Sample records for spectral pattern recognition

  1. Spectral pattern recognition of controlled substances in street samples using artificial neural network system

    NASA Astrophysics Data System (ADS)

    Poryvkina, Larisa; Aleksejev, Valeri; Babichenko, Sergey M.; Ivkina, Tatjana

    2011-04-01

    The NarTest fluorescent technique is aimed at the detection of analyte of interest in street samples by recognition of its specific spectral patterns in 3-dimentional Spectral Fluorescent Signatures (SFS) measured with NTX2000 analyzer without chromatographic or other separation of controlled substances from a mixture with cutting agents. The illicit drugs have their own characteristic SFS features which can be used for detection and identification of narcotics, however typical street sample consists of a mixture with cutting agents: adulterants and diluents. Many of them interfere the spectral shape of SFS. The expert system based on Artificial Neural Networks (ANNs) has been developed and applied for such pattern recognition in SFS of street samples of illicit drugs.

  2. Fusion of LBP and SWLD using spatio-spectral information for hyperspectral face recognition

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Jiang, Peng; Zhang, Shuai; Xiong, Jinquan

    2018-01-01

    Hyperspectral imaging, recording intrinsic spectral information of the skin cross different spectral bands, become an important issue for robust face recognition. However, the main challenges for hyperspectral face recognition are high data dimensionality, low signal to noise ratio and inter band misalignment. In this paper, hyperspectral face recognition based on LBP (Local binary pattern) and SWLD (Simplified Weber local descriptor) is proposed to extract discriminative local features from spatio-spectral fusion information. Firstly, the spatio-spectral fusion strategy based on statistical information is used to attain discriminative features of hyperspectral face images. Secondly, LBP is applied to extract the orientation of the fusion face edges. Thirdly, SWLD is proposed to encode the intensity information in hyperspectral images. Finally, we adopt a symmetric Kullback-Leibler distance to compute the encoded face images. The hyperspectral face recognition is tested on Hong Kong Polytechnic University Hyperspectral Face database (PolyUHSFD). Experimental results show that the proposed method has higher recognition rate (92.8%) than the state of the art hyperspectral face recognition algorithms.

  3. A Novel Anti-Spoofing Solution for Iris Recognition Toward Cosmetic Contact Lens Attack Using Spectral ICA Analysis.

    PubMed

    Hsieh, Sheng-Hsun; Li, Yung-Hui; Wang, Wei; Tien, Chung-Hao

    2018-03-06

    In this study, we maneuvered a dual-band spectral imaging system to capture an iridal image from a cosmetic-contact-lens-wearing subject. By using the independent component analysis to separate individual spectral primitives, we successfully distinguished the natural iris texture from the cosmetic contact lens (CCL) pattern, and restored the genuine iris patterns from the CCL-polluted image. Based on a database containing 200 test image pairs from 20 CCL-wearing subjects as the proof of concept, the recognition accuracy (False Rejection Rate: FRR) was improved from FRR = 10.52% to FRR = 0.57% with the proposed ICA anti-spoofing scheme.

  4. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Seth; Chen Bin; Holbrook, Kristen

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern ofmore » residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.« less

  5. A Novel Anti-Spoofing Solution for Iris Recognition Toward Cosmetic Contact Lens Attack Using Spectral ICA Analysis

    PubMed Central

    Hsieh, Sheng-Hsun; Wang, Wei; Tien, Chung-Hao

    2018-01-01

    In this study, we maneuvered a dual-band spectral imaging system to capture an iridal image from a cosmetic-contact-lens-wearing subject. By using the independent component analysis to separate individual spectral primitives, we successfully distinguished the natural iris texture from the cosmetic contact lens (CCL) pattern, and restored the genuine iris patterns from the CCL-polluted image. Based on a database containing 200 test image pairs from 20 CCL-wearing subjects as the proof of concept, the recognition accuracy (False Rejection Rate: FRR) was improved from FRR = 10.52% to FRR = 0.57% with the proposed ICA anti-spoofing scheme. PMID:29509692

  6. Computerized recognition of persons by EEG spectral patterns.

    PubMed

    Stassen, H H

    1980-07-01

    Modified techniques of communication theory in connection with multivariate statistical procedures were applied to a sample of 82 patients for the purpose of defining EEG spectral patterns and for solving the relevant classification problems. Ten measurements per patient were made and it could be shown that a subject can be characterized and be recognized by his EEG spectral pattern with high reliability and a confidence probability of almost 90%. This result is valid not only for normal adults but also for schizophrenic patients, implying a close relationship between the EEG spectral pattern and the individual person. At the moment the nature of this relationship is not clear; in particular the supposed relationship to psychopathology could not be proved.

  7. Time-Frequency Analysis And Pattern Recognition Using Singular Value Decomposition Of The Wigner-Ville Distribution

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem; Lovell, Brian; White, Langford

    1988-01-01

    Time-Frequency analysis based on the Wigner-Ville Distribution (WVD) is shown to be optimal for a class of signals where the variation of instantaneous frequency is the dominant characteristic. Spectral resolution and instantaneous frequency tracking is substantially improved by using a Modified WVD (MWVD) based on an Autoregressive spectral estimator. Enhanced signal-to-noise ratio may be achieved by using 2D windowing in the Time-Frequency domain. The WVD provides a tool for deriving descriptors of signals which highlight their FM characteristics. These descriptors may be used for pattern recognition and data clustering using the methods presented in this paper.

  8. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  9. Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition

    PubMed Central

    Cui, Zhiming; Zhao, Pengpeng

    2014-01-01

    A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045

  10. Toward More Accurate Iris Recognition Using Cross-Spectral Matching.

    PubMed

    Nalla, Pattabhi Ramaiah; Kumar, Ajay

    2017-01-01

    Iris recognition systems are increasingly deployed for large-scale applications such as national ID programs, which continue to acquire millions of iris images to establish identity among billions. However, with the availability of variety of iris sensors that are deployed for the iris imaging under different illumination/environment, significant performance degradation is expected while matching such iris images acquired under two different domains (either sensor-specific or wavelength-specific). This paper develops a domain adaptation framework to address this problem and introduces a new algorithm using Markov random fields model to significantly improve cross-domain iris recognition. The proposed domain adaptation framework based on the naive Bayes nearest neighbor classification uses a real-valued feature representation, which is capable of learning domain knowledge. Our approach to estimate corresponding visible iris patterns from the synthesis of iris patches in the near infrared iris images achieves outperforming results for the cross-spectral iris recognition. In this paper, a new class of bi-spectral iris recognition system that can simultaneously acquire visible and near infra-red images with pixel-to-pixel correspondences is proposed and evaluated. This paper presents experimental results from three publicly available databases; PolyU cross-spectral iris image database, IIITD CLI and UND database, and achieve outperforming results for the cross-sensor and cross-spectral iris matching.

  11. Songbirds use spectral shape, not pitch, for sound pattern recognition

    PubMed Central

    Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.

    2016-01-01

    Humans easily recognize “transposed” musical melodies shifted up or down in log frequency. Surprisingly, songbirds seem to lack this capacity, although they can learn to recognize human melodies and use complex acoustic sequences for communication. Decades of research have led to the widespread belief that songbirds, unlike humans, are strongly biased to use absolute pitch (AP) in melody recognition. This work relies almost exclusively on acoustically simple stimuli that may belie sensitivities to more complex spectral features. Here, we investigate melody recognition in a species of songbird, the European Starling (Sturnus vulgaris), using tone sequences that vary in both pitch and timbre. We find that small manipulations altering either pitch or timbre independently can drive melody recognition to chance, suggesting that both percepts are poor descriptors of the perceptual cues used by birds for this task. Instead we show that melody recognition can generalize even in the absence of pitch, as long as the spectral shapes of the constituent tones are preserved. These results challenge conventional views regarding the use of pitch cues in nonhuman auditory sequence recognition. PMID:26811447

  12. High-Level Event Recognition in Unconstrained Videos

    DTIC Science & Technology

    2013-01-01

    frames per- forms well for urban soundscapes but not for polyphonic music. In place of GMM, Lu et al. [78] adopted spectral clustering to generate...Aucouturier JJ, Defreville B, Pachet F (2007) The bag-of-frames approach to audio pattern recognition: a sufficientmodel for urban soundscapes but not

  13. Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. D.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.

  14. Recognition of surface lithologic and topographic patterns in southwest Colorado with ADP techniques

    NASA Technical Reports Server (NTRS)

    Melhorn, W. N.; Sinnock, S.

    1973-01-01

    Analysis of ERTS-1 multispectral data by automatic pattern recognition procedures is applicable toward grappling with current and future resource stresses by providing a means for refining existing geologic maps. The procedures used in the current analysis already yield encouraging results toward the eventual machine recognition of extensive surface lithologic and topographic patterns. Automatic mapping of a series of hogbacks, strike valleys, and alluvial surfaces along the northwest flank of the San Juan Basin in Colorado can be obtained by minimal man-machine interaction. The determination of causes for separable spectral signatures is dependent upon extensive correlation of micro- and macro field based ground truth observations and aircraft underflight data with the satellite data.

  15. Pattern-Recognition Algorithm for Locking Laser Frequency

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George

    2006-01-01

    A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.

  16. Pattern recognition and image processing for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khalid J.; Eastwood, DeLyle

    1999-12-01

    Pattern recognition (PR) and signal/image processing methods are among the most powerful tools currently available for noninvasively examining spectroscopic and other chemical data for environmental monitoring. Using spectral data, these systems have found a variety of applications employing analytical techniques for chemometrics such as gas chromatography, fluorescence spectroscopy, etc. An advantage of PR approaches is that they make no a prior assumption regarding the structure of the patterns. However, a majority of these systems rely on human judgment for parameter selection and classification. A PR problem is considered as a composite of four subproblems: pattern acquisition, feature extraction, feature selection, and pattern classification. One of the basic issues in PR approaches is to determine and measure the features useful for successful classification. Selection of features that contain the most discriminatory information is important because the cost of pattern classification is directly related to the number of features used in the decision rules. The state of the spectral techniques as applied to environmental monitoring is reviewed. A spectral pattern classification system combining the above components and automatic decision-theoretic approaches for classification is developed. It is shown how such a system can be used for analysis of large data sets, warehousing, and interpretation. In a preliminary test, the classifier was used to classify synchronous UV-vis fluorescence spectra of relatively similar petroleum oils with reasonable success.

  17. Optimization of spectral bands for hyperspectral remote sensing of forest vegetation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Egor V.; Kozoderov, Vladimir V.

    2013-10-01

    Optimization principles of accounting for the most informative spectral channels in hyperspectral remote sensing data processing serve to enhance the efficiency of the employed high-productive computers. The problem of pattern recognition of the remotely sensed land surface objects with the accent on the forests is outlined from the point of view of the spectral channels optimization on the processed hyperspectral images. The relevant computational procedures are tested using the images obtained by the produced in Russia hyperspectral camera that was installed on a gyro-stabilized platform to conduct the airborne flight campaigns. The Bayesian classifier is used for the pattern recognition of the forests with different tree species and age. The probabilistically optimal algorithm constructed on the basis of the maximum likelihood principle is described to minimize the probability of misclassification given by this classifier. The classification error is the major category to estimate the accuracy of the applied algorithm by the known holdout cross-validation method. Details of the related techniques are presented. Results are shown of selecting the spectral channels of the camera while processing the images having in mind radiometric distortions that diminish the classification accuracy. The spectral channels are selected of the obtained subclasses extracted from the proposed validation techniques and the confusion matrices are constructed that characterize the age composition of the classified pine species as well as the broad age-class recognition for the pine and birch species with the fully illuminated parts of their crowns.

  18. Correlation Functions Aid Analyses Of Spectra

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H., Jr.

    1989-01-01

    New uses found for correlation functions in analyses of spectra. In approach combining elements of both pattern-recognition and traditional spectral-analysis techniques, spectral lines identified in data appear useless at first glance because they are dominated by noise. New approach particularly useful in measurement of concentrations of rare species of molecules in atmosphere.

  19. Spectral ’Fingerprinting’ of Phytoplankton Populations by Two-Dimensional Fluorescence and Fourier-Transform-Based Pattern Recognition.

    DTIC Science & Technology

    1985-07-08

    comparison to a library of known spectra. A preliminary study (Warner et al., 1984) of the application of this method to the pattern recognition of...case, the spectra from two blue-green algae are shown. Figure 3A indicates phycocyanin as the major fluorophore and 3B indicates phycoerythrin. Except...445. Ho, C.H., G.D. Christian, and E.R. Davidson, 1978. Application of the method of rank annihilation to quantitative analyses of multicomponent

  20. Comparison of SVM RBF-NN and DT for crop and weed identification based on spectral measurement over corn fields

    USDA-ARS?s Scientific Manuscript database

    It is important to find an appropriate pattern-recognition method for in-field plant identification based on spectral measurement in order to classify the crop and weeds accurately. In this study, the method of Support Vector Machine (SVM) was evaluated and compared with two other methods, Decision ...

  1. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  2. V2S: Voice to Sign Language Translation System for Malaysian Deaf People

    NASA Astrophysics Data System (ADS)

    Mean Foong, Oi; Low, Tang Jung; La, Wai Wan

    The process of learning and understand the sign language may be cumbersome to some, and therefore, this paper proposes a solution to this problem by providing a voice (English Language) to sign language translation system using Speech and Image processing technique. Speech processing which includes Speech Recognition is the study of recognizing the words being spoken, regardless of whom the speaker is. This project uses template-based recognition as the main approach in which the V2S system first needs to be trained with speech pattern based on some generic spectral parameter set. These spectral parameter set will then be stored as template in a database. The system will perform the recognition process through matching the parameter set of the input speech with the stored templates to finally display the sign language in video format. Empirical results show that the system has 80.3% recognition rate.

  3. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.

    PubMed

    Khushaba, Rami N; Takruri, Maen; Miro, Jaime Valls; Kodagoda, Sarath

    2014-07-01

    Recent studies in Electromyogram (EMG) pattern recognition reveal a gap between research findings and a viable clinical implementation of myoelectric control strategies. One of the important factors contributing to the limited performance of such controllers in practice is the variation in the limb position associated with normal use as it results in different EMG patterns for the same movements when carried out at different positions. However, the end goal of the myoelectric control scheme is to allow amputees to control their prosthetics in an intuitive and accurate manner regardless of the limb position at which the movement is initiated. In an attempt to reduce the impact of limb position on EMG pattern recognition, this paper proposes a new feature extraction method that extracts a set of power spectrum characteristics directly from the time-domain. The end goal is to form a set of features invariant to limb position. Specifically, the proposed method estimates the spectral moments, spectral sparsity, spectral flux, irregularity factor, and signals power spectrum correlation. This is achieved through using Fourier transform properties to form invariants to amplification, translation and signal scaling, providing an efficient and accurate representation of the underlying EMG activity. Additionally, due to the inherent temporal structure of the EMG signal, the proposed method is applied on the global segments of EMG data as well as the sliced segments using multiple overlapped windows. The performance of the proposed features is tested on EMG data collected from eleven subjects, while implementing eight classes of movements, each at five different limb positions. Practical results indicate that the proposed feature set can achieve significant reduction in classification error rates, in comparison to other methods, with ≈8% error on average across all subjects and limb positions. A real-time implementation and demonstration is also provided and made available as a video supplement (see Appendix A). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models

    PubMed Central

    Morton, Kenneth D.; Torrione, Peter A.; Throckmorton, Chandra S.; Collins, Leslie M.

    2015-01-01

    It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. PMID:18706497

  5. Fundamental remote science research program. Part 2: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.

  6. Spectral Survey of Irrigated Region Corps and Soils

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The applications of remote sensing techniques to spectral surveys of irrigation, crops, and soils are reported. Topics discussed include: (1) canopy temperature as an indication of plant water stress, (2) temperature of soils and of crop canopies differing in water conditions, (3) ERTS project, (4) spectrum matching and pattern recognition, (5) photographic procedures and interpretation, (6) interaction of light with plants, and (7) plant physiological and histological factors.

  7. Intelligent Scene Analysis and Recognition

    DTIC Science & Technology

    2010-03-30

    Database, 1998, pp. 42–51. [9] I. Biederman , Aspects and extension of a theory of human image understanding, Z. Pylyshyn, Ed. Ablex Publishing Corporation...geometry in the visual system,” Biological Cybernetics, vol. 55, no. 6, pp. 367–375, 1987 . [30] W. T. Freeman and E. H. Adelson, “The design and use of...Computer Vision and Pattern Recognition, 2009, pp. 1980– 1987 . [47] M. Leordeanu and M. Hebert, “A spectral technique for correspondence problems using

  8. FPGA design of correlation-based pattern recognition

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  9. Robust Radio Broadcast Monitoring Using a Multi-Band Spectral Entropy Signature

    NASA Astrophysics Data System (ADS)

    Camarena-Ibarrola, Antonio; Chávez, Edgar; Tellez, Eric Sadit

    Monitoring media broadcast content has deserved a lot of attention lately from both academy and industry due to the technical challenge involved and its economic importance (e.g. in advertising). The problem pose a unique challenge from the pattern recognition point of view because a very high recognition rate is needed under non ideal conditions. The problem consist in comparing a small audio sequence (the commercial ad) with a large audio stream (the broadcast) searching for matches.

  10. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  11. Within-individual variation in bullfrog vocalizations: implications for a vocally mediated social recognition system.

    PubMed

    Bee, Mark A

    2004-12-01

    Acoustic signals provide a basis for social recognition in a wide range of animals. Few studies, however, have attempted to relate the patterns of individual variation in signals to behavioral discrimination thresholds used by receivers to discriminate among individuals. North American bullfrogs (Rana catesbeiana) discriminate among familiar and unfamiliar individuals based on individual variation in advertisement calls. The sources, patterns, and magnitudes of variation in eight acoustic properties of multiple-note advertisement calls were examined to understand how patterns of within-individual variation might either constrain, or provide additional cues for, vocal recognition. Six of eight acoustic properties exhibited significant note-to-note variation within multiple-note calls. Despite this source of within-individual variation, all call properties varied significantly among individuals, and multivariate analyses indicated that call notes were individually distinct. Fine-temporal and spectral call properties exhibited less within-individual variation compared to gross-temporal properties and contributed most toward statistically distinguishing among individuals. Among-individual differences in the patterns of within-individual variation in some properties suggest that within-individual variation could also function as a recognition cue. The distributions of among-individual and within-individual differences were used to generate hypotheses about the expected behavioral discrimination thresholds of receivers.

  12. Experimental study on GMM-based speaker recognition

    NASA Astrophysics Data System (ADS)

    Ye, Wenxing; Wu, Dapeng; Nucci, Antonio

    2010-04-01

    Speaker recognition plays a very important role in the field of biometric security. In order to improve the recognition performance, many pattern recognition techniques have be explored in the literature. Among these techniques, the Gaussian Mixture Model (GMM) is proved to be an effective statistic model for speaker recognition and is used in most state-of-the-art speaker recognition systems. The GMM is used to represent the 'voice print' of a speaker through modeling the spectral characteristic of speech signals of the speaker. In this paper, we implement a speaker recognition system, which consists of preprocessing, Mel-Frequency Cepstrum Coefficients (MFCCs) based feature extraction, and GMM based classification. We test our system with TIDIGITS data set (325 speakers) and our own recordings of more than 200 speakers; our system achieves 100% correct recognition rate. Moreover, we also test our system under the scenario that training samples are from one language but test samples are from a different language; our system also achieves 100% correct recognition rate, which indicates that our system is language independent.

  13. Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners.

    PubMed

    Peng, Shu-Chen; Lu, Nelson; Chatterjee, Monita

    2009-01-01

    Cochlear implant (CI) recipients have only limited access to fundamental frequency (F0) information, and thus exhibit deficits in speech intonation recognition. For speech intonation, F0 serves as the primary cue, and other potential acoustic cues (e.g. intensity properties) may also contribute. This study examined the effects of cooperating or conflicting acoustic cues on speech intonation recognition by adult CI and normal hearing (NH) listeners with full-spectrum and spectrally degraded speech stimuli. Identification of speech intonation that signifies question and statement contrasts was measured in 13 CI recipients and 4 NH listeners, using resynthesized bi-syllabic words, where F0 and intensity properties were systematically manipulated. The stimulus set was comprised of tokens whose acoustic cues (i.e. F0 contour and intensity patterns) were either cooperating or conflicting. Subjects identified if each stimulus is a 'statement' or a 'question' in a single-interval, 2-alternative forced-choice (2AFC) paradigm. Logistic models were fitted to the data, and estimated coefficients were compared under cooperating and conflicting conditions, between the subject groups (CI vs. NH), and under full-spectrum and spectrally degraded conditions for NH listeners. The results indicated that CI listeners' intonation recognition was enhanced by cooperating F0 contour and intensity cues, but was adversely affected by these cues being conflicting. On the other hand, with full-spectrum stimuli, NH listeners' intonation recognition was not affected by cues being cooperating or conflicting. The effects of cues being cooperating or conflicting were comparable between the CI group and NH listeners with spectrally degraded stimuli. These findings suggest the importance of taking multiple acoustic sources for speech recognition into consideration in aural rehabilitation for CI recipients. Copyright (C) 2009 S. Karger AG, Basel.

  14. Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners

    PubMed Central

    Peng, Shu-Chen; Lu, Nelson; Chatterjee, Monita

    2009-01-01

    Cochlear implant (CI) recipients have only limited access to fundamental frequency (F0) information, and thus exhibit deficits in speech intonation recognition. For speech intonation, F0 serves as the primary cue, and other potential acoustic cues (e.g., intensity properties) may also contribute. This study examined the effects of acoustic cues being cooperating or conflicting on speech intonation recognition by adult cochlear implant (CI), and normal-hearing (NH) listeners with full-spectrum and spectrally degraded speech stimuli. Identification of speech intonation that signifies question and statement contrasts was measured in 13 CI recipients and 4 NH listeners, using resynthesized bi-syllabic words, where F0 and intensity properties were systematically manipulated. The stimulus set was comprised of tokens whose acoustic cues, i.e., F0 contour and intensity patterns, were either cooperating or conflicting. Subjects identified if each stimulus is a “statement” or a “question” in a single-interval, two-alternative forced-choice (2AFC) paradigm. Logistic models were fitted to the data, and estimated coefficients were compared under cooperating and conflicting conditions, between the subject groups (CI vs. NH), and under full-spectrum and spectrally degraded conditions for NH listeners. The results indicated that CI listeners’ intonation recognition was enhanced by F0 contour and intensity cues being cooperating, but was adversely affected by these cues being conflicting. On the other hand, with full-spectrum stimuli, NH listeners’ intonation recognition was not affected by cues being cooperating or conflicting. The effects of cues being cooperating or conflicting were comparable between the CI group and NH listeners with spectrally-degraded stimuli. These findings suggest the importance of taking multiple acoustic sources for speech recognition into consideration in aural rehabilitation for CI recipients. PMID:19372651

  15. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    PubMed Central

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  16. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    PubMed

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  17. Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1999-01-01

    Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.

  18. Dysphonia Detected by Pattern Recognition of Spectral Composition.

    ERIC Educational Resources Information Center

    Leinonen, Lea; And Others

    1992-01-01

    This study analyzed production of a long vowel sound within Finnish words by normal or dysphonic voices, using the Self-Organizing Map, the artificial neural network algorithm of T. Kohonen which produces two-dimensional representations of speech. The method was found to be both sensitive and specific in the detection of dysphonia. (Author/JDD)

  19. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  20. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.

    PubMed

    Wilts, Bodo D; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G

    2015-10-06

    The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. © 2015 The Author(s).

  1. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales

    PubMed Central

    Wilts, Bodo D.; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G.

    2015-01-01

    The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. PMID:26446560

  2. Determination of geographical origin of alcoholic beverages using ultraviolet, visible and infrared spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Uríčková, Veronika; Sádecká, Jana

    2015-09-01

    The identification of the geographical origin of beverages is one of the most important issues in food chemistry. Spectroscopic methods provide a relative rapid and low cost alternative to traditional chemical composition or sensory analyses. This paper reviews the current state of development of ultraviolet (UV), visible (Vis), near infrared (NIR) and mid infrared (MIR) spectroscopic techniques combined with pattern recognition methods for determining geographical origin of both wines and distilled drinks. UV, Vis, and NIR spectra contain broad band(s) with weak spectral features limiting their discrimination ability. Despite this expected shortcoming, each of the three spectroscopic ranges (NIR, Vis/NIR and UV/Vis/NIR) provides average correct classification higher than 82%. Although average correct classification is similar for NIR and MIR regions, in some instances MIR data processing improves prediction. Advantage of using MIR is that MIR peaks are better defined and more easily assigned than NIR bands. In general, success in a classification depends on both spectral range and pattern recognition methods. The main problem still remains the construction of databanks needed for all of these methods.

  3. Some fundamental concepts in remote sensing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The term remote sensing is defined as well as ideas such as class, pattern, feature, pattern recognition, feature extraction, and theme. The electromagnetic spectrum is examined especially those wavelength regions available to remote sensing. Relevant energy and wave propagation laws are discussed and the characteristics of emitted and reflected radiation and their detection are investigated. The identification of classes by their spectral signatures, the multispectral approach, and the principal types of sensors and platforms used in remote sensing are also considered.

  4. Effect of high-frequency spectral components in computer recognition of dysarthric speech based on a Mel-cepstral stochastic model.

    PubMed

    Polur, Prasad D; Miller, Gerald E

    2005-01-01

    Computer speech recognition of individuals with dysarthria, such as cerebral palsy patients, requires a robust technique that can handle conditions of very high variability and limited training data. In this study, a hidden Markov model (HMM) was constructed and conditions investigated that would provide improved performance for a dysarthric speech (isolated word) recognition system intended to act as an assistive/control tool. In particular, we investigated the effect of high-frequency spectral components on the recognition rate of the system to determine if they contributed useful additional information to the system. A small-size vocabulary spoken by three cerebral palsy subjects was chosen. Mel-frequency cepstral coefficients extracted with the use of 15 ms frames served as training input to an ergodic HMM setup. Subsequent results demonstrated that no significant useful information was available to the system for enhancing its ability to discriminate dysarthric speech above 5.5 kHz in the current set of dysarthric data. The level of variability in input dysarthric speech patterns limits the reliability of the system. However, its application as a rehabilitation/control tool to assist dysarthric motor-impaired individuals such as cerebral palsy subjects holds sufficient promise.

  5. A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.

    ERIC Educational Resources Information Center

    Paul, James E., Jr.

    Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…

  6. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    NASA Astrophysics Data System (ADS)

    Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

    2015-01-01

    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

  7. Evaluation of Mandarin Chinese Speech Recognition in Adults with Cochlear Implants Using the Spectral Ripple Discrimination Test

    PubMed Central

    Dai, Chuanfu; Zhao, Zeqi; Zhang, Duo; Lei, Guanxiong

    2018-01-01

    Background The aim of this study was to explore the value of the spectral ripple discrimination test in speech recognition evaluation among a deaf (post-lingual) Mandarin-speaking population in China following cochlear implantation. Material/Methods The study included 23 Mandarin-speaking adult subjects with normal hearing (normal-hearing group) and 17 deaf adults who were former Mandarin-speakers, with cochlear implants (cochlear implantation group). The normal-hearing subjects were divided into men (n=10) and women (n=13). The spectral ripple discrimination thresholds between the groups were compared. The correlation between spectral ripple discrimination thresholds and Mandarin speech recognition rates in the cochlear implantation group were studied. Results Spectral ripple discrimination thresholds did not correlate with age (r=−0.19; p=0.22), and there was no significant difference in spectral ripple discrimination thresholds between the male and female groups (p=0.654). Spectral ripple discrimination thresholds of deaf adults with cochlear implants were significantly correlated with monosyllabic recognition rates (r=0.84; p=0.000). Conclusions In a Mandarin Chinese speaking population, spectral ripple discrimination thresholds of normal-hearing individuals were unaffected by both gender and age. Spectral ripple discrimination thresholds were correlated with Mandarin monosyllabic recognition rates of Mandarin-speaking in post-lingual deaf adults with cochlear implants. The spectral ripple discrimination test is a promising method for speech recognition evaluation in adults following cochlear implantation in China. PMID:29806954

  8. Evaluation of Mandarin Chinese Speech Recognition in Adults with Cochlear Implants Using the Spectral Ripple Discrimination Test.

    PubMed

    Dai, Chuanfu; Zhao, Zeqi; Shen, Weidong; Zhang, Duo; Lei, Guanxiong; Qiao, Yuehua; Yang, Shiming

    2018-05-28

    BACKGROUND The aim of this study was to explore the value of the spectral ripple discrimination test in speech recognition evaluation among a deaf (post-lingual) Mandarin-speaking population in China following cochlear implantation. MATERIAL AND METHODS The study included 23 Mandarin-speaking adult subjects with normal hearing (normal-hearing group) and 17 deaf adults who were former Mandarin-speakers, with cochlear implants (cochlear implantation group). The normal-hearing subjects were divided into men (n=10) and women (n=13). The spectral ripple discrimination thresholds between the groups were compared. The correlation between spectral ripple discrimination thresholds and Mandarin speech recognition rates in the cochlear implantation group were studied. RESULTS Spectral ripple discrimination thresholds did not correlate with age (r=-0.19; p=0.22), and there was no significant difference in spectral ripple discrimination thresholds between the male and female groups (p=0.654). Spectral ripple discrimination thresholds of deaf adults with cochlear implants were significantly correlated with monosyllabic recognition rates (r=0.84; p=0.000). CONCLUSIONS In a Mandarin Chinese speaking population, spectral ripple discrimination thresholds of normal-hearing individuals were unaffected by both gender and age. Spectral ripple discrimination thresholds were correlated with Mandarin monosyllabic recognition rates of Mandarin-speaking in post-lingual deaf adults with cochlear implants. The spectral ripple discrimination test is a promising method for speech recognition evaluation in adults following cochlear implantation in China.

  9. Surface compositional mapping by spectral ratioing of ERTS-1 MSS data in the Wind River Basin and Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Vincent, R. K. (Principal Investigator); Salmon, B. C.; Pillars, W. W.; Harris, J. E.

    1975-01-01

    The author has identified the following significant results. ERTS data collected in August and October 1972 were processed on digital and special purpose analog recognition computers using ratio enhancement and pattern recognition. Ratios of band-averaged laboratory reflectances of some minerals and rock types known to be in the scene compared favorably with ratios derived from the data by ratio normalization procedures. A single ratio display and density slice of the visible channels of ERTS MSS data, Channel 5/Channel 4 (R5,4), separated the Triassic Chugwater formation (redbeds) from other formations present and may have enhanced iron oxide minerals present at the surface in abundance. Comparison of data sets collected over the same area at two different times of the year by digital processing indicated that spectral variation due to environmental factors was reduced by ratio processing.

  10. Machine processing for remotely acquired data. [using multivariate statistical analysis

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1974-01-01

    This paper is a general discussion of earth resources information systems which utilize airborne and spaceborne sensors. It points out that information may be derived by sensing and analyzing the spectral, spatial and temporal variations of electromagnetic fields emanating from the earth surface. After giving an overview system organization, the two broad categories of system types are discussed. These are systems in which high quality imagery is essential and those more numerically oriented. Sensors are also discussed with this categorization of systems in mind. The multispectral approach and pattern recognition are described as an example data analysis procedure for numerically-oriented systems. The steps necessary in using a pattern recognition scheme are described and illustrated with data obtained from aircraft and the Earth Resources Technology Satellite (ERTS-1).

  11. Documentation of procedures for textural/spatial pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bryant, W. F.

    1976-01-01

    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

  12. Terrestrial implications of mathematical modeling developed for space biomedical research

    NASA Technical Reports Server (NTRS)

    Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini

    1988-01-01

    This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.

  13. Applicability of mathematical modeling to problems of environmental physiology

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.; Leonard, Joel I.; Srinivasan, R. Srini

    1988-01-01

    The paper traces the evolution of mathematical modeling and systems analysis from terrestrial research to research related to space biomedicine and back again to terrestrial research. Topics covered include: power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and, computer-aided diagnosis programs used in conjunction with a special on-line biomedical computer library.

  14. Change detection in Arctic satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.

    2015-06-01

    Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.

  15. Pattern recognition in volcano seismology - Reducing spectral dimensionality

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Radic, V.; Jellinek, M.

    2015-12-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we evaluate whether a machine learning technique called Self-Organizing Maps (SOMs) can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. This could reduce the dimensions of the spectral space typically analyzed by orders of magnitude, and enable rapid processing and visualization. Preliminary results suggest that the temporal evolution of volcano seismicity at Kilauea Volcano, Hawai`i, can be reduced to as few as 2 spectral components by using a combination of SOMs and cluster analysis. We will further refine our methodology with several datasets from Hawai`i and Alaska, among others, and compare it to other techniques.

  16. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this identification. The approach starts by segmenting water bodies from an image, which are then categorized using shape-based classification. Segmentation uses combination of pan sharpened multispectral bands and is based on the active contours without edges technique. The segmentation is robust to noise and can detect objects with weak boundaries that is important for extraction of troughs. We then categorize the segmented regions via shape based classification. Because segmentation accuracy is the main factor impacting the quality of the shape-based classification, for segmentation accuracy assessment we created reference image using WorldView-2 satellite image of ice-wedge polygonal tundra. Reference image contained manually labelled image regions which cover components of drainage networks, such as troughs, ponds, rivers and lakes. The evaluation has shown that the approach provides a good accuracy of segmentation and reasonable classification results. The overall accuracy of the segmentation is approximately 95%, the segmentation user's and producer's accuracies are approximately 92% and 97% respectively.

  17. Evaluation of spectral channels and wavelength regions for separability of agricultural cover types

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kumar, R.

    1977-01-01

    The author has identified the following significant results. Multispectral scanner data in twelve spectral channels in the wavelength range of 0.4 to 11.7 microns acquired in the middle of July for three flightlines were analyzed by applying automatic pattern recognition techniques. The same analysis was performed for the data acquired in mid August, over the same three flightlines, to investigate the effect of time on the results. The effect of deletion of each spectral channel, as well as each wavelength region on P sub c, is given. Values of P sub c for all possible combinations of wavelength regions in the subsets of one to twelve spectral channels are also given. The overall values of P sub c were found to be greater for the data of mid August than the data from mid July.

  18. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  19. Search prefilters to assist in library searching of infrared spectra of automotive clear coats.

    PubMed

    Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; White, Collin; Sandercock, Mark

    2015-01-01

    Clear coat searches of the infrared (IR) spectral library of the paint data query (PDQ) forensic database often generate an unusable number of hits that span multiple manufacturers, assembly plants, and years. To improve the accuracy of the hit list, pattern recognition methods have been used to develop search prefilters (i.e., principal component models) that differentiate between similar but non-identical IR spectra of clear coats on the basis of manufacturer (e.g., General Motors, Ford, Chrysler) or assembly plant. A two step procedure to develop these search prefilters was employed. First, the discrete wavelet transform was used to decompose each IR spectrum into wavelet coefficients to enhance subtle but significant features in the spectral data. Second, a genetic algorithm for IR spectral pattern recognition was employed to identify wavelet coefficients characteristic of the manufacturer or assembly plant of the vehicle. Even in challenging trials where the paint samples evaluated were all from the same manufacturer (General Motors) within a limited production year range (2000-2006), the respective assembly plant of the vehicle was correctly identified. Search prefilters to identify assembly plants were successfully validated using 10 blind samples provided by the Royal Canadian Mounted Police (RCMP) as part of a study to populate PDQ to current production years, whereas the search prefilter to discriminate among automobile manufacturers was successfully validated using IR spectra obtained directly from the PDQ database. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Audio-based, unsupervised machine learning reveals cyclic changes in earthquake mechanisms in the Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Paté, A.; Paisley, J.; Waldhauser, F.; Repetto, D.; Boschi, L.

    2017-12-01

    The earthquake process reflects complex interactions of stress, fracture and frictional properties. New machine learning methods reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Our methods are based closely on those developed for music information retrieval and voice recognition, using the spectrogram instead of the waveform directly. Unsupervised learning involves identification of patterns based on differences among signals without any additional information provided to the algorithm. Clustering of 46,000 earthquakes of $0.3

  1. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher's Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    PubMed Central

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-01-01

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837

  2. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.

    PubMed

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-07-24

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.

  3. Automatic speech recognition research at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Coler, Clayton R.; Plummer, Robert P.; Huff, Edward M.; Hitchcock, Myron H.

    1977-01-01

    A trainable acoustic pattern recognizer manufactured by Scope Electronics is presented. The voice command system VCS encodes speech by sampling 16 bandpass filters with center frequencies in the range from 200 to 5000 Hz. Variations in speaking rate are compensated for by a compression algorithm that subdivides each utterance into eight subintervals in such a way that the amount of spectral change within each subinterval is the same. The recorded filter values within each subinterval are then reduced to a 15-bit representation, giving a 120-bit encoding for each utterance. The VCS incorporates a simple recognition algorithm that utilizes five training samples of each word in a vocabulary of up to 24 words. The recognition rate of approximately 85 percent correct for untrained speakers and 94 percent correct for trained speakers was not considered adequate for flight systems use. Therefore, the built-in recognition algorithm was disabled, and the VCS was modified to transmit 120-bit encodings to an external computer for recognition.

  4. Human brain distinctiveness based on EEG spectral coherence connectivity.

    PubMed

    Rocca, D La; Campisi, P; Vegso, B; Cserti, P; Kozmann, G; Babiloni, F; Fallani, F De Vico

    2014-09-01

    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of the current analyses rely on the extraction of features characterizing the activity of single brain regions, like power spectrum estimation, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherence-based connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N = 108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performance shows that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.5% is obtained in EC (96.26% in EO) when fusing power spectrum information from parieto-occipital (centro-parietal in EO) regions. Taken together, these results suggest that the functional connectivity patterns represent effective features for improving EEG-based biometric systems.

  5. Machine Learning Method for Pattern Recognition in Volcano Seismic Spectra

    NASA Astrophysics Data System (ADS)

    Radic, V.; Unglert, K.; Jellinek, M.

    2016-12-01

    Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as Self-Organizing Maps (SOM), Principal Component Analysis (PCA) and clustering methods can help to quickly and automatically identify important patterns related to impending eruptions. In this study we develop and evaluate an algorithm applied on a set of synthetic volcano seismic spectra as well as observed spectra from Kılauea Volcano, Hawai`i. Our goal is to retrieve a set of known spectral patterns that are associated with dominant phases of volcanic tremor before, during, and after periods of volcanic unrest. The algorithm is based on training a SOM on the spectra and then identifying local maxima and minima on the SOM 'topography'. The topography is derived from the first two PCA modes so that the maxima represent the SOM patterns that carry most of the variance in the spectra. Patterns identified in this way reproduce the known set of spectra. Our results show that, regardless of the level of white noise in the spectra, the algorithm can accurately reproduce the characteristic spectral patterns and their occurrence in time. The ability to rapidly classify spectra of volcano seismic data without prior knowledge of the character of the seismicity at a given volcanic system holds great potential for real time or near-real time applications, and thus ultimately for eruption forecasting.

  6. Library Search Prefilters for Vehicle Manufacturers to Assist in the Forensic Examination of Automotive Paints.

    PubMed

    Lavine, Barry K; White, Collin G; Ding, Tao

    2018-03-01

    Pattern recognition techniques have been applied to the infrared (IR) spectral libraries of the Paint Data Query (PDQ) database to differentiate between nonidentical but similar IR spectra of automotive paints. To tackle the problem of library searching, search prefilters were developed to identify the vehicle make from IR spectra of the clear coat, surfacer-primer, and e-coat layers. To develop these search prefilters with the appropriate degree of accuracy, IR spectra from the PDQ database were preprocessed using the discrete wavelet transform to enhance subtle but significant features in the IR spectral data. Wavelet coefficients characteristic of vehicle make were identified using a genetic algorithm for pattern recognition and feature selection. Search prefilters to identify automotive manufacturer through IR spectra obtained from a paint chip recovered at a crime scene were developed using 1596 original manufacturer's paint systems spanning six makes (General Motors, Chrysler, Ford, Honda, Nissan, and Toyota) within a limited production year range (2000-2006). Search prefilters for vehicle manufacturer that were developed as part of this study were successfully validated using IR spectra obtained directly from the PDQ database. Information obtained from these search prefilters can serve to quantify the discrimination power of original automotive paint encountered in casework and further efforts to succinctly communicate trace evidential significance to the courts.

  7. Gastric cancer differentiation using Fourier transform near-infrared spectroscopy with unsupervised pattern recognition

    NASA Astrophysics Data System (ADS)

    Yi, Wei-song; Cui, Dian-sheng; Li, Zhi; Wu, Lan-lan; Shen, Ai-guo; Hu, Ji-ming

    2013-01-01

    The manuscript has investigated the application of near-infrared (NIR) spectroscopy for differentiation gastric cancer. The 90 spectra from cancerous and normal tissues were collected from a total of 30 surgical specimens using Fourier transform near-infrared spectroscopy (FT-NIR) equipped with a fiber-optic probe. Major spectral differences were observed in the CH-stretching second overtone (9000-7000 cm-1), CH-stretching first overtone (6000-5200 cm-1), and CH-stretching combination (4500-4000 cm-1) regions. By use of unsupervised pattern recognition, such as principal component analysis (PCA) and cluster analysis (CA), all spectra were classified into cancerous and normal tissue groups with accuracy up to 81.1%. The sensitivity and specificity was 100% and 68.2%, respectively. These present results indicate that CH-stretching first, combination band and second overtone regions can serve as diagnostic markers for gastric cancer.

  8. Pattern recognition analysis of polar clouds during summer and winter

    NASA Technical Reports Server (NTRS)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  9. Identification of cloud fields by the nonparametric algorithm of pattern recognition from normalized video data recorded with the AVHRR instrument

    NASA Astrophysics Data System (ADS)

    Protasov, Konstantin T.; Pushkareva, Tatyana Y.; Artamonov, Evgeny S.

    2002-02-01

    The problem of cloud field recognition from the NOAA satellite data is urgent for solving not only meteorological problems but also for resource-ecological monitoring of the Earth's underlying surface associated with the detection of thunderstorm clouds, estimation of the liquid water content of clouds and the moisture of the soil, the degree of fire hazard, etc. To solve these problems, we used the AVHRR/NOAA video data that regularly displayed the situation in the territory. The complexity and extremely nonstationary character of problems to be solved call for the use of information of all spectral channels, mathematical apparatus of testing statistical hypotheses, and methods of pattern recognition and identification of the informative parameters. For a class of detection and pattern recognition problems, the average risk functional is a natural criterion for the quality and the information content of the synthesized decision rules. In this case, to solve efficiently the problem of identifying cloud field types, the informative parameters must be determined by minimization of this functional. Since the conditional probability density functions, representing mathematical models of stochastic patterns, are unknown, the problem of nonparametric reconstruction of distributions from the leaning samples arises. To this end, we used nonparametric estimates of distributions with the modified Epanechnikov kernel. The unknown parameters of these distributions were determined by minimization of the risk functional, which for the learning sample was substituted by the empirical risk. After the conditional probability density functions had been reconstructed for the examined hypotheses, a cloudiness type was identified using the Bayes decision rule.

  10. Pattern recognition of electronic bit-sequences using a semiconductor mode-locked laser and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.

    2010-04-01

    A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.

  11. Detection of illicit drugs with the technique of spectral fluorescence signatures (SFS)

    NASA Astrophysics Data System (ADS)

    Poryvkina, Larisa; Babichenko, Sergey

    2010-10-01

    The SFS technology has already proved its analytical capabilities in a variety of industrial and environmental tasks. Recently it has been introduced for forensic applications. The key features of the SFS method - measuring a 3-dimensional spectrum of fluorescence of the sample (intensity versus excitation and emission wavelengths) with following recognition of specific spectral patterns of SFS responsible for individual drugs - provide an effective tool for the analysis of untreated seized samples, without any separation of the substance of interest from its mixture with accompanying cutting agents and diluents as a preparatory step. In such approach the chemical analysis of the sample is substituted by the analysis of SFS matrix visualized as an optical image. The SFS technology of drug detection is realized by NarTest® NTX2000 analyzer, compact device intended to measure suspicious samples in liquid, solid and powder forms. It simplifies the detection process due to fully automated procedures of SFS measuring and integrated expert system for recognition of spectral patterns. Presently the expert system of NTX2000 is able to detect marijuana, cocaine, heroin, MDMA, amphetamine and methamphetamine with the detection limit down to 5% of the drug concentration in various mixtures. The numerous tests with street samples confirmed that the use of SFS method provides reliable results with high sensitivity and selectivity for identification of drugs of abuse. More than 3000 street samples of the aforesaid drugs were analyzed with NTX2000 during validation process, and the correspondence of SFS results and conclusions of standard forensic analyses with GC/MS techniques was in 99.4% cases.

  12. Application of Fourier analysis to multispectral/spatial recognition

    NASA Technical Reports Server (NTRS)

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  13. Rapid Discrimination for Traditional Complex Herbal Medicines from Different Parts, Collection Time, and Origins Using High-Performance Liquid Chromatography and Near-Infrared Spectral Fingerprints with Aid of Pattern Recognition Methods

    PubMed Central

    Fu, Haiyan; Fan, Yao; Zhang, Xu; Lan, Hanyue; Yang, Tianming; Shao, Mei; Li, Sihan

    2015-01-01

    As an effective method, the fingerprint technique, which emphasized the whole compositions of samples, has already been used in various fields, especially in identifying and assessing the quality of herbal medicines. High-performance liquid chromatography (HPLC) and near-infrared (NIR), with their unique characteristics of reliability, versatility, precision, and simple measurement, played an important role among all the fingerprint techniques. In this paper, a supervised pattern recognition method based on PLSDA algorithm by HPLC and NIR has been established to identify the information of Hibiscus mutabilis L. and Berberidis radix, two common kinds of herbal medicines. By comparing component analysis (PCA), linear discriminant analysis (LDA), and particularly partial least squares discriminant analysis (PLSDA) with different fingerprint preprocessing of NIR spectra variables, PLSDA model showed perfect functions on the analysis of samples as well as chromatograms. Most important, this pattern recognition method by HPLC and NIR can be used to identify different collection parts, collection time, and different origins or various species belonging to the same genera of herbal medicines which proved to be a promising approach for the identification of complex information of herbal medicines. PMID:26345990

  14. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users.

    PubMed

    Fu, Qian-Jie; Chinchilla, Sherol; Galvin, John J

    2004-09-01

    The present study investigated the relative importance of temporal and spectral cues in voice gender discrimination and vowel recognition by normal-hearing subjects listening to an acoustic simulation of cochlear implant speech processing and by cochlear implant users. In the simulation, the number of speech processing channels ranged from 4 to 32, thereby varying the spectral resolution; the cutoff frequencies of the channels' envelope filters ranged from 20 to 320 Hz, thereby manipulating the available temporal cues. For normal-hearing subjects, results showed that both voice gender discrimination and vowel recognition scores improved as the number of spectral channels was increased. When only 4 spectral channels were available, voice gender discrimination significantly improved as the envelope filter cutoff frequency was increased from 20 to 320 Hz. For all spectral conditions, increasing the amount of temporal information had no significant effect on vowel recognition. Both voice gender discrimination and vowel recognition scores were highly variable among implant users. The performance of cochlear implant listeners was similar to that of normal-hearing subjects listening to comparable speech processing (4-8 spectral channels). The results suggest that both spectral and temporal cues contribute to voice gender discrimination and that temporal cues are especially important for cochlear implant users to identify the voice gender when there is reduced spectral resolution.

  15. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  16. Spectral mapping of soil organic matter

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.

    1974-01-01

    Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.

  17. Unsupervised EEG analysis for automated epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  18. Comparison Analysis of Recognition Algorithms of Forest-Cover Objects on Hyperspectral Air-Borne and Space-Borne Images

    NASA Astrophysics Data System (ADS)

    Kozoderov, V. V.; Kondranin, T. V.; Dmitriev, E. V.

    2017-12-01

    The basic model for the recognition of natural and anthropogenic objects using their spectral and textural features is described in the problem of hyperspectral air-borne and space-borne imagery processing. The model is based on improvements of the Bayesian classifier that is a computational procedure of statistical decision making in machine-learning methods of pattern recognition. The principal component method is implemented to decompose the hyperspectral measurements on the basis of empirical orthogonal functions. Application examples are shown of various modifications of the Bayesian classifier and Support Vector Machine method. Examples are provided of comparing these classifiers and a metrical classifier that operates on finding the minimal Euclidean distance between different points and sets in the multidimensional feature space. A comparison is also carried out with the " K-weighted neighbors" method that is close to the nonparametric Bayesian classifier.

  19. A memory like a female Fur Seal: long-lasting recognition of pup's voice by mothers.

    PubMed

    Mathevon, Nicolas; Charrier, Isabelle; Aubin, Thierry

    2004-06-01

    In colonial mammals like fur seals, mutual vocal recognition between mothers and their pup is of primary importance for breeding success. Females alternate feeding sea-trips with suckling periods on land, and when coming back from the ocean, they have to vocally find their offspring among numerous similar-looking pups. Young fur seals emit a 'mother-attraction call' that presents individual characteristics. In this paper, we review the perceptual process of pup's call recognition by Subantarctic Fur Seal Arctocephalus tropicalis mothers. To identify their progeny, females rely on the frequency modulation pattern and spectral features of this call. As the acoustic characteristics of a pup's call change throughout the lactation period due to the growing process, mothers have thus to refine their memorization of their pup's voice. Field experiments show that female Fur Seals are able to retain all the successive versions of their pup's call.

  20. Tensor Rank Preserving Discriminant Analysis for Facial Recognition.

    PubMed

    Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo

    2017-10-12

    Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.

  1. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  2. Identifying Broadband Rotational Spectra with Neural Networks

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  3. The Effect of Remote Masking on the Reception of Speech by Young School-Age Children.

    PubMed

    Youngdahl, Carla L; Healy, Eric W; Yoho, Sarah E; Apoux, Frédéric; Holt, Rachael Frush

    2018-02-15

    Psychoacoustic data indicate that infants and children are less likely than adults to focus on a spectral region containing an anticipated signal and are more susceptible to remote masking of a signal. These detection tasks suggest that infants and children, unlike adults, do not listen selectively. However, less is known about children's ability to listen selectively during speech recognition. Accordingly, the current study examines remote masking during speech recognition in children and adults. Adults and 7- and 5-year-old children performed sentence recognition in the presence of various spectrally remote maskers. Intelligibility was determined for each remote-masker condition, and performance was compared across age groups. It was found that speech recognition for 5-year-olds was reduced in the presence of spectrally remote noise, whereas the maskers had no effect on the 7-year-olds or adults. Maskers of different bandwidth and remoteness had similar effects. In accord with psychoacoustic data, young children do not appear to focus on a spectral region of interest and ignore other regions during speech recognition. This tendency may help account for their typically poorer speech perception in noise. This study also appears to capture an important developmental stage, during which a substantial refinement in spectral listening occurs.

  4. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule.

    PubMed

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-20

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  5. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule

    NASA Astrophysics Data System (ADS)

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-01

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  6. Hyperspectral image analysis using artificial color

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Caulfield, H. John; Wu, Dongsheng; Tadesse, Wubishet

    2010-03-01

    By definition, HSC (HyperSpectral Camera) images are much richer in spectral data than, say, a COTS (Commercial-Off-The-Shelf) color camera. But data are not information. If we do the task right, useful information can be derived from the data in HSC images. Nature faced essentially the identical problem. The incident light is so complex spectrally that measuring it with high resolution would provide far more data than animals can handle in real time. Nature's solution was to do irreversible POCS (Projections Onto Convex Sets) to achieve huge reductions in data with minimal reduction in information. Thus we can arrange for our manmade systems to do what nature did - project the HSC image onto two or more broad, overlapping curves. The task we have undertaken in the last few years is to develop this idea that we call Artificial Color. What we report here is the use of the measured HSC image data projected onto two or three convex, overlapping, broad curves in analogy with the sensitivity curves of human cone cells. Testing two quite different HSC images in that manner produced the desired result: good discrimination or segmentation that can be done very simply and hence are likely to be doable in real time with specialized computers. Using POCS on the HSC data to reduce the processing complexity produced excellent discrimination in those two cases. For technical reasons discussed here, the figures of merit for the kind of pattern recognition we use is incommensurate with the figures of merit of conventional pattern recognition. We used some force fitting to make a comparison nevertheless, because it shows what is also obvious qualitatively. In our tasks our method works better.

  7. Optimal wavelength band clustering for multispectral iris recognition.

    PubMed

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  8. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  9. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  10. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-10-01

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  11. Automatic alignment of individual peaks in large high-resolution spectral data sets

    NASA Astrophysics Data System (ADS)

    Stoyanova, Radka; Nicholls, Andrew W.; Nicholson, Jeremy K.; Lindon, John C.; Brown, Truman R.

    2004-10-01

    Pattern recognition techniques are effective tools for reducing the information contained in large spectral data sets to a much smaller number of significant features which can then be used to make interpretations about the chemical or biochemical system under study. Often the effectiveness of such approaches is impeded by experimental and instrument induced variations in the position, phase, and line width of the spectral peaks. Although characterizing the cause and magnitude of these fluctuations could be important in its own right (pH-induced NMR chemical shift changes, for example) in general they obscure the process of pattern discovery. One major area of application is the use of large databases of 1H NMR spectra of biofluids such as urine for investigating perturbations in metabolic profiles caused by drugs or disease, a process now termed metabonomics. Frequency shifts of individual peaks are the dominant source of such unwanted variations in this type of data. In this paper, an automatic procedure for aligning the individual peaks in the data set is described and evaluated. The proposed method will be vital for the efficient and automatic analysis of large metabonomic data sets and should also be applicable to other types of data.

  12. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.

    PubMed

    Winn, Matthew B; Won, Jong Ho; Moon, Il Joon

    This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of voice onset time or with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart nonlinguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (voice onset time) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language.

  13. Mapping soil types from multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Zachary, A. L.

    1971-01-01

    Multispectral remote sensing and computer-implemented pattern recognition techniques were used for automatic ?mapping' of soil types. This approach involves subjective selection of a set of reference samples from a gray-level display of spectral variations which was generated by a computer. Each resolution element is then classified using a maximum likelihood ratio. Output is a computer printout on which the researcher assigns a different symbol to each class. Four soil test areas in Indiana were experimentally examined using this approach, and partially successful results were obtained.

  14. Recognizing Whispered Speech Produced by an Individual with Surgically Reconstructed Larynx Using Articulatory Movement Data

    PubMed Central

    Cao, Beiming; Kim, Myungjong; Mau, Ted; Wang, Jun

    2017-01-01

    Individuals with larynx (vocal folds) impaired have problems in controlling their glottal vibration, producing whispered speech with extreme hoarseness. Standard automatic speech recognition using only acoustic cues is typically ineffective for whispered speech because the corresponding spectral characteristics are distorted. Articulatory cues such as the tongue and lip motion may help in recognizing whispered speech since articulatory motion patterns are generally not affected. In this paper, we investigated whispered speech recognition for patients with reconstructed larynx using articulatory movement data. A data set with both acoustic and articulatory motion data was collected from a patient with surgically reconstructed larynx using an electromagnetic articulograph. Two speech recognition systems, Gaussian mixture model-hidden Markov model (GMM-HMM) and deep neural network-HMM (DNN-HMM), were used in the experiments. Experimental results showed adding either tongue or lip motion data to acoustic features such as mel-frequency cepstral coefficient (MFCC) significantly reduced the phone error rates on both speech recognition systems. Adding both tongue and lip data achieved the best performance. PMID:29423453

  15. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  16. ASERA: A spectrum eye recognition assistant for quasar spectra

    NASA Astrophysics Data System (ADS)

    Yuan, Hailong; Zhang, Haotong; Zhang, Yanxia; Lei, Yajuan; Dong, Yiqiao; Zhao, Yongheng

    2013-11-01

    Spectral type recognition is an important and fundamental step of large sky survey projects in the data reduction for further scientific research, like parameter measurement and statistic work. It tends out to be a huge job to manually inspect the low quality spectra produced from the massive spectroscopic survey, where the automatic pipeline may not provide confident type classification results. In order to improve the efficiency and effectiveness of spectral classification, we develop a semi-automated toolkit named ASERA, ASpectrum Eye Recognition Assistant. The main purpose of ASERA is to help the user in quasar spectral recognition and redshift measurement. Furthermore it can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). It is an interactive software allowing the user to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. It is an efficient and user-friendly toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope). The toolkit is available in two modes: a Java standalone application and a Java applet. ASERA has a few functions, such as wavelength and flux scale setting, zoom in and out, redshift estimation, spectral line identification, which helps user to improve the spectral classification accuracy especially for low quality spectra and reduce the labor of eyeball check. The function and performance of this tool is displayed through the recognition of several quasar spectra and a late type stellar spectrum from the LAMOST Pilot survey. Its future expansion capabilities are discussed.

  17. Composite multilobe descriptors for cross-spectral recognition of full and partial face

    NASA Astrophysics Data System (ADS)

    Cao, Zhicheng; Schmid, Natalia A.; Bourlai, Thirimachos

    2016-08-01

    Cross-spectral image matching is a challenging research problem motivated by various applications, including surveillance, security, and identity management in general. An example of this problem includes cross-spectral matching of active infrared (IR) or thermal IR face images against a dataset of visible light images. A summary of recent developments in the field of cross-spectral face recognition by the authors is presented. In particular, it describes the original form and two variants of a local operator named composite multilobe descriptor (CMLD) for facial feature extraction with the purpose of cross-spectral matching of near-IR, short-wave IR, mid-wave IR, and long-wave IR to a gallery of visible light images. The experiments demonstrate that the variants of CMLD outperform the original CMLD and other recently developed composite operators used for comparison. In addition to different IR spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated. Performance of CMLD I to III is evaluated for each of the three cases of distances. The newly developed operators, CMLD I to III, are further utilized to conduct a study on cross-spectral partial face recognition where different facial regions are compared in terms of the amount of useful information they contain for the purpose of conducting cross-spectral face recognition. The experimental results show that among three facial regions considered in the experiments the eye region is the most informative for all IR spectra at all standoff distances.

  18. Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy.

    PubMed

    Fink, Herbert; Panne, Ulrich; Niessner, Reinhard

    2002-09-01

    An experimental setup for direct elemental analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy (LIPS, or laser-induced breakdown spectroscopy, LIBS) was realized. The combination of a echelle spectrograph, featuring a high resolution with a broad spectral coverage, with multivariate methods, such as PLS, PCR, and variable subset selection via a genetic algorithm, resulted in considerable improvements in selectivity and sensitivity for this complex matrix. With a normalization to carbon as internal standard, the limits of detection were in the ppm range. A preliminary pattern recognition study points to the possibility of polymer recognition via the line-rich echelle spectra. Several experiments at an extruder within a recycling plant demonstrated successfully the capability of LIPS for different kinds of routine on-line process analysis.

  19. Hyper sausage neuron: Recognition of transgenic sugar-beet based on terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Li, Zhi; Hu, Fangrong; Chen, Tao; Du, Yong; Xin, Haitao

    2015-01-01

    This paper presents a novel approach for identification of terahertz (THz) spectral of genetically modified organisms (GMOs) based on Hyper Sausage Neuron (HSN), and THz transmittance spectra of some typical transgenic sugar-beet samples are investigated to demonstrate its feasibility. Principal component analysis (PCA) is applied to extract features of the spectrum data, and instead of the original spectrum data, the feature signals are fed into the HSN pattern recognition, a new multiple weights neural network (MWNN). The experimental result shows that the HSN model not only can correctly classify different types of transgenic sugar-beets, but also can reject identity non similar samples in the same type. The proposed approach provides a new effective method for detection and identification of GMOs by using THz spectroscopy.

  20. Assessment of spectral and temporal resolution in cochlear implant users using psychoacoustic discrimination and speech cue categorization

    PubMed Central

    Winn, Matthew B.; Won, Jong Ho; Moon, Il Joon

    2016-01-01

    Objectives This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). We hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. We further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Design Nineteen CI listeners and 10 listeners with normal hearing (NH) participated in a suite of tasks that included spectral ripple discrimination (SRD), temporal modulation detection (TMD), and syllable categorization, which was split into a spectral-cue-based task (targeting the /ba/-/da/ contrast) and a timing-cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated in order to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression in order to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for CI listeners. Results CI users were generally less successful at utilizing both spectral and temporal cues for categorization compared to listeners with normal hearing. For the CI listener group, SRD was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. TMD using 100 Hz and 10 Hz modulated noise was not correlated with the CI subjects’ categorization of VOT, nor with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. Conclusions When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart non-linguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (VOT) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language. PMID:27438871

  1. Listeners Experience Linguistic Masking Release in Noise-Vocoded Speech-in-Speech Recognition.

    PubMed

    Viswanathan, Navin; Kokkinakis, Kostas; Williams, Brittany T

    2018-02-15

    The purpose of this study was to evaluate whether listeners with normal hearing perceiving noise-vocoded speech-in-speech demonstrate better intelligibility of target speech when the background speech was mismatched in language (linguistic release from masking [LRM]) and/or location (spatial release from masking [SRM]) relative to the target. We also assessed whether the spectral resolution of the noise-vocoded stimuli affected the presence of LRM and SRM under these conditions. In Experiment 1, a mixed factorial design was used to simultaneously manipulate the masker language (within-subject, English vs. Dutch), the simulated masker location (within-subject, right, center, left), and the spectral resolution (between-subjects, 6 vs. 12 channels) of noise-vocoded target-masker combinations presented at +25 dB signal-to-noise ratio (SNR). In Experiment 2, the study was repeated using a spectral resolution of 12 channels at +15 dB SNR. In both experiments, listeners' intelligibility of noise-vocoded targets was better when the background masker was Dutch, demonstrating reliable LRM in all conditions. The pattern of results in Experiment 1 was not reliably different across the 6- and 12-channel noise-vocoded speech. Finally, a reliable spatial benefit (SRM) was detected only in the more challenging SNR condition (Experiment 2). The current study is the first to report a clear LRM benefit in noise-vocoded speech-in-speech recognition. Our results indicate that this benefit is available even under spectrally degraded conditions and that it may augment the benefit due to spatial separation of target speech and competing backgrounds.

  2. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. ASERA: A Spectrum Eye Recognition Assistant

    NASA Astrophysics Data System (ADS)

    Yuan, Hailong; Zhang, Haotong; Zhang, Yanxia; Lei, Yajuan; Dong, Yiqiao; Zhao, Yongheng

    2018-04-01

    ASERA, ASpectrum Eye Recognition Assistant, aids in quasar spectral recognition and redshift measurement and can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). This interactive software allows users to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. ASERA is an efficient and user-friendly semi-automated toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope) and is available as a standalone Java application and as a Java applet. The software offers several functions, including wavelength and flux scale settings, zoom in and out, redshift estimation, and spectral line identification.

  4. Local gradient Gabor pattern (LGGP) with applications in face recognition, cross-spectral matching, and soft biometrics

    NASA Astrophysics Data System (ADS)

    Chen, Cunjian; Ross, Arun

    2013-05-01

    Researchers in face recognition have been using Gabor filters for image representation due to their robustness to complex variations in expression and illumination. Numerous methods have been proposed to model the output of filter responses by employing either local or global descriptors. In this work, we propose a novel but simple approach for encoding Gradient information on Gabor-transformed images to represent the face, which can be used for identity, gender and ethnicity assessment. Extensive experiments on the standard face benchmark FERET (Visible versus Visible), as well as the heterogeneous face dataset HFB (Near-infrared versus Visible), suggest that the matching performance due to the proposed descriptor is comparable against state-of-the-art descriptor-based approaches in face recognition applications. Furthermore, the same feature set is used in the framework of a Collaborative Representation Classification (CRC) scheme for deducing soft biometric traits such as gender and ethnicity from face images in the AR, Morph and CAS-PEAL databases.

  5. A detailed mechanistic fragmentation analysis of methamphetamine and select regioisomers by GC/MS.

    PubMed

    Sachs, Sandra B; Woo, Francis

    2007-03-01

    A novel ring-substituted methamphetamine regioisomer, N,alpha,4-trimethyl phenmethylamine, was synthesized in order to study the validity of proposed structures for various mass spectrometry (MS)-derived peaks in a methamphetamine fragmentation pattern. While other research efforts have studied aspects of methamphetamine in detail, a full fragmentation study has not been reported previously. In addition to showing molecular structures represented by fragment peaks, mechanisms for selected processes are detailed. An empirically derived procedure to easily determine by simple spectral peak pattern recognition the geometry of dimethyl- or ethyl-substituted immonium ions (RRC = N+ RR) where m/z = 58 is outlined. These results are platform independent for electron ionization (EI) instruments, but have also proven to be helpful in explaining spectral peaks observed in spectra from ion trap systems. The spectrum for the synthesized methamphetamine regioisomer was accurately predicted using this methodology. While this approach is useful in some casework, the converse may be more useful: when an unexpected or unusual peak pattern arises in a spectrum, being able to analyze it to determine the structure of the molecule. This paper gives an analyst the means to begin such retro-synthetic analyses.

  6. The Relationship Between Spectral Modulation Detection and Speech Recognition: Adult Versus Pediatric Cochlear Implant Recipients

    PubMed Central

    Noble, Jack H.; Camarata, Stephen M.; Sunderhaus, Linsey W.; Dwyer, Robert T.; Dawant, Benoit M.; Dietrich, Mary S.; Labadie, Robert F.

    2018-01-01

    Adult cochlear implant (CI) recipients demonstrate a reliable relationship between spectral modulation detection and speech understanding. Prior studies documenting this relationship have focused on postlingually deafened adult CI recipients—leaving an open question regarding the relationship between spectral resolution and speech understanding for adults and children with prelingual onset of deafness. Here, we report CI performance on the measures of speech recognition and spectral modulation detection for 578 CI recipients including 477 postlingual adults, 65 prelingual adults, and 36 prelingual pediatric CI users. The results demonstrated a significant correlation between spectral modulation detection and various measures of speech understanding for 542 adult CI recipients. For 36 pediatric CI recipients, however, there was no significant correlation between spectral modulation detection and speech understanding in quiet or in noise nor was spectral modulation detection significantly correlated with listener age or age at implantation. These findings suggest that pediatric CI recipients might not depend upon spectral resolution for speech understanding in the same manner as adult CI recipients. It is possible that pediatric CI users are making use of different cues, such as those contained within the temporal envelope, to achieve high levels of speech understanding. Further investigation is warranted to investigate the relationship between spectral and temporal resolution and speech recognition to describe the underlying mechanisms driving peripheral auditory processing in pediatric CI users. PMID:29716437

  7. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  8. Contribution of LANDSAT-4 thematic mapper data to geologic exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas.

  9. High-emulation mask recognition with high-resolution hyperspectral video capture system

    NASA Astrophysics Data System (ADS)

    Feng, Jiao; Fang, Xiaojing; Li, Shoufeng; Wang, Yongjin

    2014-11-01

    We present a method for distinguishing human face from high-emulation mask, which is increasingly used by criminals for activities such as stealing card numbers and passwords on ATM. Traditional facial recognition technique is difficult to detect such camouflaged criminals. In this paper, we use the high-resolution hyperspectral video capture system to detect high-emulation mask. A RGB camera is used for traditional facial recognition. A prism and a gray scale camera are used to capture spectral information of the observed face. Experiments show that mask made of silica gel has different spectral reflectance compared with the human skin. As multispectral image offers additional spectral information about physical characteristics, high-emulation mask can be easily recognized.

  10. Progressively expanded neural network for automatic material identification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Paheding, Sidike

    The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features. Unlike the conventional neural network where hidden neurons need to be iteratively adjusted to achieve better accuracy, our proposed PEN Net does not require hidden neurons tuning which achieves better computational efficiency, and it has also shown superior performance in HSI classification tasks compared to the state-of-the-arts. Spectral-spatial features based HSI classification framework has shown stronger strength compared to spectral-only based methods. In our lastly proposed technique, PEN Net is incorporated with multiscale spatial features (i.e., multiscale complete local binary pattern) to perform a spectral-spatial classification of HSI. Several experiments demonstrate excellent performance of our proposed technique compared to the more recent developed approaches.

  11. Spectrally queued feature selection for robotic visual odometery

    NASA Astrophysics Data System (ADS)

    Pirozzo, David M.; Frederick, Philip A.; Hunt, Shawn; Theisen, Bernard; Del Rose, Mike

    2011-01-01

    Over the last two decades, research in Unmanned Vehicles (UV) has rapidly progressed and become more influenced by the field of biological sciences. Researchers have been investigating mechanical aspects of varying species to improve UV air and ground intrinsic mobility, they have been exploring the computational aspects of the brain for the development of pattern recognition and decision algorithms and they have been exploring perception capabilities of numerous animals and insects. This paper describes a 3 month exploratory applied research effort performed at the US ARMY Research, Development and Engineering Command's (RDECOM) Tank Automotive Research, Development and Engineering Center (TARDEC) in the area of biologically inspired spectrally augmented feature selection for robotic visual odometry. The motivation for this applied research was to develop a feasibility analysis on multi-spectrally queued feature selection, with improved temporal stability, for the purposes of visual odometry. The intended application is future semi-autonomous Unmanned Ground Vehicle (UGV) control as the richness of data sets required to enable human like behavior in these systems has yet to be defined.

  12. Kinetics of T-cell receptor-dependent antigen recognition determined in vivo by multi-spectral normalized epifluorescence laser scanning

    NASA Astrophysics Data System (ADS)

    Favicchio, Rosy; Zacharakis, Giannis; Oikonomaki, Katerina; Zacharopoulos, Athanasios; Mamalaki, Clio; Ripoll, Jorge

    2012-07-01

    Detection of multiple fluorophores in conditions of low signal represents a limiting factor for the application of in vivo optical imaging techniques in immunology where fluorescent labels report for different functional characteristics. A noninvasive in vivo Multi-Spectral Normalized Epifluorescence Laser scanning (M-SNELS) method was developed for the simultaneous and quantitative detection of multiple fluorophores in low signal to noise ratios and used to follow T-cell activation and clonal expansion. Colocalized DsRed- and GFP-labeled T cells were followed in tandem during the mounting of an immune response. Spectral unmixing was used to distinguish the overlapping fluorescent emissions representative of the two distinct cell populations and longitudinal data reported the discrete pattern of antigen-driven proliferation. Retrieved values were validated both in vitro and in vivo with flow cytometry and significant correlation between all methodologies was achieved. Noninvasive M-SNELS successfully quantified two colocalized fluorescent populations and provides a valid alternative imaging approach to traditional invasive methods for detecting T cell dynamics.

  13. Studies in automatic speech recognition and its application in aerospace

    NASA Astrophysics Data System (ADS)

    Taylor, Michael Robinson

    Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.

  14. Monitoring very-long-period seismicity at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dawson, Phillip B.; Benítez, M. C.; Chouet, Bernard A.; Wilson, David; Okubo, Paul G.

    2010-01-01

    On 19 March, 2008 eruptive activity returned to the summit of Kilauea Volcano, Hawaii with the formation of a new vent within the Halemaumau pit crater. The new vent has been gradually increasing in size, and exhibiting sustained degassing and the episodic bursting of gas slugs at the surface of a lava pond ∼200 m below the floor of Halemaumau. The spectral characteristics, source location obtained by radial semblance, and Hidden Markov Model pattern recognition of the degassing burst signals are consistent with an increase in gas content in the magma transport system beginning in October, 2007. This increase plateaus between March – September 2008, and exhibits a fluctuating pattern until 31 January, 2010, suggesting that the release of gas is slowly diminishing over time.

  15. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    NASA Astrophysics Data System (ADS)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  16. Extraction and fusion of spectral parameters for face recognition

    NASA Astrophysics Data System (ADS)

    Boisier, B.; Billiot, B.; Abdessalem, Z.; Gouton, P.; Hardeberg, J. Y.

    2011-03-01

    Many methods have been developed in image processing for face recognition, especially in recent years with the increase of biometric technologies. However, most of these techniques are used on grayscale images acquired in the visible range of the electromagnetic spectrum. The aims of our study are to improve existing tools and to develop new methods for face recognition. The techniques used take advantage of the different spectral ranges, the visible, optical infrared and thermal infrared, by either combining them or analyzing them separately in order to extract the most appropriate information for face recognition. We also verify the consistency of several keypoints extraction techniques in the Near Infrared (NIR) and in the Visible Spectrum.

  17. Use of Biometrics within Sub-Saharan Refugee Communities

    DTIC Science & Technology

    2013-12-01

    fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity. Biometrics creates and...Biometrics typically comprises fingerprint patterns, iris pattern recognition, and facial recognition as a means of establishing an individual’s identity...authentication because it identifies an individual based on mathematical analysis of the random pattern visible within the iris. Facial recognition is

  18. Rotation-invariant neural pattern recognition system with application to coin recognition.

    PubMed

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  19. Extrinsic Cognitive Load Impairs Spoken Word Recognition in High- and Low-Predictability Sentences.

    PubMed

    Hunter, Cynthia R; Pisoni, David B

    Listening effort (LE) induced by speech degradation reduces performance on concurrent cognitive tasks. However, a converse effect of extrinsic cognitive load on recognition of spoken words in sentences has not been shown. The aims of the present study were to (a) examine the impact of extrinsic cognitive load on spoken word recognition in a sentence recognition task and (b) determine whether cognitive load and/or LE needed to understand spectrally degraded speech would differentially affect word recognition in high- and low-predictability sentences. Downstream effects of speech degradation and sentence predictability on the cognitive load task were also examined. One hundred twenty young adults identified sentence-final spoken words in high- and low-predictability Speech Perception in Noise sentences. Cognitive load consisted of a preload of short (low-load) or long (high-load) sequences of digits, presented visually before each spoken sentence and reported either before or after identification of the sentence-final word. LE was varied by spectrally degrading sentences with four-, six-, or eight-channel noise vocoding. Level of spectral degradation and order of report (digits first or words first) were between-participants variables. Effects of cognitive load, sentence predictability, and speech degradation on accuracy of sentence-final word identification as well as recall of preload digit sequences were examined. In addition to anticipated main effects of sentence predictability and spectral degradation on word recognition, we found an effect of cognitive load, such that words were identified more accurately under low load than high load. However, load differentially affected word identification in high- and low-predictability sentences depending on the level of sentence degradation. Under severe spectral degradation (four-channel vocoding), the effect of cognitive load on word identification was present for high-predictability sentences but not for low-predictability sentences. Under mild spectral degradation (eight-channel vocoding), the effect of load was present for low-predictability sentences but not for high-predictability sentences. There were also reliable downstream effects of speech degradation and sentence predictability on recall of the preload digit sequences. Long digit sequences were more easily recalled following spoken sentences that were less spectrally degraded. When digits were reported after identification of sentence-final words, short digit sequences were recalled more accurately when the spoken sentences were predictable. Extrinsic cognitive load can impair recognition of spectrally degraded spoken words in a sentence recognition task. Cognitive load affected word identification in both high- and low-predictability sentences, suggesting that load may impact both context use and lower-level perceptual processes. Consistent with prior work, LE also had downstream effects on memory for visual digit sequences. Results support the proposal that extrinsic cognitive load and LE induced by signal degradation both draw on a central, limited pool of cognitive resources that is used to recognize spoken words in sentences under adverse listening conditions.

  20. Classification of the LCVF AVIRIS test site with a Kohonen artificial neural network

    NASA Technical Reports Server (NTRS)

    Merenyi, Erzsebet; Singer, Robert B.; Farrand, William H.

    1993-01-01

    We present a classification of an AVIRIS spectral image of the Lunar Crater Volcanic Field (LCVF). Geologic mapping from such data is made possible by distinctive mineral signatures: absorption features and the shape of the spectral continuum. The subtle spectral shape differences between some of the geological units in this scene along with the high dimensionality of the spectral presents a challenging pattern recognition task. We found an artificial neural network powerful in separating 13 geological units based on the full spectral resolution. The LCVF, in northern Nye County, Nevada, was the primary focus of the NASA-sponsored Geologic Remote Sensing Field Experiment in the summer of 1989. It consists of over 100 square miles of Quaternary basaltic pyroclastic and flow deposits. These deposits lie atop ignimbrites and silicic lava flows of Tertiary age and in turn are overlain by Quaternary alluvial and playa deposits. This AVIRIS image was collected on September 29, 1989 at 11:44 at 11:44 PDT. The 256-by-256 pixel subsection in this study contains oxidized basaltic cinder deposits, the southern half of the Lunar Lake playa, and outcrops of the Rhyollite of Big Sand Spring Valley. Vegetation in LCVF is sparse, but locally abundant within washes and near springs.

  1. Validation of a clinical assessment of spectral-ripple resolution for cochlear implant users.

    PubMed

    Drennan, Ward R; Anderson, Elizabeth S; Won, Jong Ho; Rubinstein, Jay T

    2014-01-01

    Nonspeech psychophysical tests of spectral resolution, such as the spectral-ripple discrimination task, have been shown to correlate with speech-recognition performance in cochlear implant (CI) users. However, these tests are best suited for use in the research laboratory setting and are impractical for clinical use. A test of spectral resolution that is quicker and could more easily be implemented in the clinical setting has been developed. The objectives of this study were (1) To determine whether this new clinical ripple test would yield individual results equivalent to the longer, adaptive version of the ripple-discrimination test; (2) To evaluate test-retest reliability for the clinical ripple measure; and (3) To examine the relationship between clinical ripple performance and monosyllabic word recognition in quiet for a group of CI listeners. Twenty-eight CI recipients participated in the study. Each subject was tested on both the adaptive and the clinical versions of spectral ripple discrimination, as well as consonant-nucleus-consonant word recognition in quiet. The adaptive version of spectral ripple used a two-up, one-down procedure for determining spectral ripple discrimination threshold. The clinical ripple test used a method of constant stimuli, with trials for each of 12 fixed ripple densities occurring six times in random order. Results from the clinical ripple test (proportion correct) were then compared with ripple-discrimination thresholds (in ripples per octave) from the adaptive test. The clinical ripple test showed strong concurrent validity, evidenced by a good correlation between clinical ripple and adaptive ripple results (r = 0.79), as well as a correlation with word recognition (r = 0.7). Excellent test-retest reliability was also demonstrated with a high test-retest correlation (r = 0.9). The clinical ripple test is a reliable nonlinguistic measure of spectral resolution, optimized for use with CI users in a clinical setting. The test might be useful as a diagnostic tool or as a possible surrogate outcome measure for evaluating treatment effects in hearing.

  2. The recognition of ocean red tide with hyper-spectral-image based on EMD

    NASA Astrophysics Data System (ADS)

    Zhao, Wencang; Wei, Hongli; Shi, Changjiang; Ji, Guangrong

    2008-05-01

    A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general picture data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast.

  3. Binary fingerprints at fluctuation-enhanced sensing.

    PubMed

    Chang, Hung-Chih; Kish, Laszlo B; King, Maria D; Kwan, Chiman

    2010-01-01

    We have developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 2.5 × 10(4)-10(6). To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.

  4. Automated thematic mapping and change detection of ERTS-A images. [digital interpretation of Arizona imagery

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.

  5. Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis

    NASA Astrophysics Data System (ADS)

    Büchler, Michael; Allegro, Silvia; Launer, Stefan; Dillier, Norbert

    2005-12-01

    A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.

  6. Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Radić, V.; Jellinek, A. M.

    2016-06-01

    Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as self-organizing maps (SOM) and principal component analysis (PCA) can help to quickly and automatically identify important patterns related to impending eruptions. For the first time, we evaluate the performance of SOM and PCA on synthetic volcano seismic spectra constructed from observations during two well-studied eruptions at Klauea Volcano, Hawai'i, that include features observed in many volcanic settings. In particular, our objective is to test which of the techniques can best retrieve a set of three spectral patterns that we used to compose a synthetic spectrogram. We find that, without a priori knowledge of the given set of patterns, neither SOM nor PCA can directly recover the spectra. We thus test hierarchical clustering, a commonly used method, to investigate whether clustering in the space of the principal components and on the SOM, respectively, can retrieve the known patterns. Our clustering method applied to the SOM fails to detect the correct number and shape of the known input spectra. In contrast, clustering of the data reconstructed by the first three PCA modes reproduces these patterns and their occurrence in time more consistently. This result suggests that PCA in combination with hierarchical clustering is a powerful practical tool for automated identification of characteristic patterns in volcano seismic spectra. Our results indicate that, in contrast to PCA, common clustering algorithms may not be ideal to group patterns on the SOM and that it is crucial to evaluate the performance of these tools on a control dataset prior to their application to real data.

  7. Dynamic Spectral Structure Specifies Vowels for Adults and Children

    PubMed Central

    Nittrouer, Susan; Lowenstein, Joanna H.

    2014-01-01

    The dynamic specification account of vowel recognition suggests that formant movement between vowel targets and consonant margins is used by listeners to recognize vowels. This study tested that account by measuring contributions to vowel recognition of dynamic (i.e., time-varying) spectral structure and coarticulatory effects on stationary structure. Adults and children (four-and seven-year-olds) were tested with three kinds of consonant-vowel-consonant syllables: (1) unprocessed; (2) sine waves that preserved both stationary coarticulated and dynamic spectral structure; and (3) vocoded signals that primarily preserved that stationary, but not dynamic structure. Sections of two lengths were removed from syllable middles: (1) half the vocalic portion; and (2) all but the first and last three pitch periods. Adults performed accurately with unprocessed and sine-wave signals, as long as half the syllable remained; their recognition was poorer for vocoded signals, but above chance. Seven-year-olds performed more poorly than adults with both sorts of processed signals, but disproportionately worse with vocoded than sine-wave signals. Most four-year-olds were unable to recognize vowels at all with vocoded signals. Conclusions were that both dynamic and stationary coarticulated structures support vowel recognition for adults, but children attend to dynamic spectral structure more strongly because early phonological organization favors whole words. PMID:25536845

  8. BNDF heterozygosity is associated with memory deficits and alterations in cortical and hippocampal EEG power.

    PubMed

    Geist, Phillip A; Dulka, Brooke N; Barnes, Abigail; Totty, Michael; Datta, Subimal

    2017-08-14

    Brain derived neurotrophic factor (BDNF) plays a pivotal role in structural plasticity, learning, and memory. Electroencephalogram (EEG) spectral power in the cortex and hippocampus has also been correlated with learning and memory. In this study, we investigated the effect of globally reduced BDNF levels on learning behavior and EEG power via BDNF heterozygous (KO) rats. We employed several behavioral tests that are thought to depend on cortical and hippocampal plasticity to varying degrees: novel object recognition, a test that is reliant on a variety of cognitive systems; contextual fear, which is highly hippocampal-dependent; and cued fear, which has been shown to be amygdala-dependent. We also examined the effects of BDNF reduction on cortical and hippocampal EEG spectral power via chronically implanted electrodes in the motor cortex and dorsal hippocampus. We found that BDNF KO rats were impaired in novelty recognition and fear memory retention, while hippocampal EEG power was decreased in slow waves and increased in fast waves. Interestingly, our results, for the first time, show sexual dimorphism in each of our tests. These results support the hypothesis that BDNF drives both cognitive plasticity and coordinates EEG activity patterns, potentially serving as a link between the two. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantitative Tools for Examining the Vocalizations of Juvenile Songbirds

    PubMed Central

    Wellock, Cameron D.; Reeke, George N.

    2012-01-01

    The singing of juvenile songbirds is highly variable and not well stereotyped, a feature that makes it difficult to analyze with existing computational techniques. We present here a method suitable for analyzing such vocalizations, windowed spectral pattern recognition (WSPR). Rather than performing pairwise sample comparisons, WSPR measures the typicality of a sample against a large sample set. We also illustrate how WSPR can be used to perform a variety of tasks, such as sample classification, song ontogeny measurement, and song variability measurement. Finally, we present a novel measure, based on WSPR, for quantifying the apparent complexity of a bird's singing. PMID:22701474

  10. Adaptive Liquid Crystal TV Based Joint Transform Correlator as Applied to Real-Time Pattern Recognition

    DTIC Science & Technology

    1991-05-23

    rotational objects can b ec-tetd. E-Ac Ceedent 3exp-erimental demon ct r-ati ons for these tuo zethodsc hare L-en nerfor-med.A aner atohi naturve xs...dependent nature ---f the Joint rransifore f.Iter. Unlike theVa.dr %g~ii ssignal indepndent. a0. eir -las 3advata in real-tim ’-n14-a-entatio-n...a-tit reI ra-’ t --er is n -) 0 s-’ow Uha thsthoesc~-heo 8 spectral content of the target. A paper of this nature is published in the Optics and

  11. Twenty-five years of maximum-entropy principle

    NASA Astrophysics Data System (ADS)

    Kapur, J. N.

    1983-04-01

    The strengths and weaknesses of the maximum entropy principle (MEP) are examined and some challenging problems that remain outstanding at the end of the first quarter century of the principle are discussed. The original formalism of the MEP is presented and its relationship to statistical mechanics is set forth. The use of MEP for characterizing statistical distributions, in statistical inference, nonlinear spectral analysis, transportation models, population density models, models for brand-switching in marketing and vote-switching in elections is discussed. Its application to finance, insurance, image reconstruction, pattern recognition, operations research and engineering, biology and medicine, and nonparametric density estimation is considered.

  12. Mono-isotope Prediction for Mass Spectra Using Bayes Network.

    PubMed

    Li, Hui; Liu, Chunmei; Rwebangira, Mugizi Robert; Burge, Legand

    2014-12-01

    Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized naïve Bayes network as the classifier with the assumption that the selected features are independent to predict mono-isotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to publicMo dataset demonstrates that our naïve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity.

  13. Has your ancient stamp been regummed with synthetic glue? A FT-NIR and FT-Raman study.

    PubMed

    Simonetti, Remo; Oliveri, Paolo; Henry, Adrien; Duponchel, Ludovic; Lanteri, Silvia

    2016-01-01

    The potential of FT-NIR and FT-Raman spectroscopies to characterise the gum applied on the backside of ancient stamps was investigated for the first time. This represents a very critical issue for the collectors' market, since gum conditions heavily influence stamp quotations, and fraudulent application of synthetic gum onto damaged stamp backsides to increase their desirability is a well-documented practice. Spectral data were processed by exploratory pattern recognition tools. In particular, application of principal component analysis (PCA) revealed that both of the spectroscopic techniques provide information useful to characterise stamp gum. Examination of PCA loadings and their chemical interpretation confirmed the robustness of the outcomes. Fusion of FT-NIR and FT-Raman spectral data was performed, following both a low-level and a mid-level procedure. The results were critically compared with those obtained separately for the two spectroscopic techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Evaluation of wavelength groups for discrimination of agricultural cover types. [remote sensing of environment in INDIANA

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1978-01-01

    Multispectral scanner data in twelve spectral channels, in the wavelength range 0.46 to 11.7 mm, acquired in July 1971 for three flightlines, were analyzed by applying automatic pattern recognition techniques. These twelve spectral channels were divided into four wavelength groups (W1, W2, W3 and W4), each consisting of three wavelength channels -- with respect to their estimated probability of correct classification (P sub c) in discriminating agricultural cover types. The same analysis was also done for the data acquired in August, to investigate the effect of time on these results. The effect of deletion of each of the wavelength groups on P sub C in the subsets of one to nine channels, is given. Values of P sub C for all possible combinations of wavelength groups, in the subsets of one to eleven channels are also given.

  15. Normalized spectral damage of a linear system over different spectral loading patterns

    NASA Astrophysics Data System (ADS)

    Kim, Chan-Jung

    2017-08-01

    Spectral fatigue damage is affected by different loading patterns; the damage may be accumulated in a different manner because the spectral pattern has an influence on stresses or strains. The normalization of spectral damage with respect to spectral loading acceleration is a novel solution to compare the accumulated fatigue damage over different spectral loading patterns. To evaluate the sensitivity of fatigue damage over different spectral loading cases, a simple notched specimen is used to conduct a uniaxial vibration test for two representative spectral patterns-random and harmonic-between 30 and 3000 Hz. The fatigue damage to the simple specimen is analyzed for different spectral loading cases using the normalized spectral damage from the measured response data for both acceleration and strain. The influence of spectral loading patterns is discussed based on these analyses.

  16. Pitch and Plasticity: Insights from the Pitch Matching of Chords by Musicians with Absolute and Relative Pitch

    PubMed Central

    McLachlan, Neil M.; Marco, David J. T.; Wilson, Sarah J.

    2013-01-01

    Absolute pitch (AP) is a form of sound recognition in which musical note names are associated with discrete musical pitch categories. The accuracy of pitch matching by non-AP musicians for chords has recently been shown to depend on stimulus familiarity, pointing to a role of spectral recognition mechanisms in the early stages of pitch processing. Here we show that pitch matching accuracy by AP musicians was also dependent on their familiarity with the chord stimulus. This suggests that the pitch matching abilities of both AP and non-AP musicians for concurrently presented pitches are dependent on initial recognition of the chord. The dual mechanism model of pitch perception previously proposed by the authors suggests that spectral processing associated with sound recognition primes waveform processing to extract stimulus periodicity and refine pitch perception. The findings presented in this paper are consistent with the dual mechanism model of pitch, and in the case of AP musicians, the formation of nominal pitch categories based on both spectral and periodicity information. PMID:24961624

  17. Recognizing stationary and locomotion activities using combinational of spectral analysis with statistical descriptors features

    NASA Astrophysics Data System (ADS)

    Zainudin, M. N. Shah; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran

    2017-10-01

    Prior knowledge in pervasive computing recently garnered a lot of attention due to its high demand in various application domains. Human activity recognition (HAR) considered as the applications that are widely explored by the expertise that provides valuable information to the human. Accelerometer sensor-based approach is utilized as devices to undergo the research in HAR since their small in size and this sensor already build-in in the various type of smartphones. However, the existence of high inter-class similarities among the class tends to degrade the recognition performance. Hence, this work presents the method for activity recognition using our proposed features from combinational of spectral analysis with statistical descriptors that able to tackle the issue of differentiating stationary and locomotion activities. The noise signal is filtered using Fourier Transform before it will be extracted using two different groups of features, spectral frequency analysis, and statistical descriptors. Extracted signal later will be classified using random forest ensemble classifier models. The recognition results show the good accuracy performance for stationary and locomotion activities based on USC HAD datasets.

  18. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users.

    PubMed

    Li, Tianhao; Fu, Qian-Jie

    2011-08-01

    (1) To investigate whether voice gender discrimination (VGD) could be a useful indicator of the spectral and temporal processing abilities of individual cochlear implant (CI) users; (2) To examine the relationship between VGD and speech recognition with CI when comparable acoustic cues are used for both perception processes. VGD was measured using two talker sets with different inter-gender fundamental frequencies (F(0)), as well as different acoustic CI simulations. Vowel and consonant recognition in quiet and noise were also measured and compared with VGD performance. Eleven postlingually deaf CI users. The results showed that (1) mean VGD performance differed for different stimulus sets, (2) VGD and speech recognition performance varied among individual CI users, and (3) individual VGD performance was significantly correlated with speech recognition performance under certain conditions. VGD measured with selected stimulus sets might be useful for assessing not only pitch-related perception, but also spectral and temporal processing by individual CI users. In addition to improvements in spectral resolution and modulation detection, the improvement in higher modulation frequency discrimination might be particularly important for CI users in noisy environments.

  19. The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ebert, Elizabeth

    1990-01-01

    The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than does a global choice of a visible and/or infrared threshold. The classification also prevents erroneous estimates of large fractional cloudiness in areas of cloudfree snow and sea ice. The hybrid histogram-spatial coherence technique and the advantages of first classifying a scene in the polar regions are detailed. The complete Polar Cloud Pilot Data Set was analyzed and the results are presented and discussed.

  20. Speech recognition against harmonic and inharmonic complexes: Spectral dips and periodicity

    PubMed Central

    Deroche, Mickael L. D.; Culling, John F.; Chatterjee, Monita; Limb, Charles J.

    2014-01-01

    Speech recognition in a complex masker usually benefits from masker harmonicity, but there are several factors at work. The present study focused on two of them, glimpsing spectrally in between masker partials and periodicity within individual frequency channels. Using both a theoretical and an experimental approach, it is demonstrated that when inharmonic complexes are generated by jittering partials from their harmonic positions, there are better opportunities for spectral glimpsing in inharmonic than in harmonic maskers, and this difference is enhanced as fundamental frequency (F0) increases. As a result, measurements of masking level difference between the two maskers can be reduced, particularly at higher F0s. Using inharmonic maskers that offer similar glimpsing opportunity to harmonic maskers, it was found that the masking level difference between the two maskers varied little with F0, was influenced by periodicity of the first four partials, and could occur in low-, mid-, or high-frequency regions. Overall, the present results suggested that both spectral glimpsing and periodicity contribute to speech recognition under masking by harmonic complexes, and these effects seem independent from one another. PMID:24815268

  1. Measuring the effects of spectral smearing and enhancement on speech recognition in noise for adults and children

    PubMed Central

    Nittrouer, Susan; Tarr, Eric; Wucinich, Taylor; Moberly, Aaron C.; Lowenstein, Joanna H.

    2015-01-01

    Broadened auditory filters associated with sensorineural hearing loss have clearly been shown to diminish speech recognition in noise for adults, but far less is known about potential effects for children. This study examined speech recognition in noise for adults and children using simulated auditory filters of different widths. Specifically, 5 groups (20 listeners each) of adults or children (5 and 7 yrs), were asked to recognize sentences in speech-shaped noise. Seven-year-olds listened at 0 dB signal-to-noise ratio (SNR) only; 5-yr-olds listened at +3 or 0 dB SNR; and adults listened at 0 or −3 dB SNR. Sentence materials were processed both to smear the speech spectrum (i.e., simulate broadened filters), and to enhance the spectrum (i.e., simulate narrowed filters). Results showed: (1) Spectral smearing diminished recognition for listeners of all ages; (2) spectral enhancement did not improve recognition, and in fact diminished it somewhat; and (3) interactions were observed between smearing and SNR, but only for adults. That interaction made age effects difficult to gauge. Nonetheless, it was concluded that efforts to diagnose the extent of broadening of auditory filters and to develop techniques to correct this condition could benefit patients with hearing loss, especially children. PMID:25920851

  2. Contribution of hearing aids to music perception by cochlear implant users.

    PubMed

    Peterson, Nathaniel; Bergeson, Tonya R

    2015-09-01

    Modern cochlear implant (CI) encoding strategies represent the temporal envelope of sounds well but provide limited spectral information. This deficit in spectral information has been implicated as a contributing factor to difficulty with speech perception in noisy conditions, discriminating between talkers and melody recognition. One way to supplement spectral information for CI users is by fitting a hearing aid (HA) to the non-implanted ear. In this study 14 postlingually deaf adults (half with a unilateral CI and the other half with a CI and an HA (CI + HA)) were tested on measures of music perception and familiar melody recognition. CI + HA listeners performed significantly better than CI-only listeners on all pitch-based music perception tasks. The CI + HA group did not perform significantly better than the CI-only group in the two tasks that relied on duration cues. Recognition of familiar melodies was significantly enhanced for the group wearing an HA in addition to their CI. This advantage in melody recognition was increased when melodic sequences were presented with the addition of harmony. These results show that, for CI recipients with aidable hearing in the non-implanted ear, using a HA in addition to their implant improves perception of musical pitch and recognition of real-world melodies.

  3. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis.

    PubMed

    Wang, Ting; Tan, Siow Ying; Mutilangi, William; Aykas, Didem P; Rodriguez-Saona, Luis E

    2015-10-01

    The objective of this study was to develop a simple and rapid method to differentiate whey protein types (WPC, WPI, and WPH) used for beverage manufacturing by combining the spectral signature collected from portable mid-infrared spectrometers and pattern recognition analysis. Whey protein powders from different suppliers are produced using a large number of processing and compositional variables, resulting in variation in composition, concentration, protein structure, and thus functionality. Whey protein powders including whey protein isolates, whey protein concentrates and whey protein hydrolysates were obtained from different suppliers and their spectra collected using portable mid-infrared spectrometers (single and triple reflection) by pressing the powder onto an Attenuated Total Reflectance (ATR) diamond crystal with a pressure clamp. Spectra were analyzed by soft independent modeling of class analogy (SIMCA) generating a classification model showing the ability to differentiate whey protein types by forming tight clusters with interclass distance values of >3, considered to be significantly different from each other. The major bands centered at 1640 and 1580 cm(-1) were responsible for separation and were associated with differences in amide I and amide II vibrations of proteins, respectively. Another important band in whey protein clustering was associated with carboxylate vibrations of acidic amino acids (∼1570 cm(-1)). The use of a portable mid-IR spectrometer combined with pattern recognition analysis showed potential for discriminating whey protein ingredients that can help to streamline the analytical procedure so that it is more applicable for field-based screening of ingredients. A rapid, simple and accurate method was developed to authenticate commercial whey protein products by using portable mid-infrared spectrometers combined with chemometrics, which could help ensure the functionality of whey protein ingredients in food applications. © 2015 Institute of Food Technologists®

  4. Speech Recognition in Noise by Children with and without Dyslexia: How is it Related to Reading?

    PubMed

    Nittrouer, Susan; Krieg, Letitia M; Lowenstein, Joanna H

    2018-06-01

    Developmental dyslexia is commonly viewed as a phonological deficit that makes it difficult to decode written language. But children with dyslexia typically exhibit other problems, as well, including poor speech recognition in noise. The purpose of this study was to examine whether the speech-in-noise problems of children with dyslexia are related to their reading problems, and if so, if a common underlying factor might explain both. The specific hypothesis examined was that a spectral processing disorder results in these children receiving smeared signals, which could explain both the diminished sensitivity to phonological structure - leading to reading problems - and the speech recognition in noise difficulties. The alternative hypothesis tested in this study was that children with dyslexia simply have broadly based language deficits. Ninety-seven children between the ages of 7 years; 10 months and 12 years; 9 months participated: 46 with dyslexia and 51 without dyslexia. Children were tested on two dependent measures: word reading and recognition in noise with two types of sentence materials: as unprocessed (UP) signals, and as spectrally smeared (SM) signals. Data were collected for four predictor variables: phonological awareness, vocabulary, grammatical knowledge, and digit span. Children with dyslexia showed deficits on both dependent and all predictor variables. Their scores for speech recognition in noise were poorer than those of children without dyslexia for both the UP and SM signals, but by equivalent amounts across signal conditions indicating that they were not disproportionately hindered by spectral distortion. Correlation analyses on scores from children with dyslexia showed that reading ability and speech-in-noise recognition were only mildly correlated, and each skill was related to different underlying abilities. No substantial evidence was found to support the suggestion that the reading and speech recognition in noise problems of children with dyslexia arise from a single factor that could be defined as a spectral processing disorder. The reading and speech recognition in noise deficits of these children appeared to be largely independent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. VALIDATION OF A CLINICAL ASSESSMENT OF SPECTRAL RIPPLE RESOLUTION FOR COCHLEAR-IMPLANT USERS

    PubMed Central

    Drennan, Ward. R.; Anderson, Elizabeth S.; Won, Jong Ho; Rubinstein, Jay T.

    2013-01-01

    Objectives Non-speech psychophysical tests of spectral resolution, such as the spectral-ripple discrimination task, have been shown to correlate with speech recognition performance in cochlear implant (CI) users (Henry et al., 2005; Won et al. 2007, 2011; Drennan et al. 2008; Anderson et al. 2011). However, these tests are best suited for use in the research laboratory setting and are impractical for clinical use. A test of spectral resolution that is quicker and could more easily be implemented in the clinical setting has been developed. The objectives of this study were 1) To determine if this new clinical ripple test would yield individual results equivalent to the longer, adaptive version of the ripple discrimination test; 2) To evaluate test-retest reliability for the clinical ripple measure; and 3) To examine the relationship between clinical ripple performance and monosyllabic word recognition in quiet for a group of CI listeners. Design Twenty-eight CI recipients participated in the study. Each subject was tested on both the adaptive and the clinical versions of spectral ripple discrimination, as well as CNC word recognition in quiet. The adaptive version of spectral ripple employed a 2-up, 1-down procedure for determining spectral ripple discrimination threshold. The clinical ripple test used a method of constant stimuli, with trials for each of 12 fixed ripple densities occurring six times in random order. Results from the clinical ripple test (proportion correct) were then compared to ripple discrimination thresholds (in ripples per octave) from the adaptive test. Results The clinical ripple test showed strong concurrent validity, evidenced by a good correlation between clinical ripple and adaptive ripple results (r=0.79), as well as a correlation with word recognition (r = 0.7). Excellent test-retest reliability was also demonstrated with a high test-retest correlation (r = 0.9). Conclusions The clinical ripple test is a reliable non-linguistic measure of spectral resolution, optimized for use with cochlear implant users in a clinical setting. The test might be useful as a diagnostic tool or as a possible surrogate outcome measure for evaluating treatment effects in hearing. PMID:24552679

  6. Application of Dynamic Logic Algorithm to Inverse Scattering Problems Related to Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Perlovsky, L.; Deming, R. W.; Sotnikov, V.

    2010-11-01

    In plasma diagnostics scattering of electromagnetic waves is widely used for identification of density and wave field perturbations. In the present work we use a powerful mathematical approach, dynamic logic (DL), to identify the spectra of scattered electromagnetic (EM) waves produced by the interaction of the incident EM wave with a Langmuir soliton in the presence of noise. The problem is especially difficult since the spectral amplitudes of the noise pattern are comparable with the amplitudes of the scattered waves. In the past DL has been applied to a number of complex problems in artificial intelligence, pattern recognition, and signal processing, resulting in revolutionary improvements. Here we demonstrate its application to plasma diagnostic problems. [4pt] Perlovsky, L.I., 2001. Neural Networks and Intellect: using model-based concepts. Oxford University Press, New York, NY.

  7. Face recognition system and method using face pattern words and face pattern bytes

    DOEpatents

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  8. Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke.

    PubMed

    Jiménez-Xarrié, Elena; Davila, Myriam; Candiota, Ana Paula; Delgado-Mederos, Raquel; Ortega-Martorell, Sandra; Julià-Sapé, Margarida; Arús, Carles; Martí-Fàbregas, Joan

    2017-01-13

    Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier. A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier ( http://gabrmn.uab.es/?q=sc ). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and mobile lipids (0.85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine (3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity). SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content).

  9. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children With Normal Hearing: A Replication and Extension of ).

    PubMed

    Roman, Adrienne S; Pisoni, David B; Kronenberger, William G; Faulkner, Kathleen F

    Noise-vocoded speech is a valuable research tool for testing experimental hypotheses about the effects of spectral degradation on speech recognition in adults with normal hearing (NH). However, very little research has utilized noise-vocoded speech with children with NH. Earlier studies with children with NH focused primarily on the amount of spectral information needed for speech recognition without assessing the contribution of neurocognitive processes to speech perception and spoken word recognition. In this study, we first replicated the seminal findings reported by ) who investigated effects of lexical density and word frequency on noise-vocoded speech perception in a small group of children with NH. We then extended the research to investigate relations between noise-vocoded speech recognition abilities and five neurocognitive measures: auditory attention (AA) and response set, talker discrimination, and verbal and nonverbal short-term working memory. Thirty-one children with NH between 5 and 13 years of age were assessed on their ability to perceive lexically controlled words in isolation and in sentences that were noise-vocoded to four spectral channels. Children were also administered vocabulary assessments (Peabody Picture Vocabulary test-4th Edition and Expressive Vocabulary test-2nd Edition) and measures of AA (NEPSY AA and response set and a talker discrimination task) and short-term memory (visual digit and symbol spans). Consistent with the findings reported in the original ) study, we found that children perceived noise-vocoded lexically easy words better than lexically hard words. Words in sentences were also recognized better than the same words presented in isolation. No significant correlations were observed between noise-vocoded speech recognition scores and the Peabody Picture Vocabulary test-4th Edition using language quotients to control for age effects. However, children who scored higher on the Expressive Vocabulary test-2nd Edition recognized lexically easy words better than lexically hard words in sentences. Older children perceived noise-vocoded speech better than younger children. Finally, we found that measures of AA and short-term memory capacity were significantly correlated with a child's ability to perceive noise-vocoded isolated words and sentences. First, we successfully replicated the major findings from the ) study. Because familiarity, phonological distinctiveness and lexical competition affect word recognition, these findings provide additional support for the proposal that several foundational elementary neurocognitive processes underlie the perception of spectrally degraded speech. Second, we found strong and significant correlations between performance on neurocognitive measures and children's ability to recognize words and sentences noise-vocoded to four spectral channels. These findings extend earlier research suggesting that perception of spectrally degraded speech reflects early peripheral auditory processes, as well as additional contributions of executive function, specifically, selective attention and short-term memory processes in spoken word recognition. The present findings suggest that AA and short-term memory support robust spoken word recognition in children with NH even under compromised and challenging listening conditions. These results are relevant to research carried out with listeners who have hearing loss, because they are routinely required to encode, process, and understand spectrally degraded acoustic signals.

  10. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children with Normal Hearing: A Replication and Extension of Eisenberg et al., 2002

    PubMed Central

    Roman, Adrienne S.; Pisoni, David B.; Kronenberger, William G.; Faulkner, Kathleen F.

    2016-01-01

    Objectives Noise-vocoded speech is a valuable research tool for testing experimental hypotheses about the effects of spectral-degradation on speech recognition in adults with normal hearing (NH). However, very little research has utilized noise-vocoded speech with children with NH. Earlier studies with children with NH focused primarily on the amount of spectral information needed for speech recognition without assessing the contribution of neurocognitive processes to speech perception and spoken word recognition. In this study, we first replicated the seminal findings reported by Eisenberg et al. (2002) who investigated effects of lexical density and word frequency on noise-vocoded speech perception in a small group of children with NH. We then extended the research to investigate relations between noise-vocoded speech recognition abilities and five neurocognitive measures: auditory attention and response set, talker discrimination and verbal and nonverbal short-term working memory. Design Thirty-one children with NH between 5 and 13 years of age were assessed on their ability to perceive lexically controlled words in isolation and in sentences that were noise-vocoded to four spectral channels. Children were also administered vocabulary assessments (PPVT-4 and EVT-2) and measures of auditory attention (NEPSY Auditory Attention (AA) and Response Set (RS) and a talker discrimination task (TD)) and short-term memory (visual digit and symbol spans). Results Consistent with the findings reported in the original Eisenberg et al. (2002) study, we found that children perceived noise-vocoded lexically easy words better than lexically hard words. Words in sentences were also recognized better than the same words presented in isolation. No significant correlations were observed between noise-vocoded speech recognition scores and the PPVT-4 using language quotients to control for age effects. However, children who scored higher on the EVT-2 recognized lexically easy words better than lexically hard words in sentences. Older children perceived noise-vocoded speech better than younger children. Finally, we found that measures of auditory attention and short-term memory capacity were significantly correlated with a child’s ability to perceive noise-vocoded isolated words and sentences. Conclusions First, we successfully replicated the major findings from the Eisenberg et al. (2002) study. Because familiarity, phonological distinctiveness and lexical competition affect word recognition, these findings provide additional support for the proposal that several foundational elementary neurocognitive processes underlie the perception of spectrally-degraded speech. Second, we found strong and significant correlations between performance on neurocognitive measures and children’s ability to recognize words and sentences noise-vocoded to four spectral channels. These findings extend earlier research suggesting that perception of spectrally-degraded speech reflects early peripheral auditory processes as well as additional contributions of executive function, specifically, selective attention and short-term memory processes in spoken word recognition. The present findings suggest that auditory attention and short-term memory support robust spoken word recognition in children with NH even under compromised and challenging listening conditions. These results are relevant to research carried out with listeners who have hearing loss, since they are routinely required to encode, process and understand spectrally-degraded acoustic signals. PMID:28045787

  11. LANDSAT and radar mapping of intrusive rocks in SE-Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Moreira, J. C.; Barbosa, M. P.; Veneziani, P.

    1982-01-01

    The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing.

  12. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users

    PubMed Central

    Li, Tianhao; Fu, Qian-Jie

    2013-01-01

    Objectives (1) To investigate whether voice gender discrimination (VGD) could be a useful indicator of the spectral and temporal processing abilities of individual cochlear implant (CI) users; (2) To examine the relationship between VGD and speech recognition with CI when comparable acoustic cues are used for both perception processes. Design VGD was measured using two talker sets with different inter-gender fundamental frequencies (F0), as well as different acoustic CI simulations. Vowel and consonant recognition in quiet and noise were also measured and compared with VGD performance. Study sample Eleven postlingually deaf CI users. Results The results showed that (1) mean VGD performance differed for different stimulus sets, (2) VGD and speech recognition performance varied among individual CI users, and (3) individual VGD performance was significantly correlated with speech recognition performance under certain conditions. Conclusions VGD measured with selected stimulus sets might be useful for assessing not only pitch-related perception, but also spectral and temporal processing by individual CI users. In addition to improvements in spectral resolution and modulation detection, the improvement in higher modulation frequency discrimination might be particularly important for CI users in noisy environments. PMID:21696330

  13. GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data.

    PubMed

    Carvalho, Paulo C; Fischer, Juliana Sg; Chen, Emily I; Domont, Gilberto B; Carvalho, Maria Gc; Degrave, Wim M; Yates, John R; Barbosa, Valmir C

    2009-02-24

    Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge. Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few. GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/patternlab.

  14. Short-Term EEG Spectral Pattern as a Single Event in EEG Phenomenology

    PubMed Central

    Fingelkurts, Al. A; Fingelkurts, An. A

    2010-01-01

    Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscillations. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out over extended periods of time and/or broad frequency bands, thus resulting in a “static” picture which cannot reflect adequately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the signal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive operations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the relations between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; (e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral patterns in accordance with the changes of brain functional state, cognitive task and with different neuropsychopathologies is demonstrated. PMID:21379390

  15. Pattern Recognition Using Artificial Neural Network: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, artificial neural network techniques theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system using ANN and identify research topics and applications which are at the forefront of this exciting and challenging field.

  16. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    ERIC Educational Resources Information Center

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  17. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  18. Understanding eye movements in face recognition using hidden Markov models.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.

  19. Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition.

    PubMed

    Schädler, Marc René; Kollmeier, Birger

    2015-04-01

    To test if simultaneous spectral and temporal processing is required to extract robust features for automatic speech recognition (ASR), the robust spectro-temporal two-dimensional-Gabor filter bank (GBFB) front-end from Schädler, Meyer, and Kollmeier [J. Acoust. Soc. Am. 131, 4134-4151 (2012)] was de-composed into a spectral one-dimensional-Gabor filter bank and a temporal one-dimensional-Gabor filter bank. A feature set that is extracted with these separate spectral and temporal modulation filter banks was introduced, the separate Gabor filter bank (SGBFB) features, and evaluated on the CHiME (Computational Hearing in Multisource Environments) keywords-in-noise recognition task. From the perspective of robust ASR, the results showed that spectral and temporal processing can be performed independently and are not required to interact with each other. Using SGBFB features permitted the signal-to-noise ratio (SNR) to be lowered by 1.2 dB while still performing as well as the GBFB-based reference system, which corresponds to a relative improvement of the word error rate by 12.8%. Additionally, the real time factor of the spectro-temporal processing could be reduced by more than an order of magnitude. Compared to human listeners, the SNR needed to be 13 dB higher when using Mel-frequency cepstral coefficient features, 11 dB higher when using GBFB features, and 9 dB higher when using SGBFB features to achieve the same recognition performance.

  20. Feature Selection on Hyperspectral Data for Dismount Skin Analysis

    DTIC Science & Technology

    2014-03-27

    19 2.4.1 Melanosome Estimation . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 Facial Recognition using...require compliant interaction in order to establish their identification. Previously, traditional facial recognition systems have been enhanced by HSI by...calculated as a fundamental method to differentiate between people [38]. In addition, the area of facial recognition has benefited from the rich spectral

  1. Discrete Wavelet Transform-Based Whole-Spectral and Subspectral Analysis for Improved Brain Tumor Clustering Using Single Voxel MR Spectroscopy.

    PubMed

    Yang, Guang; Nawaz, Tahir; Barrick, Thomas R; Howe, Franklyn A; Slabaugh, Greg

    2015-12-01

    Many approaches have been considered for automatic grading of brain tumors by means of pattern recognition with magnetic resonance spectroscopy (MRS). Providing an improved technique which can assist clinicians in accurately identifying brain tumor grades is our main objective. The proposed technique, which is based on the discrete wavelet transform (DWT) of whole-spectral or subspectral information of key metabolites, combined with unsupervised learning, inspects the separability of the extracted wavelet features from the MRS signal to aid the clustering. In total, we included 134 short echo time single voxel MRS spectra (SV MRS) in our study that cover normal controls, low grade and high grade tumors. The combination of DWT-based whole-spectral or subspectral analysis and unsupervised clustering achieved an overall clustering accuracy of 94.8% and a balanced error rate of 7.8%. To the best of our knowledge, it is the first study using DWT combined with unsupervised learning to cluster brain SV MRS. Instead of dimensionality reduction on SV MRS or feature selection using model fitting, our study provides an alternative method of extracting features to obtain promising clustering results.

  2. The bag-of-frames approach to audio pattern recognition: a sufficient model for urban soundscapes but not for polyphonic music.

    PubMed

    Aucouturier, Jean-Julien; Defreville, Boris; Pachet, François

    2007-08-01

    The "bag-of-frames" approach (BOF) to audio pattern recognition represents signals as the long-term statistical distribution of their local spectral features. This approach has proved nearly optimal for simulating the auditory perception of natural and human environments (or soundscapes), and is also the most predominent paradigm to extract high-level descriptions from music signals. However, recent studies show that, contrary to its application to soundscape signals, BOF only provides limited performance when applied to polyphonic music signals. This paper proposes to explicitly examine the difference between urban soundscapes and polyphonic music with respect to their modeling with the BOF approach. First, the application of the same measure of acoustic similarity on both soundscape and music data sets confirms that the BOF approach can model soundscapes to near-perfect precision, and exhibits none of the limitations observed in the music data set. Second, the modification of this measure by two custom homogeneity transforms reveals critical differences in the temporal and statistical structure of the typical frame distribution of each type of signal. Such differences may explain the uneven performance of BOF algorithms on soundscapes and music signals, and suggest that their human perception rely on cognitive processes of a different nature.

  3. Pattern activation/recognition theory of mind

    PubMed Central

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a “Pattern Recognition Theory of Mind” that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call “Pattern Activation/Recognition Theory of Mind.” While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation. PMID:26236228

  4. Pattern activation/recognition theory of mind.

    PubMed

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  5. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  6. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    PubMed Central

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  7. The role of temporal call structure in species recognition of male Allobates talamancae (Cope, 1875): (Anura: Dendrobatidae).

    PubMed

    Kollarits, Dennis; Wappl, Christian; Ringler, Max

    2017-01-30

    Acoustic species recognition in anurans depends on spectral and temporal characteristics of the advertisement call. The recognition space of a species is shaped by the likelihood of heterospecific acoustic interference. The dendrobatid frogs Allobates talamancae (Cope, 1875) and Silverstoneia flotator (Dunn, 1931) occur syntopically in south-west Costa Rica. A previous study showed that these two species avoid acoustic interference by spectral stratification. In this study, the role of the temporal call structure in the advertisement call of A. talamancae was analyzed, in particular the internote-interval duration in providing species specific temporal cues. In playback trials, artificial advertisement calls with internote-intervals deviating up to ± 90 % from the population mean internote-interval were broadcast to vocally active territorial males. The phonotactic reactions of the males indicated that, unlike in closely related species, internote-interval duration is not a call property essential for species recognition in A. talamancae . However, temporal call structure may be used for species recognition when the likelihood of heterospecific interference is high. Also, the close-encounter courtship call of male A. talamancae is described.

  8. Can unaided non-linguistic measures predict cochlear implant candidacy?

    PubMed Central

    Shim, Hyun Joon; Won, Jong Ho; Moon, Il Joon; Anderson, Elizabeth S.; Drennan, Ward R.; McIntosh, Nancy E.; Weaver, Edward M.; Rubinstein, Jay T.

    2014-01-01

    Objective To determine if unaided, non-linguistic psychoacoustic measures can be effective in evaluating cochlear implant (CI) candidacy. Study Design Prospective split-cohort study including predictor development subgroup and independent predictor validation subgroup. Setting Tertiary referral center. Subjects Fifteen subjects (28 ears) with hearing loss were recruited from patients visiting the University of Washington Medical Center for CI evaluation. Methods Spectral-ripple discrimination (using a 13-dB modulation depth) and temporal modulation detection using 10- and 100-Hz modulation frequencies were assessed with stimuli presented through insert earphones. Correlations between performance for psychoacoustic tasks and speech perception tasks were assessed. Receiver operating characteristic (ROC) curve analysis was performed to estimate the optimal psychoacoustic score for CI candidacy evaluation in the development subgroup and then tested in an independent sample. Results Strong correlations were observed between spectral-ripple thresholds and both aided sentence recognition and unaided word recognition. Weaker relationships were found between temporal modulation detection and speech tests. ROC curve analysis demonstrated that the unaided spectral ripple discrimination shows a good sensitivity, specificity, positive predictive value, and negative predictive value compared to the current gold standard, aided sentence recognition. Conclusions Results demonstrated that the unaided spectral-ripple discrimination test could be a promising tool for evaluating CI candidacy. PMID:24901669

  9. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    NASA Astrophysics Data System (ADS)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  10. The mapping of marsh vegetation using aircraft multispectral scanner data. [in Louisiana

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1975-01-01

    A test was conducted to determine if salinity regimes in coastal marshland could be mapped and monitored by the identification and classification of marsh vegetative species from aircraft multispectral scanner data. The data was acquired at 6.1 km (20,000 ft.) on October 2, 1974, over a test area in the coastal marshland of southern Louisiana including fresh, intermediate, brackish, and saline zones. The data was classified by vegetational species using a supervised, spectral pattern recognition procedure. Accuracies of training sites ranged from 67% to 96%. Marsh zones based on free soil water salinity were determined from the species classification to demonstrate a practical use for mapping marsh vegetation.

  11. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  12. An Analysis of Individual Differences in Recognizing Monosyllabic Words Under the Speech Intelligibility Index Framework

    PubMed Central

    Shen, Yi; Kern, Allison B.

    2018-01-01

    Individual differences in the recognition of monosyllabic words, either in isolation (NU6 test) or in sentence context (SPIN test), were investigated under the theoretical framework of the speech intelligibility index (SII). An adaptive psychophysical procedure, namely the quick-band-importance-function procedure, was developed to enable the fitting of the SII model to individual listeners. Using this procedure, the band importance function (i.e., the relative weights of speech information across the spectrum) and the link function relating the SII to recognition scores can be simultaneously estimated while requiring only 200 to 300 trials of testing. Octave-frequency band importance functions and link functions were estimated separately for NU6 and SPIN materials from 30 normal-hearing listeners who were naïve to speech recognition experiments. For each type of speech material, considerable individual differences in the spectral weights were observed in some but not all frequency regions. At frequencies where the greatest intersubject variability was found, the spectral weights were correlated between the two speech materials, suggesting that the variability in spectral weights reflected listener-originated factors. PMID:29532711

  13. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  14. On-chip learning of hyper-spectral data for real time target recognition

    NASA Technical Reports Server (NTRS)

    Duong, T. A.; Daud, T.; Thakoor, A.

    2000-01-01

    As the focus of our present paper, we have used the cascade error projection (CEP) learning algorithm (shown to be hardware-implementable) with on-chip learning (OCL) scheme to obtain three orders of magnitude speed-up in target recognition compared to software-based learning schemes. Thus, it is shown, real time learning as well as data processing for target recognition can be achieved.

  15. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  16. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  17. Heterogeneous sharpness for cross-spectral face recognition

    NASA Astrophysics Data System (ADS)

    Cao, Zhicheng; Schmid, Natalia A.

    2017-05-01

    Matching images acquired in different electromagnetic bands remains a challenging problem. An example of this type of comparison is matching active or passive infrared (IR) against a gallery of visible face images, known as cross-spectral face recognition. Among many unsolved issues is the one of quality disparity of the heterogeneous images. Images acquired in different spectral bands are of unequal image quality due to distinct imaging mechanism, standoff distances, or imaging environment, etc. To reduce the effect of quality disparity on the recognition performance, one can manipulate images to either improve the quality of poor-quality images or to degrade the high-quality images to the level of the quality of their heterogeneous counterparts. To estimate the level of discrepancy in quality of two heterogeneous images a quality metric such as image sharpness is needed. It provides a guidance in how much quality improvement or degradation is appropriate. In this work we consider sharpness as a relative measure of heterogeneous image quality. We propose a generalized definition of sharpness by first achieving image quality parity and then finding and building a relationship between the image quality of two heterogeneous images. Therefore, the new sharpness metric is named heterogeneous sharpness. Image quality parity is achieved by experimentally finding the optimal cross-spectral face recognition performance where quality of the heterogeneous images is varied using a Gaussian smoothing function with different standard deviation. This relationship is established using two models; one of them involves a regression model and the other involves a neural network. To train, test and validate the model, we use composite operators developed in our lab to extract features from heterogeneous face images and use the sharpness metric to evaluate the face image quality within each band. Images from three different spectral bands visible light, near infrared, and short-wave infrared are considered in this work. Both error of a regression model and validation error of a neural network are analyzed.

  18. Automated thematic mapping and change detection of ERTS-A images. [farmlands, cities, and mountain identification in Utah, Washington, Arizona, and California

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month, but vary substantially between seasons. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains, and urban areas. To eliminate the need for training data, a new clustering algorithm has been developed. Seven ERTS-1 images from four test sites have been processed through the clustering algorithm, and high recognition rates have been achieved for all terrain classes.

  19. Real Time Large Memory Optical Pattern Recognition.

    DTIC Science & Technology

    1984-06-01

    AD-Ri58 023 REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION(U) - h ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH DIRECTORATE D A GREGORY JUN...TECHNICAL REPORT RR-84-9 Ln REAL TIME LARGE MEMORY OPTICAL PATTERN RECOGNITION Don A. Gregory Research Directorate US Army Missile Laboratory JUNE 1984 L...RR-84-9 , ___/_ _ __ _ __ _ __ _ __"__ _ 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Real Time Large Memory Optical Pattern Technical

  20. Classification and machine recognition of severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1976-01-01

    Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.

  1. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  2. New Optical Transforms For Statistical Image Recognition

    NASA Astrophysics Data System (ADS)

    Lee, Sing H.

    1983-12-01

    In optical implementation of statistical image recognition, new optical transforms on large images for real-time recognition are of special interest. Several important linear transformations frequently used in statistical pattern recognition have now been optically implemented, including the Karhunen-Loeve transform (KLT), the Fukunaga-Koontz transform (FKT) and the least-squares linear mapping technique (LSLMT).1-3 The KLT performs principle components analysis on one class of patterns for feature extraction. The FKT performs feature extraction for separating two classes of patterns. The LSLMT separates multiple classes of patterns by maximizing the interclass differences and minimizing the intraclass variations.

  3. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  4. Feasibility study of spectral pattern recognition reveals distinct classes of volcanic tremor

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Jellinek, A. M.

    2017-04-01

    Systematic investigations of the similarities and differences among volcanic tremor at a range of volcano types may hold crucial information about the plausibility of inferred source mechanisms, which, in turn, may be important for eruption forecasting. However, such studies are rare, in part because of an intrinsic difficulty with identifying tremor signals within very long time series of volcano seismic data. Accordingly, we develop an efficient tremor detection algorithm and identify over 12,000h of volcanic tremor on 24 stations at Kīlauea, Okmok, Pavlof, and Redoubt volcanoes. We estimate spectral content over 5-minute tremor windows, and apply a novel combination of Principal Component Analysis (PCA) and hierarchical clustering to identify patterns in the tremor spectra. Analyzing several stations from a given volcano together reveals different styles of tremor within individual volcanic settings. In addition to identifying tremor properties common to all stations in a given network, we find localized tremor signals including those related to processes such as lahars or dike intrusions that are only observed on some of the stations within a network. Subsequent application of our analysis to a combination of stations from the different volcanoes reveals that at least three main tremor classes can be detected across all settings. Whereas a regime with a ridge of high power distributed over 1-2Hz and a gradual decay of spectral power towards higher frequencies is observed dominantly at three volcanoes (Kīlauea, Okmok, Redoubt) with magma reservoirs centered at less than 5km below sea level (b.s.l.), a spectrum with a steeper slope and a narrower peak at 1-2Hz is observed only in association with open vents (Kīlauea and Pavlof). A third regime with a peak at approximately 3Hz is confined to two stratovolcanoes (Pavlof and Redoubt). These observations suggest generic relationships between the spectral character of the observed signals and volcano characteristics such as magma viscosity, storage depths, and the physical properties of volcanic edifices. Similarities among the spectral patterns detected at stations 4km and 8-10km distance from the centers of volcanic activity, respectively, indicate that path effects do not strongly influence spectral shapes at distances of a few kilometers from the inferred source of the signals. Our preliminary work shows that a global comparison of tremor is feasible. Our results suggest that further work on data from a larger sample and diverse range of volcano types will reveal additional classes of tremor signals and plausibly identify fingerprints of source processes that are specific to volcano type, but independent of volcano location.

  5. The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.

    PubMed

    Marée, Raphaël

    2017-01-01

    Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.

  6. Pattern recognition: A basis for remote sensing data analysis

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1973-01-01

    The theoretical basis for the pattern-recognition-oriented algorithms used in the multispectral data analysis software system is discussed. A model of a general pattern recognition system is presented. The receptor or sensor is usually a multispectral scanner. For each ground resolution element the receptor produces n numbers or measurements corresponding to the n channels of the scanner.

  7. Optical Pattern Recognition With Self-Amplification

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  8. Melodic Contour Identification and Music Perception by Cochlear Implant Users

    PubMed Central

    Galvin, John J.; Fu, Qian-Jie; Shannon, Robert V.

    2013-01-01

    Research and outcomes with cochlear implants (CIs) have revealed a dichotomy in the cues necessary for speech and music recognition. CI devices typically transmit 16–22 spectral channels, each modulated slowly in time. This coarse representation provides enough information to support speech understanding in quiet and rhythmic perception in music, but not enough to support speech understanding in noise or melody recognition. Melody recognition requires some capacity for complex pitch perception, which in turn depends strongly on access to spectral fine structure cues. Thus, temporal envelope cues are adequate for speech perception under optimal listening conditions, while spectral fine structure cues are needed for music perception. In this paper, we present recent experiments that directly measure CI users’ melodic pitch perception using a melodic contour identification (MCI) task. While normal-hearing (NH) listeners’ performance was consistently high across experiments, MCI performance was highly variable across CI users. CI users’ MCI performance was significantly affected by instrument timbre, as well as by the presence of a competing instrument. In general, CI users had great difficulty extracting melodic pitch from complex stimuli. However, musically-experienced CI users often performed as well as NH listeners, and MCI training in less experienced subjects greatly improved performance. With fixed constraints on spectral resolution, such as it occurs with hearing loss or an auditory prosthesis, training and experience can provide a considerable improvements in music perception and appreciation. PMID:19673835

  9. Synthesis fidelity and time-varying spectral change in vowels

    NASA Astrophysics Data System (ADS)

    Assmann, Peter F.; Katz, William F.

    2005-02-01

    Recent studies have shown that synthesized versions of American English vowels are less accurately identified when the natural time-varying spectral changes are eliminated by holding the formant frequencies constant over the duration of the vowel. A limitation of these experiments has been that vowels produced by formant synthesis are generally less accurately identified than the natural vowels after which they are modeled. To overcome this limitation, a high-quality speech analysis-synthesis system (STRAIGHT) was used to synthesize versions of 12 American English vowels spoken by adults and children. Vowels synthesized with STRAIGHT were identified as accurately as the natural versions, in contrast with previous results from our laboratory showing identification rates 9%-12% lower for the same vowels synthesized using the cascade formant model. Consistent with earlier studies, identification accuracy was not reduced when the fundamental frequency was held constant across the vowel. However, elimination of time-varying changes in the spectral envelope using STRAIGHT led to a greater reduction in accuracy (23%) than was previously found with cascade formant synthesis (11%). A statistical pattern recognition model, applied to acoustic measurements of the natural and synthesized vowels, predicted both the higher identification accuracy for vowels synthesized using STRAIGHT compared to formant synthesis, and the greater effects of holding the formant frequencies constant over time with STRAIGHT synthesis. Taken together, the experiment and modeling results suggest that formant estimation errors and incorrect rendering of spectral and temporal cues by cascade formant synthesis contribute to lower identification accuracy and underestimation of the role of time-varying spectral change in vowels. .

  10. Discrimination of static and dynamic spectral patterns by children and young adults in relationship to speech perception in noise.

    PubMed

    Rayes, Hanin; Sheft, Stanley; Shafiro, Valeriy

    2014-01-01

    Past work has shown relationship between the ability to discriminate spectral patterns and measures of speech intelligibility. The purpose of this study was to investigate the ability of both children and young adults to discriminate static and dynamic spectral patterns, comparing performance between the two groups and evaluating within-group results in terms of relationship to speech-in-noise perception. Data were collected from normal-hearing children (age range: 5.4 - 12.8 yrs) and young adults (mean age: 22.8 yrs) on two spectral discrimination tasks and speech-in-noise perception. The first discrimination task, involving static spectral profiles, measured the ability to detect a change in the phase of a low-density sinusoidal spectral ripple of wideband noise. Using dynamic spectral patterns, the second task determined the signal-to-noise ratio needed to discriminate the temporal pattern of frequency fluctuation imposed by stochastic low-rate frequency modulation (FM). Children performed significantly poorer than young adults on both discrimination tasks. For children, a significant correlation between speech-in-noise perception and spectral-pattern discrimination was obtained only with the dynamic patterns of the FM condition, with partial correlation suggesting that factors related to the children's age mediated the relationship.

  11. Character Recognition Using Genetically Trained Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfidmore » recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of noise significantly degrades character recognition efficiency, some of which can be overcome by adding noise during training and optimizing the form of the network's activation fimction.« less

  12. Sonar Recognition Training: An Investigation of Whole VS. Part and Analytic VS. Synthetic Procedures.

    ERIC Educational Resources Information Center

    Annett, John

    An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…

  13. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  14. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  15. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  16. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  17. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.

  18. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  19. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-11-05

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  20. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  1. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Li

    2010-01-01

    We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.

  2. The recognition of graphical patterns invariant to geometrical transformation of the models

    NASA Astrophysics Data System (ADS)

    Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian

    2010-11-01

    In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.

  3. [Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species].

    PubMed

    Lin, Hai-jun; Zhang, Hui-fang; Gao, Ya-qi; Li, Xia; Yang, Fan; Zhou, Yan-fei

    2014-12-01

    The hyperspectral reflectance of Populus euphratica, Tamarix hispida, Haloxylon ammodendron and Calligonum mongolicum in the lower reaches of Tarim River and Turpan Desert Botanical Garden was measured by using the HR-768 field-portable spectroradiometer. The method of continuum removal, first derivative reflectance and second derivative reflectance were used to deal with the original spectral data of four tree species. The method of Mahalanobis Distance was used to select the bands with significant differences in the original spectral data and transform spectral data to identify the different tree species. The progressive discrimination analyses were used to test the selective bands used to identify different tree species. The results showed that The Mahalanobis Distance method was an effective method in feature band extraction. The bands for identifying different tree species were most near-infrared bands. The recognition accuracy of four methods was 85%, 93.8%, 92.4% and 95.5% respectively. Spectrum transform could improve the recognition accuracy. The recognition accuracy of different research objects and different spectrum transform methods were different. The research provided evidence for desert tree species classification, monitoring biodiversity and the analysis of area in desert by using large scale remote sensing method.

  4. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis].

    PubMed

    Yu, Shuang; Liu, Guo-hai; Xia, Rong-sheng; Jiang, Hui

    2016-01-01

    In order to achieve the rapid monitoring of process state of solid state fermentation (SSF), this study attempted to qualitative identification of process state of SSF of feed protein by use of Fourier transform near infrared (FT-NIR) spectroscopy analysis technique. Even more specifically, the FT-NIR spectroscopy combined with Adaboost-SRDA-NN integrated learning algorithm as an ideal analysis tool was used to accurately and rapidly monitor chemical and physical changes in SSF of feed protein without the need for chemical analysis. Firstly, the raw spectra of all the 140 fermentation samples obtained were collected by use of Fourier transform near infrared spectrometer (Antaris II), and the raw spectra obtained were preprocessed by use of standard normal variate transformation (SNV) spectral preprocessing algorithm. Thereafter, the characteristic information of the preprocessed spectra was extracted by use of spectral regression discriminant analysis (SRDA). Finally, nearest neighbors (NN) algorithm as a basic classifier was selected and building state recognition model to identify different fermentation samples in the validation set. Experimental results showed as follows: the SRDA-NN model revealed its superior performance by compared with other two different NN models, which were developed by use of the feature information form principal component analysis (PCA) and linear discriminant analysis (LDA), and the correct recognition rate of SRDA-NN model achieved 94.28% in the validation set. In this work, in order to further improve the recognition accuracy of the final model, Adaboost-SRDA-NN ensemble learning algorithm was proposed by integrated the Adaboost and SRDA-NN methods, and the presented algorithm was used to construct the online monitoring model of process state of SSF of feed protein. Experimental results showed as follows: the prediction performance of SRDA-NN model has been further enhanced by use of Adaboost lifting algorithm, and the correct recognition rate of the Adaboost-SRDA-NN model achieved 100% in the validation set. The overall results demonstrate that SRDA algorithm can effectively achieve the spectral feature information extraction to the spectral dimension reduction in model calibration process of qualitative analysis of NIR spectroscopy. In addition, the Adaboost lifting algorithm can improve the classification accuracy of the final model. The results obtained in this work can provide research foundation for developing online monitoring instruments for the monitoring of SSF process.

  5. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  6. Incipient failure detection (IFD) of SSME ball bearings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Because of the immense noise background during the operation of a large engine such as the SSME, the relatively low level unique ball bearing signatures were often buried by the overall machine signal. As a result, the most commonly used bearing failure detection technique, pattern recognition using power spectral density (PSD) constructed from the extracted bearing signals, is rendered useless. Data enhancement techniques were carried out by using a HP5451C Fourier Analyzer. The signal was preprocessed by a Digital Audio Crop. DAC-1024I noise cancelling filter in order to estimate the desired signal corrupted by the backgound noise. Reference levels of good bearings were established. Any deviation of bearing signals from these reference levels indicate the incipient bearing failures.

  7. Geometric aspects in digital analysis of Multi-Spectral Scanner (MSS) data

    NASA Technical Reports Server (NTRS)

    Mikhail, E. M.; Baker, J. R.

    1973-01-01

    Present automated systems of interpretation which apply pattern recognition techniques on MSS data do not fully consider the geometry of the acquisition system. In an effort to improve the usefulness of the MSS data when digitally treated, geometric aspects are analyzed and discussed. Attempts to correct for scanner instabilities in position and orientation by affine and polynomial transformations, as well as by modified collinearity equations are described. Methods of accounting for panoramic and relief effects are also discussed. It is anticipated that reliable area as well as position determinations can be accomplished during the process of automatic interpretation. A concept for a unified approach to the treatment of remote sensing data, both metric and nonmetric is presented.

  8. Automated thematic mapping and change detection of ERTS-A images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.

  9. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements

    PubMed Central

    2014-01-01

    Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks. PMID:24410948

  10. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  11. Integrative two-dimensional correlation spectroscopy (i2DCOS) for the intuitive identification of adulterated herbal materials

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo; Wang, Yue; Rong, Lixin; Wang, Jingjuan

    2018-07-01

    IR, Raman and other separation-free and label-free spectroscopic techniques have been the promising methods for the rapid and low-cost quality control of complex mixtures such as food and herb. However, as the overlapped signals from different ingredients usually make it difficult to extract useful information, chemometrics tools are often needed to find out spectral features of interest. With designed perturbations, two-dimensional correlation spectroscopy (2DCOS) is a powerful technique to resolve the overlapped spectral bands and enhance the apparent spectral resolution. In this research, the integrative two-dimensional correlation spectroscopy (i2DCOS) is defined for the first time overcome some disadvantages of synchronous and asynchronous correlation spectra for identification. The integrative 2D correlation spectra weight the asynchronous cross peaks by the corresponding synchronous cross peaks, which combines the signal-to-noise ratio advantage of synchronous correlation spectra and the spectral resolution advantage of asynchronous correlation spectra. The feasibility of the integrative 2D correlation spectra for the quality control of complex mixtures is examined by the identification of adulterated Fritillariae Bulbus powders. Compared with model-based pattern recognition and multivariate calibration methods, i2DCOS can provide intuitive identification results but not require the number of samples. The results show the potential of i2DCOS in the intuitive quality control of herbs and other complex mixtures, especially when the number of samples is not large.

  12. Digital signal processing of the phonocardiogram: review of the most recent advancements.

    PubMed

    Durand, L G; Pibarot, P

    1995-01-01

    The objective of the present paper is to provide a detailed review of the most recent developments in instrumentation and signal processing of digital phonocardiography and heart auscultation. After a short introduction, the paper presents a brief history of heart auscultation and phonocardiography, which is followed by a summary of the basic theories and controversies regarding the genesis of the heart sounds. The application of spectral analysis and the potential of new time-frequency representations and cardiac acoustic mapping to resolve the controversies and better understand the genesis and transmission of heart sounds and murmurs within the heart-thorax acoustic system are reviewed. The most recent developments in the application of linear predictive coding, spectral analysis, time-frequency representation techniques, and pattern recognition for the detection and follow-up of native and prosthetic valve degeneration and dysfunction are also presented in detail. New areas of research and clinical applications and areas of potential future developments are then highlighted. The final section is a discussion about a multidegree of freedom theory on the origin of the heart sounds and murmurs, which is completed by the authors' conclusion.

  13. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves

    PubMed Central

    Guo, Xiali; Cui, Meng; Deng, Min; Liu, Xingxing; Huang, Xueyong; Zhang, Xinglei; Luo, Liping

    2017-01-01

    Five chemotypes, the isoborneol-type, camphora-type, cineole-type, linalool-type and borneol-type of Cinnamomum camphora (L.) Presl have been identified at the molecular level based on the multivariate analysis of mass spectral fingerprints recorded from a total of 750 raw leaf samples (i.e., 150 leaves equally collected for each chemotype) using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Both volatile and semi-volatile metabolites of the fresh leaves of C. camphora were simultaneously detected by DAPCI-MS without any sample pretreatment, reducing the analysis time from half a day using conventional methods (e.g., GC-MS) down to 30 s. The pattern recognition results obtained using principal component analysis (PCA) was cross-checked by cluster analysis (CA), showing that the difference visualized by the DAPCI-MS spectral fingerprints was validated with 100% accuracy. The study demonstrates that DAPCI-MS meets the challenging requirements for accurate differentiation of all the five chemotypes of C. camphora leaves, motivating more advanced application of DAPCI-MS in plant science and forestry studies. PMID:28425482

  14. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  15. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    NASA Astrophysics Data System (ADS)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  16. Significance of parametric spectral ratio methods in detection and recognition of whispered speech

    NASA Astrophysics Data System (ADS)

    Mathur, Arpit; Reddy, Shankar M.; Hegde, Rajesh M.

    2012-12-01

    In this article the significance of a new parametric spectral ratio method that can be used to detect whispered speech segments within normally phonated speech is described. Adaptation methods based on the maximum likelihood linear regression (MLLR) are then used to realize a mismatched train-test style speech recognition system. This proposed parametric spectral ratio method computes a ratio spectrum of the linear prediction (LP) and the minimum variance distortion-less response (MVDR) methods. The smoothed ratio spectrum is then used to detect whispered segments of speech within neutral speech segments effectively. The proposed LP-MVDR ratio method exhibits robustness at different SNRs as indicated by the whisper diarization experiments conducted on the CHAINS and the cell phone whispered speech corpus. The proposed method also performs reasonably better than the conventional methods for whisper detection. In order to integrate the proposed whisper detection method into a conventional speech recognition engine with minimal changes, adaptation methods based on the MLLR are used herein. The hidden Markov models corresponding to neutral mode speech are adapted to the whispered mode speech data in the whispered regions as detected by the proposed ratio method. The performance of this method is first evaluated on whispered speech data from the CHAINS corpus. The second set of experiments are conducted on the cell phone corpus of whispered speech. This corpus is collected using a set up that is used commercially for handling public transactions. The proposed whisper speech recognition system exhibits reasonably better performance when compared to several conventional methods. The results shown indicate the possibility of a whispered speech recognition system for cell phone based transactions.

  17. Basics of identification measurement technology

    NASA Astrophysics Data System (ADS)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  18. Metric learning with spectral graph convolutions on brain connectivity networks.

    PubMed

    Ktena, Sofia Ira; Parisot, Sarah; Ferrante, Enzo; Rajchl, Martin; Lee, Matthew; Glocker, Ben; Rueckert, Daniel

    2018-04-01

    Graph representations are often used to model structured data at an individual or population level and have numerous applications in pattern recognition problems. In the field of neuroscience, where such representations are commonly used to model structural or functional connectivity between a set of brain regions, graphs have proven to be of great importance. This is mainly due to the capability of revealing patterns related to brain development and disease, which were previously unknown. Evaluating similarity between these brain connectivity networks in a manner that accounts for the graph structure and is tailored for a particular application is, however, non-trivial. Most existing methods fail to accommodate the graph structure, discarding information that could be beneficial for further classification or regression analyses based on these similarities. We propose to learn a graph similarity metric using a siamese graph convolutional neural network (s-GCN) in a supervised setting. The proposed framework takes into consideration the graph structure for the evaluation of similarity between a pair of graphs, by employing spectral graph convolutions that allow the generalisation of traditional convolutions to irregular graphs and operates in the graph spectral domain. We apply the proposed model on two datasets: the challenging ABIDE database, which comprises functional MRI data of 403 patients with autism spectrum disorder (ASD) and 468 healthy controls aggregated from multiple acquisition sites, and a set of 2500 subjects from UK Biobank. We demonstrate the performance of the method for the tasks of classification between matching and non-matching graphs, as well as individual subject classification and manifold learning, showing that it leads to significantly improved results compared to traditional methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Pattern recognition neural-net by spatial mapping of biology visual field

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  20. First results from the spectral DCT trigger implemented in the Cyclone V Front-End Board used for a detection of very inclined showers in the Pierre Auger surface detector Engineering Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szadkowski, Zbigniew

    2015-07-01

    The paper presents the first results from the trigger based on the Discrete Cosine Transform (DCT) operating in the new Front-End Boards with Cyclone V FPGA deployed in 8 test surface detectors in the Pierre Auger Engineering Array. The patterns of the ADC traces generated by very inclined showers were obtained from the Auger database and from the CORSIKA simulation package supported next by Offline reconstruction Auger platform which gives a predicted digitized signal profiles. Simulations for many variants of the initial angle of shower, initialization depth in the atmosphere, type of particle and its initial energy gave a boundarymore » of the DCT coefficients used next for the on-line pattern recognition in the FPGA. Preliminary results have proven a right approach. We registered several showers triggered by the DCT for 120 MSps and 160 MSps. (authors)« less

  1. Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis

    NASA Astrophysics Data System (ADS)

    Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.

    2013-06-01

    Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.

  2. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  3. 33 CFR 106.215 - Company or OCS facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate: (a) Knowledge of current and anticipated security threats and patterns. (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Recognition of techniques used to circumvent security...

  4. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  5. Method for automatic detection of wheezing in lung sounds.

    PubMed

    Riella, R J; Nohama, P; Maia, J M

    2009-07-01

    The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.

  6. Rapid Release From Listening Effort Resulting From Semantic Context, and Effects of Spectral Degradation and Cochlear Implants

    PubMed Central

    2016-01-01

    People with hearing impairment are thought to rely heavily on context to compensate for reduced audibility. Here, we explore the resulting cost of this compensatory behavior, in terms of effort and the efficiency of ongoing predictive language processing. The listening task featured predictable or unpredictable sentences, and participants included people with cochlear implants as well as people with normal hearing who heard full-spectrum/unprocessed or vocoded speech. The crucial metric was the growth of the pupillary response and the reduction of this response for predictable versus unpredictable sentences, which would suggest reduced cognitive load resulting from predictive processing. Semantic context led to rapid reduction of listening effort for people with normal hearing; the reductions were observed well before the offset of the stimuli. Effort reduction was slightly delayed for people with cochlear implants and considerably more delayed for normal-hearing listeners exposed to spectrally degraded noise-vocoded signals; this pattern of results was maintained even when intelligibility was perfect. Results suggest that speed of sentence processing can still be disrupted, and exertion of effort can be elevated, even when intelligibility remains high. We discuss implications for experimental and clinical assessment of speech recognition, in which good performance can arise because of cognitive processes that occur after a stimulus, during a period of silence. Because silent gaps are not common in continuous flowing speech, the cognitive/linguistic restorative processes observed after sentences in such studies might not be available to listeners in everyday conversations, meaning that speech recognition in conventional tests might overestimate sentence-processing capability. PMID:27698260

  7. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  8. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  9. ICPR-2016 - International Conference on Pattern Recognition

    Science.gov Websites

    Learning for Scene Understanding" Speakers ICPR2016 PAPER AWARDS Best Piero Zamperoni Student Paper -Paced Dictionary Learning for Cross-Domain Retrieval and Recognition Xu, Dan; Song, Jingkuan; Alameda discussions on recent advances in the fields of Pattern Recognition, Machine Learning and Computer Vision, and

  10. The Spatial Vision Tree: A Generic Pattern Recognition Engine- Scientific Foundations, Design Principles, and Preliminary Tree Design

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2010-01-01

    New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.

  11. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    NASA Astrophysics Data System (ADS)

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  12. Computer discrimination procedures applicable to aerial and ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Torline, R. J.; Allen, W. A.

    1970-01-01

    Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.

  13. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  14. Sub-pattern based multi-manifold discriminant analysis for face recognition

    NASA Astrophysics Data System (ADS)

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  15. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  16. Pattern association--a key to recognition of shark attacks.

    PubMed

    Cirillo, G; James, H

    2004-12-01

    Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.

  17. Quantitative methods and detection techniques in hyperspectral imaging involving medical and other applications

    NASA Astrophysics Data System (ADS)

    Roy, Ankita

    2007-12-01

    This research using Hyperspectral imaging involves recognizing targets through spatial and spectral matching and spectral un-mixing of data ranging from remote sensing to medical imaging kernels for clinical studies based on Hyperspectral data-sets generated using the VFTHSI [Visible Fourier Transform Hyperspectral Imager], whose high resolution Si detector makes the analysis achievable. The research may be broadly classified into (I) A Physically Motivated Correlation Formalism (PMCF), which places both spatial and spectral data on an equivalent mathematical footing in the context of a specific Kernel and (II) An application in RF plasma specie detection during carbon nanotube growing process. (III) Hyperspectral analysis for assessing density and distribution of retinopathies like age related macular degeneration (ARMD) and error estimation enabling the early recognition of ARMD, which is treated as an ill-conditioned inverse imaging problem. The broad statistical scopes of this research are two fold-target recognition problems and spectral unmixing problems. All processes involve experimental and computational analysis of Hyperspectral data sets is presented, which is based on the principle of a Sagnac Interferometer, calibrated to obtain high SNR levels. PMCF computes spectral/spatial/cross moments and answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required precisely for a particular target recognition. Spectral analysis of RF plasma radicals, typically Methane plasma and Argon plasma using VFTHSI has enabled better process monitoring during growth of vertically aligned multi-walled carbon nanotubes by instant registration of the chemical composition or density changes temporally, which is key since a significant correlation can be found between plasma state and structural properties. A vital focus of this dissertation is towards medical Hyperspectral imaging applied to retinopathies like age related macular degeneration targets taken with a Fundus imager, which is akin to the VFTHSI. Detection of the constituent components in the diseased hyper-pigmentation area is also computed. The target or reflectance matrix is treated as a highly ill-conditioned spectral un-mixing problem, to which methodologies like inverse techniques, principal component analysis (PCA) and receiver operating curves (ROC) for precise spectral recognition of infected area. The region containing ARMD was easily distinguishable from the spectral mesh plots over the entire band-pass area. Once the location was detected the PMCF coefficients were calculated by cross correlating a target of normal oxygenated retina with the deoxygenated one. The ROCs generated using PMCF shows 30% higher detection probability with improved accuracy than ROCs based on Spectral Angle Mapper (SAM). By spectral unmixing methods, the important endmembers/carotenoids of the MD pigment were found to be Xanthophyl and lutein, while beta-carotene which showed a negative correlation in the unconstrained inverse problem is a supplement given to ARMD patients to prevent the disease and does not occur in the eye. Literature also shows degeneration of meso-zeaxanthin. Ophthalmologists may assert the presence of ARMD and commence the diagnosis process if the Xanthophyl pigment have degenerated 89.9%, while the lutein has decayed almost 80%, as found deduced computationally. This piece of current research takes it to the next level of precise investigation in the continuing process of improved clinical findings by correlating the microanatomy of the diseased fovea and shows promise of an early detection of this disease.

  18. Structure elucidation of organic compounds aided by the computer program system SCANNET

    NASA Astrophysics Data System (ADS)

    Guzowska-Swider, B.; Hippe, Z. S.

    1992-12-01

    Recognition of chemical structure is a very important problem currently solved by molecular spectroscopy, particularly IR, UV, NMR and Raman spectroscopy, and mass spectrometry. Nowadays, solution of the problem is frequently aided by the computer. SCANNET is a computer program system for structure elucidation of organic compounds, developed by our group. The structure recognition of an unknown substance is made by comparing its spectrum with successive reference spectra of standard compounds, i.e. chemical compounds of known chemical structure, stored in a spectral database. The computer program system SCANNET consists of six different spectral databases for following the analytical methods: IR, UV, 13C-NMR, 1H-NMR and Raman spectroscopy, and mass spectrometry. A chemist, to elucidate a structure, can use one of these spectral methods or a combination of them and search the appropriate databases. As the result of searching each spectral database, the user obtains a list of chemical substances whose spectra are identical and/or similar to the spectrum input into the computer. The final information obtained from searching the spectral databases is in the form of a list of chemical substances having all the examined spectra, for each type of spectroscopy, identical or simlar to those of the unknown compound.

  19. All Cues Are Not Created Equal: The Case for Facilitating the Acquisition of Typical Weighting Strategies in Children With Hearing Loss

    PubMed Central

    Nittrouer, Susan

    2015-01-01

    Purpose One task of childhood involves learning to optimally weight acoustic cues in the speech signal in order to recover phonemic categories. This study examined the extent to which spectral degradation, as associated with cochlear implants, might interfere. The 3 goals were to measure, for adults and children, (a) cue weighting with spectrally degraded signals, (b) sensitivity to degraded cues, and (c) word recognition for degraded signals. Method Twenty-three adults and 36 children (10 and 8 years old) labeled spectrally degraded stimuli from /bɑ/-to-/wɑ/ continua varying in formant and amplitude rise time (FRT and ART). They also discriminated degraded stimuli from FRT and ART continua, and recognized words. Results A developmental increase in the weight assigned to FRT in labeling was clearly observed, with a slight decrease in weight assigned to ART. Sensitivity to these degraded cues measured by the discrimination task could not explain variability in cue weighting. FRT cue weighting explained significant variability in word recognition; ART cue weighting did not. Conclusion Spectral degradation affects children more than adults, but that degradation cannot explain the greater diminishment in children's weighting of FRT. It is suggested that auditory training could strengthen the weighting of spectral cues for implant recipients. PMID:25611214

  20. Recognition vs Reverse Engineering in Boolean Concepts Learning

    ERIC Educational Resources Information Center

    Shafat, Gabriel; Levin, Ilya

    2012-01-01

    This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…

  1. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    PubMed

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  2. Finger vein recognition based on personalized weight maps.

    PubMed

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-09-10

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition.

  3. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  4. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  5. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  6. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  7. Characterization of Cryptosporidium parvum by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Magnuson, Matthew L.; Owens, James H.; Kelty, Catherine A.

    2000-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used to investigate whole and freeze-thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtained after the oocysts were lysed with a freeze-thaw procedure. Spectral-marker patterns for C. parvum were distinguishable from those obtained for Cryptosporidium muris. One spectral marker appears specific for the genus, while others appear specific at the species level. Three different C. parvum lots were investigated, and similar spectral markers were observed in each. Disinfection of the oocysts reduced and/or eliminated the patterns of spectral markers. PMID:11055915

  8. A comparison of digital multi-spectral imagery versus conventional photography for mapping seagrass in Indian River Lagoon, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virnstein, R.; Tepera, M.; Beazley, L.

    1997-06-01

    A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less

  9. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    USDA-ARS?s Scientific Manuscript database

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  10. Memory and neural networks on the basis of color centers in solids.

    PubMed

    Winnacker, Albrecht; Osvet, Andres

    2009-11-01

    Optical data recording is one of the most widely used and efficient systems of memory in the non-living world. The application of color centers in this context offers not only systems of high speed in writing and read-out due to a high degree of parallelism in data handling but also a possibility to set up models of neural networks. In this way, systems with a high potential for image processing, pattern recognition and logical operations can be constructed. A limitation to storage density is given by the diffraction limit of optical data recording. It is shown that this limitation can at least in principle be overcome by the principle of spectral hole burning, which results in systems of storage capacities close to the human brain system.

  11. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  12. 33 CFR 104.210 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... threats and patterns; (ix) Recognition and detection of dangerous substances and devices; (x) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (xi...

  13. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  14. Toward the characterization of biological toxins using field-based FT-IR spectroscopic instrumentation

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James

    2004-12-01

    IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.

  15. Digital filtering implementations for the detection of broad spectral features by direct analysis of passive Fourier transform infrared interferograms.

    PubMed

    Tarumi, Toshiyasu; Small, Gary W; Combs, Roger J; Kroutil, Robert T

    2004-04-01

    Finite impulse response (FIR) filters and finite impulse response matrix (FIRM) filters are evaluated for use in the detection of volatile organic compounds with wide spectral bands by direct analysis of interferogram data obtained from passive Fourier transform infrared (FT-IR) measurements. Short segments of filtered interferogram points are classified by support vector machines (SVMs) to implement the automated detection of heated plumes of the target analyte, ethanol. The interferograms employed in this study were acquired with a downward-looking passive FT-IR spectrometer mounted on a fixed-wing aircraft. Classifiers are trained with data collected on the ground and subsequently used for the airborne detection. The success of the automated detection depends on the effective removal of background contributions from the interferogram segments. Removing the background signature is complicated when the analyte spectral bands are broad because there is significant overlap between the interferogram representations of the analyte and background. Methods to implement the FIR and FIRM filters while excluding background contributions are explored in this work. When properly optimized, both filtering procedures provide satisfactory classification results for the airborne data. Missed detection rates of 8% or smaller for ethanol and false positive rates of at most 0.8% are realized. The optimization of filter design parameters, the starting interferogram point for filtering, and the length of the interferogram segments used in the pattern recognition is discussed.

  16. Optical Pattern Recognition for Missile Guidance.

    DTIC Science & Technology

    1982-11-15

    directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec

  17. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations.

    PubMed

    Berenstein, Carlo K; Mens, Lucas H M; Mulder, Jef J S; Vanpoucke, Filiep J

    2008-04-01

    To compare the effects of Monopole (Mono), Tripole (Tri), and "Virtual channel" (Vchan) electrode configurations on spectral resolution and speech perception in a crossover design. Nine experienced adults who received an Advanced Bionics CII/90K cochlear implant participated in a crossover design using three experimental strategies for 2 wk each. Three strategies were compared: (1) Mono; (2) Tri with current partly returning to adjacent electrodes and partly (25 or 75%) to the extracochlear reference; and (3) a monopolar "Vchan" strategy creating seven intermediate channels between two contacts. Each strategy was a variant of the standard "HiRes" processing strategy using 14 channels and 1105 pulses/sec/ channel, and a pulse duration of 32 microsec/phase. Spectral resolution was measured using broadband noise with a sinusoidally rippled spectral envelope with peaks evenly spaced on a logarithmic frequency scale. Speech perception was measured for monosyllables in quiet and in steady-state and fluctuating noises. Subjective comments on music experience and preferences in everyday use were assessed through questionnaires. Thresholds and most comfortable levels with Mono and Vchan were both significantly lower than levels with Tri. Spectral resolution was significantly higher with Tri than with Mono; spectral resolution with Vchan did not differ significantly from the other configurations. Moderate but significant correlations between word recognition and spectral resolution were found in speech in quiet and fluctuating noise. For speech in quiet, word recognition was best with Mono and worst with Vchan; Tri did not significantly differ from the other configurations. Pooled across the noise conditions, word recognition was best with Tri and worst with Vchan (Mono did not significantly differ from the other configurations). These differences were small and insufficient to result in a clear increase in performance across subjects if the result from the best configuration per subject was compared with the result from Mono. Across all subjects, music appreciation and satisfaction in everyday use did not clearly differ between configurations. (1) Although spectral resolution was improved with the tripolar configuration, differences in speech performance were too small in this limited group of subjects to justify clinical introduction. (2) Overall spectral resolution remained extremely poor compared with normal hearing; it remains to be seen whether further manipulations of the electrical field will be more effective.

  18. Recognition as Support for Reasoning about Horizontal Motion: A Further Resource for School Science?

    ERIC Educational Resources Information Center

    Howe, Christine; Taylor Tavares, Joana; Devine, Amy

    2016-01-01

    Background: Even infants can recognize whether patterns of motion are or are not natural, yet an acknowledged challenge for science education is to promote adequate reasoning about such patterns. Since research indicates linkage between the conceptual bases of recognition and reasoning, it seems possible that recognition can be engaged to support…

  19. Cultural and environmental influences on temporal-spectral development patterns of corn and soybeans

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    A technique for evaluating crop temporal-spectral development patterns is described and applied to the analysis of cropping practices and environmental conditions as they affect reflectance characteristics of corn and soybean canopies. Typical variations in field conditions are shown to exert significant influences on the spectral development patterns, and thereby to affect the separability of the two crops.

  20. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  1. 33 CFR 105.210 - Facility personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely...

  2. Pattern Recognition in Optical Remote Sensing Data Processing

    NASA Astrophysics Data System (ADS)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for particular forest species and age are embedded. This permits us to calculate the relationships between the registered radiances and the biomass densities (the direct problem of atmospheric optics). The next stage is to find solutions of this problem as cross-sections of the related curves in the multi-dimensional space given by the parameters of these models (the inverse problem). The typical solutions may not be mathematically unique and the computational procedure is undertaken to their regularization by finding minima of the functional called “the energy for the particular class of forests”. The relevant optimization procedures serve to identify the likelihood between any registered set of data and the theoretical distributions as well as to regularize the solution by employing the derivative functions characterizing the neighborhood of the pixels for the related classes. As a result, we have elaborated a rigorous approach to optimize spectral channels based on searching their most informative sets by combining the channels and finding correlations between them. A successive addition method is used with the calculation of the total probability error. The step up method consists in fixing the level of the probability error that is not improved by further adding the channels in the calculation scheme of the pattern recognition. The best distinguishable classes are recognized at the first stage of this procedure. The analytical technique called “cross-validation” is used at its second stage. This procedure is in removing some data before the classifier training begins employing, for instance, the known “leaving-out-one” strategy. This strategy serves to explain the accuracy category additionally to the standard confusion matrix between the modeling approach and the available ground-based observations, once the employed validation map may not be perfect or needs renewal. Such cross-validation carried out for ensembles of airborne data from the imaging spectrometer produced in Russia enables to conclude that the forest classes on a test area are separated with high accuracy. The proposed approach is recommended to account for the needed set of ground-based measurements during field campaigns for the validation purposes of remote sensing data processing and for the retrieval procedures of such parameters of forests like Net Primary Productivity with an ensured accuracy that results from the described here computational procedures.

  3. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  4. The effect of spectral smearing on the identification of pure F0 intonation contours in vocoder simulations of cochlear implants.

    PubMed

    van de Velde, Daan J; Dritsakis, Giorgos; Frijns, Johan H M; van Heuven, Vincent J; Schiller, Niels O

    2015-03-01

    Performance of cochlear implant (CI) users on linguistic intonation recognition is poorer than that of normal-hearing listeners, due to the limited spectral detail provided by the implant. A higher spectral resolution is provided by narrow rather than by broad filter slopes. The corresponding effect of the filter slope on the identification of linguistic intonation conveyed by pitch movements alone was tested using vocoder simulations. Re-synthesized intonation variants of naturally produced phrases were processed by a 15-channel noise vocoder using a narrow (40 dB/octave) and a broad (20 dB/octave) filter slope. There were three different intonation patterns (rise/fall/rise-fall), differentiated purely by pitch and each associated to a different meaning. In both slope conditions as well as a condition with unprocessed stimuli, 24 normally hearing Dutch adults listened to a phrase, indicating which of two meanings was associated to it (i.e. a counterbalanced selection of two of the three contours). As expected, performance for the unprocessed stimuli was better than for the vocoded stimuli. No overall difference between the filter conditions was found. These results are taken to indicate that neither the narrow (20 dB/octave) nor the shallow (40 dB/octave) slope provide enough spectral detail to identify pure F(0) intonation contours. For users of a certain class of CIs, results could imply that their intonation perception would not benefit from steeper slopes. For them, perception of pitch movements in language requires more extreme filter slopes, more electrodes, and/or additional (phonetic/contextual) cues.

  5. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  6. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  7. Repetition and lag effects in movement recognition.

    PubMed

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  8. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Speech Recognition with the Advanced Combination Encoder and Transient Emphasis Spectral Maxima Strategies in Nucleus 24 Recipients

    ERIC Educational Resources Information Center

    Holden, Laura K.; Vandali, Andrew E.; Skinner, Margaret W.; Fourakis, Marios S.; Holden, Timothy A.

    2005-01-01

    One of the difficulties faced by cochlear implant (CI) recipients is perception of low-intensity speech cues. A. E. Vandali (2001) has developed the transient emphasis spectral maxima (TESM) strategy to amplify short-duration, low-level sounds. The aim of the present study was to determine whether speech scores would be significantly higher with…

  10. Exact and approximate graph matching using random walks.

    PubMed

    Gori, Marco; Maggini, Marco; Sarti, Lorenzo

    2005-07-01

    In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.

  11. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed Central

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-01-01

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. PMID:29172273

  12. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    PubMed

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  13. Emotion-Related Consciousness Detection in Patients With Disorders of Consciousness Through an EEG-Based BCI System

    PubMed Central

    Pan, Jiahui; Xie, Qiuyou; Huang, Haiyun; He, Yanbin; Sun, Yuping; Yu, Ronghao; Li, Yuanqing

    2018-01-01

    For patients with disorders of consciousness (DOC), such as vegetative state (VS) and minimally conscious state (MCS), detecting and assessing the residual cognitive functions of the brain remain challenging. Emotion-related cognitive functions are difficult to detect in patients with DOC using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised (CRS-R) because DOC patients have motor impairments and are unable to provide sufficient motor responses for emotion-related communication. In this study, we proposed an EEG-based brain-computer interface (BCI) system for emotion recognition in patients with DOC. Eight patients with DOC (5 VS and 3 MCS) and eight healthy controls participated in the BCI-based experiment. During the experiment, two movie clips flashed (appearing and disappearing) eight times with a random interstimulus interval between flashes to evoke P300 potentials. The subjects were instructed to focus on the crying or laughing movie clip and to count the flashes of the corresponding movie clip cued by instruction. The BCI system performed online P300 detection to determine which movie clip the patients responsed to and presented the result as feedback. Three of the eight patients and all eight healthy controls achieved online accuracies based on P300 detection that were significantly greater than chance level. P300 potentials were observed in the EEG signals from the three patients. These results indicated the three patients had abilities of emotion recognition and command following. Through spectral analysis, common spatial pattern (CSP) and differential entropy (DE) features in the delta, theta, alpha, beta, and gamma frequency bands were employed to classify the EEG signals during the crying and laughing movie clips. Two patients and all eight healthy controls achieved offline accuracies significantly greater than chance levels in the spectral analysis. Furthermore, stable topographic distribution patterns of CSP and DE features were observed in both the healthy subjects and these two patients. Our results suggest that cognitive experiments may be conducted using BCI systems in patients with DOC despite the inability of such patients to provide sufficient behavioral responses. PMID:29867421

  14. Emotion-Related Consciousness Detection in Patients With Disorders of Consciousness Through an EEG-Based BCI System.

    PubMed

    Pan, Jiahui; Xie, Qiuyou; Huang, Haiyun; He, Yanbin; Sun, Yuping; Yu, Ronghao; Li, Yuanqing

    2018-01-01

    For patients with disorders of consciousness (DOC), such as vegetative state (VS) and minimally conscious state (MCS), detecting and assessing the residual cognitive functions of the brain remain challenging. Emotion-related cognitive functions are difficult to detect in patients with DOC using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised (CRS-R) because DOC patients have motor impairments and are unable to provide sufficient motor responses for emotion-related communication. In this study, we proposed an EEG-based brain-computer interface (BCI) system for emotion recognition in patients with DOC. Eight patients with DOC (5 VS and 3 MCS) and eight healthy controls participated in the BCI-based experiment. During the experiment, two movie clips flashed (appearing and disappearing) eight times with a random interstimulus interval between flashes to evoke P300 potentials. The subjects were instructed to focus on the crying or laughing movie clip and to count the flashes of the corresponding movie clip cued by instruction. The BCI system performed online P300 detection to determine which movie clip the patients responsed to and presented the result as feedback. Three of the eight patients and all eight healthy controls achieved online accuracies based on P300 detection that were significantly greater than chance level. P300 potentials were observed in the EEG signals from the three patients. These results indicated the three patients had abilities of emotion recognition and command following. Through spectral analysis, common spatial pattern (CSP) and differential entropy (DE) features in the delta, theta, alpha, beta, and gamma frequency bands were employed to classify the EEG signals during the crying and laughing movie clips. Two patients and all eight healthy controls achieved offline accuracies significantly greater than chance levels in the spectral analysis. Furthermore, stable topographic distribution patterns of CSP and DE features were observed in both the healthy subjects and these two patients. Our results suggest that cognitive experiments may be conducted using BCI systems in patients with DOC despite the inability of such patients to provide sufficient behavioral responses.

  15. Forecasting of hourly load by pattern recognition in a small area power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehdashti-Shahrokh, A.

    1982-01-01

    An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less

  16. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  17. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  18. The analytical design of spectral measurements for multispectral remote sensor systems

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Landgrebe, D. A. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. In order to choose a design which will be optimal for the largest class of remote sensing problems, a method was developed which attempted to represent the spectral response function from a scene as accurately as possible. The performance of the overall recognition system was studied relative to the accuracy of the spectral representation. The spectral representation was only one of a set of five interrelated parameter categories which also included the spatial representation parameter, the signal to noise ratio, ancillary data, and information classes. The spectral response functions observed from a stratum were modeled as a stochastic process with a Gaussian probability measure. The criterion for spectral representation was defined by the minimum expected mean-square error.

  19. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  20. A strip chart recorder pattern recognition tool kit for Shuttle operations

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.

    1993-01-01

    During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.

  1. A dynamical pattern recognition model of gamma activity in auditory cortex

    PubMed Central

    Zavaglia, M.; Canolty, R.T.; Schofield, T.M.; Leff, A.P.; Ursino, M.; Knight, R.T.; Penny, W.D.

    2012-01-01

    This paper describes a dynamical process which serves both as a model of temporal pattern recognition in the brain and as a forward model of neuroimaging data. This process is considered at two separate levels of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition environments, these features rival standard cepstral coefficient features. At an implementation level, the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient synchronization mechanism to signal a recognition event. In a second set of experiments, we use the strength of the synchronization event to predict the high gamma (75–150 Hz) activity produced by the brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences about parameters governing pattern recognition dynamics in the brain. PMID:22327049

  2. Visual cluster analysis and pattern recognition methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    2001-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  3. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

  4. Proceedings of the NASA/MPRIA Workshop: Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    Outlines of talks presented at the workshop conducted at Texas A & M University on February 3 and 4, 1983 are presented. Emphasis was given to the application of Mathematics to image processing and pattern recognition.

  5. Age-Related Differences in Listening Effort During Degraded Speech Recognition.

    PubMed

    Ward, Kristina M; Shen, Jing; Souza, Pamela E; Grieco-Calub, Tina M

    The purpose of the present study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Twenty-five younger adults (YA; 18-24 years) and 21 older adults (OA; 56-82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants' responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners' performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (single task vs. dual task); and (3) per group (YA vs. OA). Speech recognition declined with increasing spectral degradation for both YA and OA when they performed the task in isolation or concurrently with the visual monitoring task. OA were slower and less accurate than YA on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared with single-task performance, OA experienced greater declines in secondary-task accuracy, but not reaction time, than YA. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. OA experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than YA. These findings are interpreted as suggesting that OA expended greater listening effort than YA, which may be partially attributed to age-related differences in executive control.

  6. Using pattern recognition as a method for predicting extreme events in natural and socio-economic systems

    NASA Astrophysics Data System (ADS)

    Intriligator, M.

    2011-12-01

    Vladimir (Volodya) Keilis-Borok has pioneered the use of pattern recognition as a technique for analyzing and forecasting developments in natural as well as socio-economic systems. Keilis-Borok's work on predicting earthquakes and landslides using this technique as a leading geophysicist has been recognized around the world. Keilis-Borok has also been a world leader in the application of pattern recognition techniques to the analysis and prediction of socio-economic systems. He worked with Allan Lichtman of American University in using such techniques to predict presidential elections in the U.S. Keilis-Borok and I have worked together with others on the use of pattern recognition techniques to analyze and to predict socio-economic systems. We have used this technique to study the pattern of macroeconomic indicators that would predict the end of an economic recession in the U.S. We have also worked with officers in the Los Angeles Police Department to use this technique to predict surges of homicides in Los Angeles.

  7. Running Improves Pattern Separation during Novel Object Recognition.

    PubMed

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  8. A Compact Prototype of an Optical Pattern Recognition System

    NASA Technical Reports Server (NTRS)

    Jin, Y.; Liu, H. K.; Marzwell, N. I.

    1996-01-01

    In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.

  9. Selected issues connected with determination of requirements of spectral properties of camouflage patterns

    NASA Astrophysics Data System (ADS)

    Racek, František; Jobánek, Adam; Baláž, Teodor; Krejčí, Jaroslav

    2017-10-01

    Traditionally spectral reflectance of the material is measured and compared with permitted spectral reflectance boundaries. The boundaries are limited by upper and lower curve of spectral reflectance. The boundaries for unique color has to fulfil the operational requirements as a versatility of utilization through the all year seasons, day and weather condition on one hand and chromatic and spectral matching with background as well as the manufacturability on the other hand. The interval between the boundaries suffers with ambivalent feature. Camouflage pattern producer would be happy to see it much wider, but blending effect into its particular background could be better with narrower tolerance limits. From the point of view of long time user of camouflage pattern battledress, there seems to be another ambivalent feature. Width of the tolerance zone reflecting natural dispersion of spectral reflectance values allows the significant distortions of shape of the spectral curve inside the given boundaries.

  10. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system.

    PubMed

    Wu, Yuehao; Mirza, Iftekhar O; Arce, Gonzalo R; Prather, Dennis W

    2011-07-15

    We report on the development of a digital-micromirror-device (DMD)-based multishot snapshot spectral imaging (DMD-SSI) system as an alternative to current piezostage-based multishot coded aperture snapshot spectral imager (CASSI) systems. In this system, a DMD is used to implement compressive sensing (CS) measurement patterns for reconstructing the spatial/spectral information of an imaging scene. Based on the CS measurement results, we demonstrated the concurrent reconstruction of 24 spectral images. The DMD-SSI system is versatile in nature as it can be used to implement independent CS measurement patterns in addition to spatially shifted patterns that piezostage-based systems can offer. © 2011 Optical Society of America

  11. Direct Impact Corona Ionization of Bacteria for Rapid, Reproducible Identification via Spectral Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Alusta, Pierre; Buzatu, Dan; Tarasenko, Olga; Wilkes, Jon; Darsey, Jerry

    2011-06-01

    A novel atmospheric pressure ionization process, Direct Impact Corona Ionization (DICI), is described here. In this process, a corona impinges onto the flat surface of a stainless steel pin carrying a thin film of dried bacterial suspension, the analyte. Two electrodes—a corona electrode and the sample pin—are immersed in hot inert He gas flux, flowing past them towards a 0.4 mm orifice leading to a mass spectrometer analyzer. An electric potential of 1.5-3.0 kV is placed between the two. At distances less than 1 cm, an intermittent arc is formed. At approximately 4 mm, the arc becomes a continuous corona discharge (plasma). The plasma is hot enough to: A) locally melt the impact zone on the steel pin, and B) ablate the dry thin bacterial film deposited on the metal pin. Biomolecular ions as heavy as 790 m/z are generated. Mass spectral fingerprints of bacteria are obtained with a high degree of reproducibility by selecting the highest intensity of an "indicator ion", 560.5 m/z or another relatively heavy ion whose appearance signals efficient vaporization of low volatility components.

  12. Identification of recently handled materials by analysis of latent human fingerprints using infrared spectromicroscopy.

    PubMed

    Grant, Ashleigh; Wilkinson, T J; Holman, Derek R; Martin, Michael C

    2005-09-01

    Analysis of fingerprints has predominantly focused on matching the pattern of ridges to a specific person as a form of identification. The present work focuses on identifying extrinsic materials that are left within a person's fingerprint after recent handling of such materials. Specifically, we employed infrared spectromicroscopy to locate and positively identify microscopic particles from a mixture of common materials in the latent human fingerprints of volunteer subjects. We were able to find and correctly identify all test substances based on their unique infrared spectral signatures. Spectral imaging is demonstrated as a method for automating recognition of specific substances in a fingerprint. We also demonstrate the use of attenuated total reflectance (ATR) and synchrotron-based infrared spectromicroscopy for obtaining high-quality spectra from particles that were too thick or too small, respectively, for reflection/absorption measurements. We believe the application of this rapid, nondestructive analytical technique to the forensic study of latent human fingerprints has the potential to add a new layer of information available to investigators. Using fingerprints to not only identify who was present at a crime scene, but also to link who was handling key materials, will be a powerful investigative tool.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Ashleigh; Wilkinson, T.J.; Holman, Thomas

    Analysis of fingerprints has predominantly focused on matching the pattern of ridges to a specific person as a form of identification. The present work focuses on identifying extrinsic materials that are left within a person's fingerprint after recent handling of such materials. Specifically, we employed infrared spectromicroscopy to locate and positively identify microscopic particles from a mixture of common materials in the latent human fingerprints of volunteer subjects. We were able to find and correctly identify all test substances based on their unique infrared spectral signatures. Spectral imaging is demonstrated as a method for automating recognition of specific substances inmore » a fingerprint. We also demonstrate the use of Attenuated Total Reflectance (ATR) and synchrotron-based infrared spectromicroscopy for obtaining high-quality spectra from particles that were too thick or too small, respectively, for reflection/absorption measurements. We believe the application of this rapid, non-destructive analytical technique to the forensic study of latent human finger prints has the potential to add a new layer of information available to investigators. Using fingerprints to not only identify who was present at a crime scene, but also to link who was handling key materials will be a powerful investigative tool.« less

  14. Interpretation, compilation and field verification procedures in the CARETS project

    USGS Publications Warehouse

    Alexander, Robert H.; De Forth, Peter W.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K.

    1975-01-01

    The production of the CARETS map data base involved the development of a series of procedures for interpreting, compiling, and verifying data obtained from remote sensor sources. Level II land use mapping from high-altitude aircraft photography at a scale of 1:100,000 required production of a photomosaic mapping base for each of the 48, 50 x 50 km sheets, and the interpretation and coding of land use polygons on drafting film overlays. CARETS researchers also produced a series of 1970 to 1972 land use change overlays, using the 1970 land use maps and 1972 high-altitude aircraft photography. To enhance the value of the land use sheets, researchers compiled series of overlays showing cultural features, county boundaries and census tracts, surface geology, and drainage basins. In producing Level I land use maps from Landsat imagery, at a scale of 1:250,000, interpreters overlaid drafting film directly on Landsat color composite transparencies and interpreted on the film. They found that such interpretation involves pattern and spectral signature recognition. In studies using Landsat imagery, interpreters identified numerous areas of change but also identified extensive areas of "false change," where Landsat spectral signatures but not land use had changed.

  15. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, Gordon Cecil; Martinez, Rubel Francisco

    1999-01-01

    A method of clustering using a novel template to define a region of influence. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques.

  16. Photonic correlator pattern recognition: Application to autonomous docking

    NASA Technical Reports Server (NTRS)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  17. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  18. Lexico-semantic and acoustic-phonetic processes in the perception of noise-vocoded speech: implications for cochlear implantation

    PubMed Central

    McGettigan, Carolyn; Rosen, Stuart; Scott, Sophie K.

    2014-01-01

    Noise-vocoding is a transformation which, when applied to speech, severely reduces spectral resolution and eliminates periodicity, yielding a stimulus that sounds “like a harsh whisper” (Scott et al., 2000, p. 2401). This process simulates a cochlear implant, where the activity of many thousand hair cells in the inner ear is replaced by direct stimulation of the auditory nerve by a small number of tonotopically-arranged electrodes. Although a cochlear implant offers a powerful means of restoring some degree of hearing to profoundly deaf individuals, the outcomes for spoken communication are highly variable (Moore and Shannon, 2009). Some variability may arise from differences in peripheral representation (e.g., the degree of residual nerve survival) but some may reflect differences in higher-order linguistic processing. In order to explore this possibility, we used noise-vocoding to explore speech recognition and perceptual learning in normal-hearing listeners tested across several levels of the linguistic hierarchy: segments (consonants and vowels), single words, and sentences. Listeners improved significantly on all tasks across two test sessions. In the first session, individual differences analyses revealed two independently varying sources of variability: one lexico-semantic in nature and implicating the recognition of words and sentences, and the other an acoustic-phonetic factor associated with words and segments. However, consequent to learning, by the second session there was a more uniform covariance pattern concerning all stimulus types. A further analysis of phonetic feature recognition allowed greater insight into learning-related changes in perception and showed that, surprisingly, participants did not make full use of cues that were preserved in the stimuli (e.g., vowel duration). We discuss these findings in relation cochlear implantation, and suggest auditory training strategies to maximize speech recognition performance in the absence of typical cues. PMID:24616669

  19. Systolic Processor Array For Recognition Of Spectra

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Peterson, John C.

    1995-01-01

    Spectral signatures of materials detected and identified quickly. Spectral Analysis Systolic Processor Array (SPA2) relatively inexpensive and satisfies need to analyze large, complex volume of multispectral data generated by imaging spectrometers to extract desired information: computational performance needed to do this in real time exceeds that of current supercomputers. Locates highly similar segments or contiguous subsegments in two different spectra at time. Compares sampled spectra from instruments with data base of spectral signatures of known materials. Computes and reports scores that express degrees of similarity between sampled and data-base spectra.

  20. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  1. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  2. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  3. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Listening for Recollection: A Multi-Voxel Pattern Analysis of Recognition Memory Retrieval Strategies

    PubMed Central

    Quamme, Joel R.; Weiss, David J.; Norman, Kenneth A.

    2010-01-01

    Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally directed attentional state (“listening for recollection”) that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects’ recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. We looked for brain regions that met the following criteria: (1) Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and (2) fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are “listening for recollection” at that moment) should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus) where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before), suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection. PMID:20740073

  5. Auditory orientation in crickets: Pattern recognition controls reactive steering

    NASA Astrophysics Data System (ADS)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  6. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  7. Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.

  8. Students' Dichotomous Experiences of the Illuminating and Illusionary Nature of Pattern Recognition in Mathematics

    ERIC Educational Resources Information Center

    Mhlolo, Michael Kainose

    2016-01-01

    The concept of pattern recognition lies at the heart of numerous deliberations concerned with new mathematics curricula, because it is strongly linked to improved generalised thinking. However none of these discussions has made the deceptive nature of patterns an object of exploration and understanding. Yet there is evidence showing that pattern…

  9. Design of a variable-line-spacing grating pattern for spectrometers based on a grating Fresnel device.

    PubMed

    Li, Xinghui; Zhang, Jinchao; Zhou, Qian; Ni, Kai; Pang, Jinchao; Tian, Rui

    2016-04-01

    In this Letter, we propose a variable-line-spacing (VLS) grating pattern for a hybrid diffractive device termed a grating Fresnel (G-Fresnel) lens, which is used in spectrometers to improve spectral resolution over a wide spectral range. The VLS grating pattern disperses light of specific wavelengths with a different angle and position such that the aberration caused by the Fresnel surface can be compensated for. In this manner, high resolution can be achieved over a relatively wide spectral range. The VLS grating pattern is designed based on the least wave-change principle and simulated by ZEMAX. Results reveal that the VLS G-Fresnel device allows a subnanometer resolution over a spectral range of 200 nm.

  10. Neural network pattern recognition of thermal-signature spectra for chemical defense

    NASA Astrophysics Data System (ADS)

    Carrieri, Arthur H.; Lim, Pascal I.

    1995-05-01

    We treat infrared patterns of absorption or emission by nerve and blister agent compounds (and simulants of this chemical group) as features for the training of neural networks to detect the compounds' liquid layers on the ground or their vapor plumes during evaporation by external heating. Training of a four-layer network architecture is composed of a backward-error-propagation algorithm and a gradient-descent paradigm. We conduct testing by feed-forwarding preprocessed spectra through the network in a scaled format consistent with the structure of the training-data-set representation. The best-performance weight matrix (spectral filter) evolved from final network training and testing with software simulation trials is electronically transferred to a set of eight artificial intelligence integrated circuits (ICs') in specific modular form (splitting of weight matrices). This form makes full use of all input-output IC nodes. This neural network computer serves an important real-time detection function when it is integrated into pre-and postprocessing data-handling units of a tactical prototype thermoluminescence sensor now under development at the Edgewood Research, Development, and Engineering Center.

  11. Analysis of ERTS-1 imagery and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. A summary of the significant results of the studies completed during the July-August, 1973 period includes: (1) ERTS-1 image brightness contrasts can be related to important contrasts in rangeland and forest vegetation communities of the Laramie Basin. (2) Stereoscopic viewing is essential for correct structural interpretation in outcrop patterns in some areas. (3) Complex fracture patterns which may have exerted a controlling influence on intrusive activity in the Absaroka Mountains can be mapped from ERTS. (4) Volcanic lithologies of the Yellowstone region are often differentiated on the basis of their textures, and cannot be successfully mapped by photogeologic interpretation of ERTS-1 imagery. Ground spectral readings confirm a general lack of contrast between these lithologies in the four ERTS-1 MSS bands. (5) Major dune fields can be recognized and defined from ERTS-1 image interpretations and recognition of differences in stabilizing plant communities (some of which may be mappable from ERTS-1) yields information about migration history of the dune fields.

  12. Remote detection and recognition of bio-aerosols by laser-induced fluorescense lidar: practical implementation and field tests

    NASA Astrophysics Data System (ADS)

    Boreysho, Anatoly; Savin, Andrey; Morozov, Alexey; Konyaev, Maxim; Konovalov, Konstantin

    2007-06-01

    Recognition of aerosol clouds material at some significant distance is now a key requirement for the wide range of applications. The elastic backscatter lidar have demonstrated high capabilities in aerosol remote detection, cloud real-time mapping at very long distances for low-concentration natural aerosols as well as artificial ones [1]. However, recognition ability is required to make them more relevant. Laser-induced fluorescence (LIF) looks very promising with respect to the recognition problem. New approach based on mobile lidar complex [2] equipped by spectrally-and range-resolved LIF-sensor is described as well as some results of field tests. The LIF-sensor consists of four-harmonics Nd:YAG laser equipped by an output expander to provide final beam divergence <1 mrad, 500-mm aspheric Cassegrain-type multi-wavelength receiving telescope, set of single-element receivers for measurement of the elastic backscatter radiation, and multi-element receiver with monochromator for spectrally-resolved LIF measurements. The system is equipped by 2-axis scanning mirror and variable-FOV video-camera collimated with the lidar scanning direction. The LIF-lidar is mounted on a truck-based platform (20-feet container) as a part of multi-purpose mobile lidar complex and adjusted for field conditions.

  13. Methods and means of diagnostics of oncological diseases on the basis of pattern recognition: intelligent morphological systems - problems and solutions

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.

    2017-01-01

    The development of methods of pattern recognition in modern intelligent systems of clinical cancer diagnosis are discussed. The histological (morphological) diagnosis - primary diagnosis for medical setting with cancer are investigated. There are proposed: interactive methods of recognition and structure of intellectual morphological complexes based on expert training-diagnostic and telemedicine systems. The proposed approach successfully implemented in clinical practice.

  14. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models

    PubMed Central

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162

  15. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.

    PubMed

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.

  16. Fifty years of progress in speech and speaker recognition

    NASA Astrophysics Data System (ADS)

    Furui, Sadaoki

    2004-10-01

    Speech and speaker recognition technology has made very significant progress in the past 50 years. The progress can be summarized by the following changes: (1) from template matching to corpus-base statistical modeling, e.g., HMM and n-grams, (2) from filter bank/spectral resonance to Cepstral features (Cepstrum + DCepstrum + DDCepstrum), (3) from heuristic time-normalization to DTW/DP matching, (4) from gdistanceh-based to likelihood-based methods, (5) from maximum likelihood to discriminative approach, e.g., MCE/GPD and MMI, (6) from isolated word to continuous speech recognition, (7) from small vocabulary to large vocabulary recognition, (8) from context-independent units to context-dependent units for recognition, (9) from clean speech to noisy/telephone speech recognition, (10) from single speaker to speaker-independent/adaptive recognition, (11) from monologue to dialogue/conversation recognition, (12) from read speech to spontaneous speech recognition, (13) from recognition to understanding, (14) from single-modality (audio signal only) to multi-modal (audio/visual) speech recognition, (15) from hardware recognizer to software recognizer, and (16) from no commercial application to many practical commercial applications. Most of these advances have taken place in both the fields of speech recognition and speaker recognition. The majority of technological changes have been directed toward the purpose of increasing robustness of recognition, including many other additional important techniques not noted above.

  17. Postprocessing for character recognition using pattern features and linguistic information

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi

    1993-04-01

    We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).

  18. Prediction of consonant recognition in quiet for listeners with normal and impaired hearing using an auditory model.

    PubMed

    Jürgens, Tim; Ewert, Stephan D; Kollmeier, Birger; Brand, Thomas

    2014-03-01

    Consonant recognition was assessed in normal-hearing (NH) and hearing-impaired (HI) listeners in quiet as a function of speech level using a nonsense logatome test. Average recognition scores were analyzed and compared to recognition scores of a speech recognition model. In contrast to commonly used spectral speech recognition models operating on long-term spectra, a "microscopic" model operating in the time domain was used. Variations of the model (accounting for hearing impairment) and different model parameters (reflecting cochlear compression) were tested. Using these model variations this study examined whether speech recognition performance in quiet is affected by changes in cochlear compression, namely, a linearization, which is often observed in HI listeners. Consonant recognition scores for HI listeners were poorer than for NH listeners. The model accurately predicted the speech reception thresholds of the NH and most HI listeners. A partial linearization of the cochlear compression in the auditory model, while keeping audibility constant, produced higher recognition scores and improved the prediction accuracy. However, including listener-specific information about the exact form of the cochlear compression did not improve the prediction further.

  19. Facial emotion recognition in patients with focal and diffuse axonal injury.

    PubMed

    Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2017-01-01

    Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.

  20. Cross spectral, active and passive approach to face recognition for improved performance

    NASA Astrophysics Data System (ADS)

    Grudzien, A.; Kowalski, M.; Szustakowski, M.

    2017-08-01

    Biometrics is a technique for automatic recognition of a person based on physiological or behavior characteristics. Since the characteristics used are unique, biometrics can create a direct link between a person and identity, based on variety of characteristics. The human face is one of the most important biometric modalities for automatic authentication. The most popular method of face recognition which relies on processing of visual information seems to be imperfect. Thermal infrared imagery may be a promising alternative or complement to visible range imaging due to its several reasons. This paper presents an approach of combining both methods.

  1. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  2. 33 CFR 106.205 - Company Security Officer (CSO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security related communications; (7) Knowledge of current security threats and patterns; (8) Recognition and detection of dangerous substances and devices; (9) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (10) Techniques used to circumvent security...

  3. Visual cluster analysis and pattern recognition template and methods

    DOEpatents

    Osbourn, G.C.; Martinez, R.F.

    1999-05-04

    A method of clustering using a novel template to define a region of influence is disclosed. Using neighboring approximation methods, computation times can be significantly reduced. The template and method are applicable and improve pattern recognition techniques. 30 figs.

  4. Multiple degree of freedom optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1987-01-01

    Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.

  5. Ultrasonography of ovarian masses using a pattern recognition approach

    PubMed Central

    Jung, Sung Il

    2015-01-01

    As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108

  6. Application of pattern recognition techniques to crime analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  7. DESIGN OF A PATTERN RECOGNITION DIGITAL COMPUTER WITH APPLICATION TO THE AUTOMATIC SCANNING OF BUBBLE CHAMBER NEGATIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, B.H.; Narasimhan, R.

    1963-01-01

    The overall computer system contains three main parts: an input device, a pattern recognition unit (PRU), and a control computer. The bubble chamber picture is divided into a grid of st run. Concent 1-mm squares on the film. It is then processed in parallel in a two-dimensional array of 1024 identical processing modules (stalactites) of the PRU. The array can function as a two- dimensional shift register in which results of successive shifting operations can be accumulated. The pattern recognition process is generally controlled by a conventional arithmetic computer. (A.G.W.)

  8. Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules.

    PubMed

    Fraser, D A; Tenner, A J

    2008-02-01

    Defense collagens and other soluble pattern recognition receptors contain the ability to recognize and bind molecular patterns associated with pathogens (PAMPs) or apoptotic cells (ACAMPs) and signal appropriate effector-function responses. PAMP recognition by defense collagens C1q, MBL and ficolins leads to rapid containment of infection via complement activation. However, in the absence of danger, such as during the clearance of apoptotic cells, defense collagens such as C1q, MBL, ficolins, SP-A, SP-D and even adiponectin have all been shown to facilitate enhanced phagocytosis and modulate induction of cytokines towards an anti-inflammatory profile. In this way, cellular debris can be removed without provoking an inflammatory immune response which may be important in the prevention of autoimmunity and/or resolving inflammation. Indeed, deficiencies and/or knock-out mouse studies have highlighted critical roles for soluble pattern recognition receptors in the clearance of apoptotic bodies and protection from autoimmune diseases along with mediating protection from specific infections. Understanding the mechanisms involved in defense collagen and other soluble pattern recognition receptor modulation of the immune response may provide important novel insights into therapeutic targets for infectious and/or autoimmune diseases and additionally may identify avenues for more effective vaccine design.

  9. Visual scanning behavior is related to recognition performance for own- and other-age faces

    PubMed Central

    Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela

    2015-01-01

    It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056

  10. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  11. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  12. Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns

    PubMed Central

    Noh, Soo Rim; Isaacowitz, Derek M.

    2014-01-01

    While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713

  13. Comparing the visual spans for faces and letters

    PubMed Central

    He, Yingchen; Scholz, Jennifer M.; Gage, Rachel; Kallie, Christopher S.; Liu, Tingting; Legge, Gordon E.

    2015-01-01

    The visual span—the number of adjacent text letters that can be reliably recognized on one fixation—has been proposed as a sensory bottleneck that limits reading speed (Legge, Mansfield, & Chung, 2001). Like reading, searching for a face is an important daily task that involves pattern recognition. Is there a similar limitation on the number of faces that can be recognized in a single fixation? Here we report on a study in which we measured and compared the visual-span profiles for letter and face recognition. A serial two-stage model for pattern recognition was developed to interpret the data. The first stage is characterized by factors limiting recognition of isolated letters or faces, and the second stage represents the interfering effect of nearby stimuli on recognition. Our findings show that the visual span for faces is smaller than that for letters. Surprisingly, however, when differences in first-stage processing for letters and faces are accounted for, the two visual spans become nearly identical. These results suggest that the concept of visual span may describe a common sensory bottleneck that underlies different types of pattern recognition. PMID:26129858

  14. Integrated Color Coding and Monochrome Multi-Spectral Fusion

    DTIC Science & Technology

    1999-01-01

    Suppl. pg s1002. [Katz 1987 ] Katz et al, "Application of Spectral Filtering to Missile Detection Using Staring Sensors at MWIR Wavelengths...34, Proceedings of the IRIS Conf. on Targets, Backgrounds, and Discrimination, Feb. 1987 [Morrone 1989], Morrone M.C. and D.C.,”Discrimination of spatial phase in...April) 1990, Orlando, FL. [Subramaniam 1997] Subramaniam and Biederman “Effect of Contrast Reversal on Object Recognition (ARVO 1997) Investigative

  15. Training Strategies for Mitigating the Effect of Proportional Control on Classification in Pattern Recognition Based Myoelectric Control

    PubMed Central

    Scheme, Erik; Englehart, Kevin

    2013-01-01

    The performance of pattern recognition based myoelectric control has seen significant interest in the research community for many years. Due to a recent surge in the development of dexterous prosthetic devices, determining the clinical viability of multifunction myoelectric control has become paramount. Several factors contribute to differences between offline classification accuracy and clinical usability, but the overriding theme is that the variability of the elicited patterns increases greatly during functional use. Proportional control has been shown to greatly improve the usability of conventional myoelectric control systems. Typically, a measure of the amplitude of the electromyogram (a rectified and smoothed version) is used to dictate the velocity of control of a device. The discriminatory power of myoelectric pattern classifiers, however, is also largely based on amplitude features of the electromyogram. This work presents an introductory look at the effect of contraction strength and proportional control on pattern recognition based control. These effects are investigated using typical pattern recognition data collection methods as well as a real-time position tracking test. Training with dynamically force varying contractions and appropriate gain selection is shown to significantly improve (p<0.001) the classifier’s performance and tolerance to proportional control. PMID:23894224

  16. Pattern Recognition-Assisted Infrared Library Searching of the Paint Data Query Database to Enhance Lead Information from Automotive Paint Trace Evidence.

    PubMed

    Lavine, Barry K; White, Collin G; Allen, Matthew D; Weakley, Andrew

    2017-03-01

    Multilayered automotive paint fragments, which are one of the most complex materials encountered in the forensic science laboratory, provide crucial links in criminal investigations and prosecutions. To determine the origin of these paint fragments, forensic automotive paint examiners have turned to the paint data query (PDQ) database, which allows the forensic examiner to compare the layer sequence and color, texture, and composition of the sample to paint systems of the original equipment manufacturer (OEM). However, modern automotive paints have a thin color coat and this layer on a microscopic fragment is often too thin to obtain accurate chemical and topcoat color information. A search engine has been developed for the infrared (IR) spectral libraries of the PDQ database in an effort to improve discrimination capability and permit quantification of discrimination power for OEM automotive paint comparisons. The similarity of IR spectra of the corresponding layers of various records for original finishes in the PDQ database often results in poor discrimination using commercial library search algorithms. A pattern recognition approach employing pre-filters and a cross-correlation library search algorithm that performs both a forward and backward search has been used to significantly improve the discrimination of IR spectra in the PDQ database and thus improve the accuracy of the search. This improvement permits inter-comparison of OEM automotive paint layer systems using the IR spectra alone. Such information can serve to quantify the discrimination power of the original automotive paint encountered in casework and further efforts to succinctly communicate trace evidence to the courts.

  17. Investigation into diagnostic agreement using automated computer-assisted histopathology pattern recognition image analysis.

    PubMed

    Webster, Joshua D; Michalowski, Aleksandra M; Dwyer, Jennifer E; Corps, Kara N; Wei, Bih-Rong; Juopperi, Tarja; Hoover, Shelley B; Simpson, R Mark

    2012-01-01

    The extent to which histopathology pattern recognition image analysis (PRIA) agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression). Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden <3%). Regression-based 95% limits of agreement indicated substantial agreement for method interchangeability. Repeated measures revealed concordance correlation of >0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1). Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.

  18. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations: CESM/CAM EVALUATION BY DECISION TREES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soner Yorgun, M.; Rood, Richard B.

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less

  19. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations: CESM/CAM EVALUATION BY DECISION TREES

    DOE PAGES

    Soner Yorgun, M.; Rood, Richard B.

    2016-11-11

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less

  20. Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses

    Treesearch

    Sari C. Saunders; Jiquan Chen; Thomas D. Drummer; Eric J. Gustafson; Kimberley D. Brosofske

    2005-01-01

    Identifying scales of pattern in ecological systems and coupling patterns to processes that create them are ongoing challenges. We examined the utility of three techniques (lacunarity, spectral, and wavelet analysis) for detecting scales of pattern of ecological data. We compared the information obtained using these methods for four datasets, including: surface...

  1. Addressing the issue of insufficient information in data-based bridge health monitoring : final report.

    DOT National Transportation Integrated Search

    2015-11-01

    One of the most efficient ways to solve the damage detection problem using the statistical pattern recognition : approach is that of exploiting the methods of outlier analysis. Cast within the pattern recognition framework, : damage detection assesse...

  2. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  3. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  4. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  5. Quantum pattern recognition with multi-neuron interactions

    NASA Astrophysics Data System (ADS)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  6. Thermal-Polarimetric and Visible Data Collection for Face Recognition

    DTIC Science & Technology

    2016-09-01

    pixels • Spectral range: 7.5–13 μm • Analog image output: NTSC analog video • Digital image output: Firewire radiometric, 14-bit digital video to...PC The analog video was not used for this study. The radiometric, 14-bit digital data provided temperature measurement information for comparison...distribution unlimited. 18 9. References 1. Choi J, Hu S, Young SS, Davis LS. Thermal to visible face recognition. Proc. SPIE 8371, Sensing

  7. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  8. Speaker recognition with temporal cues in acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Vongphoe, Michael; Zeng, Fan-Gang

    2005-08-01

    Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.

  9. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  10. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  11. 33 CFR 104.220 - Company or vessel personnel with security duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following, as appropriate: (a) Knowledge of current security threats and patterns; (b) Recognition and detection of dangerous substances and devices; (c) Recognition of characteristics and behavioral patterns of persons who are likely to threaten security; (d) Techniques used to circumvent security...

  12. Genetic dissection of the maize (Zea mays L.) MAMP response

    USDA-ARS?s Scientific Manuscript database

    Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors (PRRs). Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and ex...

  13. The Functional Architecture of Visual Object Recognition

    DTIC Science & Technology

    1991-07-01

    different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying

  14. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-01-01

    This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...

  15. Spatial pattern recognition of seismic events in South West Colombia

    NASA Astrophysics Data System (ADS)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  16. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends.

    PubMed

    Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri

    2014-05-01

    Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.

  17. Computer Vision for Artificially Intelligent Robotic Systems

    NASA Astrophysics Data System (ADS)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  18. Improved Performance Characteristics For Indium Antimonide Photovoltaic Detector Arrays Using A FET-Switched Multiplexing Technique

    NASA Astrophysics Data System (ADS)

    Ma, Yung-Lung; Ma, Chialo

    1987-03-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  19. Object-oriented recognition of high-resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan

    2016-01-01

    With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .

  20. Study and response time for the visual recognition of 'similarity' and identity

    NASA Technical Reports Server (NTRS)

    Derks, P. L.; Bauer, T. M.

    1974-01-01

    Four subjects compared successively presented pairs of line patterns for a match between any lines in the pattern (similarity) and for a match between all lines (identity). The encoding or study times for pattern recognition from immediate memory and the latency in responses to comparison stimuli were examined. Qualitative differences within and between subjects were most evident in study times.

  1. Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Amador, Jose J (Inventor)

    2007-01-01

    A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.

  2. Silicon oxynitride-on-glass waveguide array refractometer with wide sensing range and integrated read-out (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Viegas, Jaime; Mayeh, Mona; Srinivasan, Pradeep; Johnson, Eric G.; Marques, Paulo V. S.; Farahi, Faramarz

    2017-02-01

    In this work, a silicon oxynitride-on-silica refractometer is presented, based on sub-wavelength coupled arrayed waveguide interference, and capable of low-cost, high resolution, large scale deployment. The sensor has an experimental spectral sensitivity as high as 3200 nm/RIU, covering refractive indices ranging from 1 (air) up to 1.43 (oils). The sensor readout can be performed by standard spectrometers techniques of by pattern projection onto a camera, followed by optical pattern recognition. Positive identification of the refractive index of an unknown species is obtained by pattern cross-correlation with a look-up calibration table based algorithm. Given the lower contrast between core and cladding in such devices, higher mode overlap with single mode fiber is achieved, leading to a larger coupling efficiency and more relaxed alignment requirements as compared to silicon photonics platform. Also, the optical transparency of the sensor in the visible range allows the operation with light sources and camera detectors in the visible range, of much lower capital costs for a complete sensor system. Furthermore, the choice of refractive indices of core and cladding in the sensor head with integrated readout, allows the fabrication of the same device in polymers, for mass-production replication of disposable sensors.

  3. Individual Sensitivity to Spectral and Temporal Cues in Listeners With Hearing Impairment

    PubMed Central

    Wright, Richard A.; Blackburn, Michael C.; Tatman, Rachael; Gallun, Frederick J.

    2015-01-01

    Purpose The present study was designed to evaluate use of spectral and temporal cues under conditions in which both types of cues were available. Method Participants included adults with normal hearing and hearing loss. We focused on 3 categories of speech cues: static spectral (spectral shape), dynamic spectral (formant change), and temporal (amplitude envelope). Spectral and/or temporal dimensions of synthetic speech were systematically manipulated along a continuum, and recognition was measured using the manipulated stimuli. Level was controlled to ensure cue audibility. Discriminant function analysis was used to determine to what degree spectral and temporal information contributed to the identification of each stimulus. Results Listeners with normal hearing were influenced to a greater extent by spectral cues for all stimuli. Listeners with hearing impairment generally utilized spectral cues when the information was static (spectral shape) but used temporal cues when the information was dynamic (formant transition). The relative use of spectral and temporal dimensions varied among individuals, especially among listeners with hearing loss. Conclusion Information about spectral and temporal cue use may aid in identifying listeners who rely to a greater extent on particular acoustic cues and applying that information toward therapeutic interventions. PMID:25629388

  4. The chemical structure of DNA sequence signals for RNA transcription

    NASA Technical Reports Server (NTRS)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  5. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  6. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  7. Detection and recognition of analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor [Manassas, VA; Bailey, Charles L [Cross Junction, VA; Vsevolodov, Nikolai N [Kensington, MD; Elliott, Adam [Manassas, VA

    2008-05-06

    The invention contemplates a method for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization pattern") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. It has been shown that changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. It was also found that both the character of changer in the crystallization patter and the fact of such changes can be used as recognition elements in analysis of protein molecules.

  8. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  9. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline

    PubMed Central

    Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit

    2015-01-01

    Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927

  10. Peptidoglycan recognition proteins in Drosophila immunity.

    PubMed

    Kurata, Shoichiro

    2014-01-01

    Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria. Several families of pattern recognition molecules that detect PGN and PGN-derived compounds have been indentified, and the role of PGRP family members in host defense is relatively well-characterized in Drosophila. This review focuses on the role of PGRP family members in the recognition of invading bacteria and the activation and modulation of immune responses in Drosophila. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition

    NASA Astrophysics Data System (ADS)

    Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.

    1993-03-01

    The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.

  12. Age-related increases in false recognition: the role of perceptual and conceptual similarity.

    PubMed

    Pidgeon, Laura M; Morcom, Alexa M

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499-510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.'s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous "old/new" responses at test, while in Experiment 2 participants were also asked to judge lures as "similar," to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.'s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation.

  13. Age-related increases in false recognition: the role of perceptual and conceptual similarity

    PubMed Central

    Pidgeon, Laura M.; Morcom, Alexa M.

    2014-01-01

    Older adults (OAs) are more likely to falsely recognize novel events than young adults, and recent behavioral and neuroimaging evidence points to a reduced ability to distinguish overlapping information due to decline in hippocampal pattern separation. However, other data suggest a critical role for semantic similarity. Koutstaal et al. [(2003) false recognition of abstract vs. common objects in older and younger adults: testing the semantic categorization account, J. Exp. Psychol. Learn. 29, 499–510] reported that OAs were only vulnerable to false recognition of items with pre-existing semantic representations. We replicated Koutstaal et al.’s (2003) second experiment and examined the influence of independently rated perceptual and conceptual similarity between stimuli and lures. At study, young and OAs judged the pleasantness of pictures of abstract (unfamiliar) and concrete (familiar) items, followed by a surprise recognition test including studied items, similar lures, and novel unrelated items. Experiment 1 used dichotomous “old/new” responses at test, while in Experiment 2 participants were also asked to judge lures as “similar,” to increase explicit demands on pattern separation. In both experiments, OAs showed a greater increase in false recognition for concrete than abstract items relative to the young, replicating Koutstaal et al.’s (2003) findings. However, unlike in the earlier study, there was also an age-related increase in false recognition of abstract lures when multiple similar images had been studied. In line with pattern separation accounts of false recognition, OAs were more likely to misclassify concrete lures with high and moderate, but not low degrees of rated similarity to studied items. Results are consistent with the view that OAs are particularly susceptible to semantic interference in recognition memory, and with the possibility that this reflects age-related decline in pattern separation. PMID:25368576

  14. Spectro-temporal modulation masking patterns reveal frequency selectivity.

    PubMed

    Oetjen, Arne; Verhey, Jesko L

    2015-02-01

    The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.

  15. Image-based automatic recognition of larvae

    NASA Astrophysics Data System (ADS)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  16. Enemy at the gates: traffic at the plant cell pathogen interface.

    PubMed

    Hoefle, Caroline; Hückelhoven, Ralph

    2008-12-01

    The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.

  17. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    DOT National Transportation Integrated Search

    2009-04-28

    A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...

  18. Analysis of chemical signals in red fire ants by gas chromatography and pattern recognition techniques

    USDA-ARS?s Scientific Manuscript database

    The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...

  19. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.

  20. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941

  1. Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays.

    PubMed

    Rueda, Hoover; Arguello, Henry; Arce, Gonzalo R

    2016-11-20

    Compressive spectral imaging systems can reliably capture multispectral data using far fewer measurements than traditional scanning techniques. In this paper, a thin-film patterned filter array-based compressive spectral imager is demonstrated, including its optical design and implementation. The use of a patterned filter array entails a single-step three-dimensional spatial-spectral coding on the input data cube, which provides higher flexibility on the selection of voxels being multiplexed on the sensor. The patterned filter array is designed and fabricated with micrometer pitch size thin films, referred to as pixelated filters, with three different wavelengths. The performance of the system is evaluated in terms of references measured by a commercially available spectrometer and the visual quality of the reconstructed images. Different distributions of the pixelated filters, including random and optimized structures, are explored.

  2. ERIM progress report on use of ERTS-1 data: Summary report of work on ten tasks

    NASA Technical Reports Server (NTRS)

    Thomson, F. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Several of the tasks have produced significant results which are summarized: (1) Absolute water depth can be calculated from a ratio of signals from bands MSS 4 and MSS 5. (2) A 13 category terrain feature classification map of Yellowstone National Park has been produced using supervised pattern recognition techniques. (3) ERTS-1 data has been shown to provide a detection and monitoring capability for a number of water quality problems associated with off-shore ocean dumping sites and inland lakes. (4) A corrected ratio of bands MSS-5 and MSS-7 signals has been formed. (5) A concise format has been devised for storing the ratio signatures of geologic rock and mineral materials determined from laboratory reflectance spectra. (6) Results of work in information extraction demonstrate: signal variability exists among ERTS-1 detectors in any one spectral band that will impact users doing quantitative analysis on successive ERTS-1 images; a newly developed computer-aided procedure for correlating ERTS-1 pixels to ground features; the strong influence of atmospheric effects in ERTS-1 data; and area estimation accuracies are better using the ERIM proportion estimation algorithm than for conventional recognition techniques.

  3. The Psychophysics of Algebra Expertise: Mathematics Perceptual Learning Interventions Produce Durable Encoding Changes

    ERIC Educational Resources Information Center

    Bufford, Carolyn A.; Mettler, Everett; Geller, Emma H.; Kellman, Philip J.

    2014-01-01

    Mathematics requires thinking but also pattern recognition. Recent research indicates that perceptual learning (PL) interventions facilitate discovery of structure and recognition of patterns in mathematical domains, as assessed by tests of mathematical competence. Here we sought direct evidence that a brief perceptual learning module (PLM)…

  4. Summary of 1971 pattern recognition program development

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1972-01-01

    Eight areas related to pattern recognition analysis at the Earth Resources Laboratory are discussed: (1) background; (2) Earth Resources Laboratory goals; (3) software problems/limitations; (4) operational problems/limitations; (5) immediate future capabilities; (6) Earth Resources Laboratory data analysis system; (7) general program needs and recommendations; and (8) schedule and milestones.

  5. Pattern Recognition by Retina-Like Devices.

    ERIC Educational Resources Information Center

    Weiman, Carl F. R.; Rothstein, Jerome

    This study has investigated some pattern recognition capabilities of devices consisting of arrays of cooperating elements acting in parallel. The problem of recognizing straight lines in general position on the quadratic lattice has been completely solved by applying parallel acting algorithms to a special code for lines on the lattice. The…

  6. Cognitive Development and Reading Processes. Developmental Program Report Number 76.

    ERIC Educational Resources Information Center

    West, Richard F.

    In discussing the relationship between cognitive development (perception, pattern recognition, and memory) and reading processes, this paper especially emphasizes developmental factors. After an overview of some issues that bear on how written language is processed, the paper presents a discussion of pattern recognition, including general pattern…

  7. Age-related differences in listening effort during degraded speech recognition

    PubMed Central

    Ward, Kristina M.; Shen, Jing; Souza, Pamela E.; Grieco-Calub, Tina M.

    2016-01-01

    Objectives The purpose of the current study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Design Twenty-five younger adults (18–24 years) and twenty-one older adults (56–82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants’ responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners’ performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (baseline vs. dual task); and (3) per group (younger vs. older adults). Results Speech recognition declined with increasing spectral degradation for both younger and older adults when they performed the task in isolation or concurrently with the visual monitoring task. Older adults were slower and less accurate than younger adults on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared to single-task performance, older adults experienced greater declines in secondary-task accuracy, but not reaction time, than younger adults. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. Conclusions Older adults experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than younger adults. These findings are interpreted as suggesting that older listeners expended greater listening effort than younger listeners, and may be partially attributed to age-related differences in executive control. PMID:27556526

  8. Bi-Spectral Method for Radar Target Recognition

    DTIC Science & Technology

    2006-12-01

    θazimuth=60° and ϕelevation=30° with HV Polarization....................................53 Figure 50 Comparison of Radar Range Profile with Actual...radar systems. A comparison of the NCTR techniques and their relative advantages and disadvantages in target recognition performance is presented. 8...32 f fR i R R c c f fi R R i R R c c A e A e A e ψ ψ π ψ ψ π ψ ψ π ψ ψ

  9. Optical and digital pattern recognition; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)

    1987-01-01

    The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.

  10. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  11. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  12. Comparison of different methods for estimating snowcover in forested, mountainous basins using LANDSAT (ERTS) images. [Washington and Santiam River, Oregon

    NASA Technical Reports Server (NTRS)

    Meier, M. J.; Evans, W. E.

    1975-01-01

    Snow-covered areas on LANDSAT (ERTS) images of the Santiam River basin, Oregon, and other basins in Washington were measured using several operators and methods. Seven methods were used: (1) Snowline tracing followed by measurement with planimeter, (2) mean snowline altitudes determined from many locations, (3) estimates in 2.5 x 2.5 km boxes of snow-covered area with reference to snow-free images, (4) single radiance-threshold level for entire basin, (5) radiance-threshold setting locally edited by reference to altitude contours and other images, (6) two-band color-sensitive extraction locally edited as in (5), and (7) digital (spectral) pattern recognition techniques. The seven methods are compared in regard to speed of measurement, precision, the ability to recognize snow in deep shadow or in trees, relative cost, and whether useful supplemental data are produced.

  13. The utility of ERTS-1 data for applications in land use classification. [Texas Gulf Coast

    NASA Technical Reports Server (NTRS)

    Dornbach, J. E.; Mckain, G. E.

    1974-01-01

    A comprehensive study has been undertaken to determine the extent to which conventional image interpretation and computer-aided (spectral pattern recognition) analysis techniques using ERTS-1 data could be used to detect, identify (classify), locate, and measure current land use over large geographic areas. It can be concluded that most of the level 1 and 2 categories in the USGS Circular no. 671 can be detected in the Houston-Gulf Coast area using a combination of both techniques for analysis. These capabilities could be exercised over larger geographic areas, however, certain factors such as different vegetative cover, topography, etc. may have to be considered in other geographic regions. The best results in identification (classification), location, and measurement of level 1 and 2 type categories appear to be obtainable through automatic data processing of multispectral scanner computer compatible tapes.

  14. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes.

    PubMed

    Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M

    2018-04-12

    Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.

  15. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes

    PubMed Central

    Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M.

    2018-01-01

    Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods. PMID:29649114

  16. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, Gregory; Hoff, James; Jindariani, Sergo

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less

  17. Hyperspectral face recognition with spatiospectral information fusion and PLS regression.

    PubMed

    Uzair, Muhammad; Mahmood, Arif; Mian, Ajmal

    2015-03-01

    Hyperspectral imaging offers new opportunities for face recognition via improved discrimination along the spectral dimension. However, it poses new challenges, including low signal-to-noise ratio, interband misalignment, and high data dimensionality. Due to these challenges, the literature on hyperspectral face recognition is not only sparse but is limited to ad hoc dimensionality reduction techniques and lacks comprehensive evaluation. We propose a hyperspectral face recognition algorithm using a spatiospectral covariance for band fusion and partial least square regression for classification. Moreover, we extend 13 existing face recognition techniques, for the first time, to perform hyperspectral face recognition.We formulate hyperspectral face recognition as an image-set classification problem and evaluate the performance of seven state-of-the-art image-set classification techniques. We also test six state-of-the-art grayscale and RGB (color) face recognition algorithms after applying fusion techniques on hyperspectral images. Comparison with the 13 extended and five existing hyperspectral face recognition techniques on three standard data sets show that the proposed algorithm outperforms all by a significant margin. Finally, we perform band selection experiments to find the most discriminative bands in the visible and near infrared response spectrum.

  18. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.

    PubMed

    Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A

    2012-12-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.

  19. Determination of awareness in patients with severe brain injury using EEG power spectral analysis

    PubMed Central

    Goldfine, Andrew M.; Victor, Jonathan D.; Conte, Mary M.; Bardin, Jonathan C.; Schiff, Nicholas D.

    2011-01-01

    Objective To determine whether EEG spectral analysis could be used to demonstrate awareness in patients with severe brain injury. Methods We recorded EEG from healthy controls and three patients with severe brain injury, ranging from minimally conscious state (MCS) to locked-in-state (LIS), while they were asked to imagine motor and spatial navigation tasks. We assessed EEG spectral differences from 4 to 24 Hz with univariate comparisons (individual frequencies) and multivariate comparisons (patterns across the frequency range). Results In controls, EEG spectral power differed at multiple frequency bands and channels during performance of both tasks compared to a resting baseline. As patterns of signal change were inconsistent between controls, we defined a positive response in patient subjects as consistent spectral changes across task performances. One patient in MCS and one in LIS showed evidence of motor imagery task performance, though with patterns of spectral change different from the controls. Conclusion EEG power spectral analysis demonstrates evidence for performance of mental imagery tasks in healthy controls and patients with severe brain injury. Significance EEG power spectral analysis can be used as a flexible bedside tool to demonstrate awareness in brain-injured patients who are otherwise unable to communicate. PMID:21514214

  20. Cochlear Implants Special Issue Article: Vocal Emotion Recognition by Normal-Hearing Listeners and Cochlear Implant Users

    PubMed Central

    Luo, Xin; Fu, Qian-Jie; Galvin, John J.

    2007-01-01

    The present study investigated the ability of normal-hearing listeners and cochlear implant users to recognize vocal emotions. Sentences were produced by 1 male and 1 female talker according to 5 target emotions: angry, anxious, happy, sad, and neutral. Overall amplitude differences between the stimuli were either preserved or normalized. In experiment 1, vocal emotion recognition was measured in normal-hearing and cochlear implant listeners; cochlear implant subjects were tested using their clinically assigned processors. When overall amplitude cues were preserved, normal-hearing listeners achieved near-perfect performance, whereas listeners with cochlear implant recognized less than half of the target emotions. Removing the overall amplitude cues significantly worsened mean normal-hearing and cochlear implant performance. In experiment 2, vocal emotion recognition was measured in listeners with cochlear implant as a function of the number of channels (from 1 to 8) and envelope filter cutoff frequency (50 vs 400 Hz) in experimental speech processors. In experiment 3, vocal emotion recognition was measured in normal-hearing listeners as a function of the number of channels (from 1 to 16) and envelope filter cutoff frequency (50 vs 500 Hz) in acoustic cochlear implant simulations. Results from experiments 2 and 3 showed that both cochlear implant and normal-hearing performance significantly improved as the number of channels or the envelope filter cutoff frequency was increased. The results suggest that spectral, temporal, and overall amplitude cues each contribute to vocal emotion recognition. The poorer cochlear implant performance is most likely attributable to the lack of salient pitch cues and the limited functional spectral resolution. PMID:18003871

  1. Dependence of astigmatism, far-field pattern, and spectral envelope width on active layer thickness of gain guided lasers with narrow stripe geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamine, T.

    1984-06-15

    The effects of active layer thickness on the astigmatism, the angle of far-field pattern width parallel to the junction, and the spectral envelope width of a gain guided laser with a narrow stripe geometry have been investigated analytically and experimentally. It is concluded that a large level of astigmatism, a narrow far-field pattern width, and a rapid convergence of the spectral envelope width are inherent to the gain guided lasers with thin active layers.

  2. Do pattern recognition skills transfer across sports? A preliminary analysis.

    PubMed

    Smeeton, Nicholas J; Ward, Paul; Williams, A Mark

    2004-02-01

    The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.

  3. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  4. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  5. Face Recognition Using Local Quantized Patterns and Gabor Filters

    NASA Astrophysics Data System (ADS)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  6. Discrimination of liver cancer in cellular level based on backscatter micro-spectrum with PCA algorithm and BP neural network

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Cheng; Cai, Gan; Dong, Xiaona

    2016-10-01

    The incidence and mortality rate of the primary liver cancer are very high and its postoperative metastasis and recurrence have become important factors to the prognosis of patients. Circulating tumor cells (CTC), as a new tumor marker, play important roles in the early diagnosis and individualized treatment. This paper presents an effective method to distinguish liver cancer based on the cellular scattering spectrum, which is a non-fluorescence technique based on the fiber confocal microscopic spectrometer. Combining the principal component analysis (PCA) with back propagation (BP) neural network were utilized to establish an automatic recognition model for backscatter spectrum of the liver cancer cells from blood cell. PCA was applied to reduce the dimension of the scattering spectral data which obtained by the fiber confocal microscopic spectrometer. After dimensionality reduction by PCA, a neural network pattern recognition model with 2 input layer nodes, 11 hidden layer nodes, 3 output nodes was established. We trained the network with 66 samples and also tested it. Results showed that the recognition rate of the three types of cells is more than 90%, the relative standard deviation is only 2.36%. The experimental results showed that the fiber confocal microscopic spectrometer combining with the algorithm of PCA and BP neural network can automatically identify the liver cancer cell from the blood cells. This will provide a better tool for investigating the metastasis of liver cancers in vivo, the biology metabolic characteristics of liver cancers and drug transportation. Additionally, it is obviously referential in practical application.

  7. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  8. Speaker normalization for chinese vowel recognition in cochlear implants.

    PubMed

    Luo, Xin; Fu, Qian-Jie

    2005-07-01

    Because of the limited spectra-temporal resolution associated with cochlear implants, implant patients often have greater difficulty with multitalker speech recognition. The present study investigated whether multitalker speech recognition can be improved by applying speaker normalization techniques to cochlear implant speech processing. Multitalker Chinese vowel recognition was tested with normal-hearing Chinese-speaking subjects listening to a 4-channel cochlear implant simulation, with and without speaker normalization. For each subject, speaker normalization was referenced to the speaker that produced the best recognition performance under conditions without speaker normalization. To match the remaining speakers to this "optimal" output pattern, the overall frequency range of the analysis filter bank was adjusted for each speaker according to the ratio of the mean third formant frequency values between the specific speaker and the reference speaker. Results showed that speaker normalization provided a small but significant improvement in subjects' overall recognition performance. After speaker normalization, subjects' patterns of recognition performance across speakers changed, demonstrating the potential for speaker-dependent effects with the proposed normalization technique.

  9. The effect of change in spectral slope and formant frequencies on the perception of loudness.

    PubMed

    Duvvuru, Sirisha; Erickson, Molly

    2013-11-01

    This study attempts to understand how changes in spectral slope and formant frequency influence changes in perceived loudness. It was hypothesized that voices synthesized with steeper spectral slopes will be perceived as less loud than voices synthesized with less steep spectral slopes, in spite of the fact that they are of equal root mean square (RMS) amplitude. It was also hypothesized that stimuli with higher formant patterns will be perceived as louder than those with lower formant patterns, in spite of the fact that they are of equal RMS amplitude. Repeated measures factorial design. For the pitches A3, C4, B4, and F5, three different source signals were synthesized with varying slopes of -9, -12, and -15 dB/octave using a frequency vibrato rate of 5.6 Hz and a frequency vibrato extent of 50 cents. Each of the three source signals were filtered using two formant patterns, a lower formant pattern typical of a mezzo-soprano (pattern A) and a higher formant pattern typical of a soprano (pattern B) for the vowel /a/. For each pitch, the six stimuli were combined into all possible pairs and normalized to equal RMS amplitude. Listeners were presented with 120 paired stimuli (60 pairs repeated twice). The listener's task was to indicate whether the first or second stimulus in the pair was louder. Generally, as the spectral slope decreased, perceived loudness increased, with the magnitude of the perceived difference in loudness being related to the degree of difference in spectral slope. Likewise, at all pitches except A3, perceived loudness increased as formant frequency increased. RMS amplitude is an important predictor of loudness perception, but many other factors also affect the perception of this important vocal parameter. Spectral composition is one such factor and must be considered when using loudness perception in the process of clinical diagnostics. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  10. Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging

    PubMed Central

    Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice

    2012-01-01

    Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (p<.05, r=.44) and more accurate at identifying disgust (p<.05, r=.39). OA fixated less than YA on the top half of the face for disgust, fearful, happy, neutral, and sad faces (p’s<.05, r’s≥.38), whereas there was no group difference for landscapes. For OA, executive function was correlated with recognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800

  11. Research and Application of Remote Sensing Monitoring Method for Desertification Land Under Time and Space Constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Nannnan; Wang, Rongbao; Zhang, Feng

    2018-04-01

    Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.

  12. Infrared Ship Classification Using A New Moment Pattern Recognition Concept

    NASA Astrophysics Data System (ADS)

    Casasent, David; Pauly, John; Fetterly, Donald

    1982-03-01

    An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.

  13. Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements

    NASA Astrophysics Data System (ADS)

    Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo

    1999-05-01

    Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  14. Engineering analysis of LANDSAT 1 data for Southeast Asian agriculture

    NASA Technical Reports Server (NTRS)

    Mcnair, A. J.; Heydt, H. L.; Liang, T.; Levine, G. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. LANDSAT spatial resolution was estimated to be adequate, but barely so, for the purpose of detailed assessment of rice or site status. This was due to the spatially fine grain, heterogenous nature of most rice areas. Use of two spectral bands of digital data (MSS 5 and MSS 6 or 7) appeared to be adequate for site recognition and gross site status assessment. Spectral/temporal signatures were found to be more powerful than spectra signatures alone and virtually essential for most analyses of rice growth and rice sites in the Philippine environment. Two band, two date signatures were estimated to be adequate for most purposes, although good results were achieved using one band two- or four-date signatures. A radiometric resolution of 64 levels in each band was found adequate for the analyses of LANDSAT digital data for site recognition and gross site or rice growth assessment.

  15. Foundations for a syntatic pattern recognition system for genomic DNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  16. Human phoneme recognition depending on speech-intrinsic variability.

    PubMed

    Meyer, Bernd T; Jürgens, Tim; Wesker, Thorsten; Brand, Thomas; Kollmeier, Birger

    2010-11-01

    The influence of different sources of speech-intrinsic variation (speaking rate, effort, style and dialect or accent) on human speech perception was investigated. In listening experiments with 16 listeners, confusions of consonant-vowel-consonant (CVC) and vowel-consonant-vowel (VCV) sounds in speech-weighted noise were analyzed. Experiments were based on the OLLO logatome speech database, which was designed for a man-machine comparison. It contains utterances spoken by 50 speakers from five dialect/accent regions and covers several intrinsic variations. By comparing results depending on intrinsic and extrinsic variations (i.e., different levels of masking noise), the degradation induced by variabilities can be expressed in terms of the SNR. The spectral level distance between the respective speech segment and the long-term spectrum of the masking noise was found to be a good predictor for recognition rates, while phoneme confusions were influenced by the distance to spectrally close phonemes. An analysis based on transmitted information of articulatory features showed that voicing and manner of articulation are comparatively robust cues in the presence of intrinsic variations, whereas the coding of place is more degraded. The database and detailed results have been made available for comparisons between human speech recognition (HSR) and automatic speech recognizers (ASR).

  17. The time course of individual face recognition: A pattern analysis of ERP signals.

    PubMed

    Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian

    2016-05-15

    An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    ERIC Educational Resources Information Center

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  19. Designing Clinical Examples To Promote Pattern Recognition: Nursing Education-Based Research and Practical Applications.

    ERIC Educational Resources Information Center

    Welk, Dorette Sugg

    2002-01-01

    Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…

  20. PATTERN RECOGNITION APPROACH TO MEDICAL DIAGNOSIS,

    DTIC Science & Technology

    A sequential method of pattern recognition was used to recognize hyperthyroidism in a sample of 2219 patients being treated at the Straub Clinic in...the most prominent class features are selected. Thus, the symptoms which best distinguish hyperthyroidism are extracted at every step and the number of tests required to reach a diagnosis is reduced. (Author)

  1. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.

    PubMed

    Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M

    2018-05-31

    Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.

  2. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  3. Complex auditory behaviour emerges from simple reactive steering

    NASA Astrophysics Data System (ADS)

    Hedwig, Berthold; Poulet, James F. A.

    2004-08-01

    The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.

  4. Memory Distortion and Its Avoidance: An Event-Related Potentials Study on False Recognition and Correct Rejection

    PubMed Central

    Beato, Maria Soledad

    2016-01-01

    Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm. PMID:27711125

  5. Memory Distortion and Its Avoidance: An Event-Related Potentials Study on False Recognition and Correct Rejection.

    PubMed

    Cadavid, Sara; Beato, Maria Soledad

    2016-01-01

    Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection processes, which are later supported by monitoring processes. Results are discussed in terms of Activation-Monitoring Framework and Fuzzy Trace-Theory, the most prominent explanatory theories of false memory raised with the Deese/Roediger-McDermott paradigm.

  6. The establishment and external validation of NIR qualitative analysis model for waste polyester-cotton blend fabrics.

    PubMed

    Li, Feng; Li, Wen-Xia; Zhao, Guo-Liang; Tang, Shi-Jun; Li, Xue-Jiao; Wu, Hong-Mei

    2014-10-01

    A series of 354 polyester-cotton blend fabrics were studied by the near-infrared spectra (NIRS) technology, and a NIR qualitative analysis model for different spectral characteristics was established by partial least squares (PLS) method combined with qualitative identification coefficient. There were two types of spectrum for dying polyester-cotton blend fabrics: normal spectrum and slash spectrum. The slash spectrum loses its spectral characteristics, which are effected by the samples' dyes, pigments, matting agents and other chemical additives. It was in low recognition rate when the model was established by the total sample set, so the samples were divided into two types of sets: normal spectrum sample set and slash spectrum sample set, and two NIR qualitative analysis models were established respectively. After the of models were established the model's spectral region, pretreatment methods and factors were optimized based on the validation results, and the robustness and reliability of the model can be improved lately. The results showed that the model recognition rate was improved greatly when they were established respectively, the recognition rate reached up to 99% when the two models were verified by the internal validation. RC (relation coefficient of calibration) values of the normal spectrum model and slash spectrum model were 0.991 and 0.991 respectively, RP (relation coefficient of prediction) values of them were 0.983 and 0.984 respectively, SEC (standard error of calibration) values of them were 0.887 and 0.453 respectively, SEP (standard error of prediction) values of them were 1.131 and 0.573 respectively. A series of 150 bounds samples reached used to verify the normal spectrum model and slash spectrum model and the recognition rate reached up to 91.33% and 88.00% respectively. It showed that the NIR qualitative analysis model can be used for identification in the recycle site for the polyester-cotton blend fabrics.

  7. Talker variability in audio-visual speech perception

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker’s face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker’s face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker’s face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred. PMID:25076919

  8. Talker variability in audio-visual speech perception.

    PubMed

    Heald, Shannon L M; Nusbaum, Howard C

    2014-01-01

    A change in talker is a change in the context for the phonetic interpretation of acoustic patterns of speech. Different talkers have different mappings between acoustic patterns and phonetic categories and listeners need to adapt to these differences. Despite this complexity, listeners are adept at comprehending speech in multiple-talker contexts, albeit at a slight but measurable performance cost (e.g., slower recognition). So far, this talker variability cost has been demonstrated only in audio-only speech. Other research in single-talker contexts have shown, however, that when listeners are able to see a talker's face, speech recognition is improved under adverse listening (e.g., noise or distortion) conditions that can increase uncertainty in the mapping between acoustic patterns and phonetic categories. Does seeing a talker's face reduce the cost of word recognition in multiple-talker contexts? We used a speeded word-monitoring task in which listeners make quick judgments about target word recognition in single- and multiple-talker contexts. Results show faster recognition performance in single-talker conditions compared to multiple-talker conditions for both audio-only and audio-visual speech. However, recognition time in a multiple-talker context was slower in the audio-visual condition compared to audio-only condition. These results suggest that seeing a talker's face during speech perception may slow recognition by increasing the importance of talker identification, signaling to the listener a change in talker has occurred.

  9. Classifying performance impairment in response to sleep loss using pattern recognition algorithms on single session testing

    PubMed Central

    St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.

    2012-01-01

    There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in response to sleep loss. PMID:22959616

  10. Imaging in gynaecology: How good are we in identifying endometriomas?

    PubMed Central

    Van Holsbeke, C.; Van Calster, B.; Guerriero, S.; Savelli, L.; Leone, F.; Fischerova, D; Czekierdowski, A.; Fruscio, R.; Veldman, J.; Van de Putte, G.; Testa, A.C.; Bourne, T.; Valentin, L.; Timmerman, D.

    2009-01-01

    Aim: To evaluate the performance of subjective evaluation of ultrasound findings (pattern recognition) to discriminate endometriomas from other types of adnexal masses and to compare the demographic and ultrasound characteristics of the true positive cases with those cases that were presumed to be an endometrioma but proved to have a different histology (false positive cases) and the endometriomas missed by pattern recognition (false negative cases). Methods: All patients in the International Ovarian Tumor Analysis (IOTA ) studies were included for analysis. In the IOTA studies, patients with an adnexal mass that were preoperatively examined by expert sonologists following the same standardized ultrasound protocol were prospectively included in 21 international centres. Sensitivity and specificity to discriminate endometriomas from other types of adnexal masses using pattern recognition were calculated. Ultrasound and some demographic variables of the masses presumed to be an endometrioma were analysed (true positives and false positives) and compared with the variables of the endometriomas missed by pattern recognition (false negatives) as well as the true negatives. Results: IOTA phase 1, 1b and 2 included 3511 patients of which 2560 were benign (73%) and 951 malignant (27%). The dataset included 713 endometriomas. Sensitivity and specificity for pattern recognition were 81% (577/713) and 97% (2723/2798). The true positives were more often unilocular with ground glass echogenicity than the masses in any other category. Among the 75 false positive cases, 66 were benign but 9 were malignant (5 borderline tumours, 1 rare primary invasive tumour and 3 endometrioid adenocarcinomas). The presumed diagnosis suggested by the sonologist in case of a missed endometrioma was mostly functional cyst or cystadenoma. Conclusion: Expert sonologists can quite accurately discriminate endometriomas from other types of adnexal masses, but in this dataset 1% of the masses that were classified as endometrioma by pattern recognition proved to be malignancies. PMID:25478066

  11. Remote Video Monitor of Vehicles in Cooperative Information Platform

    NASA Astrophysics Data System (ADS)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  12. Large-area settlement pattern recognition from Landsat-8 data

    NASA Astrophysics Data System (ADS)

    Wieland, Marc; Pittore, Massimiliano

    2016-09-01

    The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.

  13. Study on multispectral imaging detection and recognition

    NASA Astrophysics Data System (ADS)

    Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng

    2009-07-01

    Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.

  14. Peripheral absolute threshold spectral sensitivity in retinitis pigmentosa.

    PubMed Central

    Massof, R W; Johnson, M A; Finkelstein, D

    1981-01-01

    Dark-adapted spectral sensitivities were measured in the peripheral retinas of 38 patients diagnosed as having typical retinitis pigmentosa (RP) and in 3 normal volunteers. The patients included those having autosomal dominant and autosomal recessive inheritance patterns. Results were analysed by comparisons with the CIE standard scotopic spectral visibility function and with Judd's modification of the photopic spectral visibility function, with consideration of contributions from changes in spectral transmission of preretinal media. The data show 3 general patterns. One group of patients had absolute threshold spectral sensitivities that were fit by Judd's photopic visibility curve. Absolute threshold spectral sensitivities for a second group of patients were fit by a normal scotopic spectral visibility curve. The third group of patients had absolute threshold spectral sensitivities that were fit by a combination of scotopic and photopic spectral visibility curves. The autosomal dominant and autosomal recessive modes of inheritance were represented in each group of patients. These data indicate that RP patients have normal rod and/or cone spectral sensitivities, and support the subclassification of patients described previously by Massof and Finkelstein. PMID:7459312

  15. The Characteristics of Binary Spike-Time-Dependent Plasticity in HfO2-Based RRAM and Applications for Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2017-04-01

    A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.

  16. Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0-14.0 μm)

    USGS Publications Warehouse

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2007-01-01

    In contrast to visible and short-wave infrared data, thermal infrared spectra of broad leaf plants show considerable spectral diversity, suggesting that such data eventually could be utilized to map vegetation composition. However, remotely measuring the subtle emissivity features of leaves still presents major challenges. To be successful, sensors operating in the 8–14 μm atmospheric window must have high signal-to-noise and a small enough instantaneous field of view to allow measurements of only a few leaf surfaces. Methods for atmospheric compensation, temperature–emissivity separation, and spectral feature analysis also will need to be refined to allow the recognition, and perhaps, exploitation of leaf thermal infrared spectral properties.

  17. Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing.

    PubMed

    Nichkova, Mikaela; Dosev, Dosi; Perron, Richard; Gee, Shirley J; Hammock, Bruce D; Kennedy, Ian M

    2006-02-01

    Lanthanide oxide nanoparticles are promising luminescent probes in bioanalysis, because of their unique spectral properties, photostability, and low-cost synthesis. We report for the first time the application of europium-doped gadolinium oxide (Eu:Gd2O3) nanoparticles to the optical imaging of antibody micropatterns. The nanoparticles were synthesized by spray pyrolysis and coated with antibody (IgG) molecules by physical adsorption. Our experiments showed that the Eu:Gd2O3 is a good biocompatible solid support for antibody immobilization. The antibodies (anti-rabbit IgG) immobilized on the nanoparticles had excellent biological activity in the specific recognition reaction with rabbit IgG patterned in line strips (10 micromx10 microm) on a glass substrate by use of a micro-contact printing technique. The specific immunoreaction was confirmed by two independent microscopic techniques-fluorescence and scanning electron microscopy (SEM). Both microscopic images revealed that the nanoparticles were organized into designated structures as defined by the microcontact printing process with negligible non-specific binding. The nanoparticles can be used as fluorescent markers in a variety of immunosensing applications in a microscale format.

  18. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.

  19. Field applications of stand-off sensing using visible/NIR multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Eastwood, DeLyle; Soyemi, Olusola O.; Karunamuni, Jeevanandra; Zhang, Lixia; Li, Hongli; Myrick, Michael L.

    2001-02-01

    12 A novel multivariate visible/NIR optical computing approach applicable to standoff sensing will be demonstrated with porphyrin mixtures as examples. The ultimate goal is to develop environmental or counter-terrorism sensors for chemicals such as organophosphorus (OP) pesticides or chemical warfare simulants in the near infrared spectral region. The mathematical operation that characterizes prediction of properties via regression from optical spectra is a calculation of inner products between the spectrum and the pre-determined regression vector. The result is scaled appropriately and offset to correspond to the basis from which the regression vector is derived. The process involves collecting spectroscopic data and synthesizing a multivariate vector using a pattern recognition method. Then, an interference coating is designed that reproduces the pattern of the multivariate vector in its transmission or reflection spectrum, and appropriate interference filters are fabricated. High and low refractive index materials such as Nb2O5 and SiO2 are excellent choices for the visible and near infrared regions. The proof of concept has now been established for this system in the visible and will later be extended to chemicals such as OP compounds in the near and mid-infrared.

  20. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  1. Adding a Zero-Crossing Count to Spectral Information in Template-Based Speech Recognition

    DTIC Science & Technology

    1982-01-01

    incorporation of zero-crossing information into the spectral representation used in a template-matching system ( cIcADA ). An analysis of zero-crossing data for an...procedure to be used. The work described in this paper was done using the CICADA system developed at Carnegie-Mellon University [Alleva 81, Waibel 801... CICADA uses a representation based on a compression of the short-term spectrum according to a 16 coefficient mel scale. Let us consider the CICADA

  2. Conformal Predictions in Multimedia Pattern Recognition

    ERIC Educational Resources Information Center

    Nallure Balasubramanian, Vineeth

    2010-01-01

    The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…

  3. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    ERIC Educational Resources Information Center

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  4. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    ERIC Educational Resources Information Center

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  5. Machine Learning Through Signature Trees. Applications to Human Speech.

    ERIC Educational Resources Information Center

    White, George M.

    A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…

  6. Real-Time Pattern Recognition - An Industrial Example

    NASA Astrophysics Data System (ADS)

    Fitton, Gary M.

    1981-11-01

    Rapid advancements in cost effective sensors and micro computers are now making practical the on-line implementation of pattern recognition based systems for a variety of industrial applications requiring high processing speeds. One major application area for real time pattern recognition is in the sorting of packaged/cartoned goods at high speed for automated warehousing and return goods cataloging. While there are many OCR and bar code readers available to perform these functions, it is often impractical to use such codes (package too small, adverse esthetics, poor print quality) and an approach which recognizes an item by its graphic content alone is desirable. This paper describes a specific application within the tobacco industry, that of sorting returned cigarette goods by brand and size.

  7. Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology.

    PubMed

    Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J

    2011-02-26

    HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.

  8. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition[OPEN

    PubMed Central

    2017-01-01

    Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to “hide” microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis. PMID:28302675

  9. Developing Signal-Pattern-Recognition Programs

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Hammen, David

    2006-01-01

    Pattern Interpretation and Recognition Application Toolkit Environment (PIRATE) is a block-oriented software system that aids the development of application programs that analyze signals in real time in order to recognize signal patterns that are indicative of conditions or events of interest. PIRATE was originally intended for use in writing application programs to recognize patterns in space-shuttle telemetry signals received at Johnson Space Center's Mission Control Center: application programs were sought to (1) monitor electric currents on shuttle ac power busses to recognize activations of specific power-consuming devices, (2) monitor various pressures and infer the states of affected systems by applying a Kalman filter to the pressure signals, (3) determine fuel-leak rates from sensor data, (4) detect faults in gyroscopes through analysis of system measurements in the frequency domain, and (5) determine drift rates in inertial measurement units by regressing measurements against time. PIRATE can also be used to develop signal-pattern-recognition software for different purposes -- for example, to monitor and control manufacturing processes.

  10. Document Form and Character Recognition using SVM

    NASA Astrophysics Data System (ADS)

    Park, Sang-Sung; Shin, Young-Geun; Jung, Won-Kyo; Ahn, Dong-Kyu; Jang, Dong-Sik

    2009-08-01

    Because of development of computer and information communication, EDI (Electronic Data Interchange) has been developing. There is OCR (Optical Character Recognition) of Pattern recognition technology for EDI. OCR contributed to changing many manual in the past into automation. But for the more perfect database of document, much manual is needed for excluding unnecessary recognition. To resolve this problem, we propose document form based character recognition method in this study. Proposed method is divided into document form recognition part and character recognition part. Especially, in character recognition, change character into binarization by using SVM algorithm and extract more correct feature value.

  11. Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.

    PubMed

    Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui

    2016-01-01

    Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.

  12. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.

    PubMed

    Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin

    2018-03-12

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.

  13. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals

    PubMed Central

    Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin

    2018-01-01

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515

  14. Associative Pattern Recognition In Analog VLSI Circuits

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1995-01-01

    Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.

  15. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users

    PubMed Central

    Anderson, Elizabeth S.; Oxenham, Andrew J.; Nelson, Peggy B.; Nelson, David A.

    2012-01-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects’ thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time. PMID:23231122

  16. Quantum Mechanics, Pattern Recognition, and the Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Chapline, George

    2008-10-01

    Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.

  17. Mining sequential patterns for protein fold recognition.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2008-02-01

    Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.

  18. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures

    NASA Astrophysics Data System (ADS)

    Yao, Ruigen; Pakzad, Shamim N.

    2012-08-01

    Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.

  19. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  20. Fuzzy tree automata and syntactic pattern recognition.

    PubMed

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.

  1. Complex Event Recognition Architecture

    NASA Technical Reports Server (NTRS)

    Fitzgerald, William A.; Firby, R. James

    2009-01-01

    Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.

  2. Land mine detection using multispectral image fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.

    1995-03-29

    Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less

  3. Facial emotion recognition deficits in relatives of children with autism are not associated with 5HTTLPR.

    PubMed

    Neves, Maila de Castro Lourenço das; Tremeau, Fabien; Nicolato, Rodrigo; Lauar, Hélio; Romano-Silva, Marco Aurélio; Correa, Humberto

    2011-09-01

    A large body of evidence suggests that several aspects of face processing are impaired in autism and that this impairment might be hereditary. This study was aimed at assessing facial emotion recognition in parents of children with autism and its associations with a functional polymorphism of the serotonin transporter (5HTTLPR). We evaluated 40 parents of children with autism and 41 healthy controls. All participants were administered the Penn Emotion Recognition Test (ER40) and were genotyped for 5HTTLPR. Our study showed that parents of children with autism performed worse in the facial emotion recognition test than controls. Analyses of error patterns showed that parents of children with autism over-attributed neutral to emotional faces. We found evidence that 5HTTLPR polymorphism did not influence the performance in the Penn Emotion Recognition Test, but that it may determine different error patterns. Facial emotion recognition deficits are more common in first-degree relatives of autistic patients than in the general population, suggesting that facial emotion recognition is a candidate endophenotype for autism.

  4. An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.

    1977-01-01

    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.

  5. Foundations for a syntatic pattern recognition system for genomic DNA sequences. [Annual] report, 1 December 1991--31 March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  6. Sharpness of interference pattern of the 3-pole wiggler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dejus, Roger J., E-mail: dejus@aps.anl.gov; Kim, Kwang-Je

    2016-07-27

    Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.

  7. Sharpness of Interference Pattern of the 3-Pole Wiggler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dejus, Roger J.; Kim, Kwang-Je

    2016-07-02

    Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumway, R.H.; McQuarrie, A.D.

    Robust statistical approaches to the problem of discriminating between regional earthquakes and explosions are developed. We compare linear discriminant analysis using descriptive features like amplitude and spectral ratios with signal discrimination techniques using the original signal waveforms and spectral approximations to the log likelihood function. Robust information theoretic techniques are proposed and all methods are applied to 8 earthquakes and 8 mining explosions in Scandinavia and to an event from Novaya Zemlya of unknown origin. It is noted that signal discrimination approaches based on discrimination information and Renyi entropy perform better in the test sample than conventional methods based onmore » spectral ratios involving the P and S phases. Two techniques for identifying the ripple-firing pattern for typical mining explosions are proposed and shown to work well on simulated data and on several Scandinavian earthquakes and explosions. We use both cepstral analysis in the frequency domain and a time domain method based on the autocorrelation and partial autocorrelation functions. The proposed approach strips off underlying smooth spectral and seasonal spectral components corresponding to the echo pattern induced by two simple ripple-fired models. For two mining explosions, a pattern is identified whereas for two earthquakes, no pattern is evident.« less

  9. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  10. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    PubMed Central

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  11. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

  12. Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.

    PubMed

    Põder, Endel

    2014-11-06

    Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data. © 2014 ARVO.

  13. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    PubMed Central

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  14. Apparatus for detecting and recognizing analytes based on their crystallization patterns

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Vsevolodov, Nikolai N.; Elliott, Adam

    2010-12-14

    The invention contemplates apparatuses for recognition of proteins and other biological molecules by imaging morphology, size and distribution of crystalline and amorphous dry residues in droplets (further referred to as "crystallization patterns") containing predetermined amount of certain crystal-forming organic compounds (reporters) to which protein to be analyzed is added. Changes in the crystallization patterns of a number of amino-acids can be used as a "signature" of a protein added. Also, changes in the crystallization patterns, as well as the character of such changes, can be used as recognition elements in analysis of protein molecules.

  15. Intraspecific Variation in Learning: Worker Wasps Are Less Able to Learn and Remember Individual Conspecific Faces than Queen Wasps.

    PubMed

    Tibbetts, Elizabeth A; Injaian, Allison; Sheehan, Michael J; Desjardins, Nicole

    2018-05-01

    Research on individual recognition often focuses on species-typical recognition abilities rather than assessing intraspecific variation in recognition. As individual recognition is cognitively costly, the capacity for recognition may vary within species. We test how individual face recognition differs between nest-founding queens (foundresses) and workers in Polistes fuscatus paper wasps. Individual recognition mediates dominance interactions among foundresses. Three previously published experiments have shown that foundresses (1) benefit by advertising their identity with distinctive facial patterns that facilitate recognition, (2) have robust memories of individuals, and (3) rapidly learn to distinguish between face images. Like foundresses, workers have variable facial patterns and are capable of individual recognition. However, worker dominance interactions are muted. Therefore, individual recognition may be less important for workers than for foundresses. We find that (1) workers with unique faces receive amounts of aggression similar to those of workers with common faces, indicating that wasps do not benefit from advertising their individual identity with a unique appearance; (2) workers lack robust memories for individuals, as they cannot remember unique conspecifics after a 6-day separation; and (3) workers learn to distinguish between facial images more slowly than foundresses during training. The recognition differences between foundresses and workers are notable because Polistes lack discrete castes; foundresses and workers are morphologically similar, and workers can take over as queens. Overall, social benefits and receiver capacity for individual recognition are surprisingly plastic.

  16. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    NASA Astrophysics Data System (ADS)

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.

  17. Autocorrelation factors and intelligibility of Japanese monosyllables in individuals with sensorineural hearing loss.

    PubMed

    Shimokura, Ryota; Akasaka, Sakie; Nishimura, Tadashi; Hosoi, Hiroshi; Matsui, Toshie

    2017-02-01

    Some Japanese monosyllables contain consonants that are not easily discernible for individuals with sensorineural hearing loss. However, the acoustic features that make these monosyllables difficult to discern have not been clearly identified. Here, this study used the autocorrelation function (ACF), which can capture temporal features of signals, to clarify the factors influencing speech intelligibility. For each monosyllable, five factors extracted from the ACF [Φ(0): total energy; τ 1 and ϕ 1 : delay time and amplitude of the maximum peak; τ e : effective duration; W ϕ (0) : spectral centroid], voice onset time, speech intelligibility index, and loudness level were compared with the percentage of correctly perceived articulations (144 ears) obtained by 50 Japanese vowel and consonant-vowel monosyllables produced by one female speaker. Results showed that median effective duration [(τ e ) med ] was strongly correlated with the percentage of correctly perceived articulations of the consonants (r = 0.87, p < 0.01). (τ e ) med values were computed by running ACFs with the time lag at which the magnitude of the logarithmic-ACF envelope had decayed to -10 dB. Effective duration is a measure of temporal pattern persistence, i.e., the duration over which the waveform maintains a stable pattern. The authors postulate that low recognition ability is related to degraded perception of temporal fluctuation patterns.

  18. Variability in the impairment of recognition memory in patients with frontal lobe lesions.

    PubMed

    Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric

    2006-10-01

    Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased false recognitions for synonyms only. Differences in terms of location of the damage and behavioral characteristics between these subgroups were examined. An encoding deficit was proposed to explain the performance of patients in subgroup I. The behavioral patterns of the patients in subgroups II and III could be interpreted as deficient post-retrieval verification processes and an inability to recollect item-specific information, respectively.

  19. Effects of Cooperative Group Work Activities on Pre-School Children's Pattern Recognition Skills

    ERIC Educational Resources Information Center

    Tarim, Kamuran

    2015-01-01

    The aim of this research is twofold; to investigate the effects of cooperative group-based work activities on children's pattern recognition skills in pre-school and to examine the teachers' opinions about the implementation process. In line with this objective, for the study, 57 children (25 girls and 32 boys) were chosen from two private schools…

  20. VLSI Microsystem for Rapid Bioinformatic Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Lue, Jaw-Chyng

    2009-01-01

    A system comprising very-large-scale integrated (VLSI) circuits is being developed as a means of bioinformatics-oriented analysis and recognition of patterns of fluorescence generated in a microarray in an advanced, highly miniaturized, portable genetic-expression-assay instrument. Such an instrument implements an on-chip combination of polymerase chain reactions and electrochemical transduction for amplification and detection of deoxyribonucleic acid (DNA).

  1. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    NASA Astrophysics Data System (ADS)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  2. Training Spiking Neural Models Using Artificial Bee Colony

    PubMed Central

    Vazquez, Roberto A.; Garro, Beatriz A.

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  3. Multiclassifier information fusion methods for microarray pattern recognition

    NASA Astrophysics Data System (ADS)

    Braun, Jerome J.; Glina, Yan; Judson, Nicholas; Herzig-Marx, Rachel

    2004-04-01

    This paper addresses automatic recognition of microarray patterns, a capability that could have a major significance for medical diagnostics, enabling development of diagnostic tools for automatic discrimination of specific diseases. The paper presents multiclassifier information fusion methods for microarray pattern recognition. The input space partitioning approach based on fitness measures that constitute an a-priori gauging of classification efficacy for each subspace is investigated. Methods for generation of fitness measures, generation of input subspaces and their use in the multiclassifier fusion architecture are presented. In particular, two-level quantification of fitness that accounts for the quality of each subspace as well as the quality of individual neighborhoods within the subspace is described. Individual-subspace classifiers are Support Vector Machine based. The decision fusion stage fuses the information from mulitple SVMs along with the multi-level fitness information. Final decision fusion stage techniques, including weighted fusion as well as Dempster-Shafer theory based fusion are investigated. It should be noted that while the above methods are discussed in the context of microarray pattern recognition, they are applicable to a broader range of discrimination problems, in particular to problems involving a large number of information sources irreducible to a low-dimensional feature space.

  4. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth A.

    2018-01-01

    Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.

  5. Conditional random fields for pattern recognition applied to structured data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Skurikhin, Alexei

    In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less

  6. Recognition memory strength is predicted by pupillary responses at encoding while fixation patterns distinguish recollection from familiarity.

    PubMed

    Kafkas, Alexandros; Montaldi, Daniela

    2011-10-01

    Thirty-five healthy participants incidentally encoded a set of man-made and natural object pictures, while their pupil response and eye movements were recorded. At retrieval, studied and new stimuli were rated as novel, familiar (strong, moderate, or weak), or recollected. We found that both pupil response and fixation patterns at encoding predict later recognition memory strength. The extent of pupillary response accompanying incidental encoding was found to be predictive of subsequent memory. In addition, the number of fixations was also predictive of later recognition memory strength, suggesting that the accumulation of greater visual detail, even for single objects, is critical for the creation of a strong memory. Moreover, fixation patterns at encoding distinguished between recollection and familiarity at retrieval, with more dispersed fixations predicting familiarity and more clustered fixations predicting recollection. These data reveal close links between the autonomic control of pupil responses and eye movement patterns on the one hand and memory encoding on the other. Moreover, the data illustrate quantitative as well as qualitative differences in the incidental visual processing of stimuli, which are differentially predictive of the strength and the kind of memory experienced at recognition.

  7. STATUS OF THE SYSTEM OF SIGNALING PATTERN RECOGNITION RECEPTORS OF MONOCYTES AND GRANULOCYTES IN COSMONAUTS' PERIPHERAL BLOOD BEFORE AND AFTER LONG-DURATION MISSIONS TO THE INTERNATIONAL SPACE STATION.

    PubMed

    Ponomarev, S A; Berendeeva, T A; Kalinin, S A; Muranova, A V

    The system of signaling pattern recognition receptors was studied in 8 cosmonauts aged 35 to 56 years before and after (R+) long-duration missions to the International space station. Peripheral blood samples were analyzed for the content of monocytes and granulocytes that express the signaling pattern recognition Toll- like (TLR) receptors localized as on cell surface (TLR1, TLR2, TLR4, TLR5, TLR6), so inside cells (TLR3, TLR8, TLR9). In parallel, serum concentrations of TLR2 (HSP60) and TLR4 ligands (HSP70, HMGB1) were measured. The results of investigations showed growth of HSP60, HSP70 and HMGB1 concentrations on R+1. In the;majority of cosmonauts increases in endogenous ligands were followed by growth in the number of both monocytes and granulocytes that express TLR2 1 TLR4. This consistency gives ground to assume that changes in the system of signaling pattern recognition receptors can stem .from the predominantly endogenous ligands' response to the effects of long-duration space flight on human organism.

  8. Conditional random fields for pattern recognition applied to structured data

    DOE PAGES

    Burr, Tom; Skurikhin, Alexei

    2015-07-14

    In order to predict labels from an output domain, Y, pattern recognition is used to gather measurements from an input domain, X. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features betweenmore » parts of the model are often correlated. Thus, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. Our paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less

  9. Neonatal Recognition Processes and Attachment: The Masking Experiment.

    ERIC Educational Resources Information Center

    Cassel, Thomas Z. K.; Sander, Louis W.

    This research project was designed to determine whether 1-week-old neonates would indicate biological recognition of their mothers. Biological recognition is defined as the particular configuration of sensory, kinesthetic, and motor cues and the temporal patterning of these cues which characterizes infants' exchange processes with their…

  10. Using speech sounds to test functional spectral resolution in listeners with cochlear implants

    PubMed Central

    Winn, Matthew B.; Litovsky, Ruth Y.

    2015-01-01

    In this study, spectral properties of speech sounds were used to test functional spectral resolution in people who use cochlear implants (CIs). Specifically, perception of the /ba/-/da/ contrast was tested using two spectral cues: Formant transitions (a fine-resolution cue) and spectral tilt (a coarse-resolution cue). Higher weighting of the formant cues was used as an index of better spectral cue perception. Participants included 19 CI listeners and 10 listeners with normal hearing (NH), for whom spectral resolution was explicitly controlled using a noise vocoder with variable carrier filter widths to simulate electrical current spread. Perceptual weighting of the two cues was modeled with mixed-effects logistic regression, and was found to systematically vary with spectral resolution. The use of formant cues was greatest for NH listeners for unprocessed speech, and declined in the two vocoded conditions. Compared to NH listeners, CI listeners relied less on formant transitions, and more on spectral tilt. Cue-weighting results showed moderately good correspondence with word recognition scores. The current approach to testing functional spectral resolution uses auditory cues that are known to be important for speech categorization, and can thus potentially serve as the basis upon which CI processing strategies and innovations are tested. PMID:25786954

  11. Comparison of the Spectral-Temporally Modulated Ripple Test With the Arizona Biomedical Institute Sentence Test in Cochlear Implant Users.

    PubMed

    Lawler, Marshall; Yu, Jeffrey; Aronoff, Justin M

    Although speech perception is the gold standard for measuring cochlear implant (CI) users' performance, speech perception tests often require extensive adaptation to obtain accurate results, particularly after large changes in maps. Spectral ripple tests, which measure spectral resolution, are an alternate measure that has been shown to correlate with speech perception. A modified spectral ripple test, the spectral-temporally modulated ripple test (SMRT) has recently been developed, and the objective of this study was to compare speech perception and performance on the SMRT for a heterogeneous population of unilateral CI users, bilateral CI users, and bimodal users. Twenty-five CI users (eight using unilateral CIs, nine using bilateral CIs, and eight using a CI and a hearing aid) were tested on the Arizona Biomedical Institute Sentence Test (AzBio) with a +8 dB signal to noise ratio, and on the SMRT. All participants were tested with their clinical programs. There was a significant correlation between SMRT and AzBio performance. After a practice block, an improvement of one ripple per octave for SMRT corresponded to an improvement of 12.1% for AzBio. Additionally, there was no significant difference in slope or intercept between any of the CI populations. The results indicate that performance on the SMRT correlates with speech recognition in noise when measured across unilateral, bilateral, and bimodal CI populations. These results suggest that SMRT scores are strongly associated with speech recognition in noise ability in experienced CI users. Further studies should focus on increasing both the size and diversity of the tested participants, and on determining whether the SMRT technique can be used for early predictions of long-term speech scores, or for evaluating differences among different stimulation strategies or parameter settings.

  12. Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V; Zhang, Y; Kundu, S J

    2004-03-29

    This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.

  13. Context-aware mobile health monitoring: evaluation of different pattern recognition methods for classification of physical activity.

    PubMed

    Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm

    2008-01-01

    There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.

  14. A new approach for cancelable iris recognition

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Sui, Yan; Zhou, Zhi; Du, Yingzi; Zou, Xukai

    2010-04-01

    The iris is a stable and reliable biometric for positive human identification. However, the traditional iris recognition scheme raises several privacy concerns. One's iris pattern is permanently bound with him and cannot be changed. Hence, once it is stolen, this biometric is lost forever as well as all the applications where this biometric is used. Thus, new methods are desirable to secure the original pattern and ensure its revocability and alternatives when compromised. In this paper, we propose a novel scheme which incorporates iris features, non-invertible transformation and data encryption to achieve "cancelability" and at the same time increases iris recognition accuracy.

  15. Recognition of building group patterns in topographic maps based on graph partitioning and random forest

    NASA Astrophysics Data System (ADS)

    He, Xianjin; Zhang, Xinchang; Xin, Qinchuan

    2018-02-01

    Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.

  16. Data Mining and Pattern Recognition Models for Identifying Inherited Diseases: Challenges and Implications.

    PubMed

    Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K

    2016-01-01

    Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.

  17. Neural network-based system for pattern recognition through a fiber optic bundle

    NASA Astrophysics Data System (ADS)

    Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.

    2001-04-01

    A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.

  18. Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.

    PubMed

    Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando

    2016-08-01

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  19. Demosaicking for full motion video 9-band SWIR sensor

    NASA Astrophysics Data System (ADS)

    Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.

    2014-05-01

    Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.

  20. Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.

    PubMed

    Žídek, Karel; Denk, Ondřej; Hlubuček, Jiří

    2017-11-10

    We propose and demonstrate a spectrally-resolved photoluminescence imaging setup based on the so-called single pixel camera - a technique of compressive sensing, which enables imaging by using a single-pixel photodetector. The method relies on encoding an image by a series of random patterns. In our approach, the image encoding was maintained via laser speckle patterns generated by an excitation laser beam scattered on a diffusor. By using a spectrometer as the single-pixel detector we attained a realization of a spectrally-resolved photoluminescence camera with unmatched simplicity. We present reconstructed hyperspectral images of several model scenes. We also discuss parameters affecting the imaging quality, such as the correlation degree of speckle patterns, pattern fineness, and number of datapoints. Finally, we compare the presented technique to hyperspectral imaging using sample scanning. The presented method enables photoluminescence imaging for a broad range of coherent excitation sources and detection spectral areas.

Top