Coherent Detector Arrays for Continuum and Spectral Line Applications
NASA Technical Reports Server (NTRS)
Gaier, Todd C.
2006-01-01
This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.
UV spectroscopy including ISM line absorption: of the exciting star of Abell 35
NASA Astrophysics Data System (ADS)
Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.
Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.
NASA Astrophysics Data System (ADS)
Prikner, K.
1996-07-01
Three series of simultaneous pulsation measurements ( f<0.06 Hz) on the Freja satellite and at the Budkov Observatory have been spectrally processed (FFT) in 6-min intervals of Freja's transits near the local Budkov field line. Doppler-shifted, weighted spectral-peak frequencies, determined in both transverse magnetic components in the mean field-aligned coordinate system on Freja, allowed the estimation, by comparison with the stable frequency at Budkov, of fundamental frequencies of the local magnetic-field-line resonance ranged from 13 to 17 mHz in two pulsation events analyzed, with Kp=2+ to 0+. The ratio of total amplitudes of the spectral-pulsation components on the ground and on Freja at an altitude of ~1700 km (values <0.7) characterizes the transmissivity of the ionosphere. In the Pc3 frequency range this correlates well with simulation computations using models of the ionosphere under low solar activity. Acknowledgements. The Editor in Chief thanks two referees for their help in evaluating this paper.--> Correspondence to: L. Alperovich-->
Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.
2006-01-01
The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.
Surface Measurements of Solar Spectral Radiative Flux in the Cloud-Free Atmosphere
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Goetz, A. F. H.; Bergstrom, R.; Beal, D.; Gore, Warren J. Y. (Technical Monitor)
1997-01-01
Recent studies (Charlock, et al.; Kato, et. al) have indicated a potential discrepancy between measured solar irradiance in the cloud-free atmosphere and model derived downwelling solar irradiance. These conclusions were based primarily on broadband integrated solar flux. Extinction (both absorption and scattering) phenomena, however, typically have spectral characteristics that would be present in moderate resolution (e.g., 10 nm) spectra, indicating the need for such measurements to thoroughly investigate the cause of any discrepancies. The 1996 Department of Energy Atmospheric Radiation Measurement Program (ARM) Intensive Observation Period (IOP), held simultaneously with the NASA Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) Program, provided an opportunity for two simultaneous but independent measurements of moderate resolution solar spectral downwelling irradiance at the surface. The instruments were the NASA Ames Solar Spectral Flux Radiometer and the Analytical Spectral Devices, Inc., FieldSpecT-FR. Spectral and band integrated quantities from both sets of measurements will be presented, along with estimates of the downwelling solar irradiance from band model and line by line calculations, in an effort to determine the compatibility between measured and calculated solar irradiance in the cloud-free atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shilyagin, P A; Gelikonov, G V; Gelikonov, V M
2014-07-31
We have thoroughly investigated the method of simultaneous reception of spectral components with the achromatised quadrature phase shift between two portions of a reference wave, designed for the effective suppression of the 'mirror' artefact in the resulting image obtained by means of spectral domain optical coherence tomography (SD OCT). We have developed and experimentally tested a phase-shifting element consisting of a beam divider, which splits the reference optical beam into the two beams, and of delay lines being individual for each beam, which create a mutual phase difference of π/2 in the double pass of the reference beam. The phasemore » shift achromatism over a wide spectral range is achieved by using in the delay lines the individual elements with different dispersion characteristics. The ranges of admissible adjustment parameters of the achromatised delay line are estimated for exact and inexact conformity of the geometric characteristics of its components to those calculated. A possibility of simultaneous recording of the close-to-quadrature spectral components with a single linear photodetector element is experimentally confirmed. The suppression of the artefact mirror peak in the OCT-signal by an additional 9 dB relative to the level of its suppression is experimentally achieved when the air delay line is used. Two-dimensional images of the surface positioned at an angle to the axis of the probe beam are obtained with the correction of the 'mirror' artefact while maintaining the dynamic range of the image. (laser biophotonics)« less
Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.
2018-04-01
Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.
On the Origin of the Flare Emission in IRIS ’ SJI 2832 Filter:Balmer Continuum or Spectral Lines?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleint, Lucia; Krucker, Säm; Heinzel, Petr
Continuum (“white-light,” WL) emission dominates the energetics of flares. Filter-based observations, such as the IRIS SJI 2832 filter, show WL-like brightenings during flares, but it is unclear whether the emission arises from real continuum emission or enhanced spectral lines, possibly turning into emission. The difficulty in filter-based observations, contrary to spectral observations, is to determine which processes contribute to the observed brightening during flares. Here we determine the contribution of the Balmer continuum and the spectral line emission to IRIS ’ SJI 2832 emission by analyzing the appropriate passband in simultaneous IRIS NUV spectra. We find that spectral line emissionmore » can contribute up to 100% to the observed slitjaw images (SJI) emission, that the relative contributions usually temporally vary, and that the highest SJI enhancements that are observed are most likely because of the Balmer continuum. We conclude that care should be taken when calling SJI 2832 a continuum filter during flares, because the influence of the lines on the emission can be significant.« less
NASA Astrophysics Data System (ADS)
Ebisawa, Ken; Naoki, Iso
2012-07-01
X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.
Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo
2015-02-01
In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral line intensity values and chromium concentrations in different samples. And then their respective linear correlations were compared. The experimental results showed that the linear correlation of the intensity values of spectral feature lines and the concentrations of chromium in different samples, which was obtained by damped least squares method, was better than that one obtained by least squares method. And therefore, damped least squares method was stable, reliable and suitable for separating, fitting and extracting spectral feature lines in laser induced breakdown spectroscopy.
NASA Astrophysics Data System (ADS)
Sayède, Frédéric; Puech, Mathieu; Mein, Pierre; Bonifacio, Piercarlo; Malherbe, Jean-Marie; Galicher, Raphaël.; Amans, Jean-Philippe; Fasola, Gilles
2014-07-01
Multichannel Subtractive Double Pass (MSDP) spectrographs have been widely used in solar spectroscopy because of their ability to provide an excellent compromise between field of view and spatial and spectral resolutions. Compared with other types of spectrographs, MSDP can deliver simultaneous monochromatic images at higher spatial and spectral resolutions without any time-scanning requirement (as with Fabry-Perot spectrographs), and with limited loss of flux. These performances are obtained thanks to a double pass through the dispersive element. Recent advances with VPH (Volume phase holographic) Grisms as well as with image slicers now make MSDP potentially sensitive to much smaller fluxes. We present S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), which is a new concept for extending MSDP to night-time astronomy. It is based on new generation reflecting plane image slicers working with large apertures specific to night-time telescopes. The resulting design could be potentially very attractive and innovative for different domains of astronomy, e.g., the simultaneous spatial mapping of accurately flux-calibrated emission lines between OH sky lines in extragalactic astronomy or the simultaneous imaging of stars, exoplanets and interstellar medium. We present different possible MSDP/S4EI configurations for these science cases and expected performances on telescopes such as the VLT.
The Multi-Spectral Imaging Diagnostic on Alcator C-MOD and TCV
NASA Astrophysics Data System (ADS)
Linehan, B. L.; Mumgaard, R. T.; Duval, B. P.; Theiler, C. G.; TCV Team
2017-10-01
The Multi-Spectral Imaging (MSI) diagnostic is a new instrument that captures simultaneous spectrally filtered images from a common sight view while maintaining a large tendue and high spatial resolution. The system uses a polychromator layout where each image is sequentially filtered. This procedure yields a high transmission for each spectral channel with minimal vignetting and aberrations. A four-wavelength system was installed on Alcator C-Mod and then moved to TCV. The system uses industrial cameras to simultaneously image the divertor region at 95 frames per second at f/# 2.8 via a coherent fiber bundle (C-Mod) or a lens-based relay optic (TCV). The images are absolutely calibrated and spatially registered enabling accurate measurement of atomic line ratios and absolute line intensities. The images will be used to study divertor detachment by imaging impurities and Balmer series emissions. Furthermore, the large field of view and an ability to support many types of detectors opens the door for other novel approaches to optically measuring plasma with high temporal, spatial, and spectral resolution. Such measurements will allow for the study of Stark broadening and divertor turbulence. Here, we present the first measurements taken with this cavity imaging system. USDoE awards DE-FC02-99ER54512 and award DE-AC05-06OR23100, ORISE, administered by ORAU.
NASA Astrophysics Data System (ADS)
Bisogni, S.; di Serego Alighieri, S.; Goldoni, P.; Ho, L. C.; Marconi, A.; Ponti, G.; Risaliti, G.
2017-06-01
We studied the spectra of six z 2.2 quasars obtained with the X-shooter spectrograph at the Very Large Telescope. The redshift of these sources and the X-shooter's spectral coverage allow us to cover the rest of the spectral range 1200-7000 Å for the simultaneous detection of optical and ultraviolet lines emitted by the broad-line region. Simultaneous measurements, avoiding issues related to quasars variability, help us understand the connection between the different broad-line region line profiles generally used as virial estimators of black hole masses in quasars. The goal of this work is to compare the different emission lines for each object to check on the reliability of Hα, Mg II and C iv with respect to Hβ. Hα and Mg II linewidths correlate well with Hβ, while C iv shows a poorer correlation, due to the presence of strong blueshifts and asymmetries in the profile. We compared our sample with the only other two whose spectra were taken with the same instrument and for all examined lines our results are in agreement with the ones obtained with X-shooter at z 1.5-1.7. We finally evaluate C III] as a possible substitute of C iv in the same spectral range and find that its behaviour is more coherent with those of the other lines: we believe that, when a high quality spectrum such as the ones we present is available and a proper modelization with the Fe II and Fe III emissions is performed, it is more appropriate to use this line than that of C iv if not corrected for the contamination by non-virialized components. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme 086.B-0320(A).The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A1
GAME: GAlaxy Machine learning for Emission lines
NASA Astrophysics Data System (ADS)
Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.
2018-06-01
We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.
NASA Technical Reports Server (NTRS)
Orton, G. S.; Robiette, A. G.
1980-01-01
Line parameters (transition frequencies, line strengths, line widths, ground state energies and quantum identifications) for the nu2 and nu4 bands of (C-12)H4 and (C-13)H4 have been calculated for J-prime equal to or less than 25 using the simultaneous coupled fitting procedure of Gray and Robiette. Molecular constants for the nu2 band of (C-13)H4 were estimated from isotopic shifts from (C-12)H4 values. Agreement with laboratory spectra, where available, is always well within 1 kayser over the entire spectral range covered by the list. The most serious problem in comparison with laboratory data is the omission of lines belonging to 'hot' bands in this spectral region. This list is valuable in remote sensing problems for sorting out lines of trace species from weak methane lines and for determining the atmospheric opacity in relatively transparent spectral regions. Applications of the parameter list are demonstrated for remote sounding of the Jovian atmosphere.
Statistical Investigation of Supersonic Downflows in the Transition Region above Sunspots
NASA Astrophysics Data System (ADS)
Samanta, Tanmoy; Tian, Hui; Prasad Choudhary, Debi
2018-06-01
Downflows at supersonic speeds have been observed in the transition region (TR) above sunspots for more than three decades. These downflows are often seen in different TR spectral lines above sunspots. We have performed a statistical investigation of these downflows using a large sample that was missing previously. The Interface Region Imaging Spectrograph (IRIS) has provided a wealth of observational data of sunspots at high spatial and spectral resolutions in the past few years. We have identified 60 data sets obtained with IRIS raster scans. Using an automated code, we identified the locations of strong downflows within these sunspots. We found that around 80% of our sample shows supersonic downflows in the Si IV 1403 Å line. These downflows mostly appear in the penumbral regions, though some of them are found in the umbrae. We also found that almost half of these downflows show signatures in chromospheric lines. Furthermore, a detailed spectral analysis was performed by selecting a small spectral window containing the O IV 1400/1401 Å and Si IV 1403 Å lines. Six Gaussian functions were simultaneously fitted to these three spectral lines and their satellite lines associated with the supersonic downflows. We calculated the intensity, Doppler velocity, and line width for these lines. Using the O IV 1400/1401 Å line ratio, we find that the downflow components are around one order of magnitude less dense than the regular components. Results from our statistical analysis suggest that these downflows may originate from the corona and that they are independent of the background TR plasma.
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
Simultaneous Solar Maximum Mission and Very Large Array (VLA) observations of solar active regions
NASA Technical Reports Server (NTRS)
Lang, K. R.
1985-01-01
Simultaneous observations of solar active regions with the Solar Maximum Mission (SMM) Satellite and the Very Large Array (VLA) have been obtained and analyzed. Combined results enhance the scientific return for beyond that expeted from using either SMM or VLA alone. A total of two weeks of simultaneous SMM/VLA data were obtained. The multiple wavelength VLA observations were used to determine the temperature and magnetic structure at different heights within coronal loops. These data are compared with simultaneous SMM observations. Several papers on the subject are in progress. They include VLA observations of compact, transient sources in the transition region; simultaneous SMM/VLA observations of the coronal loops in one active region and the evolution of another one; and sampling of the coronal plasma using thermal cyclotron lines (magnetic field - VLA) and soft X ray spectral lines (electron density and electron temperaure-SMM).
Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.
2007-01-01
The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.
Chromospheric and Transition region He lines during a flare
NASA Astrophysics Data System (ADS)
Falchi, A.; Mauas, P. J. D.; Andretta, V.; Teriaca, L.; Cauzzi, G.; Falciani, R.; Smaldone, L. A.
An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same area in several spectral lines. The chromospheric lines Ca II K, Hα and Na I D as well as He I 10830, 5876, 584 and 304 Ålines have been observed. These observations allow us to build semi-empirical models of the atmosphere before and during a small flare. With these models, constructed to match the observed line profiles, we can test the He abundance value.
Darré, Pascaline; Szemendera, Ludovic; Grossard, Ludovic; Delage, Laurent; Reynaud, François
2015-10-05
In the frame of sum frequency generation of a broadband infrared source, we aim to enlarge the converted bandwidth by using a pump frequency comb while keeping a high conversion efficiency. The nonlinear effects are simultaneously induced in the same nonlinear medium. In this paper, we investigate the spectral filtering effect on the temporal coherence behavior with a Mach-Zehnder interferometer using two pump lines. We show that joined effects of quasi-phase matching and spectral sampling lead to an original coherence behavior.
Measurements of OH(X2pi) in the stratosphere by high resolution UV spectroscopy
NASA Technical Reports Server (NTRS)
Torr, D. G.; Swift, W.; Fennelly, J.; Liu, G.; Torr, M. R.
1987-01-01
This paper reports the first results obtained using high spectral resolution imaging ultraviolet spectroscopy to observe multiple rotational lines of OH A2 Sigma-X2pi (0-0) band. A 9.2 A spectral segment from 3075.8 A to 3085.0 A is imaged at 0.08 A FWHM spectral resolution, allowing the simultaneous acquisition of six of the brightest OH resonance fluorescence emission lines. The high spectral resolution and low scattered light design of the instrument allows these lines to be detected above the Rayleigh scattered sunlight background. The technique permits remote sensing of stratospheric OH from a high altitude instrument. The instrument was flown to an altitude of 40 km on Aug. 25, 1983, and again on June 12, 1986, on scientific balloons from Palestine, TX. The OH profiles inverted from the limb scans made during these flights are reported here. These profiles represent the first measurements of the temporal variation of OH over an extended height range. The results demonstrate that the technique can be used to monitor OH from orbit.
Penning plasma based simultaneous light emission source of visible and VUV lights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, G. L., E-mail: glvyas27@gmail.com; Prakash, R.; Pal, U. N.
In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure heliummore » in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.« less
The science case for simultaneous mm-wavelength receivers in radio astronomy
NASA Astrophysics Data System (ADS)
Dodson, Richard; Rioja, María J.; Jung, Taehyun; Goméz, José L.; Bujarrabal, Valentin; Moscadelli, Luca; Miller-Jones, James C. A.; Tetarenko, Alexandra J.; Sivakoff, Gregory R.
2017-11-01
This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers. Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, astrometry, observations of AGN cores in spectral index and Faraday rotation), spectral line VLBI (observations of evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries. Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research.
Jungwirth, Nicholas R; Calderon, Brian; Ji, Yanxin; Spencer, Michael G; Flatté, Michael E; Fuchs, Gregory D
2016-10-12
We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.
The multi-spectral line-polarization MSE system on Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M.; Scott, S. D.
A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less
The multi-spectral line-polarization MSE system on Alcator C-Mod
Mumgaard, R. T.; Scott, S. D.; Khoury, M.
2016-08-17
A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. Furthermore, all system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less
The Spectral Energy Distribution of the Seyfert Galaxy Ton S180
NASA Technical Reports Server (NTRS)
Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.;
2001-01-01
We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.
Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation
Maher, Robert; Xu, Tianhua; Galdino, Lidia; Sato, Masaki; Alvarado, Alex; Shi, Kai; Savory, Seb J.; Thomsen, Benn C.; Killey, Robert I.; Bayvel, Polina
2015-01-01
The achievable transmission capacity of conventional optical fibre communication systems is limited by nonlinear distortions due to the Kerr effect and the difficulty in modulating the optical field to effectively use the available fibre bandwidth. In order to achieve a high information spectral density (ISD), while simultaneously maintaining transmission reach, multi-channel fibre nonlinearity compensation and spectrally efficient data encoding must be utilised. In this work, we use a single coherent super-receiver to simultaneously receive a DP-16QAM super-channel, consisting of seven spectrally shaped 10GBd sub-carriers spaced at the Nyquist frequency. Effective nonlinearity mitigation is achieved using multi-channel digital back-propagation (MC-DBP) and this technique is combined with an optimised forward error correction implementation to demonstrate a record gain in transmission reach of 85%; increasing the maximum transmission distance from 3190 km to 5890 km, with an ISD of 6.60 b/s/Hz. In addition, this report outlines for the first time, the sensitivity of MC-DBP gain to linear transmission line impairments and defines a trade-off between performance and complexity. PMID:25645457
Spectral Analysis of B Stars: An Application of Bayesian Statistics
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2012-12-01
To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.
A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Changhui; Zhu, Lei; Gu, Naiting
A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system wasmore » demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.« less
NASA Technical Reports Server (NTRS)
Carrier, Alain C.; Aubrun, Jean-Noel
1993-01-01
New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications.
Multi-wavelength Spectral Analysis of Ellerman Bombs Observed by FISS and IRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jie; Ding, M. D.; Cao, Wenda, E-mail: dmd@nju.edu.cn
Ellerman bombs (EBs) are a kind of solar activity that is suggested to occur in the lower solar atmosphere. Recent observations using the Interface Region Imaging Spectrograph (IRIS) show connections between EBs and IRIS bombs (IBs), which imply that EBs might be heated to a much higher temperature (8 × 10{sup 4} K) than previous results. Here we perform a spectral analysis of EBs simultaneously observed by the Fast Imaging Solar Spectrograph and IRIS. The observational results show clear evidence of heating in the lower atmosphere, indicated by the wing enhancement in H α , Ca ii 8542 Å, andmore » Mg ii triplet lines and also by brightenings in images of the 1700 Å and 2832 Å ultraviolet continuum channels. Additionally, the intensity of the Mg ii triplet line is correlated with that of H α when an EB occurs, suggesting the possibility of using the triplet as an alternative way to identify EBs. However, we do not find any signal in IRIS hotter lines (C ii and Si iv). For further analysis, we employ a two-cloud model to fit the two chromospheric lines (H α and Ca ii 8542 Å) simultaneously, and obtain a temperature enhancement of 2300 K for a strong EB. This temperature is among the highest of previous modeling results, albeit still insufficient to produce IB signatures at ultraviolet wavelengths.« less
Whelan, Jessica; Craven, Stephen; Glennon, Brian
2012-01-01
In this study, the application of Raman spectroscopy to the simultaneous quantitative determination of glucose, glutamine, lactate, ammonia, glutamate, total cell density (TCD), and viable cell density (VCD) in a CHO fed-batch process was demonstrated in situ in 3 L and 15 L bioreactors. Spectral preprocessing and partial least squares (PLS) regression were used to correlate spectral data with off-line reference data. Separate PLS calibration models were developed for each analyte at the 3 L laboratory bioreactor scale before assessing its transferability to the same bioprocess conducted at the 15 L pilot scale. PLS calibration models were successfully developed for all analytes bar VCD and transferred to the 15 L scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo Surdo
NASA Astrophysics Data System (ADS)
Leone, Matteo; Paoletti, Alessandro; Robotti, Nadia
2004-09-01
In 1913 the German physicist Johannes Stark (1874 1957) and the Italian physicist Antonino Lo Surdo (1880 1949)discovered virtually simultaneously and independently that hydrogen spectral lines are split into components by an external electric field. Both of their discoveries ensued from studies on the same phenomenon, the Doppler effect in canal rays, but they arose in different theoretical contexts. Stark had been working within the context of the emerging quantum theory, following a research program aimed at studying the effect of an electric field on spectral lines. Lo Surdo had been working within the context of the classical theory, and his was an accidental discovery. Both discoveries, however, played important roles in the history of physics: Stark’s discovery contributed to the establishment of both the old and the new quantum theories; Lo Surdo’s discovery led Antonio Garbasso (1871 1933)to introduce research on the quantum theory into Italian physics. Ironically, soon after their discoveries, both Stark and Lo Surdo rejected developments in modern physics and allied themselves with the political and racial programs of Hitler and Mussolini.
NASA Astrophysics Data System (ADS)
Jain, Jalaj; Prakash, Ram; Vyas, Gheesa Lal; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana; Halder, Nilanjan; Choyal, Yaduvendra
2015-12-01
In the present work an effort has been made to estimate the plasma parameters simultaneously like—electron density, electron temperature, ground state atom density, ground state ion density and metastable state density from the observed visible spectra of penning plasma discharge (PPD) source using least square fitting. The analysis is performed for the prominently observed neutral helium lines. The atomic data and analysis structure (ADAS) database is used to provide the required collisional-radiative (CR) photon emissivity coefficients (PECs) values under the optical thin plasma condition in the analysis. With this condition the estimated plasma temperature from the PPD is found rather high. It is seen that the inclusion of opacity in the observed spectral lines through PECs and addition of diffusion of neutrals and metastable state species in the CR-model code analysis improves the electron temperature estimation in the simultaneous measurement.
Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441
NASA Technical Reports Server (NTRS)
Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.;
2002-01-01
PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank
2009-01-01
Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).
NASA Astrophysics Data System (ADS)
Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab
2018-06-01
We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.
Stellar and wind parameters of massive stars from spectral analysis
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2017-07-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
Stellar and wind parameters of massive stars from spectral analysis
NASA Astrophysics Data System (ADS)
Araya, Ignacio; Curé, Michel
2017-11-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776
NASA Astrophysics Data System (ADS)
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.
2000-03-01
We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum tangential field.
Multi-parameter fiber optic sensors based on fiber random grating
NASA Astrophysics Data System (ADS)
Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi
2017-04-01
Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.
Polarizers tuned at key far-UV spectral lines for space instrumentation
NASA Astrophysics Data System (ADS)
Larruquert, Juan I.; Malvezzi, A. Marco; Rodríguez-de Marcos, Luis; Giglia, Angelo; Gutiérrez-Luna, Nuria; Espinosa-Yáñez, Lucía.; Honrado-Benítez, Carlos; Aznárez, José A.; Massone, Giuseppe; Capobianco, Gerardo; Fineschi, Silvano; Nannarone, Stefano
2017-05-01
Polarimetry is a valuable technique to help us understand the role played by the magnetic field of the coronal plasma in the energy transfer processes from the inner parts of the Sun to the outer space. Polarimetry in the far ultraviolet (FUV: 100-200 nm), which must be performed from space due to absorption in terrestrial atmosphere, supplies fundamental data of processes that are governed by the Doppler and Hanle effects on resonantly scattered line-emission. To observe these processes there are various key spectral lines in the FUV, from which H I Lyman α (121.6 nm) is the strongest one. Hence some solar physics missions that have been proposed or are under development plan to perform polarimetry at 121.6 nm, like the suborbital missions CLASP I (2015) and CLASP II (2018), and the proposed solar missions SolmeX and COMPASS and stellar mission Arago. Therefore, the development of efficient FUV linear polarizers may benefit these and other possible future missions. C IV (155 nm) and Mg II (280 nm) are other spectral lines relevant for studies of solar and stellar magnetized atmospheres. High performance polarizers can be obtained with optimized coatings. Interference coatings can tune polarizers at the spectral line(s) of interest for solar and stellar physics. Polarizing beamsplitters consist in polarizers that separate one polarization component by reflection and the other by transmission, which enables observing the two polarization components simultaneously with a single polarizer. They involve the benefit of a higher efficiency in collection of polarization data due to the use of a single polarizer for the two polarization components and they may also facilitate a simplified design for a space polarimeter. We present results on polarizing beamsplitters tuned either at 121.6 nm or at the pair of 155 and 280 nm spectral lines.
NASA Technical Reports Server (NTRS)
Habbal, Shadia Rifai; Druckmueller, Miloslav; Morgan, Huw; Ding, Adalbert; Johnson, Judd; Druckmuellerova, Hana; Daw, Adrian; Arndt, Martina B.; Dietzel, Martin; Saken, Jon
2011-01-01
We report on multi-wavelength observations of the corona taken simultaneously in broadband white light, and in seven spectral lines, H-alpha 656.3 nm, Fe IX 435.9 nm, Fe X 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, Fe XIV 530.3 nm and Ni XV 670.2 nm. The observations were made during the total solar eclipse of 11 July 2010 from the atoll of Tatakoto in French Polynesia. Simultaneous imaging with narrow bandpass filters in each of these spectral lines and in their corresponding underlying continua maximized the observing time during less than ideal observing conditions and yielded outstanding quality data. The application of two complementary image processing techniques revealed the finest details of coronal structures at 1" resolution in white light, and 6.5" in each of the spectral lines. This comprehensive wavelength coverage confirmed earlier eclipse findings that the solar corona has a clear two-temperature structure: The open field lines, expanding outwards from the solar surface, are characterized by electron temperatures near 1 X 10(exp 6) K, while the hottest plasma around 2X 10(exp 6) K resides in loop-like structures forming the bulges of streamers. The first images of the corona in the forbidden lines of Fe IX and Ni XV, showed that there was very little coronal plasma at temperatures below 5 X 10(exp 5) K and above 2.5X 10(exp 6) K. The data also enabled temperature differentiations as low as 0:2 X 10(exp 6) K in different density structures. These observations showed how the passage of CMEs through the corona, prior to totality, produced large scale ripples and very sharp streaks, which could be identified with distinct temperatures for the first time. The ripples were most prominent in emission from spectral lines associated with temperatures around 10(exp 6) K. The most prominent streak was associated with a conical-shaped void in the emission from the coolest line of Fe IX and from the hottest line of Ni XV. A prominence, which erupted prior to totality, appeared in the shape of a hook in the cooler lines of Fe X and Fe XI, spanning 0.5 R(solar) in extent starting at a heliocentric distance of 1.3 R(solar), with a complex trail of hot and cool twisted structures connecting it to the solar surface. Simultaneous Fe X 17.4 nm observations from space by Proba2/SWAP provided an ideal opportunity for comparing emission from a coronal forbidden line, namely Fe X 637.4 nm, with a space-based EUV allowed line. Comparison of the Fe X 17.4 nm and 637.4 nm emission provided the first textbook example of the role of radiative excitation in extending the detectability of coronal emission to much larger heliocentric distances than its collisionally excited component. These eclipse observations demonstrate the unique capabilities of coronal forbidden lines for exploring the evolution of the coronal magnetic field in the heliocentric distance range of 1 - 3 R(solar), which is currently inaccessible to any space-borne or ground-based observatory.
Preliminary submillimeter spectroscopic measurements using a submillimeter heterodyne radiometer
NASA Technical Reports Server (NTRS)
Safren, H. G.; Stabnow, W. R.; Bufton, J. L.; Peruso, C. J.; Rossey, C. E.; Walker, H. E.
1982-01-01
A submillimeter heterodyne radiometer uses a submillimeter laser, pumped by a CO2 laser, as a local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational molecular transitions) to within 0.3 MHz, using acousto-optic spectrum analyzer which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a 100 MHz bandwidth spanning the line. Preliminary observations of eight spectral lines of H2O2, CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range are described. All eight lines were observed using two local oscillator frequencies obtained by operating the submillimeter laser with either methyl fluoride (CH3F) or formic acid (HCOOH) as the lasing gas. Sample calculations of line parameters from the observed data show good agreement with established values. One development goal is the size and weight reduction of the package to make it suitable for balloon or shuttle experiments to detect trace gases in the upper atmosphere.
Sinnige, Tessa; Daniëls, Mark; Baldus, Marc; Weingarth, Markus
2014-03-26
We show that selective labeling of proteins with protonated amino acids embedded in a perdeuterated matrix, dubbed 'proton clouds', provides general access to long-range contacts between nonexchangeable side chain protons in proton-detected solid-state NMR, which is important to study protein tertiary structure. Proton-cloud labeling significantly improves spectral resolution by simultaneously reducing proton line width and spectral crowding despite a high local proton density in clouds. The approach is amenable to almost all canonical amino acids. Our method is demonstrated on ubiquitin and the β-barrel membrane protein BamA.
Compact spectrometer for precision studies of multimode behavior in an extended-cavity diode laser
NASA Astrophysics Data System (ADS)
Roach, Timothy; Golemi, Josian; Krueger, Thomas
2016-05-01
We have built a compact, inexpensive, high-precision spectrometer and used it to investigate the tuning behavior of a grating stabilized extended-cavity diode laser (ECDL). A common ECDL design uses a laser chip with an uncoated (partially reflecting) front facet, and the laser output exhibits a complicated pattern of mode hops as the frequency is tuned, in some cases even showing chaotic dynamics. Our grating spectrometer (based on a design by White & Scholten) monitors a span of 4000 GHz (8 nm at 780 nm) with a linewidth of 3 GHz, which with line-splitting gives a precision of 0.02 GHz in determining the frequency of a laser mode. We have studied multimode operation of the ECDL, tracking two or three simultaneous chip cavity modes (spacing ~ 30 GHz) during tuning via current or piezo control of the external cavity. Simultaneous output on adjacent external cavity modes (spacing ~ 5 GHz) is monitored by measuring an increase in the spectral linewidth. Computer-control of the spectrometer (for line-fitting and averaging) and of the ECDL (electronic tuning) allows rapid collection of spectral data sets, which we will use to test mathematical simulation models of the non-linear laser cavity interactions.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Glenn, M. J.; Kunde, V. G.; Brasunas, J.; Conrath, B. J.; Maguire, W. C.; Herman, J. R.
1987-01-01
Thermal emission measurements of the earth's stratospheric limb were made with a cryogenically cooled high-resolution Michelson interferometer on a balloon flight launched from Palestine, TX, on Nov. 6, 1984. Infrared spectra for complete limb sequences were obtained over portions of the 700-1940/cm range with an unapodized spectral resolution of 0.03/cm for tangent heights varying from 13 to 39 km. The observed data from 1125 to 1425/cm have been analyzed for simultaneous measurement of O3, H2O, CH4, and N2O profiles. The analysis employs line-by-line and layer-by-layer radiative-transfer calculations, including curvature and refraction effects. The optimum use of geometric and spectral effects is made to obtain sharply peaked weighting functions. Contributions from stratospheric aerosol are included by measuring the light extinction within the window regions of the observed spectra. The retrieved constituent profiles are compared with measurements made with a variety of techniques by other groups. The comparison shows good agreement with the published data for all gases, indicating the capability of retrieving trace gas profiles from high-resolution thermal emission limb measurements.
NASA Astrophysics Data System (ADS)
Rust, Thomas Ludwell
Explosive event is the name given to slit spectrograph observations of high spectroscopic velocities in solar transition region spectral lines. Explosive events show much variety that cannot yet be explained by a single theory. It is commonly believed that explosive events are powered by magnetic reconnection. The evolution of the line core appears to be an important indicator of which particular reconnection process is at work. The Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES) is a novel slitless spectrograph designed for imaging spectroscopy of solar extreme ultraviolet (EUV) spectral lines. The spectrograph design forgoes a slit and images instead at three spectral orders of a concave grating. The images are formed simultaneously so the resulting spatial and spectral information is co-temporal over the 20' x 10' instrument field of view. This is an advantage over slit spectrographs which build a field of view one narrow slit at a time. The cost of co-temporal imaging spectroscopy with the MOSES is increased data complexity relative to slit spectrograph data. The MOSES data must undergo tomographic inversion for recovery of line profiles. I use the unique data from the MOSES to study transition region explosive events in the He ii 304 A spectral line. I identify 41 examples of explosive events which include 5 blue shifted jets, 2 red shifted jets, and 10 bi-directional jets. Typical doppler speeds are approximately 100kms-1. I show the early development of one blue jet and one bi-directional jet and find no acceleration phase at the onset of the event. The bi-directional jets are interesting because they are predicted in models of Petschek reconnection in the transition region. I develop an inversion algorithm for the MOSES data and test it on synthetic observations of a bi-directional jet. The inversion is based on a multiplicative algebraic reconstruction technique (MART). The inversion successfully reproduces synthetic line profiles. I then use the inversion to study the time evolution of a bi-directional jet. The inverted line profiles show fast doppler shifted components and no measurable line core emission. The blue and red wings of the jet show increasing spatial separation with time.
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Rinsland, C. P.
1994-01-01
High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.
NASA Astrophysics Data System (ADS)
Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo
2017-03-01
The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been used to perform the retrieval. In most cases, the retrieved humidity and temperature profiles show a good agreement with the radiosoundings, demonstrating that the simultaneous retrieval of the atmospheric state is not biased by the presence of cirrus clouds. Finally, the retrieved cloud parameters allow us to study the relationships between cloud temperature and optical depth and between effective particle diameter and ice water content. These relationships are similar to the statistical correlations measured on the Antarctic coast at Dumont d'Urville and in the Arctic region.
Simultaneous Chandra X-ray, HST Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj, A.; MacDowall, R. J.
2004-01-01
Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X- ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that, independent of the source of the energetic ions - magnetospheric or solar wind - the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X-rays compared to the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X-rays is magnetospheric in origin, and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approximately 40 minute quasi-periodic radio outbursts.
NASA Astrophysics Data System (ADS)
Fissiaux, L.; Földes, T.; Tchana, F. Kwabia; Daumont, L.; Lepère, M.; Vander Auwera, J.
2011-06-01
Formaldehyde (H_2CO) is an important intermediate compound in the degradation of the volatile organic compounds (VOCs), including methane, in the terrestrial troposphere. Its observation using optical remote sensing in the infrared range relies on the 3.6 and 5.7 μm absorption bands. Band and individual line intensities have been reported in both ranges. With the present work, we aim to also derive infrared line intensities for formaldehyde, however relying on pure rotation line intensities and the known electric dipole moment to determine the particle density. Indeed, because formaldehyde polymerizes or degrades easily, the gas phase may contain polymerization or degradation products. Spectra of H_2CO diluted in 10 hPa of N_2 were therefore simultaneously recorded in the 20-60 Cm-1 and 3.6 μm ranges, respectively using a Bruker IFS125HR Fourier transform spectrometer and a tunable diode laser. see A. Perrin, D. Jacquemart, F. Kwabia Tchana, N. Lacome, J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 700-716, and references therein
NASA Astrophysics Data System (ADS)
Wang, De-Liang; Wang, Jian-Guo; Dong, Xiao-Bo
2009-10-01
Results of extended and refined optical identification of 181 radio/X-ray sources in the RASS-Green Bank (RGB) catalog are presented (Brinkmann et al. 1997) which have been spectroscopically observed in the Sloan Digital Sky Survey (SDSS) DR5. The SDSS spectra of the optical counterparts are modeled in a careful and self-consistent way by incorporating the host galaxy's starlight. Optical emission line parameters are presented, which are derived accurately and reliably, along with the radio 1.4-5 GHz spectral indices estimated using (non-simultaneous) archival data. For 72 sources, the identifications are presented for the first time. It is confirmed that the majority of strong radio/X-ray emitters are radio-loud active galactic nuclei (AGNs), particularly blazars. Taking advantage of the high spectral quality and resolution and our refined spectral modeling, we are able to disentangle narrow line radio galaxies (NLRGs), as vaguely termed in most previous identification work, into Seyfert II galaxies and LINERs (low-ionization nuclear emission regions), based on the standard emission line diagnostics. The NLRGs in the RGB sample, mostly belonging to 'weak line radio galaxies', are found to have optical spectra consistent predominantly with LINERs, and only a small fraction with Seyfert II galaxies. A small number of LINERs have radio power as high as 1023 - 1026 W Hz-1 at 5 GHz, being among the strongest radio emitting LINERs known so far. Two sources are identified with radio-loud narrow line Seyfert 1 galaxies (NLS1s), a class of rare objects. The presence is also confirmed of flat-spectrum radio quasars whose radio-optical-X-ray effective spectral indices are similar to those of High-energy peaked BL Lacs (HBLs), as suggested by Padovani et al., although it is still a debate as to whether this is the case for their actual spectral energy distributions.
Spectacle and SpecViz: New Spectral Analysis and Visualization Tools
NASA Astrophysics Data System (ADS)
Earl, Nicholas; Peeples, Molly; JDADF Developers
2018-01-01
A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user-created plugins that add new functionality.This work was supported in part by HST AR #13919, HST GO #14268, and HST AR #14560.
NASA Astrophysics Data System (ADS)
Jamlongkul, P.; Wannawichian, S.
2017-12-01
Earth's aurora in low latitude region was studied via time variations of oxygen emission spectra, simultaneously with solar wind data. The behavior of spectrum intensity, in corresponding with solar wind condition, could be a trace of aurora in low latitude region including some effects of high energetic auroral particles. Oxygen emission spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) at 2.4-m diameter telescope at Thai National Observatory, Inthanon Mountain, Chiang Mai, Thailand, during 1-5 LT on 5 and 6 February 2017. The observed spectral lines were calibrated via Dech95 - 2D image processing program and Dech-Fits spectra processing program for spectrum image processing and spectrum wavelength calibration, respectively. The variations of observed intensities each day were compared with solar wind parameters, which are magnitude of IMF (|BIMF|) including IMF in RTN coordinate (BR, BT, BN), ion density (ρ), plasma flow pressure (P), and speed (v). The correlation coefficients between oxygen spectral emissions and different solar wind parameters were found to vary in both positive and negative behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V
2006-07-31
A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern,more » considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)« less
Origin and Correction of Magnetic Field Inhomogeneity at the Interface in Biphasic NMR Samples
Martin, Bryan T.; Chingas, G. C.
2012-01-01
The use of susceptibility matching to minimize spectral distortion of biphasic samples layered in a standard 5 mm NMR tube is described. The approach uses magic angle spinning (MAS) to first extract chemical shift differences by suppressing bulk magnetization. Then, using biphasic coaxial samples, magnetic susceptibilities are matched by titration with a paramagnetic salt. The matched phases are then layered in a standard NMR tube where they can be shimmed and examined. Line widths of two distinct spectral lines, selected to characterize homogeneity in each phase, are simultaneously optimized. Two-dimensional distortion-free, slice-resolved spectra of an octanol/water system illustrate the method. These data are obtained using a 2D stepped-gradient pulse sequence devised for this application. Advantages of this sequence over slice-selective methods are that acquisition efficiency is increased and processing requires only conventional software. PMID:22459062
ATMOS Spacelab 1 science investigation
NASA Technical Reports Server (NTRS)
Park, J. H.; Smith, M. A. H.; Twitty, J. T.; Russell, J. M., III
1979-01-01
Existing infrared spectra from high speed interferometer balloon flights were analyzed and experimental analysis techniques applicable to similar data from the ATMOS experiment (Spacelab 3) were investigated. Specific techniques under investigation included line-by-line simulation of the spectra to aid in the identification of absorbing gases, simultaneous retrieval of pressure and temperature profiles using carefully chosen pairs of CO2 absorption lines, and the use of these pressures and temperatures in the retrieval of gas concentration profiles for many absorbing species. A search for a new absorption features was also carried out, and special attention was given to identification of absorbing gases in spectral bandpass regions to be measured by the halogen occultation experiment.
Ishihara, Yukiko; Aida, Mari; Nomura, Akito; Miyahara, Hidekazu; Hokura, Akiko; Okino, Akitoshi
2015-01-01
With a view to enhance the sensitivity of analytical instruments used in the measurement of trace elements contained in a single cell, we have now equipped the previously reported micro-droplet injection system (M-DIS) with a desolvation system. This modified M-DIS was coupled to inductively coupled plasma atomic emission spectroscopy (ICP-AES) and evaluated for its ability to measure trace elements. A flow rate of 100 mL/min for the additional gas and a measurement point -7.5 mm above the load coil (ALC) have been determined to be the optimal parameters for recording the emission intensity of the Ca(II) spectral lines. To evaluate the influence of the desolvation system, we recorded the emission intensities of the Ca(I), Ca(II), and H-β spectral lines with and without inclusion of the desolvation system. The emission intensity of the H-β spectral line reduces and the magnitude of the Ca(II)/Ca(I) emission intensity ratio increases four-fold with inclusion of the desolvation system. Finally, the elements Ca, Mg, and Fe present in a single cell of Pseudococcomyxa simplex are simultaneously determined by coupling the M-DIS equipped with the desolvation system to ICP-AES.
NASA Astrophysics Data System (ADS)
Tiwary, Alok Ranjan; Mathew, Shibu K.; Bayanna, A. Raja; Venkatakrishnan, P.; Yadav, Rahul
2017-04-01
The Multi-Application Solar Telescope (MAST) is a 50 cm off-axis Gregorian telescope that has recently become operational at the Udaipur Solar Observatory (USO). An imaging spectropolarimeter is being developed as one of the back-end instruments of MAST to gain a better understanding of the evolution and dynamics of solar magnetic and velocity fields. This system consists of a narrow-band filter and a polarimeter. The polarimeter includes a linear polarizer and two sets of liquid crystal variable retarders (LCVRs). The instrument is intended for simultaneous observations in the spectral lines 6173 Å and 8542 Å, which are formed in the photosphere and chromosphere, respectively. In this article, we present results from the characterization of the LCVRs for the spectral lines of interest and the response matrix of the polarimeter. We also present preliminary observations of an active region obtained using the spectropolarimeter. For verification purposes, we compare the Stokes observations of the active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with that of MAST observations in the spectral line 6173 Å. We find good agreement between the two observations, considering the fact that MAST observations are limited by seeing.
NASA Astrophysics Data System (ADS)
Rousselet-Perraut, K.; Benisty, M.; Mourard, D.; Rajabi, S.; Bacciotti, F.; Bério, Ph.; Bonneau, D.; Chesneau, O.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Roussel, A.; Spang, A.; Stee, Ph.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.
2010-06-01
Context. A crucial issue in star formation is to understand the physical mechanism by which mass is accreted onto and ejected by a young star. To derive key constraints on the launching point of the jets and on the geometry of the winds, the visible spectro-polarimeter VEGA installed on the CHARA optical array can be an efficient means of probing the structure and the kinematics of the hot circumstellar gas at sub-AU. Aims: For the first time, we observed the Herbig Ae star AB Aur in the Hα emission line, using the VEGA low spectral resolution (R = 1700) on two baselines of the array. Methods: We computed and calibrated the spectral visibilities of AB Aur between 610 nm and 700 nm in spectral bands of 20.4 nm. To simultaneously reproduce the line profile and the inferred visibility around Hα, we used a 1D radiative transfer code (RAMIDUS/PROFILER) that calculates level populations for hydrogen atoms in a spherical geometry and that produces synthetic spectro-interferometric observables. Results: We clearly resolved AB Aur in the Hα line and in a part of the continuum, even at the smallest baseline of 34 m. The small P-Cygni absorption feature is indicative of an outflow but could not be explained by a spherical stellar wind model. Instead, it favors a magneto-centrifugal X-disk or disk-wind geometry. The fit of the spectral visibilities from 610 to 700 nm could not be accounted for by a wind alone, so another component inducing a visibility modulation around Hα needed to be considered. We thus considered a brightness asymmetry possibly caused by large-scale nebulosity or by the known spiral structures. Conclusions: Thanks to the unique capabilities of VEGA, we managed to simultaneously record for the first time a spectrum at a resolution of 1700 and spectral visibilities in the visible range on a target as faint as mV = 7.1. It was possible to rule out a spherical geometry for the wind of AB Aur and provide realistic solutions to account for the Hα emission compatible with magneto-centrifugal acceleration. It was difficult, however, to determine the exact morphology of the wind because of the surrounding asymmetric nebulosity. The study illustrates the advantages of optical interferometry and motivates observations of other bright young stars in the same way to shed light on the accretion/ejection processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Testa, Paola; Reale, Fabio, E-mail: ptesta@cfa.harvard.edu
2012-05-01
We use coronal imaging observations with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), and Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) spectral data to explore the potential of narrowband EUV imaging data for diagnosing the presence of hot (T {approx}> 5 MK) coronal plasma in active regions. We analyze observations of two active regions (AR 11281, AR 11289) with simultaneous AIA imaging and EIS spectral data, including the Ca XVII line (at 192.8 A), which is one of the few lines in the EIS spectral bands sensitive to hot coronal plasma even outside flares. After careful co-alignment of the imaging and spectral data,more » we compare the morphology in a three-color image combining the 171, 335, and 94 A AIA spectral bands, with the image obtained for Ca XVII emission from the analysis of EIS spectra. We find that in the selected active regions the Ca XVII emission is strong only in very limited areas, showing striking similarities with the features bright in the 94 A (and 335 A) AIA channels and weak in the 171 A band. We conclude that AIA imaging observations of the solar corona can be used to track hot plasma (6-8 MK), and so to study its spatial variability and temporal evolution at high spatial and temporal resolution.« less
NASA Astrophysics Data System (ADS)
Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.
2009-09-01
We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.
To Be or not to Be: Simultaneous Spectroscopy and Photometry of Be Stars
NASA Astrophysics Data System (ADS)
Martin, John C.; O'Brien, J.; Cranford, K.; Gorski, L.; Hubbell-Thomas, J.; Lord, J.; McLain, D.; McLain, J.; Schlaf, E.; Schweighauser, C.
2008-05-01
After decades of study, aspects of the Be phenomenon still defy explanation. It is not clear how some stars are able to change from Be to Be-shell stars when the differences in the models of each type rely on differences in disk inclination with respect to the observer. It is also unclear what mechanism causes some Be stars to periodically cease showing emission in their spectra: thereby, entering a "normal" B star phase. The Barber Observatory at University of Illinois Springfield has embarked on a project to monitor simultaneously the photometry and spectra of selected bright Be and Be-shell stars and identify patterns in the variability of their brightness and line profiles that could provide insight into the Be mechanism. Our pilot study of Be-shell star Psi Per has identified sudden changes in the spectral line profiles that correlate with equally fast changes in V band brightness.
Nearly simultaneous optical, ultraviolet, and x ray observations of three PG quasars
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.
1990-01-01
Nearly simultaneous optical, ultraviolet, and x ray observations of three low redshift quasars are presented. The EXOSAT x ray spectra span the range of observed spectral indices for quasars from the canonical 0.7 energy index typical of Seyfert galaxies for PG0923+129 (Mrk 705) to the steep spectral indices frequently seen in higher luminosity quasars with an index of 1.58 for PG0844+349 (Ton 951). None of the quasars exhibits any evidence for a soft x ray excess. This is consistent with accretion disk spectra fit to the IR through UV continua of the quasars -- the best fitting disk spectra peak at approximately 6 eV with black hole masses in the range 5 x 10(exp 7) to 1 x 10(exp 9) solar mass and mass accretion rates of approximately 0.1 times the Eddington-limited rate. These rather soft disk spectra are also compatible with the observed optical and ultraviolet line ratios.
NASA Astrophysics Data System (ADS)
Cleverly, J. R.; Prueger, J.; Cooper, D. I.; Hipps, L.; Eichinger, W.
2002-12-01
An intensive field campaign was undertaken to bring together state-of-the-art methodologies for investigating surface layer physical characteristics over a desert riparian forest. Three-dimensional sonic eddy covariance (3SEC), LIDAR, SODAR, Radiosonde, one-dimensional propeller eddy covariance (1PEC), heat dissipation sap flux, and leaf gas exchange were simultaneously in use 13 -- 21 June 1999 at Bosque del Apache National Wildlife Refuge (NWR) in New Mexico. A one hour period of intense advection was identified by /line{v} >> 0 and /line{u} = 0, indicating that wind direction was transverse to the riparian corridor. The period of highest /line{v} was 1400 h on 20 June; this hour experienced intermittent cloud cover and enhanced mesoscale forcing of surface fluxes. High-frequency (20 Hz) time series of u, v, w, q, θ , and T were collected for spectral, cospectral, and wavelet analyses. These time series analyses illustrate scales at which processes co-occur. At high frequencies (> 0.015 Hz), /line{T' q'} > 0, and (KH)/ (KW) = 1. At low frequencies, however, /line{T' q'} < 0, and (KH)/(KW) !=q 1. Under these transient conditions, frequencies below 0.015 Hz are associated with advection. While power cospectra are useful in associating processes at certain frequencies, further analysis must be performed to determine whether such examples of aphasia are localized to transient events or constant through time. Continuous wavelet transformation (CWT) sacrifices localization in frequency space for localization in time. Mother wavelets were evaluated, and Daubechies order 10 wavelet was found to reduce red noise and leakage near the spectral gap. The spectral gap is a frequency domain between synoptic and turbulent scales. Low frequency turbulent structures near the spectral gap in the time series of /line{T' q'}, /line{w' T'}, and /line{w' q'} followed a perturbation--relaxation pattern to cloud cover. Further cloud cover in the same hour did not produce the low frequency variation associated with mesoscale forcing. Two dimensional vertical LIDAR scans of eddy structure explains the observed frequency response patterns. Insight into the temporal progression of homeostatic processes in the surface layer will provide resources for water managers to better predict ET.
NASA Astrophysics Data System (ADS)
Takeda, Y.; Kawanomoto, S.; Ohishi, N.
2017-11-01
While the effect of rotation on spectral lines is complicated in rapidly rotating stars because of the appreciable gravity-darkening effect differing from line to line, it is possible to make use of this line-dependent complexity to separately determine the equatorial rotation velocity (ve) and the inclination angle (i) of rotational axis. Although linewidths of spectral lines were traditionally used for this aim, we tried in this study to apply the Fourier method, which utilizes the unambiguously determinable first-zero frequency (σ1) in the Fourier transform of line profile. Equipped with this technique, we analysed the profiles of He I 4471 and Mg I 4481 lines of six rapidly rotating (ve sin i ∼ 150-300 km s-1) late B-type stars, while comparing them with the theoretical profiles simulated on a grid of models computed for various combination of (ve, i). According to our calculation, σ1 tends to be larger than the classical value for given ve sin i. This excess progressively grows with an increase in ve, and is larger for the He line than the Mg line, which leads to {σ} 1^He > {σ} 1^Mg. It was shown that ve and i are separately determinable from the intersection of two loci (sets of solutions reproducing the observed σ1 for each line) on the ve versus i plane. Yet, line profiles alone are not sufficient for their unique discrimination, for which photometric information (such as colours) needs to be simultaneously employed.
[Analysis of H2S/PH3/NH3/AsH3/Cl2 by Full-Spectral Flame Photometric Detector].
Ding, Zhi-jun; Wang, Pu-hong; Li, Zhi-jun; Du, Bin; Guo, Lei; Yu, Jian-hua
2015-07-01
Flame photometric analysis technology has been proven to be a rapid and sensitive method for sulfur and phosphorus detection. It has been widely used in environmental inspections, pesticide detection, industrial and agricultural production. By improving the design of the traditional flame photometric detector, using grating and CCD sensor array as a photoelectric conversion device, the types of compounds that can be detected were expanded. Instead of a single point of characteristic spectral lines, full spectral information has been used for qualitative and quantitative analysis of H2S, PH3, NH3, AsH3 and Cl2. Combined with chemometric method, flame photometric analysis technology is expected to become an alternative fast, real-time on-site detection technology to simultaneously detect multiple toxic and harmful gases.
Diagnostics of vector magnetic fields
NASA Technical Reports Server (NTRS)
Stenflo, J. O.
1985-01-01
It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.
Frentiu, Tiberiu; Darvasi, Eugen; Butaciu, Sinziana; Ponta, Michaela; Petreus, Dorin; Mihaltan, Alin I; Frentiu, Maria
2014-11-01
A low power and low argon consumption (13.56 MHz, 15 W, 150 ml min(-1)) capacitively coupled plasma microtorch interfaced with a low-resolution microspectrometer and a small-sized electrothermal vaporization Rh coiled-filament as liquid microsample introduction device into the plasma was investigated for the simultaneous determination of several volatile elements of interest for environment. Constructive details, spectral and analytical characteristics, and optimum operating conditions of the laboratory equipment for the simultaneous determination of Ag, Cd, Cu, Pb and Zn requiring low vaporization power are provided. The method involves drying of 10 μl sample at 100°C, vaporization at 1500°C and emission measurement by capture of 20 successive spectral episodes each at an integration time of 500 ms. Experiments showed that emission of elements and plasma background were disturbed by the presence of complex matrix and hot Ar flow transporting the microsample into plasma. The emission spectrum of elements is simple, dominated by the resonance lines. The analytical system provided detection limits in the ng ml(-1) range: 0.5(Ag); 1.5(Cd); 5.6(Cu); 20(Pb) and 3(Zn) and absolute detection limits of the order of pg: 5(Ag); 15(Cd); 56(Cu); 200(Pb) and 30(Zn). It was demonstrated the utility and capability of the miniaturized analytical system in the simultaneous determination of elements in soil and water sediment using the standard addition method to compensate for the non-spectral effects of alkali and earth alkaline elements. The analysis of eight certified reference materials exhibited reliable results with recovery in the range of 95-108% and precision of 0.5-9.0% for the five examined elements. The proposed miniaturized analytical system is attractive due to the simple construction of the electrothermal vaporization device and microtorch, low costs associated to plasma generation, high analytical sensitivity and easy-to-run for simultaneous multielemental analysis of liquid microsamples. Copyright © 2014. Published by Elsevier B.V.
Planning the 8-meter Chinese Giant Solar Telescope
NASA Astrophysics Data System (ADS)
Beckers, Jacques M.; Liu, Z.; Deng, Y.; Ji, H.
2013-07-01
The Chinese Giant Solar Telescope (CGST) will be a diffraction limited solar telescope optimized for the near-infrared (NIR) spectral region (0.8 - 2.5 microns). Its diffraction limit will be reached by the incorporation of Multi-Conjugate Adaptive Optics (MCAO) enhanced by image restoration techniques to achieve uniform (u.v) plane coverage over the angular spatial frequency region allowed by its 8-meter aperture. Thus it will complement the imaging capabilities of 4-meter telescopes being planned elsewhere which are optimized for the visible (VIS) spectral region (300 - 1000 nm) In the NIR spectral regions the CGST will have access to unique spectral features which will improve the diagnostics of the solar atmosphere. These include the CaII lines near 860 nm , the HeI lines near 1083 nm, the 1074 nm FeXIII coronal lines, the large Zeeman-split FeI line at 1548 nm, and (v) the H- continuum absorption minimum at 1.6 micron. Especially in sunspot umbrae the simultaneous observation of continua and lines across the NIR spectral range will cover a substantial depth range in the solar atmosphere. Of course the mid- and far- infrared regions are also available for unequalled high-angular resolution solar observations, for example, in the Hydrogen Bracket lines, CO molecular bands, and the MgI emission line at 12.3 microns. The CGST is a so-called ring telescope in which the light is captured by a 1 meter wide segmented ring or by a ring of 7 smaller off-axis aperture telescopes. The open central area of the telescope is large. The advantages of such a ring configuration is that (a) it covers all the spatial frequencies out to those corresponding to its outer diameter, (b) its circular symmetry makes it polarization neutral, (c) its large central hole helps thermal control, and (d) it provides ample space for the MCAO system and instrumentation in the Gregorian focus. Even though optimized for the NIR, we expect to use the CGST also at visible wavelengths in the so-called “Partial Adaptive Optics” (PAO) mode (Applied Optics 31,424,1992) to obtain angular resolution twice that of a 4-meter telescope if their observations indicate that higher resolution is desirable. The CGST is a Chinese solar community project.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj. A.; MacDowall, R. J.; Desch, M. D. 8;
2005-01-01
Observations of Jupiter carried out by the Chandra Advanced CCD Imaging Spectrometer (ACIS-S) instrument over 24-26 February 2003 show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X-ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that independent of the source of the energetic ions, magnetospheric or solar wind, the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X rays compared with the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X rays is magnetospheric in origin and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approx.40 min quasi-periodic radio outbursts.
THE MILLIMETER ASTRONOMY LEGACY TEAM 90 GHz (MALT90) PILOT SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, Jonathan B.; Jackson, James M.; Barris, Elizabeth
We describe a pilot survey conducted with the Mopra 22 m radio telescope in preparation for the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). We identified 182 candidate dense molecular clumps using six different selection criteria and mapped each source simultaneously in 16 different lines near 90 GHz. We present a summary of the data and describe how the results of the pilot survey shaped the design of the larger MALT90 survey. We motivate our selection of target sources for the main survey based on the pilot detection rates and demonstrate the value of mapping in multiple linesmore » simultaneously at high spectral resolution.« less
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2015-11-01
Spectral analysis is a powerful tool to investigate stellar properties and it has been widely used for decades now. However, the methods considered to perform this kind of analysis are mostly based on iteration among a few diagnostic lines to determine the stellar parameters. While these methods are often simple and fast, they can lead to errors and large uncertainties due to the required assumptions. Here, we present a method based on Bayesian statistics to find simultaneously the best combination of effective temperature, surface gravity, projected rotational velocity, and microturbulence velocity, using all the available spectral lines. Different tests are discussed to demonstrate the strength of our method, which we apply to 54 mid-resolution spectra of field and cluster B stars obtained at the Observatoire du Mont-Mégantic. We compare our results with those found in the literature. Differences are seen which are well explained by the different methods used. We conclude that the B-star microturbulence velocities are often underestimated. We also confirm the trend that B stars in clusters are on average faster rotators than field B stars.
Atomic Data in X-Ray Astrophysics
NASA Technical Reports Server (NTRS)
Brickhouse, N. S.
2000-01-01
With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.
NASA Astrophysics Data System (ADS)
Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.
2014-10-01
The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.
A novel observational test of momentum balance in a solar flare
NASA Technical Reports Server (NTRS)
Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.; Zarro, Dominic M.
1987-01-01
A unique combination of SMM X-ray spectra and Sacramento Peak Observatory H-alpha imaging spectra has been used, for the first time, to measure and compare momentum values of upflowing and downflowing plasmas during the impulsive phase of a solar flare. The well-known blue asymmetry of X-ray spectral lines, indicative of upflow, was observed in the coronal Ca XIX line. The red asymmetry of H-alpha line profiles, indicative of downflow, was simultaneously observed in bright H-alpha kernels. It is found that, to within observational uncertainty, the momentum transported by the upflowing X-ray plasma was the same as that of the downflowing H-alpha material. Of the several physical mechanisms advanced to explain the observed blue asymmetry of X-ray lines, only explosive chromospheric evaporation predicts oppositely directed momenta of equal magnitude.
Information Retrieval from SAGE II and MFRSR Multi-Spectral Extinction Measurements
NASA Technical Reports Server (NTRS)
Lacis, Andrew A.; Hansen, James E. (Technical Monitor)
2001-01-01
Direct beam spectral extinction measurements of solar radiation contain important information on atmospheric composition in a form that is essentially free from multiple scattering contributions that otherwise tend to complicate the data analysis and information retrieval. Such direct beam extinction measurements are available from the solar occultation satellite-based measurements made by the Stratospheric and Aerosol Gas Experiment (SAGE II) instrument and by ground-based Multi-Filter Shadowband Radiometers (MFRSRs). The SAGE II data provide cross-sectional slices of the atmosphere twice per orbit at seven wavelengths between 385 and 1020 nm with approximately 1 km vertical resolution, while the MFRSR data provide atmospheric column measurements at six wavelengths between 415 and 940 nm but at one minute time intervals. We apply the same retrieval technique of simultaneous least-squares fit to the observed spectral extinctions to retrieve aerosol optical depth, effective radius and variance, and ozone, nitrogen dioxide, and water vapor amounts from the SAGE II and MFRSR measurements. The retrieval technique utilizes a physical model approach based on laboratory measurements of ozone and nitrogen dioxide extinction, line-by-line and numerical k-distribution calculations for water vapor absorption, and Mie scattering constraints on aerosol spectral extinction properties. The SAGE II measurements have the advantage of being self-calibrating in that deep space provides an effective zero point for the relative spectral extinctions. The MFRSR measurements require periodic clear-day Langley regression calibration events to maintain accurate knowledge of instrument calibration.
Reidl-Leuthner, Christoph; Viernstein, Alexander; Wieland, Karin; Tomischko, Wolfgang; Sass, Ludwig; Kinger, Gerald; Ofner, Johannes; Lendl, Bernhard
2014-09-16
Two pulsed thermoelectrically cooled mid-infrared distributed feedback quantum cascade lasers (QCLs) were used for the quasi-simultaneous in-line determination of NO and NO2 at the caloric power plant Dürnrohr (Austria). The QCL beams were combined using a bifurcated hollow fiber, sent through the flue tube (inside diameter: 5.5 m), reflected by a retro-reflector and recorded using a fast thermoelectrically cooled mercury-cadmium-telluride detector. The thermal chirp during 300 ns pulses was about 1.2 cm(-1) and allowed scanning of rotational vibrational doublets of the analytes. On the basis of the thermal chirp and the temporal resolution of data acquisition, a spectral resolution of approximately 0.02 cm(-1) was achieved. The recorded rotational vibrational absorption lines were centered at 1900 cm(-1) for NO and 1630 cm(-1) for NO2. Despite water content in the range of 152-235 g/m(3) and an average particle load of 15.8 mg/m(3) in the flue gas, in-line measurements were possible achieving limits of detection of 73 ppb for NO and 91 ppb for NO2 while optimizing for a single analyte. Quasi-simultaneous measurements resulted in limits of detection of 219 ppb for NO and 164 ppb for NO2, respectively. Influences of temperature and pressure on the data evaluation are discussed, and results are compared to an established reference method based on the extractive measurements presented.
NASA Technical Reports Server (NTRS)
Benford, D. J.; Ames, T. A.; Chervenak, J. A.; Moseley, S. H.; Shafer, R. A.; Staguhn, J. G.; Voellmer, G. M.; Pajot, F.; Rioux, C.; Phillips, T. G.;
2002-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers as direct detectors (i.e., with cold electrons) for spectroscopy. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer for the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda = 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE has been operated in the 350 Am (850 GHz) band. These bands cover line emission from the important star formation tracers neutral carbon [CI] and carbon monoxide (CO).
NASA Astrophysics Data System (ADS)
Ruiz de Galarreta Fanju, C.; Philippon, A.; Bouzit, M.; Appourchaux, T.; Vial, J.-C.; Maillard, J.-P.; Lemaire, P.
2017-11-01
The understanding of the solar outer atmosphere requires a simultaneous combination of imaging and spectral observations concerning the far UV lines that arise from the high chromospheres up to the corona. These observations must be performed with enough spectral, spatial and temporal resolution to reveal the small atmospheric structures and to resolve the solar dynamics. An Imaging Fourier Transform Spectrometer working in the far-UV (IFTSUV, Figure 1) is an attractive instrumental solution to fulfill these requirements. However, due to the short wavelength, to preserve IFTSUV spectral precision and Signal to Noise Ratio (SNR) requires a high optical surface quality and a very accurate (linear and angular) metrology to maintain the optical path difference (OPD) during the entire scanning process by: optical path difference sampling trigger; and dynamic alignment for tip/tilt compensation (Figure 2).
Simultaneous Teleportation of the Spectral and Polarization States of a Photon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Bennink, Ryan S; Grice, Warren P
2008-01-01
We describe how spectrally multimode, polarization-entangled photons simultaneously teleport quantum information encoded into the spectral and polarization degrees of freedom of a single photon using sum frequency generation to implement a Bell-state measurement.
NASA Astrophysics Data System (ADS)
Olofsson, A. O. H.; Persson, C. M.; Koning, N.; Bergman, P.; Bernath, P. F.; Black, J. H.; Frisk, U.; Geppert, W.; Hasegawa, T. I.; Hjalmarson, Å.; Kwok, S.; Larsson, B.; Lecacheux, A.; Nummelin, A.; Olberg, M.; Sandqvist, Aa.; Wirström, E. S.
2007-12-01
Aims:Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. The subsequent multi-transition analysis will provide improved knowledge of molecular abundances, cloud temperatures and densities, and may also reveal previously unsuspected blends of molecular lines, which otherwise may lead to erroneous conclusions. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H{2}O and O{2} in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm - regions largely unobservable from the ground. Methods: Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486-492 and 541-576 GHz with rather uniform sensitivity (22-25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 h each). An on-source integration time of 20 h was achieved for most bands. The entire campaign consumed 1100 orbits, each containing one hour of serviceable astro-observation. Results: We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1{1,0}-1{0,1} transitions of ortho-H{2}O, H{2}18O and H{2}17O, the high energy 6{2,4}-7{1,7} line of para-H{2}O (Eu=867 K) and the HDO(2{0,2}-1{1,1}) line have been observed, as well as the 1{0}-0{1} lines from NH{3} and its rare isotopologue 15NH{3}. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the line wings of the H{2}18O, H{2}17O and 13CO lines changing the true linewidths of the outflow emission. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and the Centre National d'Études Spatiales (CNES, France). The Swedish Space Corporation (SSC) was the industrial prime contractor and is also responsible for the satellite operation. Appendix B is only available at electronic form at http://www.aanda.org
Radial scanning diagnostics of bremsstrahlung and line emission in T-10 plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemets, A. R., E-mail: Nemets-AR@nrcki.ru; Krupin, V. A.; Klyuchnikov, L. A., E-mail: lklyuchnikov@list.ru
2016-12-15
The paper describes the scanning spectroscopic diagnostics designed for measurement of line integrated plasma radiation in two visible spectral ranges. This diagnostic system is aimed at measuring the bremsstrahlung absolute values and profile with high spatial resolution. The bremsstrahlung absolute values are used to determine the value and radial distribution of effective plasma ion charge Z{sub eff}(r) in T-10 discharges. The importance of Z{sub eff} measurement is due to its strong influence on plasma heating, confinement, and stability. The spatial distribution of emission for one of the chosen spectral lines is measured simultaneously with bremsstrahlung. The spatial resolution of measurementsmore » is ~1 cm, and the temporal resolution is up to 10 ms. The spectral equipment and methods for its calibration are described. Examples of line integrated brightness distribution in a “continuum window” of 5236 ± 6 Å and brightness of the lines C{sup 5+} (5291 Å), He{sup 1+} (4686 Å), and D{sub β} (4861 Å) are given. Flattening of the bremsstrahlung brightness profile in the central region of the plasma column in some discharges with sawtooth oscillations in the T-10 is observed. The measured effective ion charge profiles in ohmic discharges with high plasma density and low discharge currents demonstrate accumulation of light impurities at the column axis; as a consequence, quenching of sawtooth oscillations in some discharges is observed. The developed diagnostics provides necessary data for investigation of heat, particle, and current transport in the plasma of the T-10. Successful application of the obtained data on Z{sub eff}(r) for investigation of geodesic acoustic modes of plasma oscillations in the T-10 should be specially noted.« less
NASA Astrophysics Data System (ADS)
Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.
2017-09-01
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.
INTEGRAL and RXTE Observations of Centaurus A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothschild, Richard E.; /San Diego, CASS; Wilms, Joern
2006-01-17
INTEGRAL and RXTE performed three simultaneous observations of the nearby radio galaxy Centaurus A in 2003 March, 2004 January, and 2004 February with the goals of investigating the geometry and emission processes via the spectral/temporal variability of the X-ray/low energy gamma ray flux, and intercalibration of the INTEGRAL instruments with respect to those on RXTE. Cen A was detected by both sets of instruments from 3-240 keV. When combined with earlier archival RXTE results, we find the power law continuum flux and the line-of-sight column depth varied independently by 60% between 2000 January and 2003 March. Including the three archivalmore » RXTE observations, the iron line flux was essentially unchanging, and from this we conclude that the iron line emitting material is distant from the site of the continuum emission, and that the origin of the iron line flux is still an open question. Taking X-ray spectral measurements from satellite missions since 1970 into account, we discover a variability in the column depth between 1.0 x 10{sup 23} cm{sup -2} and 1.5 x 10{sup 23} cm{sup -2} separated by approximately 20 years, and suggest that variations in the edge of a warped accretion disk viewed nearly edge-on might be the cause. The INTEGRAL OSA 4.2 calibration of JEM-X, ISGRI, and SPI yields power law indices consistent with the RXTE PCA and HEXTE values, but the indices derived from ISGRI alone are about 0.2 greater. Significant systematics are the limiting factor for INTEGRAL spectral parameter determination.« less
Shuttle-based measurements: GLO ultraviolet earthlimb view
NASA Astrophysics Data System (ADS)
Gardner, James A.; Murad, Edmond; Viereck, Rodney A.; Knecht, David J.; Pike, Charles P.; Broadfoot, A. Lyle
1996-11-01
The GLO experiment is an on-going shuttle-based spectrograph/imager project that has returned ultraviolet (100 - 400 nm) limb views. High spectral (0.35 nm FWHM) and temporal (4 s) resolution spectra include simultaneous altitude profiles (in the range of 80 - 400 km tangent height with 10 km resolution) of dayglow and nightglow features. Measured emissions include the NO gamma, N2 Vegard-Kaplan and second positive, N2+ first negative, and O2 Herzberg I band systems and both atomic and cation lines of N, O, and Mg. This data represents a low solar activity benchmark for future observations. We report on the status of the GLO project, which included three space flights in 1995, and present spectral data on important ultraviolet band systems.
NASA Technical Reports Server (NTRS)
Wilms, Joern; Nowak, Michael A.; Dove, James B.; Fender, Robert P.; DiMatteo, Tiziana
1998-01-01
We discuss a series of observations of the black hole candidate GX 339-4 in low luminosity, spectrally hard states. We present spectral analysis of three separate archival Advanced Satellite for Cosmology and Astrophysics (ASCA) data sets and eight separate Rossi X-ray Timing Explorer (RXTE) data sets. Three of the RXTE observations were strictly simultaneous with 843 Mega Hertz and 8.3-9.1 Giga Hertz radio observations. All of these observations have (3-9 keV) flux approximately less than 10(exp-9) ergs s(exp-1) CM(exp -2). The ASCA data show evidence for an approximately 6.4 keV Fe line with equivalent width approximately 40 eV, as well as evidence for a soft excess that is well-modeled by a power law plus a multicolor blackbody spectrum with peak temperature approximately equals 150-200 eV. The RXTE data sets also show evidence of an Fe line with equivalent widths approximately equal to 20-1OO eV. Reflection models show a hardening of the RXTE spectra with decreasing X-ray flux; however, these models do not exhibit evidence of a correlation between the photon index of the incident power law flux and the solid angle subtended by the reflector. 'Sphere+disk' Comptonization models and Advection Dominated Accretion Flow (ADAF) models also provide reasonable descriptions of the RXTE data. The former models yield coronal temperatures in the range 20-50 keV and optical depths of r approximately equal to 3. The model fits to the X-ray data, however, do not simultaneously explain the observed radio properties. The most likely source of the radio flux is synchrotron emission from an extended outflow of extent greater than O(10 (exp7) GM/c2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, Richard; Rioja, María J.; Jung, Tae-Hyun
2014-11-01
Oxygen-rich asymptotic giant branch (AGB) stars can be intense emitters of SiO (v = 1 and 2, J = 1 → 0) and H{sub 2}O maser lines at 43 and 22 GHz, respectively. Very long baseline interferometry (VLBI) observations of the maser emission provide a unique tool to probe the innermost layers of the circumstellar envelopes in AGB stars. Nevertheless, the difficulties in achieving astrometrically aligned H{sub 2}O and v = 1 and v = 2 SiO maser maps have traditionally limited the physical constraints that can be placed on the SiO maser pumping mechanism. We present phase-referenced simultaneous spectral-linemore » VLBI images for the SiO v = 1 and v = 2, J = 1 → 0, and H{sub 2}O maser emission around the AGB star R LMi, obtained from the Korean VLBI Network (KVN). The simultaneous multi-channel receivers of the KVN offer great possibilities for astrometry in the frequency domain. With this facility, we have produced images with bona fide absolute astrometric registration between high-frequency maser transitions of different species to provide the positions of the H{sub 2}O maser emission and the center of the SiO maser emission, hence reducing the uncertainty in the proper motions for R LMi by an order of magnitude over that from Hipparcos. This is the first successful demonstration of source frequency phase referencing for millimeter VLBI spectral-line observations and also where the ratio between the frequencies is not an integer.« less
Observations of Cygnus X-2 with IUE: Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Garcia, M. R.; Verbunt, F.; Hasinger, Guenther; Kuerster, M.
1989-01-01
The observations of the low-mass x ray binary, Cyg X-2, taken with the International Ultraviolet Explorer (IUE) in a campaign conducted in June and October of 1988 are reported. A direct relationship between the strength of the UV continuum and line emission and the placement of the x ray spectrum in one of three branches of the so-called Z-shaped curve is found by comparison with simultaneous x ray observations. All three previously known x ray spectral states are detected; the UV continuum and line emission increase monotonically along the Z with the least emission in the horizontal branch, and the most in the flaring branch. Emission lines due to HeII, CIV, NIII, NIV, NV, SiIV, and MgII are observed.
Interpreting Methanol v(sub 2)-Band Emission in Comets Using Empirical Fluorescence g-Factors
NASA Technical Reports Server (NTRS)
DiSanti, Michael; Villanueva, G. L.; Bonev, B. P.; Mumma, M. J.; Paganini, L.; Gibb, E. L.; Magee-Sauer, K.
2011-01-01
For many years we have been developing the ability, through high-resolution spectroscopy targeting ro-vibrational emission in the approximately 3 - 5 micrometer region, to quantify a suite of (approximately 10) parent volatiles in comets using quantum mechanical fluorescence models. Our efforts are ongoing and our latest includes methanol (CH3OH). This is unique among traditionally targeted species in having lacked sufficiently robust models for its symmetric (v(sub 3) band) and asymmetric (v(sub 2) and v(sub 9) bands) C-H3 stretching modes, required to provide accurate predicted intensities for individual spectral lines and hence rotational temperatures and production rates. This has provided the driver for undertaking a detailed empirical study of line intensities, and has led to substantial progress regarding our ability to interpret CH3OH in comets. The present study concentrates on the spectral region from approximately 2970 - 3010 per centimeter (3.367 - 3.322 micrometer), which is dominated by emission in the (v(sub 7) band of C2H6 and the v(sub 2) band of CH3OH, with minor contributions from CH3OH (v(sub 9) band), CH4 (v(sub 3)), and OH prompt emissions (v(sub 1) and v(sub 2)- v(sub 1)). Based on laboratory jet-cooled spectra (at a rotational temperature near 20 K)[1], we incorporated approximately 100 lines of the CH3OH v(sub 2) band, having known frequencies and lower state rotational energies, into our model. Line intensities were determined through comparison with several comets we observed with NIRSPEC at Keck 2, after removal of continuum and additional molecular emissions and correcting for atmospheric extinction. In addition to the above spectral region, NIRSPEC allows simultaneous sampling of the CH3OH v(sub 3) band (centered at 2844 per centimeter, or 3.516 micrometers and several hot bands of H2O in the approximately 2.85 - 2.9 micrometer region, at a nominal spectral resolving power of approximately 25,000 [2]. Empirical g-factors for v(sub 2) lines were based on the production rate as determined from the v(sub 3) Q-branch intensity; application to comets spanning a range of rotational temperatures (approximately 50 - 90 K) will be reported. This work represents an extension of that presented for comet 21P/Giacobini-Zinner at the 2010 Division for Planetary Sciences meeting [3]. Our empirical study also allows for quantifying CH3OH in comets using IR spectrometers for which the v(sub 3) and v(sub 2) bands are not sampled simultaneously, for example CSHELL/NASA IRTF or CRIRES/VLT.
NASA Astrophysics Data System (ADS)
Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng
2016-09-01
Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.
NASA Astrophysics Data System (ADS)
Lee, Eunjoo; Kim, Byoung Yoon
2017-12-01
We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.
Light-curve solutions for S Cancri and TT Hydrae with rapid rotation
NASA Technical Reports Server (NTRS)
Van Hamme, W.; Wilson, R. E.
1993-01-01
Physical model light- and velocity-curve solutions for S Cancri and TT Hydrae are obtained, and analyses with incorporation of asynchronous rotation are carried out. A photometric rotation rate for the primary star of TT Hya is determined, and excellent agreement with results from spectral line profiles is found. Both separate light- and velocity-curve solutions and simultaneous light-velocity solutions are listed. The photometric rotation for S Cnc from existing light curves is indeterminate, but is compatible with line profile measures. Evidence for third light from the light curves of S Cnc is found. An explanation for the apparent conflict between the rotational states and mass-transfer activities of the two binaries is suggested.
NASA Astrophysics Data System (ADS)
Wang, Pei-Hsun; Ferdous, Fahmida; Miao, Houxun; Wang, Jian; Leaird, Daniel E.; Srinivasan, Kartik; Chen, Lei; Aksyuk, Vladimir; Weiner, Andrew M.
2012-12-01
Microresonator optical frequency combs based on cascaded four-wave mixing are potentially attractive as a multi-wavelength source for on-chip optical communications. In this paper we compare time domain coherence, radio-frequency (RF) intensity noise, and individual line optical communications performance for combs generated from two different silicon nitride microresonators. The comb generated by one microresonator forms directly with lines spaced by a single free spectral range (FSR) and exhibits high coherence, low noise, and excellent 10 Gbit/s optical communications results. The comb generated by the second microresonator forms initially with multiple FSR line spacing, with additional lines later filling to reach single FSR spacing. This comb exhibits degraded coherence, increased intensity noise, and severely degraded communications performance. This study is to our knowledge the first to simultaneously investigate and observe a correlation between the route to comb formation, the coherence, noise, and optical communications performance of a Kerr comb.
NASA Astrophysics Data System (ADS)
Barrick, Jessica; Doblas, Ana; Sears, Patrick R.; Ostrowski, Lawrence E.; Oldenburg, Amy L.
2017-02-01
While traditional, flying-spot, spectral domain OCT systems can achieve MHz linerates, they are limited by the need for mechanical scanning to produce a B-mode image. Line-field OCT (LF OCT) removes the need for mechanical scanning by simultaneously recording all A-lines on a 2D CMOS sensor. Our LF OCT system operates at the highest A-line rate of any spectral domain (SD) LF OCT system reported to date (1,024,000 A-lines/s). This is comparable with the fastest flying-spot SDOCT system reported. Additionally, all OCT systems face a tradeoff between imaging speed and sensitivity. Long exposure times improve sensitivity but can lead to undesirable motion artifacts. LF OCT has the potential to relax this tradeoff between sensitivity and imaging speed because all A-lines are exposed during the entire frame acquisition time. However, this advantage has not yet been realized due to the loss of power-per-A-line by spreading the illumination light across all A-lines on the sample. Here we use a supercontinuum source to illuminate the sample with 500mW of light in the 605-950 nm wavelength band, effectively providing 480 µW of power-per-A-line, with axial and lateral resolutions of 1.8 µm and 14 µm, respectively. With this system we achieve the highest reported sensitivity (113 dB) of any LF OCT system. We then demonstrate the capability of this system by capturing the rapidly beating cilia of human bronchial-epithelial cells in vitro. The combination of high speed and high sensitivity offered by supercontinuum-based LF SD OCT offers new opportunities for studying cell and tissue dynamics.
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2012-06-01
Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.
Laser a balayage spectral double-bande pour l'imagerie biomedicale multimodale
NASA Astrophysics Data System (ADS)
Goulamhoussen, Nadir
A novel swept laser providing simultaneous dual-band (780nm and 1 300 nm) wavelength scanning has been designed for use in multimodal imaging systems. The swept laser is based on two gain media : a fibered semiconductor optical amplifier (SOA) centered at 1 300nm and a free-space laser diode centered at 780 nm. Simultaneous wavelength tuning for both bands is obtained by separate wavelength filters set up around the same rotating polygonal mirror. For each band, a telescope in an infinite conjugate setup converges the wavelengths dispersed by a grating on the polygon. The polygon reflects back a narrow band of wavelengths for amplification in the gain medium. Rotating the polygon enables wavelength tuning and imaging at a rate of 6 000 to 30 000 spectral lines/s, or A-lines/s in Optical Coherence Tomography (OCT). The 780nm source has a bandwidth of 37 nm, a fibered output power of 54 mW and a coherence length of 11 mm. The 1 300nm source has a bandwidth of 75 nm, a fibered output power of 17mW and a coherence length of 7.2 mm. Three multimodal systems were designed to test the potential of the swept laser in biomedical imaging. A two color OCT which allows three-dimensional in depth imaging of biological tissues with good morphological contrast was first designed, including a novel arrangement for balanced detection in both bands. A simultaneous OCT and SECM instrument was also built in which spectrally encoded confocal microscopy (SECM) provides en face images of subcellular features with high resolution on top of the 3D high penetration image obtained by OCT. Finally, a system combining OCT with fluorescence was designed, thus adding functional imaging to structural OCT images. There are many prospective paths for these three modalities, first among them the adaptation of the systems such that they may be used with imaging probes. One potential solution would be the development of novel fiber components to combine the illumination of theses modalities while demultiplexing their detection, and as would be the development of new optomechanics to enable 3D real-time in vivo imaging.
Podevin, Michael; Fotidis, Ioannis A; Angelidaki, Irini
2018-08-01
Microalgae are well known for their ability to accumulate lipids intracellularly, which can be used for biofuels and mitigate CO 2 emissions. However, due to economic challenges, microalgae bioprocesses have maneuvered towards the simultaneous production of food, feed, fuel, and various high-value chemicals in a biorefinery concept. On-line and in-line monitoring of macromolecules such as lipids, proteins, carbohydrates, and high-value pigments will be more critical to maintain product quality and consistency for downstream processing in a biorefinery to maintain and valorize these markets. The main contribution of this review is to present current and prospective advances of on-line and in-line process analytical technology (PAT), with high-selectivity - the capability of monitoring several analytes simultaneously - in the interest of improving product quality, productivity, and process automation of a microalgal biorefinery. The high-selectivity PAT under consideration are mid-infrared (MIR), near-infrared (NIR), and Raman vibrational spectroscopies. The current review contains a critical assessment of these technologies in the context of recent advances in software and hardware in order to move microalgae production towards process automation through multivariate process control (MVPC) and software sensors trained on "big data". The paper will also include a comprehensive overview of off-line implementations of vibrational spectroscopy in microalgal research as it pertains to spectral interpretation and process automation to aid and motivate development.
An Imaging Spectral Line Survey of IRC+10216 using the Expanded Very Large Array (EVLA)
NASA Astrophysics Data System (ADS)
Claussen, Mark J.; EVLA Scientific Commissioning Team
2011-01-01
The Expanded Very Large Array (EVLA) is currently undergoing scientific commissioning, with full scientific operations expected in 2013. During the commissioning, we have performed a rather coarse ( 25 km/s) and shallow imaging spectral survey of the circumstellar environment of the well-known and nearby carbon-rich asymptotic giant branch (AGB) star IRC+10°216 (CW Leo) in the frequency range 18 - 26.5 GHz, using the capability of the WIDAR correlator to simultaneously observe 2 GHz of bandwidth. In addition we have used the additional capability of WIDAR to observe widely spaced sub-bands to observe eight pairs of targeted lines with much better spectral resolution (1.0 - 2.0 km/s) in the 18 - 26.5 GHz receiver band (selected from the coarse survey) and the 26.5 - 40 GHz receiver band (selected from the single-dish survey of Kawaguchi et al. (1995, PASJ, 47, 853). In the coarse survey, we detected twenty-one transitions of eleven molecules including eight transitions of HC7N, ranging from 18.049 GHz to 25.946 GHz, the J = 1 - 0 maser transition of SiS at 18.156 GHz, and three transitions of HC5N. We will present further results of the survey and images of the emission from the targeted lines. The National Radio Astronomy is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Herrera-Lopez, S; Hernando, M D; García-Calvo, E; Fernández-Alba, A R; Ulaszewska, M M
2014-09-01
Simultaneous high-resolution full-scan and tandem mass spectrometry (MS/MS) analysis using time of flight mass spectrometry brings an answer for increasing demand of retrospective and non-targeted data analysis. Such analysis combined with spectral library searching is a promising tool for targeted and untargeted screening of small molecules. Despite considerable extension of the panel of compounds of tandem mass spectral libraries, the heterogeneity of spectral data poses a major challenge against the effective usage of spectral libraries. Performance evaluation of available LC-MS/MS libraries will significantly increase credibility in the search results. The present work was aimed to evaluate fluctuation of MS/MS pattern, in the peak intensities distribution together with mass accuracy measurements, and in consequence, performance compliant with ion ratio and mass error criteria as principles in identification processes for targeted and untargeted contaminants at trace levels. Matrix effect and ultra-trace levels of concentration (from 50 ng l(-1) to 1000 ng l(-1) were evaluated as potential source of inaccuracy in the performance of spectral matching. Matrix-matched samples and real samples were screened for proof of applicability. By manual review of data and application of ion ratio and ppm error criteria, false negatives were obtained; this number diminished when in-house library was used, while with on-line MS/MS databases 100% of positive samples were found. In our experience, intensity of peaks across spectra was highly correlated to the concentration effect and matrix complexity. In turn, analysis of spectra acquired at trace concentrations and in different matrices results in better performance in providing correct and reliable identification. Copyright © 2014 John Wiley & Sons, Ltd.
Vogt, Jochen; Huck, Christian; Neubrech, Frank; Toma, Andrea; Gerbert, David; Pucci, Annemarie
2015-09-07
We report on the impact of the differing spectral near- and far-field properties of resonantly excited gold nanoantennas on the vibrational signal enhancement in surface-enhanced infrared absorption (SEIRA). The knowledge on both spectral characteristics is of considerable importance for the optimization of plasmonic nanostructures for surface-enhanced spectroscopy techniques. From infrared micro-spectroscopic measurements, we simultaneously obtain spectral information on the plasmonic far-field response and, via SEIRA spectroscopy of a test molecule, on the near-field enhancement. The molecular test layer of 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) was deposited on the surface of gold nanoantennas with different lengths and thus different far-field resonance energies. We carefully studied the Fano-type vibrational lines in a broad spectral window, in particular, how the various vibrational signals are enhanced in relation to the ratio of the far-field plasmonic resonance and the molecular vibrational frequencies. As a detailed experimental proof of former simulation studies, we show the clearly red-shifted maximum SEIRA enhancement compared to the far-field resonance.
Determination of alloy content from plume spectral measurements
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1991-01-01
The mathematical derivation for a method to determine the identities and amounts of alloys present in a flame where numerous alloys may be present is described. This method is applicable if the total number of elemental species from all alloys that may be in the flame is greater than or equal to the total number of alloys. Arranging the atomic spectral line emission equations for the elemental species as a series of simultaneous equations enables solution for identity and amount of the alloy present in the flame. This technique is intended for identification and quantification of alloy content in the plume of a rocket engine. Spectroscopic measurements reveal the atomic species entrained in the plume. Identification of eroding alloys may lead to the identification of the eroding component.
Time variations of oxygen emission lines and solar wind dynamic parameters in low latitude region
NASA Astrophysics Data System (ADS)
Jamlongkul, P.; Wannawichian, S.; Mkrtichian, D.; Sawangwit, U.; A-thano, N.
2017-09-01
Aurora phenomenon is an effect of collision between precipitating particles with gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The particles’ precipitation occurs normally around polar regions. However, some auroral particles can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence of the aurora as well. This work studies time variations of oxygen emission lines and solar wind parameters, simultaneously. The emission’s spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing program. The correlations between oxygen emission lines and solar wind dynamics will be analyzed. This result could be an evidence of the aurora in low latitude region.
NASA Technical Reports Server (NTRS)
Bommier, V.
1986-01-01
The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.
Q2122-444: A NAKED ACTIVE GALACTIC NUCLEUS FULLY DRESSED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gliozzi, M.; Satyapal, S.; Panessa, F.
Based on previous spectral and temporal optical studies, Q2122-444 has been classified as a naked active galactic nucleus (AGN) or true type 2 AGN, that is, an AGN that genuinely lacks a broad-line region (BLR). Its optical spectrum seemed to possess only narrow forbidden emission lines that are typical of type 2 (obscured) AGNs, but the long-term optical light curve, obtained from a monitoring campaign over more than two decades, showed strong variability, apparently ruling out the presence of heavy obscuration. Here we present the results from a {approx}40 ks XMM-Newton observation of Q2122-444 carried out to shed light onmore » the energetics of this enigmatic AGN. The X-ray analysis was complemented with Australia Telescope Compact Array radio data to assess the possible presence of a jet, and with new NTT/EFOSC2 optical spectroscopic data to verify the actual absence of a BLR. The higher-quality optical data revealed the presence of strong and broad Balmer lines that are at odds with the previous spectral classification of this AGN. The lack of detection of radio emission rules out the presence of a jet. The X-ray data combined with simultaneous UV observations carried out by the Optical Monitor (OM) aboard XMM-Newton confirm that Q2122-444 is a typical type 1 AGN without any significant intrinsic absorption. New estimates of the black hole mass independently obtained from the broad Balmer lines and from a new scaling technique based on X-ray spectral data suggest that Q2122-444 is accreting at a relatively high rate in Eddington units.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting Yuan-Sen; Conroy, Charlie; Cargile, Phillip
Understanding the evolution of the Milky Way calls for the precise abundance determination of many elements in many stars. A common perception is that deriving more than a few elemental abundances ([Fe/H], [ α /Fe], perhaps [C/H], [N/H]) requires medium-to-high spectral resolution, R ≳ 10,000, mostly to overcome the effects of line blending. In a recent work, we presented an efficient and practical way to model the full stellar spectrum, even when fitting a large number of stellar labels simultaneously. In this paper, we quantify to what precision the abundances of many different elements can be recovered, as a functionmore » of spectroscopic resolution and wavelength range. In the limit of perfect spectral models and spectral normalization, we show that the precision of elemental abundances is nearly independent of resolution, for a fixed exposure time and number of detector pixels; low-resolution spectra simply afford much higher S/N per pixel and generally larger wavelength range in a single setting. We also show that estimates of most stellar labels are not strongly correlated with one another once R ≳ 1000. Modest errors in the line-spread function, as well as small radial velocity errors, do not affect these conclusions, and data-driven models indicate that spectral (continuum) normalization can be achieved well enough in practice. These results, to be confirmed with an analysis of observed low-resolution data, open up new possibilities for the design of large spectroscopic stellar surveys and for the reanalysis of archival low-resolution data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Gupta, A.; Page, K.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
Self- and Air-Broadened Line Shape Parameters of (12)CH(4) : 4500-4620 cm(-1)
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Sung, K.; Brown, L. R.; Crawford, T. J.; Smith, M. A. H.; Mantz, A. W.; Predoi-Cross, A.
2014-06-01
Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. We report the self and air-broadened Lorentz widths, shifts and line mixing coefficients along with their temperature dependencies for methane absorption lines in the 2.2 µm spectral region. For this, we obtained a series of high-resolution, high S/N spectra of 99.99% 12C-enriched samples of pure methane and its dilute mixtures in dry air at cold temperatures down to 150 K using the Bruker IFS 125HR Fourier transform spectrometer at JPL. The coolable absorption cell had an optical path of 20.38 cm and was specially built to reside inside the sample compartment of the Bruker FTS1. The 13 spectra used in the analysis consisted of seven pure 12CH4 spectra at pressures from 4.5 to 169 Torr and six air-broadened spectra with total sample pressures of 113-300 Torr and methane volume mixing ratios between 4 and 9.7%. These 13 spectra were fit simultaneously using the multispectrum least-squares fitting technique2. The results will be compared to existing values reported in the literature3. as part of the GNU EPrints system
Mathur, S.; Gupta, A.; Page, K.; ...
2017-08-31
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Pogge, R. W.; Adams, S. M.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
NASA Astrophysics Data System (ADS)
Zhou, Xin; Liu, Xiang; Jeffries, Jay B.; Hanson, R. K.
2003-08-01
The water vapour spectrum in the 1-2 µm near-infrared region is systematically analysed to find the best absorption transitions for sensitive measurement of H2O concentration and temperature in combustion environments using a single tunable diode laser with typical distributed feedback single-mode scanning range (1 cm-1). The use of a single laser, even with relatively narrow tuning range, can offer distinct advantages over wavelength-multiplexing techniques. The strategy and spectroscopic criteria for selecting optimum wavelength regions and absorption line combinations are discussed. It should be stressed that no single figure of merit can be derived to simplify the selection process, and the optimum line pair should be chosen case by case. Our investigation reveals that the 1.8 µm spectral region is especially promising, and we have identified 10 of the best water line pairs in this spectral region for temperature measurements in flames. Based on these findings, a pair of H2O transitions near 1.8 µm was targeted for the design and development of an initial single-laser sensor for simultaneously measuring H2O concentration and temperature in atmospheric-pressure flames. As part of the sensor development effort, fundamental spectroscopic parameters including the line strength, line-centre frequency and lower state energies of the probed transitions were measured experimentally to improve the current databases. We conclude with demonstration results in a steady and a forced atmospheric-pressure laboratory combustor.
First Astronomical Use of Multiplexed Transition Edge Sensor Bolometers
NASA Technical Reports Server (NTRS)
Staguhn, J. G.; Ames, T. A.; Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; Khan, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.
2004-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda approx. 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 m and 450 m bands. These bands cover line emission from the important star formation tracers neutral carbon (CI) and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.
First Astronomical Use Of Multiplexed Transition Edge Bolometers
NASA Technical Reports Server (NTRS)
Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; DeKotwara, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.; Phillips, T. G.; Reintsema, C. D.
2001-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing five orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering delta-lamda/lamda = 1/7 at a resolution of delta-lamda/lamda = 1/1200 can be acquired. This spectral resolution is sufficient to resolve doppler broadened line emission from external galaxies. FIBRE operates in the 350 micrometer and 450 micrometer bands. These bands cover line emission from the important PDR tracers neutral carbon [CI] and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.
Dual-comb spectroscopy of laser-induced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy
Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less
Moros, Javier; ElFaham, Mohamed Mostafa; Laserna, J Javier
2018-02-06
A single platform, integrated by a laser-induced breakdown spectroscopy detector and a Raman spectroscopy sensor, has been designed to remotely (5 m) and simultaneously register the elemental and molecular signatures of rocks under Martian surface conditions. From this information, new data fusion architecture at decisions level is proposed for the correct categorization of the rocks. The approach is based on a decision-making process from the sequential checking of the spectral features representing the cationic and anionic counterparts of the specimen. The scrutiny of the LIBS response by using a moving-window algorithm informs on the diversity of the elemental constituents. The output rate of emission lines allows projecting in a loop the elements as the cationic counterpart of the rock. In parallel, the Raman response of the unknown is compared with all the molecular counterparts of the hypothesized cation that are stored in a spectral library. The largest similarity rate unveils the final identity of the unknown. The identification capabilities of the architecture have been underscored through blind tests of 10 natural rocks with different origins. The great majority of forecasts have matched with the real identities of the inspected targets. The strength of this platform to simultaneously acquire the multielemental and the molecular information from a specimen by using the same laser events greatly enhances the "on-surface" missions for the surveillance of mineralogy.
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.
2012-01-01
Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2011-06-01
Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.
An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe
2014-01-01
A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1977-01-01
Techniques for the gas-phase absorption of laser energy with ultimate conversion to heat or directed kinetic energy are reviewed. It is shown that the efficiency of resonance absorption by the vibration/rotation bands of the working gas can be enhanced by operating at sufficiently high pressures so that the linewidths of the absorbing transition exceed the line spacing. Within this limit, the gas can absorb continuously over the full spectral region of the band, and bleaching can be minimized since the manifold of molecular vibrational levels can simultaneously absorb the laser radiation.
Simultaneous sampling technique for two spectral sources
NASA Technical Reports Server (NTRS)
Jarrett, Olin, Jr.
1987-01-01
A technique is described that uses a bundle of fiber optics to simultaneously sample a dye laser and a spectral lamp. By the use of a real-time display with this technique, the two signals can be superimposed, and the effect of any spectral adjustments can be immediately accessed. In the NASA's CARS system used for combustion diagnostics, the dye laser mixes with a simultaneously pulsed Nd:YAG laser at 532 nm to probe the vibrational levels of nitrogen. An illustration of the oscilloscopic display of the system is presented.
NASA Astrophysics Data System (ADS)
Oks, E.; Dalimier, E.; Faenov, A. Ya; Angelo, P.; Pikuz, S. A.; Pikuz, T. A.; Skobelev, I. Yu; Ryazanzev, S. N.; Durey, P.; Doehl, L.; Farley, D.; Baird, C.; Lancaster, K. L.; Murphy, C. D.; Booth, N.; Spindloe, C.; McKenna, P.; Neumann, N.; Roth, M.; Kodama, R.; Woolsey, N.
2017-12-01
Intra-Stark spectroscopy (ISS) is the spectroscopy within the quasistatic Stark profile of a spectral line. The present paper advances the ISS-based study of the relativistic laser-plasma interaction from our previous paper (Oks et al 2017 Opt. Express 25 1958). By improving the experimental conditions and the diagnostics, it provides an in-depth spectroscopic study of the simultaneous production of the Langmuir waves and of the ion acoustic turbulence at the surface of the relativistic critical density. It demonstrates a reliable reproducibility of the Langmuir-wave-induced dips at the same locations in the experimental profiles of Si XIV Ly-beta line, as well as of the deduced parameters (fields) of the Langmuir waves and ion acoustic turbulence in several individual 1 ps laser pulses and of the peak irradiances of 1-3 × 1020 W cm-2. Besides, this study employs for the first time the most rigorous condition of the dynamic resonance, on which the ISS phenomenon is based, compared to all previous studies in all kinds of plasmas in a wide range of electron densities. It shows how different interplays between the Langmuir wave field and the field of the ion acoustic turbulence lead to distinct spectral line profiles, including the disappearance of the Langmuir-wave-induced dips.
An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564
NASA Technical Reports Server (NTRS)
Brandt, Niel
2004-01-01
We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.
Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics
Scott, S. D.; Mumgaard, R. T.
2016-07-20
A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less
Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, S. D.; Mumgaard, R. T.
A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less
Contamination of the 5394 Å spectral region by telluric lines
NASA Astrophysics Data System (ADS)
Vince, I.; Vince, O.
2010-11-01
The spectral region in the vicinity of 5394 Å contains three prominent photospheric spectral lines, which can be used as a solar plasma diagnostic tool. The occurrence of telluric lines in this region is a potential source of systematic and random errors in these solar spectral lines. The goal of our investigation was to determine the telluric line contamination of this interesting spectral region. Several series of high-resolution solar spectra within an interval of about 4 Å around the 5394 Å wavelength were observed at different zenith distances of the Sun. Comparison of these spectra has permitted identification of telluric lines in this spectral interval. The observations were carried out with the horizontal solar spectrograph of the Heliophysical Observatory in Debrecen. Telluric feature blending was identified in the blue and red wings of the Fe I 5393.2 Å line, and in the local continuum of the Mn I 5394.7 Å line. The blue wing of the Fe I 5395.2 Å line is contaminated by a weak telluric feature too. The red continuum of this line has a more prominent telluric contamination. A dozen of water vapor telluric lines that determined the observed telluric features were identified in this spectral interval. The profiles of three telluric lines that have a significant influence on both the profiles of solar spectral lines and the level of local continuum were derived, and the variation of their parameters (equivalent width and central depth) with air mass were analyzed.
Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission.
Delahaye, T; Maxwell, S E; Reed, Z D; Lin, H; Hodges, J T; Sung, K; Devi, V M; Warneke, T; Spietz, P; Tran, H
2016-06-27
In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2 ν 3 band of 12 CH 4 . Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa - 1013 hPa with methane molar fractions between 1 μmol mol -1 and 12 μmol mol -1 . All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.
Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission
Delahaye, T.; Maxwell, S.E.; Reed, Z.D.; Lin, H.; Hodges, J.T.; Sung, K.; Devi, V.M.; Warneke, T.; Spietz, P.; Tran, H.
2016-01-01
In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa – 1013 hPa with methane molar fractions between 1 μmol mol−1 and 12 μmol mol−1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations. PMID:27551656
NASA Astrophysics Data System (ADS)
Hell, N.; Beiersdorfer, P.; Magee, E. W.; Brown, G. V.
2016-11-01
We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°-3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument's spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.
High-resolution Observations of Hα Spectra with a Subtractive Double Pass
NASA Astrophysics Data System (ADS)
Beck, C.; Rezaei, R.; Choudhary, D. P.; Gosain, S.; Tritschler, A.; Louis, R. E.
2018-02-01
High-resolution imaging spectroscopy in solar physics has relied on Fabry-Pérot interferometers (FPIs) in recent years. FPI systems, however, become technically challenging and expensive for telescopes larger than the 1 m class. A conventional slit spectrograph with a diffraction-limited performance over a large field of view (FOV) can be built at much lower cost and effort. It can be converted into an imaging spectro(polari)meter using the concept of a subtractive double pass (SDP). We demonstrate that an SDP system can reach a similar performance as FPI-based systems with a high spatial and moderate spectral resolution across a FOV of 100^'' ×100^' ' with a spectral coverage of 1 nm. We use Hα spectra taken with an SDP system at the Dunn Solar Telescope and complementary full-disc data to infer the properties of small-scale superpenumbral filaments. We find that the majority of all filaments end in patches of opposite-polarity fields. The internal fine-structure in the line-core intensity of Hα at spatial scales of about 0.5'' exceeds that in other parameters such as the line width, indicating small-scale opacity effects in a larger-scale structure with common properties. We conclude that SDP systems in combination with (multi-conjugate) adaptive optics are a valid alternative to FPI systems when high spatial resolution and a large FOV are required. They can also reach a cadence that is comparable to that of FPI systems, while providing a much larger spectral range and a simultaneous multi-line capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hell, N.; Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049; Beiersdorfer, P.
2016-11-15
We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range atmore » Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.« less
Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16
NASA Technical Reports Server (NTRS)
Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.;
2007-01-01
We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.
Herrero-Foncubierta, Pilar; Cuerva, Juan M.; Miguel, Delia
2018-01-01
The development of new fluorescent probes for cellular imaging is currently a very active field because of the large potential in understanding cell physiology, especially targeting anomalous behaviours due to disease. In particular, red-emitting dyes are keenly sought, as the light in this spectral region presents lower interferences and a deeper depth of penetration in tissues. In this work, we have synthesized a red-emitting, dual probe for the multiplexed intracellular detection of biothiols and phosphate ions. We have prepared a fluorogenic construct involving a silicon-substituted fluorescein for red emission. The fluorogenic reaction is selectively started by the presence of biothiols. In addition, the released fluorescent moiety undergoes an excited-state proton transfer reaction promoted by the presence of phosphate ions, which modulates its fluorescence lifetime, τ, with the total phosphate concentration. Therefore, in a multidimensional approach, the intracellular levels of biothiols and phosphate can be detected simultaneously using a single fluorophore and with spectral clearing of cell autofluorescence interferences. We have applied this concept to different cell lines, including photoreceptor cells, whose levels of biothiols are importantly altered by light irradiation and other oxidants. PMID:29315248
Brightness Variations in the Solar Atmosphere as Seen by SOHO
NASA Astrophysics Data System (ADS)
Brkovic, A.; Rüedi, I.; Solanki, S. K.; Huber, M. C. E.; Stenflo, J. O.; Stucki, K.; Harrison, R.; Fludra, A.
We present preliminary results of a statistical analysis of the brightness variations of solar features at different levels in the solar atmosphere. We observed quiet Sun regions at disc centre using the Coronal Diagnostic Spectrometer (CDS) onboard the Solar and Heliospheric Observatory (SOHO). We find significant variability at all time scales in all parts of the quiet Sun, from darkest intranetwork to brightest network. Such variations are observed simultaneously in the chromospheric He I 584.33 Angstroms (2 \\cdot 10^4 K) line, the transition region O V 629.74 Angstroms (2.5 \\cdot 10^5 K) and coronal Mg IX 368.06 Angstroms (10^6 K) line. The relative variability is independent of brightness and most of the variability appears to take place on time scales longer than 5 minutes for all 3 spectral lines. No significant differences are observed between the different data sets.
NASA Astrophysics Data System (ADS)
Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.
2018-06-01
We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey
2017-08-01
We propose to compute state-of-the-art model atmospheres (photospheres, chromospheres, transition regions and coronae) of the 4 K and 7 M exoplanet host stars observed by HST in the MUSCLES Treasury Survey, the nearest host star Proxima Centauri, and TRAPPIST-1. Our semi-empirical models will fit theunique high-resolution panchromatic (X-ray to infrared) spectra of these stars in the MAST High-Level Science Products archive consisting of COS and STIS UV spectra and near-simultaneous Chandra, XMM-Newton, and ground-based observations. We will compute models with the fully tested SSRPM computer software incorporating 52 atoms and ions in full non-LTE (435,986 spectral lines) and the 20 most-abundant diatomic molecules (about 2 million lines). This code has successfully fit the panchromatic spectrum of the M1.5 V exoplanet host star GJ 832 (Fontenla et al. 2016), the first M star with such a detailed model, and solar spectra. Our models will (1) predict the unobservable extreme-UV spectra, (2) determine radiative energy losses and balancing heating rates throughout these atmospheres, (3) compute a stellar irradiance library needed to describe the radiation environment of potentially habitable exoplanets to be studied by TESS and JWST, and (4) in the long post-HST era when UV observations will not be possible, the stellar irradiance library will be a powerful tool for predicting the panchromatic spectra of host stars that have only limited spectral coverage, in particular no UV spectra. The stellar models and spectral irradiance library will be placed quickly in MAST.
Review and latest news from the VEGA/CHARA facility
NASA Astrophysics Data System (ADS)
Nardetto, N.; Mourard, D.; Perraut, K.; Tallon-Bosc, I.; Meilland, A.; Stee, P.; Ligi, R.; Challouf, M.; Clausse, J.-M.; Berio, P.; Spang, A.
2014-12-01
The VEGA instrument located at the focus of the Center for High Angular Resolution Astronomy (CHARA) array in California is a collaborating project between the Lagrange laboratory in Nice, where it has been developed (Mourard et al. 2009, 2011), the IPAG (Grenoble) and CRAL (Lyon) laboratories, and the CHARA group at Mount Wilson Observatory. The outcome from this international collaboration is to provide to the community a visible spectro-interferometer with an unprecedented angular resolution of 0.3 milli-second of arc (mas) together with a spectral resolution of 5000 or 30000. With such an instrument it becomes possible to determine simultaneously the size and the kinematic of the photosphere and/or of the circumstellar environment of the star as a function of the wavelength, which basically means for each spectral channel in the continuum and/or within spectral lines (in Hα for instance). The only limitation is to get enough signal to noise ratio in each spectral channel. We can currently reach a limiting magnitude of 8 in visible in medium spectral resolution (5000) and 4.5 in high resolution (30000). In this proceeding, we illustrate the two main subjects studied with the VEGA instrument, namely (1) how angular diameters are useful to accurately derive the fundamental parameters of stars, (2) how the spectral resolution can allow to study the kinematical structure of stars or even to derive chromatic images of stellar objects.
NASA Astrophysics Data System (ADS)
Kocifaj, M.; Aubé, M.; Kohút, I.
2010-12-01
Nowadays, light pollution is a permanent problem at many observatories around the world. Elimination of excessive lighting during the night is not only about reduction of the total luminous power of ground-based light sources, but also involves experimenting with the spectral features of single lamps. Astronomical photometry is typically made at specific wavelengths, and thus the analysis of the spectral effects of light pollution is highly important. Nevertheless, studies on the spectral behaviour of night light are quite rare. Instead, broad-band or integral quantities (such as sky luminance) are preferentially measured and modelled. The knowledge of night-light spectra is necessary for the proper interpretation of narrow-band photometry data. In this paper, the night-sky radiances in the nominal spectral lines of the B (445 nm) and V (551 nm) filters are determined numerically under clear-sky conditions. Simultaneously, the corresponding sky-luminance patterns are computed and compared against the spectral radiances. It is shown that spectra, patterns and distances of the most important light sources (towns) surrounding an observatory are essential for determining the light pollution levels. In addition, the optical characteristics of the local atmosphere can change the angular behaviour of the sky radiance or luminance. All these effects are evaluated for two Slovakian observatories: Stará Lesná and Vartovka.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi
2010-03-01
In this work the self-broadening coefficients and the integrated line intensities for a number of ro-vibrational transitions of vinyl fluoride have been determined for the first time by means of TDL spectroscopy. The spectra recorded in the atmospheric window around 8.7 µm appear very crowded with a density of about 90 lines per cm-1. In order to fit these spectral features a new fitting software has been implemented. The program, which is designed for laser spectroscopy, can fit many lines simultaneously on the basis of different theoretical profiles (Doppler, Lorentz, Voigt, Galatry and Nelkin-Ghatak). Details of the object oriented implementation of the application are given. The reliability of the program is demonstrated by determining the line parameters of some ro-vibrational lines of sulphur dioxide in the ν1 band region around 9 µm. Then the software is used for the line profile analysis of vinyl fluoride. The experimental line shapes show deviations from the Voigt profile, which can be well modelled by using a Dicke narrowed line shape function. This leads to the determination of the self-narrowing coefficient within the framework of the strong collision model.
Using local correlation tracking to recover solar spectral information from a slitless spectrograph
NASA Astrophysics Data System (ADS)
Courrier, Hans T.; Kankelborg, Charles C.
2018-01-01
The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket instrument that utilizes a concave spherical diffraction grating to form simultaneous images in the diffraction orders m=0, +1, and -1. MOSES is designed to capture high-resolution cotemporal spectral and spatial information of solar features over a large two-dimensional field of view. Our goal is to estimate the Doppler shift as a function of position for every MOSES exposure. Since the instrument is designed to operate without an entrance slit, this requires disentangling overlapping spectral and spatial information in the m=±1 images. Dispersion in these images leads to a field-dependent displacement that is proportional to Doppler shift. We identify these Doppler shift-induced displacements for the single bright emission line in the instrument passband by comparing images from each spectral order. We demonstrate the use of local correlation tracking as a means to quantify these differences between a pair of cotemporal image orders. The resulting vector displacement field is interpreted as a measurement of the Doppler shift. Since three image orders are available, we generate three Doppler maps from each exposure. These may be compared to produce an error estimate.
Submillimeter, millimeter, and microwave spectral line catalogue
NASA Technical Reports Server (NTRS)
Poynter, R. L.; Pickett, H. M.
1980-01-01
A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.
Mid-infrared Plasmonic Circular Dichroism Generated by Graphene Nanodisk Assemblies.
Kong, Xiang-Tian; Zhao, Runbo; Wang, Zhiming; Govorov, Alexander O
2017-08-09
It is very interesting to bring plasmonic circular dichroism spectroscopy to the mid-infrared spectral interval, and there are two reasons for this. This spectral interval is very important for thermal bioimaging, and simultaneously, this spectral range includes vibrational lines of many chiral biomolecules. Here we demonstrate that graphene plasmons indeed offer such opportunity. In particular, we show that chiral graphene assemblies consisting of a few graphene nanodisks can generate strong circular dichroism (CD) in the mid-infrared interval. The CD signal is generated due to the plasmon-plasmon coupling between adjacent nanodisks in the specially designed chiral graphene assemblies. Because of the large dimension mismatch between the thickness of a graphene layer and the incoming light's wavelength, three-dimensional configurations with a total height of a few hundred nanometers are necessary to obtain a strong CD signal in the mid-infrared range. The mid-infrared CD strength is mainly governed by the total dimensions (total height and helix scaffold radius) of the graphene nanodisk assembly and by the plasmon-plasmon interaction strength between its constitutive nanodisks. Both positive and negative CD bands can be observed in the graphene assembly array. The frequency interval of the plasmonic CD spectra overlaps with the vibrational modes of some important biomolecules, such as DNA and many different peptides, giving rise to the possibility of enhancing the vibrational optical activity of these molecular species by attaching them to the graphene assemblies. Simultaneously the spectral range of chiral mid-infrared plasmons in our structures appears near the typical wavelength of the human-body thermal radiation, and therefore, our chiral metastructures can be potentially utilized as optical components in thermal imaging devices.
The V3, V4 and V6 bands of formaldehyde: A spectral catalog from 900 cm(-1) to 1580 cm(-1)
NASA Technical Reports Server (NTRS)
Nadler, Shachar; Reuter, D. C.; Daunt, S. J.; Johns, J. W. C.
1988-01-01
The results of a complete high resolution study of the three vibration-rotation bands v sub 3, v sub 4, and V sub 6 using both TDLs and FT-IR spectroscopy are presented. The reults are given in terms of a table of over 8000 predicted transition frequencies and strengths. A plot of the predicted and calculated spectra is shown. Over 3000 transitions were assigned and used in the simultaneous analysis of the three bands. The simultaneous fit permitted a rigorous study of Coriolis and other type iterations among bands yielding improved molecular constants. Line intensities of 28 transitions measured by a TDL and 20 transitions from FTS data were used, along with the eigenvectors from the frequency fitting, in a least squares analysis to evaluate the band strengths.
NASA Astrophysics Data System (ADS)
Kameswara Rao, N.; Lambert, David L.; Reddy, Arumalla B. S.; Gupta, Ranjan; Muneer, S.; Singh, Harinder P.
2017-05-01
In a survey conducted between 2011 and 2012 of interstellar Na I D line profiles in the direction of the Vela supernova remnant (SNR), a few lines of sight showed dramatic changes in low-velocity absorption components with respect to profiles from 1993 to 1994 reported by Cha & Sembach. Three stars - HD 63578, HD 68217 and HD 76161 - showed large decrease in strength over the 1993-2012 interval. HD 68217 and HD 76161 are associated with the Vela SNR whereas HD 63578 is associated with γ2 Velorum wind bubble. Here, we present high spectral resolution observations of Ca II K lines obtained with the Southern African Large Telescope towards these three stars along with simultaneous observations of Na I D lines. These new spectra confirm that the Na D interstellar absorption weakened drastically between 1993-1994 and 2011-2012 but show for the first time that the Ca II K line is unchanged between 1993-1994 and 2015. This remarkable contrast between the behaviour of Na D and Ca II K absorption lines is a puzzle concerning gas presumably affected by the outflow from the SNR and the wind from γ2 Velorum.
NASA Technical Reports Server (NTRS)
Brickhouse, Nancy; Esser, Ruth; Habbal, Shadia R.
1995-01-01
The electron temperature in the inner corona can be derived from spectral line intensity measurements by comparing the ratio of the measured intensities of two spectral lines to the ratio calculated from theoretical models. In a homogeneous plasma the line ratio technique can be used for any two lines if the ratio of the intensities is independent of the density. The corona, however, is far from homogeneous. Even large coronal holes present at the solar poles at solar minimum can be partly or completely obscured by emission from hotter and denser surrounding regions. In this paper we investigate the effect of these surrounding regions on coronal hole temperatures. using daily intensity measurements at 1.15 Rs of the Fe XIV 5303 A and Fe X 6374 A spectral lines carried out at the National Solar Observatory at Sacramento Peak. We show that the temperatures derived using the line ratio technique for these two spectral lines can vary by more than 0.8 x 10(exp 6) K due to the contribution from surrounding regions. This example demonstrates the inadequacy of spectral lines with widely separate peak temperatures for temperature diagnostic.
VizieR Online Data Catalog: Spectral line survey of two LOSs (Armijos-Abendano+, 2015)
NASA Astrophysics Data System (ADS)
Armijos-Abendano, J.; Martin-Pintado, J.; Requena-Torres, M. A.; Martin, S.; Rodriguez-Franco, A.
2017-11-01
The observations were carried out with the 22-m Mopra radio telescope in November 2007. We used the dual 3-mm Monolithic Microwave Integrated Circuit (MMIC) receiver connected to the 8-GHz spectrometer, which provided a velocity resolution of ~0.9 km/s at 90 GHz. Spectra in two polarizations were observed simultaneously. Two frequency ranges in the 3-mm window were covered, ~77-93 GHz and ~105-113 GHz. The beam size of the telescope was 38 arcsec at 90 GHz and 30 arcsec at 115 GHz. (3 data files).
Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT
NASA Astrophysics Data System (ADS)
Xi, Yan; Cong, Wenxiang; Harrison, Daniel; Wang, Ge
2017-12-01
In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching.
Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT
Xi, Yan; Cong, Wenxiang; Harrison, Daniel
2017-01-01
In medical X-ray Computed Tomography (CT), the use of two distinct X-ray source spectra (energies) allows dose-reduction and material discrimination relative to that achieved with only one source spectrum. Existing dual-energy CT methods include source kVp-switching, double-layer detection, dual-source gantry, and two-pass scanning. Each method suffers either from strong spectral correlation or patient-motion artifacts. To simultaneously address these problems, we propose to improve CT data acquisition with the Grating Oriented Line-wise Filtration (GOLF) method, a novel X-ray filter that is placed between the source and patient. GOLF uses a combination of absorption and filtering gratings that are moved relative to each other and in synchronization with the X-ray tube kVp-switching process and/or the detector view-sampling process. Simulation results show that GOLF can improve the spectral performance of kVp-switching to match that of dual-source CT while avoiding patient motion artifacts and dual imaging chains. Although significant flux is absorbed by this pre-patient filter, the proposed GOLF method is a novel path for cost-effectively extracting dual-energy or multi-energy data and reducing radiation dose with or without kVp switching. PMID:29333113
An imaging vector magnetograph for the next solar maximum
NASA Technical Reports Server (NTRS)
Mickey, D. L.; Labonte, B. J.; Canfield, R. C.
1989-01-01
Researchers describe the conceptual design of a new imaging vector magnetograph currently being constructed at the University of Hawaii. The instrument combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and on-line digital image processing. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (5 by 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectral range (5000 to 7000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically-dominated chromosphere, as well as effective co-alignment with Solar-A's X ray images. Researchers expect to have the instrument in operation at Mees Solar Observatory (Haleakala) in early 1991. They have chosen to use tunable filters as wavelength-selection elements in order to emphasize the spatial relationships between magnetic field elements, and to permit construction of a compact, efficient instrument. This means that spectral information must be obtained from sequences of images, which can cause line profile distortions due to effects of atmospheric seeing.
Measurement of the Radial Velocity of Vega and SAO 104807 by high resolution spectrometry
NASA Astrophysics Data System (ADS)
Rosas, F.; Ordoñez, J.; Suarez, W.; Quijano, A.
2017-07-01
The radial velocity is the component of the velocity with which a celestial object approaches (blueshift) or go away (redshift) of the observer. The precise measurement of the redshift allowed to Humason and Hubble discover the expansion of the Universe. In 1998 two research teams simultaneously discovered that this expansion is accelerated, for that reason the hypothesis of the dark energy has been raised to explain the existing repulsion. The present work shows the measurement of the radial velocity of Vega and SAO104807 by high resolution spectrometry. Using the instruments of the Astronomical Observatory of the University of Nariño, located in the south of Colombia, was measured the displacement that the spectral lines of both celestial objects suffer due to the Doppler effect. The results obtained were quite close to those recorded in databases such as SIMBAD, according to the used equipment. The instruments used were: Celestron CGE Pro 1400 Telescope, Shelyak LHIRES III High Resolution Spectrometer and SBIG ST-8300 CCD Camera. The characteristics of the spectrometer are: Diffraction grating: 2400 lines/mm, Spectral dispersion (H alpha): 0:012 nm/pixel, Radial velocity resolution: 5 km/s.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves.
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-03-22
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.
Multi-spectral Metasurface for Different Functional Control of Reflection Waves
Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang
2016-01-01
Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206
Measurements of vector fields with diode array
NASA Technical Reports Server (NTRS)
Wiehr, E. J.; Scholiers, W.
1985-01-01
A polarimeter was designed for high spatial and spectral resolution. It consists of a quarter-wave plate alternately operating in two positions for Stoke-V measurements and an additional quarter-wave plate for Stokes-U and -Q measurements. The spatial range covers 75 arcsec, the spectral window of about 1.8 a allows the simultaneous observations of neighboring lines. The block diagram of the data processing and acquisition system consists of five memories each one having a capacity of 10 to the 4th power 16-bit words. The total time to acquire profiles of Stokes parameters can be chosen by selecting the number of successive measurements added in the memories, each individual measurement corresponding to an integration time of 0.5 sec. Typical values range between 2 and 60 sec depending on the brightness of the structure, the amount of polarization and a compromise between desired signal-to-noise ratio and spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hell, N.; Beiersdorfer, P.; Magee, E. W.
2016-08-04
Here, we report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r=67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5–3 degree spectral range atmore » Bragg angles around 51.3 degree. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (> 10000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in first and second order, and derived the ion temperatures from these lines. We have also made use of the 50µm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.« less
Small-scale swirl events in the quiet Sun chromosphere
NASA Astrophysics Data System (ADS)
Wedemeyer-Böhm, S.; Rouppe van der Voort, L.
2009-11-01
Context: Recent progress in instrumentation enables solar observations with high resolution simultaneously in the spatial, temporal, and spectral domains. Aims: We use such high-resolution observations to study small-scale structures and dynamics in the chromosphere of the quiet Sun. Methods: We analyse time series of spectral scans through the Ca ii 854.2 nm spectral line obtained with the CRISP instrument at the Swedish 1-m Solar Telescope. The targets are quiet Sun regions inside coronal holes close to disc-centre. Results: The line core maps exhibit relatively few fibrils compared to what is normally observed in quiet Sun regions outside coronal holes. The time series show a chaotic and dynamic scene that includes spatially confined “swirl” events. These events feature dark and bright rotating patches, which can consist of arcs, spiral arms, rings or ring fragments. The width of the fragments typically appears to be of the order of only 0.2 arcsec, which is close to the effective spatial resolution. They exhibit Doppler shifts of -2 to -4 km s-1 but sometimes up to -7 km s-1, indicating fast upflows. The diameter of a swirl is usually of the order of 2´´. At the location of these swirls, the line wing and wide-band maps show close groups of photospheric bright points that move with respect to each other. Conclusions: A likely explanation is that the relative motion of the bright points twists the associated magnetic field in the chromosphere above. Plasma or propagating waves may then spiral upwards guided by the magnetic flux structure, thereby producing the observed intensity signature of Doppler-shifted ring fragments. The movie is only available in electronic form at http://www.aanda.org Marie Curie Intra-European Fellow of the European Commission.
Modernized active spectroscopic diagnostics (CXRS) of the T-10 tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupin, V. A., E-mail: Krupin-VA@nrcki.ru; Klyuchnikov, L. A., E-mail: Lklyuchnikov@list.ru; Korobov, K. V., E-mail: Korobov-KV@nrcki.ru
2015-12-15
This work presents the results of modernization of the CXRS (charge exchange recombination spectroscopy) diagnostics [1] at the T-10 tokamak. The relevance of this work is due to the importance of measurements of the ion temperature and nuclei density of the working gas and impurities for analysis of transport processes in the plasma ion component. Measurements of radial profiles of the ion temperature are extremely important for investigating the geodesic acoustic mode behavior which is conducted at the T-10 [2]. The modernized scheme of CXRS measurements, as well as the design and operational features of the spectrometer created for themore » new diagnostics, is described. Principles of data recording and further processing are considered in detail; attention is given to the problem of calibration of the whole complex of equipment. The performed changes in diagnostics allow the measurements to be taken simultaneously in three spectral intervals: in the region of the beam line H{sub α}, the CXRS line of carbon ion C{sup 5+}, and the CXRS line of one of the hydrogen-like ions: He{sup 1+}, Li{sup 2+}, N{sup 6+}, O{sup 7+} or Ne{sup 9+}. This makes it possible to measure the density profiles of two plasma impurities simultaneously, as well as the ion temperature from CXRS lines of different elements. The modernized diagnostics significantly broadens the possibilities of studying the physics of transport processes and quasi-coherent modes of plasma oscillations at the T-10.« less
Nitrogen-broadened lines of ethane at 150 K
NASA Technical Reports Server (NTRS)
Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.
1985-01-01
Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.
Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang
2012-03-01
Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Padmanabhan, Urmila; Kraemer, Steven B.; Crenshaw, D. Michael; Mckernan, Barry; George, Ian M.; Turner, T. Jane; White, Nicholas E. (Technical Monitor)
2002-01-01
We report the results of simultaneous Chandra and RXTE observations of the Seyfert 1 galaxy Mkn 509. We deconvolve the broad and narrow Fe-K emission-line components for which we measure rest-frame equivalent widths of 119+/-18 eV and 57+/-13 eV respectively. The broad line has a FWHM of 57,600((sup 14,400)(sub -21,000)) km/s and the narrow line is unresolved, with an upper limit on the FWHM of 4,940 km/s. Both components must originate in cool matter since we measure rest-frame center energies of 6.36((sup +0.13)(sub -0.12)) keV and 6.42+/-0.01 keV for the broad and narrow line respectively. This rules out He-like and H-like Fe for the origin of both the broad and narrow lines. If, as is widely accepted, the broad Fe-K line originates in Thomson-thick matter (such as an accretion disk), then one expects to observe spectral curvature above approximately 10 keV, (commensurate with the observed broad line), characteristic of the Compton-reflection continuum. However our data sets very stringent limits on deviations of the observed continuum from a power law. Light travel-time delays cannot be invoked to explain anomalies in the relative strengths of the broad Ferry line and Compton-reflection continuum since they are supposed to originate in the same physical location. We are forced to conclude that both the broad and narrow Fe-K lines had to originate in Thomson-thin matter during our observation. This result, for a single observation of just one source, means that our understanding of Fe K line emission and Compton reflection from accreting X-ray sources in general needs to be re-examined. For example, if an irradiated accretion disk existed in Mkn 509 at the time of the observations, the lack of spectral curvature above approximately 10 keV suggests two possibilities. Either the disk was Thomson-thick and highly ionized, having negligible Fe-K line emission and photoelectric absorption or the disk was Thomson-thin producing some or all of the broad Fe-K line emission. In the former case, the broad Fe-K line had to have produced in a Thomson-thin region elsewhere. In both cases the predicted spectral curvature above approximately 10 keV is negligible. An additional implication of our results is that any putative obscuring torus in the system, required by unification models of active galaxies, must also be Thomson-thin. The same applies to the optical broad line region (BLR) if it has a substantial covering factor.
Long-term magnetic field monitoring of the Sun-like star ξ Bootis A
NASA Astrophysics Data System (ADS)
Morgenthaler, A.; Petit, P.; Saar, S.; Solanki, S. K.; Morin, J.; Marsden, S. C.; Aurière, M.; Dintrans, B.; Fares, R.; Gastine, T.; Lanoux, J.; Lignières, F.; Paletou, F.; Ramírez Vélez, J. C.; Théado, S.; Van Grootel, V.
2012-04-01
Aims: We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star ξ Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods: We obtained seven epochs of high-resolution, circularly-polarized spectra from the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using approximately 6100 photospheric spectral lines covering the visible domain, we employed a cross-correlation procedure to compute a mean polarized line profile from each spectrum. The large-scale photospheric magnetic field of the star was then modelled by means of Zeeman-Doppler Imaging, allowing us to follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitored the width of several magnetically sensitive spectral lines, the radial velocity, the line asymmetry of intensity line profiles, and the chromospheric emission in the cores of the Ca II H and Hα lines. Results: During the highest observed activity states, in 2007 and 2011, the large-scale field of ξ Bootis A is almost completely axisymmetric and is dominated by its toroidal component. The toroidal component persists with a constant polarity, containing a significant fraction of the magnetic energy of the large-scale surface field through all observing epochs. The magnetic topologies reconstructed for these activity maxima are very similar, suggesting a form of short cyclicity in the large-scale field distribution. The mean unsigned large-scale magnetic flux derived from the magnetic maps varies by a factor of about 2 between the lowest and highest observed magnetic states. The chromospheric flux is less affected and varies by a factor of 1.2. Correlated temporal evolution, due to both rotational modulation and seasonal variability, is observed between the Ca II emission, the Hα emission and the width of magnetically sensitive lines. The rotational dependence of polarimetric magnetic measurements displays a weak correlation with other activity proxies, presumably due to the different spatial scales and centre-to-limb darkening associated with polarimetric signatures, as compared to non-polarized activity indicators. Better agreement is observed on the longer term. When measurable, the differential rotation reveals a strong latitudinal shear in excess of 0.2 rad d-1. Based on observations obtained at the Bernard Lyot Telescope (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory, which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France.Tables 3-6 are available in electronic form at http://www.aanda.org
High speed parallel spectral-domain OCT using spectrally encoded line-field illumination
NASA Astrophysics Data System (ADS)
Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo
2018-01-01
We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.
Submillimeter, millimeter, and microwave spectral line catalogue, revision 3
NASA Technical Reports Server (NTRS)
Pickett, H. M.; Poynter, R. L.; Cohen, E. A.
1992-01-01
A computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10,000 GHz (i.e., wavelengths longer than 30 micrometers) is described. The catalog can be used as a planning or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, the lower state energy, and the quantum number assignment. This edition of the catalog has information on 206 atomic and molecular species and includes a total of 630,924 lines. The catalog was constructed by using theoretical least square fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalog will add more atoms and molecules and update the present listings as new data appear. The catalog is available as a magnetic data tape recorded in card images, with one card image per spectral line, from the National Space Science Data Center, located at Goddard Space Flight Center.
Line Parameters of Carbon Dioxide in the 4850 CM-1 Region
NASA Astrophysics Data System (ADS)
Benner, D. Chris; Devi, V. Malathy; Nugent, Emily; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Toth, Robert A.
2011-06-01
The spectral region near 4850 Cm-1 is used to monitor atmospheric carbon dioxide, but current accuracies of the line intensities and line shape coefficients do not permit carbon dioxide mixing ratios to be obtained to 1 ppm (about one part in 400). To improve the line parameters, we are remeasuring the prominent CO2 bands in this region specifically to characterize the non-Voigt effects of line mixing and speed dependence at room temperature. The laboratory spectra of air- and self-broadened CO2 have been recorded at a variety of pressures, path lengths, mixing ratios and resolutions (0.005 to 0.01 Cm-1) with two different Fourier transform spectrometers (the McMath-Pierce FTS at Kitt Peak and a Bruker 125 HR FTS at JPL). The line parameters of some 2000 transitions are being derived by simultaneous multispectrum fitting using a few dozen spectra encompassing a 230 Cm-1 wide spectral interval. The rovibrational constants for line positions and the band intensities and Herman-Wallis coefficients are being retrieved directly from the spectra, rather than floating positions and intensities individually. Self and foreign Lorentz widths and pressure shifts are being determined for the stronger bands while non-Voigt coefficients describing line mixing and speed dependence are being obtained for at least one of the strongest bands. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. V. M. Devi, D. Chris Benner, L. R. Brown, C. E. Miller, and R. A. Toth, J. Mol. Spectrosc. 2007;245:52-80. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. Support for the work at William and Mary was provided by contracts with JPL.
Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward
2017-11-01
The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk-optic spectrometers while also providing significant performance advantages; including an optically immersed master grating for minimal optical aberrations, robust optical alignment using a low-loss dielectric IR waveguide, and simultaneous broad-band spectral acquisition using advanced infrared linear arrays and multiplexing electronics. This paper describes the trial bread-boarding of the groundbreaking new spectrometer concepts and associated technologies towards the MEOS mission requirements.
Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.
Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T
2005-08-01
A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.
NASA Technical Reports Server (NTRS)
Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David
2011-01-01
This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson measuring the atmospheric chemistry across the Los Angeles basin. Development has begun on a flight size PanFTS engineering model (EM) that addresses all critical scaling issues and demonstrates operation over the full spectral range of the flight instrument which will show the PanFTS instrument design is mature.
Progressively expanded neural network for automatic material identification in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Paheding, Sidike
The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features. Unlike the conventional neural network where hidden neurons need to be iteratively adjusted to achieve better accuracy, our proposed PEN Net does not require hidden neurons tuning which achieves better computational efficiency, and it has also shown superior performance in HSI classification tasks compared to the state-of-the-arts. Spectral-spatial features based HSI classification framework has shown stronger strength compared to spectral-only based methods. In our lastly proposed technique, PEN Net is incorporated with multiscale spatial features (i.e., multiscale complete local binary pattern) to perform a spectral-spatial classification of HSI. Several experiments demonstrate excellent performance of our proposed technique compared to the more recent developed approaches.
NASA Astrophysics Data System (ADS)
Kireev, S. V.; Shnyrev, S. L.
2018-02-01
This paper develops the new selective real-time method of 129I2, 129I127I, 127I2 and NO2 detection in gases. Measuring concentrations of molecular iodine is based on fluorescence exciting by the radiation of a tunable diode laser, operating in the red spectral region (632-637 nm), at two or three wavelengths corresponding to the centers of the absorption lines of 129I2, 129I127I and 127I2. Detection of NO2 is performed by measuring the intensity of the tunable diode laser radiation, which passed through the measuring cell. Measured simultaneously, boundary ratios of iodine molecule concentrations measured simultaneously are about 10-6. The sensitivity of nitrogen dioxide detection is 1016 cm-3.
Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO
NASA Astrophysics Data System (ADS)
Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.
2003-11-01
An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.
(F)UV Spectral Analysis of Hot, Hydrogen-Rich Central Stars of Planetary Nebulae
NASA Astrophysics Data System (ADS)
Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.
2010-11-01
Metal abundances of CSPNe are not well known although they provide important constraints on AGB nucleosynthesis. We aim to determine metal abundances of two hot, hydrogen-rich CSPNe (namely of A35 and NGC3587, the latter also known as M97 or the Owl Nebula) and to derive Teff and log g precisely from high-resolution, high-S/N (far-) ultraviolet observations obtained with FUSE and HST/STIS. For this purpose, we utilize NLTE model atmospheres calculated with TMAP, the Tübingen Model Atmosphere Package. Due to strong line absorption of the ISM, simultaneous modeling of interstellar features has become a standard tool in our analyses. We present preliminary results, demonstrating the importance of combining stellar and interstellar models, in order to clearly identify and measure the strengths of strategic photospheric lines.
A new mathematical formulation of the line-by-line method in case of weak line overlapping
NASA Technical Reports Server (NTRS)
Ishov, Alexander G.; Krymova, Natalie V.
1994-01-01
A rigorous mathematical proof is presented for multiline representation on the equivalent width of a molecular band which consists in the general case of n overlapping spectral lines. The multiline representation includes a principal term and terms of minor significance. The principal term is the equivalent width of the molecular band consisting of the same n nonoverlapping spectral lines. The terms of minor significance take into consideration the overlapping of two, three and more spectral lines. They are small in case of the weak overlapping of spectral lines in the molecular band. The multiline representation can be easily generalized for optically inhomogeneous gas media and holds true for combinations of molecular bands. If the band lines overlap weakly the standard formulation of line-by-line method becomes too labor-consuming. In this case the multiline representation permits line-by-line calculations to be performed more effectively. Other useful properties of the multiline representation are pointed out.
A Statistical Comparison between Photospheric Vector Magnetograms Obtained by SDO/HMI and Hinode/SP
NASA Astrophysics Data System (ADS)
Sainz Dalda, Alberto
2017-12-01
Since 2010 May 1, we have been able to study (almost) continuously the vector magnetic field in the Sun, thanks to two space-based observatories: the Solar Dynamics Observatory (SDO) and Hinode. Both are equipped with instruments able to measure the Stokes parameters of Zeeman-induced polarization of photospheric line radiation. But the observation modes; the spectral lines; the spatial, spectral, and temporal sampling; and even the inversion codes used to recover magnetic and thermodynamic information from the Stokes profiles are different. We compare the vector magnetic fields derived from observations with the HMI instrument on board SDO with those observed by the SP instrument on Hinode. We have obtained relationships between components of magnetic vectors in the umbra, penumbra, and plage observed in 14 maps of NOAA Active Region 11084. Importantly, we have transformed SP data into observables comparable to those of HMI, to explore possible influences of the different modes of operation of the two instruments and the inversion schemes used to infer the magnetic fields. The assumed filling factor (fraction of each pixel containing a Zeeman signature) produces the most significant differences in derived magnetic properties, especially in the plage. The spectral and angular samplings have the next-largest effects. We suggest to treat the disambiguation in the same way in the data provided by HMI and SP. That would make the relationship between the vector magnetic field recovered from these data stronger, which would favor the simultaneous or complementary use of both instruments.
Remote Pulsed Laser Raman Spectroscopy System for Detecting Qater, Ice, and Hydrous Minerals
NASA Technical Reports Server (NTRS)
Garcia, Christopher S.; Abedin, M. Nuraul; Sharma, Shiv K.; Misra, Anupam K.; Ismail, Syed; Singh, Upendra; Refaat, Tamer F.; Elsayed-Ali, Hani; Sandford, Steve
2006-01-01
For exploration of planetary surfaces, detection of water and ice is of great interest in supporting existence of life on other planets. Therefore, a remote Raman spectroscopy system was demonstrated at NASA Langley Research Center in collaboration with University of Hawaii for detecting ice-water and hydrous minerals on planetary surfaces. In this study, a 532 nm pulsed laser is utilized as an excitation source to allow detection in high background radiation conditions. The Raman scattered signal is collected by a 4-inch telescope positioned in front of a spectrograph. The Raman spectrum is analyzed using a spectrograph equipped with a holographic super notch filter to eliminate Rayleigh scattering, and a holographic transmission grating that simultaneously disperses two spectral tracks onto the detector for higher spectral range. To view the spectrum, the spectrograph is coupled to an intensified charge-coupled device (ICCD), which allows detection of very weak Stokes line. The ICCD is operated in gated mode to further suppress effects from background radiation and long-lived fluorescence. The sample is placed at 5.6 m from the telescope, and the laser is mounted on the telescope in a coaxial geometry to achieve maximum performance. The system was calibrated using the spectral lines of a Neon lamp source. To evaluate the system, Raman standard samples such as calcite, naphthalene, acetone, and isopropyl alcohol were analyzed. The Raman evaluation technique was used to analyze water, ice and other hydrous minerals and results from these species are presented.
VizieR Online Data Catalog: M-3.8+0.9 molecular cloud 3mm datacubes (Riquelme+ 2018)
NASA Astrophysics Data System (ADS)
Riquelme, D.; Amo-Baladron, A.; Martin-Pintado, J.; Mauersberger, R.; Martin, S.; Burton, M.; Cunningham, M.; Jones, P.; Menten, K. M.; Bronfman, L.; Guesten, R.
2018-01-01
We mapped the M-3.8+0.9 molecular cloud placed at the footpoints of a giant molecular loop, in 3-mm range molecular lines using Mopra telescope, and the 13CO (2-1) line at 1 mm using the 12-m Atacama Pathfinder EXperiment (APEX) telescope. The Mopra observations were performed during September 2008 and August 2009. We used the digital mode filter bank MOPS in broadband mode, covering 8GHz of bandwidth simultaneously in four 2.2GHz sub-bands, each of them with 8192 channel spaced by 0.27MHz. Two polarizations were measured simultaneously. We produce one data cube per detected molecule. The final spatial resolution of the data cubes is between 49 arcsec and 51 arcsec at 115 and 86GHz respectively. The size of the pixel is 15 arcsec. The spectral resolution of the data is 269.5kHz (0.94-0.78km/s). The data is presented in T*a (K). The APEX observations were carried out on 24 June, and 1, 2, and 3 July 2014 under the APEX project code M-093.F-008-2014 using the APEX-1 (SHIFI) receiver and the eXtended bandwidth Fast Fourier Transform Spectrometer (XFFTS) backend. The data were regridded in equatorial coordinates and then converted to Galactic coordinates for comparison with the Mopra data using standard CLASS routines. The pixel size is 13.8 arcsec. The spatial resolution is 30.1 arcsec and the spectral resolution is 299.8kHz (1.03km/s). The data is presented in Tmb (K). (2 data files).
Improved documentation of spectral lines for inductively coupled plasma emission spectrometry
NASA Astrophysics Data System (ADS)
Doidge, Peter S.
2018-05-01
An approach to improving the documentation of weak spectral lines falling near the prominent analytical lines used in inductively coupled plasma optical emission spectrometry (ICP-OES) is described. Measurements of ICP emission spectra in the regions around several hundred prominent lines, using concentrated solutions (up to 1% w/v) of some 70 elements, and comparison of the observed spectra with both recent published work and with the output of a computer program that allows calculation of transitions between the known energy levels, show that major improvements can be made in the coverage of spectral atlases for ICP-OES, with respect to "classical" line tables. It is argued that the atomic spectral data (wavelengths, energy levels) required for the reliable identification and documentation of a large majority of the weak interfering lines of the elements detectable by ICP-OES now exist, except for most of the observed lines of the lanthanide elements. In support of this argument, examples are provided from a detailed analysis of a spectral window centered on the prominent Pb II 220.353 nm line, and from a selected line-rich spectrum (W). Shortcomings in existing analyses are illustrated with reference to selected spectral interferences due to Zr. This approach has been used to expand the spectral-line library used in commercial ICP-ES instruments (Agilent 700-ES/5100-ES). The precision of wavelength measurements is evaluated in terms of the shot-noise limit, while the absolute accuracy of wavelength measurement is characterised through comparison with a small set of precise Ritz wavelengths for Sb I, and illustrated through the identification of Zr III lines; it is further shown that fractional-pixel absolute wavelength accuracies can be achieved. Finally, problems with the wavelengths and classifications of certain Au I lines are discussed.
A Moderate Resolution NIR Spectral Library of Weak-Lined T Tauri Stars
NASA Astrophysics Data System (ADS)
Cooper, Rachel; Covey, K. R.
2013-01-01
We present a spectral library of high-quality moderate resolution (R ~ 3500) NIR spectra for 44 weak-lined T Tauri Stars (WTTS) in the Taurus-Auriga Molecular Cloud. These spectra, obtained with the TripleSpec spectrograph on the Astrophysical Research Consortium (ARC) 3.5 meter telescope, provide full coverage of the J, H, and K near-infrared bands in a single epoch. Analyzing these spectra, along with those of dwarf and giant spectral type standards from the SpeX Spectral Library, we have identified several elemental and molecular absorption lines that vary in strength with respect to each star's spectral type and luminosity class. Calibrating each of these features as a spectral type indicator, we provide a detailed characterization for each of the WTTSs in our sample, identifying each star's NIR spectral type and line-of-sight extinction, estimated both from the shape of the overall continuum and from the fluxes of the Paschen beta and Brackett gamma emission lines. In addition to improving our understanding of the properties of these WTTSs, this well characterized spectral library will be a valuable resource for analyses of the NIR continuum veiling and line emission present in the spectra of accreting classical T Tauri stars. This research was made possible by NSF Grant AST-1004107.
OBSERVATIONAL DETECTION OF DRIFT VELOCITY BETWEEN IONIZED AND NEUTRAL SPECIES IN SOLAR PROMINENCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khomenko, Elena; Collados, Manuel; Díaz, Antonio J., E-mail: khomenko@iac.es, E-mail: mcv@iac.es, E-mail: aj.diaz@uib.es
2016-06-01
We report the detection of differences in the ion and neutral velocities in prominences using high-resolution spectral data obtained in 2012 September at the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife). A time series of scans of a small portion of a solar prominence was obtained simultaneously with high cadence using the lines of two elements with different ionization states, namely, Ca ii 8542 Å and He i 10830 Å. The displacements, widths, and amplitudes of both lines were carefully compared to extract dynamical information about the plasma. Many dynamical features are detected, such as counterstreaming flows, jets, andmore » propagating waves. In all of the cases, we find a very strong correlation between the parameters extracted from the lines of both elements, confirming that both lines trace the same plasma. Nevertheless, we also find short-lived transients where this correlation is lost. These transients are associated with ion-neutral drift velocities of the order of several hundred m s{sup −1}. The patches of non-zero drift velocity show coherence in time–distance diagrams.« less
SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine
NASA Astrophysics Data System (ADS)
Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C.; Burton, M.; Cunningham, M. R.; Dale, J. E.; Ginsburg, A.; Immer, K.; Jones, P. A.; Kendrew, S.; Mills, E. A. C.; Molinari, S.; Moore, T. J. T.; Ott, J.; Pillai, T.; Rathborne, J.; Schilke, P.; Schmiedeke, A.; Testi, L.; Walker, D.; Walsh, A.; Zhang, Q.
2016-01-01
The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.
NASA Astrophysics Data System (ADS)
Nóbrega-Siverio, D.; Martínez-Sykora, J.; Moreno-Insertis, F.; Rouppe van der Voort, L.
2017-12-01
Surges often appear as a result of the emergence of magnetized plasma from the solar interior. Traditionally, they are observed in chromospheric lines such as Hα 6563 \\mathringA and Ca II 8542 \\mathringA . However, whether there is a response to the surge appearance and evolution in the Si IV lines or, in fact, in many other transition region lines has not been studied. In this paper, we analyze a simultaneous episode of an Hα surge and a Si IV burst that occurred on 2016 September 03 in active region AR 12585. To that end, we use coordinated observations from the Interface Region Imaging Spectrograph and the Swedish 1-m Solar Telescope. For the first time, we report emission of Si IV within the surge, finding profiles that are brighter and broader than the average. Furthermore, the brightest Si IV patches within the domain of the surge are located mainly near its footpoints. To understand the relation between the surges and the emission in transition region lines like Si IV, we have carried out 2.5D radiative MHD (RMHD) experiments of magnetic flux emergence episodes using the Bifrost code and including the nonequilibrium ionization of silicon. Through spectral synthesis, we explain several features of the observations. We show that the presence of Si IV emission patches within the surge, their location near the surge footpoints and various observed spectral features are a natural consequence of the emergence of magnetized plasma from the interior to the atmosphere and the ensuing reconnection processes.
Cao, Yingchun; Sanchez, Nancy P; Jiang, Wenzhe; Griffin, Robert J; Xie, Feng; Hughes, Lawrence C; Zah, Chung-en; Tittel, Frank K
2015-02-09
A continuous wave (CW) quantum cascade laser (QCL) based absorption sensor system was demonstrated and developed for simultaneous detection of atmospheric nitrous oxide (N(2)O), methane (CH(4)), and water vapor (H(2)O). A 7.73-µm CW QCL with its wavelength scanned over a spectral range of 1296.9-1297.6 cm(-1) was used to simultaneously target three neighboring strong absorption lines, N(2)O at 1297.05 cm(-1), CH(4) at 1297.486 cm(-1), and H(2)O at 1297.184 cm(-1). An astigmatic multipass Herriott cell with a 76-m path length was utilized for laser based gas absorption spectroscopy at an optimum pressure of 100 Torr. Wavelength modulation and second harmonic detection was employed for data processing. Minimum detection limits (MDLs) of 1.7 ppb for N(2)O, 8.5 ppb for CH(4), and 11 ppm for H(2)O were achieved with a 2-s integration time for individual gas detection. This single QCL based multi-gas detection system possesses applications in environmental monitoring and breath analysis.
Stark broadening of several Bi IV spectral lines of astrophysical interest
NASA Astrophysics Data System (ADS)
Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.
2017-09-01
The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
NASA Astrophysics Data System (ADS)
Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.
2011-06-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.
Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.
Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D
2011-06-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology-Extrasolar terrestrial planets-Habitability-Planetary science-Radiative transfer. Astrobiology 11, 393-408.
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
NASA Technical Reports Server (NTRS)
Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas;
2011-01-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth s time dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.brightness
THE SDSS-III APOGEE SPECTRAL LINE LIST FOR H-BAND SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetrone, M.; Bizyaev, D.; Chojnowski, D.
We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists containsmore » 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.« less
Eclipsing and density effects on the spectral behavior of Beta Lyrae binary system in the UV
NASA Astrophysics Data System (ADS)
Sanad, M. R.
2010-01-01
We analyze both long and short high resolution ultraviolet spectrum of Beta Lyrae eclipsing binary system observed with the International Ultraviolet Explorer (IUE) between 1980 and 1989. The main spectral features are P Cygni profiles originating from different environments of Beta Lyrae. A set of 23 Mg II k&h spectral lines at 2800 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H], have been identified and measured to determine their fluxes and widths. We found that there is spectral variability for these physical parameters with phase, similar to that found for the light curve [Kondo, Y., McCluskey, G.E., Jeffery, M.M.S., Ronald, S.P., Carolina, P.S. McCluskey, Joel, A.E., 1994. ApJ, 421, 787], which we attribute to the eclipse effects [Ak, H., Chadima, P., Harmanec, P., Demircan, O., Yang, S., Koubský, P., Škoda, P., Šlechta, M., Wolf, M., Božić, H., 2007. A&A, 463, 233], in addition to the changes of density and temperature of the region from which these lines are coming, as a result of the variability of mass loss from the primary star to the secondary [Hoffman, J.L., Nordsieck, K.H., Fox, G.K., 1998. AJ, 115, 1576; Linnell, A.P., Hubeny, I., Harmanec, P., 1998. ApJ, 509, 379]. Also we present a study of Fe II spectral line at 2600 Å, originating from the atmosphere of the primary star [Hack, M., 1980. IAUS, 88, 271H]. We found spectral variability of line fluxes and line widths with phase similar to that found for Mg II k&h lines. Finally we present a study of Si IV spectral line at 1394 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H]. A set of 52 Si IV spectral line at 1394 Å have been identified and measured to determine their fluxes and widths. Also we found spectral variability of these physical parameters with phase similar to that found for Mg II k&h and Fe II spectral lines.
Two-wavelength single laser CH and CH(4) imaging in a lifted turbulent diffusion flame.
Namazian, M; Schmitt, R L; Long, M B
1988-09-01
A new technique has been developed which allows simultaneous 2-D mapping of CH and CH 4 in a turbulent methane flame. A flashlamp-pumped dye laser using two back mirrors produces output at 431.5 and 444 nm simultaneously. The 431.5-nm line is used to excite the (0, 0) band of the A(2)Delta-X(2)Pi system of CH, and the fluorescence of the (0, 1) transition is observed at 489 nm. Coincidentally, the spontaneous Raman scattering from CH(4) also occurs near 489 nm for a 431.5-nm excitation. To separate the CH(4) and CH contributions, the 444-nm line is used to produce a spontaneous Raman signal from CH(4) that is spectrally separated from the CH fluorescence. Subtraction of the signals generated by the 431.5- and 444-nm wavelength beams yields separate measurements of CH(4) and CH. Raman-scattered light records the instantaneous distribution of the fuel, and simultaneously the CH fluorescence indicates the location of the flame zone. The resulting composite images provide important insight on the interrelationship between fuel-air mixing and subsequent combustion.M. Namazian is with Altex Technologies Corporation, 109 Via De Tesoros, Los Gatos, California 95030; R. L. Schmitt is with Sandia National Laboratories, Combustion Research Facility, Livermore, California 94550; and M. B. Long is with Yale University, Department of Mechanical Engineering, New Haven, Connecticut 06520.
Submillimeter, millimeter, and microwave spectral line catalogue
NASA Technical Reports Server (NTRS)
Poynter, R. L.; Pickett, H. M.
1984-01-01
This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10000 GHz (i.e., wavelengths longer than 30 micrometers). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue has been constructed using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (151 species) as new data appear. The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.
Submillimeter, millimeter, and microwave spectral line catalogue
NASA Technical Reports Server (NTRS)
Poynter, R. L.; Pickett, H. M.
1981-01-01
A computer accessible catalogue of submillimeter, millimeter and microwave spectral lines in the frequency range between 0 and 3000 GHZ (i.e., wavelengths longer than 100 mu m) is presented which can be used a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (133 species) as new data appear. The catalogue is available as a magnetic tape recorded in card images and as a set of microfiche records.
Element-specific spectral imaging of multiple contrast agents: a phantom study
NASA Astrophysics Data System (ADS)
Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.
2018-02-01
This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.
Blend lines in the polarized spectrum of the Sun
NASA Astrophysics Data System (ADS)
Sowmya, K.; Nagendra, K. N.; Sampoorna, M.
2012-07-01
Blend lines form an integral part of the theoretical analysis and modelling of the polarized spectrum of the Sun. Their interaction with other spectral lines needs to be explored and understood before we can properly use the main spectral lines to diagnose the Sun. They are known to cause a decrease in the polarization in the wings of the main line on which they superpose, or in the polarization of the continuum, when they are assumed to be formed either under the local thermodynamic equilibrium (LTE) conditions or when their intrinsic polarizability factor is zero. In this paper, we describe the theoretical framework to include the blend lines formed under non-LTE conditions, in the radiative transfer equation, and the numerical techniques to solve it. The properties of a blend line having an intrinsic polarization of its own and its interaction with the main line are discussed. The results of our analysis show that the influence of the blend lines on the main spectral lines, though small in the present context, is important and needs to be considered when interpreting the polarized spectral lines in the second solar spectrum.
Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch
Vogman, G. V.; Shumlak, U.
2011-10-13
Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less
Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogman, G. V.; Shumlak, U.
2011-10-15
Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less
SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.
Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wang, Chunlei; Xu, Shuhong; Cui, Yiping
2014-11-01
A new kind of cancer cell separation method is demonstrated, using surface-enhanced Raman scattering (SERS) and fluorescence dual-encoded magnetic nanoprobes. The designed nanoprobes can realize SERS-fluorescence joint spectral encoding (SFJSE) and greatly improve the multiplexing ability. The nanoprobes have four main components, that is, the magnetic core, SERS generator, fluorescent agent, and targeting antibody. These components are assembled with a multi-layered structure to form the nanoprobes. Specifically, silica-coated magnetic nanobeads (MBs) are used as the inner core. Au core-Ag shell nanorods (Au@Ag NRs) are employed as the SERS generators and attached on the silica-coated MBs. After burying these Au@Ag NRs with another silica layer, CdTe quantum dots (QDs), that is, the fluorescent agent, are anchored onto the silica layer. Finally, antibodies are covalently linked to CdTe QDs. SFJSE is fulfilled by using different Raman molecules and QDs with different emission wavelengths. By utilizing four human cancer cell lines and one normal cell line as the model cells, the nanoprobes can specifically and simultaneously separate target cancer cells from the normal ones. This SFJSE-based method greatly facilitates the multiplex, rapid, and accurate cancer cell separation, and has a prosperous potential in high-throughput analysis and cancer diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arakelian 564: An XMM-Newton View
NASA Technical Reports Server (NTRS)
Vignali, Cristian; Brandt, W. N.; Boller, Th.; Fabian, A. C.; Vaughan, Simon
2003-01-01
We report on two XMM-Newton observations of the bright narrow-line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kTau approximately equal 140-150 eV) plus a steep power law (Tau approximately equal to 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is approximately equal to 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of approximately equal to 0.73 keV, corresponding to O VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shown two breads, although the location of the high-frequency break requires further constraints.
NASA Astrophysics Data System (ADS)
O'Hagan, S.; Northern, J. H.; Gras, B.; Ewart, P.; Kim, C. S.; Kim, M.; Merritt, C. D.; Bewley, W. W.; Canedy, C. L.; Vurgaftman, I.; Meyer, J. R.
2016-06-01
The application of an interband cascade laser, ICL, to multi-mode absorption spectroscopy, MUMAS, in the mid-infrared region is reported. Measurements of individual mode linewidths of the ICL, derived from the pressure dependence of lineshapes in MUMAS signatures of single, isolated, lines in the spectrum of HCl, were found to be in the range 10-80 MHz. Multi-line spectra of methane were recorded using spectrally limited bandwidths, of approximate width 27 cm-1, defined by an interference filter, and consist of approximately 80 modes at spectral locations spanning the 100 cm-1 bandwidth of the ICL output. Calibration of the methane pressures derived from MUMAS data using a capacitance manometer provided measurements with an uncertainty of 1.1 %. Multi-species sensing is demonstrated by the simultaneous detection of methane, acetylene and formaldehyde in a gas mixture. Individual partial pressures of the three gases are derived from best fits of model MUMAS signatures to the data with an experimental error of 10 %. Using an ICL, with an inter-mode interval of ~10 GHz, MUMAS spectra were recorded at pressures in the range 1-10 mbar, and, based on the data, a potential minimum detection limit of the order of 100 ppmv is estimated for MUMAS at atmospheric pressure using an inter-mode interval of 80 GHz.
NASA Technical Reports Server (NTRS)
Kavaya, M. J. (Inventor)
1981-01-01
A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.
NASA Astrophysics Data System (ADS)
Erofeev, M. V.; Orlovskii, Viktor M.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, Viktor F.
2000-06-01
The spectral and amplitude—time characteristics of HF lasers pumped by a nonchain chemical reaction and initiated by radially convergent and planar electron beams were investigated. The principal channels leading to the formation of vibrationally excited HF molecules were analysed. It was confirmed that high efficiencies (~10%) of a nonchain HF laser may be attained only as a result of the simultaneous formation of atomic and molecular fluorine when the active mixture is acted upon by an electron beam and of the participation of molecular fluorine in population inversion. It was shown that a laser pulse has a complex spectral—temporal profile caused by the successive generation of P-lines and the overlap during the radiation pulse of both the rotational lines of the same vibrational band and of individual vibrational bands.
First Observations from the Multi-Application Solar Telescope (MAST) Narrow-Band Imager
NASA Astrophysics Data System (ADS)
Mathew, Shibu K.; Bayanna, Ankala Raja; Tiwary, Alok Ranjan; Bireddy, Ramya; Venkatakrishnan, Parameswaran
2017-08-01
The Multi-Application Solar Telescope is a 50 cm off-axis Gregorian telescope recently installed at the Udaipur Solar Observatory, India. In order to obtain near-simultaneous observations at photospheric and chromospheric heights, an imager optimized for two or more wavelengths is being integrated with the telescope. Two voltage-tuneable lithium-niobate Fabry-Perot etalons along with a set of interference blocking filters have been used for developing the imager. Both of the etalons are used in tandem for photospheric observations in Fe i 6173 Å and chromospheric observation in Hα 6563 Å spectral lines, whereas only one of the etalons is used for the chromospheric Ca II line at 8542 Å. The imager is also being used for spectropolarimetric observations. We discuss the characterization of the etalons at the above wavelengths, detail the integration of the imager with the telescope, and present a few sets of observations taken with the imager set-up.
Line-scan spectrum-encoded imaging by dual-comb interferometry.
Wang, Chao; Deng, Zejiang; Gu, Chenglin; Liu, Yang; Luo, Daping; Zhu, Zhiwei; Li, Wenxue; Zeng, Heping
2018-04-01
Herein, the method of spectrum-encoded dual-comb interferometry is introduced to measure a three-dimensional (3-D) profile with absolute distance information. By combining spectral encoding for wavelength-to-space mapping, dual-comb interferometry for decoding and optical reference for calibration, this system can obtain a 3-D profile of an object at a stand-off distance of 114 mm with a depth precision of 12 μm. With the help of the reference arm, the absolute distance, reflectivity distribution, and depth information are simultaneously measured at a 5 kHz line-scan rate with free-running carrier-envelope offset frequencies. To verify the concept, experiments are conducted with multiple objects, including a resolution test chart, a three-stair structure, and a designed "ECNU" letter chain. The results show a horizontal resolution of ∼22 μm and a measurement range of 1.93 mm.
Simultaneous CARS and Interferometric Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Grinstead, Keith D., Jr.; Tedder, Sarah; Cutler, Andrew D.
2006-01-01
This paper reports for the first time the combination of a dual-pump coherent anti-Stokes Raman scattering system with an interferometric Rayleigh scattering system (CARS - IRS) to provide time-resolved simultaneous measurement of multiple properties in combustion flows. The system uses spectrally narrow green (seeded Nd:YAG at 532 nm) and yellow (552.9 nm) pump beams and a spectrally-broad red (607 nm) beam as the Stokes beam. A spectrometer and a planar Fabry-Perot interferometer used in the imaging mode are used to record the spectrally broad CARS spectra and the spontaneous Rayleigh scattering spectra, respectively. Time-resolved simultaneous measurement of temperature, absolute mole fractions of N2, O2, and H2, and two components of velocity in a Hencken burner flame were performed to demonstrate the technique.
The FTS atomic spectrum tool (FAST) for rapid analysis of line spectra
NASA Astrophysics Data System (ADS)
Ruffoni, M. P.
2013-07-01
The FTS Atomic Spectrum Tool (FAST) is an interactive graphical program designed to simplify the analysis of atomic emission line spectra obtained from Fourier transform spectrometers. Calculated, predicted and/or known experimental line parameters are loaded alongside experimentally observed spectral line profiles for easy comparison between new experimental data and existing results. Many such line profiles, which could span numerous spectra, may be viewed simultaneously to help the user detect problems from line blending or self-absorption. Once the user has determined that their experimental line profile fits are good, a key feature of FAST is the ability to calculate atomic branching fractions, transition probabilities, and oscillator strengths-and their uncertainties-which is not provided by existing analysis packages. Program SummaryProgram title: FAST: The FTS Atomic Spectrum Tool Catalogue identifier: AEOW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 293058 No. of bytes in distributed program, including test data, etc.: 13809509 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-based systems. Operating system: Linux/Unix/Windows. RAM: 8 MB minimum. About 50-200 MB for a typical analysis. Classification: 2.2, 2.3, 21.2. Nature of problem: Visualisation of atomic line spectra including the comparison of theoretical line parameters with experimental atomic line profiles. Accurate intensity calibration of experimental spectra, and the determination of observed relative line intensities that are needed for calculating atomic branching fractions and oscillator strengths. Solution method: FAST is centred around a graphical interface, where a user may view sets of experimental line profiles and compare them to calculated data (such as from the Kurucz database [1]), predicted line parameters, and/or previously known experimental results. With additional information on the spectral response of the spectrometer, obtained from a calibrated standard light source, FT spectra may be intensity calibrated. In turn, this permits the user to calculate atomic branching fractions and oscillator strengths, and their respective uncertainties. Running time: Open ended. Defined by the user. References: [1] R.L. Kurucz (2007). URL http://kurucz.harvard.edu/atoms/.
Simultaneous Chandra X-ray, HST UV, and Ulysses Radio Observations of Jupiter's Aurora
NASA Technical Reports Server (NTRS)
R. Elsner; Bhardwaj, A.; Waite, H.; Lugaz, N.; Majeed, T.; Cravens, T.; Gladstone, G.; Ford, P.; Grodent, D.; MacDowell, R.
2004-01-01
Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from remsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. The OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are clearly identified. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV for which sulfur and carbon lines are possible candidates. The Jovian auroral spectra differ significantly from measured cometary X-ray spectra. The charge state distribution of the oxygen ion emission evident in the measured auroral spectra strongly suggests that, independent of the source of the energetic ions (magnetospheric or solar wind) the ions have undergone additional acceleration. For the magnetospheric case, acceleration to energies exceeding 10 MeV is apparently required. The ion acceleration also helps to explain the high intensities of the X-rays observed. The phase space densities of unaccelerated source populations of either solar wind or magnetospheric ions are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets provide interesting hints as to the location of the source region and the acceleration characteristics of the generation mechanism. The combined observations suggest that the source of the X rays is magnetospheric in origin, and that strong field-aligned electric fields are present which simultaneously create both the several-MeV energetic ion population and the relativistic electrons believed to be responsible for the generation of approximately 40 minute quasi-periodic radio outbursts.
Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing
NASA Technical Reports Server (NTRS)
Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.
2011-01-01
Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Motoshi; Morita, Shigeru
Emission lines in the visible/UV wavelength ranges are observed with 80 lines of sight which cover an entire poloidal cross section of the plasma in the Large Helical Device. The emitted light is received with optical fibers having 100 {mu}m diameter and is guided into a 1.33 m Czerny-Turner-type spectrometer based on spherical mirrors for collimating and focusing. A charge-coupled device having 13.3x13.3 mm{sup 2} area size is used as the detector and the spectra from all the lines of sight are recorded perpendicularly to the wavelength dispersion. The spectrometer is equipped with optics located in front of the entrancemore » slit to correct the difference between the meridional and sagittal focal points, and thus the astigmatism, which otherwise causes severe cross talk between adjacent optical fiber images on the detector, is corrected. Consequently, simultaneous spectral measurement with 80 lines of sight is realized. The Zeeman splitting of a neutral helium line, {lambda}667.8 nm (2 {sup 1}P-3 {sup 1}D), which is caused by the magnetic field for plasma confinement, is measured with the spectrometer. Though the obtained line profile is in general a superposition of several components on the same line of sight, they can be separated according to their different splitting widths. The two-dimensional poloidal distribution of the helium line intensity is obtained with the help of a tomographic technique.« less
Location of Bare Soil Surface and Soil Line on the RED-NIR Spectral Plane
NASA Astrophysics Data System (ADS)
Koroleva, P. V.; Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Kulyanitsa, A. L.; Trubnikov, A. V.; Kalinina, N. V.; Simakova, M. S.
2017-12-01
Soil as a separate natural body occupies certain area with its own set of spectral characteristics within the RED-NIR spectral space. This is an ellipse-shaped area, and its semi-major axis is the soil line for a satellite image. The spectral area for a bare soil surface is neighboring to the areas of black carbon, straw, vegetating plants, and missing RED-NIR values. A reliable separation of the bare soil surface within the spectral space is possible with the technology of spectral neighborhood of soil line. The accuracy of this method is 90%. The determination of the bare soil surface using vegetation indices, both relative (NDVI), and perpendicular (PVI), is incorrect; the accuracy of these methods does not exceed 65%, and for most of the survey seasons it may be lower than 50%. The flat part of the "tasseled cap" described as the soil line, is not a synonym for the area of the bare soil surface. The bare soil surface on the RED-NIR plots occupies significantly smaller areas than the area of soil line according to Kauth and Thomas.
Relative spectral response calibration using Ti plasma lines
NASA Astrophysics Data System (ADS)
Teng, FEI; Congyuan, PAN; Qiang, ZENG; Qiuping, WANG; Xuewei, DU
2018-04-01
This work introduces the branching ratio (BR) method for determining relative spectral responses, which are needed routinely in laser induced breakdown spectroscopy (LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.
NASA Astrophysics Data System (ADS)
Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.
2018-04-01
The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.
Thweatt, W Dave; Harward, Charles N; Parrish, Milton E
2007-05-01
Acrolein and 1,3-butadiene in cigarette smoke generally are measured using two separate analytical methods, a carbonyl derivative HPLC method for acrolein and a volatile organic compound (VOC) GC/MS method for 1,3-butadiene. However, a single analytical method having improved sensitivity and real-time per puff measurement will offer more specific information for evaluating experimental carbon filtered cigarettes designed to reduce the smoke deliveries of these constituents. This paper describes an infrared technique using two lead-salt tunable diode lasers (TDLs) operating with liquid nitrogen cooling with emissions at 958.8 cm(-1) and 891.0 cm(-1) respectively for the simultaneous measurement of acrolein and 1,3-butadiene, respectively, in each puff of mainstream cigarette smoke in real time. The dual TDL system uses a 3.1l volume, 100 m astigmatic multiple pass absorption gas cell. Quantitation is based on a spectral fit that uses previously determined infrared molecular line parameters generated in our laboratory, including line positions, line strengths and nitrogen-broadened half-widths for these species. Since acrolein and ethylene absorption lines overlap and 1,3-butadiene, ethylene and propylene absorption lines overlap, the per puff deliveries of ethylene and propylene were determined since their overlapping absorption lines must be taken into account by the spectral fit. The acrolein and 1,3-butadiene total cigarette deliveries for the 1R5F Kentucky Reference cigarette were in agreement with the HPLC and GC/MS methods, respectively. The limit of detection (LOD) for 1,3-butadiene and acrolein was 4 ng/puff and 24 ng/puff, respectively, which is more than adequate to determine at which puff they break through the carbon filter. The retention and breakthrough behavior for the two primary smoke constituents depend on the cigarette design and characteristics of the carbon filter being evaluated.
NASA Astrophysics Data System (ADS)
Thweatt, W. Dave; Harward, Charles N., Sr.; Parrish, Milton E.
2007-05-01
Acrolein and 1,3-butadiene in cigarette smoke generally are measured using two separate analytical methods, a carbonyl derivative HPLC method for acrolein and a volatile organic compound (VOC) GC/MS method for 1,3-butadiene. However, a single analytical method having improved sensitivity and real-time per puff measurement will offer more specific information for evaluating experimental carbon filtered cigarettes designed to reduce the smoke deliveries of these constituents. This paper describes an infrared technique using two lead-salt tunable diode lasers (TDLs) operating with liquid nitrogen cooling with emissions at 958.8 cm -1 and 891.0 cm -1 respectively for the simultaneous measurement of acrolein and 1,3-butadiene, respectively, in each puff of mainstream cigarette smoke in real time. The dual TDL system uses a 3.1 l volume, 100 m astigmatic multiple pass absorption gas cell. Quantitation is based on a spectral fit that uses previously determined infrared molecular line parameters generated in our laboratory, including line positions, line strengths and nitrogen-broadened half-widths for these species. Since acrolein and ethylene absorption lines overlap and 1,3-butadiene, ethylene and propylene absorption lines overlap, the per puff deliveries of ethylene and propylene were determined since their overlapping absorption lines must be taken into account by the spectral fit. The acrolein and 1,3-butadiene total cigarette deliveries for the 1R5F Kentucky Reference cigarette were in agreement with the HPLC and GC/MS methods, respectively. The limit of detection (LOD) for 1,3-butadiene and acrolein was 4 ng/puff and 24 ng/puff, respectively, which is more than adequate to determine at which puff they break through the carbon filter. The retention and breakthrough behavior for the two primary smoke constituents depend on the cigarette design and characteristics of the carbon filter being evaluated.
Flat-field VLS spectrometers for laboratory applications
NASA Astrophysics Data System (ADS)
Ragozin, Evgeny N.; Belokopytov, Aleksei A.; Kolesnikov, Aleksei O.; Muslimov, Eduard R.; Shatokhin, Aleksei N.; Vishnyakov, Eugene A.
2017-05-01
Our intention is to develop high-resolution stigmatic spectral imaging in the XUV (2 - 40 nm). We have designed, aligned and tested a broadband stigmatic spectrometer for a range of 12-30 nm, which makes combined use of a normalincidence multilayer mirror (MM) (in particular, a broadband aperiodic MM) and a grazing-incidence plane varied linespace (VLS) reflection grating. The concave MM produces a slightly astigmatic image of the radiation source (for instance, the entrance slit), and the VLS grating produces a set of its dispersed stigmatic spectral images. The multilayer structure determines the spectral width of the operating range, which may amount to more than an octave in wavelength (e.g. 12.5-30 nm for an aperiodic Mo/Si MM), while the VLS grating controls the spectral focal curve. The stigmatism condition is satisfied simultaneously for two wavelengths, 14 and 27 nm. In this case, the condition of non-rigorous stigmatism is fulfilled for the entire wavelength range. A LiF laser plasma spectrum was recorded in one 0.5 J laser shot. A spatial resolution of 26 μm and a spectral resolution of 900 were demonstrated in the 12.5 - 25 nm range. We also report the design of a set of flat-field spectrometers of Harada type with VLS gratings. VLS gratings were made by ebeam and interference lithography. A technique (analytical + numerical) was developed for calculating optical schemes for writing plane and concave VLS gratings with predefined line density variation.
The 1.5 Ms Observing Campaign on IRAS 13224-3809: X-ray Spectral Analysis I.
NASA Astrophysics Data System (ADS)
Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.
2018-03-01
We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray lightcurve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time scale of kiloseconds. The spectra are well fit with a primary powerlaw continuum, two relativistic-blurred reflection components from the inner accretion disk with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.263 and 0.229 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disk electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe=24^{+3}_{-4}Z_⊙ with ne ≡ 1015 cm-3 to Z_Fe=6.6^{+0.8}_{-2.1}Z_⊙.
The 1.5 Ms observing campaign on IRAS 13224-3809 - I. X-ray spectral analysis
NASA Astrophysics Data System (ADS)
Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.
2018-07-01
We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow-line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray light curve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time-scale of kiloseconds. The spectra are well fit with a primary power-law continuum, two relativistic-blurred reflection components from the inner accretion disc with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power-law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV, and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.267 and 0.225 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disc electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe = 24^{+3}_{-4} Z_{⊙} with ne ≡ 1015 cm-3 to Z_Fe = 6.6^{+0.8}_{-2.1} Z_{⊙}.
Multi-monochromatic imaging of defect-induced mix experiments at OMEGA
NASA Astrophysics Data System (ADS)
Mancini, Roberto; Johns, Heather; Joshi, Tirtha; Mayes, Daniel; Durmaz, Tunay; Nagayama, Taisuke; Hsu, Scott; Tregillis, Ian; Krasheninnikova, Natalia; Cobble, James; Murphy, Thomas; Shah, Rahul; Kyrala, George; Hakel, Peter; Bradley, Paul; Schmitt, Mark
2012-10-01
In a series of polar-drive implosions performed at OMEGA for the defect-induced mix experiment (DIME) campaign of Los Alamos National Laboratory, two identical multi-monochromatic imager (MMI) instruments were fielded to record gated, x-ray spectrally-resolved images of D-filled Ti-doped plastic shells. The shells included a defect on the equatorial plane to study defect-induced mix while no-defect shells were employed in reference shots. The MMI data recorded simultaneously along quasi-orthogonal lines-of-sight afforded unique observations of the implosion based on the K-shell spectral signatures of the Ti tracer. Several analysis techniques have been used to process the MMI data (T. Nagayama et al, J. App. Phys. 109, 093303 (2011)) in order to study defect-induced mixing by tracking the spatial distribution and state of the tracer. Comparisons were made with results from post-processed 2D and 3D simulations to provide further insight into the interpretation of the experimental results and to constrain the simulation physics model.
NASA Technical Reports Server (NTRS)
Sutton, D. J.; Houwing, A. F. P.; Palma, P. C.; Boyce, R. R.; Sandeman, R. J.; Mundt, CH.
1993-01-01
Single shot spatially and spectrally resolved laser induced predissociation fluorescence measurements in a shock layer around a cylinder in a pulsed supersonic free stream are presented. Fluorescence signals were produced using the tuned output of an argon fluoride excimer laser to excite a mixture of rovibrational transitions in molecular oxygen. The signals produced along a line inside the shock layer were focussed onto a two dimensional detector coupled to a spectrometer, thus allowing spectral and spatial resolution of the fluorescence. In this way, it was possible to detect two fluorescence signals from two different transitions simultaneously, allowing the determination of vibrational temperatures without the need for calibration. However, to minimize problems associated with low signal to noise ratios, background subtraction and spatial averaging was required. The experimental measurements are compared with theoretical inviscid shock layer calculations for nonequilibrium air. A description of the strategies employed in these calculations is also provided.
A Possible Magnetar Nature for IGR J16358-4726
NASA Technical Reports Server (NTRS)
Patel, S.; Zurita, J.; DelSanto, M.; Finger, M.; Koueliotou, C.; Eichler, D.; Gogus, E.; Ubertini, P.; Walter, R.; Woods, P.
2006-01-01
We present detailed spectral and timing analysis of the hard x-ray transient IGR J16358-4726 using multi-satellite archival observations. A study of the source flux time history over 6 years, suggests that this transient outbursts can be occurring in intervals of at most 1 year. Joint spectral fits using simultaneous Chandra/ACIS and INTEGRAL/ISGRI data reveal a spectrum well described by an absorbed cut-off power law model plus an Fe line. We detected the pulsations initially reported using Chandra/ACIS also in the INTEGRAL/ISGRI light curve and in subsequent XMM-Newton observations. Using the INTEGRAL data we identified a pulse spin up of 94 s (P = 1.6 x 10(exp -4), which strongly points to a neutron star nature for IGR J16358-4726. Assuming that the spin up is due to disc accretion, we estimate that the source magnetic field ranges between 10(sup 13) approximately 10(sup 15) depending on its distance, possibly supporting a magnetar nature for IGR J16358-4726.
Temporal and spectral characteristics of solar flare hard X-ray emission
NASA Technical Reports Server (NTRS)
Dennis, B. R.; Kiplinger, A. L.; Orwig, L. E.; Frost, K. J.
1985-01-01
Solar Maximum Mission observations of three flares that impose stringent constraints on physical models of the hard X-ray production during the impulsive phase are presented. Hard X-ray imaging observations of the flares on 1980 November 5 at 22:33 UT show two patches in the 16 to 30 keV images that are separated by 70,000 km and that brighten simultaneously to within 5 s. Observations to O V from one of the footprints show simultaneity of the brightening in this transition zone line and in the total hard X-ray flux to within a second or two. These results suggest but do not require the existence of electron beams in this flare. The rapid fluctuations of the hard X-ray flux within some flares on the time scales of 1 s also provide evidence for electron beams and limits on the time scale of the energy release mechanism. Observations of a flare on 1980 June 6 at 22:34 UT show variations in the 28 keV X-ray counting rate from one 20 ms interval to the next over a period of 10 s. The hard X-ray spectral variations measured with 128 ms time resolution for one 0.5 s spike during this flare are consistent with the predictions of thick-target non-thermal beam model.
Jiang, Bo; Huang, Yu Dong
2007-01-01
A NIR method was developed for the on-line monitoring of alkali-free cloth/phenolic resin prepreg during its manufacturing process. First, the sizing content of the alkali-free cloth was analyzed, and then the resin, soluble resin and volatiles content of the prepreg was analyzed simultaneously using the FT-NIR spectrometer. Partial least square (PLS) regression was used to develop the calibration models, which for the sizing content was preprocessed by 1stDER +MSC, for the volatile content by 1stDER +VN, for the soluble resin content by 1stDER +MSC and for the resin content by the VN spectral data preprocessing method. RMSEP of the prediction model for the sizing content was 0.732 %, for the resin content it was 0.605, for the soluble resin content it was 0.101 and for volatiles content it was 0.127. The results of the paired t-test revealed that there was no significant difference between the NIR method and the standard method. The NIR spectroscopy method could be used to predict the resin, soluble resin and the volatiles content of the prepreg simultaneously, as well as sizing content of alkali-free cloth. The processing parameters of the prepreg during manufacture could be adjusted quickly with the help of the NIR analysis results. The results indicated that the NIR spectroscopy method was sufficiently accurate and effective for the on-line monitoring of alkali-free cloth/phenolic resin prepreg.
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2011-04-01
In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy
Handwritten text line segmentation by spectral clustering
NASA Astrophysics Data System (ADS)
Han, Xuecheng; Yao, Hui; Zhong, Guoqiang
2017-02-01
Since handwritten text lines are generally skewed and not obviously separated, text line segmentation of handwritten document images is still a challenging problem. In this paper, we propose a novel text line segmentation algorithm based on the spectral clustering. Given a handwritten document image, we convert it to a binary image first, and then compute the adjacent matrix of the pixel points. We apply spectral clustering on this similarity metric and use the orthogonal kmeans clustering algorithm to group the text lines. Experiments on Chinese handwritten documents database (HIT-MW) demonstrate the effectiveness of the proposed method.
Reminiscences and Reflections on the History of International Conferences on Spectral Line Shapes
NASA Astrophysics Data System (ADS)
Szudy, J.
2017-02-01
A brief account of the history of International Conferences on Spectral Line Shapes (ICSLS) is given. Although in common use the “Europhysics Study Conference on Spectral Line Broadening and Related Topics” held in Meudon in 1973 is referred to as the first in the current sequence of ICSLS meetings, it is noted that five conferences dealing with line shape topics were organized before 1973 both in the USA and in Europe. Some details are given about their format and program. In particular, “The First International Conference on Spectral Lines” held in 1972 at the University of Tennessee at Knoxville is remembered as a meeting fully devoted to line shape problems, and as such should be regarded, in addition to the Meudon conference, as one of the roots of the line-shape community. Some of the highlights of particular ICSLS conferences as well as characteristics of their proceedings are briefly reviewed.
NASA Astrophysics Data System (ADS)
Kushwaha, Pankaj; Gupta, Alok C.; Wiita, Paul J.; Pal, Main; Gaur, Haritma; de Gouveia Dal Pino, E. M.; Kurtanidze, O. M.; Semkov, E.; Damljanovic, G.; Hu, S. M.; Uemura, M.; Vince, O.; Darriba, A.; Gu, M. F.; Bachev, R.; Chen, Xu; Itoh, R.; Kawabata, M.; Kurtanidze, S. O.; Nakaoka, T.; Nikolashvili, M. G.; Sigua, L. A.; Strigachev, A.; Zhang, Z.
2018-06-01
We present a multi-wavelength spectral and temporal investigation of OJ 287 emission during its strong optical-to-X-ray activity between July 2016 - July 2017. The daily γ-ray fluxes from Fermi-LAT are consistent with no variability. The strong optical-to-X-ray variability is accompanied by a change in power-law spectral index of the X-ray spectrum from <2 to >2, with variations often associated with changes in optical polarization properties. Cross-correlations between optical-to-X-ray emission during four continuous segments show simultaneous optical-ultraviolet (UV) variations while the X-ray and UV/optical are simultaneous only during the middle two segments. In the first segment, the results suggest X-rays lag the optical/UV, while in the last segment X-rays lead by ˜ 5-6 days. The last segment also shows a systematic trend with variations appearing first at higher energies followed by lower energy ones. The LAT spectrum before the VHE activity is similar to preceding quiescent state spectrum while it hardens during VHE activity period and is consistent with the extrapolated VHE spectrum during the latter. Overall, the broadband spectral energy distributions (SEDs) during high activity periods are a combination of a typical OJ 287 SED and an HBL SED, and can be explained in a two-zone leptonic model, with the second zone located at parsec scales, beyond the broad line region, being responsible for the HBL-like spectrum. The change of polarization properties from systematic to chaotic and back to systematic, before, during and after the VHE activity, suggest dynamic roles for magnetic fields and turbulence.
METHANE AND WATER ON MARS: MAPS OF ACTIVE REGIONS AND THEIR SEASONAL VARIABILITY
NASA Astrophysics Data System (ADS)
Villanueva, G. L.; Mumma, M. J.; Novak, R. E.
2009-12-01
We have detected methane on Mars, and measured it simultaneously with water using powerful ground-based telescopes [1, 2]. Its presence in such a strongly oxidized atmosphere (CO2: 95.3%) requires recent release; the ultimate origin of this methane is uncertain, but it could either be abiotic or biotic. On Earth, methane is produced primarily by biology, with a small fraction produced by abiotic means. The sources and sinks of hydrogen-bearing species (e.g., H2O and CH4) on Mars are still poorly known. In particular, the roles of the regolith and the sub-surface hydrogen reservoirs in the Martian water cycle have been broadly studied, but have not been conclusively quantified. If water is being released from the sub-surface or shares a common source with other H-bearing species, we might see correlations among them. Previous searches for such correlations have been precluded because of the lack of simultaneity of the measurements and the intrinsic variability of water on Mars, which is a condensable whose total local abundance is partitioned among several competing phases controlled largely by temperature (ensuring its variability on a variety of time scales, from diurnal to seasonal to epochal). We sampled multiple spectral lines of methane and water vapor on Mars in a campaign spanning seven years (three Mars years; 1999-2006) and sampling three seasons on Mars. Data were ac-quired using long-slit infrared spectrometers: CSHELL (Cryogenic Echelle Spectrograph) at NASA-IRTF (Infrared Telescope Facility) and NIRSPEC (Near Infrared Spectrograph) at Keck 2. These instruments offer spatially-resolved spectra with the high spectral resolving power (λ/δλ ~ 40,000) needed to reduce confusion among telluric, Martian, and Fraunhofer lines (in reflected solar radiation). Since 2005, we greatly improved our data processing algorithms and increased the sensitivity of our measurements by an order of magnitude. Using these new techniques, we detected multiple lines of methane on Mars [1] and discovered two new band sys-tems of isotopic CO2 (at 3.3 and 3.7 μm) that can interfere with signatures of CH4 and HDO [3, 4]. The spectral signatures of these isotopic CO2 transitions may affect searches based on low spectral resolution methods, but they do not affect the searches reported herein. We present the spatial distributions of methane and water-vapor on Mars extracted from our seven-year spectral database, and we compare these with geological parameters. Both gases are depleted at vernal equinox but are enhanced in warm seasons (spring/summer), though often with dissimilar spatial distributions. In Northern Summer we observe a polar outburst of water but no methane, while in Southern Spring we observe release of abundant methane but little water. Regions of methane release appear mainly over ancient terrain (Noachian/Hesperian, older than 3 billion years) known to have a rich hydration history. [1] Mumma et al. (2009) Science 323:1041-1045. [2] Villanueva et al. (2009), submitted. [3] Villanueva et al. (2008) Icarus 195(1):34-44. [4] Villanueva et al. (2008) JQSRT 109(6):883-894.
- and Air-Broadened Line Shape Parameters of 12CH_4 : 4500-4620 CM-1
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda; Crawford, Timothy J.; Smith, Mary Ann H.; Mantz, Arlan; Predoi-Cross, Adriana
2014-06-01
Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. We report the self- and air-broadened Lorentz widths, shifts and line mixing coefficients along with their temperature dependences for methane absorption lines in the 2.2 μm spectral region. For this, we obtained a series of high-resolution, high S/N spectra of 99.99% 12C-enriched samples of pure methane and its dilute mixtures in dry air at cold temperatures down to 150 K using the Bruker IFS 125HR Fourier transform spectrometer at JPL. The coolable absorption cell had an optical path of 20.38 cm and was specially built to reside inside the sample compartment of the Bruker FTS. The 13 spectra used in the analysis consisted of seven pure 12CH_4 spectra at pressures from 4.5 to 169 Torr and six air-broadened spectra with total sample pressures of 113-300 Torr and methane volume mixing ratios between 4 and 9.7%. These 13 spectra were fit simultaneously using the multispectrum least-squares fitting technique. The results will be compared to existing values reported in the literature. K. Sung, A. W. Mantz, L. R. Brown, et al., J. Mol. Spectrosc., 162 (2010) 124-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT, 53 (1995) 705-721. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.
Spatial resolution of a hard x-ray CCD detector.
Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott
2010-08-10
The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.
Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust
NASA Astrophysics Data System (ADS)
Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.
2018-05-01
Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.
Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction.
Pircher, Michael; Baumann, Bernhard; Götzinger, Erich; Sattmann, Harald; Hitzenberger, Christoph K
2007-12-10
It has been shown that transversal scanning (or en-face) optical coherence tomography (TS-OCT) represents an imaging modality capable to record high isotropic resolution images of the human retina in vivo. However, axial eye motion still remains a challenging problem of this technique. In this paper we introduce a novel method to compensate for this eye motion. An auxiliary spectral domain partial coherence interferometer (SD-PCI) was integrated into an existing TS-OCT system and used to measure accurately the position of the cornea. A light source emitting at 1310nm was used in the additional interferometer which enabled a nearly loss free coupling of the two measurement beams via a dichroic mirror. The recorded corneal position was used to drive an additional voice coil translation stage in the reference arm of the TS-OCT system to correct for axial eye motion. Currently, the correction can be performed with an update rate of ~200Hz. The TS-OCT instrument is operated with a line scan rate of 4000 transversal lines per second which enables simultaneous SLO/OCT imaging at a frame rate of 40fps. 3D data of the human retina with isotropic high resolution, that was sufficient to visualize the human cone mosaic in vivo, is presented.
[Study on the arc spectral information for welding quality diagnosis].
Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun
2009-03-01
Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-07-01
The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (~10 cm-1) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges >100more » cm-1, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (~100 cm-1) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical species will be presented.« less
NASA Astrophysics Data System (ADS)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.; Suter, Jonathan D.
2016-06-01
The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (˜10 wn) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges greater than 100 wn, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (˜100 wn) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical species will be presented. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy (DOE) by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.
VizieR Online Data Catalog: Infrared Arcturus Atlas (Hinkle+ 1995)
NASA Astrophysics Data System (ADS)
Hinkle, K.; Wallace, L.; Livingston, W.
1996-01-01
The atlas is contained in 310 spectral files a list of line identifications, plus a file containing a list of the files and unobserved spectral regions. The spectral file names are in the form 'abnnnnn' where 'nnnnn' denotes the spectral region, e.g. file 'ab4300' contains spectra for the 4300-4325 cm-1 range. The atomic and molecular line identifications are in files 'appendix.a' and 'appendix.b', and repeated with a uniform format in file 'lines'. The file 'appendix.c' is a book-keeping device used to correlate the plot plages and spectral files with frequency. See the author-supplied description in 'readme.dat' for more information. (311 data files).
Simultaneous quantification of glutamate and glutamine by J-modulated spectroscopy at 3 Tesla.
Zhang, Yan; Shen, Jun
2016-09-01
The echo time (TE) averaged spectrum is the one-dimensional (1D) cross-section of the J-resolved spectrum at J = 0. In multiecho TE-averaged spectroscopy, glutamate (Glu) is differentiated from glutamine (Gln) at 3 Tesla (T). This method, however, almost entirely suppresses Gln resonance lines around 2.35 ppm, leaving Gln undetermined. This study presents a novel method for quantifying both Glu and Gln using multi-echo spectral data. A 1D cross-section of J-resolved spectroscopy at J = 7.5 Hz-referred to as J-modulated spectroscopy-was developed to simultaneously quantify Glu and Gln levels in the human brain. The transverse relaxation times (T2 s) of metabolites were first determined using conventional TE-averaged spectroscopy with different starting echo time and then incorporated into the spectral model for fitting J-modulated data. Simulation and in vivo data showed that the resonance signals of Glu and Gln were clearly separated around 2.35 ppm in J-modulated spectroscopy. In the anterior cingulate cortex, both Glu and Gln levels were found to be significantly higher in gray matter than in white matter in healthy subjects (P < 10(-10) and < 10(-5) , respectively). Gln resonances can be clearly separated from Glu and N-acetyl-aspartate around 2.35 ppm using J-modulated spectroscopy. This method can be used to quantitatively measure Glu and Gln simultaneously at 3T. Magn Reson Med 76:725-732, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Toroidal varied-line space (TVLS) gratings
NASA Astrophysics Data System (ADS)
Thomas, Roger J.
2003-02-01
It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.
Toroidal Varied-Line Space (TVLS) Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Oegerle, William (Technical Monitor)
2002-01-01
It is a particular challenge to develop a stigmatic spectrograph for XUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV (Extreme Ultraviolet) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrometers based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.
Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.
Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng
2018-01-01
In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.
NASA Astrophysics Data System (ADS)
Borkov, Yu. G.; Petrova, T. M.; Solodov, A. M.; Solodov, A. A.
2018-02-01
The absorption spectra of a mixture of H2O with CO2 at different partial pressures of CO2 have been recorded at room temperature in the 10,100-10,800 cm-1 region using a Bruker IFS 125 HR FTIR spectrometer. The multispectrum fitting procedure has been applied to these spectra to recover the broadening and shift parameters of the water vapor spectral lines. To obtain the spectral lines parameters two models of the line shape were used: the Voigt profile and the quadratic speed-dependent Voigt profile. The CO2 pressure induced broadening and shift coefficients for 168 spectral lines with rather large values of the signal to noise ratio have been measured.
Simple spectroscope used with solid state image amplifier over wide spectral range
NASA Technical Reports Server (NTRS)
Brown, R. L., Sr.
1971-01-01
Prism plus image amplifier panel provides visual image of many infrared spectral lines from carbon arc impregnated with metal compound. Different metal compounds generate various desired spectra. Panel also aligns and focuses simple spectroscopes for detecting spectral lines inside and outside visible region.
Passband switchable microwave photonic multiband filter
Ge, Jia; Fok, Mable P.
2015-01-01
A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity. PMID:26521693
Passband switchable microwave photonic multiband filter.
Ge, Jia; Fok, Mable P
2015-11-02
A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity.
Simultaneous UV and optical study of O star winds and UV and optical covariability of O star winds
NASA Technical Reports Server (NTRS)
Nichols, Joy S.
1995-01-01
Simultaneous ultraviolet and optical observations of 10 bright O stars were organized in several observing campaigns lasting 3-6 days each. The observing campaigns included 12 observatories in the Northern hemisphere obtaining high resolution spectroscopy, photometry, and polarimetry, as well as 24-hour coverage with the IUE (International Ultraviolet Explorer) observatory. Over 600 high dispersion SWP spectra were acquired with IUE at both NASA and VILSPA for the completion of this work. The massive amount of data from these observing campaigns, both from IUE and the ground-based instruments, has been reduced and analyzed. The accompanying paper describes the data acquisition, analysis, and conclusions of the study performed. The most important results of this study are the strong confirmation of the ubiquitous variability of winds of O stars, and the critical correlation between rotation of the star and the wind variability as seen in the ultraviolet and optical spectral lines.
Li, Jun-Wei; Duan, Rui-Gang; Zou, Jian-Hua; Chen, Ri-Dao; Chen, Xiao-Guang; Dai, Jun-Gui
2014-06-01
Seven meroterpenoids and five small-molecular precursors were isolated from Penicillium sp., an endophytic fungus from Dysosma versipellis. The structures of new compounds, 11beta-acetoxyisoaustinone (1) and isoberkedienolactone (2) were elucidated based on analysis of the spectral data, and the absolute configuration of 2 was established by TDDFT ECD calculation with satisfactory match to its experimental ECD data. Meroterpenoids originated tetraketide and pentaketide precursors, resepectively, were found to be simultaneously produced in specific fungus of Penicillium species. These compounds showed weak cytotoxicity in vitro against HCT-116, HepG2, BGC-823, NCI-H1650, and A2780 cell lines with IC 50 > 10 micromol x L(-1).
The NOL ballistic piston compressor 2: Operation up to 5,000 ATM
NASA Technical Reports Server (NTRS)
Hammond, G. L.; Lalos, G. T.
1971-01-01
Experiments are described which demonstrated the feasibility of rapidly compressing inert gases in a ballistic piston compressor to simultaneously high temperatures and densities previously unobtainable in the laboratory. With argon, temperatures of the order of 6000 K and accompanying densities of the order of 100 Amagats have been obtained; and with nitrogen, temperatures and densities of 3000 K and 400 Amagats have been approached. Details of the design, assembly, instrumentation, and operating procedures are presented, and the results of mechanical and thermal performance tests up to 5000 atmospheres pressure are described. Emphasis is placed on experiments which demonstrated the usefulness of this apparatus for spectral line broadening studies.
Single-Shot Spectrally Resolved UV Rayleigh Scattering Measurements in High Speed Flow
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.
1996-01-01
A single-shot UV molecular Rayleigh scattering technique to measure velocity in high speed flow is described. The beam from an injection-seeded, frequency quadrupled Nd:YAG laser (266 nm) is focused to a line in a free air jet with velocities up to Mach 1.3. Rayleigh scattered light is imaged through a planar mirror Fabry-Perot interferometer onto a Charged Coupled Device (CCD) array detector. Some laser light is also simultaneously imaged through the Fabry-Perot to provide a frequency reference. Two velocity measurements are obtained from each image. Multiple-pulse data are also given. The Rayleigh scattering velocity data show good agreement with velocities calculated from isentropic flow relations.
A COMBINED SPECTROSCOPIC AND PHOTOMETRIC STELLAR ACTIVITY STUDY OF EPSILON ERIDANI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giguere, Matthew J.; Fischer, Debra A.; Zhang, Cyril X. Y.
2016-06-20
We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF′ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H α analysis. We show that our H α measurements are strongly correlated with the Microvariabilitymore » and Oscillations of STars telescope ( MOST ) photometry, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH′ method, uses H α measurements as input into the FF′ model. While the Dalmatian spot modeling analysis and the FF′ method with MOST space-based photometry are currently more robust, the HH′ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH′ method may prove quite useful in disentangling stellar signals.« less
NASA Technical Reports Server (NTRS)
Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.;
2014-01-01
Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and a significant fraction of the dust should be in large grains. Conclusions: Simultaneous modeling of the gas and dust is required to break the model degeneracies and constrain the disk structure. An increasing gas surface density with radius in the inner cavity echoes the effect of a migrating Jovian planet in the disk structure. The low gas mass (a few Jupiter masses) throughout the HD 135344B disk supports the idea that it is an evolved disk that has already lost a large portion of its mass.
SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.
2012-09-15
We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šćepanović, M., E-mail: mara.scepanovic@gmail.com; Purić, J.
2016-03-25
Stark width and shift simultaneous dependence on the upper level ionization potential and rest core charge of the emitter has been evaluated and discussed. It has been verified that the found relations, connecting Stark broadening parameters with upper level ionization potential and rest core charge of the emitters for particular electron temperature and density, can be used for prediction of Stark line width and shift data in case of ions for which observed data, or more detailed calculations, are not yet available. Stark widths and shifts published data are used to demonstrate the existence of other kinds of regularities withinmore » similar spectra of different elements and their ionization stages. The emphasis is on the Stark parameter dependence on the upper level ionization potential and on the rest core charge for the lines from similar spectra of multiply charged ions. The found relations connecting Stark widths and shift parameters with upper level ionization potential, rest core charge and electron temperature were used for a prediction of new Stark broadening data, thus avoiding much more complicated procedures.« less
Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach
NASA Astrophysics Data System (ADS)
Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume
2016-03-01
Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.
2009-04-16
the transmitted waveform, then spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response represented...400 Frequence (MHz) Figure 5.4: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response...600 Frequence (MHz) Figure 5.7: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response
The GRIDView Visualization Package
NASA Astrophysics Data System (ADS)
Kent, B. R.
2011-07-01
Large three-dimensional data cubes, catalogs, and spectral line archives are increasingly important elements of the data discovery process in astronomy. Visualization of large data volumes is of vital importance for the success of large spectral line surveys. Examples of data reduction utilizing the GRIDView software package are shown. The package allows users to manipulate data cubes, extract spectral profiles, and measure line properties. The package and included graphical user interfaces (GUIs) are designed with pipeline infrastructure in mind. The software has been used with great success analyzing spectral line and continuum data sets obtained from large radio survey collaborations. The tools are also important for multi-wavelength cross-correlation studies and incorporate Virtual Observatory client applications for overlaying database information in real time as cubes are examined by users.
Spectral Confusion for Cosmological Surveys of Redshifted C II Emission
NASA Technical Reports Server (NTRS)
Kogut, A.; Dwek, E.; Moseley, S. H.
2015-01-01
Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencilbeam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150-1300 µm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 µm [C II] line and other lines. Although the [C II] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C II] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20? and 10', sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.
Reconstructing Spectral Scenes Using Statistical Estimation to Enhance Space Situational Awareness
2006-12-01
simultane- ously spatially and spectrally deblur the images collected from ASIS. The algorithms are based on proven estimation theories and do not...collected with any system using a filtering technology known as Electronic Tunable Filters (ETFs). Previous methods to deblur spectral images collected...spectrally deblurring then the previously investigated methods. This algorithm expands on a method used for increasing the spectral resolution in gamma-ray
K-distribution models for gas mixtures in hypersonic nonequilibrium flows
NASA Astrophysics Data System (ADS)
Bansal, Ankit
Calculation of nonequilibrium radiation field in plasmas around a spacecraft entering into an atmosphere at hypersonic velocities is a very complicated and computationally expensive task. The objective of this Dissertation is to collect state-of-the art spectroscopic data for the evaluation of spectral absorption and emission coefficients of atomic and molecular gases, develop efficient and accurate spectral models and databases, and study the effect of radiation on wall heat loads and flowfield around the spacecraft. The most accurate simulation of radiative transport in the shock layer requires calculating the gas properties at a large number of wavelengths and solving the Radiative Transfer Equation (RTE) in a line-by-line (LBL) fashion, which is prohibitively expensive for coupled simulations. A number of k-distribution based spectral models are developed for atomic lines, continuum and molecular bands that allow efficient evaluation of radiative properties and heat loads in hypersonic shock layer plasma. Molecular radiation poses very different challenges than atomic radiation. A molecular spectrum is governed by simultaneous electronic, vibrational and rotational transitions, making the spectrum very strongly dependent on wavelength. In contrast to an atomic spectrum, where line wings play a major role in heat transfer, most of the heat transfer in molecular spectra occurs near line centers. As the first step, k-distribution models are developed separately for atomic and molecular species, taking advantage of the fact that in the Earth's atmosphere the radiative field is dominated by atomic species (N and O) and in Titan's and Mars' atmospheres molecular bands of CN and CO are dominant. There are a number of practical applications where both atomic and molecular species are present, for example, the vacuum-ultra-violet spectrum during Earth's reentry conditions is marked by emission from atomic bound-bound lines and continuum and simultaneous absorption by strong bands of N2. For such cases, a new model is developed for the treatment of gas mixtures containing atomic lines, continuum and molecular bands. Full-spectrum k-distribution (FSK) method provides very accurate results compared to those obtained from the exact line-by-line method. For cases involving more extreme gradients in species concentrations and temperature, full-spectrum k-distribution model is relatively less accurate, and the method is refined by dividing the spectrum into a number of groups or scales, leading to the development of multi-scale models. The detailed methodology of splitting the gas mixture into scales is presented. To utilize the full potential of the k-distribution methods, pre-calculated values of k-distributions are stored in databases, which can later be interpolated at local flow conditions. Accurate and compact part-spectrum k-distribution databases are developed for atomic species and molecular bands. These databases allow users to calculate desired full-spectrum k-distributions through look-up and interpolation. Application of the new spectral models and databases to shock layer plasma radiation is demonstrated by solving the radiative transfer equation along typical one-dimensional flowfields in Earth's, Titan's and Mars' atmospheres. The k-distribution methods are vastly more efficient than the line-by-line method. The efficiency of the method is compared with the line-by-line method by measuring computational times for a number of test problems, showing typical reduction in computational time by a factor of more than 500 for property evaluation and a factor of about 32,000 for the solution of the RTE. A large percentage of radiative energy emitted in the shock-layer is likely to escape the region, resulting in cooling of the shock layer. This may change the flow parameters in the flowfield and, in turn, can affect radiative as well as convective heat loads. A new flow solver is constructed to simulate coupled hypersonic flow-radiation over a reentry vehicle. The flow solver employs a number of existing schemes and tools available in OpenFOAM; along with a number of additional features for high temperature, compressible and chemically reacting flows, and k-distribution models for radiative calculations. The radiative transport is solved with the one-dimensional tangent slab and P1 solvers, and also with the two-dimensional P1 solver. The new solver is applied to simulate flow around an entry vehicle in Martian atmosphere. Results for uncoupled and coupled flow-radiation simulations are presented, highlighting the effects of radiative cooling on flowfield and wall fluxes.
NASA Astrophysics Data System (ADS)
Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi
2017-05-01
In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection heavy metal pollution, Fe, in soil sample.
Time dependent features in tremor spectra
NASA Astrophysics Data System (ADS)
Powell, T. W.; Neuberg, J.
2003-11-01
Harmonic spectral peaks are observed in the tremor spectra of many different volcanoes, and in some cases these spectral lines have been seen to change with time. This has also been observed for the tremor at the Soufrière Hills volcano on Montserrat, West Indies, where the spectral lines are sometimes seen to glide apart before an explosion. We propose a model of repeated triggering of low-frequency earthquakes to explain these gliding lines using the relationship δt=1/ δν, where δt and δν are time and frequency spacing, respectively, and investigate factors which can affect the observation of these spectral peaks. Noise and amplitude variation are shown to have little effect on the spectral peaks; however the time gap between events must be nearly constant over several events. An error with a standard deviation of 2% or less is required for the spectral lines to be observed in the frequency range 0.5-10 Hz. We can reproduce the gliding spectral lines from a specific tremor episode preceding an explosion by changing δt from 1 to 0.31 s over a time period of 12 min. Using this relationship and an Automated Event Classification Analysis Program (AECAP), we can monitor δt over a long time period. The AECAP also extracts other seismic parameters such as energy, duration and spectral characteristics. An initial comparison between low-frequency seismic energy and cyclic tilt shows a correlation between the two, but this does not hold for later cycles.
Simple Spectral Lines Data Model Version 1.0
NASA Astrophysics Data System (ADS)
Osuna, Pedro; Salgado, Jesus; Guainazzi, Matteo; Dubernet, Marie-Lise; Roueff, Evelyne; Osuna, Pedro; Salgado, Jesus
2010-12-01
This document presents a Data Model to describe Spectral Line Transitions in the context of the Simple Line Access Protocol defined by the IVOA (c.f. Ref[13] IVOA Simple Line Access protocol) The main objective of the model is to integrate with and support the Simple Line Access Protocol, with which it forms a compact unit. This integration allows seamless access to Spectral Line Transitions available worldwide in the VO context. This model does not provide a complete description of Atomic and Molecular Physics, which scope is outside of this document. In the astrophysical sense, a line is considered as the result of a transition between two energy levels. Under the basis of this assumption, a whole set of objects and attributes have been derived to define properly the necessary information to describe lines appearing in astrophysical contexts. The document has been written taking into account available information from many different Line data providers (see acknowledgments section).
A comparison of field-line resonances observed at the Goose Bay and Wick radars
NASA Astrophysics Data System (ADS)
Provan, G.; Yeoman, T. K.
1997-02-01
Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.
Solar Spectral Irradiance Changes During Cycle 24
NASA Technical Reports Server (NTRS)
Marchenko, Sergey; Deland, Matthew
2014-01-01
We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.
NASA Technical Reports Server (NTRS)
Hunt, G. E.
1972-01-01
The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.
An experimental system for spectral line ratio measurements in the TJ-II stellarator.
Zurro, B; Baciero, A; Fontdecaba, J M; Peláez, R; Jiménez-Rey, D
2008-10-01
The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C(5+) 5290 A and C(4+) 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.
NASA Astrophysics Data System (ADS)
Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.
2005-09-01
A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Krotkus, Arunas; Molis, Gediminas
2010-10-01
The SDA (Spectral Dynamics Analysis) - method (method of THz spectrum dynamics analysis in THz range of frequencies) is used for the detection and identification of substances with similar THz Fourier spectra (such substances are named usually as the simulants) in the two- or three-component medium. This method allows us to obtain the unique 2D THz signature of the substance - the spectrogram- and to analyze the dynamics of many spectral lines of the THz signal, passed through or reflected from substance, by one set of its integral measurements simultaneously; even measurements are made on short-term intervals (less than 20 ps). For long-term intervals (100 ps and more) the SDA method gives an opportunity to define the relaxation time for excited energy levels of molecules. This information gives new opportunity to identify the substance because the relaxation time is different for molecules of different substances. The restoration of the signal by its integral values is made on the base of SVD - Single Value Decomposition - technique. We consider three examples for PTFE mixed with small content of the L-Tartaric Acid and the Sucrose in pellets. A concentration of these substances is about 5%-10%. Our investigations show that the spectrograms and dynamics of spectral lines of THz pulse passed through the pure PTFE differ from the spectrograms of the compound medium containing PTFE and the L-Tartaric Acid or the Sucrose or both these substances together. So, it is possible to detect the presence of a small amount of the additional substances in the sample even their THz Fourier spectra are practically identical. Therefore, the SDA method can be very effective for the defense and security applications and for quality control in pharmaceutical industry. We also show that in the case of substances-simulants the use of auto- and correlation functions has much worse resolvability in a comparison with the SDA method.
NASA Astrophysics Data System (ADS)
Rezaei, Fatemeh; Tavassoli, Seyed Hassan
2016-11-01
In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.
Spectral Line Shapes in the ν_3 Q Branch of ^{12}CH_4 Near 3.3 μm
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Smith, Mary Ann H.; Sams, Robert L.
2017-06-01
Detailed knowledge of spectroscopic parameters for prominent Q branches of methane is necessary for interpretation and modeling of high resolution infrared spectra of terrestrial and planetary atmospheres. We have measured air-broadened line shape parameters in the Q branch of ^{12}CH_4 in the ν_3 fundamental band for a large number of transitions in the 3000 to 3023 cm^{-1} region by analyzing 13 room-temperature laboratory absorption spectra. Twelve of these spectra were recorded with 0.01 cm^{-1} resolution using the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory (NSO) on Kitt Peak, and one higher-resolution (˜0.0011 cm^{-1}) low pressure (˜1 Torr) spectrum of methane was obtained using the Bruker IFS 120HR FTS at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. The air-broadened spectra were recorded using various absorption cells with path lengths of 5, 20, 25, and 150 cm, total sample pressures between 50 and 500 Torr, and CH_4 volume mixing ratios of 0.01 or less. All 13 spectra were fit simultaneously covering the 3000-3023 cm^{-1} spectral region using a multispectrum nonlinear least squares technique to retrieve accurate line positions, absolute intensities, Lorentz air-broadened widths and pressure-shift coefficients. Line mixing using the off-diagonal relaxation matrix element formalism was measured for a number of pairs of transitions for the CH_4-air collisional system. The results will be compared to values reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.
Detection of the power lines in UAV remote sensed images using spectral-spatial methods.
Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham
2018-01-15
In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spectral line polarimetry with a channeled polarimeter.
van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U
2014-07-01
Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.
2011-01-01
Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology—Extrasolar terrestrial planets—Habitability—Planetary science—Radiative transfer. Astrobiology 11, 393–408. PMID:21631250
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogane, S.; Shikama, T., E-mail: shikama@me.kyoto-u.ac.jp; Hasuo, M.
In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2{sup 3}S–2{sup 3}P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steadymore » State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.« less
NASA Technical Reports Server (NTRS)
Harward, C. N.
1977-01-01
Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.
Statistical equilibrium calculations for silicon in early-type model stellar atmospheres
NASA Technical Reports Server (NTRS)
Kamp, L. W.
1976-01-01
Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of our range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0-B5, luminosity classes III, IV, and V.
A tunable laser system for precision wavelength calibration of spectra
NASA Astrophysics Data System (ADS)
Cramer, Claire
2010-02-01
We present a novel laser-based wavelength calibration technique that improves the precision of astronomical spectroscopy, and solves a calibration problem inherent to multi-object spectroscopy. We have tested a prototype with the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method uses of spectra from ThAr hollow-cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We also present results from studies of globular clusters, and explain how the calibration technique can aid in stellar age determinations, studies of young stars, and searches for dark matter clumping in the galactic halo. )
Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut
2003-10-01
A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.
Verification of Loop Diagnostics
NASA Technical Reports Server (NTRS)
Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.
2014-01-01
Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.
Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket
NASA Technical Reports Server (NTRS)
Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.
2005-01-01
The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.
The corona of the broad-line radio galaxy 3C 390.3
Lohfink, A. M.; Ogle, P.; Tombesi, F.; ...
2015-11-13
We present the results from a joint Suzaku/NuSTAR broadband spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-off (more » $${E}_{\\mathrm{cut}}={117}_{-14}^{+18}$$ keV), and to place constraints on the Comptonization parameters of the primary continuum for the first time. The hard over soft compactness is $${69}_{-24}^{+124}$$ and the optical depth is $${4.1}_{-3.6}^{+0.5},$$ this leads to an electron temperature of $${30}_{-8}^{+32}$$ keV. Expanding our study of the Comptonization spectrum to the optical/UV by studying the simultaneous Swift-UVOT data, we find indications that the compactness of the corona allows only a small fraction of the total UV/optical flux to be Comptonized. Our analysis of the reprocessed emission show that 3C 390.3 only has a small amount of reflection (R ~ 0.3), and of that the vast majority is from distant neutral matter. Furthermore, we also discover a soft-X-ray excess in the source, which can be described by a weak ionized reflection component from the inner parts of the accretion disk. In addition to the backscattered emission, we also detect the highly ionized iron emission lines Fe xxv and Fe xxvi.« less
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W.; Holman, Gordon D.
2012-01-01
Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightened simultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK. Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94, 131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functions available through SSWIDL with (2) EUV spectral line data observed in a flare loop Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightenedsimultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK.Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94,131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functionsavailable through SSWIDL with (2) EUV spectral line data observed in a flare loop
NASA Technical Reports Server (NTRS)
Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.;
2014-01-01
We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.
Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516
NASA Technical Reports Server (NTRS)
Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.
2004-01-01
We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.
NASA Astrophysics Data System (ADS)
Pacifici, Camilla; da Cunha, Elisabete; Charlot, Stéphane; Rix, Hans-Walter; Fumagalli, Mattia; Wel, Arjen van der; Franx, Marijn; Maseda, Michael V.; van Dokkum, Pieter G.; Brammer, Gabriel B.; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine; Leja, Joel; Lundgren, Britt; Kassin, Susan A.; Yi, Sukyoung K.
2015-02-01
Interpreting observations of distant galaxies in terms of constraints on physical parameters - such as stellar mass (M★), star formation rate (SFR) and dust optical depth ({hat{τ}V}) - requires spectral synthesis modelling. We analyse the reliability of these physical parameters as determined under commonly adopted `classical' assumptions: star formation histories assumed to be exponentially declining functions of time, a simple dust law and no emission-line contribution. Improved modelling techniques and data quality now allow us to use a more sophisticated approach, including realistic star formation histories, combined with modern prescriptions for dust attenuation and nebular emission. We present a Bayesian analysis of the spectra and multiwavelength photometry of 1048 galaxies from the 3D-HST survey in the redshift range 0.7 < z < 2.8 and in the stellar mass range 9 ≲ log (M★/M⊙) ≲ 12. We find that, using the classical spectral library, stellar masses are systematically overestimated (˜0.1 dex) and SFRs are systematically underestimated (˜0.6 dex) relative to our more sophisticated approach. We also find that the simultaneous fit of photometric fluxes and emission-line equivalent widths helps break a degeneracy between SFR and {hat{τ}V}, reducing the uncertainties on these parameters. Finally, we show how the biases of classical approaches can affect the correlation between M★ and SFR for star-forming galaxies (the `star-formation main sequence'). We conclude that the normalization, slope and scatter of this relation strongly depend on the adopted approach and demonstrate that the classical, oversimplified approach cannot recover the true distribution of M★ and SFR.
PiHi Observations at the ATA, Conventional and Unconventional SETI
NASA Astrophysics Data System (ADS)
Harp, Gerald; Wilcox, B.; Arbunich, J.; Blair, S.; Backus, P. R.; Tarter, J. C.; Shostak, S.; Jordan, J.; Kilsdonk, T.; Ackermann, R. F.; Ross, J.; ATA Team
2010-01-01
Many radio SETI searches focus on the frequency range where the HI (1.42 GHz) and OH lines (1.6-1.7 GHz) lines are landmarks delineating the water hole This is only a small fraction of the terrestrial microwave window (TMW) from 1-10 GHz. This survey occurs near the center of the TMW at 4.462336275 GHz or π times the HI frequency. We call this the PiHI ("pie high") survey. The inspiration for PiHI observations comes from Carl Sagan in his book, Contact. This survey builds upon and extends a previous survey at PiHI (Blair, D. G. et al. (1992), MNRAS, 257, 105) with greater sensitivity, resolution, and coverage. We survey the nearest 94 main sequence stars in the HabCat catalog (Turnbull, M. C. and Tarter, J. C. (2003), ApJS, 145, 181) with spectral classes between F9 and G7 (max. radius 62 pc). The ATA's flexibility allows simultaneous measurements of targeted observations on stars (with beamformers) and 1° FOV "blind” observations of the areas around target stars (with imaging correlator). The targeted observations are carried out with a high resolution (0.7 Hz) spectrometer and integration times on the order of 200 s. The spectral imaging correlator measures a 50 x 50 grid of points with 3 kHz spectral resolution. This survey shows several signals of minor interest were discovered, though none of the signals reported are continuously "on,” which is an important characteristic for the positive identification of an ETI signal. The ATA has been funded through generous grants from the Paul G. Allen Family Foundation, the SETI Institute, UC Berkeley, the National Science Foundation (Grant No. 0540599), Sun Microsystems, Xilinx, Nathan Myhrvold, Greg Papadopoulos, and other corporations and individual donors.
UNVEILING THE PHYSICS OF LOW-LUMINOSITY AGNs THROUGH X-RAY VARIABILITY: LINER VERSUS SEYFERT 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-García, L.; Masegosa, J.; Márquez, I.
X-ray variability is very common in active galactic nuclei (AGNs), but these variations may not occur similarly in different families of AGNs. We aim to disentangle the structure of low-ionization nuclear emission-line regions (LINERs) compared to Seyfert 2s by the study of their spectral properties and X-ray variations. We assembled the X-ray spectral parameters and variability patterns, which were obtained from simultaneous spectral fittings. Major differences are observed in the X-ray luminosities and the Eddington ratios, which are higher in Seyfert 2s. Short-term X-ray variations were not detected, while long-term changes are common in LINERs and Seyfert 2s. Compton-thick sourcesmore » generally do not show variations, most probably because the AGN is not accesible in the 0.5–10 keV energy band. The changes are mostly related to variations in the nuclear continuum, but other patterns of variability show that variations in the absorbers and at soft energies can be present in a few cases. We conclude that the X-ray variations may occur similarly in LINERs and Seyfert 2s, i.e., they are related to the nuclear continuum, although they might have different accretion mechanisms. Variations at UV frequencies are detected in LINER nuclei but not in Seyfert 2s. This is suggestive of at least some LINERs having an unobstructed view of the inner disk where the UV emission might take place, with UV variations being common in them. This result might be compatible with the disappeareance of the torus and/or the broad-line region in at least some LINERs.« less
Spectral and Temporal Characteristics of LS PEG and TW PIC Using XMM-NEWTON Data
NASA Astrophysics Data System (ADS)
Talebpour Sheshvan, Nasrin; Balman, Solen
2016-07-01
We report the analysis of archival XMM-Newton X-ray observations of LS Peg and TW Pic. These are Cataclysmic Variables (CVs) suggested as Intermediate Polars (IPs), but unconfirmed in the X-rays. Identification of several periodic oscillations in the optical band hint them as IPs. Unlike the previous spectral analysis on the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature for LS Peg, we simultaneously fitted all EPIC spectrum (pn+MOS) using a composite model of absorption for interstellar medium (tbabs) with two different partial covering absorbers (pcfabs) including a multitemperature plasma emission component (cevmkl) and a Gaussian emission line at 6.4 keV. TW Pic is best modeled in a similar manner with only one partial covering absorber and an extra Gaussian emission line at 6.7 keV. LS Peg has a maximum plasma temperature of ˜14.8 keV with an X-ray luminosity of ˜5×10^{32}ergs ^{-1} translating to an accretion rate of ˜1.27×10^{-10}M _{⊙}yr ^{-1}. TW Pic shows kT _{max} ˜38.7 keV with an X-ray luminosity around 1.6×10^{33}ergs ^{-1} at an accretion rate of ˜4×10^{-10}M _{⊙}yr ^{-1}. In addition, we discuss orbital modulations in the X-rays and power spectral analysis, and derive the EPIC pn spectra for orbital minimum and orbital maximum phases for both sources. We elaborate on the geometry of accretion and absorption in the X-ray emitting regions of both sources with articulation on the magnetic nature.
Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041
NASA Technical Reports Server (NTRS)
Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.
2011-01-01
Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.
Semiclassical perturbation Stark widths of singly charged argon spectral lines
NASA Astrophysics Data System (ADS)
Hamdi, Rafik; Ben Nessib, Nabil; Sahal-Bréchot, Sylvie; Dimitrijević, Milan S.
2018-03-01
Using a semiclassical perturbation approach with the impact approximation, Stark widths for singly charged argon (Ar II) spectral lines have been calculated. Energy levels and oscillator strengths needed for this calculation have been determined using the Hartree-Fock method with relativistic corrections. Our Stark widths are compared with experimental results for 178 spectral lines. Our results may be of interest not only for laboratory plasma, lasers and technological plasmas but also for white dwarfs and A- and B-type stars.
EVIDENCE FOR SIMULTANEOUS JETS AND DISK WINDS IN LUMINOUS LOW-MASS X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.
Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in itsmore » X-ray color–color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.« less
Temporal intensity interferometry for characterization of very narrow spectral lines
NASA Astrophysics Data System (ADS)
Tan, P. K.; Kurtsiefer, C.
2017-08-01
Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.
Very high spatial resolution two-dimensional solar spectroscopy with video CCDs
NASA Technical Reports Server (NTRS)
Johanneson, A.; Bida, T.; Lites, B.; Scharmer, G. B.
1992-01-01
We have developed techniques for recording and reducing spectra of solar fine structure with complete coverage of two-dimensional areas at very high spatial resolution and with a minimum of seeing-induced distortions. These new techniques permit one, for the first time, to place the quantitative measures of atmospheric structure that are afforded only by detailed spectral measurements into their proper context. The techniques comprise the simultaneous acquisition of digital spectra and slit-jaw images at video rates as the solar scene sweeps rapidly by the spectrograph slit. During data processing the slit-jaw images are used to monitor rigid and differential image motion during the scan, allowing measured spectrum properties to be remapped spatially. The resulting quality of maps of measured properties from the spectra is close to that of the best filtergrams. We present the techniques and show maps from scans over pores and small sunspots obtained at a resolution approaching 1/3 arcsec in the spectral region of the magnetically sensitive Fe I lines at 630.15 and 630.25 nm. The maps shown are of continuum intensity and calibrated Doppler velocity. More extensive spectral inversion of these spectra to yield the strength of the magnetic field and other parameters is now underway, and the results of that analysis will be presented in a following paper.
Airborne atmospheric electricity experiments
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.
1985-01-01
During the 1984 U2 spring flight program, lightning spectra were measured in the wavelengths from 380 nm to 900 nm with a temporal resolution of 5 ms. With this capability, researchers simultaneously acquired both visible near-infrared lightning spectra on a pulse to pulse basis, so that the spectral variability within a flash, as well as flash to flash variations, can be studied. Preliminary results suggest that important variations do occur, particularly in the strengths of the hydrogen and singly ionized nitrogen emission lines. Also, the results have revealed significant differences in the integrated energy distributions between the lightning spectra measured above clouds and the spectral measurements of cloud-to-ground lightning made at the ground. In particular, the ratio of the energy in the near-IR to that in the visible is around 1 to 2 for cloud top spectra versus about 1/3 for surface observations. Detailed analyses of the 1984 lightning spectral data is being conducted. This data should provide improved understanding about the optical transmission properties of thunderclouds and the physics of the lightning discharge process. Efforts continue on developing and testing background signal removal algorithms using U2 spectometer and optical array sensor day-flight data sets. The goal of this research is to develop an algorithm satisfying Lightning Mapper Sensor requirements.
Application of long-period-grating sensors to respiratory plethysmography.
Allsop, Thomas; Carroll, Karen; Lloyd, Glynn; Webb, David J; Miller, Martin; Bennion, Ian
2007-01-01
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from approximately 7-nm m to approximately 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%.
Modeling the emission processes in blazars
NASA Astrophysics Data System (ADS)
Böttcher, Markus
2007-06-01
Blazars are the most violent steady/recurrent sources of high-energy gamma-ray emission in the known Universe. They are prominent emitters of electromagnetic radiation throughout the entire electromagnetic spectrum. The observable radiation most likely originates in a relativistic jet oriented at a small angle with respect to the line of sight. This review starts out with a general overview of the phenomenology of blazars, including results from a recent multiwavelength observing campaign on 3C279. Subsequently, issues of modeling broadband spectra will be discussed. Spectral information alone is not sufficient to distinguish between competing models and to constrain essential parameters, in particular related to the primary particle acceleration and radiation mechanisms in the jet. Short-term spectral variability information may help to break such model degeneracies, which will require snap-shot spectral information on intraday time scales, which may soon be achievable for many blazars even in the gamma-ray regime with the upcoming GLAST mission and current advances in Atmospheric Cherenkov Telescope technology. In addition to pure leptonic and hadronic models of gamma-ray emission from blazars, leptonic/hadronic hybrid models are reviewed, and the recently developed hadronic synchrotron mirror model for TeV γ-ray flares which are not accompanied by simultaneous X-ray flares (“orphan TeV flares”) is revisited.
Stark broadening parameters and transition probabilities of persistent lines of Tl II
NASA Astrophysics Data System (ADS)
de Andrés-García, I.; Colón, C.; Fernández-Martínez, F.
2018-05-01
The presence of singly ionized thallium in the stellar atmosphere of the chemically peculiar star χ Lupi was reported by Leckrone et al. in 1999 by analysis of its stellar spectrum obtained with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. Atomic data about the spectral line of 1307.50 Å and about the hyperfine components of the spectral lines of 1321.71 Å and 1908.64 Å were taken from different sources and used to analyse the isotopic abundance of thallium II in the star χ Lupi. From their results the authors concluded that the photosphere of the star presents an anomalous isotopic composition of Tl II. A study of the atomic parameters of Tl II and of the broadening by the Stark effect of its spectral lines (and therefore of the possible overlaps of these lines) can help to clarify the conclusions about the spectral abundance of Tl II in different stars. In this paper we present calculated values of the atomic transition probabilities and Stark broadening parameters for 49 spectral lines of Tl II obtained by using the Cowan code including core polarization effects and the Griem semiempirical approach. Theoretical values of radiative lifetimes for 11 levels (eight with experimental values in the bibliography) are calculated and compared with the experimental values in order to test the quality of our results. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed. Trends of our calculated Stark width for the isoelectronic sequence Tl II-Pb III-Bi IV are also displayed.
Spectral line-by-line pulse shaping of on-chip microresonator frequency combs
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Miao, Houxun; Leaird, Daniel E.; Srinivasan, Kartik; Wang, Jian; Chen, Lei; Varghese, Leo Tom; Weiner, Andrew M.
2011-12-01
Recently, on-chip comb generation methods based on nonlinear optical modulation in ultrahigh-quality-factor monolithic microresonators have been demonstrated, where two pump photons are transformed into sideband photons in a four-wave-mixing process mediated by Kerr nonlinearity. Here, we investigate line-by-line pulse shaping of such combs generated in silicon nitride ring resonators. We observe two distinct paths to comb formation that exhibit strikingly different time-domain behaviours. For combs formed as a cascade of sidebands spaced by a single free spectral range that spread from the pump, we are able to compress stably to nearly bandwidth-limited pulses. This indicates high coherence across the spectra and provides new data on the high passive stability of the spectral phase. For combs where the initial sidebands are spaced by multiple free spectral ranges that then fill in to give combs with single free-spectral-range spacing, the time-domain data reveal partially coherent behaviour.
K-shell Photoabsorption of Oxygen Ions
NASA Technical Reports Server (NTRS)
Garcia, J.; Mendoza, C.; Bautista, M. A.; Gorczyca, T. W.; Kallman, T. R.; Palmeri, P.
2005-01-01
The high spectral resolutions of the Chandra and XMM-Newton X-ray observatories have unveiled the useful diagnostic possibilities of oxygen K absorption. To mention a few, strong O VII and O VIII edges are almost ubiquitous in the spectra of Seyfert 1 galaxies which have been used by Lee et al. (2001) to predict of a warm dust absorber along the line of sight; although this conclusion has been criticized in the light of a data reanalysis (SA0 et al. 2003), Steenbrugge et al. (2003) have detected inner-shell transitions of O III-O VI in the spectrum of NGC 5548 that point to a warm absorber that spans three orders of magnitude in ionization parameter. Moreover, Behar et al. (2003) have stressed that, in the case of both Seyfert 1 and Seyfert 2 galaxies, a broad range of oxygen charge states are usually observed along the line of sight that must be fitted simultaneously, and may imply strong density gradients of 2-4 orders of magnitude over short distances.
NASA Technical Reports Server (NTRS)
Bjorkman, K. S.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Nook, M. A.; Schulte-Ladbeck, R. E.
1991-01-01
The first UV spectropolarimetric observations of Be stars are presented. They were obtained with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) aboard the Astro-1 mission. WUPPE data on the Be stars Zeta Tau and Pi Aqr, along with near-simultaneous optical data obtained at the Pine Bluff Observatory (PBO). Combined WUPPE and PBO data give polarization as a function of wavelength across a very broad spectral region, from 1400 to 7600 A. Existing Be star models predicted increasing polarization toward shorter wavelengths in the UV, but this is not supported by the WUPPE observations. Instead, the observations show a constant or slightly declining continuum polarization shortward of the Balmer jump, and broad UV polarization dips around 1700 and 1900 A, which may be a result of Fe-line-attenuation effects on the polarized flux. Supporting evidence for this conclusion comes from the optical data, in which decreases in polarization across Fe II lines in Zeta Tau were discovered.
Clustering the Orion B giant molecular cloud based on its molecular emission.
Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal
2018-02-01
Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO + (1 - 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Tong, Xin; Jiang, Chenyang
2015-06-05
In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.
Interactive Spectral Analysis and Computation (ISAAC)
NASA Technical Reports Server (NTRS)
Lytle, D. M.
1992-01-01
Isaac is a task in the NSO external package for IRAF. A descendant of a FORTRAN program written to analyze data from a Fourier transform spectrometer, the current implementation has been generalized sufficiently to make it useful for general spectral analysis and other one dimensional data analysis tasks. The user interface for Isaac is implemented as an interpreted mini-language containing a powerful, programmable vector calculator. Built-in commands provide much of the functionality needed to produce accurate line lists from input spectra. These built-in functions include automated spectral line finding, least squares fitting of Voigt profiles to spectral lines including equality constraints, various filters including an optimal filter construction tool, continuum fitting, and various I/O functions.
High speed reflectometer for EUV mask-blanks
NASA Astrophysics Data System (ADS)
Wies, Christian; Lebert, Rainer; Jagle, Bernhard; Juschkin, L.; Sobel, F.; Seitz, H.; Walter, Ronny; Laubis, C.; Scholze, F.; Biel, W.; Steffens, O.
2005-06-01
AIXUV GmbH and partners have developed a high speed Reflectometer for EUV mask-blanks which is fully compliant with the SEMI-standard P38 for EUV-mask-blank metrology. The system has been installed in June 2004 at SCHOTT Lithotec AG. It features high throughput, high lateral and spectral resolution, high reproducibility and low absolute uncertainty. Using AIXUV's EUV-LAMP and debris mitigation, low cost-of-ownership and high availability is expected. The spectral reflectance of up to 3 mask-blanks per hour can be measured with at least 20 spots each. The system is push button-controlled. Results are stored in CSV file format. For a spot size of 0.1x1 mm2, 2000 spectral channels of 1.6 pm bandwidth are recorded from 11.6 nm to 14.8 nm. The reflectance measurement is based on the comparison of the sample under test to two reference mirrors calibrated at the PTB radiometry laboratory at BESSY II. The three reflection spectra are recorded simultaneously. For each spot more than 107 photons are accumulated in about 20 s, providing statistical reproducibility below 0.2% RMS. The total uncertainty is below 0.5% absolute. Wavelength calibration better than 1 pm RMS over the whole spectral range is achieved by reference to NIST published wavelengths of about 100 xenon emission lines. It is consistent with the wavelength of the krypton 3d-5p absorption resonance at 13.5947 nm to better than 2 pm.
High speed reflectometer for EUV mask-blanks
NASA Astrophysics Data System (ADS)
Wies, C.; Lebert, R.; Jaegle, B.; Juschkin, L.; Sobel, F.; Seitz, H.; Walter, R.; Laubis, C.; Scholze, F.; Biel, W.; Steffens, O.
2005-05-01
AIXUV GmbH and partners have developed a high speed Reflectometer for EUV mask-blanks which is fully compliant with the SEMI-standard P38 for EUV-mask-blank metrology. The system has been installed in June 2004 at SCHOTT Lithotec AG. It features high throughput, high lateral and spectral resolution, high reproduci-bility and low absolute uncertainty. Using AIXUV's EUV-LAMP and debris mitigation, low cost-of-ownership and high availability is expected. The spectral reflectance of up to 3 mask-blanks per hour can be measured with at least 20 spots each. The system is push button-controlled. Results are stored in CSV file format. For a spot size of 0.1×1 mm2, 2000 spectral chan-nels of 1.6 pm bandwidth are recorded from 11.6 nm to 14.8 nm. The reflectance measurement is based on the comparison of the sample under test to two reference mirrors calibrated at the PTB radiometry laboratory at BESSY II. The three reflection spectra are recorded simultaneously. For each spot more than 107 photons are ac-cumulated in about 20 s, providing statistical reproducibility below 0.2 % RMS. The total uncertainty is below 0.5 % absolute. Wavelength calibration better than 1 pm RMS over the whole spectral range is achieved by refe-rence to NIST published wavelengths of about 100 xenon emission lines. It is consistent with the wavelength of the krypton 3d-5p absorption resonance at 13.5947 nm to better than 2 pm.
Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.
2018-04-01
21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.
Polarized redundant-baseline calibration for 21 cm cosmology without adding spectral structure
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.
2018-07-01
21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.
Constraints on the Location of γ-Ray Sample of Blazars with Radio Core-shift Measurements
NASA Astrophysics Data System (ADS)
Wu, Linhui; Wu, Qingwen; Yan, Dahai; Chen, Liang; Fan, Xuliang
2018-01-01
We model simultaneous or quasi-simultaneous multi-band spectral energy distributions (SEDs) for a sample of 25 blazars that have radio core-shift measurements, where a one-zone leptonic model and Markov chain Monte Carlo technique are adopted. In the SED fitting for 23 low-synchrotron-peaked (LSP) blazars, the seed photons from the broad-line (BLR) and molecular torus are considered respectively in the external Compton process. We find that the SED fitting with the seed photons from the torus are better than those utilizing BLR photons, which suggest that the γ-ray emitting region may be located outside the BLR. Assuming the magnetic field strength in the γ-ray emitting region as constrained from the SED fitting follows the magnetic field distribution as derived from the radio core-shift measurements (i.e., B{(R)≃ {B}1{pc}(R/1{pc})}-1, where R is the distance from the central engine and {B}1{pc} is the magnetic field strength at 1 pc), we further calculate the location of the γ-ray emitting region, {R}γ , for these blazars. We find that {R}γ ∼ 2× {10}4{R}{{S}}≃ 10 {R}{BLR} ({R}{{S}} is the Schwarzschild radius and {R}{BLR} is the BLR size), where {R}{BLR} is estimated from the broad-line luminosities using the empirical correlations obtained using the reverberation mapping methods.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.
1991-01-01
The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.
Temperature distribution in a stellar atmosphere diagnostic basis
NASA Technical Reports Server (NTRS)
Jefferies, J. T.; Morrison, N. D.
1973-01-01
A stellar chromosphere is considered a region where the temperature increases outward and where the temperature structure of the gas controls the shape of the spectral lines. It is shown that lines which have collision-dominated source sink terms, like the Ca(+) and Mg(+) H and K lines, can be used to obtain the distribution of temperature with height from observed line profiles. Intrinsic emission lines and geometrical emission lines are found in spectral regions where the continuum is depressed. In visual regions, where the continuum is not depressed, emission core in absorption lines are attributed to reflections of intrinsic emission lines.
NASA Astrophysics Data System (ADS)
Anufrik, S. S.; Kurian, N. N.; Znosko, K. F.; Belkov, M. V.
2018-05-01
We have studied the intensity of the spectral lines for the main components in clay: Al I 309.4 nm, Al II 358.7 nm, Mg II 279.6 nm, Ti II 323.6 nm vs. the position of the object relative to the focus of the optical system when the samples are exposed to single laser pulses from a YAG:Nd3+ laser. We have determined the permissible ranges for positioning the object relative to the focus of the optical system (positive and negative defocusing) for which there is practically no change in the reproducibility of the intensity for the spectral lines for red and white clay samples. We show that the position of the object relative to the focus of the optical system should be within the range ΔZ ±1.5 mm for optimal laser pulse energies for the analyte spectral lines. We have calculated the radiation flux density for different laser pulse energies and different distances from the focus to the object. We have shown experimentally that reducing the radiation flux density leads to a decrease in the intensity of the analyte spectral lines.
A single zone synchrotron model for flares of PKS1510-089
NASA Astrophysics Data System (ADS)
Basumallick, Partha Pratim; Gupta, Nayantara
2017-02-01
PKS 1510-089 is one of the most variable blazars. Very high energy gamma ray emission from this source was observed by H.E.S.S. during March-April 2009 and by MAGIC from February 3 to April 3, 2012 quasi-simultaneously with multi-wavelength flares. The spectral energy distributions of these flares have been modeled earlier with the external Compton mechanism which depends on our knowledge of the densities of the seed photons in the broad line region, the dusty infrared torus or a hypothetical slow sheath surrounding the jet around the radio core. Here we show that to explain the multi-wavelength data with synchrotron emission of electrons and protons the jet power should be of the order of 1048 ergs/s.
NASA Technical Reports Server (NTRS)
1994-01-01
The ChemScan UV-6100 is a spectrometry system originally developed by Biotronics Technologies, Inc. under a Small Business Innovation Research (SBIR) contract. It is marketed to the water and wastewater treatment industries, replacing "grab sampling" with on-line data collection. It analyzes the light absorbance characteristics of a water sample, simultaneously detects hundreds of individual wavelengths absorbed by chemical substances in a process solution, and quantifies the information. Spectral data is then processed by ChemScan analyzer and compared with calibration files in the system's memory in order to calculate concentrations of chemical substances that cause UV light absorbance in specific patterns. Monitored substances can be analyzed for quality and quantity. Applications include detection of a variety of substances, and the information provided enables an operator to control a process more efficiently.
Coronal Magnetism: Hanle Effect in UV and IR Spectral Lines
NASA Astrophysics Data System (ADS)
Raouafi, N. E.; Riley, P.
2014-12-01
The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for the progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. Here we use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Lyman series (i.e., α, β, and γ), O VI 103.2 nm line, and the He I 1083 nm line. We show that the selected lines may be useful for the diagnostic of coronal magnetic fields. We also show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for the interpretation of the data. We propose that UV coronal magnetic field mapper should be a central part of the science payload of any future spacebased solar observatory.
Homma, Noriko; Harada, Yumi; Uchikawa, Tamaki; Kamei, Yasuhiro; Fukamachi, Shoji
2017-02-06
Color perception is important for fish to survive and reproduce in nature. Visual pigments in the retinal photoreceptor cells are responsible for receiving light stimuli, but the function of the pigments in vivo has not been directly investigated in many animals due to the lack of color-blind lines and appropriate color-perception tests. In this study, we established a system for producing color-blind fish and testing their spectral sensitivity. First, we disrupted long-wavelength-sensitive (LWS) opsins of medaka (Oryzias latipes) using the CRISPR/Cas9 system to make red-color-blind lines. Single guide RNAs were designed using the consensus sequences between the paralogous LWSa and LWSb genes to simultaneously introduce double-frameshift mutations. Next, we developed a non-invasive and no-prior-learning test for spectral sensitivity by applying an optomotor response (OMR) test under an Okazaki Large Spectrograph (OLS), termed the O-O test. We constructed an electrical-rotary cylinder with black/white stripes, into which a glass aquarium containing one or more fish was placed under various monochromatic light conditions. The medaka were irradiated by the OLS every 10 nm, from wavelengths of 700 nm to 900 nm, and OMR was evaluated under each condition. We confirmed that the lws - medaka were indeed insensitive to red light (protanopia). While the control fish responded to wavelengths of up to 830 nm (λ = 830 nm), the lws - mutants responded up to λ = 740 nm; however, this difference was not observed after adaptation to dark: both the control and lws - fish could respond up to λ = 820 ~ 830 nm. These results suggest that the lws - mutants lost photopic red-cone vision, but retained scotopic rod vision. Considering that the peak absorption spectra (λ max ) of medaka LWSs are about 560 nm, but the light-adapted control medaka could respond behaviorally to light at λ = 830 nm, red-cone vision could cover an unexpectedly wide range of wavelengths, and behavioral tests could be an effective way to measure spectral sensitivity. Using the CRISPR/Cas9 and O-O systems, the establishment of various other color-blind lines and assessment of their spectra sensitivity could be expected to proceed in the future.
VizieR Online Data Catalog: V1357 Cyg spectroscopic monitoring in 2002-04 (Karitskaya+, 2008)
NASA Astrophysics Data System (ADS)
Karitskaya, E. A.; Bochkarev, N. G.; Bondar, A. V.; Galazutdinov, G. A.; Lee, B.-K.; Musaev, F. A.; Sapar, A. A.; Shimansky, V. V.
2008-11-01
The results of Cyg X-1 = HDE 226868/V1357 Cyg optical spectral monitoring in 2002-2004 are discussed. Spectral observations were carried out on Peak Terskol Observatory (Kabardino-Balkaria, Russia, resolution R=45000 and 13000) and Bohyunsan Optical Astronomy Observatory (BOAO, Korea, R=30000, 44000). Each spectrum covers the main part of optical spectral range. During 33 observational nights 75 echelle spectra were obtained in the times of the "soft" and "hard" states of Cyg X-1. The X-ray influence on spectral line profiles was studied. The RXTE/ASM data were used for this purpose. The X-ray flare resulted in strong variations of Halpha and HeII4686{AA} emission component profiles during night. This behaviour we connect with variations of ionization structure of matter in the system. Line profile variations with the orbital phase were observed. The spectral atlas for Cyg X-1 was constructed. The contented line identification was done. There were revealed 172 lines and blends which belong to 12 chemical elements: H, He, C, N, O, Ne, Mg, Al, Si, S, Fe, Zn. The HDE 226868 spectral classification as ON star was confirmed. (2 data files).
NASA Technical Reports Server (NTRS)
West, R. A.; Kupferman, P. N.; Hart, H.
1984-01-01
Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature is quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.
NASA Astrophysics Data System (ADS)
Pan, M.-Ch.; Chu, W.-Ch.; Le, Duc-Do
2016-12-01
The paper presents an alternative Vold-Kalman filter order tracking (VKF_OT) method, i.e. adaptive angular-velocity VKF_OT technique, to extract and characterize order components in an adaptive manner for the condition monitoring and fault diagnosis of rotary machinery. The order/spectral waveforms to be tracked can be recursively solved by using Kalman filter based on the one-step state prediction. The paper comprises theoretical derivation of computation scheme, numerical implementation, and parameter investigation. Comparisons of the adaptive VKF_OT scheme with two other ones are performed through processing synthetic signals of designated order components. Processing parameters such as the weighting factor and the correlation matrix of process noise, and data conditions like the sampling frequency, which influence tracking behavior, are explored. The merits such as adaptive processing nature and computation efficiency brought by the proposed scheme are addressed although the computation was performed in off-line conditions. The proposed scheme can simultaneously extract multiple spectral components, and effectively decouple close and crossing orders associated with multi-axial reference rotating speeds.
Models of tremor and low-frequency earthquake swarms on Montserrat
NASA Astrophysics Data System (ADS)
Neuberg, J.; Luckett, R.; Baptie, B.; Olsen, K.
2000-08-01
Recent observations from Soufrière Hills volcano in Montserrat reveal a wide variety of low-frequency seismic signals. We discuss similarities and differences between hybrid earthquakes and long-period events, and their role in explosions and rockfall events. These events occur usually in swarms, and occasionally merge into tremor, an observation that can shed further light on the generation and composition of harmonic tremor. We use a 2D finite difference method to model major features of low-frequency seismic signatures and compare them with the observations. A depth-dependent velocity model for a fluid-filled conduit is introduced which accounts for the varying gas-content in the magma, and the impact on the seismic signals is discussed. We carefully analyse episodes of tremor that show shifting spectral lines and model those in terms of changes in the gas content of the magma as well as in terms of a time-dependent triggering mechanism of low-frequency resonances. In this way we explain the simultaneous occurrence of low-frequency events and tremor with a spectral content comprising integer harmonics.
VizieR Online Data Catalog: GALAH semi-automated classification scheme (Traven+, 2017)
NASA Astrophysics Data System (ADS)
Traven, G.; Matijevic, G.; Zwitter, T.; Zerjal, M.; Kos, J.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; de Silva, G.; Freeman, K.; Lin, J.; Martell, S. L.; Schlesinger, K. J.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Anguiano, B.; da Costa, G.; Duong, L.; Horner, J.; Hyde, E. A.; Kafle, P. R.; Munari, U.; Nataf, D.; Navin, C. A.; Reid, W.; Ting, Y.-S.
2017-04-01
The GALactic Archaeology with HERMES (GALAH) survey was the main driver for the construction of Hermes (High Efficiency and Resolution Multi-Element Spectrograph), a fiber-fed multi-object spectrograph on the 3.9m Anglo-Australian Telescope. Its spectral resolving power (R) is about 28000, and there is also an R=45000 mode using a slit mask. Hermes has four simultaneous non-contiguous spectral arms centered at 4800, 5761, 6610, and 7740Å, covering about 1000Å in total, including Hα and Hβ lines. About 300000 spectra have been taken to date, including various calibration exposures. However, we concentrate on ~210000 spectra recorded before 2016 January 30. We devise a custom classification procedure which is based on two independently developed methods, the novel dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding; van der Maaten & Hinton 2008, Journal of Machine Learning Research 9, 2579) and the renowned clustering algorithm DBSCAN (Ester+ 1996, Proc. 2nd Int. Conf. on KDD, 226 ed. E. Simoudis, J. Han, and U. Fayyad). (4 data files).
NASA Astrophysics Data System (ADS)
Fan, Shanhui; Sun, Yong; Dai, Cuixia; Zheng, Haihua; Ren, Qiushi; Jiao, Shuliang; Zhou, Chuanqing
2014-09-01
To research retinal stretching or distortion with accommodation, accommodation-induced changes in retinal thickness (RT) in the macular area were investigated in a population of young adults (n=23) by using a dual-channel spectral domain optical coherence tomography (SD-OCT) system manufactured in-house for this study. This dual-channel SD-OCT is capable of imaging the cornea and retina simultaneously with an imaging speed of 24 kHz A-line scan rate, which can provide the anatomical dimensions of the eye, including the RT and axial length. Thus, the modification of the RT with accommodation can be calculated. A significant decrease in the RT (13.50±1.25 μm) was observed during maximum accommodation. In the 4 mm×4 mm macular area centered at the fovea, we did not find a significant quadrant-dependent difference in retinal volume change, which indicates that neither retinal stretching nor distortion was quadrant-dependent during accommodation. We speculate that the changes in RT with maximum accommodation resulted from accommodation-induced ciliary muscle contractions.
NASA Technical Reports Server (NTRS)
West, R. A.; Kupferman, P. N.; Hart, H.
1985-01-01
Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature are quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.
A Possible Magnetar Nature for IGR J16358-4726
NASA Technical Reports Server (NTRS)
Patel, S. K.; Zurita, J.; DelSanto, M.; Finger, M.; Kouveliotou, C.; Eichler, D.; Gogus, E.; Ubertini, P.; Walter, R.; Woods, P.;
2007-01-01
We present detailed spectral and timing analysis of the hard X-ray transient IGR J16358-4726 using multisatellite archival observations. A study of the source flux time history over 6 yr suggests that lower luminosity transient outbursts can be occurring in intervals of at most 1 yr. Joint spectral fits of the higher luminosity outburst using simultaneous Chandra ACIS and INTEGRAL ISGRI data reveal a spectrum well described by an absorbed power-law model with a high-energy cutoff plus an Fe line. We detected the 1.6 hr pulsations initially reported using Chandra ACIS also in the INTEGRAL ISGRI light curve and in subsequent XMM-Newton observations. Using the INTEGRAL data, we identified a spin-up of 94 s (P(sup(.)) = 1.6 x 10(exp -4), which strongly points to a neutron star nature for IGR J16358-4726. Assuming that the spin-up is due to disk accretion, we estimate that the source magnetic field ranges between 10(exp 13) and 10(exp 15) G, depending on its distance, possibly supporting a magnetar nature for IGR J16358-4726.
Generalization of the Lyot filter and its application to snapshot spectral imaging.
Gorman, Alistair; Fletcher-Holmes, David William; Harvey, Andrew Robert
2010-03-15
A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.
Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo
2017-08-01
In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.
NASA Astrophysics Data System (ADS)
Liu, Ping; Wu, Ding; Sun, Liying; Hai, Ran; Liu, Jiamin; Ding, Hongbin
2017-11-01
In this paper, the effect of magnetic field (1.1 T) on the atomic and ionic spectral emission of a laser produced lithium plasma at low pressure has been investigated. The experimental results indicate that magnetic field enhances the intensities of Li I spectral lines but reduces the Li II spectral lines intensities. In this study, two narrowband filters were placed before the ICCD camera to observe the evolution feature of Li II spectral line (548.39 nm, 2p3P2,1,0 → 2s3S1) and Li I spectral line (610.30 nm, 3d2P3/2, 5/2 → 2p2P1/2, 3/2), respectively. The plasma dynamic images show that with the magnetic field, the number density of luminous Li atoms is higher, while the number density of luminous Li ions is lower in comparison to the field-free case. The reduced Li II spectral intensities indicate that the quenching rate of Li ions in the excited state is greater than that without the magnetic field. The enhanced impact frequency of recombination indicates that magnetic field increases the recombination process of electron and Li ions. All of these observations strongly suggest that magnetic confinement increases the recombination process of the electrons with Li ions in the plasma, which results in the decrease in the intensity of Li II line. The results are useful for applying laser-induced breakdown spectroscopy (LIBS) to in-situ diagnose the processes of lithium wall conditioning in EAST tokamak.
NASA Technical Reports Server (NTRS)
Smith, M. A. H.; Benner, D. Chris; Pedroi-Cross, A.; Devi, V. Malathy
2013-01-01
Lorentz self- and air-broadened half width and pressure-induced shift coefficients and their dependences on temperature have been measured from laboratory absorption spectra for nearly 130 transitions in the nu(sub 2) band of (12)CH4. In addition line mixing coefficients (using the relaxation matrix element formalism) for both self- and airbroadening were experimentally determined for the first time for a small number of transitions in this band. Accurate line positions and absolute line intensities were also determined. These parameters were obtained by analyzing high-resolution (approx. 0.003 to 0.01 per cm) laboratory spectra of high-purity natural CH4 and air-broadened CH4 recorded at temperatures between 226 and 297 K using the McMath-Pierce Fourier transform spectrometer (FTS) located at the National Solar Observatory on Kitt Peak, Arizona. A multispectrum nonlinear least squares technique was used to fit short (5-15 per cm) spectral intervals in 24-29 spectra simultaneously. Parameters were determined for nu(sub 2) transitions up to J" = 16. The variations of the measured broadening and shift parameters with the rotational quantum number index and tetrahedral symmetry species are examined. The present results are also compared with previous measurements available in the literature.
"Crypto-Display" in Dual-Mode Metasurfaces by Simultaneous Control of Phase and Spectral Responses.
Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk
2018-06-26
Although conventional metasurfaces have demonstrated many promising functionalities in light control by tailoring either phase or spectral responses of subwavelength structures, simultaneous control of both responses has not been explored yet. Here, we propose a concept of dual-mode metasurfaces that enables simultaneous control of phase and spectral responses for two kinds of operation modes of transmission and reflection, respectively. In the transmission mode, the dual-mode metasurface acts as conventional metasurfaces by tailoring phase distribution of incident light. In the reflection mode, a reflected colored image is produced under white light illumination. We also experimentally demonstrate a crypto-display as one application of the dual-mode metasurface. The crypto-display looks a normal reflective display under white light illumination but generates a hologram that reveals the encrypted phase information under single-wavelength coherent light illumination. Because two operation modes do not affect each other, the crypto-display can have applications in security techniques.
Kowal, Dominik; Urbanczyk, Waclaw; Mergo, Pawel
2018-01-01
In this paper we present an all-fiber interferometric sensor for the simultaneous measurement of strain and temperature. It is composed of a specially fabricated twin-core fiber spliced between two pieces of a single-mode fiber. Due to the refractive index difference between the two cores in a twin-core fiber, a differential interference pattern is produced at the sensor output. The phase response of the interferometer to strain and temperature is measured in the 850–1250 nm spectral range, showing zero sensitivity to strain at 1000 nm. Due to the significant difference in sensitivities to both parameters, our interferometer is suitable for two-parameter sensing. The simultaneous response of the interferometer to strain and temperature was studied using the two-wavelength interrogation method and a novel approach based on the spectral fitting of the differential phase response. As the latter technique uses all the gathered spectral information, it is more reliable and yields the results with better accuracy. PMID:29558386
SWAG: Survey of Water and Ammonia in the Galactic Center
NASA Astrophysics Data System (ADS)
Ott, Jürgen; Meier, David S.; Krieger, Nico; Rickert, Matthew
2017-01-01
SWAG (``Survey of Water and Ammonia in the Galactic Center'') is a multi-line interferometric survey toward the Center of the Milky Way conducted with the Australia Telescope Compact Array. The survey region spans the entire ~400 pc Central Molecular Zone and comprises ~42 spectral lines at pc spatial and sub-km/s spectral resolution. In addition, we deeply map continuum intensity, spectral index, and polarization at the frequencies where synchrotron, free-free, and thermal dust sources emit. The observed spectral lines include many transitions of ammonia, which we use to construct maps of molecular gas temperature, opacity and gas formation temperature (see poster by Nico Krieger et al., this volume). Water masers pinpoint the sites of active star formation and other lines are good tracers for density, radiation field, shocks, and ionization. This extremely rich survey forms a perfect basis to construct maps of the physical parameters of the gas in this extreme environment.
NASA Astrophysics Data System (ADS)
Crockett, R. G. M.; Gillmore, G. K.
2009-04-01
During the second half of 2002, the University of Northampton Radon Research Group operated two continuous hourly-sampling radon detectors 2.25 km apart in Northampton, in the (English) East Midlands. This period included the Dudley earthquake (22/09/2002) which was widely noticed by members of the public in the Northampton area. Also, at various periods during 2008 the Group has operated another pair of continuous hourly-sampling radon detectors similar distances apart in Northampton. One such period included the Market Rasen earthquake (27/02/2008) which was also widely noticed by members of the public in the Northampton area. During each period of monitoring, two time-series of radon readings were obtained, one from each detector. These have been analysed for evidence of simultaneous similar anomalies: the premise being that big disturbances occurring at big distances (in relation to the detector separation) should produce simultaneous similar anomalies but that simultaneous anomalies occurring by chance will be dissimilar. As previously reported, cross-correlating the two 2002 time-series over periods of 1-30 days duration, rolled forwards through the time-series at one-hour intervals produced two periods of significant correlation, i.e. two periods of simultaneous similar behaviour in the radon concentrations. One of these periods corresponded in time to the Dudley earthquake, the other corresponded in time to a smaller earthquake which occurred in the English Channel (26/08/2002). We here report subsequent investigation of the 2002 time-series and the 2008 time-series using spectral-decomposition techniques. These techniques have revealed additional simultaneous similar behaviour in the two radon concentrations, not revealed by the rolling correlation on the raw data. These correspond in time to the Manchester earthquake swarm of October 2002 and the Market Rasen earthquake of February 2008. The spectral-decomposition techniques effectively ‘de-noise' the data, and also remove lower-frequency variations (e.g. tidal variations), revealing the simultaneous similarities. Whilst this is very much work in progress, there is the potential that such techniques enhance the possibility that simultaneous real-time monitoring of radon levels - for short-term simultaneous anomalies - at several locations in earthquake areas might provide the core of an earthquake prediction method. Keywords: Radon; earthquakes; time series; cross-correlation; spectral-decomposition; real-time simultaneous monitoring.
Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H
2013-01-01
Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964
NASA Technical Reports Server (NTRS)
Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.
2003-01-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.
Coordinated Observations of Comet Hale-Bopp between 32 and 860 GHz
NASA Astrophysics Data System (ADS)
Wink, J. E.; Altenhoff, W. J.; Bieging, J.; Butler, B.; Butner, H.; Haslam, C. G. T.; Kreysa, E.; Martin, R.; Mauersberger, R.; McMullin, J.; Muders, D.; Peters, W.; Schmidt, J.; Schraml, J. B.; Sievers, A.; Stumpff, P.; von Kapp-Herr, A.; Thum, C.; Zylka, R.
1997-05-01
The concept of simultaneous multifrequency continuum observations, successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp, using the Heinrich Hertz Submillimeter Telescope (HHT) with the four color bolometer between 250 and 870 GHz, the IRAM 30m telescope at 240 Ghz, the MPIfR 100-m telescope at 32 GHz, and the IRAM interferometer near 90 and 240 GHz. Near-simultaneous measurements were done between February 15 and April 26, 1997, mainly concentrated in mid March shortly before perigee of the comet. The measurements gave the following preliminary results: Interferometer detection of the nuclear thermal emission. If the signal at the longest interferometer spacing of 170 m is due to thermal emission from the nucleus only, its equivalent diameter is ~49 km. If, however, this signal contains a contribution from a strongly centrally peaked halo distribution (e.g., r^-2 density variation) the diameter may be as low as 35 km. The emission found interferometrically was always 5arcsec north and 0.1 sec east from the position predicted by Yeoman's solution 55. The comparison of the interferometric continuum emission with the simultanously obtained molecular line observations (reported on this conference) shows the origin of the strongest line emission concentrated on the nucleus. The 30-m observations show a radio halo with a gaussian FWHP of ~11, corresponding to a diameter of 11000 km at geocentric distance of 1.2 a.u. A spectral index of ~3.0 for the total signal, which may indicate a smaller mean particle size than for Hyakutake. Assuming an average cometary density of 0.5 gcm^-3, the mass contained in the nucleus is ~1-3 10^19 g and 10^12 g in the particle halo.
NASA Astrophysics Data System (ADS)
Pauldrach, A. W. A.; Hoffmann, T. L.; Hultzsch, P. J. N.
2014-09-01
Context. In type Ia supernova (SN Ia) envelopes a huge number of lines of different elements overlap within their thermal Doppler widths, and this problem is exacerbated by the circumstance that up to 20% of these lines can have a line optical depth higher than 1. The stagnation of the lambda iteration in such optically thick cases is one of the fundamental physical problems inherent in the iterative solution of the non-LTE problem, and the failure of a lambda iteration to converge is a point of crucial importance whose physical significance must be understood completely. Aims: We discuss a general problem related to radiative transfer under the physical conditions of supernova ejecta that involves a failure of the usual non-LTE iteration scheme to converge when multiple strong opacities belonging to different physical transitions come together, similar to the well-known situation where convergence is impaired even when only a single process attains high optical depths. The convergence problem is independent of the chosen frequency and depth grid spacing, independent of whether the radiative transfer is solved in the comoving or observer's frame, and independent of whether a common complete-linearization scheme or a conventional accelerated lambda iteration (ALI) is used. The problem appears when all millions of line transitions required for a realistic description of SN Ia envelopes are treated in the frame of a comprehensive non-LTE model. The only solution to this problem is a complete-linearization approach that considers all ions of all elements simultaneously, or an adequate generalization of the established ALI technique that accounts for the mutual interaction of the strong spectral lines of different elements and which thereby unfreezes the "stuck" state of the iteration. Methods: The physics of the atmospheres of SN Ia are strongly affected by the high-velocity expansion of the ejecta, which dominates the formation of the spectra at all wavelength ranges. Thus, hydrodynamic explosion models and realistic model atmospheres that take into account the strong deviation from local thermodynamic equilibrium (LTE) are necessary for the synthesis and analysis of the spectra. In this regard one of the biggest challenges we have found in modeling the radiative transfer in SN Ia is the fact that the radiative energy in the UV has to be transferred only via spectral lines into the optical regime to be able to leave the ejecta. However, convergence of the model toward a state where this is possible is impaired when using the standard procedures. We report on improvements in our approach of computing synthetic spectra for SN Ia with respect to (i) an improved and sophisticated treatment of many thousands of strong lines that interact intricately with the "pseudo-continuum" formed entirely by Doppler-shifted spectral lines; (ii) an improved and expanded atomic database; and (iii) the inclusion of energy deposition within the ejecta arising from the radioactive decay of mostly 56Ni and 56Co. Results: We show that an ALI procedure we have developed for the mutual interaction of strong spectral lines appearing in the atmospheres of SNe Ia solves the long-standing problem of transferring the radiative energy from the UV into the optical regime. Our new method thus constitutes a foundation for more refined models, such as those including energy deposition. In this regard we furthermore show synthetic spectra obtained with various methods adopted for the released energy and compare them with observations. We discuss in detail applications of the diagnostic technique by example of a standard type Ia supernova, where the comparison of calculated and observed spectra revealed that in the early phases the consideration of the energy deposition within the spectrum-forming regions of the ejecta does not qualitatively alter the shape of the emergent spectra. Conclusions: The results of our investigation lead to an improved understanding of how the shape of the spectrum changes radically as function of depth in the ejecta, and show how different emergent spectra are formed as a result of the particular physical properties of SNe Ia ejecta and the resulting peculiarities in the radiative transfer. This knowledge provides an important insight into the process of extracting information from observed SN Ia spectra, since these spectra are a complex product of numerous unobservable SN Ia spectral features, which are thus analyzed in parallel to the observable SN Ia spectral features.
Spectral analysis comparisons of Fourier-theory-based methods and minimum variance (Capon) methods
NASA Astrophysics Data System (ADS)
Garbanzo-Salas, Marcial; Hocking, Wayne. K.
2015-09-01
In recent years, adaptive (data dependent) methods have been introduced into many areas where Fourier spectral analysis has traditionally been used. Although the data-dependent methods are often advanced as being superior to Fourier methods, they do require some finesse in choosing the order of the relevant filters. In performing comparisons, we have found some concerns about the mappings, particularly when related to cases involving many spectral lines or even continuous spectral signals. Using numerical simulations, several comparisons between Fourier transform procedures and minimum variance method (MVM) have been performed. For multiple frequency signals, the MVM resolves most of the frequency content only for filters that have more degrees of freedom than the number of distinct spectral lines in the signal. In the case of Gaussian spectral approximation, MVM will always underestimate the width, and can misappropriate the location of spectral line in some circumstances. Large filters can be used to improve results with multiple frequency signals, but are computationally inefficient. Significant biases can occur when using MVM to study spectral information or echo power from the atmosphere. Artifacts and artificial narrowing of turbulent layers is one such impact.
Disparity of spectral behavior of RR Tel and RX Pup in the UV
NASA Astrophysics Data System (ADS)
Sanad, M. R.
2010-07-01
The main aim of this study is to use archival low-dispersion spectra from the International Ultraviolet Explorer (IUE) in an attempt to follow up the spectral behavior of two symbiotic Mira systems RR Tel and RX Pup of the period from 1978-1995 and 1979-1989 for two systems respectively. We concentrated on studying N IV 1486 Å intercombination line, coming from the emission nebulae ( Bryan and Kwok, 1991; Muerset et al., 1991; Murset and Nussbaumer, 1994), by calculating the line fluxes and line widths of N IV 1486 Å. We found that there is a disparity of spectral variability for these physical parameters at different times for both systems. For RR Tel, both line fluxes and line widths are increasing with the phase, while for RX Pup, both line fluxes and line widths are decreasing with the phase. There is a relation between the parameters of this emission line (line flux, line width) and phase, which we attribute to the variations of temperature of the emission nebulae at different times, as a result of the activity of the hot component.
Sub-Millimeter Heterodyne Focal-Plane Arrays for High-Resolution Astronomical Spectroscopy
NASA Astrophysics Data System (ADS)
Goldsmith, Paul F.
2017-09-01
Spectral lines are vital tools for astronomy, particularly for studying the interstellar medium, which is widely distributed throughout the volume of our Milky Way and of other galaxies. Broadband emissions, including synchrotron, free-free, and thermal dust emissions give astronomers important information. However, they do not give information about the motions of, for example, interstellar clouds, the filamentary structures found within them, star-forming dense cores, and photon-dominated regions energized by massive young stars. For study of the interstellar medium, spectral lines at sub-millimeter wavelengths are particularly important, for two reasons. First, they offer the unique ability to observe a variety of important molecules, atoms, and ions, which are the most important gas coolants (fine-structure lines of ionized and neutral carbon, neutral oxygen), probes of physical conditions (high-J transitions of CO, HF, fine-structure lines of ionized nitrogen), and of obvious biogenic importance (H2O). In addition, high-resolution observations of spectral lines offer the unique ability to disentangle the complex motions within these regions and, in some cases, to determine their arrangement along the line of sight. To accomplish this, spectral resolution high enough to resolve the spectral lines of interest is required. We can measure the resolution of the spectrometer in terms of its resolution, R = f/δf, where f is the rest frequency of the line, and δJ is the frequency resolution of the spectrometer. More-active sources can be advantageously studied with R = 3 × 10^5, while more quiescent sources require R as high as 10^7.
Soliton communication lines based on spectrally efficient modulation formats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushko, O V; Redyuk, A A
2014-06-30
We report the results of mathematical modelling of optical-signal propagation in soliton fibre-optic communication lines (FOCLs) based on spectrally efficient signal modulation formats. We have studied the influence of spontaneous emission noise, nonlinear distortions and FOCL length on the data transmission quality. We have compared the characteristics of a received optical signal for soliton and conventional dispersion compensating FOCLs. It is shown that in the presence of strong nonlinearity long-haul soliton FOCLs provide a higher data transmission performance, as well as allow higher order modulation formats to be used as compared to conventional communication lines. In the context of amore » coherent data transmission, soliton FOCLs allow the use of phase modulation with many levels, thereby increasing the spectral efficiency of the communication line. (optical communication lines)« less
Measurement of atomic Stark parameters of many Mn I and Fe I spectral lines using GMAW process
NASA Astrophysics Data System (ADS)
Zielinska, S.; Pellerin, S.; Dzierzega, K.; Valensi, F.; Musiol, K.; Briand, F.
2010-11-01
The particular character of the welding arc working in pure argon, whose emission spectrum consists of many spectral lines strongly broadened by the Stark effect, has allowed measurement, sometimes for the first time, of the Stark parameters of 15 Mn I and 10 Fe I atomic spectral lines, and determination of the dependence on temperature of normalized Stark broadening in Ne = 1023 m-3 of the 542.4 nm atomic iron line. These results show that special properties of the MIG plasma may be useful in this domain because composition of the wire-electrode may be easily adapted to the needs of an experiment.
HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Er, A.; Güzelçimen, F.; Başar, Gö.
In this study, a Fourier Transform spectrum of Niobium (Nb) is investigated in the near-infrared spectral range from 6000 to 12,000 cm{sup −1} (830–1660 nm). The Nb spectrum is produced using a hollow cathode discharge lamp in an argon atmosphere. Both Nb and Ar spectral lines are visible in the spectrum. A total of 110 spectral lines are assigned to the element Nb. Of these lines, 90 could be classified as transitions between known levels of atomic Nb. From these classified Nb i transitions, 27 have not been listed in literature previously. Additionally, 8 lines are classified for the firstmore » time.« less
XTE Proposal #20102--"SS 433's High Energy Spectrum"
NASA Technical Reports Server (NTRS)
Band, David L.; Blanco, P.; Rothschild, R.; Kawai, N.; Kotani, T.; Oka, T.; Wagner, R. M.; Hjellming, R.; Rupen, M.; Brinkmann, W.
1999-01-01
We observed the jet-producing compact binary system SS 433 with RXTE during three multiwavelength campaigns, the first in conjunction with ASCA observations, the second simultaneous with a VLA-VLBA-MERLIN campaign, and the third associated with a Nobeyama millimeter-band campaign. All these campaigns included optical observations. Occurring at different jet precession and binary phases, the observations also monitored the system during a radio flare. The data provide SS 433's X-ray spectrum over more than an energy decade, and track the spectral variations as the X-ray source was partially eclipsed. The continuum can be modeled as a power law with an exponential cutoff, which can be detected to approximately 50 keV. Strong line emission is evident in the 5-10 keV range which can be modeled as a broad line whose energy is precession independent and a narrow line whose energy does vary with jet precession phase; this line model is clearly an over simplification since the PCA does not have sufficient energy resolution to detect the lines ASCA observed. The eclipses are deeper at high energy and at jet precession phases when the jets are more inclined towards and away from us. A large radio flare occurred between two sets of X-ray monitoring observations; an X-ray observation at the peak of the flare found a softer spectrum with a flux approximately 1/3 that of the quiescent level.
NASA Astrophysics Data System (ADS)
Carilli, C. L.; Chluba, J.; Decarli, R.; Walter, F.; Aravena, M.; Wagg, J.; Popping, G.; Cortes, P.; Hodge, J.; Weiss, A.; Bertoldi, F.; Riechers, D.
2016-12-01
We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C II] 158 μm line emission from very high redshift galaxies (z ˜ 6-7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T B = 0.94 ± 0.09 μK. In the 242 GHz band, the mean brightness is: T B = 0.55 ± 0.033 μK. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.
Barman, Travis S.; Konopacky, Quinn M.; Macintosh, Bruce; ...
2015-05-04
Here, absorption lines from water, methane, and carbon monoxide are detected in the atmosphere of exoplanet HR 8799 b. A medium-resolution spectrum presented here shows well-resolved and easily identified spectral features from all three molecules across the K band. The majority of the lines are produced by CO and H 2O, but several lines clearly belong to CH 4. Comparisons between these data and atmosphere models covering a range of temperatures and gravities yield log mole fractions of H 2O between –3.09 and –3.91, CO between –3.30 and –3.72, and CH 4 between –5.06 and –5.85. More precise mole fractionsmore » are obtained for each temperature and gravity studied. A reanalysis of H-band data, previously obtained at a similar spectral resolution, results in a nearly identical water abundance as determined from the K-band spectrum. The methane abundance is shown to be sensitive to vertical mixing and indicates an eddy diffusion coefficient in the range of 10 6–10 8 cm 2 s –1, comparable to mixing in the deep troposphere of Jupiter. The model comparisons also indicate a carbon-to-oxygen ratio (C/O) between ~0.58 and 0.7, encompassing previous estimates for a second planet in the same system, HR 8799 c. Super-stellar C/O could indicate planet formation by core-accretion; however, the range of possible C/O for these planets (and the star) is currently too large to comment strongly on planet formation. More precise values of the bulk properties (e.g., effective temperature and surface gravity) are needed for improved abundance estimates.« less
Use of a Multiwavelength Pyrometer in Several Elevated Temperature Aerospace Applications
NASA Technical Reports Server (NTRS)
Ng, Daniel; Fralick, Gustave
2001-01-01
A multiwavelength pyrometer was developed for applications unique to aerospace environments. It was shown to be a useful and versatile technique for measuring temperature, even when the emissivity is unknown. It has also been used to measure the surface temperatures of ceramic zircomia thermal barrier coatings and alumina. The close agreement between pyrometer and thin film thermocouple temperatures provided an independent check. Other applications of the multiwavelength pyrometer are simultaneous surface and bulk temperature measurements of a transparent material, and combustion gas temperature measurement using a special probe interfaced to the multiwavelength pyrometer via an optical fiber. The multiwavelength pyrometer determined temperature by transforming the radiation spectrum in a broad wavelength region to produce a straight line (in a certain spectral region), whose intercept in the vertical axis gives the temperature. Implicit in a two-color pyrometer is the assumption of wavelength independent emissivity. Though the two data points of a two-color pyrometer similarly processed would result immediately in a similar straight line to give the unknown temperature, the two-color pyrometer lacks the greater data redundancy of the multiwavelength pyrometer, which enables it to do so with improved accuracy. It also confirms that emissivity is indeed wavelength independent, as evidenced by a multitude of the data lying on a simple straight line. The multiwavelength pyrometer was also used to study the optical transmission properties of a nanostructured material from which a quadratic exponential functional frequency dependence of its spectral transmission was determined. Finally, by operating the multiwavelength pyrometer in a very wide field of view mode, the surface temperature distribution of a large hot surface was obtained through measurement of just a single radiation spectrum.
Fontalvo-Gómez, Miriam; Colucci, José A; Velez, Natasha; Romañach, Rodolfo J
2013-10-01
Biodiesel was synthesized from different commercially available oils while in-line Raman and near-infrared (NIR) spectra were obtained simultaneously, and the spectral changes that occurred during the reaction were evaluated with principal component analysis (PCA). Raman and NIR spectra were acquired every 30 s with fiber optic probes inserted into the reaction vessel. The reaction was performed at 60-70 °C using magnetic stirring. The time of reaction was 90 min, and during this time, 180 Raman and NIR spectra were collected. NIR spectra were collected using a transflectance probe and an optical path length of 1 mm at 8 cm(-1) spectral resolution and averaging 32 scans; for Raman spectra a 3 s exposure time and three accumulations were adequate for the analysis. Raman spectroscopy showed the ester conversion as evidenced by the displacement of the C=O band from 1747 to 1744 cm(-1) and the decrease in the intensity of the 1000-1050 cm(-1) band and the 1405 cm(-1) band as methanol was consumed in the reaction. NIR spectra also showed the decrease in methanol concentration with the band in the 4750-5000 cm(-1) region; this signal is present in the spectra of the transesterification reaction but not in the neat oils. The variations in the intensity of the methanol band were a main factor in the in-line monitoring of the transesterification reaction using Raman and NIR spectroscopy. The score plot of the first principal component showed the progress of the reaction. The final product was analyzed using (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy and using mid-infrared spectroscopy, confirming the conversion of the oils to biodiesel.
Herschel Studies of the Evolution and Environs of Young Stars in the DIGIT, WISH, and FOOSH Programs
NASA Astrophysics Data System (ADS)
Green, Joel D.; DIGIT OT Key Project Team; WISH GT Key Project Team; FOOSH OT1 Team
2012-01-01
The Herschel Space Observatory has enabled us to probe the physical conditions of outer disks, envelopes, and outflows of young stellar objects, including embedded objects, Herbig Ae/Be disks, and T Tauri disks. We will report on results from three projects, DIGIT, WISH, and FOOSH. The DIGIT (Dust, Ice, and Gas in Time) program (PI: Neal Evans) utilizes the full spectral range of the PACS instrument to explore simultaneously the solid and gas-phase chemistry around sources in all of these stages. WISH (Water in Star Forming Regions with Herschel, PI Ewine van Dishoeck) focuses on observations of key lines with HIFI and line scans of selected spectral regions with PACS. FOOSH (FU Orionis Objects Surveyed with Herschel, PI Joel Green) studies FU Orionis objects with full range PACS and SPIRE scans. DIGIT includes examples of low luminosity protostars, while FOOSH studies the high luminosity objects during outburst states. Rotational ladders of highly excited CO and OH emission are detected in both disks and protostars. The highly excited lines are more commonly seen in the embedded phases, where there appear to be two temperature components. Intriguingly, water is frequently detected in spectra of embedded sources, but not in the disk spectra. In addition to gas features, we explore the extent of the newly detected 69 um forsterite dust feature in both T Tauri and Herbig Ae/Be stars. When analyzed along with the Spitzer-detected dust features, these provide constraints on a population of colder crystalline material. We will present some models of individual sources, as well as some broad statistics of the emission from these stages of star and planet formation.
Photospheres of hot stars. IV - Spectral type O4
NASA Technical Reports Server (NTRS)
Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.
1990-01-01
The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.
SYNTHETIC HYDROGEN SPECTRA OF OSCILLATING PROMINENCE SLABS IMMERSED IN THE SOLAR CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapiór, M.; Heinzel, P.; Oliver, R.
We study the behavior of H α and H β spectral lines and their spectral indicators in an oscillating solar prominence slab surrounded by the solar corona, using an MHD model combined with a 1D radiative transfer code taken in the line of sight perpendicular to the slab. We calculate the time variation of the Doppler shift, half-width, and maximum intensity of the H α and H β spectral lines for different modes of oscillation. We find a non-sinusoidal time dependence of some spectral parameters with time. Because H α and H β spectral indicators have different behavior for differentmore » modes, caused by differing optical depths of formation and different plasma parameter variations in time and along the slab, they may be used for prominence seismology, especially to derive the internal velocity field in prominences.« less
Rocket-Plume Spectroscopy Simulation for Hydrocarbon-Fueled Rocket Engines
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.
2010-01-01
The UV-Vis spectroscopic system for plume diagnostics monitors rocket engine health by using several analytical tools developed at Stennis Space Center (SSC), including the rocket plume spectroscopy simulation code (RPSSC), to identify and quantify the alloys from the metallic elements observed in engine plumes. Because the hydrocarbon-fueled rocket engine is likely to contain C2, CO, CH, CN, and NO in addition to OH and H2O, the relevant electronic bands of these molecules in the spectral range of 300 to 850 nm in the RPSSC have been included. SSC incorporated several enhancements and modifications to the original line-by-line spectral simulation computer program implemented for plume spectral data analysis and quantification in 1994. These changes made the program applicable to the Space Shuttle Main Engine (SSME) and the Diagnostic Testbed Facility Thruster (DTFT) exhaust plume spectral data. Modifications included updating the molecular and spectral parameters for OH, adding spectral parameter input files optimized for the 10 elements of interest in the spectral range from 320 to 430 nm and linking the output to graphing and analysis packages. Additionally, the ability to handle the non-uniform wavelength interval at which the spectral computations are made was added. This allowed a precise superposition of wavelengths at which the spectral measurements have been made with the wavelengths at which the spectral computations are done by using the line-by-line (LBL) code. To account for hydrocarbon combustion products in the plume, which might interfere with detection and quantification of metallic elements in the spectral region of 300 to 850 nm, the spectroscopic code has been enhanced to include the carbon-based combustion species of C2, CO, and CH. In addition, CN and NO have spectral bands in 300 to 850 nm and, while these molecules are not direct products of hydrocarbon-oxygen combustion systems, they can show up if nitrogen or a nitrogen compound is present as an impurity in the propellants and/or these can form in the boundary layer as a result of interaction of the hot plume with the atmosphere during the ground testing of engines. Ten additional electronic band systems of these five molecules have been included into the code. A comprehensive literature search was conducted to obtain the most accurate values for the molecular and the spectral parameters, including Franck-Cordon factors and electronic transition moments for all ten band systems. For each elemental transition in the RPSSC, six spectral parameters - Doppler broadened line width at half-height, pressure-broadened line width at half-height, electronic multiplicity of the upper state, electronic term energy of the upper state, Einstein transition probability coefficient, and the atomic line center - are required. Input files have been created for ten elements of Ni, Fe, Cr, Co, Cu, Ca, Mn, Al, Ag, and Pd, which retain only relatively moderate to strong transitions in 300 to 430 nm spectral range for each element. The number of transitions in the input files is 68 for Ni; 148 for Fe; 6 for Cr; 87 for Co; 1 for Ca; 3 for Mn; 2 each for Cu, Al, and Ag; and 11 for Pd.
Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Astrophysics Data System (ADS)
Thomas, R. J.
2003-05-01
It is a particular challenge to develop a stigmatic spectrograph for UV/EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
NASA Technical Reports Server (NTRS)
Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi
2009-01-01
Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.
Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle
NASA Astrophysics Data System (ADS)
Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar
2018-06-01
We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.
VizieR Online Data Catalog: Photmetry and spectroscopy of PMS stars in NGC 2264 (Lim+, 2016)
NASA Astrophysics Data System (ADS)
Lim, B.; Sung, H.; Kim, J. S.; Bessell, M. S.; Hwang, N.; Park, B.-G.
2018-04-01
Queue scheduled observations were carried out on 2015 April 1 and November 24 with the multi-object high resolution echelle spectrograph Hectochelle attached to the 6.5m telescope of the MMT observatory. The resolving power of the spectrograph (R~34,000) is high enough to detect the LiI λ6708 resonance doublet with little blending from adjacent metallic lines. The multi-object capability allowed us to simultaneously obtain 240 target and sky spectra in a single observation. The OB 26 filter transmits the wavelength range 6530-6715Å, and therefore the useful spectral features Hα λ6563 and HeI λ6678 could also be observed along with the LiI λ6708 line. The spectra of a total of 134 PMS stars were taken in two sets of exposure times -8 minutes x3 for bright stars (V<13.6mag) and 30 minutes x3 for fainter stars. Offset sky spectra were also obtained to correct for the contributions of locally variable nebula emission lines to the spectra of the faint stars. Calibration frames, such as dome flat and comparison spectra, were also acquired, just before and after the target exposure. (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudík, Jaroslav; Dzifčáková, Elena; Polito, Vanessa
2017-06-10
We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS) . In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels wheremore » the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.« less
NASA Astrophysics Data System (ADS)
Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.; Stashkevich, A.
2018-03-01
Low-frequency nonlinear magnetoelectric effects in a composite structure comprised of a piezoelectric langatate slab sandwiched between two Metglas amorphous alloy magnetostrictive layers under simultaneous harmonic and noise magnetic pumping have been investigated. It is shown that the frequency fp of harmonic pumping is linearly reproduced in the piezoelectric voltage spectrum accompanied by its higher harmonics. Similarly, narrow-band magnetic noise with a central frequency fN is present in the output piezoelectric voltage along with two noise peaks in the vicinity of a double 2fN and zero frequency. Simultaneous application of harmonic and noise magnetic fields produces a noticeably more complex output voltage spectrum containing additional noise satellite lines at frequencies fp ±fN , 2fp ±fN etc. as well as a noise "pedestal". Amplitudes of voltage spectral components depend on the applied constant bias magnetic field, scaling as magnetostriction derivatives with respect to this field. The effects observed are well described by the theory of magnetic field mixing in magnetoelectric composites with nonlinear dependence of magnetostriction on applied fields.
NASA Technical Reports Server (NTRS)
November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.
1979-01-01
Results are reported for simultaneous satellite and ground-based observations of supergranular velocities in the sun, which were made using a UV spectrometer aboard OSO 8 and a diode-array instrument operating at the exit slit of an echelle spectrograph attached to a vacuum tower telescope. Observations of the steady Doppler velocities seen toward the limb in the middle chromosphere and the photosphere are compared; the observed spectral lines of Si II at 1817 A and Fe I at 5576 A are found to differ in height of formation by about 1400 km. The results show that supergranular motions are able to penetrate at least 11 density scale heights into the middle chromosphere, that the patterns of motion correlate well with the cellular structure seen in the photosphere, and that the motion increases from about 800 m/s in the photosphere to at least 3000 m/s in the middle chromosphere. These observations imply that supergranular velocities should be evident in the transition region and that strong horizontal shear layers in supergranulation should produce turbulence and internal gravity waves.
Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients
NASA Technical Reports Server (NTRS)
Frenkiel, Francois N.
1958-01-01
In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
NASA Astrophysics Data System (ADS)
Durry, Georges; Megie, Gerard
1999-12-01
The Spectrom tre Diodes Laser Accordables (SDLA), a balloonborne spectrometer devoted to the in situ measurement of CH 4 and H 2 O in the atmosphere that uses commercial distributed-feedback InGaAs laser diodes in combination with differential absorption spectroscopy, is described. Absorption spectra of CH 4 (in the 1.653- m region) and H 2 O (in the 1.393- m region) are simultaneously sampled at 1-s intervals by coupling with optical fibers of two near-infrared laser diodes to a Herriott multipass cell open to the atmosphere. Spectra of methane and water vapor in an altitude range of 1 to 31 km recorded during the recent balloon flights of the SDLA are presented. Mixing ratios with a precision error ranging from 5% to 10% are retrieved from the atmospheric spectra by a nonlinear least-squares fit to the spectral line shape in conjunction with in situ simultaneous pressure and temperature measurements.
NASA Astrophysics Data System (ADS)
Potapov, A.; Sánchez-Monge, Á.; Schilke, P.; Graf, U. U.; Möller, Th.; Schlemmer, S.
2016-10-01
Context. Almost 200 different species have been detected in the interstellar medium (ISM) during the last decades, revealing not only simple species but complex molecules with more than six atoms. Other exotic compounds, like the weakly-bound dimer (H2)2, have also been detected in astronomical sources like Jupiter. Aims: We aim to detect, for the first time, the CO-H2 van der Waals complex in the ISM, which could be a sensitive indicator for low temperatures if detected. Methods: We used the IRAM 30 m telescope, located in Pico Veleta (Spain), to search for the CO-H2 complex in a cold, dense core in TMC-1C (with a temperature of ~10 K). All the brightest CO-H2 transitions in the 3 mm (80-110 GHz) band were observed with a spectral resolution of 0.5-0.7 km s-1, reaching a rms noise level of ~2 mK. The simultaneous observation of a broad frequency band, 16 GHz, allowed us to conduct a serendipitous spectral line survey. Results: We did not detected any lines belonging to the CO-H2 complex. We set up a new, more stringent upper limit for its abundance to be [CO-H2]/[CO] ~ 5 × 10-6, while we expect the abundance of the complex to be in the range ~10-8-10-3. The spectral line survey has allowed us to detect 75 lines associated with 41 different species (including isotopologues). We detect a number of complex organic species, for example methyl cyanide (CH3CN), methanol (CH3OH), propyne (CH3CCH), and ketene (CH2CO), associated with cold gas (excitation temperatures ~7 K), confirming the presence of these complex species not only in warm objects but also in cold regimes. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A117
NASA Astrophysics Data System (ADS)
Kowalewska, Zofia; Laskowska, Hanna; Gzylewski, Michał
2017-06-01
High-resolution continuum source and line source flame atomic absorption spectrometry (HR-CS FAAS and LS FAAS, respectively) were applied for Pb determination in unleaded aviation or automotive gasoline that was dissolved in methyl-isobutyl ketone. When using HR-CS FAAS, a structured background (BG) was registered in the vicinity of both the 217.001 nm and 283.306 nm Pb lines. In the first case, the BG, which could be attributed to absorption by the OH molecule, directly overlaps with the 217 nm line, but it is of relatively low intensity. For the 283 nm line, the structured BG occurs due to uncompensated absorption by OH molecules present in the flame. BG lines of relatively high intensity are situated at a large distance from the 283 nm line, which enables accurate analysis, not only when using simple variants of HR-CS FAAS but also for LS FAAS with a bandpass of 0.1 nm. The lines of the structured spectrum at 283 nm can have ;absorption; (maxima) or ;emission; (minima) character. The intensity of the OH spectra can significantly depend on the flame character and composition of the investigated organic solution. The best detection limit for the analytical procedure, which was 0.01 mg L- 1 for Pb in the investigated solution, could be achieved using HR-CS FAAS with the 283 nm Pb line, 5 pixels for the analyte line measurement and iterative background correction (IBC). In this case, least squares background correction (LSBC) is not recommended. However, LSBC (available as the ;permanent structures; option) would be recommended when using the 217 nm Pb line. In LS FAAS, an additional phenomenon related to the nature of the organic matrix (for example, isooctane or toluene) can play an important role. The effect is of continuous character and probably due to the simultaneous efficient correction of the continuous background (IBC) it is not observed in HR-CS FAAS. The fact that the effect does not depend on the flame character indicates that it is not radiation scattering. For LS FAAS, the determination of Pb using the 283 nm line, a 0.1 nm bandpass and a fuel lean flame is strongly recommended. The analysis of certified reference materials, recovery studies and the analysis of real samples with low Pb content supported the satisfactory accuracy of Pb determination in automotive or aviation gasoline when the recommended analytical variants are applied. The studies in this work shed new light on spectral phenomena in air-acetylene flames. The structured background due to absorption by the OH molecules must be taken into account during Pb determination in other materials as well as in some other elemental determinations, especially at low absorbance levels. The usefulness of HR-CS FAAS for revealing and investigating a structured background was demonstrated. HR-CS FAAS does not reveal fully corrected spectral effects with a continuous character, which can be found in LS FAAS.
SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features
NASA Astrophysics Data System (ADS)
Harwit, M.
2010-03-01
We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.
Simultaneous fits in ISIS on the example of GRO J1008-57
NASA Astrophysics Data System (ADS)
Kühnel, Matthias; Müller, Sebastian; Kreykenbohm, Ingo; Schwarm, Fritz-Walter; Grossberger, Christoph; Dauser, Thomas; Pottschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.; Klochkov, Dmitry; Staubert, Rüdiger; Wilms, Joern
2015-04-01
Parallel computing and steadily increasing computation speed have led to a new tool for analyzing multiple datasets and datatypes: fitting several datasets simultaneously. With this technique, physically connected parameters of individual data can be treated as a single parameter by implementing this connection into the fit directly. We discuss the terminology, implementation, and possible issues of simultaneous fits based on the X-ray data analysis tool Interactive Spectral Interpretation System (ISIS). While all data modeling tools in X-ray astronomy allow in principle fitting data from multiple data sets individually, the syntax used in these tools is not often well suited for this task. Applying simultaneous fits to the transient X-ray binary GRO J1008-57, we find that the spectral shape is only dependent on X-ray flux. We determine time independent parameters such as, e.g., the folding energy E_fold, with unprecedented precision.
NASA Astrophysics Data System (ADS)
Gacheva, Lazarina I.; Deneva, Margarita A.; Kalbanov, Mihail H.; Nenchev, Marin N.
2008-12-01
We present two original, all optical techniques, to produce a narrowline laser light, fixed at the frequency of a chosen reference atomic absorption transition. The first type of systems is an essential improvement of our method 3,4 for laser spectral locking using a control by two frequency scanned, competitive injections with disturbed power ratio by the absorption at the reference line. The new development eliminates the narrowing limiting problem, related with the fixed laser longitudinal mode structure. We have proposed an original new technique for continuously tunable single mode laser operation in combination with synchronously and equal continuous tuning of the modes of the amplifier. By adapting the laser differential rate equations, the system is analyzed theoretically in details and is shown its feasibility. The results are in agreement with previous our experiments. The essential advantage, except simplicity of realization, is that the laser line can be of order of magnitude and more narrowed than the absorption linewidth. The second system is based of the laser amplifier arrangement with a gain knock-down from the competitive frequency scanned pulse, except at the wavelength of the desired absorption reference line. The essential advantages of the last system are that the problem of fixing laser mode presence is naturally avoided. The theoretical modeling and the numerical investigations show the peculiarity and advantages of the system proposed. The developed approaches are of interest for applications in spectroscopy, in DIAL monitoring of the atmospheric pollutants, in isotope separation system and potentially - for creation of simple, all optical, frequency standards for optical communications. Also, the continuously tunable single mode laser (and the combination with the simultaneously tunable amplifier) presents itself the interest for many practical applications in spectroscopy, metrology, and holography. We compare the action and the advantages of the two systems proposed.
Fe K Line Profile in Low-Redshift Quasars: Average Shape and Eddington Ratio Dependence
NASA Astrophysics Data System (ADS)
Inoue, Hirohiko; Terashima, Yuichi; Ho, Luis C.
2007-06-01
We analyze X-ray spectra of 43 Palomar-Green quasars observed with XMM-Newton in order to investigate their mean Fe K line profile and its dependence on physical properties. The continuum spectra of 39 objects are well reproduced by a model consisting of a power law and a blackbody modified by Galactic absorption. The spectra of the remaining four objects require an additional power-law component absorbed with a column density of ~1023 cm-2. A feature resembling an emission line at 6.4 keV, identified with an Fe K line, is detected in 33 objects. Approximately half of the sample show an absorption feature around 0.65-0.95 keV, which is due to absorption lines and edges of O VII and O VIII. We fit the entire sample simultaneously to derive average Fe line parameters by assuming a common Fe line shape. The Fe line is relatively narrow (σ=0.36 keV), with a center energy of 6.48 keV and a mean equivalent width (EW) of 248 eV. By combining black hole masses estimated from the virial method and bolometric luminosities derived from full spectral energy distributions, we examine the dependence of the Fe K line profile on the Eddington ratio. As the Eddington ratio increases, the line becomes systematically stronger (EW=130-280 eV) and broader (σ=0.1-0.7 keV), and peaks at higher energies (6.4-6.8 keV). This result suggests that the accretion rate onto the black hole directly influences the geometrical structure and ionization state of the accretion disk.
An Interferometric 270--355 GHz Spectral Line Survey of the Red Supergiant VY CMa
NASA Astrophysics Data System (ADS)
Menten, K. M.; Young, K. H.; Patel, N. A.; Gottlieb, C. A.; Thaddeus, P.; McCarthy, M. C.; Gurwell, M. A.; Belloche, A.; Kaminski, T.; Verheyen, L.; Decin, L.; Brunken, S.; Holger, S. P. M.
2011-05-01
We have used the Submillimeter Array to image the molecular line emission in the circumstellar envelope of the peculiar red supergiant star VY Canis Majoris over the whole 870 μm atmospheric window. Employing adaptive calibration using the object's continuum emission we achieve high quality one arcsecond resolution imaging of the whole 280--355 GHz range within which we find 211 distinct spectral lines from 33 molecules (including isotopologues) plus 40 unidentified lines. From the distribution of molecules we are obtaining their abundances and isotopologic abundance ratios. Using data for multiple transitions in a number of molecules we are deriving the physical conditions in the circumstellar envelope to reach a picture of the star's chemistry that can be compared with models. Our legacy survey is accompanied by a strong laboratory effort that helps with the identification of possibly newly found molecules traced by unidentified lines. We shall create a publicly accessible database of spectral-line channel-maps of the emission from all the lines detected in the survey.
An improved ultraviolet spectral line list for the symbiotic star RR Telescopii
NASA Technical Reports Server (NTRS)
Doschek, G. A.; Feibelman, W. A.
1993-01-01
We have remeasured wavelengths and intensities of International Ultraviolet Explorer (IUE) spectra of the symbiotic star, RR Tel. The main work is centered on the long 820 minute exposure high-resolution spectrum obtained on 1983 June 18. The list is intended to serve as a source of improved intensities and wavelengths for the ultraviolet spectrum of this star. A complete line list with intensities based on this exposure has not been published previously. The strongest spectral lines are saturated in the 820 minute exposure, and intensities for these lines are mostly obtained from a 20 minute exposure obtained on the same day. A few intensities are obtained from other exposures if neither the 820 nor the 20 minute exposure is satisfactory. There are 111 lines in our list between 1168 and 1980 A. Some of the very weakest lines may not be real. These are indicated by question marks. We also discuss some of the plasma diagnostics available using spectral lines of O v and O iv.
Unidirectional spectral singularities.
Ramezani, Hamidreza; Li, Hao-Kun; Wang, Yuan; Zhang, Xiang
2014-12-31
We propose a class of spectral singularities emerging from the coincidence of two independent singularities with highly directional responses. These spectral singularities result from resonance trapping induced by the interplay between parity-time symmetry and Fano resonances. At these singularities, while the system is reciprocal in terms of a finite transmission, a simultaneous infinite reflection from one side and zero reflection from the opposite side can be realized.
VizieR Online Data Catalog: Bubble HII region Sh2-39 (N5) (Duronea+, 2017)
NASA Astrophysics Data System (ADS)
Duronea, N. U.; Cappa, C. E.; Bronfman, L.; Borissova, J.; Gromadzki, M.; Kuhn, M. A.
2017-06-01
The molecular observations were carried out in August 2015 with the 10m Atacama Submillimeter Telescope Experiment (ASTE). We used DASH345, a two sideband single-polarization heterodyne receiver, tunable in LO frequency range from 327GHz to 370GHz at observable frequency range from 321GHz to 376GHz. The XF digital spectrometer was set to a bandwidth and spectral resolution of 128MHz and 125KHz, respectively. The spectral velocity resolution was 0.11km/s, the half power beamwidth (HPBW) is ~22", and the main beam efficiency (mb) is 0.65. Observations were made using the on-the-fly (OTF) mode with two orthogonal scan directions along RA and Dec. (J2000) centered on RA, Dec.(J2000)= (18:17:02.1, -18:40:19). We observed simultaneously the lines CO(3-2) (345.796GHz) and HCO+(4-3) (356.734) in a region of ~17'x17' (see Fig. 1). The spectra were reduced with NOSTAR2 using the standard procedure. The brightest star projected at the center of [BDS2003] 6 (2MASS J18165113-1841488) was observed on August 2016 with Astronomy Research using the Cornell Infra Red Imaging Spectrograph (ARCoIRIS), a cross-dispersed, single-object, longslit, infrared imaging spectrograph,mounted on Blanco 4-m Telescope, CTIO. The spectra cover a simultaneous wavelength range of 0.80 to 2.47um, at a spectral resolution of about 3500 λ{δλ, encompassing the entire zYJHK photometric range. The spectrum was taken with 480 sec integration time, at 1.03 average airmass. The HD163336 telluric A0 V standard is observed immediately after target. The basic steps of the reduction procedure are described in Chene et al. (2012A&A...545A..54C, Cat. J/A+A/545/A54, 2013A&A...549A..98C). We used the corresponding pipeline. (3 data files).
Interactive spectral analyzer and comparator (ISAAC)
NASA Astrophysics Data System (ADS)
Latković, O.; Cséki, A.; Vince, I.
2003-10-01
We are developing an application for graphical comparison of observed and synthetic spectra (ISAAC). Synthetic spectrum calculation is performed by SPECTRUM, Stellar Spectral Synthesis Program by Richard O. Gray that we use with his kind permission. This program computes line profiles under LTE conditions in the given wavelength interval using a stellar (solar) atmosphere model, a spectral line data list (wavelength, energy levels, oscillator strengths, and damping constants), a file containing data for atoms and molecules, as well as a data file for hydrogen line profiles calculation. ISAAC offers a simple interface for viewing and changing any atomic parameter SPECTRUM uses for line profile calculation, enabling quick comparison of the new synthetic line profile with the observed one. In this way parameters like relative abundances, oscillator strengths and van der Waals damping constants can be improved, achieving a better agreement with the observed spectrum.
Observations and NLTE modeling of Ellerman bombs
NASA Astrophysics Data System (ADS)
Berlicki, A.; Heinzel, P.
2014-07-01
Context. Ellerman bombs (EBs) are short-lived, compact, and spatially well localized emission structures that are observed well in the wings of the hydrogen Hα line. EBs are also observed in the chromospheric CaII lines and in UV continua as bright points located within active regions. Hα line profiles of EBs show a deep absorption at the line center and enhanced emission in the line wings with maxima around ±1 Å from the line center. Similar shapes of the line profiles are observed for the CaII IR line at 8542 Å. In CaII H and K lines the emission peaks are much stronger, and EBs emission is also enhanced in the line center. Aims: It is generally accepted that EBs may be considered as compact microflares located in lower solar atmosphere that contribute to the heating of these low-lying regions, close to the temperature minimum of the atmosphere. However, it is still not clear where exactly the emission of EBs is formed in the solar atmosphere. High-resolution spectrophotometric observations of EBs were used for determining of their physical parameters and construction of semi-empirical models. Obtained models allow us to determine the position of EBs in the solar atmosphere, as well as the vertical structure of the activated EB atmosphere Methods: In our analysis we used observations of EBs obtained in the Hα and CaII H lines with the Dutch Open Telescope (DOT). These one-hour long simultaneous sequences obtained with high temporal and spatial resolution were used to determine the line emissions. To analyze them, we used NLTE numerical codes for the construction of grids of 243 semi-empirical models simulating EBs structures. In this way, the observed emission could be compared with the synthetic line spectra calculated for all such models. Results: For a specific model we found reasonable agreement between the observed and theoretical emission and thus we consider such model as a good approximation to EBs atmospheres. This model is characterized by an enhanced temperature in the lower chromosphere and can be considered as a compact structure (hot spot), which is responsible for the emission observed in the wings of chromospheric lines, in particular in the Hα and CaII H lines. Conclusions: For the first time the set of two lines Hα and CaII H was used to construct semi-empirical models of EBs. Our analysis shows that EBs can be described by a "hot spot" model, with the temperature and/or density increase through a few hundred km atmospheric structure. We confirmed that EBs are located close to the temperature minimum or in the lower chromosphere. Two spectral features (lines in our case), observed simultaneously, significantly strengthen the constraints on a realistic model.
Hyperspectral imaging for diagnosis and quality control in agri-food and industrial sectors
NASA Astrophysics Data System (ADS)
García-Allende, P. Beatriz; Conde, Olga M.; Mirapeix, Jesus; Cobo, Adolfo; Lopez-Higuera, Jose M.
2010-04-01
Optical spectroscopy has been utilized in various fields of science, industry and medicine, since each substance is discernible from all others by its spectral properties. However, optical spectroscopy traditionally generates information on the bulk properties of the whole sample, and mainly in the agri-food industry some product properties result from the heterogeneity in its composition. This monitoring is considerably more challenging and can be successfully achieved by the so-called hyperspectral imaging technology, which allows the simultaneous determination of the optical spectrum and the spatial location of an object in a surface. In addition, it is a nonintrusive and non-contact technique which gives rise to a great potential for industrial applications and it does not require any particular preparation of the samples, which is a primary concern in food monitoring. This work illustrates an overview of approaches based on this technology to address different problems in agri-food and industrial sectors. The hyperspectral system was originally designed and tested for raw material on-line discrimination, which is a key factor in the input stages of many industrial sectors. The combination of the acquisition of the spectral information across transversal lines while materials are being transported on a conveyor belt, and appropriate image analyses have been successfully validated in the tobacco industry. Lastly, the use of imaging spectroscopy applied to online welding quality monitoring is discussed and compared with traditional spectroscopic approaches in this regard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Ramanpreet; Kaper, Lex; Ellerbroek, Lucas E.
We present the optical to near-infrared spectrum of MAXI J1659-152 during the onset of its 2010 X-ray outburst. The spectrum was obtained with X-shooter on the ESO Very Large Telescope early in the outburst simultaneous with high-quality observations at both shorter and longer wavelengths. At the time of the observations, the source was in the low-hard state. The X-shooter spectrum includes many broad ({approx}2000 km s{sup -1}), double-peaked emission profiles of H, He I, and He II, characteristic signatures of a low-mass X-ray binary during outburst. We detect no spectral signatures of the low-mass companion star. The strength of themore » diffuse interstellar bands results in a lower limit to the total interstellar extinction of A{sub V} {approx_equal} 0.4 mag. Using the neutral hydrogen column density obtained from the X-ray spectrum we estimate A{sub V} {approx_equal} 1 mag. The radial velocity structure of the interstellar Na I D and Ca II H and K lines results in a lower limit to the distance of {approx}4 {+-} 1 kpc, consistent with previous estimates. With this distance and A{sub V} , the dereddened spectral energy distribution represents a flat disk spectrum. The two 10 minute X-shooter spectra show significant variability in the red wing of the emission-line profiles, indicating a global change in the density structure of the disk, though on a timescale much shorter than the typical viscous timescale of the disk.« less
VizieR Online Data Catalog: Far-UV spectral atlas of O-type stars (Smith, 2012)
NASA Astrophysics Data System (ADS)
Smith, M. A.
2012-10-01
In this paper, we present a spectral atlas covering the wavelength interval 930-1188Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas (Cat. J/ApJS/186/175), to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. (4 data files).
NASA Astrophysics Data System (ADS)
Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Shenar, T.; Artigau, É.; Gauza, B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Maltais-Tariant, R.; Muñoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferrière, A.; Sablowski, D. P.; Simón-Díaz, S.; St-Jean, L.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A.
2016-08-01
During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He II λ5411 emission line, the previously identified period was refined to P = 2.255 ± 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 ± 6 d, or ˜18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Δφ ≃ 90° was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C IV λλ5802,5812 and He I λ5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He I λ5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.
Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1
NASA Astrophysics Data System (ADS)
Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh
2018-04-01
The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.
Apparatus for simultaneously disreefing a centrally reefed clustered parachute system
Johnson, Donald W.
1988-01-01
A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing.
Apparatus for simultaneously disreefing a centrally reefed clustered parachute system
Johnson, D.W.
1988-06-21
A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing. 13 figs.
Spectral purity study for IPDA lidar measurement of CO2
NASA Astrophysics Data System (ADS)
Ma, Hui; Liu, Dong; Xie, Chen-Bo; Tan, Min; Deng, Qian; Xu, Ji-Wei; Tian, Xiao-Min; Wang, Zhen-Zhu; Wang, Bang-Xin; Wang, Ying-Jian
2018-02-01
A high sensitivity and global covered observation of carbon dioxide (CO2) is expected by space-borne integrated path differential absorption (IPDA) lidar which has been designed as the next generation measurement. The stringent precision of space-borne CO2 data, for example 1ppm or better, is required to address the largest number of carbon cycle science questions. Spectral purity, which is defined as the ratio of effective absorbed energy to the total energy transmitted, is one of the most important system parameters of IPDA lidar which directly influences the precision of CO2. Due to the column averaged dry air mixing ratio of CO2 is inferred from comparison of the two echo pulse signals, the laser output usually accompanied by an unexpected spectrally broadband background radiation would posing significant systematic error. In this study, the spectral energy density line shape and spectral impurity line shape are modeled as Lorentz line shape for the simulation, and the latter is assumed as an unabsorbed component by CO2. An error equation is deduced according to IPDA detecting theory for calculating the system error caused by spectral impurity. For a spectral purity of 99%, the induced error could reach up to 8.97 ppm.
NASA Astrophysics Data System (ADS)
Hubert, S.
2017-05-01
This paper describes an original Rowland circle grazing incidence spectrometer used as a monochromator for a soft x-ray Manson source in order to calibrate both the source and detectors over the 0.1-1.2 keV spectral range. The originality of the instrument lies on a patented vacuum manipulator which allows the simultaneous boarding of two detectors, one (reference) for measuring the monochromatic radiation and the second to be calibrated. In order to achieve this, the vacuum manipulator is able to interchange, in vacuum, one detector with the other in front of the exit slit of the monochromatizing stage. One purpose of this apparatus was to completely eliminate the intrinsic bremsstrahlung emission of the x-ray diode source and isolate each characteristic line for quantitative detector calibrations. Obtained spectral resolution (Δλ/λ<10-2) and spectral purity (>98%) fully meet this objective. Initially dimensioned to perform calibration of bulky x-ray cameras unfolded on the Laser MégaJoule Facility, other kinds of detector can be obviously calibrated using this instrument. A brief presentation of the first calibration of an x-ray CCD through its quantum efficiency (QE) measurement is included in this paper as example. Comparison with theoretical model for QE and previous measurements at higher energy are finally presented and discussed.
Dissecting the long-term emission behaviour of the BL Lac object Mrk 421
NASA Astrophysics Data System (ADS)
Carnerero, M. I.; Raiteri, C. M.; Villata, M.; Acosta-Pulido, J. A.; Larionov, V. M.; Smith, P. S.; D'Ammando, F.; Agudo, I.; Arévalo, M. J.; Bachev, R.; Barnes, J.; Boeva, S.; Bozhilov, V.; Carosati, D.; Casadio, C.; Chen, W. P.; Damljanovic, G.; Eswaraiah, E.; Forné, E.; Gantchev, G.; Gómez, J. L.; González-Morales, P. A.; Griñón-Marín, A. B.; Grishina, T. S.; Holden, M.; Ibryamov, S.; Joner, M. D.; Jordan, B.; Jorstad, S. G.; Joshi, M.; Kopatskaya, E. N.; Koptelova, E.; Kurtanidze, O. M.; Kurtanidze, S. O.; Larionova, E. G.; Larionova, L. V.; Latev, G.; Lázaro, C.; Ligustri, R.; Lin, H. C.; Marscher, A. P.; Martínez-Lombilla, C.; McBreen, B.; Mihov, B.; Molina, S. N.; Moody, J. W.; Morozova, D. A.; Nikolashvili, M. G.; Nilsson, K.; Ovcharov, E.; Pace, C.; Panwar, N.; Pastor Yabar, A.; Pearson, R. L.; Pinna, F.; Protasio, C.; Rizzi, N.; Redondo-Lorenzo, F. J.; Rodríguez-Coira, G.; Ros, J. A.; Sadun, A. C.; Savchenko, S. S.; Semkov, E.; Slavcheva-Mihova, L.; Smith, N.; Strigachev, A.; Troitskaya, Yu. V.; Troitsky, I. S.; Vasilyev, A. A.; Vince, O.
2017-12-01
We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.
X-ray Spectral Analysis of the Cataclysmic Variable LS Peg using XMM-Newton Observatory Data
NASA Astrophysics Data System (ADS)
Talebpour Sheshvan, N.; Nabizadeh, A.; Balman, S.
2017-10-01
LS Peg is a Cataclysmic Variable (CV) suggested as Intermediate Polar (IP) because of similar properties to those observed in IP systems. We used archival XMM-Newton observation of LS Peg in order to study the X-ray characteristics of the system. We show LS Peg light curves in several different energy bands, and discuss about orbital modulations and power spectral analysis. Unlike the previous spectral analysis of the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature, we simultaneously fit EPIC spectrum (pn+MOS) using a composite model of absorption (tbabs) along with two different partial covering absorbers plus a multi-temperature plasma emission component in XSPEC. In addition, we find a Gaussian emission line at 6.4 keV. For LS Peg the maximum temperature of the plasma distribution is found to be ˜ 17.8 keV with a luminosity of ˜ 7.4×10^{32}erg s^{-1} translating to an accretion rate of ˜ 1.7×10 ^{-10} M_{⊙} yr^{-1}. We present spectra for orbital minimum and orbital maximum. In addition, we use SWIFT observations of the source in order to make a comparison. We elaborate on the geometry of accretion and absorption in the X-ray emitting region with articulation on the magnetic nature.
Laser scanning endoscope for diagnostic medicine
NASA Astrophysics Data System (ADS)
Ouimette, Donald R.; Nudelman, Sol; Spackman, Thomas; Zaccheo, Scott
1990-07-01
A new type of endoscope is being developed which utilizes an optical raster scanning system for imaging through an endoscope. The optical raster scanner utilizes a high speed, multifaceted, rotating polygon mirror system for horizontal deflection, and a slower speed galvanometer driven mirror as the vertical deflection system. When used in combination, the optical raster scanner traces out a raster similar to an electron beam raster used in television systems. This flying spot of light can then be detected by various types of photosensitive detectors to generate a video image of the surface or scene being illuminated by the scanning beam. The optical raster scanner has been coupled to an endoscope. The raster is projected down the endoscope, thereby illuminating the object to be imaged at the distal end of the endoscope. Elemental photodetectors are placed at the distal or proximal end of the endoscope to detect the reflected illumination from the flying spot of light. This time sequenced signal is captured by an image processor for display and processing. This technique offers the possibility for very small diameter endoscopes since illumination channel requirements are eliminated. Using various lasers, very specific spectral selectivity can be achieved to optimum contrast of specific lesions of interest. Using several laser lines, or a white light source, with detectors of specific spectral response, multiple spectrally selected images can be acquired simultaneously. The potential for co-linear therapy delivery while imaging is also possible.
NASA Astrophysics Data System (ADS)
Kulyanitsa, A. L.; Rukhovich, A. D.; Rukhovich, D. D.; Koroleva, P. V.; Rukhovich, D. I.; Simakova, M. S.
2017-04-01
The concept of soil line can be to describe the temporal distribution of spectral characteristics of the bare soil surface. In this case, the soil line can be referred to as the multi-temporal soil line, or simply temporal soil line (TSL). In order to create TSL for 8000 regular lattice points for the territory of three regions of Tula oblast, we used 34 Landsat images obtained in the period from 1985 to 2014 after their certain transformation. As Landsat images are the matrices of the values of spectral brightness, this transformation is the normalization of matrices. There are several methods of normalization that move, rotate, and scale the spectral plane. In our study, we applied the method of piecewise linear approximation to the spectral neighborhood of soil line in order to assess the quality of normalization mathematically. This approach allowed us to range normalization methods according to their quality as follows: classic normalization > successive application of the turn and shift > successive application of the atmospheric correction and shift > atmospheric correction > shift > turn > raw data. The normalized data allowed us to create the maps of the distribution of a and b coefficients of the TSL. The map of b coefficient is characterized by the high correlation with the ground-truth data obtained from 1899 soil pits described during the soil surveys performed by the local institute for land management (GIPROZEM).
NASA Astrophysics Data System (ADS)
St-Georges-Robillard, A.; Masse, M.; Kendall-Dupont, J.; Strupler, M.; Patra, B.; Jermyn, M.; Mes-Masson, A.-M.; Leblond, F.; Gervais, T.
2016-02-01
There is a growing effort in the biomicrosystems community to develop a personalized treatment response assay for cancer patients using primary cells, patient-derived spheroids, or live tissues on-chip. Recently, our group has developed a technique to cut tumors in 350 μm diameter microtissues and keep them alive on-chip, enabling multiplexed in vitro drug assays on primary tumor tissue. Two-photon microscopy, confocal microscopy and flow cytometry are the current standard to assay tissue chemosensitivity on-chip. While these techniques provide microscopic and molecular information, they are not adapted for high-throughput analysis of microtissues. We present a spectroscopic imaging system that allows rapid quantitative measurements of multiple fluorescent viability markers simultaneously by using a liquid crystal tunable filter to record fluorescence and transmittance spectra. As a proof of concept, 24 spheroids composed of ovarian cancer cell line OV90 were formed in a microfluidic chip, stained with two live cell markers (CellTrackerTM Green and Orange), and imaged. Fluorescence images acquired were normalized to the acquisition time and gain of the camera, dark noise was removed, spectral calibration was applied, and spatial uniformity was corrected. Spectral un-mixing was applied to separate each fluorophore's contribution. We have demonstrated that rapid and simultaneous viability measurements on multiple spheroids can be achieved, which will have a significant impact on the prediction of a tumor's response to multiple treatment options. This technique may be applied as well in drug discovery to assess the potential of a drug candidate directly on human primary tissue.
Gienger, Jonas; Bär, Markus; Neukammer, Jörg
2018-01-10
A method is presented to infer simultaneously the wavelength-dependent real refractive index (RI) of the material of microspheres and their size distribution from extinction measurements of particle suspensions. To derive the averaged spectral optical extinction cross section of the microspheres from such ensemble measurements, we determined the particle concentration by flow cytometry to an accuracy of typically 2% and adjusted the particle concentration to ensure that perturbations due to multiple scattering are negligible. For analysis of the extinction spectra, we employ Mie theory, a series-expansion representation of the refractive index and nonlinear numerical optimization. In contrast to other approaches, our method offers the advantage to simultaneously determine size, size distribution, and spectral refractive index of ensembles of microparticles including uncertainty estimation.
NASA Astrophysics Data System (ADS)
Vidal, F.; Busson, B.; Tadjeddine, A.
2005-02-01
We report the study of methanol electro-oxidation on Pt(1 1 0) using infrared-visible sum-frequency generation (SFG) vibrational spectroscopy. The use of this technique enables to probe the vibrational and electronic properties of the interface simultaneously in situ. We have investigated the vibrational properties of the interface in the CO ads internal stretch spectral region (1700-2150 cm -1) over a wide range of potentials. The analysis of the evolution of the C-O stretch line shape, which is related to the interference between the vibrational and electronic parts of the non-linear response, with the potential allows us to show that the onset of bulk methanol oxidation corresponds to the transition from a negatively to a positively charged surface.
Speckle and spectroscopic orbits of the early A-type triple system Eta Virginis
NASA Technical Reports Server (NTRS)
Hartkopf, William I.; Mcalister, Harold A.; Yang, Xinxing; Fekel, Francis C.
1992-01-01
Eta Virginis is a bright (V = 3.89) triple system of composite spectral type A2 IV that has been observed for over a dozen years with both spectroscopy and speckle interferometry. Analysis of the speckle observations results in a long period of 13.1 yr. This period is also detected in residuals from the spectroscopic observations of the 71.7919 day short-period orbit. Elements of the long-period orbit were determined separately using the observations of both techniques. The more accurate elements from the speckle solution have been assumed in a simultaneous spectroscopic determination of the short- and long-period orbital elements. The magnitude difference of the speckle components suggests that lines of the third star should be visible in the spectrum.
NASA Astrophysics Data System (ADS)
Puspitarini, L.; Lallement, R.; Monreal-Ibero, A.; Chen, H.-C.; Malasan, H. L.; Aprilia; Arifyanto, M. I.; Irfan, M.
2018-04-01
One of the ways to obtain a detailed 3D ISM map is by gathering interstellar (IS) absorption data toward widely distributed background target stars at known distances (line-of-sight/LOS data). The radial and angular evolution of the LOS measurements allow the inference of the ISM spatial distribution. For a better spatial resolution, one needs a large number of the LOS data. It requires building fast tools to measure IS absorption. One of the tools is a global analysis that fit two different diffuse interstellar bands (DIBs) simultaneously. We derived the equivalent width (EW) ratio of the two DIBs recorded in each spectrum of target stars. The ratio variability can be used to study IS environmental conditions or to detect DIB family.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.
1984-01-01
Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.
Diode-pumped continuous-wave Nd:Gd3Ga5O12 lasers at 1406, 1415 and 1423 nm
NASA Astrophysics Data System (ADS)
Lin, Haifeng; Zhu, Wenzhang; Xiong, Feibing; Ruan, Jianjian
2018-05-01
We report a diode-pumped continuous-wave Nd:Gd3Ga5O12 (GGG) laser operating at 1.4 μm spectral region. A dual-wavelength laser at 1423 and 1406 nm is achieved with output power of about 2.59 W at absorbed pump power of 13.4 W. Further increasing the pump power, simultaneous tri-wavelength laser at 1423, 1415 and 1406 nm is also obtained with a maximum output power of 3.96 W at absorbed pump power of 18.9 W. Single-wavelength lasing is also realized at the three emission lines using an intracavity etalon. The laser result is believed to be the highest output power achieved in Nd:GGG crystal, at present, to the best of our knowledge.
Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains
Pollard, Benjamin
2016-01-01
Summary Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750
NASA Astrophysics Data System (ADS)
Subashchandran, Shanthi; Okamoto, Ryo; Zhang, Labao; Tanaka, Akira; Okano, Masayuki; Kang, Lin; Chen, Jian; Wu, Peiheng; Takeuchi, Shigeki
2013-10-01
The realization of an ultralow-dark-count rate (DCR) along with the conservation of high detection efficiency (DE) is critical for many applications using single photon detectors in quantum information technologies, material sciences, and biological sensing. For this purpose, a fiber-coupled superconducting nanowire single-photon detector (SNSPD) with a meander-type niobium nitride nanowire (width: 50 nm) is studied. Precise measurements of the bias current dependence of DE are carried out for a wide spectral range (from 500 to 1650 nm in steps of 50 nm) using a white light source and a laser line Bragg tunable band-pass filter. An ultralow DCR (0.0015 cps) and high DE (32%) are simultaneously achieved by the SNSPD at a wavelength of 500 nm.
Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton
2012-07-30
A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).
FROM X-RAY DIPS TO ECLIPSE: WITNESSING DISK REFORMATION IN THE RECURRENT NOVA U Sco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, J.-U.; Talavera, A.; Gonzalez-Riestra, R.
2012-01-20
The tenth recorded outburst of the recurrent eclipsing nova U Sco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after the outburst. Two full passages of the companion in front of the nova ejecta were observed, as was the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve that disappeared by day 34.9, yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highlymore » elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal 87.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, R.; Kubo, M.; Kano, R.
The Chromospheric Lyman-Alpha Spectro-Polarimeter is a sounding rocket experiment that has provided the first successful measurement of the linear polarization produced by scattering processes in the hydrogen Ly α line (121.57 nm) radiation of the solar disk. In this paper, we report that the Si iii line at 120.65 nm also shows scattering polarization and we compare the scattering polarization signals observed in the Ly α and Si iii lines in order to search for observational signatures of the Hanle effect. We focus on four selected bright structures and investigate how the U / I spatial variations vary between themore » Ly α wing, the Ly α core, and the Si iii line as a function of the total unsigned photospheric magnetic flux estimated from Solar Dynamics Observatory /Helioseismic and Magnetic Imager observations. In an internetwork region, the Ly α core shows an antisymmetric spatial variation across the selected bright structure, but it does not show it in other more magnetized regions. In the Si iii line, the spatial variation of U / I deviates from the above-mentioned antisymmetric shape as the total unsigned photospheric magnetic flux increases. A plausible explanation of this difference is the operation of the Hanle effect. We argue that diagnostic techniques based on the scattering polarization observed simultaneously in two spectral lines with very different sensitivities to the Hanle effect, like Ly α and Si iii, are of great potential interest for exploring the magnetism of the upper solar chromosphere and transition region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oran, R.; Landi, E.; Holst, B. van der
We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening ismore » calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.« less
NASA Astrophysics Data System (ADS)
Min, M.
2017-10-01
Context. Opacities of molecules in exoplanet atmospheres rely on increasingly detailed line-lists for these molecules. The line lists available today contain for many species up to several billions of lines. Computation of the spectral line profile created by pressure and temperature broadening, the Voigt profile, of all of these lines is becoming a computational challenge. Aims: We aim to create a method to compute the Voigt profile in a way that automatically focusses the computation time into the strongest lines, while still maintaining the continuum contribution of the high number of weaker lines. Methods: Here, we outline a statistical line sampling technique that samples the Voigt profile quickly and with high accuracy. The number of samples is adjusted to the strength of the line and the local spectral line density. This automatically provides high accuracy line shapes for strong lines or lines that are spectrally isolated. The line sampling technique automatically preserves the integrated line opacity for all lines, thereby also providing the continuum opacity created by the large number of weak lines at very low computational cost. Results: The line sampling technique is tested for accuracy when computing line spectra and correlated-k tables. Extremely fast computations ( 3.5 × 105 lines per second per core on a standard current day desktop computer) with high accuracy (≤1% almost everywhere) are obtained. A detailed recipe on how to perform the computations is given.
New earth system model for optical performance evaluation of space instruments.
Ryu, Dongok; Kim, Sug-Whan; Breault, Robert P
2017-03-06
In this study, a new global earth system model is introduced for evaluating the optical performance of space instruments. Simultaneous imaging and spectroscopic results are provided using this global earth system model with fully resolved spatial, spectral, and temporal coverage of sub-models of the Earth. The sun sub-model is a Lambertian scattering sphere with a 6-h scale and 295 lines of solar spectral irradiance. The atmospheric sub-model has a 15-layer three-dimensional (3D) ellipsoid structure. The land sub-model uses spectral bidirectional reflectance distribution functions (BRDF) defined by a semi-empirical parametric kernel model. The ocean is modeled with the ocean spectral albedo after subtracting the total integrated scattering of the sun-glint scatter model. A hypothetical two-mirror Cassegrain telescope with a 300-mm-diameter aperture and 21.504 mm × 21.504-mm focal plane imaging instrument is designed. The simulated image results are compared with observational data from HRI-VIS measurements during the EPOXI mission for approximately 24 h from UTC Mar. 18, 2008. Next, the defocus mapping result and edge spread function (ESF) measuring result show that the distance between the primary and secondary mirror increases by 55.498 μm from the diffraction-limited condition. The shift of the focal plane is determined to be 5.813 mm shorter than that of the defocused focal plane, and this result is confirmed through the estimation of point spread function (PSF) measurements. This study shows that the earth system model combined with an instrument model is a powerful tool that can greatly help the development phase of instrument missions.
Large Scale Spectral Line Mapping of Galactic Regions with CCAT-Prime
NASA Astrophysics Data System (ADS)
Simon, Robert
2018-01-01
CCAT-prime is a 6-m submillimeter telescope that is being built on the top of Cerro Chajnantor (5600 m altitude) overlooking the ALMA plateau in the Atacama Desert. Its novel Crossed-Dragone design enables a large field of view without blockage and is thus particularly well suited for large scale surveys in the continuum and spectral lines targeting important questions ranging from star formation in the Milky Way to cosmology. On this poster, we focus on the large scale mapping opportunities in important spectral cooling lines of the interstellar medium opened up by CCAT-prime and the Cologne heterodyne instrument CHAI.
NASA Astrophysics Data System (ADS)
Dravins, Dainis
2008-12-01
Context: Spectral-line asymmetries (displayed as bisectors) and wavelength shifts are signatures of the hydrodynamics in solar and stellar atmospheres. Theory may precisely predict idealized lines, but accuracies in real observed spectra are limited by blends, few suitable lines, imprecise laboratory wavelengths, and instrumental imperfections. Aims: We extract bisectors and shifts until the “ultimate” accuracy limits in highest-quality solar and stellar spectra, so as to understand the various limits set by (i) stellar physics (number of relevant spectral lines, effects of blends, rotational line broadening); by (ii) observational techniques (spectral resolution, photometric noise); and by (iii) limitations in laboratory data. Methods: Several spectral atlases of the Sun and bright solar-type stars were examined for those thousands of “unblended” lines with the most accurate laboratory wavelengths, yielding bisectors and shifts as averages over groups of similar lines. Representative data were obtained as averages over groups of similar lines, thus minimizing the effects of photometric noise and of random blends. Results: For the solar-disk center and integrated sunlight, the bisector shapes and shifts were extracted for previously little-studied species (Fe II, Ti I, Ti II, Cr II, Ca I, C I), using recently determined and very accurate laboratory wavelengths. In Procyon and other F-type stars, a sharp blueward bend in the bisector near the spectral continuum is confirmed, revealing line saturation and damping wings in upward-moving photospheric granules. Accuracy limits are discussed: “astrophysical” noise due to few measurable lines, finite instrumental resolution, superposed telluric absorption, inaccurate laboratory wavelengths, and calibration noise in spectrometers, together limiting absolute lineshift studies to ≈50-100 m s-1. Conclusions: Spectroscopy with resolutions λ/Δλ ≈ 300 000 and accurate wavelength calibration will enable bisector studies for many stars. Circumventing remaining limits of astrophysical noise in line-blends and rotationally smeared profiles may ultimately require spectroscopy across spatially resolved stellar disks, utilizing optical interferometers and extremely large telescopes of the future. Tables are only available in electronic form at http://www.aanda.org
A New Satellite Aerosol Retrieval Using High Spectral Resolution Oxygen A-Band Measurements
NASA Astrophysics Data System (ADS)
Winker, D. M.; Zhai, P.
2014-12-01
Efforts to advance current satellite aerosol retrieval capabilities have mostly focused on polarimetric techniques. While there has been much interest in recent decades in the use of the oxygen A-band for retrievals of cloud height or surface pressure, these techniques are mostly based on A-band measurements with relatively low spectral resolution. We report here on a new aerosol retrieval technique based on high-resolution A-band spectra. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers. The OCO-2 satellite, launched in July this year and now flying in formation with the CALIPSO satellite, carries an oxygen A-band spectrometer with a spectral resolution of 21,000:1. This is sufficient to resolve the A-band line structure, which contains information on atmospheric photon path lengths. Combining channels with oxygen absorption ranging from weak to strong allows the separation of atmospheric and surface scattering. An optimal estimation algorithm for simultaneous retrieval of aerosol optical depth, aerosol absorption, and surface albedo has been developed. Lidar profile data is used for scene identification and to provide constraints on the vertical distribution of scatterers. As calibrated OCO-2 data is not expected until the end of this year, the algorithm has been developed and tested using simulated OCO-2 spectra. The simulations show that AOD and surface albedo can be retrieved with high accuracy. Retrievals of aerosol single scatter albedo are encouraging, showing good performance when AOD is larger than about 0.15. Retrieval performance improves as the albedo of the underlying surface increases. Thus, the technique shows great promise for retrieving the absorption optical depth of aerosols located above clouds. This presentation will discuss the basis of the approach and results of the A-band/lidar retrievals based on simulated data.
Line-by-line transport calculations for Jupiter entry probes. [of radiative transfer
NASA Technical Reports Server (NTRS)
Arnold, J. O.; Cooper, D. M.; Park, C.; Prakash, S. G.
1979-01-01
Line-by-line calculations of the radiative transport for a condition near peak heating for entry of the Galileo probe into the Jovian atmosphere are described. The discussion includes a thorough specification of the atomic and molecular input data used in the calculations that could be useful to others working in the field. The results show that the use of spectrally averaged cross sections for diatomic absorbers such as CO and C2 in the boundary layer can lead to an underestimation (by as much as 29%) of the spectral flux at the stagnation point. On the other hand, for the turbulent region near the cone frustum on the probe, the flow tends to be optically thin, and the spectrally averaged results commonly used in coupled radiative transport-flow field calculations are in good agreement with the present line-by-line results. It is recommended that these results be taken into account in sizing the final thickness of the Galileo's heat shield.
Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines
NASA Astrophysics Data System (ADS)
Raouafi, Nour E.; Riley, Pete; Gibson, Sarah; Fineschi, Silvano; Solanki, Sami K.
2016-06-01
The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the HI Ly-α and the He I 10830 Å lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.
High Spectral Resolution Lidar: System Calibration
NASA Astrophysics Data System (ADS)
Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin
2015-04-01
One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical Sciences, Springer-Verlag, New York, 2005. Hair, JW; Caldwell, LM; Krueger, D. A.Krueger, and C.Y. She 2001: High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. Appl. Optics, 40, 5280-5294.
Studying the location of SACs and DACs regions in the environment of hot emission stars
NASA Astrophysics Data System (ADS)
Antoniou, A.; Danezis, E.; Lyratzi, E.; Popović, L. Č.; Dimitrijević, M. S.; Theodossiou, E.
Hot emission stars (Oe and Be stars) present complex spectral line profiles, which are formed by a number of DACs and/or SACs. In order to explain and reproduce theoretically these complex line profiles we use the GR model (Gauss-Rotation model). This model presupposes that the regions, where the spectral lines are created, consist of a number of independent and successive absorbing or emitting density regions of matter. Here we are testing a new approach of the GR model, which supposes that the independent density regions are not successive. We use this new approach in the spectral lines of some Oe and Be stars and we compare the results of this method with the results deriving from the classical GR model that supposes successive regions.
Stimulated Raman diagnostics in diesel droplets
NASA Astrophysics Data System (ADS)
Golombok, Michael
1991-09-01
Stimulated Raman spectroscopy (SRS) can simultaneously measure droplet sizes and the associated component concentrations in a fuel injection. As spray evaporation is crucial in determining the performance parameters of a diesel engine, such as cold start and particulate emission formation, the new application of the method for spatially and temporally resolved measurements is a useful new diagnostic, extending our understanding of spray processes. Droplet sizes can be obtained from single shot SRS spectra by measuring the separation between morphology-dependent resonances (MDR) that correspond to standing wave modes confined near the droplet circumference. Power spectrum analysis allows the measurement of more than one droplet from a spectrum using a pumped laser sheet in the fuel spray. The MDRs are responsible for the simultaneous stimulation of multiple Raman spectral lines over and above those seen in bulk liquids. The SRS method for concentration measurement is effectively self-calibrating in that the relative intensity of two adjacent lines is used to measure concentration. Any particular fuel has a unique ratio of SRS antisymmetric to symmetric C-H stretch intensity. If individual components in a fuel blend are characterized beforehand, one can monitor the evolution of the spray during injection by measuring signal intensity ratios which yield the volume fraction of the component of interest. The SRS technique is being used to examine a number of spray dynamics phenomena such as fuel atomization, droplet evolution and front-end volatility effects, which are of current interest in diesel development studies.
Quantification of calcium using localized normalization on laser-induced breakdown spectroscopy data
NASA Astrophysics Data System (ADS)
Sabri, Nursalwanie Mohd; Haider, Zuhaib; Tufail, Kashif; Aziz, Safwan; Ali, Jalil; Wahab, Zaidan Abdul; Abbas, Zulkifly
2017-03-01
This paper focuses on localized normalization for improved calibration curves in laser-induced breakdown spectroscopy (LIBS) measurements. The calibration curves have been obtained using five samples consisting of different concentrations of calcium (Ca) in potassium bromide (KBr) matrix. The work has utilized Q-switched Nd:YAG laser installed in LIBS2500plus system with fundamental wavelength and laser energy of 650 mJ. Optimization of gate delay can be obtained from signal-to-background ratio (SBR) of Ca II 315.9 and 317.9 nm. The optimum conditions are determined in which having high spectral intensity and SBR. The highest spectral lines of ionic and emission lines of Ca at gate delay of 0.83 µs. From SBR, the optimized gate delay is at 5.42 µs for both Ca II spectral lines. Calibration curves consist of three parts; original intensity from LIBS experimentation, normalization and localized normalization of the spectral line intensity. The R2 values of the calibration curves plotted using locally normalized intensities of Ca I 610.3, 612.2 and 616.2 nm spectral lines are 0.96329, 0.97042, and 0.96131, respectively. The enhancement from calibration curves using the regression coefficient allows more accurate analysis in LIBS. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.
NASA Astrophysics Data System (ADS)
Berk, Alexander
2013-03-01
Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.
Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy
NASA Technical Reports Server (NTRS)
Chou, Nee-Yin; Sachse, Glen W.
1987-01-01
A generalized theory for optical heterodyne spectroscopy with phase modulated laser radiation is used which allows the calculation of signal line shapes for frequency modulation spectroscopy of Lorentzian gas absorption lines. In particular, synthetic spectral line shapes for both single-tone and two-tone modulation of lead-salt diode lasers are presented in which the contributions from both amplitude and frequency modulations are included.
1990-08-01
the spectral domain is extended to include the effects of two-dimensional, two-component current flow in planar transmission line discontinuities 6n...PROFESSOR: Tatsuo Itoh A deterministic formulation of the method of moments carried out in the spectral domain is extended to include the effects of...two-dimensional, two- component current flow in planar transmission line discontinuities on open substrates. The method includes the effects of space
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2004-01-01
We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex
2014-09-01
We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curvemore » is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, C. L.; Walter, F.; Chluba, J.
We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii]more » 158 μ m line emission from very high redshift galaxies ( z ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B} = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B} = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.« less
Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.
1977-01-01
Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.
Clustering the Orion B giant molecular cloud based on its molecular emission
Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal
2017-01-01
Context Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results A clustering analysis based only on the J = 1 – 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes (nH ~ 100 cm−3, ~ 500 cm−3, and > 1000 cm−3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 − 0 line of HCO+ and the N = 1 − 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm−3 ~ 4 × 104 cm−3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1 – 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. PMID:29456256
NASA Technical Reports Server (NTRS)
Tai, M. H.; Harwit, M.; Melnick, G.; Dain, F. W.; Stasavage, G.; Briotta, D. A., Jr.; King, L. W.; Kameth, M.
1977-01-01
Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements.
Total teleportation of a single-photon state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Bennink, Ryan S; Grice, Warren P
2008-01-01
Recent demonstrations of teleportation have transferred quantum information encoded into either polarization or field-quadrature degrees of freedom (DOFs), but an outstanding question is how to simultaneously teleport quantum information encoded into multiple DOFs. We describe how the transverse-spatial, spectral and polarization states of a single photon can be simultaneously teleported using a pair of multimode, polarization-entangled photons derived from spontaneous parametric down-conversion. Furthermore, when the initial photon pair is maximally entangled in the spatial, spectral, and polarization DOFs then the photon s full quantum state can be reliably teleported using a Bell-state measurement based on sum-frequency generation.
NASA Technical Reports Server (NTRS)
Marko, H.
1978-01-01
A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown.
Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K
2008-09-15
A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.
A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)
NASA Technical Reports Server (NTRS)
Kubo, M.; Kano, R.; Kobayashi, K.; Ishikawa, R.; Bando, T.; Narukage, N.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.;
2014-01-01
A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles caused by scattering processes and the Hanle effect in the hydrogen Lyman-alpha line (121.567nm). Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect are essential to explore the strength and structures of weak magnetic fields. The primary target of future solar telescopes is to measure the weak magnetic field in outer solar atmospheres (from the chromosphere to the corona through the transition region). The hydrogen Lyman-alpha-line is one of the best lines for the diagnostics of magnetic fields in the outer solar atmospheres. CLASP is to be launched in 2015, and will provide, for the first time, the observations required for magnetic field measurements in the upper chromosphere and transition region. CLASP is designed to have a polarimetric sensitivity of 0.1% and a spectral resolution of 0.01nm for the Lyman-alpha line. CLASP will measure two orthogonal polarizations simultaneously for about 5-minute flight. Now the integration of flight mirrors and structures is in progress. In addition to our strategy to realize such a high-precision spectro-polarimetry in the UV, we will present a progress report on our pre-launch evaluation of optical and polarimetric performances of CLASP.
THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Nathaniel; Kasen, Daniel; Guillochon, James
We study the emission from tidal disruption events (TDEs) produced as radiation from black hole accretion propagates through an extended, optically thick envelope formed from stellar debris. We analytically describe key physics controlling spectrum formation, and present detailed radiative transfer calculations that model the spectral energy distribution and optical line strengths of TDEs near peak brightness. The steady-state transfer is coupled to a solver for the excitation and ionization states of hydrogen, helium, and oxygen (as a representative metal), without assuming local thermodynamic equilibrium. Our calculations show how an extended envelope can reprocess a fraction of soft X-rays and producemore » the observed optical fluxes of the order of 10{sup 43} erg s{sup −1}, with an optical/UV continuum that is not described by a single blackbody. Variations in the mass or size of the envelope may help explain how the optical flux changes over time with roughly constant color. For high enough accretion luminosities, X-rays can escape to be observed simultaneously with the optical flux. Due to optical depth effects, hydrogen Balmer line emission is often strongly suppressed relative to helium line emission (with He ii-to-H line ratios of at least 5:1 in some cases) even in the disruption of a solar-composition star. We discuss the implications of our results to understanding the type of stars destroyed in TDEs and the physical processes responsible for producing the observed flares.« less
Evidence for an Ionized Accretion Disk in the Seyfert 2 Galaxy NGC 1068
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Weaver, K. A.; Mulchaey, J. S.; Mushotzky, R. F.
2000-10-01
We present results from analyses of RXTE, ASCA and BeppoSAX X-ray spectral data from the archetypal Seyfert 2 galaxy NGC 1068. Simultaneous RXTE and ASCA data (spanning 4 - 100 keV) are best fit with a power-law continuum with photon index Γ ~ 1.7 (in agreement with the canonical value for type 1 Seyferts), plus reflection from ionized matter with ξ ~ 1000. Reflection from ionized matter is significantly preferred over reflection from cold matter (Δ χ2 ≈ 50 for 320 dof). When the Fe line complex is modelled with three narrow Gaussians at 6.4, 6.7 and 6.97 keV, we find that the 6.7 keV line flux increases by a factor of ≈ 2 in four months, between the RXTE/ASCA and BeppoSAX observations. Thus we argue that the 6.7 keV line emission comes to us directly from the accretion disk, and not from the electron scattering region further out from the nucleus. We find no evidence for variability in the line fluxes at 6.4 and 6.97 keV. Although ionized accretion disks are thought to be present in NLS1 nuclei, we are only now finding evidence for them in ``broad-line'' Seyfert nuclei (type 1: 1E 1615+061 and type 2: NGC 1068, this work). We shall discuss the implications of these results on the particular geometry required in NGC 1068.
NASA Astrophysics Data System (ADS)
Xie, Yiwei; Zhuang, Leimeng; Boller, Klaus-Jochen; Lowery, Arthur James
2017-06-01
Optical delay lines implemented in photonic integrated circuits (PICs) are essential for creating robust and low-cost optical signal processors on miniaturized chips. In particular, tunable delay lines enable a key feature of programmability for the on-chip processing functions. However, the previously investigated tunable delay lines are plagued by a severe drawback of delay-dependent loss due to the propagation loss in the constituent waveguides. In principle, a serial-connected amplifier can be used to compensate such losses or perform additional amplitude manipulation. However, this solution is generally unpractical as it introduces additional burden on chip area and power consumption, particularly for large-scale integrated PICs. Here, we report an integrated tunable delay line that overcomes the delay-dependent loss, and simultaneously allows for independent manipulation of group delay and amplitude responses. It uses a ring resonator with a tunable coupler and a semiconductor optical amplifier in the feedback path. A proof-of-concept device with a free spectral range of 11.5 GHz and a delay bandwidth in the order of 200 MHz is discussed in the context of microwave photonics and is experimentally demonstrated to be able to provide a lossless delay up to 1.1 to a 5 ns Gaussian pulse. The proposed device can be designed for different frequency scales with potential for applications across many other areas such as telecommunications, LIDAR, and spectroscopy, serving as a novel building block for creating chip-scale programmable optical signal processors.
Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.
1984-01-01
An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Overview of the observations of symbiotic stars
NASA Technical Reports Server (NTRS)
Viotti, Roberto
1993-01-01
The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.
Temperature dependence of the water vapor continuum absorption in the 3-5 μm spectral region
NASA Astrophysics Data System (ADS)
Klimeshina, T. E.; Rodimova, O. B.
2013-04-01
Asymptotic line wing theory allows one to construct the line shape describing the frequency and temperature dependence of the self-broadened H2O continuum in the 3-5 μm spectral region obtained experimentally by CAVIAR and NIST. The H2O transmission functions are adequately described as well, using this line shape up to temperatures of ˜675 K and pressures of ˜10 atm.
Chander, G.; Helder, D.L.; Aaron, David; Mishra, N.; Shrestha, A.K.
2013-01-01
Cross-calibration of satellite sensors permits the quantitative comparison of measurements obtained from different Earth Observing (EO) systems. Cross-calibration studies usually use simultaneous or near-simultaneous observations from several spaceborne sensors to develop band-by-band relationships through regression analysis. The investigation described in this paper focuses on evaluation of the uncertainties inherent in the cross-calibration process, including contributions due to different spectral responses, spectral resolution, spectral filter shift, geometric misregistrations, and spatial resolutions. The hyperspectral data from the Environmental Satellite SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY and the EO-1 Hyperion, along with the relative spectral responses (RSRs) from the Landsat 7 Enhanced Thematic Mapper (TM) Plus and the Terra Moderate Resolution Imaging Spectroradiometer sensors, were used for the spectral uncertainty study. The data from Landsat 5 TM over five representative land cover types (desert, rangeland, grassland, deciduous forest, and coniferous forest) were used for the geometric misregistrations and spatial-resolution study. The spectral resolution uncertainty was found to be within 0.25%, spectral filter shift within 2.5%, geometric misregistrations within 0.35%, and spatial-resolution effects within 0.1% for the Libya 4 site. The one-sigma uncertainties presented in this paper are uncorrelated, and therefore, the uncertainties can be summed orthogonally. Furthermore, an overall total uncertainty was developed. In general, the results suggested that the spectral uncertainty is more dominant compared to other uncertainties presented in this paper. Therefore, the effect of the sensor RSR differences needs to be quantified and compensated to avoid large uncertainties in cross-calibration results.
NASA Astrophysics Data System (ADS)
Han, Kai; Xu, Xiaojun; Liu, Zejin
2013-05-01
Based on the spectral manipulation technique, the Stimulated Brillouin Scattering (SBS) suppression effect and the coherent beam combination (CBC) effect in multi-tone CBC system are researched theoretically and experimentally. To get satisfactory SBS suppression, the frequency interval of the multi-tone seed laser should be large enough, at least larger than the SBS gain bandwidth. In order to attain excellent CBC effect, the spectra of the multi-tone seed laser need to be matched with the optical path differences among the amplifier chains. Hence, a sufficiently separated matching spectrum is capable at both SBS mitigation and coherent property preservation. By comparing the SBS suppression effect and the CBC effect at various spectra, the optimal spectral structure for simultaneous SBS suppression and excellent CBC effect is found.
The Upper Atmosphere Research Satellite microwave limb sounder instrument
NASA Technical Reports Server (NTRS)
Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.
1993-01-01
The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Miranda, B., E-mail: belen.lopez@ciemat.es; Zurro, B.; Baciero, A.
The study of plasma-wall interactions and impurity transport in the plasma fusion devices is critical for the development of future fusion reactors. An experiment to perform laser induced breakdown spectroscopy, using minor modifications of our existing laser blow-off impurity injection system, has been set up thus making both experiments compatible. The radiation produced by the laser pulse focused at the TJ-II wall evaporates a surface layer of deposited impurities and the subsequent radiation produced by the laser-produced plasma is collected by two separate lens and fiber combinations into two spectrometers. The first spectrometer, with low spectral resolution, records a spectrummore » from 200 to 900 nm to give a survey of impurities present in the wall. The second one, with high resolution, is tuned to the wavelengths of the Hα and Dα lines in order to resolve them and quantify the hydrogen isotopic ratio present on the surface of the wall. The alignment, calibration, and spectral analysis method will be described in detail. First experimental results obtained with this setup will be shown and its relevance for the TJ-II experimental program discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Perea, Mónica; Soufli, Regina; Robinson, Jeff C.
2012-01-01
We have developed new, corrosion-resistant Mg/SiC multilayer coatings which can be used to efficiently and simultaneously reflect extreme ultraviolet (EUV) radiation in single or multiple narrow bands centered at wavelengths in the spectral region from 25 to 80 nm. Corrosion mitigation is achieved through the use of partially amorphous Al-Mg thin layers. Three different multilayer design concepts were developed and deposited by magnetron sputtering and the reflectance was measured at near-normal incidence in a broad spectral range. Unprotected Mg/SiC multilayers were also deposited and measured for comparison. They were shown to efficiently reflect radiation at a wavelength of 76.9 nmmore » with a peak reflectance of 40.6% at near-normal incidence, the highest experimental reflectance reported at this wavelength for a narrowband coating. The demonstration of multilayer coatings with corrosion resistance and multiplewavelength EUV performance is of great interest in the development of mirrors for space-borne solar physics telescopes and other applications requiring long-lasting coatings with narrowband response in multiple emission lines across the EUV range.« less
The Upper Atmosphere Research Satellite microwave limb sounder instrument
NASA Astrophysics Data System (ADS)
Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.
1993-06-01
The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.
NASA Astrophysics Data System (ADS)
Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue
2012-05-01
The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, R.S.; Myers, B.R.; Vella, M.C.
Representative spectral data from T IV-a are compared with data from T IV-c obtained under similar conditions; i.e., 15 kV cusp bank voltage, 30 kV preionizer bank voltage, 2 kV bias bank voltage and 50 m Torr gas fill pressure. Two spectral lines, HeII 4686 A and D..beta.. 4861 A are studied. Line of sight data from the two devices, taken using a light pipe and mirror arrangement, are compared. The data were also used as inputs to a computer assisted tomogrphic reconstruction, the results of which are discussed. Comparison was made on the basis of the intensity and shapemore » of the spectral lines as functions of position and time.« less
Multispectral information for gas and aerosol retrieval from TANSO-FTS instrument
NASA Astrophysics Data System (ADS)
Herbin, H.; Labonnote, L. C.; Dubuisson, P.
2012-11-01
The Greenhouse gases Observing SATellite (GOSAT) mission and in particular TANSO-FTS instrument has the advantage to measure simultaneously the same field of view in different spectral ranges with a high spectral resolution. These features are promising to improve, not only, gaseous retrieval in clear sky or scattering atmosphere, but also to retrieve aerosol parameters. Therefore, this paper is dedicated to an Information Content (IC) analysis of potential synergy between thermal infrared, shortwave infrared and visible, in order to obtain a more accurate retrieval of gas and aerosol. The latter is based on Shannon theory and used a sophisticated radiative transfer algorithm developed at "Laboratoire d'Optique Atmosphérique", dealing with multiple scattering. This forward model can be relied to an optimal estimation method, which allows simultaneously retrieving gases profiles and aerosol granulometry and concentration. The analysis of the information provided by the spectral synergy is based on climatology of dust, volcanic ash and biomass burning aerosols. This work was conducted in order to develop a powerful tool that allows retrieving simultaneously not only the gas concentrations but also the aerosol characteristics by selecting the so called "best channels", i.e. the channels that bring most of the information concerning gas and aerosol. The methodology developed in this paper could also be used to define the specifications of future high spectral resolution mission to reach a given accuracy on retrieved parameters.
Lagrangian statistics in weakly forced two-dimensional turbulence.
Rivera, Michael K; Ecke, Robert E
2016-01-01
Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.
Measuring the radiative properties of astrophysical matter using the Z X-ray source
NASA Astrophysics Data System (ADS)
Bailey, James; ZAPP Team
2017-06-01
The Z Astrophysical Plasma Properties (ZAPP) collaboration is staging Z experiments that simultaneously investigate multiple topics in radiative properties of hot dense matter. The four astrophysics questions presently guiding this research are: 1) Why can’t we predict the location of the convection zone base in the Sun?; 2) How does radiation transport affect spectrum formation in accretion-powered objects?; 3) Why doesn’t spectral fitting provide the correct properties for White Dwarfs?; and 4) Why can’t we predict the heating and charge state distribution in photoionized plasmas? Recent progress using Z, the most energetic x-ray source on earth, to address these questions will be described. We emphasize the first two topics. Opacity models are an essential ingredient of stellar models and are highly sophisticated, but laboratory opacity tests have only now become possible at the conditions existing inside stars. Our opacity research emphasizes measuring iron at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9x1022 e/cc, respectively. The results exhibit large disagreements between iron opacity measurements and models and ongoing research is aimed at testing hypotheses for this discrepancy. The second project is motivated by the fact that emission lines from L-shell ions are not observed from iron in black hole accretion disks, but are observed from silicon in x-ray binaries. These disparate observations may be explained by differences in the radiation transport within the plasmas, but models for the spectral line formation and transport in photoionized plasmas have never been tested. We investigate photoionized silicon plasmas using absorption spectroscopy to infer the plasma conditions and emission spectroscopy to determine the dependence of spectral emission on plasma column density.++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Bailey, Gary C.
1987-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument uses four separate focal plane assemblies consisting of line array detectors that are multiplexed to a common J-FET preamp using a FET switch multiplexing (MUX) technique. A 32-element silicon line array covers the spectral range from 0.41 to 0.70 microns. Three additional 64-element indium antimonide (InSb) line arrays cover the spectral range from 0.68 to 2.45 microns. The spectral sampling interval per detector element is nominally 9.8 nm, giving a total of 224 spectral channels. All focal planes operate at liquid nitrogen temperature and are housed in separate dewars. Electrical performance characteristics include a read noise of less than 1000 e(-) in all channels, response and dark nonuniformity of 5 percent peak to peak, and quantum efficiency of greater than 60 percent.
Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert
2013-04-01
An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.
High spectral resolution observations of fluorescent molecular hydrogen in molecular clouds
NASA Technical Reports Server (NTRS)
Burton, Michael G.; Geballe, T. R.; Brand, P. W. J. L.; Moorhouse, A.
1990-01-01
The 1-0 S(1) line of molecular hydrogen has been observed at high spectral resolution in several sources where the emission was suspected of being fluorescent. In NGC 2023, the Orion Bar, and Parsamyan 18, the S(1) line is unresolved, and the line center close to the rest velocity of the ambient molecular cloud. Such behavior is expected for UV-excited line emission. The H2 line widths in molecular clouds thus can serve as diagnostic for shocked and UV-excitation mechanisms. If the lines are broader than several km/s or velocity shifts are observed across a source it is likely that shocks are responsible for the excitation of the gas.
USDA-ARS?s Scientific Manuscript database
This study investigated the potential of point scan Raman spectral imaging method for estimation of different ingredients and chemical contaminant concentration in food powder. Food powder sample was prepared by mixing sugar, vanillin, melamine and non-dairy cream at 5 different concentrations in a ...
NASA Astrophysics Data System (ADS)
Griessbach, Sabine; Hoffmann, Lars; Höpfner, Michael; Riese, Martin; Spang, Reinhold
2013-09-01
The viability of a spectrally averaging model to perform radiative transfer calculations in the infrared including scattering by atmospheric particles is examined for the application of infrared limb remote sensing measurements. Here we focus on the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Envisat. Various spectra for clear air and cloudy conditions were simulated with a spectrally averaging radiative transfer model and a line-by-line radiative transfer model for three atmospheric window regions (825-830, 946-951, 1224-1228 cm-1) and compared to each other. The results are rated in terms of the MIPAS noise equivalent spectral radiance (NESR). The clear air simulations generally agree within one NESR. The cloud simulations neglecting the scattering source term agree within two NESR. The differences between the cloud simulations including the scattering source term are generally below three and always below four NESR. We conclude that the spectrally averaging approach is well suited for fast and accurate infrared radiative transfer simulations including scattering by clouds. We found that the main source for the differences between the cloud simulations of both models is the cloud edge sampling. Furthermore we reasoned that this model comparison for clouds is also valid for atmospheric aerosol in general.
Microwave spectral line listing
NASA Technical Reports Server (NTRS)
White, W. F., Jr.
1975-01-01
The frequency, intensity, and identification of 9615 spectral lines belonging to 75 molecules are tabulated in order of increasing frequency. Measurements for all 75 molecules were made in the frequency range from 26500 to 40000 MHz by a computer controlled spectrometer. Measurements were also made in the 18000 to 26500 MHz range for some of the molecules.
Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao
2017-09-01
Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature,more » density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.« less
Isotopic determination of uranium in soil by laser induced breakdown spectroscopy
Chan, George C. -Y.; Choi, Inhee; Mao, Xianglei; ...
2016-03-26
Laser-induced breakdown spectroscopy (LIBS) operated under ambient pressure has been evaluated for isotopic analysis of uranium in real-world samples such as soil, with U concentrations in the single digit percentage levels. The study addresses the requirements for spectral decomposition of 235U and 238U atomic emission peaks that are only partially resolved. Although non-linear least-square fitting algorithms are typically able to locate the optimal combination of fitting parameters that best describes the experimental spectrum even when all fitting parameters are treated as free independent variables, the analytical results of such an unconstrained free-parameter approach are ambiguous. In this work, five spectralmore » decomposition algorithms were examined, with different known physical properties (e.g., isotopic splitting, hyperfine structure) of the spectral lines sequentially incorporated into the candidate algorithms as constraints. It was found that incorporation of such spectral-line constraints into the decomposition algorithm is essential for the best isotopic analysis. The isotopic abundance of 235U was determined from a simple two-component Lorentzian fit on the U II 424.437 nm spectral profile. For six replicate measurements, each with only fifteen laser shots, on a soil sample with U concentration at 1.1% w/w, the determined 235U isotopic abundance was (64.6 ± 4.8)%, and agreed well with the certified value of 64.4%. Another studied U line - U I 682.691 nm possesses hyperfine structure that is comparatively broad and at a significant fraction as the isotopic shift. Thus, 235U isotopic analysis with this U I line was performed with spectral decomposition involving individual hyperfine components. For the soil sample with 1.1% w/w U, the determined 235U isotopic abundance was (60.9 ± 2.0)%, which exhibited a relative bias about 6% from the certified value. The bias was attributed to the spectral resolution of our measurement system - the measured line width for this U I line was larger than its isotopic splitting. In conclusion, although not the best emission line for isotopic analysis, this U I emission line is sensitive for element analysis with a detection limit of 500 ppm U in the soil matrix; the detection limit for the U II 424.437 nm line was 2000 ppm.« less
NASA Astrophysics Data System (ADS)
Berk, Alexander; Conforti, Patrick; Hawes, Fred
2015-05-01
A Line-By-Line (LBL) option is being developed for MODTRAN6. The motivation for this development is two-fold. Firstly, when MODTRAN is validated against an independent LBL model, it is difficult to isolate the source of discrepancies. One must verify consistency between pressure, temperature and density profiles, between column density calculations, between continuum and particulate data, between spectral convolution methods, and more. Introducing a LBL option directly within MODTRAN will insure common elements for all calculations other than those used to compute molecular transmittances. The second motivation for the LBL upgrade is that it will enable users to compute high spectral resolution transmittances and radiances for the full range of current MODTRAN applications. In particular, introducing the LBL feature into MODTRAN will enable first-principle calculations of scattered radiances, an option that is often not readily available with LBL models. MODTRAN will compute LBL transmittances within one 0.1 cm-1 spectral bin at a time, marching through the full requested band pass. The LBL algorithm will use the highly accurate, pressure- and temperature-dependent MODTRAN Padé approximant fits of the contribution from line tails to define the absorption from all molecular transitions centered more than 0.05 cm-1 from each 0.1 cm-1 spectral bin. The beauty of this approach is that the on-the-fly computations for each 0.1 cm-1 bin will only require explicit LBL summing of transitions centered within a 0.2 cm-1 spectral region. That is, the contribution from the more distant lines will be pre-computed via the Padé approximants. The status of the LBL effort will be presented. This will include initial thermal and solar radiance calculations, validation calculations, and self-validations of the MODTRAN band model against its own LBL calculations.
Multichannel spectral mode of the ALOHA up-conversion interferometer
NASA Astrophysics Data System (ADS)
Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.
2018-06-01
In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.
A Detailed Far-ultraviolet Spectral Atlas of O-type Stars
NASA Astrophysics Data System (ADS)
Smith, Myron A.
2012-10-01
In this paper, we present a spectral atlas covering the wavelength interval 930-1188 Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188 Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas, to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. We discuss the statistics of line populations among the various elemental ionization states. Also, as an aid to users we list those isolated lines that can be used to determine stellar temperatures and the presence of possible chemical anomalies. Finally, we have prepared FITS files that give pairs of merged spectra for stars in our population sequences, for access via MAST.
Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps
NASA Astrophysics Data System (ADS)
Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.
2016-07-01
The analysis of 34 cloudless fragments of Landsat 5, 7, and 8 images (1985-2014) on the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast has been performed. It is shown that bare soil surface on the RED-NIR plots derived from the images cannot be described in the form of a sector of spectral plane as it can be done for the NDVI values. The notion of spectral neighborhood of soil line (SNSL) is suggested. It is defined as the sum of points of the RED-NIR spectral space, which are characterized by spectral characteristics of the bare soil applied for constructing soil lines. The way of the SNSL separation along the line of the lowest concentration density of points on the RED-NIR spectral space is suggested. This line separates bare soil surface from vegetating plants. The SNSL has been applied to construct soil line (SL) for each of the 34 images and to delineate bare soil surface on them. Distances from the points with averaged RED-NIR coordinates to the SL have been calculated using the method of moving window. These distances can be referred to as averaged spectral deviations (ASDs). The calculations have been performed strictly for the SNSL areas. As a result, 34 maps of ASDs have been created. These maps contain ASD values for 6036 points of a grid used in the study. Then, the integral map of normalized ASD values has been built with due account for the number of points participating in the calculation (i.e., lying in the SNSL) within the moving window. The integral map of ASD values has been compared with four traditional soil maps on the studied territory. It is shown that this integral map can be interpreted in terms of soil taxa: the areas of seven soil subtypes (soddy moderately podzolic, soddy slightly podzolic, light gray forest. gray forest, dark gray forest, podzolized chernozems, and leached chernozems) belonging to three soil types (soddy-podzolic, gray forest, and chernozemic soils) can be delineated on it.
NASA Astrophysics Data System (ADS)
Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.
2018-05-01
We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.
NASA Astrophysics Data System (ADS)
Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.
2017-10-01
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.
Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.
2003-01-01
It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
NASA Astrophysics Data System (ADS)
Dhara, Sangita; Khooha, Ajay; Singh, Ajit Kumar; Tiwari, M. K.; Misra, N. L.
2018-06-01
Systematic studies to assess the analytical parameters obtained in the total reflection X-ray fluorescence (TXRF) determinations of interfering elements Rb and U using profile fitting are reported in the present manuscript. The X-ray lines Rb Kα and U Lα having serious spectral interference (ΔE = 218 eV), have been used as analytical lines. The intensities of these X-ray lines have been assessed using profile fitting. In order to compare the analytical results of Rb determinations in presence of U, with and without U excitation, synchrotron radiation was tuned to energy just above and below the U Labs edge. This approach shall excite both Rb Kα and U Lα simultaneously and Rb Kα selectively. Finally, the samples were also analyzed with a laboratory based TXRF spectrometer. The analytical results obtained in all these conditions were comparable. The authenticity of the results was assessed by analyzing U with respect to Rb in Rb2U(SO4)3, a standard reference material for U. The average precision obtained for TXRF determinations was below 3% (RSD, n = 3, 1σ) and the percent deviation of TXRF values from the expected values calculated on the basis of sample preparation was within 3%.
Almeida, Andre; George, David; Smith, John; Wolfe, Joe
2013-09-01
Using an automated clarinet playing system, the frequency f, sound level L, and spectral characteristics are measured as functions of blowing pressure P and the force F applied by the mechanical lip at different places on the reed. The playing regime on the (P,F) plane lies below an extinction line F(P) with a negative slope of a few square centimeters and above a pressure threshold with a more negative slope. Lower values of F and P can produce squeaks. Over much of the playing regime, lines of equal frequency have negative slope. This is qualitatively consistent with passive reed behavior: Increasing F or P gradually closes the reed, reducing its equivalent acoustic compliance, which increases the frequency of the peaks of the parallel impedance of bore and reed. High P and low F produce the highest sound levels and stronger higher harmonics. At low P, sound level can be increased at constant frequency by increasing P while simultaneously decreasing F. At high P, where lines of equal f and of equal L are nearly parallel, this compensation is less effective. Applying F further from the mouthpiece tip moves the playing regime to higher F and P, as does a stiffer reed.
Scanning imaging absorption spectrometer for atmospheric chartography
NASA Technical Reports Server (NTRS)
Burrows, John P.; Chance, Kelly V.
1991-01-01
The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.
1999-01-01
We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 micron grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power lambda/delat.lambda of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of approximately 25 solar luminosity . In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the (sup 2)product(sub 1/2) (J = 5/2) left arrow (sup 2)product(sub 3/2) (J = 3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(sub 25)-6(sub 16) line at 29.8367 micron, the 4(sub 41)-3(sub 12) line at 31.7721 micron, and the 4(sub 32)-3(sub 03) line at 40.6909 micron. The higher spectral resolving power lambda/delta.lambda of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.
Unifying Spectral and Timing Studies of Relativistic Reflection in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Reynolds, Christopher
X-ray observations of active galactic nuclei (AGN) contain a wealth of information relevant for understanding the structure of AGN, the process of accretion, and the gravitational physics of supermassive black holes. A particularly exciting development over the past four years has been the discovery and subsequent characterization of time delays between variability of the X-ray power-law continuum and the inner disk reflection spectrum including the broad iron line. The fact that the broad iron line shows this echo, or reverberation, in XMM-Newton, Suzaku and NuSTAR data is a strong confirmation of the disk reflection paradigm and has already been used to place constraints on the extent and geometry of the X-ray corona. However, current studies of AGN X-ray variability, including broad iron line reverberation, are only scratching the surface of the available data. At the present time, essentially all studies conduct temporal analyzes in a manner that is largely divorced from detailed spectroscopy - consistency between timing results (e.g., conclusions regarding the location of the primary X-ray source) and detailed spectral fits is examined after the fact. We propose to develop and apply new analysis tools for conducting a truly unified spectraltiming analysis of the X-ray properties of AGN. Operationally, this can be thought of as spectral fitting except with additional parameters that are accessing the temporal properties of the dataset. Our first set of tools will be based on Fourier techniques (via the construction and fitting of the energy- and frequency-dependent cross-spectrum) and most readily applicable to long observations of AGN with XMM-Newton. Later, we shall develop more general schemes (of a more Bayesian nature) that can operate on irregularly sampled data or quasi-simultaneous data from multiple instruments. These shall be applied to the long joint XMM-Newton/NuSTAR and Suzaku/NuSTAR AGN campaigns as well as Swift monitoring campaigns. Another important dimension of our work is the introduction of spectral and spectral-timing models of X-ray reflection from black hole disks that include realistic disk thickness (as opposed to the razor-thin disks assumed in current analysis tools). The astrophysical implications of our work are: - The first rigorous decomposition of the time-lags into those from reverberation and those from intrinsic continuum processes. - A new method for determining the density of photoionized (warm) absorbers in AGN through a measurement of the recombination time lags. - AGN black hole mass estimates obtained purely from X-ray data, and hence complementary to (observationally expensive) optical broad line reverberation campaigns. - The best possible characterization of strong gravity signatures in the reflected disk emission. - Detection and characterization of non-trivial accretion disk structure. Each of our tools and data products will be made available to the community/public upon the publication of the first results with that tool. The proposed work is in direct support of the NASA Science Plan, and is of direct relevant and support to NASA's fleet of X-ray observatories.
NASA Astrophysics Data System (ADS)
Hassanimatin, M. M.; Tavassoli, S. H.
2018-05-01
A combination of electrical spark and laser induced breakdown spectroscopy (LIBS), which is called spark assisted LIBS (SA-LIBS), has shown its capability in plasma spectral emission enhancement. The aim of this paper is a detailed study of plasma emission to determine the effect of plasma and experimental parameters on increasing the spectral signal. An enhancement ratio of SA-LIBS spectral lines compared with LIBS is theoretically introduced. The parameters affecting the spectral enhancement ratio including ablated mass, plasma temperature, the lifetime of neutral and ionic spectral lines, plasma volume, and electron density are experimentally investigated and discussed. By substitution of the effective parameters, the theoretical spectral enhancement ratio is calculated and compared with the experimental one. Two samples of granite as a dielectric and aluminum as a metal at different laser pulse energies are studied. There is a good agreement between the calculated and the experimental enhancement ratio.
Resolving the Wind Structure of Eta Carinae
NASA Technical Reports Server (NTRS)
Gull, T.; Hillier, J.; Ishibashi, K.; Davidson, K.
2000-01-01
Space Telescope Imaging Spectrograph (STIS) spectral observations of Eta Carinae have resolved the wind structure of the star(s) from the central point source. These observations were done with a 52 x 0.1" aperture, resolving power of about 5000 and complete spectral coverage from 1640A to 10400A. Various broad stellar Lines are seen to change within the central 0.511 of the nebular region. The Balmer lines, relative to the continuum, drop in strength while some Fe II lines scale with the continuum. Other Fe II lines increase in intensity while still others decrease. The structure to the southeast of the central source shows considerable variation in the stellar line strengths. To the Northwest, the emission is dominated by the very bright nebular knots, Weigelt blobs B and D. Three sets of observations have been done: March 1998, February 1999 and March 2000 to monitor the spectral variations. The stellar, wind and nebular emission changes considerably during this two year period. This work was done under the STIS GTO and HST GO funding.
Linearized spectrum correlation analysis for line emission measurements
NASA Astrophysics Data System (ADS)
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.
2017-08-01
A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.
Distributed information system on molecular spectroscopy
NASA Astrophysics Data System (ADS)
Bykov, A. D.; Fazliev, A. Z.; Kozodoev, A. V.; Privezentsev, A. I.; Sinitsa, L. N.; Tonkov, M. V.; Filippov, N. N.; Tretyakov, M. Yu.
2006-12-01
The urgency of creating the information-computational systems (ICS) on molecular spectroscopy follows from the circumstance that for some molecules the number of calculated energy levels counts hundreds of thousands, and the number of spectral lines sometimes reaches hundreds of millions. Publication of such data volumes in regular journals is inappropriate. Comparison of different calculated spectral characteristics or their comparison with experimental data beyond computer processing is hopeless. We find information systems to be an adequate form for holding such data volumes and a toolkit for handling them. Correct digital data processing requires appropriate sets of metadata arranged in the form of ontology of molecular spectroscopy. Our information system provides the data on spectral line parameters, water molecule energy levels, and absorption coefficients. Within this distributed IS one can solve two types of problems: manipulation with data and calculation of spectral functions. Among the latest experimental data in the IS there are data obtained at the Institute of Applied Physics RAS. To calculate the absorption coefficients for the molecules of carbonic acid gas, we take into consideration spectral line interference.
Time scale variation of NV resonance line profiles of HD203064
NASA Astrophysics Data System (ADS)
Strantzalis, A.
2012-01-01
Hot emission star, such as Be and Oe, present many spectral lines with very complex and peculiar profiles. Therefore, we cannot find a classical distribution to fit theoretically those physical line profiles. So, many physical parameters of the regions, where spectral lines are created, are difficult to estimate. Here, in this poster paper we study the UV NV (λλ 1238.821, 1242.804 A) resonance lines of the Be star HD203064 at three different dates. We using the Gauss-Rotation model, that proposed the idea that these complex profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs). Our purpose is to calculate the values of a group of physical parameters as the apparent rotational, radial, and random velocities of the thermal motions of the ions. Also the Full Width at Half Maximum (FWHM) and the column density, as well as the absorbed energy of the independent regions of matter, which produce the main and the satellite components of the studied spectral lines. In addition, we determine the time scale variations of the above physical parameters.
Universal Representation of the H-like Spectral Line Shapes
NASA Astrophysics Data System (ADS)
Bureyeva, L.
2009-05-01
A universal approach for the calculation of Rydberg atom line shapes in plasmas is developed. It is based on analytical formulas for the intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principal quantum numbers n, n'≫1, with Δ n = n-n'≪n, and on the Frequency Fluctuation Model (FFM) to account of electron and ion thermal motion effects. The theory allows to describe a transition from the static to the impact broadening domains for every hydrogen spectral line. A new approach to extremely fast line shape calculations with account of charged particle dynamic effect was proposed. The approach is based on the close analogy between the static-impact broadening transition in the spectral line shape theory and the Doppler-Lorentz broadening in the Dicke narrowing effect theory. The precision of the new approach was tested by the comparison of hydrogen-alpha and beta line shapes calculations with the FFM results. The excellent agreement was discovered, the computer time decreased two orders of magnitudes as compared with the FFM.
Copernicus observations of the Ap star Epsilon Ursae Majoris
NASA Technical Reports Server (NTRS)
Mallama, A. D.; Molnar, M. R.
1977-01-01
Spectral scans of the Ap star Epsilon UMa made with the Copernicus satellite show strong line blanketing from profuse Cr II and Fe II lines. In the spectral region covering 1900 to 3000 A, about 500 lines are present which suppress the apparent continuum by at least 15-30%. An accurate line-identification list is compiled showing Eu II present in addition to Mn II and Ni II. The identification of Eu II, however, rests on very stringent identification limits for Fe II. If these are relaxed, the existence of Eu II is dubious. There are no broad features in this spectral region which would suggest strong photoionization discontinuities by metals, but one feature near 2137 A might contain the photoionization edge due to Cr I 5S lying 0.94 eV above the ground level. However, a significant correlation between the line-blanketing strength and the amplitude of the OAO-2 ultraviolet light curves was found such that both monotonically increase in the same proportion toward shorter wavelengths. This gives additional strength to the suggestion that variations in the metal line-blanketing cause the observed photometric variations.
Ackermann, M.; Ajello, M.; Albert, A.; ...
2015-06-15
Dark matter in the Milky Way may annihilate directly into γ rays, producing a monoenergetic spectral line. Therefore, detecting such a signature would be strong evidence for dark matter annihilation or decay. We search for spectral lines in the Fermi Large Area Telescope observations of the Milky Way halo in the energy range 200 MeV–500 GeV using analysis methods from our most recent line searches. The main improvements relative to previous works are our use of 5.8 years of data reprocessed with the Pass 8 event-level analysis and the additional data resulting from the modified observing strategy designed to increasemore » exposure of the Galactic center region. Furthermore, we search in five sky regions selected to optimize sensitivity to different theoretically motivated dark matter scenarios and find no significant detections. In addition to presenting the results from our search for lines, we also investigate the previously reported tentative detection of a line at 133 GeV using the new Pass 8 data.« less
Improved Radial Velocity Precision with a Tunable Laser Calibrator
NASA Astrophysics Data System (ADS)
Cramer, Claire; Brown, S.; Dupree, A. K.; Lykke, K. R.; Smith, A.; Szentgyorgyi, A.
2010-01-01
We present radial velocities obtained using a novel laser-based wavelength calibration technique. We have built a prototype laser calibrator for the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method makes use of spectra from thorium-argon hollow cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator solves these problems. The laser is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order to generate a calibration spectrum, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We present these results as well as an application of tunable laser calibration to stellar radial velocities determined with the infrared Ca triplet in globular clusters M15 and NGC 7492. We also suggest how the tunable laser could be useful for other instruments, including single-object, cross-dispersed echelle spectrographs, and adapted for infrared spectroscopy.
High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories
NASA Technical Reports Server (NTRS)
Porter, Frederick S.
2010-01-01
X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray calorimeter spectrometer, coupled with higher spectral resolution dispersive spectrometers to resolve line blends, has enabled many science investigations, to date mostly in our x-ray laboratory astrophysics program. These include measurements of absolute cross sections for Land K shell emission from Fe and Ni, charge exchange measurements in many astrophysically abundant elements, lifetime measurements, line ratios, and wavelength measurements. In addition, we have performed many additional measurements in nuclear physics, and in support of diagnostics for laser fusion, for example. In this presentation we will give a detailed overview of x-ray calorimeter instruments in general and in our EBIT laboratory astrophysics program in particular. We will also discuss the science yield of our measurements at EBIT over the last decade) prospects for future science enabled by the current generation of spectrometers and that will be expanded in the near future by the next generation of spectrometers starting in 2611.
Multiwavelength study of accretion-powered pulsars
NASA Astrophysics Data System (ADS)
Nespoli, Elisa
2010-11-01
This thesis consists in a multi-frequency approach to High Mass X-ray Binaries (HMXBs), using infrared and X-ray data. On one side, the project aimed at the identification and characterization of IR counterparts to obscured HMXBs in the Scutum and Norma inner galactic arms. The identification of optical/IR counterparts to HMXBs is a necessary step to undertake detailed studies of these systems. With data limited to the high-energy range, the understanding of their complex structure and dynamics cannot be complete. In the last years, INTEGRAL has revealed the presence of an important population of heavily absorbed HMXBs in the Scutum and Norma regions, virtually unobservable below 4 keV. Optical counterparts to these obscured sources are hardly observable, due to the high interstellar extinction. Candidate counterparts to HMXBs were selected by means of a photometric search for emission-line stars in the error boxes of the X-ray sources detected by INTEGRAL. With this objective, I built up (Brγ-K)-(H-K) and (HeI-K)-(H-K) IR color-color diagrams, in which emission-line stars are expected to show up below the absorption-line stars sequence. I applied this technique to search for counterparts to Be/XRBs, whose transient nature prevents the counterpart identification with follow-up X-ray observations with high spatial resolution. For each field, one to four candidate counterparts were identified. I also took spectra of proposed counterparts. The confirmation and spectral classifications of the systems led to unveil the nature of nine INTEGRAL objects. On the other hand, this work intended to provide for the first time a systematic study of four Be/XRBs during giant (type II) outbursts. I employed RXTE data, applying the three techniques of color-color/hardness-intensity diagrams (CD/HID), spectral fitting and Fourier power-spectral analysis, simultaneously, and using the retrieved results and correlations to try to define and characterize spectral states for this class of systems. In this way I followed both a model-independent (CD/HID) and model-dependent approach (spectral fits) to investigate the rapid aperiodic variability as a function of spectral sates in HMXBs. I obtained lightcurves, energy and power spectra for a total number of 320 observations. From X-ray colors, spectral and timing fitting, I clearly identified in all the four systems two different spectral states, i.e. the Diagonal Branch (DB) and Horizontal Branch (HB). The HB corresponds to a lower-flux state, with larger rms than the DB. Also, the power-law photon index decreases with flux in the HB, while stays constant or increases in the DB. The HB shows lower characteristic frequencies of the noise components than in the DB. The cyclotron resonant scattering features are generally associated with the DB, while absent or weaker during the DB. We showed how the transition between the two states may correspond to the transition from the standing shock emission to the thermal mound emission due to the turning point from super-Eddington luminosity regime (DB) to sub-Eddington luminosity regime (HB). From color, spectral and timing point of view, differences among systems easily distinguishes two subgroups, with the slower pulsars, KS 1947+300 and EXO2030+375, on one side, and the faster ones, 4U 0115+63 and V 0332+53, on the other. The first group is characterized by softer spectra in the HB compared with the other systems. Hysteresis is not observed in the slower pulsars, while it is evident in V 0332+53 and 4U 0115+63. Cyclotron resonant scattering features are crucial in the spectral shape of V 0332+53 and 4U 0115+63, where also a harmonic is observed in the 3-30 keV energy range. They are instead absent or very weak in the first group. According to timing features, a strong difference between the two groups is the presence of QPOs in the faster pulsars.
The CHARIS Integral Field Spectrograph with SCExAO: Data Reduction and Performance
NASA Astrophysics Data System (ADS)
Kasdin, N. Jeremy; Groff, Tyler; Brandt, Timothy; Currie, Thayne; Rizzo, Maxime; Chilcote, Jeffrey K.; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Norris, Barnaby; Tamura, Motohide
2018-01-01
We summarize the data reduction pipeline and on-sky performance of the CHARIS Integral Field Spectrograph behind the SCExAO Adaptive Optics system on the Subaru Telescope. The open-source pipeline produces data cubes from raw detector reads using a Χ^2-based spectral extraction technique. It implements a number of advances, including a fit to the full nonlinear pixel response, suppression of up to a factor of ~2 in read noise, and deconvolution of the spectra with the line-spread function. The CHARIS team is currently developing the calibration and postprocessing software that will comprise the second component of the data reduction pipeline. Here, we show a range of CHARIS images, spectra, and contrast curves produced using provisional routines. CHARIS is now characterizing exoplanets simultaneously across the J, H, and K bands.
NASA Astrophysics Data System (ADS)
Ponti, G.; Miniutti, G.; Malaguti, G.; Gallo, L.; Goldwurm, A.
2009-05-01
We present preliminary results of an ongoing project devoted to the study of the continuum and Fe K band variability in a sample of bright AGNs. These kind of studies may break the spectral degeneracy between the different absorption/emission models, allowing ``safe'' measurements of the disc and black hole properties from the broad line shapes. In fact, the Fe K band, alone, allows a first separation between the different components. Here we show the case of NGC 3783 which shows both a constant and a variable reflection component as well as strong ionized absorption. We show that a fundamental contribution will be given by Simbol-X that will allow to simultaneously measure not only the Fe K variability, but also the connected reflection hump variations.
Evaluation of ERTS imagery for spectral geological mapping in diverse terranes of New York State
NASA Technical Reports Server (NTRS)
Isachsen, Y. W. (Principal Investigator); Rickard, L. V.
1972-01-01
The author has identified the following significant results. Preliminary visual examination of film positives of thirty ERTS-1 scenes obtained over New York State and adjacent areas indicates the following: (1) sixty percent of the imagery has a cloud cover of 70-100 percent, twenty-five percent has a cloud cover of 0-30 percent, and the remainder has a cover of 40-65 percent; (2) on the useable imagery, the spectral lines which may turn out to be geologically-linked totals as follows: spectral linears, 5200 km; broadly curved lines (spectral curvilinears), 700 km; major forest boundaries, 3100 km; areas with spectral geological fabric, 3100 sgkm. In the central and northwest Adirondacks, known lineaments and faults were subtracted from the spectral linears leaving a residue which totals 160 km in the central Adirondacks and 230 km in the northwest Adirondacks. It must be emphasized that these are spectral linears which have not yet been checked out against any ground truth except geological.
Line Parameters of the PH_3 Pentad in the 4-5 μm Region
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Kleiner, I.; Sams, R. L.; Blake, T. A.; Brown, Linda R.; Fletcher, L. N.
2012-06-01
Line positions, intensities and line shape parameters are reported for four bands of phosphine between 2150 and 2400 cm-1 in order to improve the spectroscopic database for remote sensing of the giant planets. Knowledge of PH_3 in this spectral region is important for Cassini/VIMS exploration of dynamics and chemistry on Saturn, as well as for interpreting the near-IR data from Juno and ESA's proposed Jupiter mission. For this study, five high-resolution (0.0023 cm-1), high signal-to-noise (>2000) spectra of pure PH_3 were recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer at Pacific Northwest National Laboratory. Individual line parameters were retrieved by multispectrum fitting of all five spectra simultaneously. Positions and intensities were measured for over 3100 transitions. The rotational quantum numbers of measured lines go as high as J''=16 and K''=15 in the ν_3 and ν_1 bands; some lines of the weaker bands 2ν_4 and ν_2+ν_4 are also reported. The measured positions and intensities are compared to new theoretical calculations of the pentad. Lorentz self-broadened width and pressure-induced shift coefficients of many transitions were also obtained, along with speed dependence parameters. Line mixing coefficients were determined for several A+A- pairs of transitions for K''=3, 6, and 9. Research described in this paper was performed at the College of William and Mary and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. L. Fletcher acknowledges support from a Glasstone Science Fellowship. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721.
Constraints on the broad-line region properties and extinction in local Seyferts
NASA Astrophysics Data System (ADS)
Schnorr-Müller, Allan; Davies, R. I.; Korista, K. T.; Burtscher, L.; Rosario, D.; Storchi-Bergmann, T.; Contursi, A.; Genzel, R.; Graciá-Carpio, J.; Hicks, E. K. S.; Janssen, A.; Koss, M.; Lin, M.-Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R.; Riffel, Rogemar A.; Schartmann, M.; Sternberg, A.; Sturm, E.; Tacconi, L.; Veilleux, S.; Ulrich, O. A.
2016-11-01
We use high-spectral resolution (R > 8000) data covering 3800-13 000 Å to study the physical conditions of the broad-line region (BLR) of nine nearby Seyfert 1 galaxies. Up to six broad H I lines are present in each spectrum. A comparison - for the first time using simultaneous optical to near-infrared observations - to photoionization calculations with our devised simple scheme yields the extinction to the BLR at the same time as determining the density and photon flux, and hence distance from the nucleus, of the emitting gas. This points to a typical density for the H I emitting gas of 1011 cm-3 and shows that a significant amount of this gas lies at regions near the dust sublimation radius, consistent with theoretical predictions. We also confirm that in many objects, the line ratios are far from case B, the best-fitting intrinsic broad-line Hα/H β ratios being in the range 2.5-6.6 as derived with our photoionization modelling scheme. The extinction to the BLR, based on independent estimates from H I and He II lines, is AV ≤ 3 for Seyfert 1-1.5s, while Seyfert 1.8-1.9s have AV in the range 4-8. A comparison of the extinction towards the BLR and narrow-line region (NLR) indicates that the structure obscuring the BLR exists on scales smaller than the NLR. This could be the dusty torus, but dusty nuclear spirals or filaments could also be responsible. The ratios between the X-ray absorbing column NH and the extinction to the BLR are consistent with the Galactic gas-to-dust ratio if NH variations are considered.
NASA Astrophysics Data System (ADS)
Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka
2016-05-01
This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.
Ionized gas clouds near the Sagittarius Arm tangent
NASA Astrophysics Data System (ADS)
Hou, Li-Gang; Dong, Jian; Gao, Xu-Yang; Han, Jin-Lin
2017-04-01
Radio recombination lines (RRLs) are the best tracers of ionized gas. Simultaneous observations of multi-transitions of RRLs can significantly improve survey sensitivity. We conducted pilot RRL observations near the Sagittarius Arm tangent by using the 65-m Shanghai Tian Ma Radio Telescope (TMRT) equipped with broadband feeds and a digital backend. Six hydrogen RRLs (H96 α - H101α) at C band (6289 MHz-7319 MHz) were observed simultaneously toward a sky area of 2° × 1.2° by using on-the-fly mapping mode. These transitions were then stacked together for detection of ionized gas. Star forming complexes G48.6+0.1 and G49.5-0.3 were detected in the integrated intensity map. We found agreements between our measured centroid velocities and previous results for the 21 known HII regions in the mapped area. For more than 80 cataloged HII region candidates without previous RRL measurements, we obtained new RRL spectra at 30 targeted positions. In addition, we detected 25 new discrete RRL sources with spectral S/N > 5 σ, and they were not listed in the catalogs of previously known HII regions. The distances for 44 out of these 55 new RRL sources were estimated.
A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping.
Zhang, Hong; Qiu, Xiaopei; Zou, Yurui; Ye, Yanyao; Qi, Chao; Zou, Lingyun; Yang, Xiang; Yang, Ke; Zhu, Yuanfeng; Yang, Yongjun; Zhou, Yang; Luo, Yang
2017-03-15
Fast and simultaneous forward and reverse blood grouping has long remained elusive. Forward blood grouping detects antigens on red blood cells, whereas reverse grouping identifies specific antibodies present in plasma. We developed a paper-based assay using immobilized antibodies and bromocresol green dye for rapid and reliable blood grouping, where dye-assisted color changes corresponding to distinct blood components provide a visual readout. ABO antigens and five major Rhesus antigens could be detected within 30 s, and simultaneous forward and reverse ABO blood grouping using small volumes (100 μl) of whole blood was achieved within 2 min through on-chip plasma separation without centrifugation. A machine-learning method was developed to classify the spectral plots corresponding to dye-based color changes, which enabled reproducible automatic grouping. Using optimized operating parameters, the dye-assisted paper assay exhibited comparable accuracy and reproducibility to the classical gel-card assays in grouping 3550 human blood samples. When translated to the assembly line and low-cost manufacturing, the proposed approach may be developed into a cost-effective and robust universal blood-grouping platform. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.
2018-03-01
We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.
A dual-polarized broadband planar antenna and channelizing filter bank for millimeter wavelengths
NASA Astrophysics Data System (ADS)
O'Brient, Roger; Ade, Peter; Arnold, Kam; Edwards, Jennifer; Engargiola, Greg; Holzapfel, William L.; Lee, Adrian T.; Myers, Michael J.; Quealy, Erin; Rebeiz, Gabriel; Richards, Paul; Suzuki, Aritoki
2013-02-01
We describe the design, fabrication, and testing of a broadband log-periodic antenna coupled to multiple cryogenic bolometers. This detector architecture, optimized here for astrophysical observations, simultaneously receives two linear polarizations with two octaves of bandwidth at millimeter wavelengths. The broad bandwidth signal received by the antenna is divided into sub-bands with integrated in-line frequency-selective filters. We demonstrate two such filter banks: a diplexer with two sub-bands and a log-periodic channelizer with seven contiguous sub-bands. These detectors have receiver efficiencies of 20%-40% and percent level polarization isolation. Superconducting transition-edge sensor bolometers detect the power in each sub-band and polarization. We demonstrate circularly symmetric beam patterns, high polarization isolation, accurately positioned bands, and high optical efficiency. The pixel design is applicable to astronomical observations of intensity and polarization at millimeter through sub-millimeter wavelengths. As compared with an imaging array of pixels measuring only one band, simultaneous measurements of multiple bands in each pixel has the potential to result in a higher signal-to-noise measurement while also providing spectral information. This development facilitates compact systems with high mapping speeds for observations that require information in multiple frequency bands.
Buican, Tudor N.; Martin, John C.
1990-01-01
An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.
Essaka, David C; Prendergast, Jillian; Keithley, Richard B; Palcic, Monica M; Hindsgaul, Ole; Schnaar, Ronald L; Dovichi, Norman J
2012-03-20
Metabolic cytometry is a form of chemical cytometry wherein metabolic cascades are monitored in single cells. We report the first example of metabolic cytometry where two different metabolic pathways are simultaneously monitored. Glycolipid catabolism in primary rat cerebella neurons was probed by incubation with tetramethylrhodamine-labeled GM1 (GM1-TMR). Simultaneously, both catabolism and anabolism were probed by coincubation with BODIPY-FL labeled LacCer (LacCer-BODIPY-FL). In a metabolic cytometry experiment, single cells were incubated with substrate, washed, aspirated into a capillary, and lysed. The components were separated by capillary electrophoresis equipped with a two-spectral channel laser-induced fluorescence detector. One channel monitored fluorescence generated by the metabolic products produced from GM1-TMR and the other monitored the metabolic products produced from LacCer-BODIPY-FL. The metabolic products were identified by comparison with the mobility of a set of standards. The detection system produced at least 6 orders of magnitude dynamic range in each spectral channel with negligible spectral crosstalk. Detection limits were 1 zmol for BODIPY-FL and 500 ymol for tetramethylrhodamine standard solutions.
NASA Astrophysics Data System (ADS)
Zhang, Jun-You; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming
2018-04-01
An accurate and stable identification technique is developed to retrieve the optical constants and particle size distributions (PSDs) of particle system simultaneously from the multi-wavelength scattering-transmittance signals by using the improved quantum particle swarm optimization algorithm. The Mie theory are selected to calculate the directional laser intensity scattered by particles and the spectral collimated transmittance. The sensitivity and objective function distribution analysis were conducted to evaluate the mathematical properties (i.e. ill-posedness and multimodality) of the inverse problems under three different optical signals combinations (i.e. the single-wavelength multi-angle light scattering signal, the single-wavelength multi-angle light scattering and spectral transmittance signal, and the multi-angle light scattering and spectral transmittance signal). It was found the best global convergence performance can be obtained by using the multi-wavelength scattering-transmittance signals. Meanwhile, the present technique have been tested under different Gaussian measurement noise to prove its feasibility in a large solution space. All the results show that the inverse technique by using multi-wavelength scattering-transmittance signals is effective and suitable for retrieving the optical complex refractive indices and PSD of particle system simultaneously.
Dynamic measurement of fluorescent proteins spectral distribution on virus infected cells
NASA Astrophysics Data System (ADS)
Lee, Ja-Yun; Wu, Ming-Xiu; Kao, Chia-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen
2006-09-01
We constructed a dynamic spectroscopy system that can simultaneously measure the intensity and spectral distributions of samples with multi-fluorophores in a single scan. The system was used to monitor the fluorescence distribution of cells infected by the virus, which is constructed by a recombinant baculoviruses, vAcD-Rhir-E, containing the red and green fluorescent protein gene that can simultaneously produce dual fluorescence in recombinant virus-infected Spodoptera frugiperda 21 cells (Sf21) under the control of a polyhedrin promoter. The system was composed of an excitation light source, a scanning system and a spectrometer. We also developed an algorithm and fitting process to analyze the pattern of fluorescence distribution of the dual fluorescence produced in the recombinant virus-infected cells. All the algorithm and calculation are automatically processed in a visualized scanning program and can monitor the specific region of sample by calculating its intensity distribution. The spectral measurement of each pixel was performed at millisecond range and the two dimensional distribution of full spectrum was recorded within several seconds. We have constructed a dynamic spectroscopy system to monitor the process of virus-infection of cells. The distributions of the dual fluorescence were simultaneously measured at micrometer resolution.
Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.
NASA Astrophysics Data System (ADS)
Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.
In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.
NASA Astrophysics Data System (ADS)
Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.
2017-11-01
Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.
Spectral line intensity irreversibility in circulatory plasma magnetization processes
NASA Astrophysics Data System (ADS)
Qu, Z. Q.; Dun, G. T.
2012-01-01
Spectral line intensity variation is found to be irreversible in circulatory plasma magnetization process by experiments described in this paper, i.e., the curves illustrating spectral line photon fluxes irradiated from a light source immerged in a magnetic field by increasing the magnetic induction cannot be reproduced by decreasing the magnetic induction within the errors. There are two plasma magnetization patterns found. One shows that the intensities are greater at the same magnetic inductions during the magnetic induction decreasing process after the increasing, and the other gives the opposite effect. This reveals that the magneto-induced excitation and de-excitation process is irreversible like ferromagnetic magnetization. But the two irreversible processes are very different in many aspects stated in the text.
Broadening and collisional interference of lines in the IR spectra of ammonia. Theory
NASA Astrophysics Data System (ADS)
Cherkasov, M. R.
2016-06-01
The general theory of relaxation spectral shape parameters in the impact approximation (M. R. Cherkasov, J. Quant. Spectrosc. Radiat. Transfer 141, 73 (2014)) is adapted to the case of line broadening of infrared spectra of ammonia. Specific features of line broadening of parallel and perpendicular bands are discussed. It is shown that in both cases the spectrum consists of independently broadened singlets and doublets; however, the components of doublets can be affected by collisional interference. The paper is the first part of a cycle of studies devoted to the problems of spectral line broadening of ammonia.
Optical Design of the MOSES Sounding Rocket Experiment
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Kankelborg, Charles C.; Fisher, Richard R. (Technical Monitor)
2001-01-01
The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket payload now being developed by Montana State University in collaboration with the Goddard Space Flight Center, Lockheed Martin Advanced Technology Center, and Mullard Space Science Laboratory. The instrument utilizes a unique optical design to provide solar EUV measurements with true 2-pixel resolutions of 1.0 arcsec and 60 mA over a full two-dimensional field of view of 1056 x 528 arcsec, all at a time cadence of 10 s. This unprecedented capability is achieved by means of an objective spherical grating 100 mm in diameter, ruled at 833 gr/mm. The concave grating focuses spectrally dispersed solar radiation onto three separate detectors, simultaneously recording the zero-order as well as the plus and minus first-spectral-order images. Data analysis procedures, similar to those used in X-ray tomography reconstructions, can then disentangle the mixed spatial and spectral information recorded by the multiple detectors. A flat folding mirror permits an imaging focal length of 4.74 m to be packaged within the payload's physical length of 2.82 m. Both the objective grating and folding flat have specialized, closely matched, multilayer coatings that strongly enhance their EUV reflectance while also suppressing off-band radiation that would otherwise complicate data inversion. Although the spectral bandpass is rather narrow, several candidate wavelength intervals are available to carry out truly unique scientific studies of the outer solar atmosphere. Initial flights of MOSES, scheduled to begin in 2004, will observe a 10 Angstrom band that covers very strong emission lines characteristic of both the sun's corona (Si XI 303 Angstroms) and transition-region (He II 304 Angstroms). The MOSES program is supported by a grant from NASA's Office of Space Science.
NASA Astrophysics Data System (ADS)
Wright, D. M.; Yeoman, T. K.; Woodfield, E. E.
2003-12-01
It is now a common practice to employ ground-based radars in order to distinguish between those regions of the Earth's upper atmosphere which are magnetically conjugate to open and closed field lines. Radar returns from ionospheric irregularities inside the polar cap and cusp regions generally exhibit large spectral widths in contrast to those which exist on closed field lines at lower latitudes. It has been suggested that the so-called Spectral Width Boundary (SWB) might act as a proxy for the open-closed field line boundary (OCFLB), which would then be an invaluable tool for investigating reconnection rates in the magnetosphere. The exact cause of the increased spectral widths observed at very high latitudes is still subject to considerable debate. Several mechanisms have been proposed. This paper compares a dusk-sector interval of coherent HF radar data with measurements made by an induction coil magnetometer located at Tromso, Norway (66° N geomagnetic). On this occasion, a series of transient regions of radar backscatter exhibiting large spectral widths are accompanied by increases in spectral power of ULF waves in the Pc1-2 frequency band. These observations would then, seem to support the possibility that high frequency magnetospheric wave activity at least contribute to the observed spectral characteristics and that such wave activity might play a significant role in the cusp and polar cap ionospheres.
Pure-rotational H2 thermometry by ultrabroadband coherent anti-Stokes Raman spectroscopy.
Courtney, Trevor L; Bohlin, Alexis; Patterson, Brian D; Kliewer, Christopher J
2017-06-14
Coherent anti-Stokes Raman spectroscopy (CARS) is a sensitive technique for probing highly luminous flames in combustion applications to determine temperatures and species concentrations. CARS thermometry has been demonstrated for the vibrational Q-branch and pure-rotational S-branch of several small molecules. Practical advantages of pure-rotational CARS, such as multi-species detection, reduction of coherent line mixing and collisional narrowing even at high pressures, and the potential for more precise thermometry, have motivated experimental and theoretical advances in S-branch CARS of nitrogen (N 2 ), for example, which is a dominant species in air-fed combustion processes. Although hydrogen (H 2 ) is of interest given its prevalence as a reactant and product in many gas-phase reactions, laser bandwidth limitations have precluded the extension of CARS thermometry to the H 2 S-branch. We demonstrate H 2 thermometry using hybrid femtosecond/picosecond pure-rotational CARS, in which a broadband pump/Stokes pulse enables simultaneous excitation of the set of H 2 S-branch transitions populated at flame temperatures over the spectral region of 0-2200 cm -1 . We present a pure-rotational H 2 CARS spectral model for data fitting and compare extracted temperatures to those from simultaneously collected N 2 spectra in two systems of study: a heated flow and a diffusion flame on a Wolfhard-Parker slot burner. From 300 to 650 K in the heated flow, the H 2 and N 2 CARS extracted temperatures are, on average, within 2% of the set temperature. For flame measurements, the fitted H 2 and N 2 temperatures are, on average, within 5% of each other from 300 to 1600 K. Our results confirm the viability of pure-rotational H 2 CARS thermometry for probing combustion reactions.
Pure-rotational H2 thermometry by ultrabroadband coherent anti-Stokes Raman spectroscopy
NASA Astrophysics Data System (ADS)
Courtney, Trevor L.; Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.
2017-06-01
Coherent anti-Stokes Raman spectroscopy (CARS) is a sensitive technique for probing highly luminous flames in combustion applications to determine temperatures and species concentrations. CARS thermometry has been demonstrated for the vibrational Q-branch and pure-rotational S-branch of several small molecules. Practical advantages of pure-rotational CARS, such as multi-species detection, reduction of coherent line mixing and collisional narrowing even at high pressures, and the potential for more precise thermometry, have motivated experimental and theoretical advances in S-branch CARS of nitrogen (N2), for example, which is a dominant species in air-fed combustion processes. Although hydrogen (H2) is of interest given its prevalence as a reactant and product in many gas-phase reactions, laser bandwidth limitations have precluded the extension of CARS thermometry to the H2 S-branch. We demonstrate H2 thermometry using hybrid femtosecond/picosecond pure-rotational CARS, in which a broadband pump/Stokes pulse enables simultaneous excitation of the set of H2 S-branch transitions populated at flame temperatures over the spectral region of 0-2200 cm-1. We present a pure-rotational H2 CARS spectral model for data fitting and compare extracted temperatures to those from simultaneously collected N2 spectra in two systems of study: a heated flow and a diffusion flame on a Wolfhard-Parker slot burner. From 300 to 650 K in the heated flow, the H2 and N2 CARS extracted temperatures are, on average, within 2% of the set temperature. For flame measurements, the fitted H2 and N2 temperatures are, on average, within 5% of each other from 300 to 1600 K. Our results confirm the viability of pure-rotational H2 CARS thermometry for probing combustion reactions.
NASA Technical Reports Server (NTRS)
Lorenzo, C. F.
1974-01-01
Tests were conducted to determine the dynamic characteristics of the Centaur/RL-10 oxygen and hydrogen feedlines. The fundamental-mode resonant frequencies were determined by applying power spectral methods to noise-generated data from hot firings of the RL-10 engine. The effect of net positive suction pressure of the main feed pumps on resonant frequency characteristics was determined to be a straight-line relation. Power spectral methods were also used to determine the dynamic characteristics of the boost pumps.
Spectral Atlas of X-ray Lines Emitted During Solar Flares Based on CHIANTI
NASA Technical Reports Server (NTRS)
Landi, E.; Phillips, K. J. H.
2005-01-01
A spectral atlas of X-ray lines in the wavelength range 7.47-18.97 Angstroms is presented, based on high-resolution spectra obtained during two M-class solar flares (on 1980 August 25 and 1985 July 2) with the Flat Crystal Spectrometer on board the Solar Maximum Mission. The physical properties of the flaring plasmas are derived as a function of time using strong, isolated lines. From these properties predicted spectra using the CHIANTI database have been obtained which were then compared with wavelengths and fluxes of lines in the observed spectra to establish line identifications. identifications for nearly all the observed lines in the resulting atlas are given, with some significant corrections to previous analysis of these flare spectra.
USDA-ARS?s Scientific Manuscript database
The design and calibration of a three-band image acquisition system was reported. The prototype system developed in this research was a three-band spectral imaging system that acquired two visible (510 and 568 nm) images and a near-infrared (NIR) (800 nm) image simultaneously. The system was proto...
Improvements of CO2 and O2 Transmission Modeling for ASCENDS Mission Applications
NASA Technical Reports Server (NTRS)
Pliutau, Denis; Prasad, Narashimha S.
2011-01-01
Simulations using the HITRAN database and other data have been carried out to select the optimum laser wavelengths for the measurements of CO2 and O2 concentrations with the application to the ASCENDS mission. The accuracy set forth for the ASCENDS mission requires accurate line-by-line calculations involving the use of non-Voigt line shapes. To aid in achieving this goal, improved CO2 and O2 transmission calculation methods are being developed. In particular, line-by-line transmission modeling of CO2 was improved by implementing non-Voigt spectral lineshapes. Ongoing work involves extending this approach to the O2 molecule 1.26-1.27micron spectral band.
Simultaneous Spectral and Timing Observations of Accreting Neuron Stars
NASA Technical Reports Server (NTRS)
Kaaret, P.; West, Donald K. (Technical Monitor)
2001-01-01
The goal of this proposal was to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. Observations of the neutron star binaries 4U0614+091, 4U1728-34, 4U1820-30, and Cyg X-2 were carried out with RXTE and BeppoSAX, ASCA, and Chandra (not all simultaneously). In addition, archival data were analyzed for 4U0614+091 and 4U1820-30. This investigation led to publication of three papers in peer-reviewed journals. These are listed below. In addition, the results were presented at several meetings including the two poster presentations listed below. Dr. Santina Piraino visited SAO for 4 months during 2000 to collaborate on analysis of the data from NAG5-8408 and NAG5-9104.
Goicoechea, H C; Olivieri, A C
1999-08-01
The use of multivariate spectrophotometric calibration is presented for the simultaneous determination of the active components of tablets used in the treatment of pulmonary tuberculosis. The resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide has been accomplished by using partial least squares (PLS-1) regression analysis. Although the components show an important degree of spectral overlap, they have been simultaneously determined with high accuracy and precision, rapidly and with no need of nonaqueous solvents for dissolving the samples. No interference has been observed from the tablet excipients. A comparison is presented with the related multivariate method of classical least squares (CLS) analysis, which is shown to yield less reliable results due to the severe spectral overlap among the studied compounds. This is highlighted in the case of isoniazid, due to the small absorbances measured for this component.
NASA Astrophysics Data System (ADS)
Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.; Turner, T. J.; Yaqoob, T.
2003-09-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-Ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2-1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km s-1) and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectroscopic Explorer and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9279.
NASA Astrophysics Data System (ADS)
Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.
2002-12-01
We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.
What Do Millimeter Continuum and Spectral Line Observations Tell Us about Solar System Bodies?
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.
2013-01-01
Solar system objects are generally cold and radiate at low frequencies and tend to have strong molecular rotational transitions. Millimeter continuum and spectral line observations provide detailed information for nearly all solar system bodies. At these wavelengths, details of the bulk physical composition of icy surfaces, the size and albedo of small objects, the composition of planetary atmospheres can be measured as well as monitoring of time variable phenomena for extended periods (not restricted to nighttime observations), etc. Major issues in solar system science can be addressed by observations in the millimeter/sub-millimeter regime such as the origin of the solar system (isotope ratios, composition) and the evolution of solar system objects (dynamics, atmospheric constituents, etc). ALMA s exceptional sensitivity, large spectral bandwidth, high spectral resolution, and angular resolution (down to 10 milliarcsec) will enable researchers for the first time to better resolve the smallest bodies in the solar system and provide detailed maps of the larger objects. Additionally, measurements with nearly 8 GHz of instantaneous bandwidth to fully characterize solar system object s spectrum and detect trace species. The spatial information and line profiles can be obtained over 800 GHz of bandwidth in 8 receiver bands to not only assist in the identification of spectral lines and emission components for a given species but also to help elucidate the chemistry of the extraterrestrial bodies closest to us.
Automatic parquet block sorting using real-time spectral classification
NASA Astrophysics Data System (ADS)
Astrom, Anders; Astrand, Erik; Johansson, Magnus
1999-03-01
This paper presents a real-time spectral classification system based on the PGP spectrograph and a smart image sensor. The PGP is a spectrograph which extracts the spectral information from a scene and projects the information on an image sensor, which is a method often referred to as Imaging Spectroscopy. The classification is based on linear models and categorizes a number of pixels along a line. Previous systems adopting this method have used standard sensors, which often resulted in poor performance. The new system, however, is based on a patented near-sensor classification method, which exploits analogue features on the smart image sensor. The method reduces the enormous amount of data to be processed at an early stage, thus making true real-time spectral classification possible. The system has been evaluated on hardwood parquet boards showing very good results. The color defects considered in the experiments were blue stain, white sapwood, yellow decay and red decay. In addition to these four defect classes, a reference class was used to indicate correct surface color. The system calculates a statistical measure for each parquet block, giving the pixel defect percentage. The patented method makes it possible to run at very high speeds with a high spectral discrimination ability. Using a powerful illuminator, the system can run with a line frequency exceeding 2000 line/s. This opens up the possibility to maintain high production speed and still measure with good resolution.
NASA Astrophysics Data System (ADS)
Jerram, P. A.; Fryer, M.; Pratlong, J.; Pike, A.; Walker, A.; Dierickx, B.; Dupont, B.; Defernez, A.
2017-11-01
CCDs have been used for many years for Hyperspectral imaging missions and have been extremely successful. These include the Medium Resolution Imaging Spectrometer (MERIS) [1] on Envisat, the Compact High Resolution Imaging Spectrometer (CHRIS) on Proba and the Ozone Monitoring Instrument operating in the UV spectral region. ESA are also planning a number of further missions that are likely to use CCD technology (Sentinel 3, 4 and 5). However CMOS sensors have a number of advantages which means that they will probably be used for hyperspectral applications in the longer term. There are two main advantages with CMOS sensors: First a hyperspectral image consists of spectral lines with a large difference in intensity; in a frame transfer CCD the faint spectral lines have to be transferred through the part of the imager illuminated by intense lines. This can lead to cross-talk and whilst this problem can be reduced by the use of split frame transfer and faster line rates CMOS sensors do not require a frame transfer and hence inherently will not suffer from this problem. Second, with a CMOS sensor the intense spectral lines can be read multiple times within a frame to give a significant increase in dynamic range. We will describe the design, and initial test of a CMOS sensor for use in hyperspectral applications. This device has been designed to give as high a dynamic range as possible with minimum cross-talk. The sensor has been manufactured on high resistivity epitaxial silicon wafers and is be back-thinned and left relatively thick in order to obtain the maximum quantum efficiency across the entire spectral range
NASA Technical Reports Server (NTRS)
Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.
2007-01-01
New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based, airborne and satellite s ensor for gases such as carbon dioxide (1570 nm), oxygen (762 nm and 768 nm lines sensitive to changes in oxygen pressure and oxygen temper ature) and water vapor (940 nm). Our current goal is to develop an ul tra precise, inexpensive, ground based device suitable for wide deplo yment as a validation instrument for the Orbiting Carbon Observatory (OCO) satellite. We show sensitivity measurements for CO2, 02, and H2 O, compare our measurements to those obtained using other types of sensors and discuss some of the peculiarities that must be addressed in order to provide the very high quality column detection required for solving problems about global distribution of greenhouse gases and cl imatological models. In another area of research we are interested in developing a small-size channel for CO2 capable of doing simultaneous measurements with the AERONET (Aerosol Robotic Network) at NASA, God dard to study the hypothesis that atmospheric aerosols affect the reg ional terrestrial carbon cycle. We present recent data from our groun d based measurements of O2, CO2, H2O and (13)CO2 and discuss extensio n of the technique to new species and applications.