, can be used to determine how the thermal plasma radiates at v arious temperatures throughout the impulsive and gradual phase of fla res. EVE can very accurately determine the radiative output of flares due to pre- and in-flight calibrations. Events are presented that sh ow the total radiated output of flares depends more on the flare duration than the typical GOES X-ray peak magnitude classification. With S DO observing every flare throughout its entire duration and over a la rge temperature range, new insights into flare heating and cooling as well as the radiative energy release in EUV wavelengths support exis ting research into understanding the evolution of solar flares.

  4. 3D-MHD Simulations of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Forest, C. B.; Wright, J. C.; O'Connell, R.

    2003-10-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations are used to predict behavior of the experiment. The code solves the self-consistent full evolution of the magnetic and velocity fields. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James [Proc. R. Soc. Lond. A 425. 407-429 (1989)]. Initial results indicate that saturation of the magnetic field occurs so that the resulting perturbed backreaction of the induced magnetic field changes the velocity field such that it would no longer be linearly unstable, suggesting non-linear terms are necessary for explaining the resulting state. Saturation and self-excitation depend in detail upon the magnetic Prandtl number.

  5. Compressive Spectral Method for the Simulation of the Nonlinear Gravity Waves

    PubMed Central

    Bayındır, Cihan

    2016-01-01

    In this paper an approach for decreasing the computational effort required for the spectral simulations of the fully nonlinear ocean waves is introduced. The proposed approach utilizes the compressive sampling algorithm and depends on the idea of using a smaller number of spectral components compared to the classical spectral method. After performing the time integration with a smaller number of spectral components and using the compressive sampling technique, it is shown that the ocean wave field can be reconstructed with a significantly better efficiency compared to the classical spectral method. For the sparse ocean wave model in the frequency domain the fully nonlinear ocean waves with Jonswap spectrum is considered. By implementation of a high-order spectral method it is shown that the proposed methodology can simulate the linear and the fully nonlinear ocean waves with negligible difference in the accuracy and with a great efficiency by reducing the computation time significantly especially for large time evolutions. PMID:26911357

  6. On the Time Evolution of Gamma-Ray Burst Pulses: A Self-Consistent Description.

    PubMed

    Ryde; Svensson

    2000-01-20

    For the first time, the consequences of combining two well-established empirical relations that describe different aspects of the spectral evolution of observed gamma-ray burst (GRB) pulses are explored. These empirical relations are (1) the hardness-intensity correlation and (2) the hardness-photon fluence correlation. From these we find a self-consistent, quantitative, and compact description for the temporal evolution of pulse decay phases within a GRB light curve. In particular, we show that in the case in which the two empirical relations are both valid, the instantaneous photon flux (intensity) must behave as 1&solm0;&parl0;1+t&solm0;tau&parr0;, where tau is a time constant that can be expressed in terms of the parameters of the two empirical relations. The time evolution is fully defined by two initial constants and two parameters. We study a complete sample of 83 bright GRB pulses observed by the Compton Gamma-Ray Observatory and identify a major subgroup of GRB pulses ( approximately 45%) which satisfy the spectral-temporal behavior described above. In particular, the decay phase follows a reciprocal law in time. It is unclear what physics causes such a decay phase.

  7. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    NASA Technical Reports Server (NTRS)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  8. Low order climate models as a tool for cross-disciplinary collaboration

    NASA Astrophysics Data System (ADS)

    Newton, R.; Pfirman, S. L.; Tremblay, B.; Schlosser, P.

    2014-12-01

    Human impacts on climate are pervasive and significant and project future states cannot be projected without taking human influence into account. We recently helped convene a meeting of climatologists, policy analysts, lawyers and social scientists to discuss the dramatic loss in Arctic summer sea ice. A dialogue emerged around distinct time scales in the integrated human/natural climate system. Climate scientists tended to discuss engineering solutions as though they could be implemented immediately, whereas lags of 2 or more decades were estimated by social scientists for societal shifts and similar lags were cited for deployment by the engineers. Social scientists tended to project new climate states virtually overnight, while climatologists described time scales of decades to centuries for the system to respond to changes in forcing functions. For the conversation to develop, the group had to come to grips with an increasingly complex set of transient effect time scales and lags between decisions, changes in forcing, and system outputs. We use several low-order dynamical system models to explore mismatched timescales, ranges of lags, and uncertainty in cost estimates on climate outcomes, focusing on Arctic-specific issues. In addition to lessons regarding what is/isn't feasible from a policy and engineering perspective, these models provide a useful tool to concretize cross-disciplinary thinking. They are fast and easy to iterate through a large region of the problem space, while including surprising complexity in their evolution. Thus they are appropriate for investigating the implications of policy in an efficient, but not unrealistic physical setting. (Earth System Models, by contrast, can be too resource- and time-intensive for iteratively testing "what if" scenarios in cross-disciplinary collaborations.) Our runs indicate, for example, that the combined social, engineering and climate physics lags make it extremely unlikely that an ice-free summer ecology in the Arctic can be avoided. Further, if prospective remediation strategies are successful, a return to perennial ice conditions between one and two centuries from now is entirely likely, with interesting and large impacts on Northern economies.

  9. Multivariate dynamic Tobit models with lagged observed dependent variables: An effectiveness analysis of highway safety laws.

    PubMed

    Dong, Chunjiao; Xie, Kun; Zeng, Jin; Li, Xia

    2018-04-01

    Highway safety laws aim to influence driver behaviors so as to reduce the frequency and severity of crashes, and their outcomes. For one specific highway safety law, it would have different effects on the crashes across severities. Understanding such effects can help policy makers upgrade current laws and hence improve traffic safety. To investigate the effects of highway safety laws on crashes across severities, multivariate models are needed to account for the interdependency issues in crash counts across severities. Based on the characteristics of the dependent variables, multivariate dynamic Tobit (MVDT) models are proposed to analyze crash counts that are aggregated at the state level. Lagged observed dependent variables are incorporated into the MVDT models to account for potential temporal correlation issues in crash data. The state highway safety law related factors are used as the explanatory variables and socio-demographic and traffic factors are used as the control variables. Three models, a MVDT model with lagged observed dependent variables, a MVDT model with unobserved random variables, and a multivariate static Tobit (MVST) model are developed and compared. The results show that among the investigated models, the MVDT models with lagged observed dependent variables have the best goodness-of-fit. The findings indicate that, compared to the MVST, the MVDT models have better explanatory power and prediction accuracy. The MVDT model with lagged observed variables can better handle the stochasticity and dependency in the temporal evolution of the crash counts and the estimated values from the model are closer to the observed values. The results show that more lives could be saved if law enforcement agencies can make a sustained effort to educate the public about the importance of motorcyclists wearing helmets. Motor vehicle crash-related deaths, injuries, and property damages could be reduced if states enact laws for stricter text messaging rules, higher speeding fines, older licensing age, and stronger graduated licensing provisions. Injury and PDO crashes would be significantly reduced with stricter laws prohibiting the use of hand-held communication devices and higher fines for drunk driving. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Direct numerical simulations of a reacting turbulent mixing layer by a pseudospectral-spectral element method

    NASA Technical Reports Server (NTRS)

    Mcmurtry, Patrick A.; Givi, Peyman

    1992-01-01

    An account is given of the implementation of the spectral-element technique for simulating a chemically reacting, spatially developing turbulent mixing layer. Attention is given to experimental and numerical studies that have investigated the development, evolution, and mixing characteristics of shear flows. A mathematical formulation is presented of the physical configuration of the spatially developing reacting mixing layer, in conjunction with a detailed representation of the spectral-element method's application to the numerical simulation of mixing layers. Results from 2D and 3D calculations of chemically reacting mixing layers are given.

  11. Wave Evolution in River Mouths and Tidal Inlets

    DTIC Science & Technology

    2014-06-01

    Monterey Bay by a Datawell Buoy (blue) and three collocated WRD buoys (red). Also shown is the f −4 spectral roll off (black dashed). .............. 48...f −4 spectral roll off (black dashed) and the blocking frequency in regions B-E. .................................................... 53   Figure...Significant Wave Height Hz hertz IMU Inertial measurement unit JONSWAP Joint North Sea Wave Program km kilometer MCR Mouth of the Columbia River MEMS

  12. The Measurement of the Solar Spectral Irradiance Variability at 782 nm during the Solar Cycle 24 using the SES on-board PICARD

    NASA Astrophysics Data System (ADS)

    Meftah, Mustapha; Hauchecorne, Alain; Irbah, Abdanour; Bekki, Slimane

    2016-04-01

    A Sun Ecartometry Sensor (SES) was developed to provide the stringent pointing requirements of the PICARD satellite. The SES sensor produced an image of the Sun at 782+/-5 nm. From the SES data, we obtained a new time series of the solar spectral irradiance at 782nm from 2010 to 2014. SES observations provided a qualitatively consistent evolution of the solar spectral irradiance variability at 782 nm during the solar cycle 24. Comparisons will be made with Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) semi-empirical model and with the Spectral Irradiance Monitor instrument (SIM) on-board the Solar Radiation and Climate Experiment satellite (SORCE). These data will help to improve the representation of the solar forcing in the IPSL Global Circulation Model.

  13. Epistatic interactions influence terrestrial–marine functional shifts in cetacean rhodopsin

    PubMed Central

    2017-01-01

    Like many aquatic vertebrates, whales have blue-shifting spectral tuning substitutions in the dim-light visual pigment, rhodopsin, that are thought to increase photosensitivity in underwater environments. We have discovered that known spectral tuning substitutions also have surprising epistatic effects on another function of rhodopsin, the kinetic rates associated with light-activated intermediates. By using absorbance spectroscopy and fluorescence-based retinal release assays on heterologously expressed rhodopsin, we assessed both spectral and kinetic differences between cetaceans (killer whale) and terrestrial outgroups (hippo, bovine). Mutation experiments revealed that killer whale rhodopsin is unusually resilient to pleiotropic effects on retinal release from key blue-shifting substitutions (D83N and A292S), largely due to a surprisingly specific epistatic interaction between D83N and the background residue, S299. Ancestral sequence reconstruction indicated that S299 is an ancestral residue that predates the evolution of blue-shifting substitutions at the origins of Cetacea. Based on these results, we hypothesize that intramolecular epistasis helped to conserve rhodopsin's kinetic properties while enabling blue-shifting spectral tuning substitutions as cetaceans adapted to aquatic environments. Trade-offs between different aspects of molecular function are rarely considered in protein evolution, but in cetacean and other vertebrate rhodopsins, may underlie multiple evolutionary scenarios for the selection of specific amino acid substitutions. PMID:28250185

  14. Temporal Evolution of Ion Spectral Structures During a Geomagnetic Storm: Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2018-01-01

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1 to 50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. As the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. We use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.

  15. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  16. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  17. Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferradas Alva, Cristian Pablo; Zhang, J.-C.; Spence, H. E.

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less

  18. Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling

    DOE PAGES

    Ferradas Alva, Cristian Pablo; Zhang, J.-C.; Spence, H. E.; ...

    2017-12-13

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less

  19. Sublimation of Ices Containing Organics and/or Minerals and Implications for Icy Bodies Surface Structure and Spectral Properties

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Yoldi, Z.; Carrasco, N.; Szopa, C.; Thomas, N.

    2015-12-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice either in pure form or mixed with minerals and/or organic molecules. Sublimation is a process responsible for shaping and changing the reflectance properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surfaces made of mixtures of water ice and non-volatile components (complex organic matter and silicates), as they undergo sublimation of the water ice under low temperature and pressure conditions (Poch et al., under review). We prepared icy surfaces which are potential analogues of ices found on comets, icy satellites or trans-neptunian objects (TNOs). The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol et al., 2015a). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit, or sublimation mantle, made of the non-volatiles at the top of the samples. The texture (porosity, internal cohesiveness etc.), the activity (outbursts and ejection of mantle fragments) and the spectro-photometric properties of this mantle are found to differ strongly depending on the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the volatile component and the dust/ice mass ratio. The results also indicate how the band depths of the sub-surface water ice evolve during the build-up of the sublimation mantle. These data provide useful references for interpreting remote-sensing observations of Rosetta (see Pommerol et al., 2015b), and also New Horizons. Poch, O., et al., under review in IcarusPommerol, A., et al., 2015a, Planet. Space Sci. 109-110, 106-122. http://dx.doi.org/10.1016/j.pss.2015.02.004Pommerol, A., et al., 2015b, Astronomy and Astrophysics, in press. http://dx.doi.org/10.1051/0004-6361/201525977

  20. Pulse Shape Evolution, HER X-1

    NASA Technical Reports Server (NTRS)

    VanParadijs, Johannes A.

    1998-01-01

    This study focuses on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium." More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published in The Astrophysical Journal, vol. 510, 974. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in Her X-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model in the PhD Thesis of Scott 1993, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  1. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    NASA Astrophysics Data System (ADS)

    Speetjens, M. F. M.; Meleshko, V. V.; van Heijst, G. J. F.

    2014-06-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N\\leqslant 7. Confinement in a circular domain tightens the stability conditions to N\\leqslant 6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. Dedicated to the memory of Slava Meleshko, a dear friend and inspiring colleague.

  2. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  3. Evolutionary dynamics of Rh2 opsins in birds demonstrate an episode of accelerated evolution in the New World warblers (Setophaga)

    PubMed Central

    Price, Trevor D.

    2015-01-01

    Low rates of sequence evolution associated with purifying selection can be interrupted by episodic changes in selective regimes. Visual pigments are a unique system in which we can investigate the functional consequences of genetic changes, therefore connecting genotype to phenotype in the context of natural and sexual selection pressures. We study the RH2 and RH1 visual pigments (opsins) across 22 bird species belonging to two ecologically convergent clades, the New World warblers (Parulidae) and Old World warblers (Phylloscopidae), and evaluate rates of evolution in these clades along with data from 21 additional species. We demonstrate generally slow evolution of these opsins: both Rh1 and Rh2 are highly conserved across Old World and New World warblers. However, Rh2 underwent a burst of evolution within the New World genus Setophaga, where it accumulated substitutions at 6 amino acid sites across the species we studied. Evolutionary analyses revealed a significant increase in dN/dS in Setophaga, implying relatively strong selective pressures to overcome long-standing purifying selection. We studied the effects of each substitution on spectral tuning and found they do not cause large spectral shifts. Thus substitutions may reflect other aspects of opsin function, such as those affecting photosensitivity and/or dark-light adaptation. Although it is unclear what these alterations mean for color perception, we suggest that rapid evolution is linked to sexual selection, given the exceptional plumage colour diversification in Setophaga. PMID:25827331

  4. Automated spectral classification and the GAIA project

    NASA Technical Reports Server (NTRS)

    Lasala, Jerry; Kurtz, Michael J.

    1995-01-01

    Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.

  5. A STATE-DEPENDENT INFLUENCE OF TYPE I BURSTS ON THE ACCRETION IN 4U 1608-52?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Long; Zhang, Shu; Chen, YuPeng

    2014-08-20

    We investigated the possible feedback of type I bursts on the accretion process during the spectral evolution of the atoll source 4U 1608-52. By fitting the burst spectrum with a blackbody and an adjustable, persistent spectral component, we found that the latter is significantly state-dependent. In the banana state, the persistent flux increases along the burst evolution, while in the island state this trend holds only when the bursts are less luminous and start to reverse at higher burst luminosities. We speculate that, by taking into account both the Poynting-Robertson drag and radiation pressure, these phenomena may arise from the interactionsmore » between the radiation field of the type I burst and the inner region of the accretion disk.« less

  6. Supernova neutrino three-flavor evolution with dominant collective effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene

    2009-04-15

    Neutrino and antineutrino fluxes from a core-collapse galactic supernova are studied, within a representative three-flavor scenario with inverted mass hierarchy and tiny 1-3 mixing. The initial flavor evolution is dominated by collective self-interaction effects, which are computed in a full three-family framework along an averaged radial trajectory. During the whole time span considered (t = 1-20 s), neutrino and antineutrino spectral splits emerge as dominant features in the energy domain for the final, observable fluxes. The main results can be useful for SN event rate simulations in specific detectors. Some minor or unobservable three-family features (e.g., related to the muonic-tauonicmore » flavor sector), as well as observable effects due to variations in the spectral input, are also discussed for completeness.« less

  7. An Extraordinary Outburst of the Magnetar Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manoneeta; Göğüş, Ersin

    2015-08-01

    The 2011 outburst of Swift J1822.3-1606 was extraordinary; periodic modulations at the spin period of the underlying neutron star were clearly visible, remarkably similar to what is observed during the decaying tail of magnetar giant flares. We investigated the temporal characteristics of X-ray emission during the early phases of the outburst. We performed a periodicity search with the spectral hardness ratio (HR) and found a coherent signal near the spin period of the neutron star, but with a lag of about 3 radians. Therefore, the HR is strongly anti-correlated with the X-ray intensity, which is also seen in the giant flares. We studied the time evolution of the pulse profile and found that it evolves from a complex morphology to a much simpler shape within about a month. Pulse profile simplification also takes place during the giant flares, but on a much shorter timescale of about a few minutes. We found that the amount of energy emitted during the first 25 days of the outburst is comparable to what was detected in minutes during the decaying tail of giant flares. Based on these similarities, we suggest that the triggering mechanisms of the giant flares and the magnetar outbursts are likely the same. We propose that the trapped fireball that develops in the magnetosphere at the onset of the outburst radiates away efficiently in minutes in magnetars exhibiting giant flares, while in other magnetars, such as Swift J1822.3-1606, the efficiency of radiation of the fireball is not as high and, therefore, lasts much longer.

  8. Response of Moist Convection to Multi-scale Surface Flux Heterogeneity

    NASA Astrophysics Data System (ADS)

    Kang, S. L.; Ryu, J. H.

    2015-12-01

    We investigate response of moist convection to multi-scale feature of the spatial variation of surface sensible heat fluxes (SHF) in the afternoon evolution of the convective boundary layer (CBL), utilizing a mesoscale-domain large eddy simulation (LES) model. The multi-scale surface heterogeneity feature is analytically created as a function of the spectral slope in the wavelength range from a few tens of km to a few hundreds of m in the spectrum of surface SHF on a log-log scale. The response of moist convection to the κ-3 - slope (where κ is wavenumber) surface SHF field is compared with that to the κ-2 - slope surface, which has a relatively weak mesoscale feature, and the homogeneous κ0 - slope surface. Given the surface energy balance with a spatially uniform available energy, the prescribed SHF has a 180° phase lag with the latent heat flux (LHF) in a horizontal domain of (several tens of km)2. Thus, warmer (cooler) surface is relatively dry (moist). For all the cases, the same observation-based sounding is prescribed for the initial condition. For all the κ-3 - slope surface heterogeneity cases, early non-precipitating shallow clouds further develop into precipitating deep thunderstorms. But for all the κ-2 - slope cases, only shallow clouds develop. We compare the vertical profiles of domain-averaged fluxes and variances, and the contribution of the mesoscale and turbulence contributions to the fluxes and variances, between the κ-3 versus κ-2 slope cases. Also the cross-scale processes are investigated.

  9. Properties of the Second Outburst of the Bursting Pulsar (GRO J1744-28) as Observed with BATSE

    NASA Technical Reports Server (NTRS)

    Woods, P.; Kouveliotou, C.; vanParadijs, J.; Briggs, M. S.; Wilson, C. A.; Deal, K. J.; Harmon, B. A.; Fishman, G. J.; Lewin, W. H.; Kommers, J.

    1998-01-01

    One year after its discovery, the Bursting Pulsar (GRO J1744-28) went into outburst again, displaying the hard X-ray bursts and pulsations that make this source unique. We report on Burst and Transient Source Experiment (BATSE) observations of both the persistent and burst emission for this second outburst and draw comparisons to the first. The second outburst was smaller than the first in both duration and peak luminosity. The persistent flux, burst peak flux and burst fluence were all reduced in amplitude by a factor approximately 1.7. Despite these differences, the average burst occurrence rate and average burst durations were roughly the same through each outburst. Similar to the first outburst, no spectral evolution was found within bursts and the parameter alpha was very small at the start of the outburst (alpha = 2.1 +/- 1.7 on 1996 December 2). Although no spectral evolution was found within individual bursts, we find evidence for a small (20%) variation of the spectral temperature during the course of the second outburst.

  10. Dissipation in the deep interiors of Ganymede and Europa

    NASA Astrophysics Data System (ADS)

    Hussmann, Hauke; Shoji, Daigo; Steinbruegge, Gregor; Stark, Alexander; Sohl, Frank

    2017-04-01

    Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Tidal flexing in the deep interiors can be a significant heat source for the satellites' thermal-orbital evolution. Whereas typical structure models of Europa consist of a core, a silicate mantle, an ocean and an outer ice-I shell [1], pressures inside Ganymede are sufficient for high-pressure ice phases to occur between the silicate mantle and the ocean [2]. With current data it is unknown whether the deep interiors (i.e., Europa's silicate shell and Ganymede's silicate mantle and/or high-pressure ice layer) are dissipative. Other possibilities would be that the dissipation rates are in general very low (unlikely at least for Europa due to recent observations) or that dissipative processes are mainly occurring in the ice-I shell and/or ocean. Thus, for evaluations of the heating state of these satellites, it is important to measure the magnitude of the interior dissipation. However, observation of the interior layers such as high-pressure ice layers is more challenging than that of the surface ice-I layer. Here we suggest a method to constrain the dissipation states of the deep interiors of Ganymede and Europa by altimetry and gravity measurements from an orbiting or multi-flyby spacecraft. Tidal variations are generally described by the Love numbers k2 and h2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags of these complex numbers contain information about the rheological and dissipative states of the satellites. For the satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference between the lags of k2 and h2 can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small (the phase-lag difference is almost independent of the dissipation in the surface layer). In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities of 1e13-1e14 Pa s (around the lower boundary at its melting temperature) and would indicate a highly dissipative state of the deep interior. In this case, in contrast to the phase lags itself, the phase-lag difference is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite [3]. For Europa the phase-lag difference could reach values exceeding 20 deg if the silicate mantle contains melt and phase-lag measurements could help distinguish between (1) a hot dissipative (melt-containing) silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA's Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system. References: [1] Schubert, G., F. Sohl and H. Hussmann 2009. Interior of Europa. In: Europa, (R.T. Pappalardo, W.B. McKinnon, K. Khurana, Eds.), University of Arizona Press, pp. 353 - 368. [2] Schubert G., J. D. Anderson, T. Spohn, and W. B. McKinnon 2004. Interior composition, structure, and dynamics of the Galilean satellites. In: F. Bagenal, T. E. Dowling, and W. B. McKinnon (eds.) Jupiter. The Planet, Satellites, and Magnetosphere, pp. 281-306. Cambridge University Press. [3] Hussmann, H., D. Shoji, G. Steinbrügge, A. Stark, F. Sohl 2016. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags. Cel. Mech. Dyn. Astr. 126, 131 - 144.

  11. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in Warblers

    PubMed Central

    Bloch, Natasha I.; Morrow, James M.; Chang, Belinda S.W.; Price, Trevor D.

    2014-01-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors – historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20Ma. During this process the SWS2 gene accumulated 6 substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. PMID:25496318

  12. The Influence of Indian Ocean Atmospheric Circulation on Warm Pool Hydroclimate During the Holocene Epoch

    NASA Technical Reports Server (NTRS)

    Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-01-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  13. ON THE LATE-TIME SPECTRAL SOFTENING FOUND IN X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan-Zhu; Liang, En-Wei; Lu, Zu-Jia

    2016-02-20

    Strong spectral softening has been revealed in the late X-ray afterglows of some gamma-ray bursts (GRBs). The scenario of X-ray scattering around the circumburst dusty medium has been supported by previous works due to its overall successful prediction of both the temporal and spectral evolution of some X-ray afterglows. To further investigate the observed feature of spectral softening we now systematically search the X-ray afterglows detected by the X-ray telescope aboard Swift and collect 12 GRBs with significant late-time spectral softening. We find that dust scattering could be the dominant radiative mechanism for these X-ray afterglows regarding their temporal andmore » spectral features. For some well-observed bursts with high-quality data, the time-resolved spectra could be well-produced within the scattering scenario by taking into account the X-ray absorption from the circumburst medium. We also find that during spectral softening the power-law index in the high-energy end of the spectra does not vary much. The spectral softening is mainly manifested by the spectral peak energy continually moving to the soft end.« less

  14. Dynamic linear models using the Kalman filter for early detection and early warning of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Liu, Y.; DeVos, M.; Wimberly, M. C.

    2015-12-01

    Malaria early detection and early warning systems are important tools for public health decision makers in regions where malaria transmission is seasonal and varies from year to year with fluctuations in rainfall and temperature. Here we present a new data-driven dynamic linear model based on the Kalman filter with time-varying coefficients that are used to identify malaria outbreaks as they occur (early detection) and predict the location and timing of future outbreaks (early warning). We fit linear models of malaria incidence with trend and Fourier form seasonal components using three years of weekly malaria case data from 30 districts in the Amhara Region of Ethiopia. We identified past outbreaks by comparing the modeled prediction envelopes with observed case data. Preliminary results demonstrated the potential for improved accuracy and timeliness over commonly-used methods in which thresholds are based on simpler summary statistics of historical data. Other benefits of the dynamic linear modeling approach include robustness to missing data and the ability to fit models with relatively few years of training data. To predict future outbreaks, we started with the early detection model for each district and added a regression component based on satellite-derived environmental predictor variables including precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and land surface temperature (LST) and spectral indices from the Moderate Resolution Imaging Spectroradiometer (MODIS). We included lagged environmental predictors in the regression component of the model, with lags chosen based on cross-correlation of the one-step-ahead forecast errors from the first model. Our results suggest that predictions of future malaria outbreaks can be improved by incorporating lagged environmental predictors.

  15. Low Luminosity States of the Black Hole Candidate GX 339-4. 2; Timing Analysis

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Dove, James B.

    1999-01-01

    Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer (RXTE) observations of the black hole candidate GX 339-4 that were taken during its hard/low state. On long time scales, the RXTE All Sky Monitor data reveal evidence of a 240 day periodicity, comparable to timescales expected from warped, precessing accretion disks. On short timescales all observations save one show evidence of a persistent f(qpo approximately equals 0.3 Hz quasi-periodic oscillations (QPO)). The broad band (10 (exp -3) to 10 (exp2) Hz) power appears to be dominated by two independent processes that can be modeled as very broad Lorentzians with Q approximately less than - 1. The coherence function between soft and hard photon variability shows that if these are truly independent processes, then they are individually coherent, but they are incoherent with one another. This is evidenced by the fact that the coherence function between the hard and soft variability is near unity between 5 x 10 (exp -3) but shows evidence of a dip at f approximately equals 1 Hz. This is the region of overlap between the broad Lorentzian fits to the Power Spectral Density (PSD). Similar to Cyg X-1, the coherence also drops dramatically at frequencies approximately greater than 1O Hz. Also similar to Cyg X-1, the hard photon variability is seen to lag the soft photon variability with the lag time increasing with decreasing Fourier frequency. The magnitude of this time lag appears to be positively correlated with the flux of GX 339-4. We discuss all of these observations in light of current theoretical models of both black hole spectra and temporal variability.

  16. High-resolution correlation

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.

    2007-09-01

    In the basic correlation process a sequence of time-lag-indexed correlation coefficients are computed as the inner or dot product of segments of two signals. The time-lag(s) for which the magnitude of the correlation coefficient sequence is maximized is the estimated relative time delay of the two signals. For discrete sampled signals, the delay estimated in this manner is quantized with the same relative accuracy as the clock used in sampling the signals. In addition, the correlation coefficients are real if the input signals are real. There have been many methods proposed to estimate signal delay to more accuracy than the sample interval of the digitizer clock, with some success. These methods include interpolation of the correlation coefficients, estimation of the signal delay from the group delay function, and beam forming techniques, such as the MUSIC algorithm. For spectral estimation, techniques based on phase differentiation have been popular, but these techniques have apparently not been applied to the correlation problem . We propose a phase based delay estimation method (PBDEM) based on the phase of the correlation function that provides a significant improvement of the accuracy of time delay estimation. In the process, the standard correlation function is first calculated. A time lag error function is then calculated from the correlation phase and is used to interpolate the correlation function. The signal delay is shown to be accurately estimated as the zero crossing of the correlation phase near the index of the peak correlation magnitude. This process is nearly as fast as the conventional correlation function on which it is based. For real valued signals, a simple modification is provided, which results in the same correlation accuracy as is obtained for complex valued signals.

  17. Radial variations of large-scale magnetohydrodynamic fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.

    1983-01-01

    Two time periods are studied for which comprehensive data coverage is available at both 1 AU using IMP-8 and ISEE-3 and beyond using Voyager 1. One of these periods is characterized by the predominance of corotating stream interactions. Relatively small scale transient flows characterize the second period. The evolution of these flows with heliocentric distance is studied using power spectral techniques. The evolution of the transient dominated period is consistent with the hypothesis of turbulent evolution including an inverse cascade of large scales. The evolution of the corotating period is consistent with the entrainment of slow streams by faster streams in a deterministic model.

  18. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  19. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  20. Kinetics of monomer biodegradation in soil.

    PubMed

    Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria

    2012-01-01

    In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Spectral reconstruction analysis for enhancing signal-to-noise in time-resolved spectroscopies

    NASA Astrophysics Data System (ADS)

    Wilhelm, Michael J.; Smith, Jonathan M.; Dai, Hai-Lung

    2015-09-01

    We demonstrate a new spectral analysis for the enhancement of the signal-to-noise ratio (SNR) in time-resolved spectroscopies. Unlike the simple linear average which produces a single representative spectrum with enhanced SNR, this Spectral Reconstruction analysis (SRa) improves the SNR (by a factor of ca. 0 . 6 √{ n } ) for all n experimentally recorded time-resolved spectra. SRa operates by eliminating noise in the temporal domain, thereby attenuating noise in the spectral domain, as follows: Temporal profiles at each measured frequency are fit to a generic mathematical function that best represents the temporal evolution; spectra at each time are then reconstructed with data points from the fitted profiles. The SRa method is validated with simulated control spectral data sets. Finally, we apply SRa to two distinct experimentally measured sets of time-resolved IR emission spectra: (1) UV photolysis of carbonyl cyanide and (2) UV photolysis of vinyl cyanide.

  2. The Planetary Terrestrial Analogues Library (PTAL)

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team

    2018-04-01

    The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.

  3. Spectral Indices of Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su

    2015-01-01

    The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.

  4. THE OPTICAL MICROVARIABILITY AND SPECTRAL CHANGES OF THE BL LACERTAE OBJECT S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, H.; Fu, J. N.; Fan, J. H.

    We monitored the BL Lac object S5 0716+714 in the optical band during 2008 October and December and 2009 February with a best temporal resolution of about 5 minutes in the BVRI bands. Four fast flares were observed with amplitudes ranging from 0.3 to 0.75 mag. The source remained active during the whole monitoring campaign, showing microvariability in all days except for one. The overall variability amplitudes are {delta}B {approx} 0fm89, {delta}V {approx} 0fm80, {delta}R {approx} 0fm73, and {delta}I{approx} 0fm51. Typical timescales of microvariability range from 2 to 8 hr. The overall V - R color index ranges from 0.37more » to 0.59. Strong bluer-when-brighter chromatism was found on internight timescales. However, a different spectral behavior was found on intranight timescales. A possible time lag of {approx}11 minutes between B and I bands was found on one night. The shock-in-jet model and geometric effects can be applied to explain the source's intranight behavior.« less

  5. Observational Signatures of Black Holes: Spectral and Temporal Features of XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shrader, C. R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The theoretical predictions of the converging inflow, or Bulk-Motion Comptonization model are discussed and some predictions are compared to X- and gamma-ray observations of the high-soft state of Galactic black hole candidate XTE J1550+564. The approx. 10(exp 2)-Hz QPO phenomenon tends to be detected in the high-state at times when the bolometric luminosity surges and the hard-powerlaw spectral component is dominant. Furthermore, the power in these features increases with energy. We offer interpretation of this phenomenon, as oscillations of the innermost part of the accretion disk, which in turn supplies the seed photons for the converging inflow where the hard power-law is formed through Bulk Motion Comptonization (BMC). We further argue that the noted lack of coherence between intensity variations of the high-soft-state low and high energy bands is a natural consequence of our model, and that a natural explanation for the observed hard and soft lag phenomenon is offered. In addition, we address some criticisms of the BMC model supporting our claims with observational results.

  6. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  7. The stability of H/V spectral ratios from noise measurements in Armutlu Peninsula (Turkey)

    NASA Astrophysics Data System (ADS)

    Livaoǧlu, Hamdullah; Irmak, T. Serkan; Caka, Deniz; Yavuz, Evrim; Lühr, B. G.; Woith, H.; Tunç, B.; Baris, S.

    2016-04-01

    The horizontal to vertical spectral ratio (H/V) method has been successfully using in order to estimate the fundamental resonance frequency of the sedimentary cover, its thickness and amplification factor since at least 3 decades. There are numerous studies have been carried out on the stability of the H/V spectral ratios. Almost all studies showed that fundamental frequency is stable even measurements are repeated at different times. From this point of view, the results will show us an approach whether the stations are suitable for accurate estimate of earthquake studies and engineering purposes or not. Also we want to see if any effects of the amplification factor changing on the seismograms for Armutlu Seismic Network (ARNET) even though seismic stations are established far away from cultural noise and located on hard rock sites. It has been selected one hour recorded data of all stations during the most stationary times. The amplification and resonant frequency variations of H/V ratio were calculated to investigate temporal stability in time. There is a total harmony in fundamental frequencies values and H/V spectral ratio values in time-lagged periods. Some stations shows secondary minor peaks in high frequency band due to a shallow formation effect or cultural noises around. In the east side of the area ILYS station shows amplitude peak in lower fundamental frequency band from expected. This could compose a high amplification in lower frequencies and so that yield less reliable results in local earthquakes studies. By the experimental results from ambient noise analysis, it could be worked up for relocation of one station.

  8. The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2015-04-17

    We perform an extensive characterization of the broadband emission of Mrk 421, as well as its temporal evolution, during the non-flaring (low) state. The high brightness and nearby location (z = 0.031) of Mrk 421 make it an excellent laboratory to study blazar emission. The goal is to learn about the physical processes responsible for the typical emission of Mrk 421, which might also be extended to other blazars that are located farther away and hence are more difficult to study. We performed a 4.5-month multi-instrument campaign on Mrk 421 between January 2009 and June 2009, which included VLBA, F-GAMMA,more » GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. This extensive radio to very-high-energy (VHE; E> 100 GeV) γ-ray dataset provides excellent temporal and energy coverage, which allows detailed studies of the evolution of the broadband spectral energy distribution. As a result, Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. In conclusion, the harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk 421 during non-flaring activity. Such a temporally extended X-ray/VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. Furthermore, the highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.« less

  9. Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23

    NASA Astrophysics Data System (ADS)

    Sierra-Porta, D.

    2018-07-01

    In the present paper a systematic study is carried out to validate the similarity or co-variability between daily terrestrial cosmic-ray intensity and three parameters of the solar corona evolution, i.e., the number of sunspots and flare index observed in the solar corona and the Ap index for regular magnetic field variations caused by regular solar radiation changes. The study is made for a period including three solar cycles starting with cycle 21 (year 1976) and ending on cycle 23 (year 2008). A cross-correlation analysis was used to establish patterns and dependence of the variables. This study focused on the time lag calculation for these variables and found a maximum of negative correlation over CC1≈ 0.85, CC2≈ 0.75 and CC3≈ 0.63 with an estimation of 181, 156 and 2 days of deviation between maximum/minimum of peaks for the intensity of cosmic rays related with sunspot number, flare index and Ap index regression, respectively.

  10. H II regions as probes of galaxy evolution and the properties of massive stars

    NASA Technical Reports Server (NTRS)

    Garnett, Donald R.

    1993-01-01

    The use of H II regions as probes to study the chemical evolution of galaxies and the spectral properties of hot, massive stars is reviewed. The observable parameters for this task are the physical conditions, elemental abundances, and ionization balance in the ionized gas. Some outstanding uncertainties in the determination of these parameters and some approaches to remedy or circumvent the problems are discussed.

  11. Virulence and pathogen multiplication: a serial passage experiment in the hypervirulent bacterial insect-pathogen Xenorhabdus nematophila.

    PubMed

    Chapuis, Élodie; Pagès, Sylvie; Emelianoff, Vanya; Givaudan, Alain; Ferdy, Jean-Baptiste

    2011-01-31

    The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict.

  12. Tidal constraints on the interior of Venus

    NASA Astrophysics Data System (ADS)

    Dumoulin, Caroline; Tobie, Gabriel; Verhoeven, Olivier; Rosenblatt, Pascal; Rambaux, Nicolas

    2017-04-01

    As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers and tidal lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. The potential Love number, k2, varies from 0.25 to 0.36. Viscoelasticity of the mantle strongly increases the Love number relative to previous elastic models : depending on mantle viscosity, k2 is increased by up to 25% using a liquid core. Moreover, once a viscoelastic rheology is assumed for the core, our calculations show that the estimation of k2 from tracking of Magellan and Pioneer Venus Orbiter does not rule out the possibility of a completely solid core. Except if the solid core has a high viscosity (≥ 1018 Pa.s), solutions with both liquid and solid cores are consistent with the present-day estimation of k2. More accurate estimation of the Love number together with estimation of tidal lag by future exploration mission are required to determine the state of Venus' core and to constrain the thermo-compositional evolution of the mantle.

  13. Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment.

    PubMed

    Lande, R

    2014-05-01

    Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade-off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  14. Insight as a social identity process in the evolution of psychosocial functioning in the early phase of psychosis.

    PubMed

    Klaas, H S; Clémence, A; Marion-Veyron, R; Antonietti, J-P; Alameda, L; Golay, P; Conus, P

    2017-03-01

    Awareness of illness (insight) has been found to have contradictory effects for different functional outcomes after the early course of psychosis. Whereas it is related to psychotic symptom reduction and medication adherence, it is also associated with increased depressive symptoms. In this line, the specific effects of insight on the evolution of functioning over time have not been identified, and social indicators, such as socio-occupational functioning have barely been considered. Drawing from social identity theory we investigated the impact of insight on the development of psychosocial outcomes and the interactions of these variables over time. The participants, 240 patients in early phase of psychosis from the Treatment and Early Intervention in Psychosis Program (TIPP) of the University Hospital of Lausanne, Switzerland, were assessed at eight time points over 3 years. Cross-lagged panel analyses and multilevel analyses were conducted on socio-occupational and general functioning [Social and Occupational Functioning Assessment Scale (SOFAS) and Global Assessment of Functioning (GAF)] with insight, time and depressive symptoms as independent variables. Results from multilevel analyses point to an overall positive impact of insight on psychosocial functioning, which increases over time. Yet the cross-lagged panel analysis did not reveal a systematic positive and causal effect of insight on SOFAS and GAF scores. Depressive symptoms seem only to be relevant in the beginning of the treatment process. Our results point to a complex process in which the positive impact of insight on psychosocial functioning increases over time, even when considering depressive symptoms. Future studies and treatment approaches should consider the procedural aspect of insight.

  15. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    NASA Astrophysics Data System (ADS)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  16. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    PubMed

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  17. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, B. J.; Kazachenko, M. D.; Edmondson, J. K.

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratiosmore » reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.« less

  18. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  19. CORRIGENDUM of the MJO Transition from Shallow to Deep Convection in Cloudsat-Calipso Data and GISS GCM Simulations

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2015-01-01

    We have identified several errors in the calculations that were performed to create Fig. 3 of Del Genio et al. (2012). These errors affect the composite evolution of precipitation and column water vapor versus lag relative to the Madden-Julian oscillation (MJO) peak presented in that figure. The precipitation and column water vapor data for the April and November 2009 MJO events were composited incorrectly because the date of the MJO peak at a given longitude was assigned to the incorrect longitude band. In addition, the precipitation data for all MJO events were first accumulated daily and the daily accumulations averaged at each lag to create the composite, rather than the averaging of instantaneous values that was used for other composite figures in the paper. One poorly sampled day in the west Pacific therefore biases the composite precipitation in that region at several lags after the MJO peak. Finally, a 4-day running mean was mistakenly applied to the precipitation and column water vapor data rather than the intended 5-day running mean. The results of the corrections are that an anomalous west Pacific precipitation maximum510 days after the MJO peak is removed and the maximum in west Pacific precipitation one pentad before the MJO peak is now more evident; there is now a clear maximum in precipitation for the entire warm pool one pentad before the MJO peak; west Pacific column water vapor now varies more strongly as a function of lag relative to the peak; and precipitation, and to a lesser extent column water vapor, in general vary more smoothly with time. The corrections do not affect any other parts of the paper nor do they change the scientific conclusions we reached. The 4-day running mean error also affects Figs. 1 and 2 therein, with almost imperceptible impacts that do not affect any results or necessitate major changes to the text.

  20. A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags

    NASA Astrophysics Data System (ADS)

    Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.

    2016-03-01

    Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.

  1. S-154 in the Large Magellanic Cloud - Spectral evolution from a luminous Fe II variable to a symbiotic-like star

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Rosenthal, E.; Tuohy, I. R.; Schwartz, D. A.; Buckley, D. A. H.; Brissenden, R. J. V.

    1992-01-01

    The evolution of the emission-line Star S-154, between February and December 1988, from a low-excitation 'Fe II star' into a high-excitation state that resembles symbiotic stars, is traced. It is inferred that the spectral type of central stars do not always dominate the physical conditions in the circumstellar material and thereby determine the nebular classification. The membership of S-154 in the LMC was confirmed with a radial velocity measurement of +274 km/s. The historical light curve (1880-1990) obtained from 346 photograph plates of the Harvard Plate Library exhibits about 4 mag of variations, with an MB range of -6 to -2. No evidence was found for coherent modulations that would represent the orbital period of a symbiotic binary.

  2. Far-UV Spectroscopy of Two Extremely Hot, Helium-Rich White Dwarfs

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2017-01-01

    A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1 or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of T(eff) =115000 +/- 5000 K and 125000 +/- 5000 K, respectively, and a surface gravity of log g = 7 +/-0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution.

  3. Spectral Reflectance Measurement of Evaporating Chemical Films: Initial Results and Application to Skin Permeation.

    PubMed

    Frasch, H Frederick; Lee, Larry; Barbero, Ana M

    2018-04-27

    The current study has two aims. First the method of spectral reflectance was used to measure evaporation rates of thin (∼25-300 μm) films of neat liquid volatile organic chemicals exposed to a well-regulated wind speed u. Gas phase evaporation mass transfer coefficient (k evap ) measurements of 10 chemicals, 9 of which were measured at similar u, are predicted (slope of log-log data = 1.01; intercept = 0.08; R 2 = 0.996) by a previously proposed mass transfer correlation. For one chemical, isoamyl alcohol, the dependence of k evap on u 0.52 was measured, in support of the predicted exponent value of ½. Second, measured k evap of nicotine was used as an input in analytical models based on diffusion theory to estimate the absorbed fraction (F abs ) of a small dose (5 μL/cm 2 ) applied to human epidermis in vitro. The measured F abs was 0.062 ± 0.023. Model-estimated values are 0.066 and 0.115. Spectral reflectance is a precise method of measuring k evap of liquid chemicals and the data are well-described by a simple gas phase mass transfer coefficient. For nicotine under the single exposure condition measured herein, F abs is well-predicted from a theoretical model that requires knowledge of k evap , maximal dermal flux and membrane lag time. Copyright © 2018. Published by Elsevier Inc.

  4. Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility

    NASA Technical Reports Server (NTRS)

    McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.

    2012-01-01

    The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.

  5. Multiwavelength monitoring of the BL Lacertae object PKS 2155-304. 3: Ground-based observations in 1991 November

    NASA Technical Reports Server (NTRS)

    Courvoisier, T. J.-L.; Blecha, A.; Bouchet, P.; Bratschi, P.; Carini, M. T.; Donahue, M.; Edelson, R.; Feigelson, E. D.; Filippenko, A. V.; Glass, I. S.

    1995-01-01

    We present ground-based observations of the BL Lac object PKS 2155-304 during 1991 November. These data were obtained as part of a large international campaign of observations spanning the electro-magnetic spectrum from the radio waves to the X-rays. The data presented here include radio and UBVRI fluxes, as well as optical polarimetry. The U to I data show the same behavior in all bands and that only upper limits to any lag can be deduced from the cross-correlation of the light curves. The spectral slope in the U-I domain remained constant on all epochs but 2. There is no correlation between changes in the spectral slope and large variations in the total or polarized flux. The radio flux variations did not follow the same pattern of variability as the optical and infrared fluxes. The polarized flux varied by a larger factor than the total flux. The variations of the polarized flux are poorly correlated with those of the total flux in the optical (and hence UV domain; see the accompanying paper by Edelson et al.) nor with those of the soft X-rays. We conclude that the variability of PKS 2155-304 in the optical and near-infrared spectral domains are easier to understand in the context of variable geometry or bulk Lorentz factor than of variable electron acceleration and cooling rates.

  6. Volume dependent quasiparticle spectral weight in NiS2-xSex system

    NASA Astrophysics Data System (ADS)

    Marini, C.; Perucchi, A.; Dore, P.; Topwal, D.; Sarma, D. D.; Lupi, S.; Postorino, P.

    2012-05-01

    We discuss the evolution of Infrared reflectivity at room temperature under various pressures (P) and Se alloying concentration in the strongly correlated NiS2-xSex pyrite. Measurements gave a complete picture of the optical response of the system on approaching the P-induced and Se-induced metallic state. A peculiar non-monotonic (V-shaped) volume dependence was found for the quasiparticle spectral weight of both pure and Se-doped compounds.

  7. A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    DTIC Science & Technology

    2006-09-01

    Postes des et Télécommunication . 19 GSM Global System for Mobile communications . . . . . . . . . 19 FDD Frequency Division Duplexing...entertainment centric in nature [84]. This evolution de - mands more from communication systems – improved quality of service (QoS), higher throughput...Spécial Mobile (GSM) emerged from the Conférence Européenne Postes des et Télécommunication (CEPT) and was commercially introduced in 1991 [103

  8. Toric Networks, Geometric R-Matrices and Generalized Discrete Toda Lattices

    NASA Astrophysics Data System (ADS)

    Inoue, Rei; Lam, Thomas; Pylyavskyy, Pavlo

    2016-11-01

    We use the combinatorics of toric networks and the double affine geometric R-matrix to define a three-parameter family of generalizations of the discrete Toda lattice. We construct the integrals of motion and a spectral map for this system. The family of commuting time evolutions arising from the action of the R-matrix is explicitly linearized on the Jacobian of the spectral curve. The solution to the initial value problem is constructed using Riemann theta functions.

  9. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ˜1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (˜0°C-120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  10. Discovery and Evolution of the New Black Hole Candidate Swift J1539.2-6227 During Its 2008 Outburst

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Tomsick, J. A.; Markwardt, C. B.; Brocksopp, C.; Grise, F.; Kaaret, P.; Romano, P.

    2010-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a rare opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasiperiodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.

  11. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae)

    PubMed Central

    McCarthy, Elizabeth W.; Arnold, Sarah E. J.; Chittka, Lars; Le Comber, Steven C.; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J.; Chase, Mark W.; Baldwin, Ian T.; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R.

    2015-01-01

    Background and Aims Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Methods Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Key Results Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Conclusions Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. PMID:25979919

  12. Monitoring The Crab Pulsar

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Swank, Jean (Technical Monitor)

    2001-01-01

    The monitoring of the X-ray pulses from the Crab pulsar is still ongoing at the time of this writing, and we hope to be able to continue the campaign for the life of the XTE mission. We have established beyond all doubt that: (1) the X-ray main pulse leads the radio pulse by approximately 300 microseconds, (2) this phase lag is constant and not influenced by glitches, (3) this lag does not depend on X-ray energy, (4) the relative phase of the two X-ray pulses does not vary, and (5) the spectral indices of primary, secondary, and inter-pulse are distinct and constant. At this time we are investigating whether the radio timing ephemeris can be replaced by an x-ray ephemeris and whether any long-time timing ephemeris can be established. If so, it would enable use to study variations in pulse arrival times at a longer time scales. Such a study is easier in x-rays than at radio wavelengths since the dispersion measure plays no role. These results were reported at the 2000 HEAD Meeting in Honolulu, HI. Travel was paid partly out of this grant. The remainder was applied toward the acquisition of a laptop computer that allows independent and fast analysis of all monitoring observations.

  13. Sublimation of water ice mixed with silicates and tholins: Evolution of surface texture and reflectance spectra, with implications for comets

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Pommerol, Antoine; Jost, Bernhard; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2016-03-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70 °C) and pressure (10-5 mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS-NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.

  14. Constructing the reduced dynamical models of interannual climate variability from spatial-distributed time series

    NASA Astrophysics Data System (ADS)

    Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander

    2016-04-01

    We suggest a method for empirical forecast of climate dynamics basing on the reconstruction of reduced dynamical models in a form of random dynamical systems [1,2] derived from observational time series. The construction of proper embedding - the set of variables determining the phase space the model works in - is no doubt the most important step in such a modeling, but this task is non-trivial due to huge dimension of time series of typical climatic fields. Actually, an appropriate expansion of observational time series is needed yielding the number of principal components considered as phase variables, which are to be efficient for the construction of low-dimensional evolution operator. We emphasize two main features the reduced models should have for capturing the main dynamical properties of the system: (i) taking into account time-lagged teleconnections in the atmosphere-ocean system and (ii) reflecting the nonlinear nature of these teleconnections. In accordance to these principles, in this report we present the methodology which includes the combination of a new way for the construction of an embedding by the spatio-temporal data expansion and nonlinear model construction on the basis of artificial neural networks. The methodology is aplied to NCEP/NCAR reanalysis data including fields of sea level pressure, geopotential height, and wind speed, covering Northern Hemisphere. Its efficiency for the interannual forecast of various climate phenomena including ENSO, PDO, NAO and strong blocking event condition over the mid latitudes, is demonstrated. Also, we investigate the ability of the models to reproduce and predict the evolution of qualitative features of the dynamics, such as spectral peaks, critical transitions and statistics of extremes. This research was supported by the Government of the Russian Federation (Agreement No. 14.Z50.31.0033 with the Institute of Applied Physics RAS) [1] Y. I. Molkov, E. M. Loskutov, D. N. Mukhin, and A. M. Feigin, "Random dynamical models from time series," Phys. Rev. E, vol. 85, no. 3, p. 036216, 2012. [2] D. Mukhin, D. Kondrashov, E. Loskutov, A. Gavrilov, A. Feigin, and M. Ghil, "Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models," J. Clim., vol. 28, no. 5, pp. 1962-1976, 2015.

  15. Proton Radiography of a Thermal Explosion in PBX9501

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-01

    The understanding of thermal explosions and burn propagation lags that of detonations and shock propagation. Diagnostics such as high energy radiography have been used to image shocks, but have been previously precluded from use in thermal explosions due to their stringent timing requirements: shock propagation can be synchronized to an external diagnostic while thermal explosion can not. This issue is solved by following the evolution of the ignition volume in a thermal explosion and using a laser pulse to provide a temperature jump in that central volume during the final thermal runaway leading to ignition. Thermal explosion experiments have been conducted at the Los Alamos Proton Radiography facility and have yielded images of the evolution of ignition, post-ignition burn propagation, and case failure in a radially confined cylinder of PBX 9501. This paper presents images taken during the hours long quasistatic heating, the final minutes of thermal runaway, and the post ignition burn propagation.

  16. Characterisation of major histocompatibility complex class I transcripts in an Australian dragon lizard.

    PubMed

    Hacking, Jessica; Bertozzi, Terry; Moussalli, Adnan; Bradford, Tessa; Gardner, Michael

    2018-07-01

    Characterisation of squamate major histocompatibility complex (MHC) genes has lagged behind other taxonomic groups. MHC genes encode cell-surface glycoproteins that present self- and pathogen-derived peptides to T cells and play a critical role in pathogen recognition. Here we characterise MHC class I transcripts for an agamid lizard (Ctenophorus decresii) and investigate the evolution of MHC class I in Iguanian lizards. An iterative assembly strategy was used to identify six full-length C. decresii MHC class I transcripts, which were validated as likely to encode classical class I MHC molecules. Evidence for exon shuffling recombination was uncovered for C. decresii transcripts and Bayesian phylogenetic analysis of Iguanian MHC class I sequences revealed a pattern expected under a birth-and-death mode of evolution. This work provides a stepping stone towards further research on the agamid MHC class I region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Simulation of 90{degrees} ply fatigue crack growth along the width of cross-ply carbon-epoxy coupons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henaff-Gardin, C.; Urwald, E.; Lafarie-Frenot, M.C.

    1994-07-01

    We study the mechanism of fatigue cracking of the matrix of cross-ply carbon-epoxy laminates. Primary attention is given to the study of the influence of the specimen width on the evolution of damage. On the basis of shear lag analysis, we determine the strain energy release rate in the processes of initiation and growth of transverse fatigue cracks. We also present results of experimental research on the evolution of the edge crack density per ply, the average length of the cracks, and the crack propagation rate under transverse fatigue cracking. It is shown that these characteristics are independent of themore » specimen width. At the same time, as soon as the edge crack density reaches its saturation value, the average crack growth rate becomes constant. All the experimental results are in good agreement with results obtained by using the theoretical model.« less

  18. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi).

    PubMed

    Lloyd, Graeme T; Wang, Steve C; Brusatte, Stephen L

    2012-02-01

    Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as "living fossils" due to an apparent slowdown in rates since the Devonian. We find that morphological rates are highly heterogeneous across the phylogeny and recover a general pattern of decreasing rates along the phylogenetic backbone toward living taxa, from the Devonian until the present. Compared with previous work, we are able to report a more nuanced picture of lungfish evolution using these new methods. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  19. Narrow Quasar Absorption Lines and the History of the Universe

    NASA Astrophysics Data System (ADS)

    Liebscher, Dierck-Ekkehard

    In order to get an estimation of the parameters of the cosmological model the statistics of narrow absorption lines in quasar spectra is evaluated. To this end a phenomenological model of the evolution of the corresponding absorbers in density, size, number and dimension is presented and compared with the observed evolution in the spectral density of the lines and their column density seen in the equivalent width. In spite of the wide range of possible models, the Einstein-deSitter model is shown to be unlikely because of the implied fast evolution in mass.

  20. LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture.

    PubMed

    Wang, Jun; Ti, Yunfan; Wang, Yicun; Guo, Guodong; Jiang, Hui; Chang, Menghan; Qian, Hongbo; Zhao, Jianning; Sun, Guojing

    2018-04-19

    The lymphocyte activation gene 3 (LAG-3) is a CD4 homolog with binding affinity to MHC class II molecules. It is thought that LAG-3 exerts a bimodal function, such that co-ligation of LAG-3 and CD3 could deliver an inhibitory signal in conventional T cells, whereas, on regulatory T cells, LAG-3 expression could promote their inhibitory function. In this study, we investigated the role of LAG-3 expression on CD4 + T cells in patients with long bone fracture. We found that LAG-3 + cells represented approximately 13% of peripheral blood CD4 + T cells on average. Compared to LAG-3 - CD4 + T cells, LAG-3 + CD4 + T cells presented significantly higher Foxp3 and CTLA-4 expression. Directly ex vivo or with TCR stimulation, LAG-3 + CD4 + T cells expressed significantly higher levels of IL-10 and TGF-β than LAG-3 - CD4 + T cells. Interestingly, blocking the LAG-3-MHC class II interaction actually increased the IL-10 expression by LAG-3 + CD4 + T cells. The frequency of LAG-3 + CD4 + T cell was positively correlated with restoration of healthy bone function in long bone fracture patients. These results together suggested that LAG-3 is a marker of CD4 + T cells with regulatory function; at the same time, LAG-3 might have limited the full suppressive potential of Treg cells.

  1. Intramedullary nails with two lag screws.

    PubMed

    Brown, C J; Wang, C J; Yettram, A L; Procter, P

    2004-06-01

    To investigate the structural integrity of intramedullary nails with two lag screws, and to give guidance to orthopaedic surgeons in the choice of appropriate devices. Alternative designs of the construct are considered, and the use of a slotted upper lag screw insertion hole is analysed. Intramedullary fixation devices with a single lag screw have been known to fail at the lag screw insertion hole. Using two lag screws is considered. It has also been proposed to use a slot in the nail for the upper lag screw to prevent the upper lag screw from sticking. Bending and torsion load cases are analysed using finite element method. Consideration of both load conditions is essential. The results present the overall stiffness of the assembly, the load sharing between lag screws, and the possibility for cut-out to occur. While the slot for the upper lag screw might be advantageous with regard to the stresses in the lag screws, it could be detrimental for cut-out occurring adjacent to the lag screws. Comparative analyses demonstrate that two lag screws may be advantageous in patients whose cancellous bone quality is good and who impose large loads on the lag screw/nail interface. However, the use of two screws might pre-dispose to failure by cut-out of the lag screws. The addition of a slotted hole for the upper lag screw appears to do nothing significant to reduce the risk of such a failure. Copyright 2004 Elsevier Ltd.

  2. Isothermal crystallization of poly(3-hydroxybutyrate) studied by terahertz two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Morisawa, Yusuke; Sato, Harumi; Noda, Isao; Ozaki, Yukihiro; Otani, Chiko

    2012-01-01

    The isothermal crystallization of poly(3-hydroxybutylate) (PHB) was studied by monitoring the temporal evolution of terahertz absorption spectra in conjunction with spectral analysis using two-dimensional correlation spectroscopy. Correlation between the absorption peaks and the sequential order of the changes in spectral intensity extracted from synchronous and asynchronous plots indicated that crystallization of PHB at 90 °C is a two step process, in which C-H...O=C hydrogen bonds are initially formed before well-defined crystal structures are established.

  3. RXTE Observations of A1744-361: Correlated Spectral and Timing Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.; Swank, Jean H.; Markwardt, Craig B.

    2007-01-01

    We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.

  4. Precision Spectral Variability of L Dwarfs from the Ground

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Schlawin, Everett; Teske, Johanna K.; Karalidi, Theodora; Gizis, John

    2017-01-01

    L dwarf photospheres (1500 K < T < 2500 K) contain mineral and metal condensates, which appear to organize into cloud structures as inferred from observed periodic photometric variations with amplitudes of <1%-30%. Studying the vertical structure, composition, and long-term evolution of these clouds necessitates precision spectroscopic monitoring, until recently limited to space-based facilities. Building on techniques developed for ground-based exoplanet transit spectroscopy, we present a method for precision spectral monitoring of L dwarfs with nearby visual companions. Using IRTF/SpeX, we demonstrate <0.5% spectral variability precision across the 0.9-2.4 micron band, and present results for two known L5 dwarf variables, J0835-0819 and J1821+1414, both of which show evidence of 3D cloud structure similar to that seen in space-based observations. We describe a survey of 30 systems which would sample the full L dwarf sequence and allow characterization of temperature, surface gravity, metallicity, rotation period and orientation effects on cloud structure, composition and evolution.This research is supported by funding from the National Science Foundation under award No. AST-1517177, and the National Aeronautics and Space Administration under Grant No. NNX15AI75G.

  5. Herschel and the Molecular Universe

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Helmich, F. P.

    2006-01-01

    Over the next decade, space-based missions will open up the universe to high spatial and spectral resolution studies at infrared and submillimeter wavelengths. This will allow us to study, in much greater detail, the composition and the origin and evolution of molecules in space. Moreover, molecular transitions in these spectral ranges provide a sensitive probe of the dynamics and the physical and chemical conditions in a wide range of objects at scales ranging from budding planetary systems to galactic and extragalactic sizes. Hence, these missions provide us with the tools to study key astrophysical and astrochemical processes involved in the formation and evolution of planets, stars, and galaxies. These new missions can be expected to lead to the detection of many thousands of new spectral features. Identification, analysis and interpretation of these features in terms of the physical and chemical characteristics of the astronomical sources will require detailed astronomical modeling tools supported by laboratory measurements and theoretical studies of chemical reactions and collisional excitation rates on species of astrophysical relevance. These data will have to be made easily accessible to the scientific community through web-based data archives. In this paper, we will review the Herschel mission and its expected impact on our understanding of the molecular universe.

  6. Mathematical model for carbon dioxide evolution from the thermophilic composting of synthetic food wastes made of dog food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.I.; Tsai, J.J.; Wu, K.H.

    2005-07-01

    The impacts of the aeration and the agitation on the composting process of synthetic food wastes made of dog food were studied in a laboratory-scale reactor. Two major peaks of CO{sub 2} evolution rate were observed. Each peak represented an independent stage of composting associated with the activities of thermophilic bacteria. CO{sub 2} evolutions known to correlate well with microbial activities and reactor temperatures were fitted successfully to a modified Gompertz equation, which incorporated three biokinetic parameters, namely, CO{sub 2} evolution potential, specific CO{sub 2} evolution rate, and lag phase time. No parameters that describe the impact of operating variablesmore » are involved. The model is only valid for the specified experimental conditions and may look different with others. The effects of operating parameters such as aeration and agitation were studied statistically with multivariate regression technique. Contour plots were constructed using regression equations for the examination of the dependence of CO{sub 2} evolution potentials on aeration and agitation. In the first stage, a maximum CO{sub 2} evolution potential was found when the aeration rate and the agitation parameter were set at 1.75 l/kg solids-min and 0.35, respectively. In the second stage, a maximum existed when the aeration rate and the agitation parameter were set at 1.8 l/kg solids-min and 0.5, respectively. The methods presented here can also be applied for the optimization of large-scale composting facilities that are operated differently and take longer time.« less

  7. Environmental Variability and Fluctuation of Coccidioidomycosis (Valley Fever) In California: Based on a New Framework Involving Fungal Life Cycle

    NASA Astrophysics Data System (ADS)

    Jia, S.; Okin, G. S.; Shafir, S. C.

    2013-12-01

    Coccidioidomycosis (valley fever), caused by inhalation of spores from pathogenic fungus includingCoccidiodes immitis (C. immitis) and Coccidioides posadasii (C. posadasii), is a disease endemic to arid regions in the southwest US, as well as parts of Central and South America. With a projected increase of drought in this region, an improved understanding of environmental factors behind the outbreaks of coccidioidomycosis will enable the prediction of coccidioidomycosis in a changing climate regime. Previous research shows the infections correlate with climate conditions including precipitation, temperature, and dust. However, most studies focus only on the environmental conditions of fungus growth, which is the first stage in the fungal life cycle. In contrast, we extend the analysis to the following two stages in the life cycle, arthrospore formation and dispersal, to form a better model to predict the disease outbreaks. Besides climate conditions, we use relative spectral mixture analysis (RSMA) based on MODIS MOD43 nadir BRDF adjusted reflectance (NBAR) data to derive the relative dynamics of green vegetation, non-photosynthetic vegetation and bare soil coverage as better indicators of soil moisture, which is important for arthospore formation and dispersal. After detecting the hotspots of disease outbreaks, we correlate seasonal incidence from 2000 to 2010 with the environmental variables zero to eight seasons before to obtain candidates for stepwise regression. Regression result shows a seasonal difference in the leading explanatory variables. Such difference indicates the different seasonal main influential process from fungal life cycle. C. immitis (fungus responsible for coccidioidomycosis outbreaks in California) growth explains outbreaks in winter and fall better than other two stages in the life cycle, while arthospore formation is more responsible for spring and summer outbreaks. As the driest season, summer has the largest area related with arthospore dispersal. The seasonal difference of main influential process relates to the length of lags between the outbreaks and stages in fungal life cycle. During wet seasons of California including winter and fall, outbreaks are less correlated with the short-lag process such as dispersal of arthospores because of high soil moisture. In contrast, the long-lag process like C.immitis growth is influential on outbreaks in wet seasons. The arthospore formation, especially during the latest dry season (with a lag less than one year), is more responsible for outbreaks in spring and summer, when the influence of C. immitis growth is dampened by time. However, arthospores formed and preserved years ago may introduce uncertainty to the seasonal lag patterns. The long lags also exist in outbreaks related to arthospore formation. By including all three stages of fungal life cycle, we formed a more comprehensive framework in explaining the relationship between environmental conditions and disease outbreaks. Such analysis can be extended to a finer temporal resolution (e.g. per month) to obtain a clearer picture between environmental variability and coccidioidomycosis fluctuation.

  8. Broadband Study of GRB 091127: A Sub-energetic Burst at Higher Redshift?

    NASA Astrophysics Data System (ADS)

    Troja, E.; Sakamoto, T.; Guidorzi, C.; Norris, J. P.; Panaitescu, A.; Kobayashi, S.; Omodei, N.; Brown, J. C.; Burrows, D. N.; Evans, P. A.; Gehrels, N.; Marshall, F. E.; Mawson, N.; Melandri, A.; Mundell, C. G.; Oates, S. R.; Pal'shin, V.; Preece, R. D.; Racusin, J. L.; Steele, I. A.; Tanvir, N. R.; Vasileiou, V.; Wilson-Hodge, C.; Yamaoka, K.

    2012-12-01

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E γ < 3 × 1049 erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  9. Spin-orbit evolution of Mercury revisited

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoît; Frouard, Julien; Makarov, Valeri V.; Efroimsky, Michael

    2014-10-01

    Although it is accepted that the significant eccentricity of Mercury (0.206) favours entrapment into the 3:2 spin-orbit resonance, open are the questions of how and when the capture took place. A recent work by Makarov (Makarov, V.V. [2012]. Astrophys. J., 752, 73) has proven that trapping into this state is certain for eccentricities larger than 0.2, provided we use a realistic tidal model based on the Darwin-Kaula expansion of the tidal torque. While in Ibid. a Mercury-like planet had its eccentricity fixed, we take into account its evolution. To that end, a family of possible histories of the eccentricity is generated, based on synthetic time evolution consistent with the expected statistics of the distribution of eccentricity. We employ a model of tidal friction, which takes into account both the rheology and self-gravitation of the planet. As opposed to the commonly used constant time lag (CTL) and constant phase lag (CPL) models, the physics-based tidal model changes dramatically the statistics of the possible final spin states. First, we discover that after only one encounter with the spin-orbit 3:2 resonance this resonance becomes the most probable end-state. Second, if a capture into this (or any other) resonance takes place, the capture becomes final, several crossings of the same state being forbidden by our model. Third, within our model the trapping of Mercury happens much faster than previously believed: for most histories, 10-20 Myr are sufficient. Fourth, even a weak laminar friction between the solid mantle and a molten core would most likely result in a capture in the 2:1 or even higher resonance, which is confirmed both semi-analytically and by limited numerical simulations. So the principal novelty of our paper is that the 3:2 end-state is more ancient than the same end-state obtained when the constant time lag model is employed. The swift capture justifies our treatment of Mercury as a homogeneous, unstratified body whose liquid core had not yet formed by the time of trapping. We also provide a critical analysis of the hypothesis by Wieczorek et al. (Wieczorek, M.A., Correia, A.C.M., Le Feuvre, M., Laskar, J., Rambaux, N. [2012]. Nat. Geosci., 5, 18-21) that the early Mercury might had been retrograde, whereafter it synchronised its spin and then accelerated it to the 3:2 resonance. Accurate processing of the available data on cratering does not support that hypothesis, while the employment of a realistic rheology invalidates a key element of the hypothesis, an intermediate pseudosynchronous state needed to spin-up to the 3:2 resonance.

  10. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

    PubMed

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei

    2015-04-20

    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

  11. The XMM-Newton View of Wolf-Rayet Bubbles

    NASA Astrophysics Data System (ADS)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  12. Numerical simulations of electrohydrodynamic evolution of thin polymer films

    NASA Astrophysics Data System (ADS)

    Borglum, Joshua Christopher

    Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.

  13. Numerical Simulation and Quantitative Uncertainty Assessment of Microchannel Flow

    NASA Astrophysics Data System (ADS)

    Debusschere, Bert; Najm, Habib; Knio, Omar; Matta, Alain; Ghanem, Roger; Le Maitre, Olivier

    2002-11-01

    This study investigates the effect of uncertainty in physical model parameters on computed electrokinetic flow of proteins in a microchannel with a potassium phosphate buffer. The coupled momentum, species transport, and electrostatic field equations give a detailed representation of electroosmotic and pressure-driven flow, including sample dispersion mechanisms. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. To quantify uncertainty, the governing equations are reformulated using a pseudo-spectral stochastic methodology, which uses polynomial chaos expansions to describe uncertain/stochastic model parameters, boundary conditions, and flow quantities. Integration of the resulting equations for the spectral mode strengths gives the evolution of all stochastic modes for all variables. Results show the spatiotemporal evolution of uncertainties in predicted quantities and highlight the dominant parameters contributing to these uncertainties during various flow phases. This work is supported by DARPA.

  14. Pore-scale spectral induced polarization (SIP) signaturesassociated with FeS biomineral transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Lee; Ntarlagiannis, Dimitrios; Personna, Yves R.

    2007-10-01

    The authors measured Spectral Induced Polarization (SIP) signatures in sand columns during (1) FeS biomineralization produced by sulfate reducing bacteria (D. vulgaris) under anaerboci conditions, and (2) subsequent biomineral dissolution upon return to an aerobic state. The low-frequency (0.1-10 Hz peak) relaxations produced during biomineralization can be modeled with a Cole-Cole formulation, from which the evolution of the polarization magnitude and relaxation length scale can be estimated. They find that the modeled time constant is consistent with the polarizable elements being biomineral encrused pores. Evolution of the model parameters is consistent with FeS surface area increases and pore-size reduction duringmore » biomineral growth, and subsequent biomineral dissolution (FeS surface area decreases and pore expansion) upon return to the aerobic state. They conclude that SIP signatures are diagnostic of pore-scale geometrical changes associated with FeS biomineralization by sulfate reducing bacteria.« less

  15. The evolution of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brightman, Murray

    2012-09-01

    We present results on the evolution of Compton thick AGN with redshift, and the nature of this obscuration, important for understanding the accretion history of the universe and for AGN unification schemes. We use lessons learned from spectral complexity of local AGN (Brightman & Nandra 2012) and up to date spectral models of heavily absorbed AGN, which take into account Compton scattering, self consistent Fe Ka modeling and the geometry of the circumnuclear material (Brightman & Nandra 2011), to optimise our identification of Compton thick AGN and understanding of the obscuring material. Results from the Chandra Deep Field South are presented (Brightman & Ueda, 2012), which show an increasing fraction of CTAGN with redshift and that most heavily obscured AGN are geometrically deeply buried in material, as well as new results from and extension of this study to AEGIS-XD and Chandra-COSMOS survey, which aim to fully characterise the dependence of heavy AGN obscuration on redshift and luminosity.

  16. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less

  17. Laboratory Annealing Experiments Of Refractory Silicate Grain Analogs Using Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Tsukamota, Katsuo; Kaito, Chihiro

    2010-01-01

    Exothermic reactions during the annealing of laboratory synthesized amorphous magnesium-bearing silicate particles used as grain analogs of cosmic dust were detected by differential scanning calorimetry (DSC) in air. With infrared spectroscopy and transmission electron microscopy, we show that cosmic dust could possibly undergo fusion to larger particles, with oxidation of magnesium silicide and crystallization of forsterite as exothermic reactions in the early solar system. The reactions begin at approximately 425, approximately 625, and approximately 1000 K, respectively, and the reaction energies (enthalpies) are at least 727, 4151, and 160.22 J per gram, respectively. During the crystallization of forsterite particles, the spectral evolution of the 10 micrometer feature from amorphous to crystalline was observed to begin at lower temperature than the crystallization temperature of 1003 K. During spectral evolution at lower temperature, nucleation and/or the formation of nanocrystallites of forsterite at the surface of the grain analogs was observed.

  18. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  19. Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.

    2018-04-01

    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.

  20. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  1. Polarized redundant-baseline calibration for 21 cm cosmology without adding spectral structure

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.

    2018-07-01

    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.

  2. Unifying Spectral and Timing Studies of Relativistic Reflection in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    X-ray observations of active galactic nuclei (AGN) contain a wealth of information relevant for understanding the structure of AGN, the process of accretion, and the gravitational physics of supermassive black holes. A particularly exciting development over the past four years has been the discovery and subsequent characterization of time delays between variability of the X-ray power-law continuum and the inner disk reflection spectrum including the broad iron line. The fact that the broad iron line shows this echo, or reverberation, in XMM-Newton, Suzaku and NuSTAR data is a strong confirmation of the disk reflection paradigm and has already been used to place constraints on the extent and geometry of the X-ray corona. However, current studies of AGN X-ray variability, including broad iron line reverberation, are only scratching the surface of the available data. At the present time, essentially all studies conduct temporal analyzes in a manner that is largely divorced from detailed spectroscopy - consistency between timing results (e.g., conclusions regarding the location of the primary X-ray source) and detailed spectral fits is examined after the fact. We propose to develop and apply new analysis tools for conducting a truly unified spectraltiming analysis of the X-ray properties of AGN. Operationally, this can be thought of as spectral fitting except with additional parameters that are accessing the temporal properties of the dataset. Our first set of tools will be based on Fourier techniques (via the construction and fitting of the energy- and frequency-dependent cross-spectrum) and most readily applicable to long observations of AGN with XMM-Newton. Later, we shall develop more general schemes (of a more Bayesian nature) that can operate on irregularly sampled data or quasi-simultaneous data from multiple instruments. These shall be applied to the long joint XMM-Newton/NuSTAR and Suzaku/NuSTAR AGN campaigns as well as Swift monitoring campaigns. Another important dimension of our work is the introduction of spectral and spectral-timing models of X-ray reflection from black hole disks that include realistic disk thickness (as opposed to the razor-thin disks assumed in current analysis tools). The astrophysical implications of our work are: - The first rigorous decomposition of the time-lags into those from reverberation and those from intrinsic continuum processes. - A new method for determining the density of photoionized (warm) absorbers in AGN through a measurement of the recombination time lags. - AGN black hole mass estimates obtained purely from X-ray data, and hence complementary to (observationally expensive) optical broad line reverberation campaigns. - The best possible characterization of strong gravity signatures in the reflected disk emission. - Detection and characterization of non-trivial accretion disk structure. Each of our tools and data products will be made available to the community/public upon the publication of the first results with that tool. The proposed work is in direct support of the NASA Science Plan, and is of direct relevant and support to NASA's fleet of X-ray observatories.

  3. What Can Spectral Properties of Martian Surface and Snc Can Tell Us about the Martian Crust Composition and Evolution

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Baratoux, D.; Quantin, C.; Bibring, J. P.

    2014-12-01

    While the study of Martian meteorites can provide detailed information about the crust and mantle composition and evolution, remote-sensing observations, through the merging of compositional and geological data, allow highlighting planetary-scale trends of the Martian crustal evolution [1,2]. Recently, the analysis of the global distribution of mafic minerals [3] has put new constraints on the Martian crust formation and evolution. One of the major results is a past global event of olivine-bearing fissural volcanism that has filled craters and low depressions in the southern highlands and a large part of the Northern plains during the late Noachian/early Hesperian. Petrologic models show that this sudden increase of the olivine content at the Noachian-Hesperian boundary could be the result of a rapid thickening of the lithosphere at the end of the Noachian era [4]. A recent study based on the OMEGA/MEx data has shown that the spectral properties of the shergottites are similar to those of some Noachian and Hesperian terrains [5]. To contrary, the Nakhla spectral properties are very different from those of the observable surface and could be representative of Amazonian terrains buried under dust. These results are best explained with an old age of the shergottites [6] and with the present understanding of the evolution of magma composition at a planetary scale [7]. On the other hand, if shergottites are young [8], the similarities between the shergottites and ancient terrains implies that exceptional conditions of melting with respect to the ambient mantle (e.g., hot spots or water-rich mantle source) were responsible for the formation of these samples [9]. References: [1] McSween et al., 2009, Science, 324. [2] Ehlmann & Edwards 2014, AREPS, vol. 42. [3] Ody et al., 2013, JGR,117,E00J14. [4] Ody et al., 2014, 8th Inter. Conf. on Mars,#1190. [5] Ody et al., 2013, 44th LPSC, #1719. [6] Bouvier et al., 2009, EPSL, 280. [7] Baratoux et al., 2013, JGR, 118. [8] Nyquist et al., [2001], Chronology and Evolution of Mars, pp. 105-164. [9] Balta and McSween, 2013, Geology,v. 41, p. 1115-1118. Acknowledgment:The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement n°280168 .

  4. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Spectral Index Properties of millijansky Radio Sources in ATLAS

    NASA Astrophysics Data System (ADS)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz < 10 milliJansky (mJy)), the spectral index properties of radio sources are not well constrained. The bright radio source population (S1.4GHz > 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  6. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae).

    PubMed

    McCarthy, Elizabeth W; Arnold, Sarah E J; Chittka, Lars; Le Comber, Steven C; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J; Chase, Mark W; Baldwin, Ian T; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R

    2015-06-01

    Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Hyperspectral, photogrammetric and morphological characterization of surface impurities over the Greenland ice sheet from remote sensing observations

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Alexander, P. M.; Briggs, K.; Linares, M.; Mote, T. L.

    2016-12-01

    The spatial and temporal evolution of surface impurities over the Greenland ice sheet plays a crucial role in modulating the meltwater production in view of the associated feedback on albedo. Recent studies have pointed to a `darkening' of the west portion of the ice sheet with this reduction in albedo likely associated with the increasing presence of surface impurities (e.g., soot, dust) and biological activity (e.g., cryoconite holes, algae, bacteria). Regional climate models currently do not account for the presence, evolution and impact on albedo of such impurities, mostly because the underlying processes driving the spectral and morphological evolution of impurities are poorly known. One for the reasons for this is the lack of hyperspectral and high-spatial resolution data over specific regions of the Greenland ice sheet. To put things in perspective: there is more hyperspectral data at high spatial resolution for the planet Mars than for the Greenland ice sheet. In this presentation, we report the results of an analysis using the few available hyperspectral data collected over Greenland by the HYPERION and AVIRIS sensors, in conjunction with visible (RGB) helicopter-based high resolution images and LANDSAT/WorldView data for characterizing the spectral and morphological evolution of surface impurities and cryoconite holes over western Greenland. The hyperspectral data is used to characterize the abundance of different `endmembers' and the temporal evolution (inter-seasonal and intra-seasonal) of surface impurities composition and concentration. Digital photographs from helicopter are used to characterize the size and distribution of cryoconite holes as a function of elevation and, lastly, LANDSAT/WV images are used to study the evolution of `mysterious' shapes that form as a consequence of the accumulation of impurities and the ice flow.

  8. The stability of H/V spectral ratios from noise measurements in Armutlu Peninsula (Turkey)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livaoğlu, Hamdullah, E-mail: hamdullah.livaoglu@kocaeli.edu.tr; Irmak, T. Serkan; Caka, Deniz

    The horizontal to vertical spectral ratio (H/V) method has been successfully using in order to estimate the fundamental resonance frequency of the sedimentary cover, its thickness and amplification factor since at least 3 decades. There are numerous studies have been carried out on the stability of the H/V spectral ratios. Almost all studies showed that fundamental frequency is stable even measurements are repeated at different times. From this point of view, the results will show us an approach whether the stations are suitable for accurate estimate of earthquake studies and engineering purposes or not. Also we want to see ifmore » any effects of the amplification factor changing on the seismograms for Armutlu Seismic Network (ARNET) even though seismic stations are established far away from cultural noise and located on hard rock sites. It has been selected one hour recorded data of all stations during the most stationary times. The amplification and resonant frequency variations of H/V ratio were calculated to investigate temporal stability in time. There is a total harmony in fundamental frequencies values and H/V spectral ratio values in time-lagged periods. Some stations shows secondary minor peaks in high frequency band due to a shallow formation effect or cultural noises around. In the east side of the area ILYS station shows amplitude peak in lower fundamental frequency band from expected. This could compose a high amplification in lower frequencies and so that yield less reliable results in local earthquakes studies. By the experimental results from ambient noise analysis, it could be worked up for relocation of one station.« less

  9. Simulated space weathering of Fe- and Mg-rich aqueously altered minerals using pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.

    2017-08-01

    Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.

  10. A combined spectroscopic and plasma chemical kinetic analysis of ionospheric samarium releases

    NASA Astrophysics Data System (ADS)

    Holmes, Jeffrey M.; Dressler, Rainer A.; Pedersen, Todd R.; Caton, Ronald G.; Miller, Daniel

    2017-05-01

    Two rocket-borne releases of samarium vapor in the upper atmosphere occurred in May 2013, as part of the Metal Oxide Space Clouds experiment. The releases were characterized by a combination of optical and RF diagnostic instruments located at the Roi-Namur launch site and surrounding islands and atolls. The evolution of the optical spectrum of the solar-illuminated cloud was recorded with a spectrograph covering a 400-800 nm spectral range. The spectra exhibit two distinct spectral regions centered at 496 and 636 nm within which the relative intensities change insignificantly. The ratio between the integrated intensities within these regions, however, changes with time, suggesting that they are associated with different species. With the help of an equilibrium plasma spectral model we attribute the region centered at 496 nm to neutral samarium atoms (Sm I radiance) and features peaking at 649 nm to a molecular species. No evidence for structure due to Sm+ (Sm II) is identified. The persistence of the Sm I radiance suggests a high dissociative recombination rate for the chemi-ionization product, SmO+. A one-dimensional plasma chemical kinetic model of the evolution of the density ratio NSmO/NSm(t) demonstrates that the molecular feature peaking at 649 nm can be attributed to SmO radiance. SmO+ radiance is not identified. By adjusting the Sm vapor mass of the chemical kinetic model input to match the evolution of the total electron density determined by ionosonde data, we conclude that less than 5% of the payload samarium was vaporized.

  11. Far-UV spectroscopy of two extremely hot, helium-rich white dwarfs

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2017-05-01

    A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50%, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1% or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of Teff = 115 000 ± 5000 K and 125 000 ± 5000 K, respectively, and a surface gravity of log g= 7 ± 0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer.

  12. AN EXTRAORDINARY OUTBURST OF THE MAGNETAR SWIFT J1822.3–1606

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Manoneeta; Göğüş, Ersin

    2015-08-20

    The 2011 outburst of Swift J1822.3–1606 was extraordinary; periodic modulations at the spin period of the underlying neutron star were clearly visible, remarkably similar to what is observed during the decaying tail of magnetar giant flares. We investigated the temporal characteristics of X-ray emission during the early phases of the outburst. We performed a periodicity search with the spectral hardness ratio (HR) and found a coherent signal near the spin period of the neutron star, but with a lag of about 3 radians. Therefore, the HR is strongly anti-correlated with the X-ray intensity, which is also seen in the giantmore » flares. We studied the time evolution of the pulse profile and found that it evolves from a complex morphology to a much simpler shape within about a month. Pulse profile simplification also takes place during the giant flares, but on a much shorter timescale of about a few minutes. We found that the amount of energy emitted during the first 25 days of the outburst is comparable to what was detected in minutes during the decaying tail of giant flares. Based on these similarities, we suggest that the triggering mechanisms of the giant flares and the magnetar outbursts are likely the same. We propose that the trapped fireball that develops in the magnetosphere at the onset of the outburst radiates away efficiently in minutes in magnetars exhibiting giant flares, while in other magnetars, such as Swift J1822.3–1606, the efficiency of radiation of the fireball is not as high and, therefore, lasts much longer.« less

  13. Detection of Subtle Hydromechanical Medium Changes Caused By a Small-Magnitude Earthquake Swarm in NE Brazil

    NASA Astrophysics Data System (ADS)

    D'Hour, V.; Schimmel, M.; Do Nascimento, A. F.; Ferreira, J. M.; Lima Neto, H. C.

    2016-04-01

    Ambient noise correlation analyses are largely used in seismology to map heterogeneities and to monitor the temporal evolution of seismic velocity changes associated mostly with stress field variations and/or fluid movements. Here we analyse a small earthquake swarm related to a main mR 3.7 intraplate earthquake in North-East of Brazil to study the corresponding post-seismic effects on the medium. So far, post-seismic effects have been observed mainly for large magnitude events. In our study, we show that we were able to detect localized structural changes even for a small earthquake swarm in an intraplate setting. Different correlation strategies are presented and their performances are also shown. We compare the classical auto-correlation with and without pre-processing, including 1-bit normalization and spectral whitening, and the phase auto-correlation. The worst results were obtained for the pre-processed data due to the loss of waveform details. The best results were achieved with the phase cross-correlation which is amplitude unbiased and sensitive to small amplitude changes as long as there exist waveform coherence superior to other unrelated signals and noise. The analysis of 6 months of data using phase auto-correlation and cross-correlation resulted in the observation of a progressive medium change after the major recorded event. The progressive medium change is likely related to the swarm activity through opening new path ways for pore fluid diffusion. We further observed for the auto-correlations a lag time frequency-dependent change which likely indicates that the medium change is localized in depth. As expected, the main change is observed along the fault.

  14. Multifrequency Photo-polarimetric WEBT Observation Campaign on the Blazar S5 0716+714: Source Microvariability and Search for Characteristic Timescales

    NASA Astrophysics Data System (ADS)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M.; Markowitz, A.; Akitaya, H.; Arkharov, A. A.; Bachev, R.; Benítez, E.; Borman, G. A.; Carosati, D.; Cason, A. D.; Chanishvili, R.; Damljanovic, G.; Dhalla, S.; Frasca, A.; Hiriart, D.; Hu, S.-M.; Itoh, R.; Jableka, D.; Jorstad, S.; Jovanovic, M. D.; Kawabata, K. S.; Klimanov, S. A.; Kurtanidze, O.; Larionov, V. M.; Laurence, D.; Leto, G.; Marscher, A. P.; Moody, J. W.; Moritani, Y.; Ohlert, J. M.; Di Paola, A.; Raiteri, C. M.; Rizzi, N.; Sadun, A. C.; Sasada, M.; Sergeev, S.; Strigachev, A.; Takaki, K.; Troitsky, I. S.; Ui, T.; Villata, M.; Vince, O.; Webb, J. R.; Yoshida, M.; Zola, S.

    2016-11-01

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models. ).

  15. The interdecadal changes of south pacific sea surface temperature in the mid-1990s and their connections with ENSO

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Chongyin; Tan, Yanke; Bai, Tao

    2014-01-01

    The characteristic changes of South Pacific sea surface temperature anomalies (SSTAs) for the period January 1979 to December 2011, during which the 1990s Pacific pan-decadal variability (PDV) interdecadal regime shifts occurred, were examined. Empirical Orthogonal Function (EOF) analysis was applied to the monthly mean SSTA for two sub-periods: January 1979 to December 1994 (P1) and January 1996 to December 2011 (P2). Both the spatial and temporal features of the leading EOF mode for P1 and P2 showed a remarkable difference. The spatial structure of the leading EOF changed from a tripolar pattern for P1 (EOF-P1) to a dipole-like pattern for P2 (EOF-P2). Besides, EOF-P1 (EOF-P2) had significant spectral peaks at 4.6 yr (2.7 yr). EOF-P2 not only had a closer association with El Niño-Southern Oscillation (ENSO), but also showed a faster response to ENSO than EOF-P1 based on their lead-lag relationships with ENSO. During the development of ENSO, the South Pacific SSTA associated with ENSO for both P1 and P2 showed a significant eastward propagation. However, after the peak of ENSO, EOF-P1 showed a stronger persistence than EOF-P2, which still showed eastward propagation. The variability of the SSTA associated with the whole process of ENSO evolution during P1 and the SSTA associated with the development of ENSO during P2 support the existence of ocean-to-atmosphere forcing, but the SSTA associated with the decay of ENSO shows the phenomenon of atmosphere-to-ocean forcing.

  16. MULTIFREQUENCY PHOTO-POLARIMETRIC WEBT OBSERVATION CAMPAIGN ON THE BLAZAR S5 0716+714: SOURCE MICROVARIABILITY AND SEARCH FOR CHARACTERISTIC TIMESCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatta, G.; Stawarz, Ł.; Ostrowski, M.

    Here we report on the results of the Whole Earth Blazar Telescope photo-polarimetric campaign targeting the blazar S5 0716+71, organized in 2014 March to monitor the source simultaneously in BVRI and near-IR filters. The campaign resulted in an unprecedented data set spanning ∼110 hr of nearly continuous, multiband observations, including two sets of densely sampled polarimetric data mainly in the R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30% and “bluer-when-brighter” spectral evolution, consisting of a day-timescale modulation with superimposed hour-long microflares characterized by ∼0.1 mag flux changes. We performed an in-depth searchmore » for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of ∼3 and ∼5 hr do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle (PA) relative to the PA of the innermost radio jet in the source, changes in the polarization degree (PD) led the total flux variability by about 2 hr; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high PD (>30%) and PAs that differed substantially from the PA of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.« less

  17. Inflaton and metric fluctuations in the early universe from a 5D vacuum state

    NASA Astrophysics Data System (ADS)

    Membiela, Agustin; Bellini, Mauricio

    2006-04-01

    In this Letter we complete a previously introduced formalism to study the gauge-invariant metric fluctuations from a noncompact Kaluza Klein theory of gravity, to study the evolution of the early universe. The evolution of both, metric and inflaton field fluctuations are reciprocally related. We obtain that <δρ>/ρ depends on the coupling of Φ with δφ and the spectral index of its spectrum is 0.9483

  18. REVIEWS OF TOPICAL PROBLEMS: Population synthesis in astrophysics

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Prokhorov, M. E.

    2007-11-01

    Population synthesis is a method for numerical simulation of the population of objects with a complex evolution. This method is widely used in astrophysics. We consider its main applications to studying astronomical objects. Examples of modeling evolution are given for populations of close binaries and isolated neutron stars. The application of the method to studying active galactic nuclei and the integral spectral characteristics of galaxies is briefly discussed. An extensive bibliography on all the topics covered is provided.

  19. Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution

    NASA Technical Reports Server (NTRS)

    Kil, Hyosub; Heelis, R. A.

    1998-01-01

    We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope.

  20. Visible Near-infrared Spectral Evolution of Irradiated Mixed Ices and Application to Kuiper Belt Objects and Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Mahjoub, Ahmed; Ehlmann, Bethany L.; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Eiler, John M.; Hand, Kevin P.; Hodyss, Robert; Wong, Ian

    2018-04-01

    Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.

  1. Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii V.

    2014-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.

  2. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  3. The temporal evolution of explosive events and its implication on reconnection dynamics

    NASA Astrophysics Data System (ADS)

    Guo, L.; Liu, W.; De Pontieu, B.; Huang, Y. M.; Peter, H.; Bhattacharjee, A.

    2017-12-01

    Transition-region explosive events and other bursts seen in extreme UV light are characterized by broad spectral line profiles, and the more violent ones show a strong enhancement of emission. They are thought to be driven by magnetic reconnection, because of their characteristic spectral profiles often indicating strong Alfvénic flows, and because of the fact that they typically occur where magnetic flux concentrations of opposite polarity intersect. In this presentation, we will focus on the temporal evolution of transition-region explosive events. In particular, we will investigate fast onsets of these events and the rapid oscillations of intensity during these event. The fast onset refers to the beginning of an explosive event, where the intensities and the widths of its line profiles increase dramatically (often within less than 10 seconds) and the rapid oscillations of intensity refer to blinks of emission that usually last less than 10 seconds during the event. In order to interpret and understand underlying mechanisms of these observations, we conduct numerical simulation of an explosive event and calculate its spectra. We observe a similar temporal evolution in the synthetic Si IV spectra when the explosive event is driven by time-dependent reconnection—plasmoid instability. The qualitative agreement between observations and simulations suggests that the temporal evolution of Si IV spectra of explosive events are closely related to reconnection dynamics.

  4. The metallicity dependence of WR winds

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Shenar, T.; Sander, A.; Hamann, W.-R.; Todt, H.

    2017-11-01

    Wolf-Rayet (WR) stars are the most advanced stage in the evolution of the most massive stars. The strong feedback provided by these objects and their subsequent supernova (SN) explosions are decisive for a variety of astrophysical topics such as the cosmic matter cycle. Consequently, understanding the properties of WR stars and their evolution is indispensable. A crucial but still not well known quantity determining the evolution of WR stars is their mass-loss rate. Since the mass loss is predicted to increase with metallicity, the feedback provided by these objects and their spectral appearance are expected to be a function of the metal content of their host galaxy. This has severe implications for the role of massive stars in general and the exploration of low metallicity environments in particular. Hitherto, the metallicity dependence of WR star winds was not well studied. In this contribution, we review the results from our comprehensive spectral analyses of WR stars in environments of different metallicities, ranging from slightly super-solar to SMC-like metallicities. Based on these studies, we derived empirical relations for the dependence of the WN mass-loss rates on the metallicity and iron abundance, respectively.

  5. Radio outbursts in extragalactic sources

    NASA Astrophysics Data System (ADS)

    Kinzel, Wayne Morris

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior.

  6. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  7. Characterization and monitoring of the excavation damaged zone in fractured gneisses of the Roselend tunnel, French Alps

    NASA Astrophysics Data System (ADS)

    Wassermann, J.; Sabroux, J. C.; Pontreau, S.; Bondiguel, S.; Guillon, S.; Richon, P.; Pili, E.

    2011-04-01

    The Roselend dead-end tunnel was excavated in the last fifties by blasting in the Méraillet crystalline rock mass located on the shore of an artificial reservoir lake in the French Alps. Successive emptying and filling of the reservoir lake induce mechanical deformation of the rock mass. Thus, this tunnel is an exceptional place to study the evolution of the damaged zone (due to the excavation, and named EDZ) under a periodic mechanical or hydraulic loading. From the perspective of radioactive waste isolation in deep geological strata, the EDZ transport properties, and their evolution with time, are of major importance. The purpose of this study is, on the one hand, to quantify the transport properties of the EDZ of the Roselend tunnel through permeability measurements and drill core observations; on the other hand, to monitor the response of the EDZ to external solicitations via borehole pressure measurements. The air permeability has been deduced from pneumatic tests performed along several boreholes. The permeability profiles and the observation of drill cores lead to an estimation of the extent of the EDZ, of about 1 m around the tunnel. The response of the EDZ to barometric pumping has been observed through borehole pressure monitoring. Time-lag and attenuation of the barometric signal that propagates into the EDZ have been measured at a metric scale. The identification of potential time-lag and attenuation variations needs further investigations, the long time series of borehole pressure monitoring shows pressure increase probably due to percolating water during successive snow cover and thawing periods as observed in the Roselend area during winter.

  8. Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS

    NASA Astrophysics Data System (ADS)

    Teolis, B. D.; Waite, J. H.

    2016-07-01

    A Dione O2 and CO2 exosphere of similar composition and density to Rhea's is confirmed by Cassini spacecraft Ion Neutral Mass Spectrometer (INMS) flyby data. INMS results from three Dione and two Rhea flybys show exospheric spatial and temporal variability indicative of seasonal exospheres, modulated by winter polar gas adsorption and desorption at the equinoxes. Cassini Plasma Spectrometer (CAPS) pickup ion fluxes also show exospheric structure and evolution at Rhea consistent with INMS, after taking into consideration the anticipated charge exchange, electron impact, and photo-ionization rates. Data-model comparisons show the exospheric evolution to be consistent with polar frost diffusion into the surface regolith, which limits surface exposure and loss of the winter frost cap by sputtering. Implied O2 source rates of ∼45(7) × 1021 s-1 at Dione(Rhea) are ∼50(300) times less than expected from known O2 radiolysis yields from ion-irradiated pure water ice measured in the laboratory, ruling out secondary sputtering as a major exospheric contributor, and implying a nanometer scale surface refractory lag layer consisting of concentrated carbonaceous impurities. We estimate ∼30:1(2:1) relative O2:CO2 source rates at Dione(Rhea), consistent with a stoichiometric bulk composition below the lag layer of 0.01(0.13) C atoms per H2O molecule, deriving from endogenic constituents, implanted micrometeoritic organics, and (in particular at Dione) exogenous H2O delivery by E-ring grains. Impact deposition, gardening and vaporization may thereby control the global O2 source rates by fresh H2O ice exposure to surface radiolysis and trapped oxidant ejection.

  9. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception

    NASA Astrophysics Data System (ADS)

    Schneider, R.; Schmitt, J.; Köhler, P.; Joos, F.; Fischer, H.

    2013-11-01

    The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  10. Whole Genome Sequence Analysis of Mutations Accumulated in rad27Δ Yeast Strains with Defects in the Processing of Okazaki Fragments Indicates Template-Switching Events

    PubMed Central

    Omer, Sumita; Lavi, Bar; Mieczkowski, Piotr A.; Covo, Shay; Hazkani-Covo, Einat

    2017-01-01

    Okazaki fragments that are formed during lagging strand DNA synthesis include an initiating primer consisting of both RNA and DNA. The RNA fragment must be removed before the fragments are joined. In Saccharomyces cerevisiae, a key player in this process is the structure-specific flap endonuclease, Rad27p (human homolog FEN1). To obtain a genomic view of the mutational consequence of loss of RAD27, a S. cerevisiae rad27Δ strain was subcultured for 25 generations and sequenced using Illumina paired-end sequencing. Out of the 455 changes observed in 10 colonies isolated the two most common types of events were insertions or deletions (INDELs) in simple sequence repeats (SSRs) and INDELs mediated by short direct repeats. Surprisingly, we also detected a previously neglected class of 21 template-switching events. These events were presumably generated by quasi-palindrome to palindrome correction, as well as palindrome elongation. The formation of these events is best explained by folding back of the stalled nascent strand and resumption of DNA synthesis using the same nascent strand as a template. Evidence of quasi-palindrome to palindrome correction that could be generated by template switching appears also in yeast genome evolution. Out of the 455 events, 55 events appeared in multiple isolates; further analysis indicates that these loci are mutational hotspots. Since Rad27 acts on the lagging strand when the leading strand should not contain any gaps, we propose a mechanism favoring intramolecular strand switching over an intermolecular mechanism. We note that our results open new ways of understanding template switching that occurs during genome instability and evolution. PMID:28974572

  11. Persistence of uranium emission in laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaHaye, N. L.; Harilal, S. S., E-mail: hari@purdue.edu; Diwakar, P. K.

    2014-04-28

    Detection of uranium and other nuclear materials is of the utmost importance for nuclear safeguards and security. Optical emission spectroscopy of laser-ablated U plasmas has been presented as a stand-off, portable analytical method that can yield accurate qualitative and quantitative elemental analysis of a variety of samples. In this study, optimal laser ablation and ambient conditions are explored, as well as the spatio-temporal evolution of the plasma for spectral analysis of excited U species in a glass matrix. Various Ar pressures were explored to investigate the role that plasma collisional effects and confinement have on spectral line emission enhancement andmore » persistence. The plasma-ambient gas interaction was also investigated using spatially resolved spectra and optical time-of-flight measurements. The results indicate that ambient conditions play a very important role in spectral emission intensity as well as the persistence of excited neutral U emission lines, influencing the appropriate spectral acquisition conditions.« less

  12. Green's Functions from Real-Time Bold-Line Monte Carlo Calculations: Spectral Properties of the Nonequilibrium Anderson Impurity Model

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-04-01

    The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.

  13. WISPIR: A Wide-Field Imaging SPectrograph for the InfraRed for the SPICA Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Mundy, Lee G.

    2010-01-01

    We have undertaken a study of a far infrared imaging spectrometer based on a Fourier transform spectrometer that uses well-understood, high maturity optics, cryogenics, and detectors to further our knowledge of the chemical and astrophysical evolution of the Universe as it formed planets, stars, and the variety of galaxy morphologies that we observe today. The instrument, Wide-field Imaging Spectrometer for the InfraRed (WISPIR), would operate on the SPICA observatory, and will feature a spectral range from 35 - 210 microns and a spectral resolving power of R=1,000 to 6,000, depending on wavelength. WISPIR provides a choice of full-field spectral imaging over a 2'x2' field or long-slit spectral imaging along a 2' slit for studies of astrophysical structures in the local and high-redshift Universe. WISPIR in long-slit mode will attain a sensitivity two orders of magnitude better than what is currently available.

  14. Charge-Transfer Processes in Warm Dense Matter: Selective Spectral Filtering for Laser-Accelerated Ion Beams

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.

    2018-05-01

    We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.

  15. Constraining the Star-Formation and Metal-Enrichment Histories of Galaxies with the Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Heap, Sara

    2009-07-01

    Hubble's Next Generation Spectral Library {NGSL} comprises intermediate-resolution {R 1000} STIS spectra of 378 stars having a wide range in metallicity and age. Unique features of the NGSL include its broad wavelength coverage {1,800-10,100 ?} and high-S/N, absolute spectrophotometry. When incorporated in modern stellar population synthesis codes, the NGSL should enable us to constrain simultaneously the star-formation history and metal-enrichment history of galaxies over a wide redshift interval {z= 0-2}. In AR10659, we laid the foundation for tracing the spectral evolution of galaxies by putting the NGSL in order. We now propose to derive the atmospheric and fundamental parameters of the program stars, generate integrated spectra of stellar populations of different metallicities and initial mass functions, and derive spectral diagnostics of the age, metalllicity and E{B-V} of stellar populations.

  16. Two-point spectral model for variable density homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Kurien, Susan; Clark, Timothy; Aslangil, Denis; Livescu, Daniel

    2017-11-01

    We present a comparison between a two-point spectral closure model for buoyancy-driven variable density homogeneous turbulence, with Direct Numerical Simulation (DNS) data of the same system. We wish to understand how well a suitable spectral model might capture variable density effects and the transition to turbulence from an initially quiescent state. Following the BHRZ model developed by Besnard et al. (1990), the spectral model calculation computes the time evolution of two-point correlations of the density fluctuations with the momentum and the specific-volume. These spatial correlations are expressed as function of wavenumber k and denoted by a (k) and b (k) , quantifying mass flux and turbulent mixing respectively. We assess the accuracy of the model, relative to a full DNS of the complete hydrodynamical equations, using a and b as metrics. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396.

  17. Thermal Regime Change of a Retreating Polythermal Glacier from Repeat Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Rippin, D. M.; Willis, I. C.; Sevestre, H.

    2014-12-01

    Polythermal glaciers (i.e. glaciers that consist of some combination of both warm and cold ice) are common in the Arctic (e.g. Aschwanden and Blatter, 2005). Recent work (e.g. Rippin et al. 2011; Gusmeroli et al., 2012; Wilson and Flowers, 2013; Wilson et al., 2013) has focussed on how their polythermal structure might change in response to a warming climate. These studies suggest that the nature of future thermal regime change is complex, such that the relative volume of temperate ice in a shrinking glacier may increase or decrease, depending on local geographical, meteorological and hydrological parameters. Here, we present a unique data-set from the well-studied glacier Midtre Lovénbreen in Svalbard, which has shown continued and sustained retreat in recent years. We have a network of ground penetrating radar (GPR) lines from this glacier, first surveyed in 2006 and then repeat-surveyed along exactly the same lines in 2012. Despite significant retreat and thinning, our data suggests that minimal changes in thermal regime have taken place over this period, reinforcing previous observations of a significant lag in the rate at which the thermal regime responds to mass balance changes (cf. Rippin et al., 2011). Such a 'thermal lag' has implications for evolving hydrological and dynamical behaviour of these glaciers, and also for the future mass balance response. In this paper, we comment on the observed changes and consider the implications for our understanding of future thermal regime evolution. ReferencesAschwanden, A., and H. Blatter. 2005. Meltwater production due to strain heating in Storglaciären, Sweden. JGR, 110, doi:10.1029/2005JF000,328. Rippin, D.M., J.L. Carrivick and C. Williams. 2011. Evidence towards a thermal lag in the response of Kårsaglaciären, northern Sweden, to climate change. J. Glac., 57(205), 895-903. Gusmeroli, A., P. Jansson, R. Pettersson and T. Murray. 2012. Twenty years of cold surface layer thinning at Storglaciaren, sub-Arctic Sweden, 1989-2009. J. Glac., 58(207), 3-10. Wilson, N.J., G.E. Flowers and L. Mingo. 2013. Comparison of thermal structure and evolution between neighboring subarctic glaciers. JGR, 118(3), 1443-1459. Wilson, N.J. and G.E. Flowers. 2013. Environmental controls on the thermal structure of alpine glaciers. The Cryosphere, 7(1), 167-182.

  18. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  19. Enabling High Spectral Resolution Thermal Imaging from CubeSat and MicroSatellite Platforms Using Uncooled Microbolometers and a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.; Pilger, E. J.; Honniball, C.; Gabrieli, A.

    2016-12-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. This is attributable to two factors. Firstly, earth emits less light than it reflects, reducing the signal available to measure in the TIR, and secondly, instruments designed to measure (and spectrally decompose) this signal are more complex, massive, and expensive than their VSWIR counterparts, largely due to the need to cryogenically cool the detector and optics. However, this measurement gap needs to be filled, as LWIR data provide fundamentally different information than VSWIR measurements. The TIRCIS instrument (Thermal Infra-Red Compact Imaging Spectrometer), developed at the Hawaii Institute of Geophysics and Planetology, uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data in the 8-14 micron spectral range. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm × 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite as part of the ORS-4 mission in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible (the accompanying image shows a quartz spectrum composed of 17 spectral samples). Our performance model indicates signal-to-noise ratios of 400-800:1.

  20. Role of Lymphocyte Activation Gene-3 (Lag-3) in Conventional and Regulatory T Cell Function in Allogeneic Transplantation

    PubMed Central

    Sega, Emanuela I.; Leveson-Gower, Dennis B.; Florek, Mareike; Schneidawind, Dominik; Luong, Richard H.; Negrin, Robert S.

    2014-01-01

    Lag-3 has emerged as an important molecule in T cell biology. We investigated the role of Lag-3 in conventional T cell (Tcon) and regulatory T cell (Treg) function in murine GVHD with the hypothesis that Lag-3 engagement diminishes alloreactive T cell responses after bone marrow transplantation. We demonstrate that Lag-3 deficient Tcon (Lag-3−/− Tcon) induce significantly more severe GVHD than wild type (WT) Tcon and that the absence of Lag-3 on CD4 but not CD8 T cells is responsible for exacerbating GVHD. Lag-3−/− Tcon exhibited increased activation and proliferation as indicated by CFSE and bioluminescence imaging analyses and higher levels of activation markers such as CD69, CD107a, granzyme B, and Ki-67 as well as production of IL-10 and IFN-g early after transplantation. Lag-3−/− Tcon were less responsive to suppression by WT Treg as compared to WT Tcon. The absence of Lag-3, however, did not impair Treg function as both Lag-3−/− and WT Treg equally suppress the proliferation of Tcon in vitro and in vivo and protect against GVHD. Further, we demonstrate that allogeneic Treg acquire recipient MHC class II molecules through a process termed trogocytosis. As MHC class II is a ligand for Lag-3, we propose a novel suppression mechanism employed by Treg involving the acquisition of host MHC-II followed by the engagement of Lag-3 on T cells. These studies demonstrate for the first time the biologic function of Lag-3 expression on conventional and regulatory T cells in GVHD and identify Lag-3 as an important regulatory molecule involved in alloreactive T cell proliferation and activation after bone marrow transplantation. PMID:24475140

  1. The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.; Schmidt, H.; Brasseur, G. P.

    2009-01-01

    This paper analyzes the effects of the solar rotational (27-day) irradiance variations on the chemical composition and temperature of the stratosphere, mesosphere and lower thermosphere as simulated by the three-dimensional chemistry-climate model HAMMONIA. Different methods are used to analyze the model results, including high resolution spectral and cross-spectral techniques. To force the simulations, an idealized irradiance variation with a constant period of 27 days (apparent solar rotation period) and with constant amplitude is used. While the calculated thermal and chemical responses are very distinct and permanent in the upper atmosphere, the responses in the stratosphere and mesosphere vary considerably in time despite the constant forcing. The responses produced by the model exhibit a non-linear behavior: in general, the response sensitivities (not amplitudes) decrease with increasing amplitude of the forcing. In the extratropics the responses are, in general, seasonally dependent with frequently stronger sensitivities in winter than in summer. Amplitude and phase lag of the ozone response in the tropical stratosphere and lower mesosphere are in satisfactory agreement with available observations. The agreement between the calculated and observed temperature response is generally worse than in the case of ozone.

  2. Extreme AGN Captured in a Low State by XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2018-01-01

    The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena and can exhibit dramatic variability in the X-ray band down to timescales of a few minutes. We present the exemplifying case study of 1H 1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectroscopic and temporal analyses of a concurrent XMM-Newton and NuSTAR 120 ks observation, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability that is observed even at NuSTAR energies. We compare measurements from detailed time-resolved spectral fitting with Fourier-based timing results to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1-4 keV) and relativistically-blurred reprocessing by the inner accretion flow (0.3-1 keV).

  3. Quantitative EEG reflects non-dopaminergic disease severity in Parkinson's disease.

    PubMed

    Geraedts, Victor J; Marinus, Johan; Gouw, Alida A; Mosch, Arne; Stam, Cornelis J; van Hilten, Jacobus J; Contarino, Maria Fiorella; Tannemaat, Martijn R

    2018-05-29

    In Parkinson's Disease (PD), measures of non-dopaminergic systems involvement may reflect disease severity and therefore contribute to patient-selection for Deep Brain Stimulation (DBS). There is currently no determinant for non-dopaminergic disease severity. In this exploratory study, we investigated whether quantitative EEG reflects non-dopaminergic disease severity in PD. Sixty-three consecutive PD patients screened for DBS were included (mean age 62.4 ± 7.2 years, 32% females). Relative spectral powers and the Phase-Lag-Index (PLI) reflecting functional connectivity were analysed on routine EEGs. Non-dopaminergic disease severity was quantified using the SENS-PD score and its subdomains; motor-severity was quantified using the MDS-UPDRS III. The SENS-PD composite score correlated with a spectral ratio ((δ + θ)/(α1 + α2 + β) powers) (global spectral ratio Pearson's r = 0.4, 95% Confidence Interval (95%CI) 0.1-0.6), and PLI in the α2 band (10-13 Hz) (r = -0.3, 95%CI -0.5 to -0.1). These correlations seem driven by the subdomains cognition and psychotic symptoms. MDS-UPDRS III was not significantly correlated with EEG parameters. EEG slowing and reduced functional connectivity in the α2 band were associated with non-dopaminergic disease severity in PD. The described EEG parameters may have complementary utility as determinants of non-dopaminergic involvement in PD. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. Why does lag affect the durability of memory-based automaticity: loss of memory strength or interference?

    PubMed

    Wilkins, Nicolas J; Rawson, Katherine A

    2013-10-01

    In Rickard, Lau, and Pashler's (2008) investigation of the lag effect on memory-based automaticity, response times were faster and proportion of trials retrieved was higher at the end of practice for short lag items than for long lag items. However, during testing after a delay, response times were slower and proportion of trials retrieved was lower for short lag items than for long lag items. The current study investigated the extent to which the lag effect on the durability of memory-based automaticity is due to interference or to the loss of memory strength with time. Participants repeatedly practiced alphabet subtraction items in short lag and long lag conditions. After practice, half of the participants were immediately tested and the other half were tested after a 7-day delay. Results indicate that the lag effect on the durability of memory-based automaticity is primarily due to interference. We discuss potential modification of current memory-based processing theories to account for these effects. © 2013.

  5. High-Albedo Salt Crusts on the Tropical Ocean of Snowball Earth: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Carns, R.; Light, B.; Warren, S. G.

    2014-12-01

    During a Snowball Earth event, almost all of the ocean surface first freezes as sea ice. As in modern sea ice, trapped inclusions of liquid brine permeate the ice cover. As the ice grows and cools, salt crystals precipitate within the inclusions. At -23C, the most abundant salt in seawater, sodium chloride, begins to precipitate as the dihydrate mineral hydrohalite (NaCl·2H2O). Crystals of hydrohalite within the sea ice scatter light. Measurements of cold, natural sea ice show a broadband albedo increase of 10-20% when salt precipitates. Such snow-free natural sea ice with a surface temperature below -23C is rare on modern Earth, but would have been common in tropical regions of a Snowball Earth where evaporation exceeded precipitation. The persistent cold and lack of summer melt on the Snowball ocean surface, combined with net evaporation, is hypothesized to yield lag deposits of hydrohalite crystals on the ice surface. To investigate this process, we prepared laboratory-grown sea ice in a 1000 liter tank in a walk-in freezer laboratory. The ice was cooled below -23 C and the surface sprayed with a 23% NaCl solution to create a layer of hydrohalite-enriched ice, a proxy for lag deposits that would have formed over long periods of surface sublimation. We have developed a novel technique for measuring the spectral albedo of ice surfaces in the laboratory; this technique was used to monitor the evolution of the surface albedo of our salt crust as the ice matrix sublimated away leaving a layer of fine-grained hydrohalite crystals. Measurements of this hydrohalite surface crust show a very high albedo, comparable to fresh snow at visible wavelengths and significantly larger than fresh snow at near infrared wavelengths. Broadband albedos are 0.55 for bare artificial sea ice at -30C, 0.75 for ice containing 25% hydrohalite by volume, 0.84 after five days of desiccation and 0.93 after 47 days of desiccation. Using our laboratory measurements, along with estimates of grain size and crust optical depth, as inputs to Mie scattering and radiative transfer models allowed us to infer the imaginary refractive index of hydrohalite. The model can calculate albedo for pure hydrohalite crusts of varying thickness and for mixtures of ice and hydrohalite. A parameterization is presented for albedo as a function of the thickness of the hydrohalite crust.

  6. Dune mobility in the St. Anthony Dune Field, Idaho, USA: Effects of meteorological variables and lag time

    NASA Astrophysics Data System (ADS)

    Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.

    2018-05-01

    The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.

  7. PALOMA:A Magnetic CV between Polars and Intermediate Polars

    NASA Astrophysics Data System (ADS)

    Joshi, Arti; Pandey, J. C.

    Using observations made with XMM-Newton, we present temporal and spectral analysis of an intermediate polar-like object Paloma. We also interpreted Paloma as a key object for magnetic CV evolution with an orbital period right within the period gap.

  8. Spectral Characteristics of Young Stars Associated with the Sh2-296 Nebula

    NASA Astrophysics Data System (ADS)

    Fernandes, Beatriz; Gregorio-Hetem, Jane

    Aiming to contribute to the understanding of star formation and evolution in the Canis Major (CMa R1) Molecular Clouds Complex, we analyze the spectral characteristics of a population of young stars associated with the arc-shaped nebula Sh2-296. Our XMM/Newton observations detected 109 X-ray sources in the region and optical spectroscopy was performed with Gemini telescope for 85 optical counterparts. We identified and characterized 51 objects that present features typically found in young objects, such as Hα emission and strong absorption on the Li I line.

  9. Resonant radiation from oscillating higher order solitons

    DOE PAGES

    Driben, R.; Yulin, A. V.; Efimov, A.

    2015-07-15

    We present radiation mechanism exhibited by a higher order soliton. In a course of its evolution the higher-order soliton emits polychromatic radiation resulting in formation of multipeak frequency comb-like spectral band. Moreover, the shape and spectral position of this band can be effectively controlled by the relative strength of the third order dispersion. An analytical description is corroborated by numerical simulations. It is also shown that for longer pulses the described effect persists also under the action of higher order perturbations such as Raman and self-steepening.

  10. The lag effects and vulnerabilities of temperature effects on cardiovascular disease mortality in a subtropical climate zone in China.

    PubMed

    Huang, Jixia; Wang, Jinfeng; Yu, Weiwei

    2014-04-11

    This research quantifies the lag effects and vulnerabilities of temperature effects on cardiovascular disease in Changsha--a subtropical climate zone of China. A Poisson regression model within a distributed lag nonlinear models framework was used to examine the lag effects of cold- and heat-related CVD mortality. The lag effect for heat-related CVD mortality was just 0-3 days. In contrast, we observed a statistically significant association with 10-25 lag days for cold-related CVD mortality. Low temperatures with 0-2 lag days increased the mortality risk for those ≥65 years and females. For all ages, the cumulative effects of cold-related CVD mortality was 6.6% (95% CI: 5.2%-8.2%) for 30 lag days while that of heat-related CVD mortality was 4.9% (95% CI: 2.0%-7.9%) for 3 lag days. We found that in Changsha city, the lag effect of hot temperatures is short while the lag effect of cold temperatures is long. Females and older people were more sensitive to extreme hot and cold temperatures than males and younger people.

  11. LAG-3 confers a competitive disadvantage upon antiviral CD8+ T cell responses1

    PubMed Central

    Cook, Kevin D.; Whitmire, Jason K.

    2016-01-01

    Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8+ T cells during chronic virus infection and anti-tumor responses. However, the T cell response in LAG-3 deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8+ T cell responses. Our results indicate that LAG-3 expression by CD8+ T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison to LAG-3 deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8+ T cell responses. PMID:27206765

  12. LAG-3 Confers a Competitive Disadvantage upon Antiviral CD8+ T Cell Responses.

    PubMed

    Cook, Kevin D; Whitmire, Jason K

    2016-07-01

    Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8(+) T cells during chronic virus infection and antitumor responses. However, the T cell response in LAG-3-deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8(+) T cell responses. Our results indicate that LAG-3 expression by CD8(+) T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison with LAG-3-deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8(+) T cell responses. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. The physical origin of the X-ray emission from SN 1987A

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Orlando, S.; Petruk, O.

    2017-10-01

    We revisit the spectral analysis of the set of archive XMM-Newton observations of SN 1987A through our 3-D hydrodynamic model describing the whole evolution from the onset of the supernova to the full remnant development. For the first time the spectral analysis accounts for the single observations and for the evolution of the system self-consistently. We adopt a forward modeling approach which allows us to directly synthesize, from the model, X-ray spectra and images in different energy bands. We fold the synthetic observables through the XMM-Newton instrumental response and directly compare models and actual data. We find that our simulation provides an excellent fit to the data, by reproducing simultaneously X-ray fluxes, spectral features, and morphology of SN 1987A at all evolutionary stages. Our analysis enables us to obtain a deep insight on the physical origin of the observed multi-thermal emission, by revealing the contribution of shocked surrounding medium, dense clumps of the circumstellar ring, and ejecta to the total emission. We finally provide predictions for future observations (to be performed with XMM-Newton in the next future and with the forthcoming Athena X-ray telescope in approximately 10 years), showing the growing contribution of the ejecta X-ray emission.

  14. Broadband Study of GRB 091127: A Sub-Energetic Burst at Higher Redshift?

    DOE PAGES

    Troja, E.; Sakamoto, T.; Guidorzi, C.; ...

    2012-11-21

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. In this paper, we present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E γ < 3 x 10 49 erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. Finally, we discuss the suppression of high-energymore » emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.« less

  15. New ultrasensitive pickup device for deep-sea robots: underwater super-HARP color TV camera

    NASA Astrophysics Data System (ADS)

    Maruyama, Hirotaka; Tanioka, Kenkichi; Uchida, Tetsuo

    1994-11-01

    An ultra-sensitive underwater super-HARP color TV camera has been developed. The characteristics -- spectral response, lag, etc. -- of the super-HARP tube had to be designed for use underwater because the propagation of light in water is very different from that in air, and also depends on the light's wavelength. The tubes have new electrostatic focusing and magnetic deflection functions and are arranged in parallel to miniaturize the camera. A deep sea robot (DOLPHIN 3K) was fitted with this camera and used for the first sea test in Sagami Bay, Japan. The underwater visual information was clear enough to promise significant improvements in both deep sea surveying and safety. It was thus confirmed that the Super- HARP camera is very effective for underwater use.

  16. Scrub Typhus Incidence Modeling with Meteorological Factors in South Korea.

    PubMed

    Kwak, Jaewon; Kim, Soojun; Kim, Gilho; Singh, Vijay P; Hong, Seungjin; Kim, Hung Soo

    2015-06-29

    Since its recurrence in 1986, scrub typhus has been occurring annually and it is considered as one of the most prevalent diseases in Korea. Scrub typhus is a 3rd grade nationally notifiable disease that has greatly increased in Korea since 2000. The objective of this study is to construct a disease incidence model for prediction and quantification of the incidences of scrub typhus. Using data from 2001 to 2010, the incidence Artificial Neural Network (ANN) model, which considers the time-lag between scrub typhus and minimum temperature, precipitation and average wind speed based on the Granger causality and spectral analysis, is constructed and tested for 2011 to 2012. Results show reliable simulation of scrub typhus incidences with selected predictors, and indicate that the seasonality in meteorological data should be considered.

  17. Scrub Typhus Incidence Modeling with Meteorological Factors in South Korea

    PubMed Central

    Kwak, Jaewon; Kim, Soojun; Kim, Gilho; Singh, Vijay P.; Hong, Seungjin; Kim, Hung Soo

    2015-01-01

    Since its recurrence in 1986, scrub typhus has been occurring annually and it is considered as one of the most prevalent diseases in Korea. Scrub typhus is a 3rd grade nationally notifiable disease that has greatly increased in Korea since 2000. The objective of this study is to construct a disease incidence model for prediction and quantification of the incidences of scrub typhus. Using data from 2001 to 2010, the incidence Artificial Neural Network (ANN) model, which considers the time-lag between scrub typhus and minimum temperature, precipitation and average wind speed based on the Granger causality and spectral analysis, is constructed and tested for 2011 to 2012. Results show reliable simulation of scrub typhus incidences with selected predictors, and indicate that the seasonality in meteorological data should be considered. PMID:26132479

  18. The 3.5 micron light curves of long period variable stars. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.

    1973-01-01

    Infrared observations at an effective wavelength of 3.5 microns of a selected group of long period variable (LPV) stars are presented. Mira type and semiregular stars of M, S, and C spectral classifications were monitored throughout the full cycle of variability. Although the variable infrared radiation does not exactly repeat in intensity or time, the regularity is sufficient to produce mean 3.5 micron light curves. The 3.5 micron maximum radiation lags the visual maximum by about one-seventh of a cycle, while the minimum 3.5 micron intensity occurs nearly one-half cycle after infrared maximum. In some stars, there are inflections or humps on the ascending portion of the 3.5 micron light curve which may also be seen in the visual variations.

  19. 2MASS J22560844+5954299: the newly discovered cataclysmic star with the deepest eclipse

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D.; Khruzina, T.; Dimitrov, D.; Groebel, R.; Ibryamov, S.; Nikolov, G.

    2015-12-01

    Context. The SW Sex stars are assumed to represent a distinguished stage in cataclysmic variable (CV) evolution, making it especially important to study them. Aims: We discovered a new cataclysmic star and carried out prolonged and precise photometric observations, as well as medium-resolution spectral observations. Modelling these data allowed us to determine the physical parameters and to establish its peculiarities. Methods: To obtain a light curve solution we used model whose emission sources are a white dwarf surrounded by an accretion disk with a hot spot, a gaseous stream near the disk's lateral side, and a secondary star filling its Roche lobe. The obtained physical parameters are compared with those of other SW Sex-subtype stars. Results: The newly discovered cataclysmic variable 2MASS J22560844+5954299 shows the deepest eclipse amongst the known nova-like stars. It was reproduced by totally covering a very luminous accretion disk by a red secondary component. The temperature distribution of the disk is flatter than that of steady-state disk. The target is unusual with the combination of a low mass ratio q ~ 1.0 (considerably below the limit q = 1.2 of stable mass transfer of CVs) and an M-star secondary. The intensity of the observed three emission lines, Hα, He 5875, and He 6678, sharply increases around phase 0.0, accompanied by a Doppler jump to the shorter wavelength. The absence of eclipses of the emission lines and their single-peaked profiles means that they originate mainly in a vertically extended hot-spot halo. The emission Hα line reveals S-wave wavelength shifts with semi-amplitude of around 210 km s-1 and phase lag of 0.03. Conclusions: The non-steady-state emission of the luminous accretion disk of 2MASS J22560844+5954299 was attributed to the low viscosity of the disk matter caused by its unusually high temperature. The star shows all spectral properties of an SW Sex variable apart from the 0.5 central absorption. Based on data collected with the telescopes at Rozhen National Astronomical Observatory.Spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A40

  20. X-Ray Timing Analysis of Cyg X-3 Using AstroSat/LAXPC: Detection of Milli-hertz Quasi-periodic Oscillations during the Flaring Hard X-Ray State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahari, Mayukh; Misra, Ranjeev; Antia, H M

    We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs)more » at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.« less

  1. Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2004-01-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  2. The effect of bifocal add on accommodative lag in myopic children with high accommodative lag.

    PubMed

    Berntsen, David A; Mutti, Donald O; Zadnik, Karla

    2010-12-01

    To determine the effect of a bifocal add and manifest correction on accommodative lag in myopic children with high accommodative lag, who have been reported to have the greatest reduction in myopia progression with progressive addition lenses (PALs). Monocular accommodative lag to a 4-D Badal stimulus was measured on two occasions 6 months apart in 83 children (mean ± SD age, 9.9 ± 1.3 years) with high lag randomized to wearing single-vision lenses (SVLs) or PALs. Accommodative lag was measured with the following corrections: habitual, manifest, manifest with +2.00-D add, and habitual with +2.00-D add (6-month visit only). At baseline, accommodative lag was higher (1.72 ± 0.37 D; mean ± SD) when measured with manifest correction than with habitual correction (1.51 ± 0.50; P < 0.05). This higher lag with manifest correction correlated with a larger amount of habitual undercorrection at baseline (r = -0.29, P = 0.009). A +2.00-D add over the manifest correction reduced lag by 0.45 ± 0.34 D at baseline and 0.33 ± 0.38 D at the 6-month visit. Lag results at 6 months were not different between PAL and SVL wearers (P = 0.92). A +2.00-D bifocal add did not eliminate accommodative lag and reduced lag by less than 25% of the bifocal power, indicating that children mainly responded to a bifocal by decreasing accommodation. If myopic progression is substantial, measuring lag with full correction can overestimate the hyperopic retinal blur that a child most recently experienced. (ClinicalTrials.gov number, NCT00335049.).

  3. The Effect of Bifocal Add on Accommodative Lag in Myopic Children with High Accommodative Lag

    PubMed Central

    Mutti, Donald O.; Zadnik, Karla

    2010-01-01

    Purpose. To determine the effect of a bifocal add and manifest correction on accommodative lag in myopic children with high accommodative lag, who have been reported to have the greatest reduction in myopia progression with progressive addition lenses (PALs). Methods. Monocular accommodative lag to a 4-D Badal stimulus was measured on two occasions 6 months apart in 83 children (mean ± SD age, 9.9 ± 1.3 years) with high lag randomized to wearing single-vision lenses (SVLs) or PALs. Accommodative lag was measured with the following corrections: habitual, manifest, manifest with +2.00-D add, and habitual with +2.00-D add (6-month visit only). Results. At baseline, accommodative lag was higher (1.72 ± 0.37 D; mean ± SD) when measured with manifest correction than with habitual correction (1.51 ± 0.50; P < 0.05). This higher lag with manifest correction correlated with a larger amount of habitual undercorrection at baseline (r = −0.29, P = 0.009). A +2.00-D add over the manifest correction reduced lag by 0.45 ± 0.34 D at baseline and 0.33 ± 0.38 D at the 6-month visit. Lag results at 6 months were not different between PAL and SVL wearers (P = 0.92). Conclusions. A +2.00-D bifocal add did not eliminate accommodative lag and reduced lag by less than 25% of the bifocal power, indicating that children mainly responded to a bifocal by decreasing accommodation. If myopic progression is substantial, measuring lag with full correction can overestimate the hyperopic retinal blur that a child most recently experienced. (ClinicalTrials.gov number, NCT00335049.) PMID:20688729

  4. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  5. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  6. Solar Spectral Irradiance at 782 nm as Measured by the SES Sensor Onboard Picard

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Hauchecorne, A.; Irbah, A.; Cessateur, G.; Bekki, S.; Damé, L.; Bolsée, D.; Pereira, N.

    2016-04-01

    Picard is a satellite dedicated to the simultaneous measurement of the total and solar spectral irradiance, the solar diameter, the solar shape, and to the Sun's interior through the methods of helioseismology. The satellite was launched on June 15, 2010, and pursued its data acquisitions until March 2014. A Sun Ecartometry Sensor (SES) was developed to provide the stringent pointing requirements of the satellite. The SES sensor produced an image of the Sun at 782 ± 2.5 nm. From the SES data, we obtained a new time series of the solar spectral irradiance at 782 nm from 2010 to 2014. During this period of Solar Cycle 24, the amplitude of the changes has been of the order of ± 0.08 %, corresponding to a range of about 2× 10^{-3} W m^{-2} nm^{-1}. SES observations provided a qualitatively consistent evolution of the solar spectral irradiance variability at 782 nm. SES data show similar amplitude variations with the semi-empirical model Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S), whereas the Spectral Irradiance Monitor instrument (SIM) onboard the SOlar Radiation and Climate Experiment satellite (SORCE) highlights higher amplitudes.

  7. The development of interindividual sharing of knowledge and beliefs in 5- to 9-year-old children.

    PubMed

    Bradmetz, Joël; Gauthier, Cécile

    2005-03-01

    The authors studied the evolution of interindividual intentionality in children and showed that the sharing of knowledge and beliefs requires more complex operations than those involved in usual false-belief tasks. The authors conducted 3 experiments on 380 children (aged 5 years, 0 months to 9 years, 6 months). They assessed the children's ability to attribute to a character an intended action that was compatible with the belief held by another character interacting with that character. The observed lag in performances is explained both in terms of information processing and at the Piagetian concrete operational level.

  8. The effect of control and display lag on unmanned air system internal pilot manual landing performance

    NASA Astrophysics Data System (ADS)

    Lloyd, Marshall Everett

    An important characteristic of UASs is lag because it can become a considerable challenge to successful human-in-the-loop control. As such, UASs are designed and configured to minimize system lag, though this can increase acquisition and operation costs considerably. In an effort to cut costs, an organization may choose to accept greater risk and deploy a UAS with high system lag. Before this risk can be responsibly accepted, it must be quantified. While many studies have examined system lag, very few have been able to quantify the risk that various levels of lag pose to an internally piloted, manually landed UAS. This study attempted to do so by evaluating pilot landing performance in a simulator with 0 ms, 240 ms, and 1000 ms of additional lag. Various measures were used, including a novel coding technique. Results indicated that 1000 ms of lag was unsafe by all measures. They also indicate that 240 ms of lag degrades performance, but participants were able to successfully land the simulated aircraft. This study showed the utility of using several measures to evaluate the effect of lag on landing performance and it helped demonstrate that while 1000 ms poses a high risk, 240 ms of lag may be a much more manageable risk. Future research suggested by this research includes: investigating lag between 240 ms and 1000 ms, introducing different weather phenomena, developing system lag training techniques for operators, and investigating the effect of aides such as predictive displays and autopilot-assisted recovery.

  9. Improving the effectiveness of an interruption lag by inducing a memory-based strategy.

    PubMed

    Morgan, Phillip L; Patrick, John; Tiley, Leyanne

    2013-01-01

    The memory for goals model (Altmann & Trafton, 2002) posits the importance of a short delay (the 'interruption lag') before an interrupting task to encode suspended goals for retrieval post-interruption. Two experiments used the theory of soft constraints (Gray, Simms, Fu & Schoelles, 2006) to investigate whether the efficacy of an interruption lag could be improved by increasing goal-state access cost to induce a more memory-based encoding strategy. Both experiments used a copying task with three access cost conditions (Low, Medium, and High) and a 5-s interruption lag with a no lag control condition. Experiment 1 found that the participants in the High access cost condition resumed more interrupted trials and executed more actions correctly from memory when coupled with an interruption lag. Experiment 2 used a prospective memory test post-interruption and an eyetracker recorded gaze activity during the interruption lag. The participants in the High access cost condition with an interruption lag were best at encoding target information during the interruption lag, evidenced by higher scores on the prospective memory measure and more gaze activity on the goal-state during the interruption lag. Theoretical and practical issues regarding the use of goal-state access cost and an interruption lag are discussed. Copyright © 2012. Published by Elsevier B.V.

  10. Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke.

    PubMed

    Jiménez-Xarrié, Elena; Davila, Myriam; Candiota, Ana Paula; Delgado-Mederos, Raquel; Ortega-Martorell, Sandra; Julià-Sapé, Margarida; Arús, Carles; Martí-Fàbregas, Joan

    2017-01-13

    Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier. A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier ( http://gabrmn.uab.es/?q=sc ). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and mobile lipids (0.85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine (3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity). SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content).

  11. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 um

    NASA Astrophysics Data System (ADS)

    Jelínková, Helena; Doroshenko, Maxim E.; Šulc, Jan; Němec, Michal; Jelínek, Michal; Osiko, Vjatcheslav V.; Badikov, Valerii V.; Badikov, Dmitri V.

    2016-03-01

    On the basis of our previous Dy3+:PbGa2S4 laser study, laser output wavelength temporal evolution as well as tuning possibilities in the range 4.3-4.7 μm were investigated. Active crystal was pumped by a fiber-coupled Brightlase Ultra- 50 diode laser (1.7 μm, max. power 7.5 W). Laser resonator was formed by flat dichroic pumping mirror (T = 70%@1.7 μm, R~100% @ 3.5 - 5 μm) and a concave (r = 200 mm) output coupler with R~99% @ 3.5 - 5 μm. The laser output wavelength dependence on the pump pulse duration and its evolution during the pulse was investigated first without any spectrally-selective element in the cavity. At pump pulse duration of 1 ms, generation just near Dy3+ fluorescence maximum of 4.35 μm has been observed. Prolongation of the pulse up to 5 ms led to similar lasing at 4.35 μm in the first millisecond, followed by simultaneous generation at 4.35 and 4.38 μm in the next millisecond, and further lasing at 4.6 μm till the end of the pump pulse. Increase of pump pulse duration up to 10 ms led to similar oscillation pulse development followed by generation at 4.6 μm only. Furthermore, output wavelength tuning using MgF2 birefringent filter as a cavity spectral selective element was investigated under 10 ms pumping. Almost continuous tuning without any significant dip has been observed within spectral range from 4.3 up to 4.7 μm. Due to practically closed cavity mean output power in the maximum of tuning curve was in the order of 400 μW.

  12. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.

    PubMed

    Stloukal, Petr; Pekařová, Silvie; Kalendova, Alena; Mattausch, Hannelore; Laske, Stephan; Holzer, Clemens; Chitu, Livia; Bodner, Sabine; Maier, Guenther; Slouf, Miroslav; Koutny, Marek

    2015-08-01

    The degradation mechanism and kinetics of polylactic acid (PLA) nanocomposite films, containing various commercially available native or organo-modified montmorillonites (MMT) prepared by melt blending, were studied under composting conditions in thermophilic phase of process and during abiotic hydrolysis and compared to the pure polymer. Described first order kinetic models were applied on the data from individual experiments by using non-linear regression procedures to calculate parameters characterizing aerobic composting and abiotic hydrolysis, such as carbon mineralization, hydrolysis rate constants and the length of lag phase. The study showed that the addition of nanoclay enhanced the biodegradation of PLA nanocomposites under composting conditions, when compared with pure PLA, particularly by shortening the lag phase at the beginning of the process. Whereas the lag phase of pure PLA was observed within 27days, the onset of CO2 evolution for PLA with native MMT was detected after just 20days, and from 13 to 16days for PLA with organo-modified MMT. Similarly, the hydrolysis rate constants determined tended to be higher for PLA with organo-modified MMT, particularly for the sample PLA-10A with fastest degradation, in comparison with pure PLA. The acceleration of chain scission in PLA with nanoclays was confirmed by determining the resultant rate constants for the hydrolytical chain scission. The critical molecular weight for the hydrolysis of PLA was observed to be higher than the critical molecular weight for onset of PLA mineralization, suggesting that PLA chains must be further shortened so as to be assimilated by microorganisms. In conclusion, MMT fillers do not represent an obstacle to acceptance of the investigated materials in composting facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Relationship between anaerobic digestion of biodegradable solid waste and spectral characteristics of the derived liquid digestate.

    PubMed

    Zheng, Wei; Lü, Fan; Phoungthong, Khamphe; He, Pinjing

    2014-06-01

    The evolution of spectral properties during anaerobic digestion (AD) of 29 types of biodegradable solid waste was investigated to determine if spectral characteristics could be used for assessment of biological stabilization during AD. Biochemical methane potential tests were conducted and spectral indicators (including the ratio of ultraviolet-visible absorbance at 254nm to dissolved organic carbon concentration (SUVA254), the ratio of ultraviolet-visible absorbance measured at 465nm and 665nm (E4/E6), and the abundance of fluorescence peaks) were measured at different AD phases. Inter-relationship between organic degradation and spectral indicators were analyzed by principle component analysis. The results shows that from methane production phase to the end of methane production phase, SUVA254 increased by 0.16-10.93 times, the abundance of fulvic acid-like compounds fluorescence peak increased by 0.01-0.54 times, the abundance of tyrosine fluorescence peak decreased by 0.03-0.64 times. Therefore, these indicators were useful to judge the course of mixed waste digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of lag time distribution on the lag phase of bacterial growth - a Monte Carlo analysis

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to use Monte Carlo simulation to evaluate the effect of lag time distribution of individual bacterial cells incubated under isothermal conditions on the development of lag phase. The growth of bacterial cells of the same initial concentration and mean lag phase durati...

  15. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  16. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  17. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  18. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  19. 46 CFR 36.30-1 - Lagged tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Lagged tanks-TB/ALL. 36.30-1 Section 36.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Periodic Inspections § 36.30-1 Lagged tanks—TB/ALL. (a) Lagged tanks shall have part of the lagging removed on the...

  20. Spectral and timing properties of atoll source 4U 1705-44: LAXPC/AstroSat results

    NASA Astrophysics Data System (ADS)

    Agrawal, V. K.; Nandi, Anuj; Girish, V.; Ramadevi, M. C.

    2018-07-01

    In this paper, we present the first results of spectral and timing properties of the atoll source 4U 1705-44 using ˜100 ks data obtained with the Large Area X-ray Proportional Counter (LAXPC) onboard AstroSat. The source was in the high soft state during our observations and traced out a banana track in the hardness intensity diagram (HID). We study the evolution of the power density spectra (PDS) and the energy spectra along the HID. PDS show the presence of a broad Lorentzian feature (peaked noise or PN) centred at 1-13 Hz and very low-frequency noise (VLFN). The energy spectra can be described by the sum of a thermal Comptonized component, a power-law and a broad iron line. The hard tail seen in the energy spectra is variable and contributes 4-30 per cent of the total flux. The iron line seen in this source is broad (FWHM ˜ 2 keV) and strong (EW ˜ 369-512 eV). Relativistic smearing in the accretion disc cannot explain the origin of this feature on its own and another mechanism is required, such as broadening by the Comptonization process in the external part of the `Comptonized corona'. A subtle and systematic evolution of the spectral parameters (optical depth, electron temperature etc.) is seen as the source moves along the HID. We study the correlation between the frequency of the PN and the spectral parameters. The PN frequency seems to be correlated with the strength of the corona. We discuss the implication of these results.

  1. Spectral evolution with doping of an antiferromagnetic Mott state

    NASA Astrophysics Data System (ADS)

    Wu, Huan-Kuang; Lee, Ting-Kuo

    2017-01-01

    Since the discovery of half-filled cuprate to be a Mott insulator, the excitation spectra above the chemical potential for the unoccupied states has attracted much research attention. There were many theoretical works using different numerical techniques to study this problem, but many have reached different conclusions. One of the reasons is the lack of very detailed high-resolution experimental results for the theories to be compared with. Recently, the scanning tunneling spectroscopy [P. Cai et al., Nat. Phys. 12, 1047 (2016), 10.1038/nphys3840; C. Ye et al., Nat. Commun. 4, 1365 (2013), 10.1038/ncomms2369] on lightly doped Mott insulator with an antiferromagnetic order found the presence of in-gap states with energy of order half an eV above the chemical potential. The measured spectral properties with doping are not quite consistent with earlier theoretical works. Although the experiment has disorder and localization effect, but for the energy scale we will study here, a model without disorder is sufficed to illustrate the underlying physics. We perform a diagonalization method on top of the variational Monte Carlo calculation to study the evolution of antiferromagnetic Mott state with doped hole concentration in the Hubbard model. Our results found in-gap states that behave similarly with ones reported by STS. These in-gap states acquire a substantial amount of dynamical spectral weight transferred from the upper Hubbard band. The in-gap states move toward chemical potential with increasing spectral weight as doping increases. Our result also provides information about the energy scale of these in-gap states in relation with the Coulomb coupling strength U .

  2. ℓ0 -based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Shi, Zhenwei; Pan, Bin

    2018-07-01

    Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.

  3. Spacing and lag effects in free recall of pure lists.

    PubMed

    Kahana, Michael J; Howard, Marc W

    2005-02-01

    Repeating list items leads to better recall when the repetitions are separated by several unique items than when they are presented successively; the spacing effect refers to improved recall for spaced versus successive repetition (lag > 0 vs. lag = 0); the lag effect refers to improved recall for long lags versus short lags. Previous demonstrations of the lag effect have utilized lists containing a mixture of items with varying degrees of spacing. Because differential rehearsal of items in mixed lists may exaggerate any effects of spacing, it is important to demonstrate these effects in pure lists. As in Toppino and Schneider (1999), we found an overall advantage for recall of spaced lists. We further report the first demonstration of a lag effect in pure lists, with significantly better recall for lists with widely spaced repetitions than for those with moderately spaced repetitions.

  4. Probing the evolution, ecology and physiology of marine protists using transcriptomics.

    PubMed

    Caron, David A; Alexander, Harriet; Allen, Andrew E; Archibald, John M; Armbrust, E Virginia; Bachy, Charles; Bell, Callum J; Bharti, Arvind; Dyhrman, Sonya T; Guida, Stephanie M; Heidelberg, Karla B; Kaye, Jonathan Z; Metzner, Julia; Smith, Sarah R; Worden, Alexandra Z

    2017-01-01

    Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future.

  5. Asymmetric injection and distribution of space charges in propylene carbonate under impulse voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Chen, Qiulin; Sun, Potao; Yang, Ming; Guo, Hongda; Ye, Lian

    2018-05-01

    Space charge can distort the electric field in high voltage stressed liquid dielectrics and lead to breakdown. Observing the evolution of space charge in real time and determining the influencing factors are of considerable significance. The spatio-temporal evolution of space charge in propylene carbonate, which is very complex under impulse voltage, was measured in this study through the time-continuous Kerr electro-optic field mapping measurement. We found that the injection charge from a brass electrode displayed an asymmetric effect; that is, the negative charge injection near the cathode lags behind the positive charge injection near the anode. Physical mechanisms, including charge generation and drift, are analyzed, and a voltage-dependent saturated drift rectification model was established to explain the interesting phenomena. Mutual validation of models and our measurement data indicated that a barrier layer, which is similar to metal-semiconductor contact, was formed in the contact interface between the electrode and propylene carbonate and played an important role in the space charge injection.

  6. Modeling evolution of the mind and cultures: emotional Sapir-Whorf hypothesis

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2009-05-01

    Evolution of cultures is ultimately determined by mechanisms of the human mind. The paper discusses the mechanisms of evolution of language from primordial undifferentiated animal cries to contemporary conceptual contents. In parallel with differentiation of conceptual contents, the conceptual contents were differentiated from emotional contents of languages. The paper suggests the neural brain mechanisms involved in these processes. Experimental evidence and theoretical arguments are discussed, including mathematical approaches to cognition and language: modeling fields theory, the knowledge instinct, and the dual model connecting language and cognition. Mathematical results are related to cognitive science, linguistics, and psychology. The paper gives an initial mathematical formulation and mean-field equations for the hierarchical dynamics of both the human mind and culture. In the mind heterarchy operation of the knowledge instinct manifests through mechanisms of differentiation and synthesis. The emotional contents of language are related to language grammar. The conclusion is an emotional version of Sapir-Whorf hypothesis. Cultural advantages of "conceptual" pragmatic cultures, in which emotionality of language is diminished and differentiation overtakes synthesis resulting in fast evolution at the price of self doubts and internal crises are compared to those of traditional cultures where differentiation lags behind synthesis, resulting in cultural stability at the price of stagnation. Multi-language, multi-ethnic society might combine the benefits of stability and fast differentiation. Unsolved problems and future theoretical and experimental directions are discussed.

  7. Bluff evolution along coastal drumlins: Boston Harbor Islands, Massachusetts

    USGS Publications Warehouse

    Himmelstoss, E.A.; FitzGerald, D.M.; Rosen, P.S.; Allen, J.R.

    2006-01-01

    A series of partially drowned drumlins forms the backbone of the inner islands within Boston Harbor. The shoreline of these rounded glacial deposits is composed of actively retreating bluffs formed by continual wave attack. Comparisons of bluffs reveal variability in their height and lateral extent, as well as in the dominant mechanism causing their retreat. Two processes are responsible for bluff erosion and yield distinct bluff morphologies: (1) wave attack undercuts the bluff and causes episodic slumping, yielding planar bluff slopes, and (2) subaerial processes such as rainfall create irregular slopes characterized by rills and gullies. We propose a model of drumlin bluff evolution that is based on processes of erosion and physical characteristics such as bluff height, slope morphology, and the orientation of the bluff with respect to the long axis of the drumlin and its topographic crest. The four phases of drumlin bluff evolution consist of (1) initial formation of bluff, with retreat dominated by wave notching and slumping processes; (2) rill and gully development as bluff heights exceed 10 m and slumped sediment at bluff base inhibits wave attack; (3) return of wave notching and slumping as bluff heights decrease; and (4) final development of boulder retreat lag as last remnants of drumlin are eroded by wave action. These phases capture the important physical processes of drumlin evolution in Boston Harbor and could apply to other eroding coastal drumlin deposits.

  8. Emergence and temporal structure of Lead-Lag correlations in collective stock dynamics

    NASA Astrophysics Data System (ADS)

    Xia, Lisi; You, Daming; Jiang, Xin; Chen, Wei

    2018-07-01

    Understanding the correlations among stock returns is crucial for reducing the risk of investment in stock markets. As an important stylized correlation, lead-lag effect plays a major role in analyzing market volatility and deriving trading strategies. Here, we explore historical lead-lag relationships among stocks in the Chinese stock market. Strongly positive lagged correlations can be empirically observed. We demonstrate this lead-lag phenomenon is not constant but temporally emerges during certain periods. By introducing moving time window method, we transform the lead-lag dynamics into a series of asymmetric lagged correlation matrices. Dynamic lead-lag structures are uncovered in the form of temporal network structures. We find that the size of lead-lag group experienced a rapid drop during the year 2012, which signaled a re-balance of the stock market. On the daily timescale, we find the lead-lag structure exhibits several persistent patterns, which can be characterized by the Jaccard matrix. We show significant market events can be distinguished in the Jaccard matrix diagram. Taken together, we study an integration of all the temporal networks and identify several leading stock sectors, which are in accordance with the common Chinese economic fundamentals.

  9. Evolution of CMB spectral distortion anisotropies and tests of primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Dimastrogiovanni, Emanuela; Amin, Mustafa A.; Kamionkowski, Marc

    2017-04-01

    Anisotropies in distortions to the frequency spectrum of the cosmic microwave background (CMB) can be created through spatially varying heating processes in the early Universe. For instance, the dissipation of small-scale acoustic modes does create distortion anisotropies, in particular for non-Gaussian primordial perturbations. In this work, we derive approximations that allow describing the associated distortion field. We provide a systematic formulation of the problem using Fourier-space window functions, clarifying and generalizing previous approximations. Our expressions highlight the fact that the amplitudes of the spectral-distortion fluctuations induced by non-Gaussianity depend also on the homogeneous value of those distortions. Absolute measurements are thus required to obtain model-independent distortion constraints on primordial non-Gaussianity. We also include a simple description for the evolution of distortions through photon diffusion, showing that these corrections can usually be neglected. Our formulation provides a systematic framework for computing higher order correlation functions of distortions with CMB temperature anisotropies and can be extended to describe correlations with polarization anisotropies.

  10. Patterns of a spatial exploration under time evolution of the attractiveness: Persistent nodes, degree distribution, and spectral properties

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto

    2018-06-01

    This work explores the features of a graph generated by agents that hop from one node to another node, where the nodes have evolutionary attractiveness. The jumps are governed by Boltzmann-like transition probabilities that depend both on the euclidean distance between the nodes and on the ratio (β) of the attractiveness between them. It is shown that persistent nodes, i.e., nodes that never been reached by this special random walk are possible in the stationary limit differently from the case where the attractiveness is fixed and equal to one for all nodes (β = 1). Simultaneously, one also investigates the spectral properties and statistics related to the attractiveness and degree distribution of the evolutionary network. Finally, a study of the crossover between persistent phase and no persistent phase was performed and it was also observed the existence of a special type of transition probability which leads to a power law behaviour for the time evolution of the persistence.

  11. Spectral Dependence of Stratified Electrothermal Instability in Tamped Aluminum 6061 with Current in a Skin Layer

    NASA Astrophysics Data System (ADS)

    Bauer, Bruno; Hutchinson, Trevor; Awe, Thomas

    2017-10-01

    The stratified electrothermal instability (ETI) was recently observed on the surface of thick aluminum 6061 pulsed with rapidly rising lineal current density (3 ×1015 A m-1s-1) for 70 ns. A transparent 70- μm-thick Parylene-N coating tamped the aluminum expansion and suppressed surface plasma. The evolution of the aluminum surface emission pattern was recorded with time-resolved microscopy (3- μm resolution). The images were converted into a series of blackbody surface-temperature maps. Analysis of these temperature maps provides information on the evolution of temperature fluctuations, as a function of axial wavelength and azimuthal width. Perturbations with axial wavelength longer than 20 μm grow, while those with axial wavelength shorter than 10 μm decay. Comparing the spectral dependence of growth/decay rates with MHD simulations could test the modeling of ETI positive feedback and of damping by thermal conduction. Work supported by Sandia National Laboratories LDRD program, PO 1742766.

  12. The Timing Evolution of 4U 1630-47 During its Outbursts

    NASA Technical Reports Server (NTRS)

    Dieters, S. W.; Belloni, T.; Kuulkers, E.; Woods, P.; vanParadijs, J.; Cui, W.; Swank, J. H.; Zhang, S.-N.

    1999-01-01

    We report on the timing analysis of Rossi X-ray Timing Explorer (RXTE) observations of 4U 1630-47 made during its 1998 outburst. In addition we use two BeepoSAX observation on the late decline. 4U1630-47 showed seven distinct types of timing behaviour, most of which show differences with the canonical black hole spectral/timing states. In marked contrast to previous outbursts we find quasi periodic oscillation (QPO) signals during nearly all stages of the outburst. In addition to 2 to 13 Hz QPO slow 0.01Hz QPO are observed. These slow QPO can dominate the light curve as quasi-regular 5 sec, 9--16% deep dips. During these dips we track the behaviour of two QPO's; one remaining constant near 13.5 Hz and the other varying between 7 and 4 Hz. The evolution of the timing and the concurrent spectral changes are mapped using a combination harness-intensity and colour-colour diagrams.

  13. A numerical and experimental study on the nonlinear evolution of long-crested irregular waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701

    2011-01-15

    The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less

  14. Indications of negative evolution for the sources of the highest energy cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less

  15. Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma

    PubMed Central

    Yang, Zhi-Zhang; Kim, Hyo Jin; Villasboas, Jose C.; Chen, Ya-Ping; Price-Troska, Tammy; Jalali, Shahrzad; Wilson, Mara; Novak, Anne J.; Ansell, Stephen M.

    2017-01-01

    Exhausted T-cells in follicular lymphoma (FL) typically express PD-1, but expression of PD-1 is not limited to exhausted cells. Although expected to be functionally suppressed, we found that the population of intratumoral PD-1+ T cells were predominantly responsible for production of cytokines and granules. This surprising finding prompted us to explore the involvement of LAG-3 to specifically identify functionally exhausted T cells. We found that LAG-3 was expressed on a subset of intratumoral T cells from FL and LAG-3+ T cells almost exclusively came from PD-1+ population. CyTOF analysis revealed that intratumoral LAG-3+ T cells were phenotypically heterogeneous as LAG-3 was expressed on a variety of T cell subsets. In contrast to PD-1+LAG-3- cells, intratumoral PD-1+LAG-3+ T cells exhibited reduced capacity to produce cytokines and granules. LAG-3 expression could be substantially upregulated on CD4+ or CD8+ T cells by IL-12, a cytokine that has been shown to induce T-cell exhaustion and be increased in the serum of lymphoma patients. Furthermore, we found that blockade of both PD-1 and LAG-3 signaling enhanced the function of intratumoral CD8+ T cells resulting in increased IFN-γ and IL-2 production. Clinically, LAG-3 expression on intratumoral T cells correlated with a poor outcome in FL patients. Taken together, we find that LAG-3 expression is necessary to identify the population of intratumoral PD-1+ T cells that are functionally exhausted and, in contrast, find that PD-1+LAG-3- T cells are simply activated cells that are immunologically functional. These findings may have important implications for immune checkpoint therapy in FL. PMID:28977875

  16. Investigation of mixed ionospheric and fround scatter using high spectral content pulse sequences for SuperDARN radars

    NASA Astrophysics Data System (ADS)

    Spaleta, J.; Bristow, W. A.

    2013-12-01

    SuperDARN radars estimate plasma drift velocities from the Doppler shift observed on signals scattered from field-aligned density irregularities. These field-aligned density irregularities are embedded in the ionospheric plasma, and move at the same velocity as background plasma. As a result, the electromagnetic signals scattered from these irregularities are Doppler shifted. The SuperDARN radars routinely observe ionospheric scatter Doppler velocities ranging from zero to thousands of meters per second. The radars determine the Doppler shift of the ionospheric scatter by linear fitting the phase of an auto correlation function derived from the radar pulse sequence. The phase fitting technique employed assumes a single dominant velocity is present in the signal. In addition, the SuperDARN radars can also observe signals scattered from the ground. Once refracted by the ionospheric plasma and bent earthward, the radar pulses eventually reach the ground where they scatter, sending signal back to the radar. This ground-scatter signal is characterized as having a low Doppler shift and low spectral width. The SuperDARN radars are able to use these signal characteristics to discriminate the ground scatter signal from the ionospheric scatter, when regions of ground scatter are isolated from ionospheric scatter returns. The phase fitting assumption of a single dominate target can easily be violated at ranges where ground and ionospheric scatter mix together. Due to the wide elevation angle extent of the SuperDARN radar design, ground and ionospheric scatter from different propagation paths can mix together in the return signal. When this happens, the fitting algorithm attempts to fit to the dominant signal, and if ground scatter dominates, information about the ionospheric scatter at that range can be unresolved. One way to address the mix scatter situation is to use a high spectral content pulse sequence together with a spectral estimation technique. The high spectral content pulse sequence consists of twice as many pulses and five times as many distinct lags over which to calculate the auto correlation function. This additional spectral information makes it possible to use spectral estimator techniques, that are robust against aperiodic time series data, to calculate the existence of multiple scatter modes in the signal. A comparison of the operation of the traditional SuperDARN pulse sequence and high spectral content pulse sequence will be presented for both synthetic examples and real SuperDARN radar mixed scatter situation.

  17. Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst

    NASA Technical Reports Server (NTRS)

    Bruggmann, G.; Vilmer, N.; Klein, K.-L.; Kane, S. R.

    1994-01-01

    Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a 'second step' process. The information available so far was drawn from quality considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basis hypothesis investigated is that the peculiar 'gradual' features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April. 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilization of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.

  18. On the phase lag of turbulent dissipation in rotating tidal flows

    NASA Astrophysics Data System (ADS)

    Zhang, Qianjiang; Wu, Jiaxue

    2018-03-01

    Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.

  19. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  20. Raman studied of undoped amorphous carbon thin film deposited by bias assisted-CVD

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.

    2018-05-01

    The undoped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The effect of different substrate deposition temperatures on structural and electrical properties of undoped doped amorphous carbon film was discussed. The structural of undoped amorphous carbon films were correlated with Raman analysis through the evolution of D and G bands, Fourier spectra, and conductivity measurement. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. The spectral evolution observed at different substrate deposition temperatures show progressive formation of crystallites. It was predicted that small number of hydrogen is terminated with carbon at surface of thin film as shown by FTIR spectra since palm oil has high number of hydrogen (C67H127O8). These structural changes were further correlated with conductivity and the results obtained are discussed and compared. The conductivity is found in the range of 10-8 Scm-1. The increase of conductivity is correlated by the change of structural properties as correlated with characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG and FTIR result.

  1. An examination of astrophysical habitats for targeted SETI

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.; Mckay, Christopher P.; Reynolds, Ray T.; Whitmire, Daniel P.; Matese, John J.

    1991-01-01

    Planetary atmospheric radiative transfer models have recently given valuable insights into the definition of the solar system's ecoshell. In addition, however, results have indicated that constraints on solar evolution also need to be addressed, with even minor solar variations, (mass loss, for example), having important consequences from an exobiological standpoint. Following the definition of the solar system's ecoshell evolution, the ecoshells around different stellar spectral types can then be modeled. In this study the astrophysical constraints on the definition of ecoshells and possible exobiological habitats includes: (1) the investigation of the evolution of the solar system's ecoshell under different initial solar/stellar model conditions as indicated by both solar abundance considerations as well as planetary evidence; (2) an outline of considerations necessary to define the ecoshells around the most abundant spectral-type stars, the K and M stars looking at the effects on exobiological habitats of planetary rotational tidal locking effects, and stellar flare/chromospheric-activity cycles, among other effects; (3) a preliminary examination of the factors defining the expected ecoshells around binary stars determining the of regular stellar eclipses, and the expected shortening of the semi-major axis. These results can then be applied to the targeted microwave search for extraterrestrial intelligent signals by constraining the ecoshell space in the solar neighborhood.

  2. Complex patterns of divergence among green-sensitive (RH2a) African cichlid opsins revealed by Clade model analyses

    PubMed Central

    2012-01-01

    Background Gene duplications play an important role in the evolution of functional protein diversity. Some models of duplicate gene evolution predict complex forms of paralog divergence; orthologous proteins may diverge as well, further complicating patterns of divergence among and within gene families. Consequently, studying the link between protein sequence evolution and duplication requires the use of flexible substitution models that can accommodate multiple shifts in selection across a phylogeny. Here, we employed a variety of codon substitution models, primarily Clade models, to explore how selective constraint evolved following the duplication of a green-sensitive (RH2a) visual pigment protein (opsin) in African cichlids. Past studies have linked opsin divergence to ecological and sexual divergence within the African cichlid adaptive radiation. Furthermore, biochemical and regulatory differences between the RH2aα and RH2aβ paralogs have been documented. It thus seems likely that selection varies in complex ways throughout this gene family. Results Clade model analysis of African cichlid RH2a opsins revealed a large increase in the nonsynonymous-to-synonymous substitution rate ratio (ω) following the duplication, as well as an even larger increase, one consistent with positive selection, for Lake Tanganyikan cichlid RH2aβ opsins. Analysis using the popular Branch-site models, by contrast, revealed no such alteration of constraint. Several amino acid sites known to influence spectral and non-spectral aspects of opsin biochemistry were found to be evolving divergently, suggesting that orthologous RH2a opsins may vary in terms of spectral sensitivity and response kinetics. Divergence appears to be occurring despite intronic gene conversion among the tandemly-arranged duplicates. Conclusions Our findings indicate that variation in selective constraint is associated with both gene duplication and divergence among orthologs in African cichlid RH2a opsins. At least some of this variation may reflect an adaptive response to differences in light environment. Interestingly, these patterns only became apparent through the use of Clade models, not through the use of the more widely employed Branch-site models; we suggest that this difference stems from the increased flexibility associated with Clade models. Our results thus bear both on studies of cichlid visual system evolution and on studies of gene family evolution in general. PMID:23078361

  3. Nanoflare vs Footpoint Heating : Observational Signatures

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy; Alexander, Caroline; Lionello, Roberto; Linker, Jon; Mikic, Zoran; Downs, Cooper

    2015-01-01

    Time lag analysis shows very long time lags between all channel pairs. Impulsive heating cannot address these long time lags. 3D Simulations of footpoint heating shows a similar pattern of time lags (magnitude and distribution) to observations. Time lags and relative peak intensities may be able to differentiate between TNE and impulsive heating solutions. Adding a high temperature channel (like XRT Be-­thin) may improve diagnostics.

  4. Function and regulation of LAG3 on CD4+CD25- T cells in non-small cell lung cancer.

    PubMed

    Ma, Qin-Yun; Huang, Da-Yu; Zhang, Hui-Jun; Wang, Shaohua; Chen, Xiao-Feng

    2017-11-15

    LAG3 is a surface molecule found on a subset of immune cells. The precise function of LAG3 appears to be context-dependent. In this study, we investigated the effect of LAG3 on CD4 + CD25 - T cells from non-small cell lung cancer (NSCLC) patients. We found that in the peripheral blood mononuclear cells of NSCLC patients, LAG3 was significantly increased in CD4 + T cells directly ex vivo and primarily in the CD4 + CD25 - fraction, which was regulated by prolonged TCR stimulation and the presence of IL-27. TCR stimulation also increased CD25 expression, but not Foxp3 expression, in LAG3-expressing CD4 + CD25 - cells Compared to LAG3-nonexpressing CD4 + CD25 - cells, LAG3-expressing CD4 + CD25 - cells presented significantly higher levels of PD1 and TIM3, two inhibitory receptors best described in exhausted CD8 + T effector cells. LAG3-expressing CD4 + CD25 - cells also presented impaired proliferation compared with LAG3-nonexpressing CD4 + CD25 - cells but could be partially rescued by inhibiting both PD1 and TIM3. Interestingly, CD8 + T cells co-incubated with LAG3-expressing CD4 + CD25 - cells at equal cell numbers demonstrated significantly lower proliferation than CD8 + T cells incubated alone. Co-culture with CD8 + T cell and LAG3-expressing CD4 + CD25 - T cell also upregulated soluble IL-10 level in the supernatant, of which the concentration was positively correlated with the number of LAG3-expressing CD4 + CD25 - T cells. In addition, we found that LAG3-expressing CD4 + CD25 - T cells infiltrated the resected tumors and were present at higher frequencies of in metastases than in primary tumors. Taken together, these data suggest that LAG3-expressing CD4 + CD25 - T cells represent another regulatory immune cell type with potential to interfere with anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Spectral shifts as a signature of the onset of diffusion of broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-12-15

    We describe measurements of polarization dynamics as a probe of multiple scattering of photons in a random medium by use of single-cycle terahertz pulses. We measure the degree of polarization and correlate it directly with the single-scattering regime in the time domain. We also measure the evolution of the temporal phase of the radiation and show that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect can be used to distinguish photons that have been scattered a few times from those that are propagating diffusively.

  6. The influence of a local wall deformation on the development of natural instabilities in a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Burnel, S.; Gougat, P.; Martin, F.

    1981-01-01

    The natural instabilities which propagate in the laminar boundary layer of a flat plate composed of intermittent wave trains are described. A spectral analysis determines the frequency range and gives a frequency and the harmonic 2 only if there is a wall deformation. This analysis provides the amplitude modulation spectrum of the instabilities. Plots of the evolution of power spectral density are compared with the numerical results obtained from the resolve of the Orr-Sommerfeld equation, while the harmonic is related to a micro-recirculating flow near the wall deformation.

  7. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  8. The solar spectral irradiances from x ray to radio wavelengths

    NASA Technical Reports Server (NTRS)

    White, O. R.

    1993-01-01

    Sources of new measurements of the solar EUV, UV, and visible spectrum are presented together with discussion of formation of the solar spectrum as a problem in stellar atmospheres. Agreement between the data and a modern synthetic spectrum shows that observed radiative variability is a minor perturbation on a photosphere in radiative equilibrium and local thermodynamic equilibrium (LTE). Newly observed solar variability in 1992 defines a magnetic episode on the Sun closely associated with changes in both spectral irradiances and the total irradiance. This episode offers the opportunity to track the relationship between radiation and magnetic flux evolution.

  9. In-depth study of the pseudogap in artificial opals

    NASA Astrophysics Data System (ADS)

    Galisteo-Lopez, Juan F.; Lopez, Cefe

    2004-09-01

    In this work we present optical and structural characterisation of high-quality opal based photonic crystals consisting of polystyrene spheres ordered into a FCC lattice. By means of optical diffraction we orient our samples so that the evolution of its spectral features in reflectivity experiments may be probed along desired directions in reciprocal space. Prior to a comparison with calculated bands, finite size effects in the optical properties of the samples are taken into account. Further, attention is paid to the appearance of spectral features for energies above those where the characteristic Bragg peak is found.

  10. Spectral Analysis of the O(He)-Type Central Stars of the Planetary Nebulae K 1-27 and LoTr 4

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Ringat, E.; Rauch, T.; Werner, K.; Kruk, J. W.

    2011-01-01

    The four known O(He) stars are the only amongst the hottest post-AGB stars whose atmospheres are composed of almost pure helium. Thus, their evolution deviates from the hydrogen-defiCient post-AGB evolutionary sequence of carbon-dominated stars like e.g. PG 1159 stars. The origin of the O(He) stars is still not explained. They might be either post-early AGB stars or the progeny of R Coronae Borealis stars. We present preliminary results of a non-LTE spectral analysis based on FUSE and HST/COS observations.

  11. The millimagnitude variability of the HgMn star φ Phe

    NASA Astrophysics Data System (ADS)

    Prvák, M.; Krtička, J.; Korhonen, H.

    2018-01-01

    The horizontally inhomogeneous chemical composition of the atmospheres of the chemically peculiar stars causes wavelength redistribution of the spectral energy in areas with increased abundance of heavier elements. Due to the rotation of the star, this usually leads to strictly periodic photometric variability in some spectral regions. We used abundance maps of the HgMn star φ Phe (HD 11753), obtained by means of the Doppler imaging, to model its photometric variability. Comparing the light curves derived from abundance maps obtained at different times, we also study how the time evolution of the surface spots affects this variability.

  12. Quantum walks with an anisotropic coin I: spectral theory

    NASA Astrophysics Data System (ADS)

    Richard, S.; Suzuki, A.; Tiedra de Aldecoa, R.

    2018-02-01

    We perform the spectral analysis of the evolution operator U of quantum walks with an anisotropic coin, which include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. In particular, we determine the essential spectrum of U, we show the existence of locally U-smooth operators, we prove the discreteness of the eigenvalues of U outside the thresholds, and we prove the absence of singular continuous spectrum for U. Our analysis is based on new commutator methods for unitary operators in a two-Hilbert spaces setting, which are of independent interest.

  13. Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Paylor, E. D.; Adams, S.

    1985-01-01

    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences.

  14. Modelling of squall with the generalised kinetic equation

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2014-05-01

    We study the long-term evolution of random wind waves using the new generalised kinetic equation (GKE). The GKE derivation [1] does not assume the quasi-stationarity of a random wave field. In contrast with the Hasselmann kinetic equation, the GKE can describe fast spectral changes occurring when a wave field is driven out of a quasi-equilibrium state by a fast increase or decrease of wind, or by other factors. In these cases, a random wave field evolves on the dynamic timescale typical of coherent wave processes, rather than on the kinetic timescale predicted by the conventional statistical theory. Besides that, the generalised theory allows to trace the evolution of higher statistical moments of the field, notably the kurtosis, which is important for assessing the risk of freak waves and other applications. A new efficient and highly parallelised algorithm for the numerical simulation of the generalised kinetic equation is presented and discussed. Unlike in the case of the Hasselmann equation, the algorithm takes into account all (resonant and non-resonant) nonlinear wave interactions, but only approximately resonant interactions contribute to the spectral evolution. However, counter-intuitively, all interactions contribute to the kurtosis. Without forcing or dissipation, the algorithm is shown to conserve the relevant integrals. We show that under steady wind forcing the wave field evolution predicted by the GKE is close to the predictions of the conventional statistical theory, which is applicable in this case. In particular, we demonstrate the known long-term asymptotics for the evolution of the spectrum. When the wind forcing is not steady (in the simplest case, an instant increase or decrease of wind occurs), the generalised theory is the only way to study the spectral evolution, apart from the direct numerical simulation. The focus of the work is a detailed analysis of the fast evolution after an instant change of forcing, and of the subsequent transition to the new quasi-stationary state of a wave field. It is shown that both increase and decrease of wind lead to a significant transient increase of the dynamic kurtosis, although these changes remain small compared to the changes of the other component of the kurtosis, which is due to bound harmonics. A special consideration is given to the case of the squall, i.e. an instant and large (by a factor of 2-4) increase of wind, which lasts for O(102) characteristic wave periods. We show that fast adjustment processes lead to the formation of a transient spectrum, which has a considerably narrower peak than the spectra developed under a steady forcing. These transient spectra differ qualitatively from those predicted by the Hasselmann kinetic equation under the squall with the same parameters. 1. S.Annenkov, V.Shrira (2006) Role of non-resonant interactions in evolution of nonlinear random water wave fields, J. Fluid Mech. 561, 181-207.

  15. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  16. EXPLORING DATA-DRIVEN SPECTRAL MODELS FOR APOGEE M DWARFS

    NASA Astrophysics Data System (ADS)

    Lua Birky, Jessica; Hogg, David; Burgasser, Adam J.; Jessica Birky

    2018-01-01

    The Cannon (Ness et al. 2015; Casey et al. 2016) is a flexible, data-driven spectral modeling and parameter inference framework, demonstrated on high-resolution Apache Point Galactic Evolution Experiment (APOGEE; λ/Δλ~22,500, 1.5-1.7µm) spectra of giant stars to estimate stellar labels (Teff, logg, [Fe/H], and chemical abundances) to precisions higher than the model-grid pipeline. The lack of reliable stellar parameters reported by the APOGEE pipeline for temperatures less than ~3550K, motivates extension of this approach to M dwarf stars. Using a training set of 51 M dwarfs with spectral types ranging M0-M9 obtained from SDSS optical spectra, we demonstrate that the Cannon can infer spectral types to a precision of +/-0.6 types, making it an effective tool for classifying high-resolution near-infrared spectra. We discuss the potential for extending this work to determine the physical stellar labels Teff, logg, and [Fe/H].This work is supported by the SDSS Faculty and Student (FAST) initiative.

  17. A numerical spectral approach to solve the dislocation density transport equation

    NASA Astrophysics Data System (ADS)

    Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.

    2015-09-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.

  18. Multispectral studies of selected crater- and basin-filling lunar Maria from Galileo Earth-Moon encounter 1

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Greeley, R.; Neukum, G.; Wagner, R.

    1993-01-01

    New visible and near-infrared multispectral data of the Moon were obtained by the Galileo spacecraft in December, 1990. These data were calibrated with Earth-based spectral observations of the nearside to compare compositional information to previously uncharacterized mare basalts filling craters and basins on the western near side and eastern far side. A Galileo-based spectral classification scheme, modified from the Earth-based scheme developed by Pieters, designates the different spectral classifications of mare basalt observed using the 0.41/0.56 micron reflectance ratio (titanium content), 0.56 micron reflectance values (albedo), and 0.76/0.99 micron reflectance ratio (absorption due to Fe(2+) in mafic minerals and glass). In addition, age determinations from crater counts and results of a linear spectral mixing model were used to assess the volcanic histories of specific regions of interest. These interpreted histories were related to models of mare basalt petrogenesis in an attempt to better understand the evolution of lunar volcanism.

  19. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard

    2010-05-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits foundmore » in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.« less

  20. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less

  1. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    DOE PAGES

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien; ...

    2018-03-01

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less

  2. The outburst decay of the low magnetic field magnetar SWIFT J1822.3-1606: phase-resolved analysis and evidence for a variable cyclotron feature

    NASA Astrophysics Data System (ADS)

    Rodríguez Castillo, Guillermo A.; Israel, Gian Luca; Tiengo, Andrea; Salvetti, David; Turolla, Roberto; Zane, Silvia; Rea, Nanda; Esposito, Paolo; Mereghetti, Sandro; Perna, Rosalba; Stella, Luigi; Pons, José A.; Campana, Sergio; Götz, Diego; Motta, Sara

    2016-03-01

    We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3-1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ˜500 d since the discovery of SWIFT J1822.3-1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (˜3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.

  3. A New Comptonization Model for Weakly Magnetized Accreting NS LMXBs

    NASA Astrophysics Data System (ADS)

    Paizis, A.; Farinelli, R.; Titarchuk, L.; Frontera, F.; Cocchi, M.; Ferrigno, C.

    2009-05-01

    We have developed a new Comptonization model to propose, for the first time, a self consistent physical interpretation of the complex spectral evolution seen in NS LMXBs. The model and its application to LMXBs are presented and compared to the Simbol-X expected capabilities.

  4. Effect of local minima on adiabatic quantum optimization.

    PubMed

    Amin, M H S

    2008-04-04

    We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.

  5. Impact of surrounding environment evolution on long-term gas flux measurements in a temperate mixed forest

    NASA Astrophysics Data System (ADS)

    Hurdebise, Quentin; Rixen, Toma; De Ligne, Anne; Vincke, Caroline; Heinesch, Bernard; Aubinet, Marc

    2016-04-01

    With the development of eddy covariance networks like Fluxnet, ICOS or NEON, long-term data series of carbon dioxide, water vapor and other gas exchanges between terrestrial ecosystems and atmosphere will become more and more numerous. However, long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) where fluxes of momentum, carbon dioxide, latent and sensible heat have been continuously measured by eddy covariance during twenty years. VTO is an ICOS site installed in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardennes. A multidisciplinary approach was developed in order to investigate the spatial and temporal evolution of several site characteristics: -displacement height (d) and relative measurement height (z-d) were determined using a spectral approach that compared observed and theoretical cospectra; -turbulence statistics were analyzed in the context of Monin-Obukhov similarity theory; -tree height during the measurement period was obtained by combining tree height inventories, a LIDAR survey and tree growth models; -measurement footprint was determined by using a footprint model. A good agreement was found between the three first approaches. Results show notably that z-d was subjected to both temporal and spatial evolution. Temporal evolution resulted from continuous tree growth as well as from a tower raise, achieved in 2009. Spatial evolution, due to canopy heterogeneity, was also observed. The impacts of these changes on measurements are investigated. In particular, it was shown that they affect measurement footprint, flux spectral corrections and flux quality. All these effects must be taken into consideration in order to disentangle long-term flux evolutions due to climate or phenology from changes resulting from measurement set-up changes.

  6. Experimental Study of the Effect of the Initial Spectrum Width on the Statistics of Random Wave Groups

    NASA Astrophysics Data System (ADS)

    Shemer, L.; Sergeeva, A.

    2009-12-01

    The statistics of random water wave field determines the probability of appearance of extremely high (freak) waves. This probability is strongly related to the spectral wave field characteristics. Laboratory investigation of the spatial variation of the random wave-field statistics for various initial conditions is thus of substantial practical importance. Unidirectional nonlinear random wave groups are investigated experimentally in the 300 m long Large Wave Channel (GWK) in Hannover, Germany, which is the biggest facility of its kind in Europe. Numerous realizations of a wave field with the prescribed frequency power spectrum, yet randomly-distributed initial phases of each harmonic, were generated by a computer-controlled piston-type wavemaker. Several initial spectral shapes with identical dominant wave length but different width were considered. For each spectral shape, the total duration of sampling in all realizations was long enough to yield sufficient sample size for reliable statistics. Through all experiments, an effort had been made to retain the characteristic wave height value and thus the degree of nonlinearity of the wave field. Spatial evolution of numerous statistical wave field parameters (skewness, kurtosis and probability distributions) is studied using about 25 wave gauges distributed along the tank. It is found that, depending on the initial spectral shape, the frequency spectrum of the wave field may undergo significant modification in the course of its evolution along the tank; the values of all statistical wave parameters are strongly related to the local spectral width. A sample of the measured wave height probability functions (scaled by the variance of surface elevation) is plotted in Fig. 1 for the initially narrow rectangular spectrum. The results in Fig. 1 resemble findings obtained in [1] for the initial Gaussian spectral shape. The probability of large waves notably surpasses that predicted by the Rayleigh distribution and is the highest at the distance of about 100 m. Acknowledgement This study is carried out in the framework of the EC supported project "Transnational access to large-scale tests in the Large Wave Channel (GWK) of Forschungszentrum Küste (Contract HYDRALAB III - No. 022441). [1] L. Shemer and A. Sergeeva, J. Geophys. Res. Oceans 114, C01015 (2009). Figure 1. Variation along the tank of the measured wave height distribution for rectangular initial spectral shape, the carrier wave period T0=1.5 s.

  7. The status of evolutionary medicine education in North American medical schools.

    PubMed

    Hidaka, Brandon H; Asghar, Anila; Aktipis, C Athena; Nesse, Randolph M; Wolpaw, Terry M; Skursky, Nicole K; Bennett, Katelyn J; Beyrouty, Matthew W; Schwartz, Mark D

    2015-03-08

    Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education. In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson's chi-square test, Student's t-test, and Spearman's correlation. Open-ended questions sought insight into perceived barriers and benefits. Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care. North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

  8. Spatial Temporal Sowing Pattern of Rapeseed-Mustard Crop in India Using Multi-Date IRS Awifs Data

    NASA Astrophysics Data System (ADS)

    Rajak, D. R.; Patel, H. A.; Chaudhari, K. N.; Patel, N. K.; Panigrahy, S.; Parihar, J. S.

    2011-08-01

    This paper highlights the results on spatial pattern of sowing of rapeseed/mustard in four major states in India using multidate Advanced Wide Field Sensor (AWiFS) data for 2010-11 crop season. Geo-referenced, calibrated AWiFS data acquired during October 2010 to February 2011 were used to generate the Normalised Difference Vegetation Index (NDVI) image sets. Iterative Self-Organizing Data Analysis Technique (ISODATA) based clustering of the multi date NDVI dataset for mustard crop pixels was performed. The clusters were segregated to spectral emergence classes using a spectral profile matching approach with reference to ground truth data. The sowing dates were derived from the spectral emergence data using a lag period based on field observation. Analysis showed the sowing pattern in the study states is spread over around 60 days from mid October to mid December. Three distinct clusters of sowing pattern were observed. The major one (around 40%) is sown between mid October and first week of November. Around 25% area is sown from last week of November to mid December. The other 35% area is sown in between these two periods. Analysis of temperature, a key weather variable influencing the growth of this crop, showed that the crop sowing in northern Rajasthan and Haryana is delayed by about one month to avoid the frost damage during reproductive phase. In the parts of Gujarat, southern parts of Rajasthan and Madhya Pradesh (MP), an early sowing in the second fortnight of October was observed, mainly to avoid higher mean temperatures during the month of March.

  9. A Simple Ensemble Simulation Technique for Assessment of Future Variations in Specific High-Impact Weather Events

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kenji

    2018-04-01

    To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.

  10. Study on Variability and Spectral Properties of Blazar 3C 273 with Long-term Multi-band Optical Monitoring from 2006 to 2015

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Zhao, Qing-Jiang; Dai, Ben-Zhong; Jiang, Ze-Jun; Geng, Xiong-Fei; Yang, Shen-Bang; Liu, Zhen; Wang, Dong-Dong; Feng, Zhang-Jing; Zhang, Li

    2018-02-01

    We present long-term optical multi-band photometric monitoring of blazar 3C 273, from 2006 May 19 to 2015 March 31 with high temporal resolution in the BVRI bands. The source is in a steady state and showed very small variability, with the values of the fractional variability amplitude of {F}{var}=0.457+/- 0.014 % , 0.391+/- 0.012 % , 0.264+/- 0.043 % and 0.460+/- 0.014 % in B, V, R and I, respectively. The intra-night point-to-point fractional variability (F pp ) in each band is below 1.0%, and the F pp variation amplitude increase from the B-band to the I-band. We find a variability with the timescale of 5.8 ± 2.9 minutes in the I-band on 2009 March 11. This fast variability requires the comoving magnetic field strength in the jet above 18 G with a Doppler factor {δ }D∼ 10. Using the discrete correlation function (DCF), the B- and I-band light curves are examined for correlation on whole campaign. Low significance (∼99.73 percent confidence) correlations with the I-band lags the B-band variations are observed. The spectral behaviors in the different variability episodes are studied. “Bluer-when-brighter” spectral behavior is presented for the whole campaign, while there is an opposite tendency when {{{F}}}V> 30.2 {mJy}. The weak of the correlation between B- and I-band and the spectrum analysis indicate that the optical radiation consists of two variable components.

  11. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    NASA Astrophysics Data System (ADS)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  12. Effects of repeated snowboard exercise in virtual reality with time lags of visual scene behind body rotation on head stability and subjective slalom run performance in healthy young subjects.

    PubMed

    Wada, Yoshiro; Nishiike, Suetaka; Kitahara, Tadashi; Yamanaka, Toshiaki; Imai, Takao; Ito, Taeko; Sato, Go; Matsuda, Kazunori; Kitamura, Yoshiaki; Takeda, Noriaki

    2016-11-01

    After repeated snowboard exercises in the virtual reality (VR) world with increasing time lags in trials 3-8, it is suggested that the adaptation to repeated visual-vestibulosomatosensory conflict in the VR world improved dynamic posture control and motor performance in the real world without the development of motion sickness. The VR technology was used and the effects of repeated snowboard exercise examined in the VR world with time lags between visual scene and body rotation on the head stability and slalom run performance during exercise in healthy subjects. Forty-two healthy young subjects participated in the study. After trials 1 and 2 of snowboard exercise in the VR world without time lag, trials 3-8 were conducted with 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 s time lags of the visual scene that the computer creates behind board rotation, respectively. Finally, trial 9 was conducted without time lag. Head linear accelerations and subjective slalom run performance were evaluated. The standard deviations of head linear accelerations in inter-aural direction were significantly increased in trial 8, with a time lag of 0.6 s, but significantly decreased in trial 9 without a time lag, compared with those in trial 2 without a time lag. The subjective scores of slalom run performance were significantly decreased in trial 8, with a time lag of 0.6 s, but significantly increased in trial 9 without a time lag, compared with those in trial 2 without a time lag. Motion sickness was not induced in any subjects.

  13. Collective Dynamics of Oscillator Networks: Why do we suffer from heavy jet lag?

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi

    The circadian rhythm of the entire body in mammals is orchestrated by a small tissue in the brain called the suprachiamatic nucleus (SCN). The SCN consists of a population of neurons, each of which exhibit circadian (i.e., approximately 24 h) gene expression. Neurons form a complex network and interact with each other using various types of neurotransmitters. The rhythmic gene expressions of individual cells in the SCN synchronize through such interaction. Jet-lag symptoms arise from temporal mismatch between the internal circadian clock orchestrated by the SCN and external solar time. It may take about one week or even longer to recover from jet lag after a long-distance trip. We recently found that recovery from jet lag is considerably accelerated in the knocked-out (KO) mice lacking the receptors of a certain neurotransmitter in the SCN. Importantly, all other properties of mice including sleep-awake rhythms and breeding seem to be intact. Only the response to the jet lag changes. It was also found that after a few days of jet lag, cells in the SCN desynchronize in the wild type (WT) mice, whereas they do not in KO mice. This desynchrony might be a main reason for heavy jet lag symptoms. To understand the mechanism underlying jet lag, we propose a simple model of the SCN, which is a network of phase oscillators. Despite its simplicity, this model can reproduce important dynamical properties of the SCN. For example, this model reproduces the desynchrony of oscillators after jet lag. Moreover, when intercellular interaction is weaker, this desynchrony is suppressed and the recover from jet lag is considerably accelerated. Our mathematical study provides a deeper understanding of jet lag and an idea how to circumvent heavy jet lag symptoms

  14. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color-magnitude diagram. Finally we argue that the range of uncertainty conventionally quoted for the bolometric luminosity of all three planets is too small.

  15. Pattern recognition in volcano seismology - Reducing spectral dimensionality

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Radic, V.; Jellinek, M.

    2015-12-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we evaluate whether a machine learning technique called Self-Organizing Maps (SOMs) can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. This could reduce the dimensions of the spectral space typically analyzed by orders of magnitude, and enable rapid processing and visualization. Preliminary results suggest that the temporal evolution of volcano seismicity at Kilauea Volcano, Hawai`i, can be reduced to as few as 2 spectral components by using a combination of SOMs and cluster analysis. We will further refine our methodology with several datasets from Hawai`i and Alaska, among others, and compare it to other techniques.

  16. Thermal characteristics of multi-wavelength emission during a B8.3 flare occurred on July 04, 2009

    NASA Astrophysics Data System (ADS)

    Awasthi, Arun Kumar; Sylwester, Barbara; Sylwester, Janusz; Jain, Rajmal

    2015-08-01

    We explore the temporal evolution of flare plasma parameters including temperature (T) - differential emission measure (DEM) relationship by analyzing high spectral and temporal cadence X-ray emission in 1.2-20 keV energy band, recorded by SphinX (Polish) and Solar X-ray Spectrometer (SOXS; Indian) instruments, during a B8.3 flare which occurred on July 04, 2009. SphinX records X-ray emission in 1.2-15 keV energy band with the temporal and spectral cadence as good as 6µs and 0.4 keV, respectively. On the other hand, SOXS provides X-ray observations in 4-25 keV energy band with the temporal and spectral resolution of 3s and 0.7 keV, respectively. In addition, we integrate co-temporal EUV line emission in 171, 194 and 284 angstrom obtained from STEREO mission in order to explore low-temperature response to the flare emission. In order to fit observed evolution of multi-wavelength emission during the flare, we incorporate multi-Gaussian and well-established Withbroe - Sylwester maximum likelihood DEM inversion algorithms. Thermal energetics are also estimated using geometrically corrected flaring loop structure obtained through EUV images of the active region from STEREO twin satellites. In addition, we also study the trigger and energy release scenario of this low-intensity class flare in terms of magnetic field as well as multi-wavelength emission.

  17. HENDRICS: High ENergy Data Reduction Interface from the Command Shell

    NASA Astrophysics Data System (ADS)

    Bachetti, Matteo

    2018-05-01

    HENDRICS, a rewrite and update to MaLTPyNT (ascl:1502.021), contains command-line scripts based on Stingray (ascl:1608.001) to perform a quick-look (spectral-)timing analysis of X-ray data, treating the gaps in the data due, e.g., to occultation from the Earth or passages through the SAA, properly. Despite its original main focus on NuSTAR, HENDRICS can perform standard aperiodic timing analysis on X-ray data from, in principle, any other satellite, and its features include power density and cross spectra, time lags, pulsar searches with the Epoch folding and the Z_n^2 statistics, color-color and color-intensity diagrams. The periodograms produced by HENDRICS (such as a power density spectrum or a cospectrum) can be saved in a format compatible with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002)

  18. Broadband Study of GRB 091127: A Sub-Energetic Burst at Higher Redshift?

    NASA Technical Reports Server (NTRS)

    Troja, E.; Sakamoto, T.; Guidorzi, C.; Norris, J. P.; Panaitescu, A.; Kobayashi, S.; Omodei, N.; Brown, J. C.; Burrows, D. N.; Evans, P. A.; hide

    2012-01-01

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z=0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low energy release (E(sub gamma),<3x10(exp 49) erg), soft spectrum and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion. Subject headings: gamma-ray bursts: individual (GRB 091127)

  19. Introducing time delay in the evolution of new technology: the case study of nanotechnology

    NASA Astrophysics Data System (ADS)

    Georgalis, Evangelos E.; Aifantis, Elias C.

    2013-12-01

    Starting with Feynman's "There's Plenty of Room at the Bottom" prophetic lecture at Caltech in the 1960s, the term "nanotechnology" was first coined in the scientific literature in the 1980s. This was followed by the unprecedented growth in the corresponding scientific field in 2000 due to the financial incentive provided by President Clinton in the US, followed up by similar efforts in Europe, Japan, China and Russia. Today, nanotechnology has become a driving force for economic development, with applications in all fields of engineering, information technology, transport and energy, as well as biology and medicine. Thus, it is important to forecast its future growth and evolution on the basis of two different criteria: (1) the government and private capital invested in related activities, and (2) the number of scientific publications and popular articles dedicated to this field. This article aims to extract forecasts on the evolution of nanotechnology, using the standard logistic equation that result in familiar sigmoid curves, as well as to explore the effect of time delay on its evolution. Time delay is commonly known from previous biological and ecological models, in which time lag is either already known or can be experimentally measured. In contrast, in the case of a new technology, we must first define the method for determining time delay and then interpret its existence and role. Then we describe the implications that time delay may have on the stability of the sigmoidal behavior of nanotechnology evolution and on the related oscillations that may appear.

  20. Language and emotions: emotional Sapir-Whorf hypothesis.

    PubMed

    Perlovsky, Leonid

    2009-01-01

    An emotional version of Sapir-Whorf hypothesis suggests that differences in language emotionalities influence differences among cultures no less than conceptual differences. Conceptual contents of languages and cultures to significant extent are determined by words and their semantic differences; these could be borrowed among languages and exchanged among cultures. Emotional differences, as suggested in the paper, are related to grammar and mostly cannot be borrowed. The paper considers conceptual and emotional mechanisms of language along with their role in the mind and cultural evolution. Language evolution from primordial undifferentiated animal cries is discussed: while conceptual contents increase, emotional reduced. Neural mechanisms of these processes are suggested as well as their mathematical models: the knowledge instinct, the dual model connecting language and cognition, neural modeling fields. Mathematical results are related to cognitive science, linguistics, and psychology. Experimental evidence and theoretical arguments are discussed. Dynamics of the hierarchy-heterarchy of human minds and cultures is formulated using mean-field approach and approximate equations are obtained. The knowledge instinct operating in the mind heterarchy leads to mechanisms of differentiation and synthesis determining ontological development and cultural evolution. These mathematical models identify three types of cultures: "conceptual" pragmatic cultures in which emotionality of language is reduced and differentiation overtakes synthesis resulting in fast evolution at the price of uncertainty of values, self doubts, and internal crises; "traditional-emotional" cultures where differentiation lags behind synthesis, resulting in cultural stability at the price of stagnation; and "multi-cultural" societies combining fast cultural evolution and stability. Unsolved problems and future theoretical and experimental directions are discussed.

Top