High spectral resolution remote sensing of canopy chemistry
NASA Technical Reports Server (NTRS)
Aber, John D.; Martin, Mary E.
1995-01-01
Near infrared laboratory spectra have been used for many years to determine nitrogen and lignin concentrations in plant materials. In recent years, similar high spectral resolution visible and infrared data have been available via airborne remote sensing instruments. Using data from NASA's Airborne visible/Infrared Imaging Spectrometer (AVIRIS) we attempt to identify spectral regions correlated with foliar chemistry at the canopy level in temperate forests.
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Jonathan P. Dandois; Erle C. Ellis
2013-01-01
High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...
Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P
2017-09-15
Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning
NASA Astrophysics Data System (ADS)
Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.
NASA Astrophysics Data System (ADS)
Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding
2011-11-01
The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.
NASA Astrophysics Data System (ADS)
Xu, Yiming; Smith, Scot E.; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P.
2017-01-01
Soil prediction models based on spectral indices from some multispectral images are too coarse to characterize spatial pattern of soil properties in small and heterogeneous agricultural lands. Image pan-sharpening has seldom been utilized in Digital Soil Mapping research before. This research aimed to analyze the effects of pan-sharpened (PAN) remote sensing spectral indices on soil prediction models in smallholder farm settings. This research fused the panchromatic band and multispectral (MS) bands of WorldView-2, GeoEye-1, and Landsat 8 images in a village in Southern India by Brovey, Gram-Schmidt and Intensity-Hue-Saturation methods. Random Forest was utilized to develop soil total nitrogen (TN) and soil exchangeable potassium (Kex) prediction models by incorporating multiple spectral indices from the PAN and MS images. Overall, our results showed that PAN remote sensing spectral indices have similar spectral characteristics with soil TN and Kex as MS remote sensing spectral indices. There is no soil prediction model incorporating the specific type of pan-sharpened spectral indices always had the strongest prediction capability of soil TN and Kex. The incorporation of pan-sharpened remote sensing spectral data not only increased the spatial resolution of the soil prediction maps, but also enhanced the prediction accuracy of soil prediction models. Small farms with limited footprint, fragmented ownership and diverse crop cycle should benefit greatly from the pan-sharpened high spatial resolution imagery for soil property mapping. Our results show that multiple high and medium resolution images can be used to map soil properties suggesting the possibility of an improvement in the maps' update frequency. Additionally, the results should benefit the large agricultural community through the reduction of routine soil sampling cost and improved prediction accuracy.
A review of potential image fusion methods for remote sensing-based irrigation management: Part II
USDA-ARS?s Scientific Manuscript database
Satellite-based sensors provide data at either greater spectral and coarser spatial resolutions, or lower spectral and finer spatial resolutions due to complementary spectral and spatial characteristics of optical sensor systems. In order to overcome this limitation, image fusion has been suggested ...
NASA Technical Reports Server (NTRS)
Susskind, Joel
2004-01-01
"Introduction to AIRS and CrIS" is a chapter in a book dealing with various aspects of remote sensing. AIRS and CrIS are both high spectral resolution IR sounding instruments, which were recently launched (AIRS) or will soon be launched (CrIS). The chapter explains the general principles of infra-red remote sensing, and explains the significance and information content of high spectral resolution IR measurements. The chapter shows results obtained using AIRS observations, and explains why similar quality results should be obtainable from CrIS data.
Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images
NASA Astrophysics Data System (ADS)
Awumah, Anna; Mahanti, Prasun; Robinson, Mark
2016-10-01
Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties
NASA Technical Reports Server (NTRS)
Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier
2000-01-01
Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.
High Data Rate Satellite Communications for Environmental Remote Sensing
NASA Astrophysics Data System (ADS)
Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.
2014-12-01
Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.
Can Satellite Remote Sensing be Applied in Geological Mapping in Tropics?
NASA Astrophysics Data System (ADS)
Magiera, Janusz
2018-03-01
Remote sensing (RS) techniques are based on spectral data registered by RS scanners as energy reflected from the Earth's surface or emitted by it. In "geological" RS the reflectance (or emittence) should come from rock or sediment. The problem in tropical and subtropical areas is a dense vegetation. Spectral response from the rocks and sediments is gathered only from the gaps among the trees and shrubs. Images of high resolution are appreciated here, therefore. New generation of satellites and scanners (Digital Globe WV2, WV3 and WV4) yield imagery of spatial resolution of 2 m and up to 16 spectral bands (WV3). Images acquired by Landsat (TM, ETM+, OLI) and Sentinel 2 have good spectral resolution too (6-12 bands in visible and infrared) and, despite lower spatial resolution (10-60 m of pixel size) are useful in extracting lithological information too. Lithological RS map may reveal good precision (down to a single rock or outcrop of a meter size). Supplemented with the analysis of Digital Elevation Model and high resolution ortophotomaps (Google Maps, Bing etc.) allows for quick and cheap mapping of unsurveyed areas.
NASA Astrophysics Data System (ADS)
Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin
2017-04-01
An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.
Hyperspectral remote sensing of wild oyster reefs
NASA Astrophysics Data System (ADS)
Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent
2016-04-01
The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal areas.
ENVIRONMENTAL APPLICATIONS OF SPECTRAL IMAGING
The utility of remote sensing using spectral imaging is just being realized through the investigation to a wide variety of environmental issues. Improved spectral and spatial resolution is very important to the detection of effects once regarded as unobservable. A current researc...
Applying narrowband remote-sensing reflectance models to wideband data.
Lee, Zhongping
2009-06-10
Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (approximately 5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.
A review of progress in identifying and characterizing biocrusts using proximal and remote sensing
NASA Astrophysics Data System (ADS)
Rozenstein, Offer; Adamowski, Jan
2017-05-01
Biocrusts are critical components of desert ecosystems, significantly modifying the surfaces they occupy. The mixture of biological components and soil particles that form the crust, in conjunction with moisture, determines the biocrusts' spectral signatures. Proximal and remote sensing in complementary spectral regions, namely the reflective region, and the thermal region, have been used to study biocrusts in a non-destructive manner, in the laboratory, in the field, and from space. The objectives of this review paper are to present the spectral characteristics of biocrusts across the optical domain, and to discuss significant developments in the application of proximal and remote sensing for biocrust studies in the last few years. The motivation for using proximal and remote sensing in biocrust studies is discussed. Next, the application of reflectance spectroscopy to the study of biocrusts is presented followed by a review of the emergence of high spectral resolution thermal remote sensing, which facilitates the application of thermal spectroscopy for biocrust studies. Four specific topics at the forefront of proximal and remote sensing of biocrusts are discussed: (1) The use of remote sensing in determining the role of biocrusts in global biogeochemical cycles; (2) Monitoring the inceptive establishment of biocrusts; (3) Identifying and characterizing biocrusts using Longwave infrared spectroscopy; and (4) Diurnal emissivity dynamics of biocrusts in a sand dune environment. The paper concludes by identifying innovative technologies such as low altitude and high resolution imagery that are increasingly used in remote sensing science, and are expected to be used in future biocrusts studies.
Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne
2005-01-01
Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.
2003-12-01
Application to Land-Cover Change in the Brazilian Amazon ,” Remote Sensing of Environment, vol 52, pp 137-154. Anderson, G.L., J.D. Hanson, and R.H. Haas...FORTRAN, Cambridge University Press. Price, K.P., D. A. Pyke,and L. Mendes. 1992. “Shrub Dieback in a Semiarid Ecosystem; The Integration of Remote
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
NASA Astrophysics Data System (ADS)
Song, Huihui
Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
Remote measurement of atmospheric pollutants
NASA Technical Reports Server (NTRS)
Allario, F.; Hoell, J.; Seals, R. K.
1979-01-01
The concentration and vertical distribution of atmospheric ammonia and ozone are remotely sensed, using dual-C02-laser multichannel infrared Heterodyne Spectrometer (1HS). Innovation makes atmospheric pollution measurements possible with nearly-quantum-noise-limited sensitivity and ultrafine spectral resolution.
IMAGING SPECTROSCOPY FOR DETERMINING RANGELAND STRESSORS TO WESTERN WATERSHEDS
The Environmental Protection Agency is developing rangeland ecological indicators in twelve western states using advanced remote sensing techniques. Fine spectral resolution (hyperspectral) sensors, or imaging spectrometers, can detect the subtle spectral features that make veget...
IMAGING SPECTROSCOPY FOR DETERMINING RANGELAND STRESSORS TO WESTERN WATERSHEDS
The Environmental Protection Agency is developing rangeland ecological indicators in eleven western states using advanced remote sensing systems. Fine spectral resolution (hyperspemal) sensors, or imaging spectrometers, can detect the subtle spectral features that makes vegetatio...
Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas
NASA Astrophysics Data System (ADS)
Sun, X. F.; Lin, X. G.
2017-09-01
As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.
Sub-pixel mapping of hyperspectral imagery using super-resolution
NASA Astrophysics Data System (ADS)
Sharma, Shreya; Sharma, Shakti; Buddhiraju, Krishna M.
2016-04-01
With the development of remote sensing technologies, it has become possible to obtain an overview of landscape elements which helps in studying the changes on earth's surface due to climate, geological, geomorphological and human activities. Remote sensing measures the electromagnetic radiations from the earth's surface and match the spectral similarity between the observed signature and the known standard signatures of the various targets. However, problem lies when image classification techniques assume pixels to be pure. In hyperspectral imagery, images have high spectral resolution but poor spatial resolution. Therefore, the spectra obtained is often contaminated due to the presence of mixed pixels and causes misclassification. To utilise this high spectral information, spatial resolution has to be enhanced. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. To solve this problem, post-processing of hyperspectral images is done to retrieve more information from the already acquired images. The algorithm to enhance spatial resolution of the images by dividing them into sub-pixels is known as super-resolution and several researches have been done in this domain.In this paper, we propose a new method for super-resolution based on ant colony optimization and review the popular methods of sub-pixel mapping of hyperspectral images along with their comparative analysis.
NASA Technical Reports Server (NTRS)
Vogelmann, J. E.; Rock, B. N.
1985-01-01
In an attempt to demonstrate the utility of remote sensing systems to monitor sites of suspected acid rain deposition damage, intensive field activities, coupled with aircraft overflights, were centered on red spruce stands in Vermont during August and September of 1984. Remote sensing data were acquired using the Airborne Imaging Spectrometer, Thematic Mapper Simulator, Barnes Model 12 to 1000 Modular Multiband Radiometer and Spectron Engineering Spectrometer (the former two flown on the NASA C-130; the latter two on A Bell UH-1B Iroquois Helicopter). Field spectral data were acquired during the week of the August overflights using a high spectral resolution spectrometer and two broad-band radiometers. Preliminary analyses of these data indicate a number of spectral differences in vegetation between high and low damage sites. Some of these differences are subtle, and are observable only with high spectral resolution sensors; others are less subtle and are observable using broad-band sensors.
Spectral Resolution and Coverage Impact on Advanced Sounder Information Content
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.
2010-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS
Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory
NASA Technical Reports Server (NTRS)
Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.
2008-01-01
The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher information content). Implementation of this approach indicates good consistency in LAI values retrieved from NDVI (AVHRRmode) and spectral BRF (MODIS-mode). Specific details of the implementation and evaluation of the derived products are detailed in the second part of this two-paper series.
Quality evaluation of pansharpened hyperspectral images generated using multispectral images
NASA Astrophysics Data System (ADS)
Matsuoka, Masayuki; Yoshioka, Hiroki
2012-11-01
Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.
NASA Astrophysics Data System (ADS)
Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.
2011-12-01
Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB classification and the in-situ transects indicates that: A. Stream vegetation classification resolution is about 4 cm by the SRGB method compared to about 1 m by HSR. Moreover, this resolution is also higher than of the manual grid transect classification. B. The SRGB method is by far the most cost-efficient. The combination of spectral information (rather than the cognitive color) and high spatial resolution of aerial photography provides noise filtration and better sub-water detection capabilities than the HSR technique. C. Only the SRGB method applies for habitat and section scales; hence, its application together with in-situ grid transects for validation, may be optimal for use in similar scenarios.
The HSR dataset was first degraded to 17 bands with the same spectral range as the RGB dataset and also to a dataset with 3 equivalent bands
NASA Astrophysics Data System (ADS)
Müllerová, Jana; Brůna, Josef; Dvořák, Petr; Bartaloš, Tomáš; Vítková, Michaela
2016-06-01
Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Evolution of miniature detectors and focal plane arrays for infrared sensors
NASA Astrophysics Data System (ADS)
Watts, Louis A.
1993-06-01
Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.
Evolution of miniature detectors and focal plane arrays for infrared sensors
NASA Technical Reports Server (NTRS)
Watts, Louis A.
1993-01-01
Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.
Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach
NASA Astrophysics Data System (ADS)
Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai
2006-01-01
With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.
Spectral quality requirements for effluent identification
NASA Astrophysics Data System (ADS)
Czerwinski, R. N.; Seeley, J. A.; Wack, E. C.
2005-11-01
We consider the problem of remotely identifying gaseous materials using passive sensing of long-wave infrared (LWIR) spectral features at hyperspectral resolution. Gaseous materials are distinguishable in the LWIR because of their unique spectral fingerprints. A sensor degraded in capability by noise or limited spectral resolution, however, may be unable to positively identify contaminants, especially if they are present in low concentrations or if the spectral library used for comparisons includes materials with similar spectral signatures. This paper will quantify the relative importance of these parameters and express the relationships between them in a functional form which can be used as a rule of thumb in sensor design or in assessing sensor capability for a specific task. This paper describes the simulation of remote sensing datacontaining a gas cloud.In each simulation, the spectra are degraded in spectral resolution and through the addition of noise to simulate spectra collected by sensors of varying design and capability. We form a trade space by systematically varying the number of sensor spectral channels and signal-to-noise ratio over a range of values. For each scenario, we evaluate the capability of the sensor for gas identification by computing the ratio of the F-statistic for the truth gas tothe same statistic computed over the rest of the library.The effect of the scope of the library is investigated as well, by computing statistics on the variability of the identification capability as the library composition is varied randomly.
[Review of digital ground object spectral library].
Zhou, Xiao-Hu; Zhou, Ding-Wu
2009-06-01
A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.
Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.
1992-01-01
Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.
NASA Astrophysics Data System (ADS)
Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.
2018-02-01
Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.
Mapping wildfire burn severity in the Arctic Tundra from downsampled MODIS data
Kolden, Crystal A.; Rogan, John
2013-01-01
Wildfires are historically infrequent in the arctic tundra, but are projected to increase with climate warming. Fire effects on tundra ecosystems are poorly understood and difficult to quantify in a remote region where a short growing season severely limits ground data collection. Remote sensing has been widely utilized to characterize wildfire regimes, but primarily from the Landsat sensor, which has limited data acquisition in the Arctic. Here, coarse-resolution remotely sensed data are assessed as a means to quantify wildfire burn severity of the 2007 Anaktuvuk River Fire in Alaska, the largest tundra wildfire ever recorded on Alaska's North Slope. Data from Landsat Thematic Mapper (TM) and downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed to spectral indices and correlated to observed metrics of surface, subsurface, and comprehensive burn severity. Spectral indices were strongly correlated to surface severity (maximum R2 = 0.88) and slightly less strongly correlated to substrate severity. Downsampled MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegetation regeneration observed on the burned site. These results indicate that widely-used spectral indices and downsampled coarse-resolution data provide a reasonable supplement to often-limited ground data collection for analysis and long-term monitoring of wildfire effects in arctic ecosystems.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Gurganus, E. A.
1977-01-01
An effort to investigate the potential of remote sensing for monitoring nonpoint source pollution was conducted. Spectral reflectance characteristics for four types of soil sediments were measured for mixture concentrations between 4 and 173 ppm. For measurements at a spectral resolution of 32 mm, the spectral reflectances of Calvert, Ball, Jordan, and Feldspar soil sediments were distinctly different over the wavelength range from 400 to 980 nm at each concentration tested. At high concentrations, spectral differences between the various sediments could be detected by measurements with a spectral resolution of 160 nm. At a low concentration, only small differences were observed between the various sediments when measurements were made with 160 nm spectral resolution. Radiance levels generally varied in a nonlinear manner with sediment concentration; linearity occurred in special cases, depending on sediment type, concentration range, and wavelength.
NASA Astrophysics Data System (ADS)
Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang
2016-09-01
Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection
Aerosol Optical Depth Retrieval With AVIRIS Data: A Test of Tafkaa
2002-09-01
the spatial resolution . Clearly there is a need for a method of AOD retrieval that can cover more of the globe in a...imagers lack sufficient spectral resolution for some scientific applications. The future of remote sensing is in the ability to collect and interpret...AVIRIS is by using a data cube with two axes for the spatial dimensions and the third axis representing the 224 channels that make up the spectral
Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Cox, Cary M.
This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.
NASA Astrophysics Data System (ADS)
Caras, Tamir; Hedley, John; Karnieli, Arnon
2017-12-01
Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2017-04-01
This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.
Method to analyze remotely sensed spectral data
Stork, Christopher L [Albuquerque, NM; Van Benthem, Mark H [Middletown, DE
2009-02-17
A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
King, T.V.V.; Ridley, W.I.
1987-01-01
Using high-resolution visible and near-infrared diffuse spectral reflectance, systematically investigates apparent wavelength shifts as a function of mineral chemistry in the Fe/Mg olivine series from Fo11 to Fo91. The study also shows that trace amounts of nickel can be spectrally detected in the olivine structure. Significant spectral variation as a function of grain size is also demonstrated, adding a further complication to the interpretation of remotely sensed data from olivine-rich surfaces. Some permutations of Fe-Mg-Ni relations in olivines are discussed as they apply to the interpretation of asteroid surfaces and other extraterrestrial bodies. -from Authors
Pansharpening on the Narrow Vnir and SWIR Spectral Bands of SENTINEL-2
NASA Astrophysics Data System (ADS)
Vaiopoulos, A. D.; Karantzalos, K.
2016-06-01
In this paper results from the evaluation of several state-of-the-art pansharpening techniques are presented for the VNIR and SWIR bands of Sentinel-2. A procedure for the pansharpening is also proposed which aims at respecting the closest spectral similarities between the higher and lower resolution bands. The evaluation included 21 different fusion algorithms and three evaluation frameworks based both on standard quantitative image similarity indexes and qualitative evaluation from remote sensing experts. The overall analysis of the evaluation results indicated that remote sensing experts disagreed with the outcomes and method ranking from the quantitative assessment. The employed image quality similarity indexes and quantitative evaluation framework based on both high and reduced resolution data from the literature didn't manage to highlight/evaluate mainly the spatial information that was injected to the lower resolution images. Regarding the SWIR bands none of the methods managed to deliver significantly better results than a standard bicubic interpolation on the original low resolution bands.
NASA Astrophysics Data System (ADS)
Hong, Liang
2013-10-01
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
Trace gas detection in hyperspectral imagery using the wavelet packet subspace
NASA Astrophysics Data System (ADS)
Salvador, Mark A. Z.
This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.
Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images
NASA Astrophysics Data System (ADS)
Ardila, Juan P.; Tolpekin, Valentyn A.; Bijker, Wietske; Stein, Alfred
2011-11-01
Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.
Remote sensing of the Canadian Arctic: Modelling biophysical variables
NASA Astrophysics Data System (ADS)
Liu, Nanfeng
It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic overestimation of 0.08, which was attributed to PAR absorption by soil that could not be excluded from the fAPAR calculation. This research clearly demonstrates that high spectral and spatial resolution remote sensing VIs can be used to successfully model Arctic biophysical variables. The methods and results presented in this research provided a guide for future studies aiming to model other Arctic biophysical variables through remote sensing data.
Pathfinder in flight over Hawaii
1997-08-28
Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high spectral resolution Digital Array Scanned Interferometer (DASI) and a high spatial resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.
Pathfinder over runway in Hawaii
1997-08-28
Pathfinder, NASA's solar-powered, remotely-piloted aircraft is shown while it was conducting a series of science flights to highlight the aircraft's science capabilities while collecting imagery of forest and coastal zone ecosystems on Kauai, Hawaii. The flights also tested two new scientific instruments, a high-spectral-resolution Digital Array Scanned Interferometer (DASI) and a high-spatial-resolution Airborne Real-Time Imaging System (ARTIS). The remote sensor payloads were designed by NASA's Ames Research Center, Moffett Field, California, to support NASA's Mission to Planet Earth science programs.
A spectral-knowledge-based approach for urban land-cover discrimination
NASA Technical Reports Server (NTRS)
Wharton, Stephen W.
1987-01-01
A prototype expert system was developed to demonstrate the feasibility of classifying multispectral remotely sensed data on the basis of spectral knowledge. The spectral expert was developed and tested with Thematic Mapper Simulator (TMS) data having eight spectral bands and a spatial resolution of 5 m. A knowledge base was developed that describes the target categories in terms of characteristic spectral relationships. The knowledge base was developed under the following assumptions: the data are calibrated to ground reflectance, the area is well illuminated, the pixels are dominated by a single category, and the target categories can be recognized without the use of spatial knowledge. Classification decisions are made on the basis of convergent evidence as derived from applying the spectral rules to a multiple spatial resolution representation of the image. The spectral expert achieved an accuracy of 80-percent correct or higher in recognizing 11 spectral categories in TMS data for the washington, DC, area. Classification performance can be expected to decrease for data that do not satisfy the above assumptions as illustrated by the 63-percent accuracy for 30-m resolution Thematic Mapper data.
NASA Astrophysics Data System (ADS)
Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda
2018-05-01
High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
Human visual system consistent quality assessment for remote sensing image fusion
NASA Astrophysics Data System (ADS)
Liu, Jun; Huang, Junyi; Liu, Shuguang; Li, Huali; Zhou, Qiming; Liu, Junchen
2015-07-01
Quality assessment for image fusion is essential for remote sensing application. Generally used indices require a high spatial resolution multispectral (MS) image for reference, which is not always readily available. Meanwhile, the fusion quality assessments using these indices may not be consistent with the Human Visual System (HVS). As an attempt to overcome this requirement and inconsistency, this paper proposes an HVS-consistent image fusion quality assessment index at the highest resolution without a reference MS image using Gaussian Scale Space (GSS) technology that could simulate the HVS. The spatial details and spectral information of original and fused images are first separated in GSS, and the qualities are evaluated using the proposed spatial and spectral quality index respectively. The overall quality is determined without a reference MS image by a combination of the proposed two indices. Experimental results on various remote sensing images indicate that the proposed index is more consistent with HVS evaluation compared with other widely used indices that may or may not require reference images.
HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing
Takahashi, Yukihiro; Sakamoto, Yuji; Kuwahara, Toshinori
2018-01-01
Although nano/microsatellites have great potential as remote sensing platforms, the spatial and spectral resolutions of an optical payload instrument are limited. In this study, a high spatial resolution multispectral sensor, the High-Precision Telescope (HPT), was developed for the RISING-2 microsatellite. The HPT has four image sensors: three in the visible region of the spectrum used for the composition of true color images, and a fourth in the near-infrared region, which employs liquid crystal tunable filter (LCTF) technology for wavelength scanning. Band-to-band image registration methods have also been developed for the HPT and implemented in the image processing procedure. The processed images were compared with other satellite images, and proven to be useful in various remote sensing applications. Thus, LCTF technology can be considered an innovative tool that is suitable for future multi/hyperspectral remote sensing by nano/microsatellites. PMID:29463022
Overview of international remote sensing through 2007
NASA Astrophysics Data System (ADS)
Glackin, David L.
1997-12-01
The field of Earth remote sensing is evolving from one that contains purely governmental and military standalone systems of high complexity and expense to one that includes an increasing number of commercial systems, focused missions using small satellites, and systems of lower complexity and cost. The evolution of the field from 1980 - 2007 is summarized in this paper, with emphasis on the rapid changes of international scope that are taking place in 1997 which will shape the future of the field. As of three years ago, seven counties had built and flown free-flying earth observation satellite systems. Projections are for the number of countries operating such systems to approximately double by three years from now. Rapid changes are taking place in terms of spatial resolution, spectral resolution, proliferation of small satellites, ocean color, commercialization and privatization. Several fully commercial high-resolution systems will be launched over the next three years. Partly commercial synthetic aperture radar (SAR) systems became a reality with the launch of Radarsat in 1995. Only a handful of small satellite remote sensing missions have been launched to date, while a large number will be launched over the next few years, including minisats from Australia, Brazil, Israel, Italy, South Korea, Taiwan, Thailand, and the USA, as well as microsats from many countries including Malaysia, Pakistan and South Africa. Systems with far greater spectral resolution will also become a reality as hyperspectral instruments are launched. In 1997, we truly stand on the cusp of tremendous change in the burgeoning field of Earth remote sensing.
Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong
2015-02-01
Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.
NASA Technical Reports Server (NTRS)
King, Trude V. V.; Ridley, W. Ian
1987-01-01
High-resolution visible and near-IR diffuse spectral reflectance are used to systematically investigate apparent wavelength shifts as a function of mineral chemistry in the Fe/Mg olivine series from Fo(11) to Fo(91). The study also shows that trace amounts of nickel can be spectrally detected in the olivine structure. Significant compositional information can only be extracted at relatively high resolution, because the overall spectral characteristics of the olivines change only subtly as a function of the Fe/Mg ratio. This laboratory study is expected to aid in the interpretation of remotely sensed data from both terrestrial and extraterrestrial bodies. Terrestrial applications may include the recognition of ultramafic, ultrabasic, and basaltic terrains which in themselves may have mineral potential. Among extraterrestrial applications, the asteroids are obvious candidates for further examination. Some permutations of Fe-Mg-Ni relations in olivines are discussed as they apply to the interpretation of asteroid surfaces and other extraterrestrial bodies.
Higher resolution satellite remote sensing and the impact on image mapping
Watkins, Allen H.; Thormodsgard, June M.
1987-01-01
Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.
NASA Technical Reports Server (NTRS)
Hook, Simon J.
1995-01-01
A lightweight, rugged, high-spectral-resolution interferometer has been built by Designs and Prototypes based on a set of specifications provided by the Jet Propulsion Laboratory and Dr. J. W. Salisbury (Johns Hopkins University). The instrument, the micro Fourier Transform Interferometer (mFTIR), permits the acquisition of infrared spectra of natural surfaces. Such data can be used to validate low and high spectral resolution data acquired remotely from aircraft and spacecraft in the 3-5 mm and 8-14 mm atmospheric window. The instrument has a spectral resolutions of 6 wavenumbers, weighs 16 kg including batteries and computer, and can be operated easily by two people in the field. Laboratory analysis indicates the instrument is spectrally calibrated to better than 1 wavenumber and the radiometric accuracy is <0.5 K if the radiances from the blackbodies used for calibration bracket the radiance from the sample.
NASA Astrophysics Data System (ADS)
Sun, Zhongqing; Shang, Kun; Jia, Lingjun
2018-03-01
Remote sensing inversion of heavy metal in vegetation leaves is generally based on the physiological characteristics of vegetation spectrum under heavy metal stress, and empirical models with vegetation indices are established to inverse the heavy metal content of vegetation leaves. However, the research of inversion of heavy metal content in vegetation-covered soil is still rare. In this study, Pulang is chosen as study area. The regression model of a typical heavy metal element, copper (Cu), is established with vegetation indices. We mainly investigate the inversion accuracies of Cu element in vegetation-covered soil by different vegetation indices according to specific spectral resolutions of ASD (Analytical Spectral Device) and Hyperion data. The inversion results of soil copper content in the vegetation-covered area shows a good accuracy, and the vegetation indices under ASD spectral resolution correspond to better results.
Ground-based imaging spectrometry of canopy phenology and chemistry in a deciduous forest
NASA Astrophysics Data System (ADS)
Toomey, M. P.; Friedl, M. A.; Frolking, S. E.; Hilker, T.; O'Keefe, J.; Richardson, A. D.
2013-12-01
Phenology, annual life cycles of plants and animals, is a dynamic ecosystem attribute and an important feedback to climate change. Vegetation phenology is commonly monitored at canopy to continental scales using ground based digital repeat photography and satellite remote sensing, respectively. Existing systems which provide sufficient temporal resolution for phenological monitoring, however, lack the spectral resolution necessary to investigate the coupling of phenology with canopy chemistry (e.g. chlorophyll, nitrogen, lignin-cellulose content). Some researchers have used narrowband (<10 nm resolution) spectrometers at phenology monitoring sites, yielding new insights into seasonal changes in leaf biochemistry. Such instruments integrate the spectral characteristics of the entire canopy, however, masking considerable variability between species and plant functional types. There is an opportunity, then, for exploring the potential of imaging spectrometers to investigate the coupling of canopy phenology and the leaf biochemistry of individual trees. During the growing season of April-October 2013 we deployed an imaging spectrometer with a spectral range of 371-1042 nm and resolution of ~5 nm (Surface Optics Corporation 710; San Diego, CA) on a 35 m tall tower at the Harvard Forest, Massachusetts. The image resolution was ~0.25 megapixels and the field of view encompassed approximately 20 individual tree crowns at a distance of 20-40 m. The instrument was focused on a mixed hardwoods canopy composed of 4 deciduous tree species and one coniferous tree species. Scanning was performed daily with an acquisition frequency of 30 minutes during daylight hours. Derived imagery were used to calculate a suite of published spectral indices used to estimate foliar content of key pigments: cholorophyll, carotenoids and anthocyanins. Additionally, we calculated the photochemical reflectance index (PRI) as well as the position and slope of the red edge as indicators of mid- to late-summer plant stress. Changes in the spectral shape and indices throughout the growing season revealed coupling of leaf biochemistry and phenology, as visually observed in situ. Further, the spectrally rich imagery provided well calibrated reflectance data to simulate vegetation index time series of common spaceborne remote sensing platforms such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat. Comparisons between the simulated time series and in situ phenology observations yielded an enhanced interpretation of vegetation indices for determining phenological transition dates. This study demonstrates an advance in our ability to relate canopy phenology to leaf-level dynamics and demonstrates the role that ground-based imaging spectrometry can play in advancing spaceborne remote sensing of vegetation phenology.
Vatsavai, Ranga Raju; Graesser, Jordan B.; Bhaduri, Budhendra L.
2016-07-05
A programmable media includes a graphical processing unit in communication with a memory element. The graphical processing unit is configured to detect one or more settlement regions from a high resolution remote sensed image based on the execution of programming code. The graphical processing unit identifies one or more settlements through the execution of the programming code that executes a multi-instance learning algorithm that models portions of the high resolution remote sensed image. The identification is based on spectral bands transmitted by a satellite and on selected designations of the image patches.
NASA Astrophysics Data System (ADS)
Ozendi, Mustafa; Topan, Hüseyin; Cam, Ali; Bayık, Çağlar
2016-10-01
Recently two optical remote sensing satellites, RASAT and GÖKTÜRK-2, launched successfully by the Republic of Turkey. RASAT has 7.5 m panchromatic, and 15 m visible bands whereas GÖKTÜRK-2 has 2.5 m panchromatic and 5 m VNIR (Visible and Near Infrared) bands. These bands with various resolutions can be fused by pan-sharpening methods which is an important application area of optical remote sensing imagery. So that, the high geometric resolution of panchromatic band and the high spectral resolution of VNIR bands can be merged. In the literature there are many pan-sharpening methods. However, there is not a standard framework for quality investigation of pan-sharpened imagery. The aim of this study is to investigate pan-sharpening performance of RASAT and GÖKTÜRK-2 images. For this purpose, pan-sharpened images are generated using most popular pan-sharpening methods IHS, Brovey and PCA at first. This procedure is followed by quantitative evaluation of pan-sharpened images using Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Average Spectral Error (RASE), Spectral Angle Mapper (SAM) and Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) metrics. For generation of pan-sharpened images and computation of metrics SharpQ tool is used which is developed with MATLAB computing language. According to metrics, PCA derived pan-sharpened image is the most similar one to multispectral image for RASAT, and Brovey derived pan-sharpened image is the most similar one to multispectral image for GÖKTÜRK-2. Finally, pan-sharpened images are evaluated qualitatively in terms of object availability and completeness for various land covers (such as urban, forest and flat areas) by a group of operators who are experienced in remote sensing imagery.
Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology
NASA Astrophysics Data System (ADS)
Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.
2015-04-01
Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.
de Klerk, Helen M; Gilbertson, Jason; Lück-Vogel, Melanie; Kemp, Jaco; Munch, Zahn
2016-11-01
Traditionally, to map environmental features using remote sensing, practitioners will use training data to develop models on various satellite data sets using a number of classification approaches and use test data to select a single 'best performer' from which the final map is made. We use a combination of an omission/commission plot to evaluate various results and compile a probability map based on consistently strong performing models across a range of standard accuracy measures. We suggest that this easy-to-use approach can be applied in any study using remote sensing to map natural features for management action. We demonstrate this approach using optical remote sensing products of different spatial and spectral resolution to map the endemic and threatened flora of quartz patches in the Knersvlakte, South Africa. Quartz patches can be mapped using either SPOT 5 (used due to its relatively fine spatial resolution) or Landsat8 imagery (used because it is freely accessible and has higher spectral resolution). Of the variety of classification algorithms available, we tested maximum likelihood and support vector machine, and applied these to raw spectral data, the first three PCA summaries of the data, and the standard normalised difference vegetation index. We found that there is no 'one size fits all' solution to the choice of a 'best fit' model (i.e. combination of classification algorithm or data sets), which is in agreement with the literature that classifier performance will vary with data properties. We feel this lends support to our suggestion that rather than the identification of a 'single best' model and a map based on this result alone, a probability map based on the range of consistently top performing models provides a rigorous solution to environmental mapping. Copyright © 2016 Elsevier Ltd. All rights reserved.
[An improved low spectral distortion PCA fusion method].
Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong
2013-10-01
Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.
NASA Technical Reports Server (NTRS)
1987-01-01
The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.
NASA Astrophysics Data System (ADS)
Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen
2014-02-01
High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.
NASA Astrophysics Data System (ADS)
Dube, Timothy; Mutanga, Onisimo
2015-03-01
Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.
Intelligent image processing for vegetation classification using multispectral LANDSAT data
NASA Astrophysics Data System (ADS)
Santos, Stewart R.; Flores, Jorge L.; Garcia-Torales, G.
2015-09-01
We propose an intelligent computational technique for analysis of vegetation imaging, which are acquired with multispectral scanner (MSS) sensor. This work focuses on intelligent and adaptive artificial neural network (ANN) methodologies that allow segmentation and classification of spectral remote sensing (RS) signatures, in order to obtain a high resolution map, in which we can delimit the wooded areas and quantify the amount of combustible materials present into these areas. This could provide important information to prevent fires and deforestation of wooded areas. The spectral RS input data, acquired by the MSS sensor, are considered in a random propagation remotely sensed scene with unknown statistics for each Thematic Mapper (TM) band. Performing high-resolution reconstruction and adding these spectral values with neighbor pixels information from each TM band, we can include contextual information into an ANN. The biggest challenge in conventional classifiers is how to reduce the number of components in the feature vector, while preserving the major information contained in the data, especially when the dimensionality of the feature space is high. Preliminary results show that the Adaptive Modified Neural Network method is a promising and effective spectral method for segmentation and classification in RS images acquired with MSS sensor.
Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data
NASA Technical Reports Server (NTRS)
Richardson, Laurie L.; Ambrosia, Vincent G.
1996-01-01
Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such studies. We present here our results on detection of algal accessory pigments using AVIRIS data.
An algorithm for retrieving rock-desertification from multispectral remote sensing images
NASA Astrophysics Data System (ADS)
Xia, Xueqi; Tian, Qingjiu; Liao, Yan
2009-06-01
Rock-desertification is a typical environmental and ecological problem in Southwest China. As remote sensing is an important means of monitoring spatial variation of rock-desertification, a method is developed for measurement and information retrieval of rock-desertification from multi-spectral high-resolution remote sensing images. MNF transform is applied to 4-band IKONOS multi-spectral remotely sensed data to reduce the number of spectral dimensions to three. In the 3-demension endmembers are extracted and analyzed. It is found that various vegetations group into a line defined as "vegetation line", in which "dark vegetations", such as coniferous forest and broadleaf forest, continuously change to "bright vegetations", such as grasses. It is presumed that is caused by deferent proportion of shadow mixed in leaves or branches in various types of vegetation. Normalized distance between the endmember of rocks and the vegetation line is defined as Geometric Rock-desertification Index (GRI), which was used to scale rock-desertification. The case study with ground truth validation in Puding, Guizhou province showed successes and the advantages of this method.
Zhou, Xin-li; Li, Yan; Liu, Zu-liang; Zhu, Chang-jiang; Wang, Jun-de; Lu, Chun-xu
2002-10-01
In this paper, combustion characterization of pyrotechnic composition is investigated using a remote sensing Fourier transform infrared spectrometry. The emission spectra have been recorded between 4,700 and 740 cm-1 with a spectral resolution of 4 cm-1. The combustion temperature can be determined remotely from spectral line intensity distribution of the fine structure of the emission fundamental band of gaseous products such as HF. The relationship between combustion temperature and combustion time has been given. Results show that there is a violent mutative temperature field with bigger temperature gradient near combustion surface. It reveals that the method of temperature measurement using remote sensing FTIR for flame temperature of unstable, violent and short time combustion on real time is a rapid, accurate and sensitive technique without interference the flame temperature field. Potential prospects of temperature measurement, gas product concentration measurement and combustion mechanism are also revealed.
Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design
NASA Technical Reports Server (NTRS)
Dalton, James Bradley 3rd
2003-01-01
Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.
Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design.
Dalton, James Bradley
2003-01-01
Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.
NASA Astrophysics Data System (ADS)
Macander, M. J.; Frost, G. V., Jr.
2015-12-01
Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.
NASA Technical Reports Server (NTRS)
Cloutis, E. A.; Lambert, J.; Smith, D. G. W.; Gaffey, M. J.
1987-01-01
High-resolution visible and near-infrared diffuse reflectance spectra of mafic silicates can be deconvolved to yield quantitative information concerning mineral mixture properties, and the results can be directly applied to remotely sensed data. Spectral reflectance measurements of laboratory mixtures of olivine, orthophyroxene, and clinopyroxene with known chemistries, phase abundances, and particle size distributions have been utilized to develop correlations between spectral properties and the physicochemical parameters of the samples. A large number of mafic silicate spectra were measured and examined for systematic variations in spectral properties as a function of chemistry, phase abundance, and particle size. Three classes of spectral parameters (ratioed, absolute, and wavelength) were examined for any correlations. Each class is sensitive to particular mafic silicate properties. Spectral deconvolution techniques have been developed for quantifying, with varying degrees of accuracy, the assemblage properties (chemistry, phase abundance, and particle size).
Measurements of OH(X2pi) in the stratosphere by high resolution UV spectroscopy
NASA Technical Reports Server (NTRS)
Torr, D. G.; Swift, W.; Fennelly, J.; Liu, G.; Torr, M. R.
1987-01-01
This paper reports the first results obtained using high spectral resolution imaging ultraviolet spectroscopy to observe multiple rotational lines of OH A2 Sigma-X2pi (0-0) band. A 9.2 A spectral segment from 3075.8 A to 3085.0 A is imaged at 0.08 A FWHM spectral resolution, allowing the simultaneous acquisition of six of the brightest OH resonance fluorescence emission lines. The high spectral resolution and low scattered light design of the instrument allows these lines to be detected above the Rayleigh scattered sunlight background. The technique permits remote sensing of stratospheric OH from a high altitude instrument. The instrument was flown to an altitude of 40 km on Aug. 25, 1983, and again on June 12, 1986, on scientific balloons from Palestine, TX. The OH profiles inverted from the limb scans made during these flights are reported here. These profiles represent the first measurements of the temporal variation of OH over an extended height range. The results demonstrate that the technique can be used to monitor OH from orbit.
Hyperresolution: an hyperspectral and high resolution imager for Earth observation
NASA Astrophysics Data System (ADS)
De Vidi, R.; Chiarantini, L.; Bini, A.
2017-11-01
Hyperspectral space imagery is an emerging technology that supports many scientific, civil, security and defence operational applications. The main advantage of this remote sensing technique is that it allows the so-called Feature Extraction: in fact the spectral signature allows the recognition of the materials composing the scene. Hyperspectral Products and their applications have been investigated in the past years by Galileo Avionica to direct the instrument characteristics design. Sample products have been identified in the civil / environment monitoring fields (such as coastal monitoring, vegetation, hot spot and urban classification) and in defense / security applications: their performances have been verified by means of airborne flight campaigns. The Hyperspectral and High Resolution Imager is a space-borne instrument that implement a pushbroom technique to get strip spectral images over the Hyperspectral VNIR and SWIR bands, with a ground sample distance at nadir of 20m in a 20 km wide ground swath, with 200 spectral channels, realizing an average spectral resolution of 10nm. The High Resolution Panchromatic Channel insists in the same swath to allow for multiresolution data fusion of hyperspectral imagery.
Remote sensing investigations of wetland biomass and productivity for global biosystems research
NASA Technical Reports Server (NTRS)
Harkisky, M.; Klemas, V.
1983-01-01
Monitoring biomass of wetlands ecosystems can provide information on net primary production and on the chemical and physical status of wetland soils relative to anaerobic microbial transformation of key elements. Multispectral remote sensing techniques successfully estimated macrophytic biomass in wetlands systems. Regression models developed from ground spectral data for predicting Spartina alterniflora biomass over an entire growing season include seasonal variations in biomass density and illumination intensity. An independent set of biomass and spectral data were collected and the standing crop biomass and net primary productivity were estimated. The improved spatial, radiometric and spectral resolution of th LANDSAT-4 Thematic Mapper over the LANDSAT MSS can greatly enhance multispectral techniques for estimating wetlands biomass over large areas. These techniques can provide the biomass data necessary for global ecology studies.
Subpixel target detection and enhancement in hyperspectral images
NASA Astrophysics Data System (ADS)
Tiwari, K. C.; Arora, M.; Singh, D.
2011-06-01
Hyperspectral data due to its higher information content afforded by higher spectral resolution is increasingly being used for various remote sensing applications including information extraction at subpixel level. There is however usually a lack of matching fine spatial resolution data particularly for target detection applications. Thus, there always exists a tradeoff between the spectral and spatial resolutions due to considerations of type of application, its cost and other associated analytical and computational complexities. Typically whenever an object, either manmade, natural or any ground cover class (called target, endmembers, components or class) gets spectrally resolved but not spatially, mixed pixels in the image result. Thus, numerous manmade and/or natural disparate substances may occur inside such mixed pixels giving rise to mixed pixel classification or subpixel target detection problems. Various spectral unmixing models such as Linear Mixture Modeling (LMM) are in vogue to recover components of a mixed pixel. Spectral unmixing outputs both the endmember spectrum and their corresponding abundance fractions inside the pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based super-resolution mapping method has been presented that achieves subpixel target detection in hyperspectral images by adjusting spatial distribution of abundance fraction within a pixel. Results obtained at different resolutions indicate that super-resolution mapping may effectively aid subpixel target detection.
Comparison of NDVI fields obtained from different remote sensors
NASA Astrophysics Data System (ADS)
Escribano Rodriguez, Juan; Alonso, Carmelo; Tarquis, Ana Maria; Benito, Rosa Maria; Hernandez Díaz-Ambrona, Carlos
2013-04-01
Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. By contranst, MODIS images present a much lower spatial resolution (500x500 m). The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. MTM2009-14621 and i-MATH No. CSD2006-00032 is greatly appreciated.
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong
2016-09-01
With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
TEMPO Specific Photochemical Reflectance Index for Monitoring Crop Productivity
NASA Astrophysics Data System (ADS)
Wulamu, A.; Fishman, J.; Maimaitiyiming, M.
2016-12-01
Chlorophyll fluorescence and Photochemical Reflectance Index (PRI) are two key indicators of plant functional status used for early stress detection. With its less than one nanometer hyperspectral resolution and hourly revisit capabilities, NASA's Tropospheric Emissions: Monitoring of Pollution (TEMPO) sensor provides new opportunities for monitoring regional food security. Chlorophyll fluorescence can be retrieved by TEMPO using Oxygen B (O2-B) absorption region at 687 nm. The Photochemical Reflectance Index (PRI) is calculated from spectral reflectance at 531 and 570. However, TEMPO spectral range covers from 290 mm - 490 nm and 540 nm -740 nm, does not provide the 531 nm measurement band for PRI. It is imperative to develop alternate wavelengths within the TEMPO spectral range for these early stress indicators so that regional crop health can be observed by TEMPO with unparalleled spectral and temporal resolutions to address food security. Combining field and airborne remote sensing experiments and radiative transfer simulations, this work proposes a TEMPO specific PRI and demonstrates that TEMPO offers a new set of high-resolution spectral data for crop monitoring.
A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.
He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi
2014-06-27
The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.
A portable spectrometer for use from 5 to 15 micrometers
NASA Technical Reports Server (NTRS)
Hoover, G.; Kahle, A. B.
1986-01-01
A field portable spectrometer suitable for collecting data relevant to remote sensing applications in the 8 to 12 micrometer atmospheric window has been built at the Jet Propulsion Laboratory. The instrument employs a single cooled HgCdTe detector and a continuously variable filter wheel analyzer. The spectral range covered is 5 to 14.5 micrometers and the resolution is approximately 1.5 percent of the wavelength. A description of the hardware is followed by a discussion of the analysis of the spectral data leading to finished emissivity and radiance spectra. A section is devoted to the evaluation of the instrument performance with respect to spectral resolution, radiometric precision, and accuracy. Several examples of spectra acquired in the field are included.
Comparison of Different EO Sensors for Mapping Tree Species- A Case Study in Southwest Germany
NASA Astrophysics Data System (ADS)
Enßle, Fabian; Kattenborn, Teja; Koch, Barbara
2014-11-01
The variety of different remote sensing sensors and thus the types of data specifications which are available is increasing continuously. Especially the differences in geometric, radiometric and temporal resolutions of different platforms affect their ability for the mapping of forests. These differences hinder the comparability and application of uniform methods of different remotely sensed data across the same region of interest. The quality and quantity of retrieved forest parameters is directly dependent on the data source, and therefore the objective of this project is to analyse the relationship between the data source and its derived parameters. A comparison of different optical EO-data (e.g. spatial resolution and spectral resolution of specific bands) will help to define the optimum data sets to produce a reproducible method to provide additional inputs to the Dragon cooperative project, specifically to method development for woody biomass estimation and biodiversity assessment services. This poster presents the first results on tree species mapping in a mixed temperate forest by satellite imagery taken from four different sensors. Tree species addressed in this pilot study are Scots pine (Pinus sylvestris), sessile oak (Quercus petraea) and red oak (Quercus rubra). The spatial resolution varies from 2m to 30m and the spectral resolutions range from 8bands up to 155bands.
Comparison of Different EO Sensors for Mapping Tree Species- A Case Study in Southwest Germany
NASA Astrophysics Data System (ADS)
Enβle, Fabian; Kattenborn, Teja; Koch, Barbara
2014-11-01
The variety of different remote sensing sensors and thus the types of data specifications which are available is increasing continuously. Especially the differences in geometric, radiometric and temporal resolutions of different platforms affect their ability for the mapping of forests. These differences hinder the comparability and application of uniform methods of different remotely sensed data across the same region of interest. The quality and quantity of retrieved forest parameters is directly dependent on the data source, and therefore the objective of this project is to analyse the relationship between the data source and its derived parameters. A comparison of different optical EO-data (e.g. spatial resolution and spectral resolution of specific bands) will help to define the optimum data sets to produce a reproducible method to provide additional inputs to the Dragon cooperative project, specifically to method development for woody biomass estimation and biodiversity assessment services. This poster presents the first results on tree species mapping in a mixed temperate forest by satellite imagery taken from four different sensors. Tree species addressed in this pilot study are: Scots pine (Pinus sylvestris), sessile oak (Quercus petraea) and red oak (Quercus rubra). The spatial resolution varies from 2m to 30m and the spectral resolutions range from 8bands up to 155bands.
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites
Karl, Jason W.
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral ‘fingerprint’ of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches. PMID:28414731
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
Maynard, Jonathan J; Karl, Jason W
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches.
Collaborative classification of hyperspectral and visible images with convolutional neural network
NASA Astrophysics Data System (ADS)
Zhang, Mengmeng; Li, Wei; Du, Qian
2017-10-01
Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.
NASA Astrophysics Data System (ADS)
Wicaksono, Pramaditya; Salivian Wisnu Kumara, Ignatius; Kamal, Muhammad; Afif Fauzan, Muhammad; Zhafarina, Zhafirah; Agus Nurswantoro, Dwi; Noviaris Yogyantoro, Rifka
2017-12-01
Although spectrally different, seagrass species may not be able to be mapped from multispectral remote sensing images due to the limitation of their spectral resolution. Therefore, it is important to quantitatively assess the possibility of mapping seagrass species using multispectral images by resampling seagrass species spectra to multispectral bands. Seagrass species spectra were measured on harvested seagrass leaves. Spectral resolution of multispectral images used in this research was adopted from WorldView-2, Quickbird, Sentinel-2A, ASTER VNIR, and Landsat 8 OLI. These images are widely available and can be a good representative and baseline for previous or future remote sensing images. Seagrass species considered in this research are Enhalus acoroides (Ea), Thalassodendron ciliatum (Tc), Thalassia hemprichii (Th), Cymodocea rotundata (Cr), Cymodocea serrulata (Cs), Halodule uninervis (Hu), Halodule pinifolia (Hp), Syringodum isoetifolium (Si), Halophila ovalis (Ho), and Halophila minor (Hm). Multispectral resampling analysis indicate that the resampled spectra exhibit similar shape and pattern with the original spectra but less precise, and they lose the unique absorption feature of seagrass species. Relying on spectral bands alone, multispectral image is not effective in mapping these seagrass species individually, which is shown by the poor and inconsistent result of Spectral Angle Mapper (SAM) classification technique in classifying seagrass species using seagrass species spectra as pure endmember. Only Sentinel-2A produced acceptable classification result using SAM.
Road Extraction from AVIRIS Using Spectral Mixture and Q-Tree Filter Techniques
NASA Technical Reports Server (NTRS)
Gardner, Margaret E.; Roberts, Dar A.; Funk, Chris; Noronha, Val
2001-01-01
Accurate road location and condition information are of primary importance in road infrastructure management. Additionally, spatially accurate and up-to-date road networks are essential in ambulance and rescue dispatch in emergency situations. However, accurate road infrastructure databases do not exist for vast areas, particularly in areas with rapid expansion. Currently, the US Department of Transportation (USDOT) extends great effort in field Global Positioning System (GPS) mapping and condition assessment to meet these informational needs. This methodology, though effective, is both time-consuming and costly, because every road within a DOT's jurisdiction must be field-visited to obtain accurate information. Therefore, the USDOT is interested in identifying new technologies that could help meet road infrastructure informational needs more effectively. Remote sensing provides one means by which large areas may be mapped with a high standard of accuracy and is a technology with great potential in infrastructure mapping. The goal of our research is to develop accurate road extraction techniques using high spatial resolution, fine spectral resolution imagery. Additionally, our research will explore the use of hyperspectral data in assessing road quality. Finally, this research aims to define the spatial and spectral requirements for remote sensing data to be used successfully for road feature extraction and road quality mapping. Our findings will facilitate the USDOT in assessing remote sensing as a new resource in infrastructure studies.
Upgraded airborne scanner for commercial remote sensing
NASA Astrophysics Data System (ADS)
Chang, Sheng-Huei; Rubin, Tod D.
1994-06-01
Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.
A Remote Sensing Image Fusion Method based on adaptive dictionary learning
NASA Astrophysics Data System (ADS)
He, Tongdi; Che, Zongxi
2018-01-01
This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.
Airborne multidimensional integrated remote sensing system
NASA Astrophysics Data System (ADS)
Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua
2006-12-01
In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.
Purification of Training Samples Based on Spectral Feature and Superpixel Segmentation
NASA Astrophysics Data System (ADS)
Guan, X.; Qi, W.; He, J.; Wen, Q.; Chen, T.; Wang, Z.
2018-04-01
Remote sensing image classification is an effective way to extract information from large volumes of high-spatial resolution remote sensing images. Generally, supervised image classification relies on abundant and high-precision training data, which is often manually interpreted by human experts to provide ground truth for training and evaluating the performance of the classifier. Remote sensing enterprises accumulated lots of manually interpreted products from early lower-spatial resolution remote sensing images by executing their routine research and business programs. However, these manually interpreted products may not match the very high resolution (VHR) image properly because of different dates or spatial resolution of both data, thus, hindering suitability of manually interpreted products in training classification models, or small coverage area of these manually interpreted products. We also face similar problems in our laboratory in 21st Century Aerospace Technology Co. Ltd (short for 21AT). In this work, we propose a method to purify the interpreted product to match newly available VHRI data and provide the best training data for supervised image classifiers in VHR image classification. And results indicate that our proposed method can efficiently purify the input data for future machine learning use.
NASA Technical Reports Server (NTRS)
Valdez, P. F.; Donohoe, G. W.
1997-01-01
Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.
NASA Astrophysics Data System (ADS)
Escoffier, R. P.; Comoretto, G.; Webber, J. C.; Baudry, A.; Broadwell, C. M.; Greenberg, J. H.; Treacy, R. R.; Cais, P.; Quertier, B.; Camino, P.; Bos, A.; Gunst, A. W.
2007-02-01
Aims: The Atacama Large Millimeter Array (ALMA) is an international astronomy facility to be used for detecting and imaging all types of astronomical sources at millimeter and submillimeter wavelengths at a 5000-m elevation site in the Atacama Desert of Chile. Our main aims are: describe the correlator sub-system which is that part of the ALMA system that combines the signal from up to 64 remote individual radio antennas and forms them into a single instrument; emphasize the high spectral resolution and the configuration flexibility available with the ALMA correlator. Methods: The main digital signal processing features and a block diagram of the correlator being constructed for the ALMA radio astronomy observatory are presented. Tables of observing modes and spectral resolutions offered by the correlator system are given together with some examples of multi-resolution spectral modes. Results: The correlator is delivered by quadrants and the first quadrant is being tested while most of the other printed circuit cards required by the system have been produced. In its final version the ALMA correlator will process the outputs of up to 64 antennas using an instantaneous bandwidth of 8 GHz in each of two polarizations per antenna. In the frequency division mode, unrivalled spectral flexibility together with very high resolution (3.8 kHz) and up to 8192 spectral points are achieved. In the time division mode high time resolution is available with minimum data dump rates of 16 ms for all cross-products.
Remote sounding of tropospheric minor constituents
NASA Technical Reports Server (NTRS)
Drayson, S. Roland; Hays, Paul B.; Wang, Jinxue
1993-01-01
The etalon interferometer, or Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution was widely used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2) and the High Resolution Doppler Imager (HRDI) to be flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible spectral region. The successful space flight of DE-FPI and the test and delivery of UARS-HRDI demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory (SPRL). The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. CLIO makes the use of linear array detectors more practical and efficient with FPI, the combination of FPI and CLIO represents a very promising new technique for the remote sensing of the lower atmospheres of Earth, Mars, Venus, Neptune, and other planets. The Multiorder Etalon Spectrometer (MOES), as a combination of the rugged etalon and the CLIO, compares very favorably to other spaceborne optical instruments in terms of performance versus complexity. The feasibility of an advanced etalon spectrometer for the remote sensing of tropospheric trace species, particularly carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) was discussed. The etalon atmospheric spectroscopy techniques are described, instrument design and related technical issues are discussed. The primary objective is to establish the concept of atmospheric spectroscopy with the CLIO and etalon system and its applications for the measurements of tropospheric trace species analyze system requirements and performance, determine the feasibility of components and subsystem implementation with available technology, and develop inversion algorithm for retrieval simulation and data analysis.
Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments.
Lee, ZhongPing; Carder, Kendall; Arnone, Robert; He, MingXia
2007-12-20
About 30 years ago, NASA launched the first ocean-color observing satellite:the Coastal Zone Color Scanner. CZCS had 5 bands in the visible-infrared domain with anobjective to detect changes of phytoplankton (measured by concentration of chlorophyll) inthe oceans. Twenty years later, for the same objective but with advanced technology, theSea-viewing Wide Field-of-view Sensor (SeaWiFS, 7 bands), the Moderate-ResolutionImaging Spectrometer (MODIS, 8 bands), and the Medium Resolution ImagingSpectrometer (MERIS, 12 bands) were launched. The selection of the number of bands andtheir positions was based on experimental and theoretical results achieved before thedesign of these satellite sensors. Recently, Lee and Carder (2002) demonstrated that foradequate derivation of major properties (phytoplankton biomass, colored dissolved organicmatter, suspended sediments, and bottom properties) in both oceanic and coastalenvironments from observation of water color, it is better for a sensor to have ~15 bands inthe 400 - 800 nm range. In that study, however, it did not provide detailed analysesregarding the spectral locations of the 15 bands. Here, from nearly 400 hyperspectral (~ 3-nm resolution) measurements of remote-sensing reflectance (a measure of water color)taken in both coastal and oceanic waters covering both optically deep and optically shallowwaters, first- and second-order derivatives were calculated after interpolating themeasurements to 1-nm resolution. From these derivatives, the frequency of zero values foreach wavelength was accounted for, and the distribution spectrum of such frequencies wasobtained. Furthermore, the wavelengths that have the highest appearance of zeros wereidentified. Because these spectral locations indicate extrema (a local maximum orminimum) of the reflectance spectrum or inflections of the spectral curvature, placing the bands of a sensor at these wavelengths maximizes the potential of capturing (and then restoring) the spectral curve, and thus maximizes the potential of accurately deriving properties of the water column and/or bottom of various aquatic environments with a multi-band sensor.
NASA Astrophysics Data System (ADS)
Liebel, L.; Körner, M.
2016-06-01
In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.
NASA Astrophysics Data System (ADS)
Mann, B. F.; Small, C.
2014-12-01
Weather-based index insurance projects are rapidly expanding across the developing world. Many of these projects use satellite-based observations to detect extreme weather events, which inform and trigger payouts to smallholder farmers. While most index insurance programs use precipitation measurements to determine payouts, the use of remotely sensed observations of vegetation is currently being explored. In order to use vegetation indices as a basis for payouts, it is necessary to establish a consistent relationship between the vegetation index and the health and abundance of agriculture on the ground. The accuracy with which remotely sensed vegetation indices can detect changes in agriculture depends on both the spatial scale of the agriculture and the spatial resolution of the sensor. This study analyzes the relationship between meter and decameter scale vegetation fraction estimates derived from linear spectral mixture models with a more commonly used vegetation index (NDVI, EVI) at hectometer spatial scales. In addition, the analysis incorporates land cover/land use field observations collected in Tigray Ethiopia in July 2013. . It also tests the flexibility and utility of a standardized spectral mixture model in which land cover is represented as continuous fields of rock and soil substrate (S), vegetation (V) and dark surfaces (D; water, shadow). This analysis found strong linear relationships with vegetation metrics at 1.6-meter, 30-meter and 250-meter resolutions across spectrally diverse subsets of Tigray, Ethiopia and significantly correlated relationships using the Spearman's rho statistic. The observed linear scaling has positive implications for future use of moderate resolution vegetation indices in similar landscapes; especially index insurance projects that are scaling up across the developing world using remotely-sensed environmental information.
LANDSAT D to test thematic mapper, inaugurate operational system
NASA Technical Reports Server (NTRS)
1982-01-01
NASA will launch the Landsat D spacecraft on July 9, 1982 aboard a new, up-rated Delta 3920 expendable launch vehicle. LANDSAT D will incorporate two highly sophisticated sensors; the flight proven multispectral scanner; and a new instrument expected to advance considerably the remote sensing capabilities of Earth resources satellites. The new sensor, the thematic mapper, provides data in seven spectral (light) bands with greatly improved spectral, spatial and radiometric resolution.
Automated road network extraction from high spatial resolution multi-spectral imagery
NASA Astrophysics Data System (ADS)
Zhang, Qiaoping
For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.
BTDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Eckardt, Andreas; Krutz, David
2017-11-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.
NASA Astrophysics Data System (ADS)
Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander
2016-03-01
Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.
[Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water].
Duan, Hong-Tao; Ma, Rong-Hua; Zhang, Yuan-Zhi; Zhang, Bai
2009-01-01
Hyperspectral remote sensing offers the potential to detect water quality variables such as Chl-a by using narrow spectral channels of less than 10 nm, which could otherwise be masked by broadband satellites such as Landsat TM. Fluorescence peak of the red region is very important for the remote sensing of inland and coastal waters, which is unique to phytoplankton Chl-a that takes place in this region. Based on in situ water sampling and field spectral measurement from 2004 to 2006 in Nanhu Lake, the features of the spectral reflectance were analyzed in detail with peak position shift. The results showed: An exponential fitting model, peak position = a(Chl-a)b, was developed between chlorophyll-a concentration and fluorescence peak shift, where a varies between 686.11 and 686.29, while b between 0.0062 and 0.0065. It was found that the better the spectral resolution, the higher the precision of the model. Except that, the average of peak shift showed a high correlation with the average of different Chl-a grades, and the determination coefficient (R2) was higher than 0.81. It contributed significantly to the increase in the accuracy of the derivation of chlorophyll values from remote sensing data in Nanhu Lake. There is satisfactory correspondence between hyperspectral models and chl-a concentration, therefore, it is possible to monitor the water quality of Nanhu lake throngh the hyperspetral remote sensing data.
Ocean wavenumber estimation from wave-resolving time series imagery
Plant, N.G.; Holland, K.T.; Haller, M.C.
2008-01-01
We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.
NASA Technical Reports Server (NTRS)
Czaja, Wojciech; Le Moigne-Stewart, Jacqueline
2014-01-01
In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.
[A snow depth inversion method for the HJ-1B satellite data].
Dong, Ting-Xu; Jiang, Hong-Bo; Chen, Chao; Qin, Qi-Ming
2011-10-01
The importance of the snow is self-evident, while the harms caused by the snow have also received more and more attention. At present, the retrieval of snow depth mainly focused on the use of microwave remote sensing data or a small amount of optical remote sensing data, such as the meteorological data or the MODIS data. The small satellites for environment and disaster monitoring of China are quite different form the meteorological data and MODIS data, both in the spectral resolution or spatial resolution. In this paper, aimed at the HJ-1B data, snow spectral of different underlying surfaces and depths were surveyed. The correlation between snow cover index and snow depth was also analyzed to establish the model for the snow depth retrieval using the HJ-1B data. The validation results showed that it can meet the requirements of real-time monitoring the snow depth on the condition of conventional snow depth.
The Tetracorder user guide: version 4.4
Livo, Keith Eric; Clark, Roger N.
2014-01-01
Imaging spectroscopy mapping software assists in the identification and mapping of materials based on their chemical properties as expressed in spectral measurements of a planet including the solid or liquid surface or atmosphere. Such software can be used to analyze field, aircraft, or spacecraft data; remote sensing datasets; or laboratory spectra. Tetracorder is a set of software algorithms commanded through an expert system to identify materials based on their spectra (Clark and others, 2003). Tetracorder also can be used in traditional remote sensing analyses, because some of the algorithms are a version of a matched filter. Thus, depending on the instructions fed to the Tetracorder system, results can range from simple matched filter output, to spectral feature fitting, to full identification of surface materials (within the limits of the spectral signatures of materials over the spectral range and resolution of the imaging spectroscopy data). A basic understanding of spectroscopy by the user is required for developing an optimum mapping strategy and assessing the results.
Optimal design of an earth observation optical system with dual spectral and high resolution
NASA Astrophysics Data System (ADS)
Yan, Pei-pei; Jiang, Kai; Liu, Kai; Duan, Jing; Shan, Qiusha
2017-02-01
With the increasing demand of the high-resolution remote sensing images by military and civilians, Countries around the world are optimistic about the prospect of higher resolution remote sensing images. Moreover, design a visible/infrared integrative optic system has important value in earth observation. Because visible system can't identify camouflage and recon at night, so we should associate visible camera with infrared camera. An earth observation optical system with dual spectral and high resolution is designed. The paper mainly researches on the integrative design of visible and infrared optic system, which makes the system lighter and smaller, and achieves one satellite with two uses. The working waveband of the system covers visible, middle infrared (3-5um). Dual waveband clear imaging is achieved with dispersive RC system. The focal length of visible system is 3056mm, F/# is 10.91. And the focal length of middle infrared system is 1120mm, F/# is 4. In order to suppress the middle infrared thermal radiation and stray light, the second imaging system is achieved and the narcissus phenomenon is analyzed. The system characteristic is that the structure is simple. And the especial requirements of the Modulation Transfer Function (MTF), spot, energy concentration, and distortion etc. are all satisfied.
Compressive hyperspectral and multispectral imaging fusion
NASA Astrophysics Data System (ADS)
Espitia, Óscar; Castillo, Sergio; Arguello, Henry
2016-05-01
Image fusion is a valuable framework which combines two or more images of the same scene from one or multiple sensors, allowing to improve the resolution of the images and increase the interpretable content. In remote sensing a common fusion problem consists of merging hyperspectral (HS) and multispectral (MS) images that involve large amount of redundant data, which ignores the highly correlated structure of the datacube along the spatial and spectral dimensions. Compressive HS and MS systems compress the spectral data in the acquisition step allowing to reduce the data redundancy by using different sampling patterns. This work presents a compressed HS and MS image fusion approach, which uses a high dimensional joint sparse model. The joint sparse model is formulated by combining HS and MS compressive acquisition models. The high spectral and spatial resolution image is reconstructed by using sparse optimization algorithms. Different fusion spectral image scenarios are used to explore the performance of the proposed scheme. Several simulations with synthetic and real datacubes show promising results as the reliable reconstruction of a high spectral and spatial resolution image can be achieved by using as few as just the 50% of the datacube.
Spectral response of fiber-coupled Fabry-Perot etalons.
Ionov, Pavel
2014-03-01
In many remote sensing applications one or multiple Fabry-Perot etalons are used as high-spectral-resolution filter elements. These etalons are often coupled to a receiving telescope with a multimode fiber, leading to subtle effects of the fiber mode order on the overall spectral response of the system. A theoretical model is developed to treat the spectral response of the combined system: fiber, collimator, and etalon. The method is based on a closed-form expression of the diffracted mode in terms of a Hankel transform. In this representation, it is shown how the spectral effect of the fiber and collimator can be separated from the details of the etalon and can be viewed as a mode-dependent spectral broadening and shift.
Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification
NASA Astrophysics Data System (ADS)
Gao, G.; Zhang, M.; Gu, Y.
2017-05-01
Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".
Ocean Color Measurements from Landsat-8 OLI using SeaDAS
NASA Technical Reports Server (NTRS)
Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy
2014-01-01
The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.
Fusion of shallow and deep features for classification of high-resolution remote sensing images
NASA Astrophysics Data System (ADS)
Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang
2018-02-01
Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.
Sánchez-Azofeifa, Arturo; Rivard, Benoit; Wright, Joseph; Feng, Ji-Lu; Li, Peijun; Chong, Mei Mei; Bohlman, Stephanie A
2011-01-01
Species identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama. The imagery was acquired on 29 April 2002 and 21 March 2004. Spectral Angle Mapping via a One-Class Support Vector machine was used to detect the presence of 422 and 557 flowering tress in the April 2002 and March 2004 imagery. Of these, 273 flowering trees are common to both dates. This study presents a new perspective on the effectiveness of high resolution remote sensing for monitoring a phenological response and its use as a tool for potential conservation and management of natural resources in tropical environments.
Sánchez-Azofeifa, Arturo; Rivard, Benoit; Wright, Joseph; Feng, Ji-Lu; Li, Peijun; Chong, Mei Mei; Bohlman, Stephanie A.
2011-01-01
Species identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama. The imagery was acquired on 29 April 2002 and 21 March 2004. Spectral Angle Mapping via a One-Class Support Vector machine was used to detect the presence of 422 and 557 flowering tress in the April 2002 and March 2004 imagery. Of these, 273 flowering trees are common to both dates. This study presents a new perspective on the effectiveness of high resolution remote sensing for monitoring a phenological response and its use as a tool for potential conservation and management of natural resources in tropical environments. PMID:22163825
On validating remote sensing simulations using coincident real data
NASA Astrophysics Data System (ADS)
Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan
2016-05-01
The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.
Spectral estimates of net radiation and soil heat flux
Daughtry, C.S.T.; Kustas, William P.; Moran, M.S.; Pinter, P. J.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.
1990-01-01
Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.
NASA Astrophysics Data System (ADS)
Miller, D. J.; Zhang, Z.; Ackerman, A. S.; Platnick, S. E.; Cornet, C.
2016-12-01
A remote sensing cloud retrieval simulator, created by coupling an LES cloud model with vector radiative transfer (RT) models is the ideal framework for assessing cloud remote sensing techniques. This simulator serves as a tool for understanding bi-spectral and polarimetric retrievals by comparing them directly to LES cloud properties (retrieval closure comparison) and for comparing the retrieval techniques to one another. Our simulator utilizes the DHARMA LES [Ackerman et al., 2004] with cloud properties based on marine boundary layer (MBL) clouds observed during the DYCOMS-II and ATEX field campaigns. The cloud reflectances are produced by the vectorized RT models based on polarized doubling adding and monte carlo techniques (PDA, MCPOL). Retrievals are performed utilizing techniques as similar as possible to those implemented on their corresponding well known instruments; polarimetric retrievals are based on techniques implemented for polarimeters (POLDER, AirMSPI, and RSP) and bi-spectral retrievals are performed using the Nakajima-King LUT method utilized on a number of spectral instruments (MODIS and VIIRS). Retrieval comparisons focus on cloud droplet effective radius (re), effective variance (ve), and cloud optical thickness (τ). This work explores the sensitivities of these two retrieval techniques to various observation limitations, such as spatial resolution/cloud inhomogeneity, impact of 3D radiative effects, and angular resolution requirements. With future remote sensing missions like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important to understand how these retrieval techniques compare to one another. The cloud retrieval simulator we've developed allows us to probe these important questions in a realistically relevant test bed.
A review of future remote sensing satellite capabilities
NASA Technical Reports Server (NTRS)
Calabrese, M. A.
1980-01-01
Existing, planned and future NASA capabilities in the field of remote sensing satellites are reviewed in relation to the use of remote sensing techniques for the identification of irrigated lands. The status of the currently operational Landsat 2 and 3 satellites is indicated, and it is noted that Landsat D is scheduled to be in operation in two years. The orbital configuration and instrumentation of Landsat D are discussed, with particular attention given to the thematic mapper, which is expected to improve capabilities for small field identification and crop discrimination and classification. Future possibilities are then considered, including a multi-spectral resource sampler supplying high spatial and temporal resolution data possibly based on push-broom scanning, Shuttle-maintained Landsat follow-on missions, a satellite to obtain high-resolution stereoscopic data, further satellites providing all-weather radar capability and the Large Format Camera.
Study on Building Extraction from High-Resolution Images Using Mbi
NASA Astrophysics Data System (ADS)
Ding, Z.; Wang, X. Q.; Li, Y. L.; Zhang, S. S.
2018-04-01
Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. However, the diversity and complexity of buildings make building extraction methods still face challenges in terms of accuracy, efficiency, and so on. In this study, a new building extraction framework based on MBI and combined with image segmentation techniques, spectral constraint, shadow constraint, and shape constraint is proposed. In order to verify the proposed method, worldview-2, GF-2, GF-1 remote sensing images covered Xiamen Software Park were used for building extraction experiments. Experimental results indicate that the proposed method improve the original MBI significantly, and the correct rate is over 86 %. Furthermore, the proposed framework reduces the false alarms by 42 % on average compared to the performance of the original MBI.
Zhou, Zhen; Huang, Jingfeng; Wang, Jing; Zhang, Kangyu; Kuang, Zhaomin; Zhong, Shiquan; Song, Xiaodong
2015-01-01
Most areas planted with sugarcane are located in southern China. However, remote sensing of sugarcane has been limited because useable remote sensing data are limited due to the cloudy climate of this region during the growing season and severe spectral mixing with other crops. In this study, we developed a methodology for automatically mapping sugarcane over large areas using time-series middle-resolution remote sensing data. For this purpose, two major techniques were used, the object-oriented method (OOM) and data mining (DM). In addition, time-series Chinese HJ-1 CCD images were obtained during the sugarcane growing period. Image objects were generated using a multi-resolution segmentation algorithm, and DM was implemented using the AdaBoost algorithm, which generated the prediction model. The prediction model was applied to the HJ-1 CCD time-series image objects, and then a map of the sugarcane planting area was produced. The classification accuracy was evaluated using independent field survey sampling points. The confusion matrix analysis showed that the overall classification accuracy reached 93.6% and that the Kappa coefficient was 0.85. Thus, the results showed that this method is feasible, efficient, and applicable for extrapolating the classification of other crops in large areas where the application of high-resolution remote sensing data is impractical due to financial considerations or because qualified images are limited. PMID:26528811
Zhou, Zhen; Huang, Jingfeng; Wang, Jing; Zhang, Kangyu; Kuang, Zhaomin; Zhong, Shiquan; Song, Xiaodong
2015-01-01
Most areas planted with sugarcane are located in southern China. However, remote sensing of sugarcane has been limited because useable remote sensing data are limited due to the cloudy climate of this region during the growing season and severe spectral mixing with other crops. In this study, we developed a methodology for automatically mapping sugarcane over large areas using time-series middle-resolution remote sensing data. For this purpose, two major techniques were used, the object-oriented method (OOM) and data mining (DM). In addition, time-series Chinese HJ-1 CCD images were obtained during the sugarcane growing period. Image objects were generated using a multi-resolution segmentation algorithm, and DM was implemented using the AdaBoost algorithm, which generated the prediction model. The prediction model was applied to the HJ-1 CCD time-series image objects, and then a map of the sugarcane planting area was produced. The classification accuracy was evaluated using independent field survey sampling points. The confusion matrix analysis showed that the overall classification accuracy reached 93.6% and that the Kappa coefficient was 0.85. Thus, the results showed that this method is feasible, efficient, and applicable for extrapolating the classification of other crops in large areas where the application of high-resolution remote sensing data is impractical due to financial considerations or because qualified images are limited.
Spatial and spectral resolution necessary for remotely sensed vegetation studies
NASA Technical Reports Server (NTRS)
Rock, B. N.
1982-01-01
An outline is presented of the required spatial and spectral resolution needed for accurate vegetation discrimination and mapping studies as well as for determination of state of health (i.e., detection of stress symptoms) of actively growing vegetation. Good success was achieved in vegetation discrimination and mapping of a heterogeneous forest cover in the ridge and valley portion of the Appalachians using multispectral data acquired with a spatial resolution of 15 m (IFOV). A sensor system delivering 10 to 15 m spatial resolution is needed for both vegetation mapping and detection of stress symptoms. Based on the vegetation discrimination and mapping exercises conducted at the Lost River site, accurate products (vegetation maps) are produced using broad-band spectral data ranging from the .500 to 2.500 micron portion of the spectrum. In order of decreasing utility for vegetation discrimination, the four most valuable TM simulator VNIR bands are: 6 (1.55 to 1.75 microns), 3 (0.63 to 0.69 microns), 5 (1.00 to 1.30 microns) and 4 (0.76 to 0.90 microns).
NASA Technical Reports Server (NTRS)
Snowden, Steve
2007-01-01
What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.
[Extracting black soil border in Heilongjiang province based on spectral angle match method].
Zhang, Xin-Le; Zhang, Shu-Wen; Li, Ying; Liu, Huan-Jun
2009-04-01
As soils are generally covered by vegetation most time of a year, the spectral reflectance collected by remote sensing technique is from the mixture of soil and vegetation, so the classification precision based on remote sensing (RS) technique is unsatisfied. Under RS and geographic information systems (GIS) environment and with the help of buffer and overlay analysis methods, land use and soil maps were used to derive regions of interest (ROI) for RS supervised classification, which plus MODIS reflectance products were chosen to extract black soil border, with methods including spectral single match. The results showed that the black soil border in Heilongjiang province can be extracted with soil remote sensing method based on MODIS reflectance products, especially in the north part of black soil zone; the classification precision of spectral angel mapping method is the highest, but the classifying accuracy of other soils can not meet the need, because of vegetation covering and similar spectral characteristics; even for the same soil, black soil, the classifying accuracy has obvious spatial heterogeneity, in the north part of black soil zone in Heilongjiang province it is higher than in the south, which is because of spectral differences; as soil uncovering period in Northeastern China is relatively longer, high temporal resolution make MODIS images get the advantage over soil remote sensing classification; with the help of GIS, extracting ROIs by making the best of auxiliary data can improve the precision of soil classification; with the help of auxiliary information, such as topography and climate, the classification accuracy was enhanced significantly. As there are five main factors determining soil classes, much data of different types, such as DEM, terrain factors, climate (temperature, precipitation, etc.), parent material, vegetation map, and remote sensing images, were introduced to classify soils, so how to choose some of the data and quantify the weights of different data layers needs further study.
The Moon mineralogy mapper (M3) on Chandrayaan-1
Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J.; Isaacson, P.; Malaret, E.; McCord, T.; Mustard, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.; Tompkins, S.; Varanasi, P.; White, M.
2009-01-01
The Moon Mineralogy Mapper (M3) is a NASA-supported guest instrument on ISRO's remote sensing mission to Moon, Chandrayaan-1. The M3 is an imaging spectrometer that operates from the visible into the near-infrared (0.42-3.0 ??m) where highly diagnostic mineral absorption bands occur. Over the course of the mission M3 will provide low resolution spectroscopic data for the entire lunar surface at 140 m/pixel (86 spectral channels) to be used as a base-map and high spectral resolution science data (80 m/pixel; 260 spectral channels) for 25-50% of the surface. The detailed mineral assessment of different lunar terrains provided by M3 is principal information needed for understanding the geologic evolution of the lunar crust and lays the foundation for focused future in-depth exploration of the Moon.
NASA Astrophysics Data System (ADS)
King, Bruce H.; Ellis, Thomas; Old, Tom E.
2009-05-01
A fast-scanning, high-resolution FTIR spectroradiometer has been designed and built for use in remote sensing, stand-off detection, and spectral-temporal characterization of fast, energetic infrared events. The instrument design uses a Michelson-type interferometer with a rotary modulator which is capable of continuous measurement of infrared spectra at a rate of 1000 scans per second with 4 cm-1 resolution in the 2 - 25 micron spectral range. Sensitivity, spectral accuracy, and radiometric precision are discussed along with specific design parameters. This instrument can be used for passive sensing as a stand-alone sensor, or for active sensing as a receiver when used in conjunction with a highenergy excitation source such as a laser. Applications include muzzle flash signature measurement, ordnance detonation characterization, missile plume identification, and rocket motor combustion diagnostics.
On the Challenge of Observing Pelagic Sargassum in Coastal Oceans: A Multi-sensor Assessment
NASA Astrophysics Data System (ADS)
Hu, C.; Feng, L.; Hardy, R.; Hochberg, E. J.
2016-02-01
Remote detection of pelagic Sargassum is often hindered by its spectral similarity to other floating materials and by the inadequate spatial resolution. Using measurements from multi-spectral satellite sensors (Moderate Resolution Imaging Spectroradiometer or MODIS), Landsat, WorldView-2 (or WV-2) as well as hyperspectral sensors (Hyperspectral Imager for the Coastal Ocean or HICO, Airborne Visible-InfraRed Imaging Spectrometer or AVIRIS) and airborne digital photos, we analyze and compare their ability (in terms of spectral and spatial resolutions) to detect Sargassum and to differentiate from other floating materials such as Trichodesmium, Syringodium, Ulva, garbage, and emulsified oil. Field measurements suggest that Sargassum has a distinctive reflectance curvature around 630 nm due to its chlorophyll c pigments, which provides a unique spectral signature when combined with the reflectance ratio between brown ( 650 nm) and green ( 555 nm) wavelengths. For a 10-nm resolution sensor on the hyperspectral HyspIRI mission currently being planned by NASA, a stepwise rule to examine several indexes established from 6 bands (centered at 555, 605, 625, 645, 685, 755 nm) is shown to be effective to unambiguously differentiate Sargassum from all other floating materials Numerical simulations using spectral endmembers and noise in the satellite-derived reflectance suggest that spectral discrimination is degraded when a pixel is mixed between Sargassum and water. A minimum of 20-30% Sargassum coverage within a pixel is required to retain such ability, while the partial coverage can be as low as 1-2% when detecting floating materials without spectral discrimination. With its expected signal-to-noise ratios (SNRs 200:1), the hyperspectral HyspIRI mission may provide a compromise between spatial resolution and spatial coverage to improve our capacity to detect, discriminate, and quantify Sargassum.
UVMAS: Venus ultraviolet-visual mapping spectrometer
NASA Astrophysics Data System (ADS)
Bellucci, G.; Zasova, L.; Altieri, F.; Nuccilli, F.; Ignatiev, N.; Moroz, V.; Khatuntsev, I.; Korablev, O.; Rodin, A.
This paper summarizes the capabilities and technical solutions of an Ultraviolet Visual Mapping Spectrometer designed for remote sensing of Venus from a planetary orbiter. The UVMAS consists of a multichannel camera with a spectral range 0.19 << 0.49 μm which acquires data in several spectral channels (up to 400) with a spectral resolution of 0.58 nm. The instantaneous field of view of the instrument is 0.244 × 0.244 mrad. These characteristics allow: a) to study the upper clouds dynamics and chemistry; b) giving constraints on the unknown absorber; c) observation of the night side airglow.
Data fusion of Landsat TM and IRS images in forest classification
Guangxing Wang; Markus Holopainen; Eero Lukkarinen
2000-01-01
Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...
Fast and compact internal scanning CMOS-based hyperspectral camera: the Snapscan
NASA Astrophysics Data System (ADS)
Pichette, Julien; Charle, Wouter; Lambrechts, Andy
2017-02-01
Imec has developed a process for the monolithic integration of optical filters on top of CMOS image sensors, leading to compact, cost-efficient and faster hyperspectral cameras. Linescan cameras are typically used in remote sensing or for conveyor belt applications. Translation of the target is not always possible for large objects or in many medical applications. Therefore, we introduce a novel camera, the Snapscan (patent pending), exploiting internal movement of a linescan sensor enabling fast and convenient acquisition of high-resolution hyperspectral cubes (up to 2048x3652x150 in spectral range 475-925 nm). The Snapscan combines the spectral and spatial resolutions of a linescan system with the convenience of a snapshot camera.
Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis
NASA Astrophysics Data System (ADS)
Zoran, M. A.; Savastru, R. S.; Savastru, D. M.
2013-08-01
During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.
Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems
NASA Technical Reports Server (NTRS)
Wessman, Carol A.; Aber, John D.; Peterson, David L.; Melillo, Jerry M.
1988-01-01
The use of images acquired by the Airborne Imaging Spectrometer, an experimental high-spectral resolution imaging sensor developed by NASA, to estimate the lignin concentration of whole forest canopies in Wisconsin is reported. The observed strong relationship between canopy lignin concentration and nitrogen availability in seven undisturbed forest ecosystems on Blackhawk Island, Wisconsin, suggests that canopy lignin may serve as an index for site nitrogen status. This predictive relationship presents the opportunity to estimate nitrogen-cycling rates across forested landscapes through remote sensing.
EPA remote sensing capabilities include applied research for priority applications and technology support for operational assistance to clients across the Agency. The idea is to use MODIS in conjunction with the current limited Landsat capability, commercial satellites, and Unma...
NASA Astrophysics Data System (ADS)
Hair, J. W.; Hostetler, C. A.; Brian, C.; Ziemba, L. D.; Alexandrov, M. D.; Hu, Y.; Crosbie, E.; Scarino, A. J.; Butler, C. F.; Moore, R.; Berkoff, T.; Harper, D. B.; Cook, A. L.; Hare, R. J.; Lee, J.; Anderson, B. E.
2017-12-01
The NASA Langley High Spectral Resolution lidar (HSRL) and the NASA GISS Research Scanning Polarimeter (RSP) were deployed onboard the NASA C-130 during two field campaigns as part of the NASA's Earth Venture-Suborbital (EVS) North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) during November 2015 and May 2016. The main objectives of NAAMES are to study the phases of the North Atlantic annual plankton cycle and to investigate remote marine aerosols and their impact on boundary layer clouds. Lidar retrievals of the cloud-top extinction and lidar ratio (extinction/backscatter ratio) of boundary layer clouds are presented. These retrievals are unique and are enabled by two characteristics of the lidar: employment of the high-spectral-resolution lidar technique and the high-vertical-resolution (1.25 m) the Langley HSRL instrument. The HSRL lidar ratio retrievals are compared to estimates derived from Research Scanning Polarimeter data to assess consistency between the two remote sensors. The measurements of effective size and variance from RSP are combined with the HSRL cloud top extinction to retrieve the cloud droplet number concentrations (CDNC). The lidar+polarimeter CDNC estimates are compared to those from the Cloud Droplet Probe (CDP) that is part of the NASA Langley Aerosol Research Group Experiment (LARGE) instrument suite. Histograms of the CNDC measurements from remote sensors are shown to highlight the observed differences in CDNC between the November and May deployments.
Future Applications of Remote Sensing to Archeological Research
NASA Technical Reports Server (NTRS)
Sever, Thomas L.
2003-01-01
Archeology was one of the first disciplines to use aerial photography in its investigations at the turn of the 20th century. However, the low resolution of satellite technology that became available in the 1970 s limited their application to regional studies. That has recently changed. The arrival of the high resolution, multi-spectral capabilities of the IKONOS and QUICKBIRD satellites and the scheduled launch of new satellites in the next few years provides an unlimited horizon for future archeological research. In addition, affordable aerial and ground-based remote sensing instrumentation are providing archeologists with information that is not available through traditional methodologies. Although many archeologists are not yet comfortable with remote sensing technology a new generation has embraced it and is accumulating a wealth of new evidence. They have discovered that through the use of remote sensing it is possible to gather information without disturbing the site and that those cultural resources can be monitored and protected for the future.
NASA Technical Reports Server (NTRS)
Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.
2013-01-01
The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.
NASA Astrophysics Data System (ADS)
Moonon, Altan-Ulzii; Hu, Jianwen; Li, Shutao
2015-12-01
The remote sensing image fusion is an important preprocessing technique in remote sensing image processing. In this paper, a remote sensing image fusion method based on the nonsubsampled shearlet transform (NSST) with sparse representation (SR) is proposed. Firstly, the low resolution multispectral (MS) image is upsampled and color space is transformed from Red-Green-Blue (RGB) to Intensity-Hue-Saturation (IHS). Then, the high resolution panchromatic (PAN) image and intensity component of MS image are decomposed by NSST to high and low frequency coefficients. The low frequency coefficients of PAN and the intensity component are fused by the SR with the learned dictionary. The high frequency coefficients of intensity component and PAN image are fused by local energy based fusion rule. Finally, the fused result is obtained by performing inverse NSST and inverse IHS transform. The experimental results on IKONOS and QuickBird satellites demonstrate that the proposed method provides better spectral quality and superior spatial information in the fused image than other remote sensing image fusion methods both in visual effect and object evaluation.
Mapping Chinese tallow with color-infrared photography
Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Seeger, E.B.; Martella, K.D.
2002-01-01
Airborne color-infrared photography (CIR) (1:12,000 scale) was used to map localized occurrences of the widespread and aggressive Chinese tallow (Sapium sebiferum), an invasive species. Photography was collected during senescence when Chinese tallow's bright red leaves presented a high spectral contrast within the native bottomland hardwood and upland forests and marsh land-cover types. Mapped occurrences were conservative because not all senescing tallow leaves are bright red simultaneously. To simulate low spectral but high spatial resolution satellite/airborne image and digital video data, the CIR photography was transformed into raster images at spatial resolutions approximating 0.5 in and 1.0 m. The image data were then spectrally classified for the occurrence of bright red leaves associated with senescing Chinese tallow. Classification accuracies were greater than 95 percent at both spatial resolutions. There was no significant difference in either forest in the detection of tallow or inclusion of non-tallow trees associated with the two spatial resolutions. In marshes, slightly more tallow occurrences were mapped with the lower spatial resolution, but there were also more misclassifications of native land covers as tallow. Combining all land covers, there was no difference at detecting tallow occurrences (equal omission errors) between the two resolutions, but the higher spatial resolution was associated with less inclusion of non-tallow land covers as tallow (lower commission error). Overall, these results confirm that high spatial (???1 m) but low spectral resolution remote sensing data can be used for mapping Chinese tallow trees in dominant environments found in coastal and adjacent upland landscapes.
Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series
NASA Astrophysics Data System (ADS)
Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik
2016-06-01
Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model biophysical parameters.
NASA Astrophysics Data System (ADS)
Dash, Jonathan P.; Watt, Michael S.; Pearse, Grant D.; Heaphy, Marie; Dungey, Heidi S.
2017-09-01
Research into remote sensing tools for monitoring physiological stress caused by biotic and abiotic factors is critical for maintaining healthy and highly-productive plantation forests. Significant research has focussed on assessing forest health using remotely sensed data from satellites and manned aircraft. Unmanned aerial vehicles (UAVs) may provide new tools for improved forest health monitoring by providing data with very high temporal and spatial resolutions. These platforms also pose unique challenges and methods for health assessments must be validated before use. In this research, we simulated a disease outbreak in mature Pinus radiata D. Don trees using targeted application of herbicide. The objective was to acquire a time-series simulated disease expression dataset to develop methods for monitoring physiological stress from a UAV platform. Time-series multi-spectral imagery was acquired using a UAV flown over a trial at regular intervals. Traditional field-based health assessments of crown health (density) and needle health (discolouration) were carried out simultaneously by experienced forest health experts. Our results showed that multi-spectral imagery collected from a UAV is useful for identifying physiological stress in mature plantation trees even during the early stages of tree stress. We found that physiological stress could be detected earliest in data from the red edge and near infra-red bands. In contrast to previous findings, red edge data did not offer earlier detection of physiological stress than the near infra-red data. A non-parametric approach was used to model physiological stress based on spectral indices and was found to provide good classification accuracy (weighted kappa = 0.694). This model can be used to map physiological stress based on high-resolution multi-spectral data.
Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS)
NASA Astrophysics Data System (ADS)
Kumer, John B.; Rairden, Richard L.; Mitchell, Keith E.; Roche, Aidan E.; Mergenthaler, John L.
2002-11-01
The Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS) uses relatively inexpensive off the shelf components in a small and simple package to provide ultra high spectral resolution over a limited spectral range. For example, the modest first try laboratory test setup DECTOSS we describe in this presentation achieves resolving power ~ 105 on a spectral range of about 1 nm centered near 760 nm. This ultra high spectral resolution facilitates some important atmospheric remote sensing applications including profiling cirrus and/or aerosol above bright reflective surfaces in the O2 A-band and the column measurements of CO and CO2 utilizing solar reflectance spectra. We show details of the how the use of ultra high spectral resolution in the O2 A-band improves the profiling of cirrus and aerosol. The DECTOSS utilizes a Narrow Band Spectral Filter (NBSF), a Low Resolution Etalon (LRE) and a High Resolution Etalon (HRE). Light passing through these elements is focused on to a 2 Dimensional Array Detector (2DAD). Off the shelf, solid etalons with airgap or solid spacer gap are used in this application. In its simplest application this setup utilizes a spatially uniform extended source so that spatial and spectral structure are not confused. In this presentation we'll show 2D spectral data obtained in a desktop test configuration, and in the first try laboratory test setup. These were obtained by illuminating a Lambertian screen with (1) monochromatic light, and (2) with atmospheric absorption spectra in the oxygen (O2) A-band. Extracting the 1D spectra from these data is a work in progress and we show preliminary results compared with (1) solar absorption data obtained with a large Echelle grating spectrometer, and (2) theoretical spectra. We point out areas for improvement in our laboratory test setup, and general improvements in spectral range and sensitivity that are planned for our next generation field test setup.
Assessing the Tundra-taiga Boundary with Multi-Sensor Satellite Data
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Sun, G.; Kharuk, V. I.; Kovacs, K.
2004-01-01
Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. This ecotone, the world's largest, stretches for over 13,400 km and marks the transition between the northern limits of forests and the southern margin of the tundra. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for mapping the characteristics and monitoring the dynamics. Basic understanding of the capabilities of existing space borne instruments for these purposes is required. In this study we examined the use of several remote sensing techniques for identifying the existing tundra- taiga ecotone. These include Landsat-7, MISR, MODIS and RADARSAT data. Historical cover maps, recent forest stand measurements and high-resolution IKONOS images were used for local ground truth. It was found that a tundra-taiga transitional area can be characterized using multi- spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent.
Alexnet Feature Extraction and Multi-Kernel Learning for Objectoriented Classification
NASA Astrophysics Data System (ADS)
Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S.
2018-04-01
In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression, an exploratory research is done on feature extraction and classification for high resolution remote sensing images. Taking the Google image with 0.3 meter spatial resolution in Ludian area of Yunnan Province as an example, the image segmentation object was taken as the basic unit, and the pre-trained AlexNet deep convolution neural network model was used for feature extraction. And the spectral features, AlexNet features and GLCM texture features are combined with multi-kernel learning and SVM classifier, finally the classification results were compared and analyzed. The results show that the deep convolution neural network can extract more accurate remote sensing image features, and significantly improve the overall accuracy of classification, and provide a reference value for earthquake disaster investigation and remote sensing disaster evaluation.
NASA Technical Reports Server (NTRS)
Cetin, Haluk
1999-01-01
The purpose of this project was to establish a new hyperspectral remote sensing laboratory at the Mid-America Remote sensing Center (MARC), dedicated to in situ and laboratory measurements of environmental samples and to the manipulation, analysis, and storage of remotely sensed data for environmental monitoring and research in ecological modeling using hyperspectral remote sensing at MARC, one of three research facilities of the Center of Reservoir Research at Murray State University (MSU), a Kentucky Commonwealth Center of Excellence. The equipment purchased, a FieldSpec FR portable spectroradiometer and peripherals, and ENVI hyperspectral data processing software, allowed MARC to provide hands-on experience, education, and training for the students of the Department of Geosciences in quantitative remote sensing using hyperspectral data, Geographic Information System (GIS), digital image processing (DIP), computer, geological and geophysical mapping; to provide field support to the researchers and students collecting in situ and laboratory measurements of environmental data; to create a spectral library of the cover types and to establish a World Wide Web server to provide the spectral library to other academic, state and Federal institutions. Much of the research will soon be published in scientific journals. A World Wide Web page has been created at the web site of MARC. Results of this project are grouped in two categories, education and research accomplishments. The Principal Investigator (PI) modified remote sensing and DIP courses to introduce students to ii situ field spectra and laboratory remote sensing studies for environmental monitoring in the region by using the new equipment in the courses. The PI collected in situ measurements using the spectroradiometer for the ER-2 mission to Puerto Rico project for the Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS). Currently MARC is mapping water quality in Kentucky Lake and vegetation in the Land-Between-the Lakes (LBL) using Landsat-TM data. A Landsat-TM scene of the same day was obtained to relate ground measurements to the satellite data. A spectral library has been created for overstory species in LBL. Some of the methods, such as NPDF and IDFD techniques for spectral unmixing and reduction of effects of shadows in classifications- comparison of hyperspectral classification techniques, and spectral nonlinear and linear unmixing techniques, are being tested using the laboratory.
NASA Astrophysics Data System (ADS)
Liu, Dong; Miller, Ian; Hostetler, Chris; Cook, Anthony; Hair, Johnathan
2011-06-01
High spectral resolution lidars (HSRLs) have recently shown great value in aerosol measurements form aircraft and are being called for in future space-based aerosol remote sensing applications. A quasi-monolithic field-widened, off-axis Michelson interferometer had been developed as the spectral discrimination filter for an HSRL currently under development at NASA Langley Research Center (LaRC). The Michelson filter consists of a cubic beam splitter, a solid arm and an air arm. The input light is injected at 1.5° off-axis to provide two output channels: standard Michelson output and the reflected complementary signal. Piezo packs connect the air arm mirror to the main part of the filter that allows it to be tuned within a small range. In this paper, analyses of the throughput wavephase, locking error, AR coating, and tilt angle of the interferometer are described. The transmission ratio for monochromatic light at the transmitted wavelength is used as a figure of merit for assessing each of these parameters.
Improvements in agricultural water decision support using remote sensing
NASA Astrophysics Data System (ADS)
Marshall, M. T.
2012-12-01
Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of these tools into two new decision support systems: FEWSNET Early Warning Explorer (http://earlywarning.usgs.gov/fews/ewxindex.php) and the NASA Terrestrial Observation and Prediction System (http://ecocast.arc.nasa.gov/) for the first and second project respectively.
The study of active tectonic based on hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.
2017-12-01
As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.
Remote Sensing of Suspended Sediments and Shallow Coastal Waters
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.
2002-01-01
Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
Sideband-Separating, Millimeter-Wave Heterodyne Receiver
NASA Technical Reports Server (NTRS)
Ward, John S.; Bumble, Bruce; Lee, Karen A.; Kawamura, Jonathan H.; Chattopadhyay, Goutam; Stek, paul; Stek, Paul
2010-01-01
Researchers have demonstrated a submillimeter-wave spectrometer that combines extremely broad bandwidth with extremely high sensitivity and spectral resolution to enable future spacecraft to measure the composition of the Earth s troposphere in three dimensions many times per day at spatial resolutions as high as a few kilometers. Microwave limb sounding is a proven remote-sensing technique that measures thermal emission spectra from molecular gases along limb views of the Earth s atmosphere against a cold space background.
Potential for remote sensing of agriculture from the international space station
NASA Astrophysics Data System (ADS)
Morgenthaler, George W.; Khatib, Nader
1999-01-01
Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make ``precision agriculture,'' i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during ``daylight hours'' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural ``truth'' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural ``truth'' site in eastern Colorado. The ``truth'' site was highly instrumented for measuring trace gas concentrations (NOx, SOx, CO2, O3, organics, and aerosols), ground water contamination via drain-tile catch from the fields, and Leaf Area Index (LAI). Also, a tethered balloon flight sampled the site's vertical air column and both aerial infrared photography and satellite imagery were acquired. This paper summarizes the 1998 activities in establishing and operating the ``truth'' site. The goal of such a ``truth'' site is to develop and validate precision agriculture predictive models to improve farming practices. ISS sensor testing can greatly accelerate development of such systems.
NASA Astrophysics Data System (ADS)
Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.
2009-04-01
The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi archaeological area (southern Italy). We identify, for the selected sites, three main land cover overlying the buried structures: (a) photosynthetic (i.e. green low vegetation), (b) non-photosynthetic vegetation (i.e. yellow, dry low vegetation), and (c) dry bare soil. Afterwards, we analyse the spectral regions showing an inherent potential for the archaeological detection as a function of the land cover characteristics. The classified land cover units have been used in a spectral mixture analysis to assess the land cover fractional abundance surfacing the buried structures (i.e. mark-background system). The classification and unmixing results for the CASI, MIVIS and ATM remote sensing data processing showed a good accordance both in the land cover units and in the subsurface structures identification. The integrated analysis of the unmixing results for the three sensors allowed us to establish that for the land cover characterized by green and dry vegetation (occurrence higher than 75%), the visible and near infrared (VNIR) spectral regions better enhance the buried man-made structures. In particular, if the structures are covered by more than 75% of vegetation the two most promising wavelengths for their detection are the chlorophyll peak at 0.56 m (Visible region) and the red edge region (0.67 to 0.72 m; NIR region). This result confirms that the variation induced by the subsurface structures (e.g., stone walls, tile concentrations, pavements near the surface, road networks) to the natural vegetation growth and/or colour (i.e., for different stress factors) is primarily detectable by the chlorophyll peak and the red edge region applied for the vegetation stress detection. Whereas, if dry soils cover the structures (occurrence higher than 75%), both the VNIR and thermal infrared (TIR) regions are suitable to detect the subsurface structures. This work demonstrates that airborne reflectances and emissivities data, even though at different spatial/spectral resolutions and acquisition time represent an effective and rapid tool to detect subsurface structures within different land cover contexts. As concluding results, this study reveals that the airborne multi/hyperspectral image processing can be an effective and cost-efficient tool to perform a preliminary analysis of those areas where large cultural heritage assets prioritising and localizing the sites where to apply near surface geophysics surveys. Spectral Region Spectral Resolution ( m )Spectral Range ( m) Spatial Resolution (m)IFOV (deg) ATM VIS-NIR SWIR-TIR (tot 12 ch) variable from 24 to 3100 0.42 - 1150 2 0.143 CASI VNIR (48 ch.) 0.01 0.40-0.94 2 0.115 MIVIS VNIR (28ch.) 0.02 (VIS) 0.05 (NIR) 0.43-0.83 (VIS) 1.15-1.55 (NIR) 6 - 7 0.115 SWIR (64ch.) 0.09 1.983-2.478 TIR (10ch.) 0.34-0.54 8.180-12.700 Table 1. Characteristics of airborne sensors used for the Arpi test area. 1 References 2 [1] Beck, A., Philip, G., Abdulkarim, M. and Donoghue, D., 2007. Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity, 81: 161-175. 3 [2] Altaweel, M., 2005. The Use of ASTER Satellite Imagery in Archaeological Contexts. Archaeological Prospection, 12: 151- 166. 4 [3] Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote hyperspectral imagery as a support to archaeological prospection. J. of Cultural Heritage 2007, 8, 272-283. 5 [4] Kucukkaya, A.G. Photogrammetry and remote sensing in archaeology. J. Quant. Spectrosc. Radiat. Transfer 2004, 97(1-3), 83-97. [5] Rowlands, A.; Sarris, A. Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. J. of Archaeological Science 2007, 34, 795-803.
NASA Astrophysics Data System (ADS)
Oommen, T.; Baise, L. G.; Gens, R.; Prakash, A.; Gupta, R. P.
2009-12-01
Historically, earthquake induced liquefaction is known to have caused extensive damage around the world. Therefore, there is a compelling need to characterize and map liquefaction after a seismic event. Currently, after an earthquake event, field-based mapping of liquefaction is sporadic and limited due to inaccessibility, short life of the failures, difficulties in mapping large aerial extents, and lack of resources. We hypothesize that as liquefaction occurs in saturated granular soils due to an increase in pore pressure, the liquefaction related terrain changes should have an associated increase in soil moisture with respect to the surrounding non-liquefied regions. The increase in soil moisture affects the thermal emittance and, hence, change detection using pre- and post-event thermal infrared (TIR) imagery is suitable for identifying areas that have undergone post-earthquake liquefaction. Though change detection using TIR images gives the first indication of areas of liquefaction, the spatial resolution of TIR images is typically coarser than the resolution of corresponding visible, near-infrared (NIR), and shortwave infrared (SWIR) images. We hypothesize that liquefaction induced changes in the soil and associated surface effects cause textural and spectral changes in images acquired in the visible, NIR, and SWIR. Although these changes can be from various factors, a synergistic approach taking advantage of the thermal signature variation due to changing soil moisture condition, together with the spectral information from high resolution visible, NIR, and SWIR bands can help to narrow down the locations of post-event liquefaction for regional documentation. In this study, we analyze the applicability of combining various spectral bands from different satellites (Landsat, Terra-MISR, IRS-1C, and IRS-1D) for documenting liquefaction failures associated with the magnitude 7.6 earthquake that occurred in Bhuj, India, in 2001. We combine the various spectral bands by neighborhood correlation image analysis using an artificial intelligence algorithm called support vector machine to remotely identify and document liquefaction failures across a region; and assess the reliability and accuracy of the thermal remote sensing approach in documenting regional liquefaction failures. Finally, we present the applicability of the satellite data analyzed and appropriateness of a multisensor and multispectral approach for documenting liquefaction related failures.
Atmospheric Emitted Radiance Interferometer (AERI) Handbook
Gero, Jonathan; Hackel, Denny; Garcia, Raymond
2005-01-01
The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth's atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols.The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3-19.2 μm (520-3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3-25.0 μm (400-3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.
Lee, Zhongping; Shang, Shaoling; Hu, Chuanmin; Zibordi, Giuseppe
2014-05-20
Using 901 remote-sensing reflectance spectra (R(rs)(λ), sr⁻¹, λ from 400 to 700 nm with a 5 nm resolution), we evaluated the correlations of R(rs)(λ) between neighboring spectral bands in order to characterize (1) the spectral interdependence of R(rs)(λ) at different bands and (2) to what extent hyperspectral R(rs)(λ) can be reconstructed from multiband measurements. The 901 R(rs) spectra were measured over a wide variety of aquatic environments in which water color varied from oceanic blue to coastal green or brown, with chlorophyll-a concentrations ranging from ~0.02 to >100 mg m⁻³, bottom depths from ~1 m to >1000 m, and bottom substrates including sand, coral reef, and seagrass. The correlation coefficient of R(rs)(λ) between neighboring bands at center wavelengths λ(k) and λ(l), r(Δλ)(λ(k), λ(l)), was evaluated systematically, with the spectral gap (Δλ=λ(l)-λ(k)) changing between 5, 10, 15, 20, 25, and 30 nm, respectively. It was found that r(Δλ) decreased with increasing Δλ, but remained >0.97 for Δλ≤20 nm for all spectral bands. Further, using 15 spectral bands between 400 and 710 nm, we reconstructed, via multivariant linear regression, hyperspectral R(rs)(λ) (from 400 to 700 nm with a 5 nm resolution). The percentage difference between measured and reconstructed R(rs) for each band in the 400-700 nm range was generally less than 1%, with a correlation coefficient close to 1.0. The mean absolute error between measured and reconstructed R(rs) was about 0.00002 sr⁻¹ for each band, which is significantly smaller than the R(rs) uncertainties from all past and current ocean color satellite radiometric products. These results echo findings of earlier studies that R(rs) measurements at ~15 spectral bands in the visible domain can provide nearly identical spectral information as with hyperspectral (contiguous bands at 5 nm spectral resolution) measurements. Such results provide insights for data storage and handling of large volume hyperspectral data as well as for the design of future ocean color satellite sensors.
Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder
NASA Astrophysics Data System (ADS)
August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian
2016-03-01
Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.
August, Isaac; Oiknine, Yaniv; AbuLeil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian
2016-03-23
Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.
Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery
Ian M. McCullough,; Loftin, Cynthia S.; Steven A. Sader,
2013-01-01
We evaluated use of MODIS 250 m imagery for remote lake monitoring in Maine. Despite limited spectral resolution (visible red and near infrared bands), the twice daily image capture has a potential advantage over conventionally used, often cloudy Landsat imagery (16 day interval) when short time windows are of interest. We analyzed 364 eligible (≥100 ha) Maine lakes during late summer (Aug–early Sep) 2000–2011. The red band was strongly correlated with natural log-transformed Secchi depth (SD), and the addition of ancillary lake and watershed variables explained some variability in ln(SD) (R2= 0.68–0.85; 9 models). Weak spectral resolution and variable lake conditions limited accurate lake monitoring to relatively productive periods in late summer, as indicated by inconsistent, sometimes weak regressions during June and July when lakes were clearer and less stable (R2 = 0.19–0.74; 8 models). Additionally, SD estimates derived from 2 sets of concurrent MODIS and Landsat imagery generally did not agree unless Landsat imagery (30 m) was resampled to 250 m, likely owing to various factors related to scale. Average MODIS estimates exceeded those of Landsat by 0.35 and 0.49 m on the 2 dates. Overall, MODIS 250 m imagery are potentially useful for remote lake monitoring during productive periods when Landsat data are unavailable; however, analyses must occur when algal communities are stable and well-developed, are biased toward large lakes, may overestimate SD, and accuracy may be unreliable without non-spectral lake predictors.
Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery
Loftin, Cyndy; Ian M. McCullough,; Steven A. Sader,
2013-01-01
We evaluated use of MODIS 250 m imagery for remote lake monitoring in Maine. Despite limited spectral resolution (visible red and near infrared bands), the twice daily image capture has a potential advantage over conventionally used, often cloudy Landsat imagery (16 day interval) when short time windows are of interest. We analyzed 364 eligible (≥100 ha) Maine lakes during late summer (Aug–early Sep) 2000–2011. The red band was strongly correlated with natural log-transformed Secchi depth (SD), and the addition of ancillary lake and watershed variables explained some variability in ln(SD) (R2 = 0.68–0.85; 9 models). Weak spectral resolution and variable lake conditions limited accurate lake monitoring to relatively productive periods in late summer, as indicated by inconsistent, sometimes weak regressions during June and July when lakes were clearer and less stable (R2 = 0.19–0.74; 8 models). Additionally, SD estimates derived from 2 sets of concurrent MODIS and Landsat imagery generally did not agree unless Landsat imagery (30 m) was resampled to 250 m, likely owing to various factors related to scale. Average MODIS estimates exceeded those of Landsat by 0.35 and 0.49 m on the 2 dates. Overall, MODIS 250 m imagery are potentially useful for remote lake monitoring during productive periods when Landsat data are unavailable; however, analyses must occur when algal communities are stable and well-developed, are biased toward large lakes, may overestimate SD, and accuracy may be unreliable without non-spectral lake predictors.
Remote measurement of pollution from aircraft
NASA Technical Reports Server (NTRS)
Reichle, H. G., Jr.
1976-01-01
This paper discusses the problem of the remote measurement of tropospheric air pollution from aircraft platforms. Following a discussion of the energy sources available for passive remote sensing and the location of the absorption bands of the gases, it describes the spectral resolution that would be required and the relative merits of the shorter and longer infrared wavelengths. It then traces the evolution of one instrument concept (the gas filter correlation radiometer) to its present state, and describes flight results that show the technique to be capable of measuring carbon monoxide over water. A new instrument is described that will allow the measurements to be extended to areas over land.
NASA Astrophysics Data System (ADS)
Herr, K.; Kirkland, L.; Keim, E.; Hackwell, J.
2002-12-01
A primary goal of the Mars exploration program is to reconnoiter the planet from orbit using infrared remote sensing. Currently the Global Surveyor Thermal Emission Spectrometer (TES) and the 2001 Mars Odyssey 9-band radiometer THEMIS provide this capability. Landing site selection and modeling of the geologic and climate history depend on accurate interpretations of these data sets. Interpretations use terrestrial analog remote sensing and laboratory studies. Until recently, there have been no airborne thermal infrared spectrometer ("hyspectral") data sets available to NASA researchers that are comparable to TES. As a result, studies relied on airborne multi-channel radiometer ("multispectral") measurements (e.g. TIMS, MASTER). A radiometer has the advantage that measurement of broad bands makes it easier to measure with higher sensitivity. However, radiometers lack the spectral resolution to investigate details of spectral signatures. This gap may be partially addressed using field samples collected and measured in the laboratory. However, that leaves questions unanswered about the field environment and potentially leaves important complicating issues undiscovered. Two questions that haunt thermal infrared remote sensing investigations of Mars are: (1) If a mineral is not detected in a given data set, how definitively should we state that it is not there? (2) When does the method provide quantitative mineral mapping? In order to address these questions, we began collaborating with Department of Defense (DoD) oriented researchers and drawing on the unique instrumentation they developed. Both Mars and DoD researchers have a common need to identify materials without benefit of ground truth. Such collaborations provide a fresh perspective as well as unique data. Our work addresses uncertainties in stand-off identification of solid phase surface materials when the identification must proceed without benefit of ground truth. We will report on the results applied to TES, with a focus on the two primary questions above. We use images recorded by a unique airborne imaging spectrometer, the Spatially Enhanced Broadband Array Spectrograph System. SEBASS uses cooled prisms to measure 2.4-5.3 and 7.6-13.5 microns. Each range is measured in 128 channels, with a spectral resolution of 7 wavenumbers at 890 wavenumbers, and a one milliradian field of view per pixel. SEBASS operates as a pushbroom instrument, using two 128 x 128 detector arrays, and the entire optical bench is cooled to 4K using liquid helium. It is operated by The Aerospace Corporation, which is a non-profit Federally Funded Research and Development Center. Images are typically 128 pixels wide and 2000 pixels long, measured with a surface spatial resolution of ~1 or 2 square meters. TES measures ~6.5-50 microns in 143 channels, with a spectral resolution of 10 or 20 wavenumbers. Issues that affect the spectral signature include surface roughness, particle size, coatings, reflected downwelling radiance, atmospheric transmission, and atmospheric reemission. A full understanding of these effects is required in order to determine the uncertainties in field interpretations, whether terrestrially or on Mars. SEBASS data fill this need by measuring with a sensitivity comparable to laboratory data, and sufficient spectral resolution to examine subtle spectral effects that are not resolvable in multi-channel radiometer data.
Commercial Applications Multispectral Sensor System
NASA Technical Reports Server (NTRS)
Birk, Ronald J.; Spiering, Bruce
1993-01-01
NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.
Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments
Lee, ZhongPing; Carder, Kendall; Arnone, Robert; He, MingXia
2007-01-01
About 30 years ago, NASA launched the first ocean-color observing satellite: the Coastal Zone Color Scanner. CZCS had 5 bands in the visible-infrared domain with an objective to detect changes of phytoplankton (measured by concentration of chlorophyll) in the oceans. Twenty years later, for the same objective but with advanced technology, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 7 bands), the Moderate-Resolution Imaging Spectrometer (MODIS, 8 bands), and the Medium Resolution Imaging Spectrometer (MERIS, 12 bands) were launched. The selection of the number of bands and their positions was based on experimental and theoretical results achieved before the design of these satellite sensors. Recently, Lee and Carder (2002) demonstrated that for adequate derivation of major properties (phytoplankton biomass, colored dissolved organic matter, suspended sediments, and bottom properties) in both oceanic and coastal environments from observation of water color, it is better for a sensor to have ∼15 bands in the 400 – 800 nm range. In that study, however, it did not provide detailed analyses regarding the spectral locations of the 15 bands. Here, from nearly 400 hyperspectral (∼ 3-nm resolution) measurements of remote-sensing reflectance (a measure of water color) taken in both coastal and oceanic waters covering both optically deep and optically shallow waters, first- and second-order derivatives were calculated after interpolating the measurements to 1-nm resolution. From these derivatives, the frequency of zero values for each wavelength was accounted for, and the distribution spectrum of such frequencies was obtained. Furthermore, the wavelengths that have the highest appearance of zeros were identified. Because these spectral locations indicate extrema (a local maximum or minimum) of the reflectance spectrum or inflections of the spectral curvature, placing the bands of a sensor at these wavelengths maximizes the potential of capturing (and then restoring) the spectral curve, and thus maximizes the potential of accurately deriving properties of the water column and/or bottom of various aquatic environments with a multi-band sensor. PMID:28903303
NASA Astrophysics Data System (ADS)
Postylyakov, Oleg V.; Borovski, Alexander N.; Makarenkov, Aleksandr A.
2017-11-01
Three satellites of the Resurs-P series (№1, №2, №3) aimed for remote sensing of the Earth began to operate in Russia in 2013-2016. Hyperspectral instruments GSA onboard Resurs-P perform routine imaging of the Earth surface in the spectral range of 400-1000 nm with the spectral resolution better than 10 nm and the spatial resolution of 30 m. In a special regime the GSA/Resurs-P may reach higher spectral resolution with the spatial resolution of 120 m and be used for retrieval of the tropospheric NO2 spatial distribution. We developed the first GSA/Resurs-P algorithm for the tropospheric NO2 retrieval and shortly analyze the first results for the most polluted Hebei province of China. The developed GSA/Resurs-P algorithm shows the spatial resolution of about 2.4 km for tropospheric NO2 pollution what significantly exceed resolution of other available now satellite instruments and considered as a target for future geostationary (GEO) missions for monitoring of tropospheric NO2 pollution. Differ to the currently operated low-Earth orbit (LEO) instruments, which may provide global distribution of NO2 every one or two days, GSA performs NO2 measurement on request. The precision of the NO2 measurements with 2.4 km resolution is about 2.5x1015 mol/cm2 (for DSCD) therefore it is recommended to use it for investigation of the tropospheric NO2 in polluted areas. Thus GSA/Resurs-P is the interesting and unique tool for NO2 pollution investigations and testing methods of interpretation of future high-resolution satellite data on pollutions and their emissions.
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
NASA Astrophysics Data System (ADS)
Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.
2011-06-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.
Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.
Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D
2011-06-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology-Extrasolar terrestrial planets-Habitability-Planetary science-Radiative transfer. Astrobiology 11, 393-408.
Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces
NASA Astrophysics Data System (ADS)
Shakun, Alexey; Korablev, Oleg; Moshkin, Boris; Grigoriev, Alexey; Ignatiev, Nikolay; Maslov, Igor; Sazonov, Oleg; Patsaev, Dmitry; Kungurov, Andrey; Santos-Skripko, Alexander; Zharkov, Alexander; Stupin, Igor; Merzlyakov, Dmitry; Makarov, Vladislav; Martinovich, Fedor; Nikolskiy, Yuri; Shashkin, Victor
2017-12-01
In planetary research, Fourier transform infrared spectrometers (FTIR) solve a number of important scientific goals related both to the atmosphere and to the surface sounding. For remote orbital measurements, these goals are the thermal sounding of the atmosphere using, in particular, the 15-µm CO2 band, sensitive detections of minor gaseous species and aerosol characterization. FTIR can address similar atmospheric science goals when observing from a planetary surface allowing for better-resolved boundary layer and achieving greater accuracy (longer integration) for minor species detection. For studies of planetary surfaces, characterization of mineralogical composition in a wide IR range including sensitive measurements of hydration of the soil on airless bodies can be done. We outline a family of FTIR instruments dedicated to studies of Mars and the Moon. TIRVIM is a channel of ACS on ExoMars TGO (in orbit around Mars since October 2016). It is a 2-inch interferometer for nadir and solar occultation measurements of Mars' atmosphere. It covers a spectral range of 1.7-17 µm with spectral resolution up to 0.13 cm-1. LUMIS is a similar instrument for Luna-Resource Orbiter (Luna-26) Roscosmos mission dedicated to the search for hydration of the lunar regolith in the 6-µm band. The spectral range of LUMIS is broad (1.7-17 µm), but its sensitivity is optimized for the 4-8 µm region. The spectral resolution is 50 cm-1. We also describe recent developments focused on technical solutions for miniaturized FTIR instruments with a very high spectral resolution (0.05 cm-1 and higher). The prototype targets measurements of minor atmospheric species from the surface of Mars using the Sun tracking. One important task is to provide a high precision of interferometer's mirror movement. Another task is the development of a precise two-coordinate mechanism to seek for and follow the Sun.
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
NASA Technical Reports Server (NTRS)
Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas;
2011-01-01
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth s time dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.brightness
Instantaneous Coastline Extraction from LIDAR Point Cloud and High Resolution Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Li, Y.; Zhoing, L.; Lai, Z.; Gan, Z.
2018-04-01
A new method was proposed for instantaneous waterline extraction in this paper, which combines point cloud geometry features and image spectral characteristics of the coastal zone. The proposed method consists of follow steps: Mean Shift algorithm is used to segment the coastal zone of high resolution remote sensing images into small regions containing semantic information;Region features are extracted by integrating LiDAR data and the surface area of the image; initial waterlines are extracted by α-shape algorithm; a region growing algorithm with is taking into coastline refinement, with a growth rule integrating the intensity and topography of LiDAR data; moothing the coastline. Experiments are conducted to demonstrate the efficiency of the proposed method.
Remote sensing of native and invasive species in Hawaiian forests
Gregory P. Asner; Matthew O. Jones; Roberta E. Martin; David E. Knapp; R. Flint Hughes
2008-01-01
Detection and mapping of invasive species is an important component of conservation and management efforts in Hawai'i, but the spectral separability of native, introduced, and invasive species has not been established. We used high spatial resolution airborne imaging spectroscopy to analyze the canopy hyperspectral reflectance properties of 37 distinct species or...
High-Resolution Spectroscopic Database for the NASA Earth Observing System Program
NASA Technical Reports Server (NTRS)
Rothman, Laurence
2003-01-01
The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.
High Resolution Spectroscopic Database for the NASA Earth Observing System Program
NASA Technical Reports Server (NTRS)
Rothman, Laurence
2004-01-01
The purpose of this project has been to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). Emphasis has been on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.
High-Resolution Spectroscopic Database for the NASA Earth Observing System Program
NASA Technical Reports Server (NTRS)
Rothman, Laurence S.
2004-01-01
The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated - software to support the observational programs of the Earth observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use HITRAN functional to the EOS program.
Imaging trace gases in volcanic plumes with Fabry Perot Interferometers
NASA Astrophysics Data System (ADS)
Kuhn, Jonas; Platt, Ulrich; Bobrowski, Nicole; Lübcke, Peter; Wagner, Thomas
2017-04-01
Within the last decades, progress in remote sensing of atmospheric trace gases revealed many important insights into physical and chemical processes in volcanic plumes. In particular, their evolution could be studied in more detail than by traditional in-situ techniques. A major limitation of standard techniques for volcanic trace gas remote sensing (e.g. Differential Optical Absorption Spectroscopy, DOAS) is the constraint of the measurement to a single viewing direction since they use dispersive spectroscopy with a high spectral resolution. Imaging DOAS-type approaches can overcome this limitation, but become very time consuming (of the order of minutes to record a single image) and often cannot match the timescales of the processes of interest for volcanic gas measurements (occurring at the order of seconds). Spatially resolved imaging observations with high time resolution for volcanic sulfur dioxide (SO2) emissions became possible with the introduction of the SO2-Camera. Reducing the spectral resolution to two spectral channels (using interference filters) that are matched to the SO2 absorption spectrum, the SO2-Camera is able to record full frame SO2 slant column density distributions at a temporal resolution on the order of < 1s. This for instance allows for studying variations in SO2 fluxes on very short time scales and applying them in magma dynamics models. However, the currently employed SO2-Camera technique is limited to SO2 detection and, due to its coarse spectral resolution, has a limited spectral selectivity. This limits its application to very specific, infrequently found measurement conditions. Here we present a new approach, based on matching the transmission profile of Fabry Perot Interferometers (FPIs) to periodic spectral absorption features of trace gases. The FPI's transmission spectrum is chosen to achieve a high correlation with the spectral absorption of the trace gas, allowing a high selectivity and sensitivity with still using only a few spectral channels. This would not only improve SO2 imaging, but also allow for the application of the technique to further gases of interest in volcanology (and other areas of atmospheric research). Imaging halogen species would be particularly interesting for volcanic trace gas studies. Bromine monoxide (BrO) and chlorine dioxide (OClO) both yield absorption features that allow their detection with the FPI correlation technique. From BrO and OClO data, ClO levels in the plume could be calculated. We present an outline of applications of the FPI technique to imaging a series of trace gases in volcanic plumes. Sample calculations on the sensitivity and selectivity of the technique, first proof of concept studies and proposals for technical implementations are presented.
NASA Astrophysics Data System (ADS)
Enterkine, J.; Spaete, L.; Glenn, N. F.; Gallagher, M.
2017-12-01
Remote sensing and mapping of dryland ecosystem vegetation is notably problematic due to the low canopy cover and fugacious growing seasons. Recent improvements in available satellite imagery and machine learning techniques have enabled enhanced approaches to mapping and monitoring vegetation across dryland ecosystems. The Sentinel-2 satellites (launched June 2015 and March 2017) of ESA's Copernicus Programme offer promising developments from existing multispectral satellite systems such as Landsat. Freely-available, Sentinel-2 imagery offers a five-day revisit frequency, thirteen spectral bands (in the visible, near infrared, and shortwave infrared), and high spatial resolution (from 10m to 60m). Three narrow spectral bands located between the visible and the near infrared are designed to observe changes in photosynthesis. The high temporal, spatial, and spectral resolution of this imagery makes it ideal for monitoring vegetation in dryland ecosystems. In this study, we calculated a large number of vegetation and spectral indices from Sentinel-2 imagery spanning a growing season. This data was leveraged with robust field data of canopy cover at precise geolocations. We then used a Random Forests ensemble learning model to identify the most predictive variables for each landcover class, which were then used to impute landcover over the study area. The resulting vegetation map product will be used by land managers, and the mapping approaches will serve as a basis for future remote sensing projects using Sentinel-2 imagery and machine learning.
NASA Astrophysics Data System (ADS)
Zhao, Bei; Zhong, Yanfei; Zhang, Liangpei
2016-06-01
Land-use classification of very high spatial resolution remote sensing (VHSR) imagery is one of the most challenging tasks in the field of remote sensing image processing. However, the land-use classification is hard to be addressed by the land-cover classification techniques, due to the complexity of the land-use scenes. Scene classification is considered to be one of the expected ways to address the land-use classification issue. The commonly used scene classification methods of VHSR imagery are all derived from the computer vision community that mainly deal with terrestrial image recognition. Differing from terrestrial images, VHSR images are taken by looking down with airborne and spaceborne sensors, which leads to the distinct light conditions and spatial configuration of land cover in VHSR imagery. Considering the distinct characteristics, two questions should be answered: (1) Which type or combination of information is suitable for the VHSR imagery scene classification? (2) Which scene classification algorithm is best for VHSR imagery? In this paper, an efficient spectral-structural bag-of-features scene classifier (SSBFC) is proposed to combine the spectral and structural information of VHSR imagery. SSBFC utilizes the first- and second-order statistics (the mean and standard deviation values, MeanStd) as the statistical spectral descriptor for the spectral information of the VHSR imagery, and uses dense scale-invariant feature transform (SIFT) as the structural feature descriptor. From the experimental results, the spectral information works better than the structural information, while the combination of the spectral and structural information is better than any single type of information. Taking the characteristic of the spatial configuration into consideration, SSBFC uses the whole image scene as the scope of the pooling operator, instead of the scope generated by a spatial pyramid (SP) commonly used in terrestrial image classification. The experimental results show that the whole image as the scope of the pooling operator performs better than the scope generated by SP. In addition, SSBFC codes and pools the spectral and structural features separately to avoid mutual interruption between the spectral and structural features. The coding vectors of spectral and structural features are then concatenated into a final coding vector. Finally, SSBFC classifies the final coding vector by support vector machine (SVM) with a histogram intersection kernel (HIK). Compared with the latest scene classification methods, the experimental results with three VHSR datasets demonstrate that the proposed SSBFC performs better than the other classification methods for VHSR image scenes.
Wang, Ran; Gamon, John A; Cavender-Bares, Jeannine; Townsend, Philip A; Zygielbaum, Arthur I
2018-03-01
Remote sensing has been used to detect plant biodiversity in a range of ecosystems based on the varying spectral properties of different species or functional groups. However, the most appropriate spatial resolution necessary to detect diversity remains unclear. At coarse resolution, differences among spectral patterns may be too weak to detect. In contrast, at fine resolution, redundant information may be introduced. To explore the effect of spatial resolution, we studied the scale dependence of spectral diversity in a prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Our study involved a scaling exercise comparing synthetic pixels resampled from high-resolution images within manipulated diversity treatments. Hyperspectral data were collected using several instruments on both ground and airborne platforms. We used the coefficient of variation (CV) of spectral reflectance in space as the indicator of spectral diversity and then compared CV at different scales ranging from 1 mm 2 to 1 m 2 to conventional biodiversity metrics, including species richness, Shannon's index, Simpson's index, phylogenetic species variation, and phylogenetic species evenness. In this study, higher species richness plots generally had higher CV. CV showed higher correlations with Shannon's index and Simpson's index than did species richness alone, indicating evenness contributed to the spectral diversity. Correlations with species richness and Simpson's index were generally higher than with phylogenetic species variation and evenness measured at comparable spatial scales, indicating weaker relationships between spectral diversity and phylogenetic diversity metrics than with species diversity metrics. High resolution imaging spectrometer data (1 mm 2 pixels) showed the highest sensitivity to diversity level. With decreasing spatial resolution, the difference in CV between diversity levels decreased and greatly reduced the optical detectability of biodiversity. The optimal pixel size for distinguishing α diversity in these prairie plots appeared to be around 1 mm to 10 cm, a spatial scale similar to the size of an individual herbaceous plant. These results indicate a strong scale-dependence of the spectral diversity-biodiversity relationships, with spectral diversity best able to detect a combination of species richness and evenness, and more weakly detecting phylogenetic diversity. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods. ©2018 The Authors Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
The Solar Spectrum: An Atmospheric Remote Sensing Perspective
NASA Technical Reports Server (NTRS)
Toon, Geoff
2013-01-01
The solar spectrum not only contains information about the composition and structure of the sun, it also provides a bright and stable continuum source for earth remote sensing (atmosphere and surface). Many types of remote sensors use solar radiation. While high-resolution spaceborne sensors (e.g. ACE) can largely remove the effects of the solar spectrum by exo-atmospheric calibration, this isn't an option for sub-orbital sensors, such as the FTIR spectrometers used in the NDACC and TCCON networks. In this case the solar contribution must be explicitly included in the spectral analysis. In this talk the methods used to derive the solar spectrum are presented, and the underlying solar physics are discussed. Implication for remote sensing are described.
Infrared spectroscopic measurements relevant to atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, Prasad; Gopalan, Arun
1993-01-01
SF6 is a synthetic chemical which is used in many industrial applications and as a meteorological tracer. This paper describes determinations of spectral absorption coefficients k-nu of SF6 measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. Spectral data were also obtained for C2H4 and NH3 fundamental bands. Measurements were made with the Doppler-limited spectral resolution of a tunable diode laser spectrometer with a cryogenically cooled absorption cell, described by Varanasi and Chudamani (1992).
Wang, Guizhou; Liu, Jianbo; He, Guojin
2013-01-01
This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808
High-Resolution THz Measurements of BrO Generated in AN Inductively Coupled Plasma
NASA Astrophysics Data System (ADS)
Nemchick, Deacon J.; Drouin, Brian
2017-06-01
Building upon the foundation provided by previous work, the X_{1}^{2}Π_{3/2} and X_{2}^{2}Π_{1/2} states of the transient radical, BrO, were interrogated in previously unprobed spectral regions (0.5 to 1.7 THz) by employing JPL developed high-resolution cascaded frequency multiplier sources. Like other members of the halogen monoxides (XO), this species has been the target of several recent atmospheric remote sensing studies and is a known participant in a catalytic ozone degradation cycle. For the current work, BrO is generated in an inductively coupled plasma under dynamic flow conditions and rotational lines are observed directly at their Doppler-limited resolution. New spectral transitions including those owing to both the ground (ν=0) and excited (ν=1 and 2) vibrational states of isotopologues composed of permutations of natural abundance ^{16}O, ^{18}O, ^{79}Br, and ^{81}Br are fit to a global Hamiltonian containing both fine and hyperfine terms. In addition to further refining existing spectroscopic parameters, new observations will be made available to remote detection communities through addition to the JPL catalog. New findings will be discussed along with future plans to extend these studies to other halogen monoxides (X=Cl and I) and the more massive halogen dioxides (OXO & XOO).
NASA Astrophysics Data System (ADS)
McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye
1997-06-01
The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.
Gyrocopter-Based Remote Sensing Platform
NASA Astrophysics Data System (ADS)
Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.
2015-04-01
In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.
Multi- and hyperspectral remote sensing of tropical marine benthic habitats
NASA Astrophysics Data System (ADS)
Mishra, Deepak R.
Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was consistently more accurate (84%) including finer definition of geomorphological features than the satellite sensors. IKONOS (81%) and QuickBird (81%) sensors showed similar accuracy to AISA, however, such similarity was only reached at the coarse classification levels of 5 and 6 habitats. These results confirm the potential of an effective combination of high spectral and spatial resolution sensor, for accurate benthic habitat mapping.
Imaging IR spectrometer, phase 2
NASA Technical Reports Server (NTRS)
Gradie, Jonathan; Lewis, Ralph; Lundeen, Thomas; Wang, Shu-I
1990-01-01
The development is examined of a prototype multi-channel infrared imaging spectrometer. The design, construction and preliminary performance is described. This instrument is intended for use with JPL Table Mountain telescope as well as the 88 inch UH telescope on Mauna Kea. The instrument is capable of sampling simultaneously the spectral region of 0.9 to 2.6 um at an average spectral resolution of 1 percent using a cooled (77 K) optical bench, a concave holographic grating and a special order sorting filter to allow the acquisition of the full spectral range on a 128 x 128 HgCdTe infrared detector array. The field of view of the spectrometer is 0.5 arcsec/pixel in mapping mode and designed to be 5 arcsec/pixel in spot mode. The innovative optical design has resulted in a small, transportable spectrometer, capable of remote operation. Commercial applications of this spectrometer design include remote sensing from both space and aircraft platforms as well as groundbased astronomical observations.
Camouflage target detection via hyperspectral imaging plus information divergence measurement
NASA Astrophysics Data System (ADS)
Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin
2016-01-01
Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.
Analysis of terrestrial conditions and dynamics
NASA Technical Reports Server (NTRS)
Goward, S. N. (Principal Investigator)
1984-01-01
Land spectral reflectance properties for selected locations, including the Goddard Space Flight Center, the Wallops Flight Facility, a MLA test site in Cambridge, Maryland, and an acid test site in Burlington, Vermont, were measured. Methods to simulate the bidirectional reflectance properties of vegetated landscapes and a data base for spatial resolution were developed. North American vegetation patterns observed with the Advanced Very High Resolution Radiometer were assessed. Data and methods needed to model large-scale vegetation activity with remotely sensed observations and climate data were compiled.
NASA Astrophysics Data System (ADS)
Davies, Gwendolyn E.
Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.
Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Opal, C. B.
1983-01-01
Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.
Methodology of remote sensing data interpretation and geological applications. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1982-01-01
Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.
Wilkes, Thomas C; McGonigle, Andrew J S; Willmott, Jon R; Pering, Tom D; Cook, Joseph M
2017-11-01
We report on the development of a low-cost spectrometer, based on off-the-shelf optical components, a 3D printed housing, and a modified Raspberry Pi camera module. With a bandwidth and spectral resolution of ≈60 nm and 1 nm, respectively, this device was designed for ultraviolet (UV) remote sensing of atmospheric sulphur dioxide (SO 2 ), ≈310 nm. To the best of our knowledge, this is the first report of both a UV spectrometer and a nanometer resolution spectrometer based on smartphone sensor technology. The device performance was assessed and validated by measuring column amounts of SO 2 within quartz cells with a differential optical absorption spectroscopy processing routine. This system could easily be reconfigured to cover other UV-visible-near-infrared spectral regions, as well as alternate spectral ranges and/or linewidths. Hence, our intention is also to highlight how this framework could be applied to build bespoke, low-cost, spectrometers for a range of scientific applications.
NASA Astrophysics Data System (ADS)
Rodríguez-Galiano, Víctor; Garcia-Soldado, Maria José; Chica-Olmo, Mario
The importance of accurate and timely information describing the nature and extent of land and natural resources is increasing especially in rapidly growing metropolitan areas. While metropolitan area decision makers are in constant need of current geospatial information on patterns and trends in land cover and land use, relatively little researchers has investigated the influence of the satellite data resolution for monitoring geo-enviromental information. In this research a suite of remote sensing and GIS techniques is applied in a land use mapping study. The main task is to asses the influence of the spatial and spectral resolution in the separability between classes and in the classificatiońs accuracy. This study has been focused in a very dynamical area with respect to land use, located in the province of Granada (SE of Spain). The classifications results of the Airborne Hyperspectral Scanner (AHS, Daedalus Enterprise Inc., WA, EEUU) at different spatial resolutions: 2, 4 and 6 m and Landsat 5 TM data have been compared.
Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu
2018-01-01
Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.
An adaptive band selection method for dimension reduction of hyper-spectral remote sensing image
NASA Astrophysics Data System (ADS)
Yu, Zhijie; Yu, Hui; Wang, Chen-sheng
2014-11-01
Hyper-spectral remote sensing data can be acquired by imaging the same area with multiple wavelengths, and it normally consists of hundreds of band-images. Hyper-spectral images can not only provide spatial information but also high resolution spectral information, and it has been widely used in environment monitoring, mineral investigation and military reconnaissance. However, because of the corresponding large data volume, it is very difficult to transmit and store Hyper-spectral images. Hyper-spectral image dimensional reduction technique is desired to resolve this problem. Because of the High relation and high redundancy of the hyper-spectral bands, it is very feasible that applying the dimensional reduction method to compress the data volume. This paper proposed a novel band selection-based dimension reduction method which can adaptively select the bands which contain more information and details. The proposed method is based on the principal component analysis (PCA), and then computes the index corresponding to every band. The indexes obtained are then ranked in order of magnitude from large to small. Based on the threshold, system can adaptively and reasonably select the bands. The proposed method can overcome the shortcomings induced by transform-based dimension reduction method and prevent the original spectral information from being lost. The performance of the proposed method has been validated by implementing several experiments. The experimental results show that the proposed algorithm can reduce the dimensions of hyper-spectral image with little information loss by adaptively selecting the band images.
Remote sensing studies of the northeastern portion of the lunar nearside
NASA Technical Reports Server (NTRS)
Hawke, B. R.; Blewett, D. T.; Lucey, P. G.; Taylor, G. J.; Peterson, C. A.; Bell, J. F.; Robinson, M. S.; Bell, J. F., III; Coombs, C. R.; Jaumann, R.
1993-01-01
During the Galileo spacecraft encounter with the Earth-Moon system in December, 1992, a variety of spectral data and imagery were obtained for the eastern limb region as well as much of the lunar nearside. In order to support this encounter, we have been collecting near-infrared spectra and other remote sensing data for that portion of the northeastern nearside (NEM region) for which the highest resolution Galileo data were obtained. Analysis of spectra obtained for highlands units in the NEN region indicates that most surface units are dominated by anorthositic norite. To date, no pure anorthosites have been identified in the region. Several dark-haloed impact craters have exposed mare material from beneath highlands-rich surface units. Hence, ancient mare volcanism occurred in at least a portion of the NEN region. Endogenic dark-haloed craters in the region are the source of localized dark mantle deposits (LDMD) of pyroclastic origin and at least two compositional groups are present. The Galileo spacecraft obtained very high-resolution remote sensing data for the northeastern part of the nearside of the Moon. In order to prepare for and support this encounter, we have collected and analyzed a variety of spectral data for the NEN region. Numerous unanswered questions exist for this region. These include: (1) the composition and stratigraphy of the local highlands crust, (2) the nature and mode of formation of regional light plains, (3) the composition of localized pyroclastic deposits, and (4) the distribution of possible cryptomare in the region. The purpose of this paper is to present the preliminary results of our analyzes of remote sensing data of remote sensing data obtained for the NEN region.
NASA Astrophysics Data System (ADS)
Shao, Yang
This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.
The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument
NASA Astrophysics Data System (ADS)
Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.
2015-12-01
Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.
Poyneer, Lisa A; Bauman, Brian J
2015-03-31
Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.
Joint spatial-spectral hyperspectral image clustering using block-diagonal amplified affinity matrix
NASA Astrophysics Data System (ADS)
Fan, Lei; Messinger, David W.
2018-03-01
The large number of spectral channels in a hyperspectral image (HSI) produces a fine spectral resolution to differentiate between materials in a scene. However, difficult classes that have similar spectral signatures are often confused while merely exploiting information in the spectral domain. Therefore, in addition to spectral characteristics, the spatial relationships inherent in HSIs should also be considered for incorporation into classifiers. The growing availability of high spectral and spatial resolution of remote sensors provides rich information for image clustering. Besides the discriminating power in the rich spectrum, contextual information can be extracted from the spatial domain, such as the size and the shape of the structure to which one pixel belongs. In recent years, spectral clustering has gained popularity compared to other clustering methods due to the difficulty of accurate statistical modeling of data in high dimensional space. The joint spatial-spectral information could be effectively incorporated into the proximity graph for spectral clustering approach, which provides a better data representation by discovering the inherent lower dimensionality from the input space. We embedded both spectral and spatial information into our proposed local density adaptive affinity matrix, which is able to handle multiscale data by automatically selecting the scale of analysis for every pixel according to its neighborhood of the correlated pixels. Furthermore, we explored the "conductivity method," which aims at amplifying the block diagonal structure of the affinity matrix to further improve the performance of spectral clustering on HSI datasets.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a Jet Propulsion Laboratory SBIR (Small Business Innovative Research), Cambridge Research and Instrumentation Inc., developed a new class of filters for the construction of small, low-cost multispectral imagers. The VariSpec liquid crystal enables users to obtain multi-spectral, ultra-high resolution images using a monochrome CCD (charge coupled device) camera. Application areas include biomedical imaging, remote sensing, and machine vision.
Long-term monitoring on environmental disasters using multi-source remote sensing technique
NASA Astrophysics Data System (ADS)
Kuo, Y. C.; Chen, C. F.
2017-12-01
Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.
Spatial Metadata for Global Change Investigations Using Remote Sensing
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Quattrochi, Dale A.; Lam, Nina Siu-Ngan; Arnold, James E. (Technical Monitor)
2002-01-01
Satellite and aircraft-borne remote sensors have gathered petabytes of data over the past 30+ years. These images are an important resource for establishing cause and effect relationships between human-induced land cover changes and alterations in climate and other biophysical patterns at local to global scales. However, the spatial, temporal, and spectral characteristics of these datasets vary, thus complicating long-term studies involving several types of imagery. As the geographical and temporal coverage, the spectral and spatial resolution, and the number of individual sensors increase, the sheer volume and complexity of available data sets will complicate management and use of the rapidly growing archive of earth imagery. Mining this vast data resource for images that provide the necessary information for climate change studies becomes more difficult as more sensors are launched and more imagery is obtained.
NASA Astrophysics Data System (ADS)
Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.
1995-06-01
The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.
Geometric registration of remotely sensed data with SAMIR
NASA Astrophysics Data System (ADS)
Gianinetto, Marco; Barazzetti, Luigi; Dini, Luigi; Fusiello, Andrea; Toldo, Roberto
2015-06-01
The commercial market offers several software packages for the registration of remotely sensed data through standard one-to-one image matching. Although very rapid and simple, this strategy does not take into consideration all the interconnections among the images of a multi-temporal data set. This paper presents a new scientific software, called Satellite Automatic Multi-Image Registration (SAMIR), able to extend the traditional registration approach towards multi-image global processing. Tests carried out with high-resolution optical (IKONOS) and high-resolution radar (COSMO-SkyMed) data showed that SAMIR can improve the registration phase with a more rigorous and robust workflow without initial approximations, user's interaction or limitation in spatial/spectral data size. The validation highlighted a sub-pixel accuracy in image co-registration for the considered imaging technologies, including optical and radar imagery.
Evaluation of Crops Moisture Provision by Space Remote Sensing Data
NASA Astrophysics Data System (ADS)
Ilienko, Tetiana
2016-08-01
The article is focused on theoretical and experimental rationale for the use of space data to determine the moisture provision of agricultural landscapes and agricultural plants. The improvement of space remote sensing methods to evaluate plant moisture availability is the aim of this research.It was proved the possibility of replacement of satellite imagery of high spatial resolution on medium spatial resolution which are freely available to determine crop moisture content at the local level. The mathematical models to determine the moisture content of winter wheat plants by spectral indices were developed based on the results of experimental field research and satellite (Landsat, MODIS/Terra, RapidEye, SICH-2) data. The maps of the moisture content in winter wheat plants in test sites by obtained models were constructed using modern GIS technology.
The scale dependence of optical diversity in a prairie ecosystem
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.
2015-12-01
Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.
Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; ...
2016-06-09
The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni
The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less
Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel
2013-01-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.
Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J.; Bongiorno, Daniel
2013-01-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales. PMID:24069206
NASA Astrophysics Data System (ADS)
Matsuoka, M.
2012-07-01
A considerable number of methods for pansharpening remote-sensing images have been developed to generate higher spatial resolution multispectral images by the fusion of lower resolution multispectral images and higher resolution panchromatic images. Because pansharpening alters the spectral properties of multispectral images, method selection is one of the key factors influencing the accuracy of subsequent analyses such as land-cover classification or change detection. In this study, seven pixel-based pansharpening methods (additive wavelet intensity, additive wavelet principal component, generalized Laplacian pyramid with spectral distortion minimization, generalized intensity-hue-saturation (GIHS) transform, GIHS adaptive, Gram-Schmidt spectral sharpening, and block-based synthetic variable ratio) were compared using AVNIR-2 and PRISM onboard ALOS from the viewpoint of the preservation of spectral properties of AVNIR-2. A visual comparison was made between pansharpened images generated from spatially degraded AVNIR-2 and original images over urban, agricultural, and forest areas. The similarity of the images was evaluated in terms of the image contrast, the color distinction, and the brightness of the ground objects. In the quantitative assessment, three kinds of statistical indices, correlation coefficient, ERGAS, and Q index, were calculated by band and land-cover type. These scores were relatively superior in bands 2 and 3 compared with the other two bands, especially over urban and agricultural areas. Band 4 showed a strong dependency on the land-cover type. This was attributable to the differences in the observing spectral wavelengths of the sensors and local scene variances.
Hyperspectral Imaging of Forest Resources: The Malaysian Experience
NASA Astrophysics Data System (ADS)
Mohd Hasmadi, I.; Kamaruzaman, J.
2008-08-01
Remote sensing using satellite and aircraft images are well established technology. Remote sensing application of hyperspectral imaging, however, is relatively new to Malaysian forestry. Through a wide range of wavelengths hyperspectral data are precisely capable to capture narrow bands of spectra. Airborne sensors typically offer greatly enhanced spatial and spectral resolution over their satellite counterparts, and able to control experimental design closely during image acquisition. The first study using hyperspectral imaging for forest inventory in Malaysia were conducted by Professor Hj. Kamaruzaman from the Faculty of Forestry, Universiti Putra Malaysia in 2002 using the AISA sensor manufactured by Specim Ltd, Finland. The main objective has been to develop methods that are directly suited for practical tropical forestry application at the high level of accuracy. Forest inventory and tree classification including development of single spectral signatures have been the most important interest at the current practices. Experiences from the studies showed that retrieval of timber volume and tree discrimination using this system is well and some or rather is better than other remote sensing methods. This article reviews the research and application of airborne hyperspectral remote sensing for forest survey and assessment in Malaysia.
Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping
NASA Astrophysics Data System (ADS)
Kruse, Fred A.; McDowell, Meryl
2015-05-01
Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.
Spectral reflectance inversion with high accuracy on green target
NASA Astrophysics Data System (ADS)
Jiang, Le; Yuan, Jinping; Li, Yong; Bai, Tingzhu; Liu, Shuoqiong; Jin, Jianzhou; Shen, Jiyun
2016-09-01
Using Landsat-7 ETM remote sensing data, the inversion of spectral reflectance of green wheat in visible and near infrared waveband in Yingke, China is studied. In order to solve the problem of lower inversion accuracy, custom atmospheric conditions method based on moderate resolution transmission model (MODTRAN) is put forward. Real atmospheric parameters are considered when adopting this method. The atmospheric radiative transfer theory to calculate atmospheric parameters is introduced first and then the inversion process of spectral reflectance is illustrated in detail. At last the inversion result is compared with simulated atmospheric conditions method which was a widely used method by previous researchers. The comparison shows that the inversion accuracy of this paper's method is higher in all inversion bands; the inversed spectral reflectance curve by this paper's method is more similar to the measured reflectance curve of wheat and better reflects the spectral reflectance characteristics of green plant which is very different from green artificial target. Thus, whether a green target is a plant or artificial target can be judged by reflectance inversion based on remote sensing image. This paper's research is helpful for the judgment of green artificial target hidden in the greenery, which has a great significance on the precise strike of green camouflaged weapons in military field.
NASA Astrophysics Data System (ADS)
Ramsey, M.
2009-12-01
Thermal infrared (TIR) remote sensing has been used for decades to detect changes in the heat output of active and reawakening volcanoes. The data from these thermally anomalous pixels are commonly used either as a monitoring tool or to calculate parameters such as effusion rate and eruptive style. First and second generation TIR data have been limited in the number of spectral channels and/or the spatial resolution. Two spectral channels with only one km spatial resolution has been the norm and therefore the number of science applications is limited to very large or very hot events. The one TIR channel of the Landsat ETM+ instrument improved the spatial resolution to 60 m, but it was not until the launch of ASTER in late 1999 that orbital TIR spectral resolution increased to five channels at 90 m per pixel. For the first time, the ability existed to capture multispectral emitted radiance from volcanic surfaces, which has allowed the extraction of emissivity as well as temperature. Over the past decade ASTER TIR emissivity data have been examined for a variety of volcanic processes including lava flow emplacement at Kilauea and Kluichevskoi, silicic lava dome composition at Sheveluch, Bezymianny and Mt. St. Helens, low temperature fumaroles emissions at Cerro Negro, and textural changes on the pyroclastic flow deposits at Merapi, Sheveluch and Bezymianny. Thermal-temporal changes at the 90 m scale are still an important monitoring tool for active volcanoes using ASTER TIR data. However, the ability to extract physical parameters such as micron-scale roughness and bulk mineralogy has added tremendously to the science derived from the TIR region. This new information has also presented complications such as the effects of sub-pixel thermal heterogeneities and amorphous glass on the emissivity spectra. If better understood, these complications can provide new insights into the physical state of the volcanic surfaces. Therefore, new data processing algorithms, laboratory, and field-based TIR instrumentation have been developed to more accurately model and correct these data. This presentation will summarize the results from nearly a decade of ASTER TIR remote sensing of active volcanoes around the globe. It will also document the first results of a micro furnace designed to capture emission of molten surfaces in real time as well as a field TIR camera modified to extract emissivity of surfaces at the cm pixel scale. The integration of laboratory, field, and orbital TIR remote sensing of active volcanoes provide a more complete picture of processes operating a variety of spatial, temporal and physical scales.
High resolution spectroscopy in the microwave and far infrared
NASA Technical Reports Server (NTRS)
Pickett, Herbert M.
1990-01-01
High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.
NASA Astrophysics Data System (ADS)
Pan, Yifan; Zhang, Xianfeng; Tian, Jie; Jin, Xu; Luo, Lun; Yang, Ke
2017-01-01
Asphalt road reflectance spectra change as pavement ages. This provides the possibility for remote sensing to be used to monitor a change in asphalt pavement conditions. However, the relatively narrow geometry of roads and the relatively coarse spatial resolution of remotely sensed imagery result in mixtures between pavement and adjacent landcovers (e.g., vegetation, buildings, and soil), increasing uncertainties in spectral analysis. To overcome this problem, multiple endmember spectral mixture analysis (MESMA) was used to map the asphalt pavement condition using Worldview-2 satellite imagery in this study. Based on extensive field investigation and in situ measurements, aged asphalt pavements were categorized into four stages-preliminarily aged, moderately aged, heavily aged, and distressed. The spectral characteristics in the first three stages were further analyzed, and a MESMA unmixing analysis was conducted to map these three kinds of pavement conditions from the Worldview-2 image. The results showed that the road pavement conditions could be detected well and mapped with an overall accuracy of 81.71% and Kappa coefficient of 0.77. Finally, a quantitative assessment of the pavement conditions for each road segment in this study area was conducted to inform road maintenance management.
NASA Astrophysics Data System (ADS)
Ghrefat, Habes A.; Goodell, Philip C.
2011-08-01
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.
2012-01-01
Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming. PMID:22443452
Dambach, Peter; Machault, Vanessa; Lacaux, Jean-Pierre; Vignolles, Cécile; Sié, Ali; Sauerborn, Rainer
2012-03-23
The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming. © 2012 Dambach et al; licensee BioMed Central Ltd.
Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T
2000-06-20
A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).
[Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].
Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing
2015-10-01
Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.
NASA Astrophysics Data System (ADS)
Burakowski, E. A.; Ollinger, S. V.; Martin, M.; Lepine, L. C.; Hollinger, D. Y.; Dibb, J. E.
2013-12-01
This study evaluates the accuracy of hyperspectral imagery (HSI) and MODIS daily 500-m snow albedo over forested, deforested, and mixed land use types under snow-covered conditions in New Hampshire, USA. HSI spectral reflectance generally agrees well with tower-based measurements above a mixed forest canopy. Over cleared pasture, HSI spectral reflectance is lower than ground-based measurements collected using a spectrometer, and greatly underestimates reflectance at wavelengths less than 430 nm. Based on tower-based albedo measurements, HSI shortwave broadband albedo meets the absolute accuracy requirement of ×0.05 recommended for climate modeling. When HSI 5-m fine-resolution imagery is aggregated to MODIS 500-m resolution and integrated to shortwave broadband albedo, MOD10A1 daily snow-covered surface albedo exhibits a negative bias of -0.0033 and root mean square error (RMSE) of 0.067 compared to HSI shortwave broadband albedo, just outside the range of the absolute accuracy requirement of ×0.05 recommended for climate modeling. Spectral albedo collected over a deciduous broadleaf canopy under snow-covered and snow-free conditions will expand the existing spectral library and contribute to future validation efforts of multi-spectral remote sensing products (e.g., HyspIRI).
NASA Astrophysics Data System (ADS)
Liu, Q.; Nalli, N. R.; Tan, C.; Zhang, K.; Iturbide, F.; Wilson, M.; Zhou, L.
2015-12-01
The Community Radiative Transfer Model (CRTM) [3] operationally supports satellite radiance assimilation for weather forecasting, sensor data verification, and the retrievals of satellite products. The CRTM has been applied to UV and visible sensors, infrared and microwave sensors. The paper will demonstrate the applications of the CRTM, in particular radiative transfer in the retrieva algorithm. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP) and moisture (AVMP) from Suomi NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) measurements. Current operational CrIS data have reduced spectral resolution: 1.25 cm-1 for a middle wave band and 2.5 cm-1 for a short-wave wave band [1]. The reduced spectral data largely degraded the retrieval accuracy of trace gases. CrIS full spectral data are also available now which have single spectral resolution of 0.625 cm-1 for all of the three bands: long-wave band, middle wave band, and short-wave band. The CrIS full-spectral resolution data is critical to the retrieval of trace gases such as O3, CO [2], CO2, and CH4. In this paper, we use the Community Radiative Transfer Model (CRTM) to study the impact of the CrIS spectral resolution on the retrieval accuracy of trace gases. The newly released CRTM version 2.2.1 can simulates Hamming-apodized CrIS radiance of a full-spectral resolution. We developed a small utility that can convert the CRTM simulated radiance to un-apodized radiance. The latter has better spectral information which can be helpful to the retrievals of the trace gases. The retrievals will be validated using both NWP model data as well as the data collected during AEROSE expeditions [4]. We will also discuss the sensitivity on trace gases between apodized and un-apodized radiances. References[1] Gambacorta, A., et al.(2013), IEEE Lett., 11(9), doi:10.1109/LGRS.2014.230364, 1639-1643. [2] Han, Y., et al. (2013), JGR.,118, 12,734-12,748, doi:10.1002/2013JD020344. [3] Liu, Q., and S. Boukabara (2013), Remote Sen. Environ., 140 (2014) 744-754. [4] Nalli, N. R. et al(2011) . Bulletin of the American Meteorological Society, (92), 765-789.
A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
NASA Astrophysics Data System (ADS)
Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.
2018-06-01
The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.
Research on imaging spectrometer using LC-based tunable filter
NASA Astrophysics Data System (ADS)
Shen, Zhixue; Li, Jianfeng; Huang, Lixian; Luo, Fei; Luo, Yongquan; Zhang, Dayong; Long, Yan
2012-09-01
A liquid crystal tunable filter (LCTF) with large aperture is developed using PDLC liquid crystal. A small scale imaging spectrometer is established based on this tunable filter. This spectrometer can continuously tuning, or random-access selection of any wavelength in the visible and near infrared (VNIR) band synchronized with the imaging processes. Notable characteristics of this spectrometer include the high flexibility control of its operating channels, the image cubes with high spatial resolution and spectral resolution and the strong ability of acclimation to environmental temperature. The image spatial resolution of each tuning channel is almost near the one of the same camera without the LCTF. The spectral resolution is about 20 nm at 550 nm. This spectrometer works normally under 0-50°C with a maximum power consumption of 10 Watts (with exclusion of the storage module). Due to the optimization of the electrode structure and the driving mode of the Liquid Crystal cell, the switch time between adjacent selected channels can be reduced to 20 ms or even shorter. Spectral imaging experiments in laboratory are accomplished to verify the performance of this spectrometer, which indicate that this compact imaging spectrometer works reliably, and functionally. Possible applications of this imaging spectrometer include medical science, protection of historical relics, criminal investigation, disaster monitoring and mineral detection by remote sensing.
CMOS-TDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten
2014-10-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.
NASA Astrophysics Data System (ADS)
Kendrick, Stephen E.; Harwit, Alex; Kaplan, Michael; Smythe, William D.
2007-09-01
An MWIR TDI (Time Delay and Integration) Imager and Spectrometer (MTIS) instrument for characterizing from orbit the moons of Jupiter and Saturn is proposed. Novel to this instrument is the planned implementation of a digital TDI detector array and an innovative imaging/spectroscopic architecture. Digital TDI enables a higher SNR for high spatial resolution surface mapping of Titan and Enceladus and for improved spectral discrimination and resolution at Europa. The MTIS imaging/spectroscopic architecture combines a high spatial resolution coarse wavelength resolution imaging spectrometer with a hyperspectral sensor to spectrally decompose a portion of the data adjacent to the data sampled in the imaging spectrometer. The MTIS instrument thus maps with high spatial resolution a planetary object while spectrally decomposing enough of the data that identification of the constituent materials is highly likely. Additionally, digital TDI systems have the ability to enable the rejection of radiation induced spikes in high radiation environments (Europa) and the ability to image in low light levels (Titan and Enceladus). The ability to image moving objects that might be missed utilizing a conventional TDI system is an added advantage and is particularly important for characterizing atmospheric effects and separating atmospheric and surface components. This can be accomplished with on-orbit processing or collecting and returning individual non co-added frames.
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong
2015-03-01
A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
NASA Astrophysics Data System (ADS)
Dandois, J. P.; Ellis, E. C.
2013-12-01
High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (< 130 m) aerial photographs acquired using off-the-shelf digital cameras mounted on an inexpensive (< USD$4000), lightweight (< 2 kg), hobbyist-grade unmanned aerial system (UAS). Ecosynth 3D point clouds with densities of 30 - 67 points m-2 were produced using commercial computer vision software from digital photographs acquired repeatedly by UAS over three 6.25 ha (250 m x 250 m) Temperate Deciduous forest sites in Maryland USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for multispectral 3D scanning of vegetation at landscape scales (< 1 km2) heralds a new era of participatory remote sensing by field ecologists, community foresters and the interested public.
The red edge in arid region vegetation: 340-1060 nm spectra
NASA Technical Reports Server (NTRS)
Ray, Terrill W.; Murray, Bruce C.; Chehbouni, A.; Njoku, Eni
1993-01-01
The remote sensing study of vegetated regions of the world has typically been focused on the use of broad-band vegetation indices such as NDVI. Various modifications of these indices have been developed in attempts to minimize the effect of soil background, e.g., SAVI, or to reduce the effect of the atmosphere, e.g., ARVI. Most of these indices depend on the so-called 'red edge,' the sharp transition between the strong absorption of chlorophyll pigment in visible wavelengths and the strong scattering in the near-infrared from the cellular structure of leaves. These broadband indices tend to become highly inaccurate as the green canopy cover becomes sparse. The advent of high spectral resolution remote sensing instrument such as the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) has allowed the detection of narrow spectral features in vegetation and there are reports of detection of the red edge even for pixels with very low levels of green vegetation cover by Vane et al. and Elvidge et al., and to characterize algal biomass in coastal areas. Spectral mixing approaches similar to those of Smith et al. can be extended into the high spectral resolution domain allowing for the analysis of more endmembers, and potentially, discrimination between material with narrow spectral differences. Vegetation in arid regions tends to be sparse, often with small leaves such as the creosote bush. Many types of arid region vegetation spend much of the year with their leaves in a senescent state, i.e., yellow, with lowered chlorophyll pigmentation. The sparseness of the leaves of many arid region plants has the dual effect of lowering the green leaf area which can be observed and of allowing more of the sub-shrub soil to be visible which further complicates the spectrum of a region covered with arid region vegetation. Elvidge examined the spectral characteristics of dry plant materials showing significant differences in the region of the red edge and the diagnostic ligno-cellulose absorptions at 2090 nm and 2300 nm. Ray et al. detected absorption at 2100 nm in AVIRIS spectra of an abandoned field known to be covered by a great deal of dead plant litter. In order to better study arid region vegetation remote sensing data, it is necessary to better characterize the reflectance spectra of in situ, living, arid region plants.
NASA Technical Reports Server (NTRS)
Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.
2017-01-01
Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.
Concept and integration of an on-line quasi-operational airborne hyperspectral remote sensing system
NASA Astrophysics Data System (ADS)
Schilling, Hendrik; Lenz, Andreas; Gross, Wolfgang; Perpeet, Dominik; Wuttke, Sebastian; Middelmann, Wolfgang
2013-10-01
Modern mission characteristics require the use of advanced imaging sensors in reconnaissance. In particular, high spatial and high spectral resolution imaging provides promising data for many tasks such as classification and detecting objects of military relevance, such as camouflaged units or improvised explosive devices (IEDs). Especially in asymmetric warfare with highly mobile forces, intelligence, surveillance and reconnaissance (ISR) needs to be available close to real-time. This demands the use of unmanned aerial vehicles (UAVs) in combination with downlink capability. The system described in this contribution is integrated in a wing pod for ease of installation and calibration. It is designed for the real-time acquisition and analysis of hyperspectral data. The main component is a Specim AISA Eagle II hyperspectral sensor, covering the visible and near-infrared (VNIR) spectral range with a spectral resolution up to 1.2 nm and 1024 pixel across track, leading to a ground sampling distance below 1 m at typical altitudes. The push broom characteristic of the hyperspectral sensor demands an inertial navigation system (INS) for rectification and georeferencing of the image data. Additional sensors are a high resolution RGB (HR-RGB) frame camera and a thermal imaging camera. For on-line application, the data is preselected, compressed and transmitted to the ground control station (GCS) by an existing system in a second wing pod. The final result after data processing in the GCS is a hyperspectral orthorectified GeoTIFF, which is filed in the ERDAS APOLLO geographical information system. APOLLO allows remote access to the data and offers web-based analysis tools. The system is quasi-operational and was successfully tested in May 2013 in Bremerhaven, Germany.
High Spectral Resolution Lidar: System Calibration
NASA Astrophysics Data System (ADS)
Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin
2015-04-01
One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical Sciences, Springer-Verlag, New York, 2005. Hair, JW; Caldwell, LM; Krueger, D. A.Krueger, and C.Y. She 2001: High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. Appl. Optics, 40, 5280-5294.
Development, implementation and evaluation of satellite-aided agricultural monitoring systems
NASA Technical Reports Server (NTRS)
Cicone, R. (Principal Investigator); Crist, E.; Metzler, M.; Parris, T.
1982-01-01
Research supporting the use of remote sensing for inventory and assessment of agricultural commodities is summarized. Three task areas are described: (1) corn and soybean crop spectral/temporal signature characterization; (2) efficient area estimation technology development; and (3) advanced satellite and sensor system definition. Studies include an assessment of alternative green measures from MSS variables; the evaluation of alternative methods for identifying, labeling or classification targets in an automobile procedural context; a comparison of MSS, the advanced very high resolution radiometer and the coastal zone color scanner, as well as a critical assessment of thematic mapper dimensionally and spectral structure.
NASA Astrophysics Data System (ADS)
Bruce, L. M.; Ball, J. E.; Evangilista, P.; Stohlgren, T. J.
2006-12-01
Nonnative invasive species adversely impact ecosystems, causing loss of native plant diversity, species extinction, and impairment of wildlife habitats. As a result, over the past decade federal and state agencies and nongovernmental organizations have begun to work more closely together to address the management of invasive species. In 2005, approximately 500M dollars was budgeted by U.S. Federal Agencies for the management of invasive species. Despite extensive expenditures, most of the methods used to detect and quantify the distribution of these invaders are ad hoc, at best. Likewise, decisions on the type of management techniques to be used or evaluation of the success of these methods are typically non-systematic. More efficient methods to detect or predict the occurrence of these species, as well as the incorporation of this knowledge into decision support systems, are greatly needed. In this project, rapid prototyping capabilities (RPC) are utilized for an invasive species application. More precisely, our recently developed analysis techniques for hyperspectral imagery are being prototyped for inclusion in the national Invasive Species Forecasting System (ISFS). The current ecological forecasting tools in ISFS will be compared to our hyperspectral-based invasives prediction algorithms to determine if/how the newer algorithms enhance the performance of ISFS. The PIs have researched the use of remotely sensed multispectral and hyperspectral reflectance data for the detection of invasive vegetative species. As a result, the PI has designed, implemented, and benchmarked various target detection systems that utilize remotely sensed data. These systems have been designed to make decisions based on a variety of remotely sensed data, including high spectral/spatial resolution hyperspectral signatures (1000's of spectral bands, such as those measured using ASD handheld devices), moderate spectral/spatial resolution hyperspectral images (100's of spectral bands, such as Hyperion imagery), and low spectral/spatial resolution images (such as MODIS imagery). These algorithms include hyperspectral exploitation methods such as stepwise-LDA band selection, optimized spectral band grouping, and stepwise PCA component selection. The PIs have extensive experience with combining these recently- developed methods with conventional classifiers to form an end-to-end automated target recognition (ATR) system for detecting invasive species. The outputs of these systems can be invasive prediction maps, as well as quantitative accuracy assessments like confusion matrices, user accuracies, and producer accuracies. For all of these research endeavors, the PIs have developed numerous advanced signal and image processing methodologies, as well a suite of associated software modules. However, the use of the prototype software modules has been primarily contained to Mississippi State University. The project described in this presentation and paper will enable future systematic inclusion of these software modules into a DSS with national scope.
Scaling dimensions in spectroscopy of soil and vegetation
NASA Astrophysics Data System (ADS)
Malenovský, Zbyněk; Bartholomeus, Harm M.; Acerbi-Junior, Fausto W.; Schopfer, Jürg T.; Painter, Thomas H.; Epema, Gerrit F.; Bregt, Arnold K.
2007-05-01
The paper revises and clarifies definitions of the term scale and scaling conversions for imaging spectroscopy of soil and vegetation. We demonstrate a new four-dimensional scale concept that includes not only spatial but also the spectral, directional and temporal components. Three scaling remote sensing techniques are reviewed: (1) radiative transfer, (2) spectral (un)mixing, and (3) data fusion. Relevant case studies are given in the context of their up- and/or down-scaling abilities over the soil/vegetation surfaces and a multi-source approach is proposed for their integration. Radiative transfer (RT) models are described to show their capacity for spatial, spectral up-scaling, and directional down-scaling within a heterogeneous environment. Spectral information and spectral derivatives, like vegetation indices (e.g. TCARI/OSAVI), can be scaled and even tested by their means. Radiative transfer of an experimental Norway spruce ( Picea abies (L.) Karst.) research plot in the Czech Republic was simulated by the Discrete Anisotropic Radiative Transfer (DART) model to prove relevance of the correct object optical properties scaled up to image data at two different spatial resolutions. Interconnection of the successive modelling levels in vegetation is shown. A future development in measurement and simulation of the leaf directional spectral properties is discussed. We describe linear and/or non-linear spectral mixing techniques and unmixing methods that demonstrate spatial down-scaling. Relevance of proper selection or acquisition of the spectral endmembers using spectral libraries, field measurements, and pure pixels of the hyperspectral image is highlighted. An extensive list of advanced unmixing techniques, a particular example of unmixing a reflective optics system imaging spectrometer (ROSIS) image from Spain, and examples of other mixture applications give insight into the present status of scaling capabilities. Simultaneous spatial and temporal down-scaling by means of a data fusion technique is described. A demonstrative example is given for the moderate resolution imaging spectroradiometer (MODIS) and LANDSAT Thematic Mapper (TM) data from Brazil. Corresponding spectral bands of both sensors were fused via a pyramidal wavelet transform in Fourier space. New spectral and temporal information of the resultant image can be used for thematic classification or qualitative mapping. All three described scaling techniques can be integrated as the relevant methodological steps within a complex multi-source approach. We present this concept of combining numerous optical remote sensing data and methods to generate inputs for ecosystem process models.
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.
NASA Astrophysics Data System (ADS)
Alonso, C.; Benito, R. M.; Tarquis, A. M.
2012-04-01
Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI. The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Scaling analysis and modeling techniques are increasingly understood to be the result of nonlinear dynamic mechanisms repeating scale after scale from large to small scales leading to non-classical resolution dependencies. In the remote sensing framework the main characteristic of sensors images is the high local variability in their values. This variability is a consequence of the increase in spatial and radiometric resolution that implies an increase in complexity that it is necessary to characterize. Fractal and multifractal techniques has been proven to be useful to extract such complexities from remote sensing images and will applied in this study to see the scaling behavior for each sensor in generalized fractal dimensions. The studied area is located in the provinces of Caceres and Salamanca (east of Iberia Peninsula) with an extension of 32 x 32 km2. The altitude in the area varies from 1,560 to 320 m, comprising natural vegetation in the mountain area (forest and bushes) and agricultural crops in the valleys. Scaling analysis were applied to Landsat-5 and MODIS TERRA to the normalized derived vegetation index (NDVI) on the same region with one day of difference, 13 and 12 of July 2003 respectively. From these images the area of interest was selected obtaining 1024 x 1024 pixels for Landsat image and 128 x 128 pixels for MODIS image. This implies that the resolution for MODIS is 250x250 m. and for Landsat is 30x30 m. From the reflectance data obtained from NIR and RED bands, NDVI was calculated for each image focusing this study on 0.2 to 0.5 ranges of values. Once that both NDVI fields were obtained several fractal dimensions were estimated in each one segmenting the values in 0.20-0.25, 0.25-0.30 and so on to rich 0.45-0.50. In all the scaling analysis the scale size length was expressed in meters, and not in pixels, to make the comparison between both sensors possible. Results are discussed. Acknowledgements This work has been supported by the Spanish MEC under Projects No. AGL2010-21501/AGR, MTM2009-14621 and i-MATH No. CSD2006-00032
[Changes of Forest Canopy Spectral Reflectance with Seasons in Lang Ya Mountains].
Li, Wei-tao; Peng, Dao-li; Zhang, Yan; Wu, Jian; Chen, Tai-sheng
2015-08-01
The physiological mechanism and ecological structure of forest trees can change with the changes of years. In a certain extent, the changes were expressed through the canopy spectral features. The mastery of changing rules about spectral characteristics of trees over the years is benefit to remote sensing interpretation and provide scientific basis for the classification of different trees. The study adopted high-resolution spectrometer to measure the canopy spectral characteristics for seven major deciduous trees and seven evergreen trees to gain the spectrum curve of four different ages and calculate the first derivative curve. The analysis of changing rules about spectral characteristics of different deciduous trees and evergreen trees and the comparison of changes about spectrum of various trees in the visible and infrared band could find the best year and best band for identification of trees. The results showed that the canopy spectral reflectance of deciduous and evergreen trees increases with the increase of age. And the spectral changes of two species were most obvious in the near infrared band.
Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations
Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.
2011-01-01
Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology—Extrasolar terrestrial planets—Habitability—Planetary science—Radiative transfer. Astrobiology 11, 393–408. PMID:21631250
Modelling soil salinity in Oued El Abid watershed, Morocco
NASA Astrophysics Data System (ADS)
Mouatassime Sabri, El; Boukdir, Ahmed; Karaoui, Ismail; Arioua, Abdelkrim; Messlouhi, Rachid; El Amrani Idrissi, Abdelkhalek
2018-05-01
Soil salinisation is a phenomenon considered to be a real threat to natural resources in semi-arid climates. The phenomenon is controlled by soil (texture, depth, slope etc.), anthropogenic factors (drainage system, irrigation, crops types, etc.), and climate factors. This study was conducted in the watershed of Oued El Abid in the region of Beni Mellal-Khenifra, aimed at localising saline soil using remote sensing and a regression model. The spectral indices were extracted from Landsat imagery (30 m resolution). A linear correlation of electrical conductivity, which was calculated based on soil samples (ECs), and the values extracted based on spectral bands showed a high accuracy with an R2 (Root square) of 0.80. This study proposes a new spectral salinity index using Landsat bands B1 and B4. This hydro-chemical and statistical study, based on a yearlong survey, showed a moderate amount of salinity, which threatens dam water quality. The results present an improved ability to use remote sensing and regression model integration to detect soil salinity with high accuracy and low cost, and permit intervention at an early stage of salinisation.
Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy
NASA Astrophysics Data System (ADS)
Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony
2013-04-01
The most abundant photosynthetically active plants growing along the rocky Antarctic shore are mosses of three species: Schistidium antarctici, Ceratodon purpureus, and Bryum pseudotriquetrum. Even though mosses are well adapted to the extreme climate conditions, their existence in Antarctica depends strongly on availability of liquid water from snowmelt during the short summer season. Recent changes in temperature, wind speed and stratospheric ozone are stimulating faster evaporation, which in turn influences moss growing rate, health state and abundance. This makes them an ideal bio-indicator of the Antarctic climate change. Very short growing season, lasting only about three months, requires a time efficient, easily deployable and spatially resolved method for monitoring the Antarctic moss beds. Ground and/or low-altitude airborne imaging spectroscopy (called also hyperspectral remote sensing) offers a fast and spatially explicit approach to investigate an actual spatial extent and physiological state of moss turfs. A dataset of ground-based spectral images was acquired with a mini-Hyperspec imaging spectrometer (Headwall Inc., the USA) during the Antarctic summer 2012 in the surroundings of the Australian Antarctic station Casey (Windmill Islands). The collection of high spatial resolution spectral images, with pixels about 2 cm in size containing from 162 up to 324 narrow spectral bands of wavelengths between 399 and 998 nm, was accompanied with point moss reflectance measurements recorded with the ASD HandHeld-2 spectroradiometer (Analytical Spectral Devices Inc., the USA). The first spectral analysis indicates significant differences in red-edge and near-infrared reflectance of differently watered moss patches. Contrary to high plants, where the Normalized Difference Vegetation Index (NDVI) represents an estimate of green biomass, NDVI of mosses indicates mainly the actual water content. Similarly to high plants, reflectance of visible wavelengths is controlled by the composition and content of various foliar pigments (chlorophylls, xanthophylls, etc.). Additionally, the high spectral resolution reflectance together with the narrow bandwidth allows retrieving the steady state chlorophyll fluorescence, which indicates the actual moss photosynthetic activity. A first airborne imaging spectroscopy acquisition with the mini-Hyperspec sensor on-board a low-flying remote-controlled multi-rotor helicopter (known as micro Unmanned Aerial Systems - UAS) will be performed during the summer 2013. The aim of the UAS observations is to generate high spatial resolution maps of actual physiological state of several moss beds located within the Australian Antarctic Territory. The regular airborne monitoring is expected to reveal spatio-temporal changes in the Antarctic moss ecosystems, indicating the impact of the global climate change in Antarctica.
Application of Remote Sensing in Building Damages Assessment after Moderate and Strong Earthquake
NASA Astrophysics Data System (ADS)
Tian, Y.; Zhang, J.; Dou, A.
2003-04-01
- Earthquake is a main natural disaster in modern society. However, we still cannot predict the time and place of its occurrence accurately. Then it is of much importance to survey the damages information when an earthquake occurs, which can help us to mitigate losses and implement fast damage evaluation. In this paper, we use remote sensing techniques for our purposes. Remotely sensed satellite images often view a large scale of land at a time. There are several kinds of satellite images, which of different spatial and spectral resolutions. Landsat-4/5 TM sensor can view ground at 30m resolution, while Landsat-7 ETM Plus has a resolution of 15m in panchromatic waveband. SPOT satellite can provide images with higher resolutions. Those images obtained pre- and post-earthquake can help us greatly in identifying damages of moderate and large-size buildings. In this paper, we bring forward a method to implement quick damages assessment by analyzing both pre- and post-earthquake satellite images. First, those images are geographically registered together with low RMS (Root Mean Square) error. Then, we clip out residential areas by overlaying images with existing vector layers through Geographic Information System (GIS) software. We present a new change detection algorithm to quantitatively identify damages degree. An empirical or semi-empirical model is then established by analyzing the real damage degree and changes of pixel values of the same ground objects. Experimental result shows that there is a good linear relationship between changes of pixel values and ground damages, which proves the potentials of remote sensing in post-quake fast damage assessment. Keywords: Damages Assessment, Earthquake Hazard, Remote Sensing
High-frequency remote monitoring of large lakes with MODIS 500 m imagery
McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.
2012-01-01
Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.
Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring
NASA Astrophysics Data System (ADS)
Brodsky, Lukas; Kodesova, Radka; Kodes, Vit
2010-05-01
The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be classified: winter crops, spring crops, oilseed rape, legumes, summer and other crops. This study highlights operational potentials of high temporal full resolution MERIS images in agricultural land use monitoring. Practical application of this methodology is foreseen, among others, in the water quality monitoring. Effective pesticide monitoring relies also on spatial distribution of applied pesticides, which can be derived from crop - plant protection product relationship. Knowledge of areas with predominant occurrence of specific crop based on remote sensing data described above can be used for a forecast of probable plant protection product application, thus cost-effective pesticide monitoring. The remote sensing data used on a continuous basis can be used in other long-term water management issues and provide valuable data for decision makers. Acknowledgement: Authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (grants No. 2B06095 and No. MSM 6046070901). The study was also supported by ESA CAT-1 (ref. 4358) and SOSI projects (Spatial Observation Services and Infrastructure; ref. GSTP-RTDA-EOPG-SW-08-0004).
NASA Astrophysics Data System (ADS)
Archer, Reginald S.
This research focuses on measuring and monitoring long term recovery progress from the impacts of Hurricane Katrina on New Orleans, LA. Remote sensing has frequently been used for emergency response and damage assessment after natural disasters. However, techniques for analysis of long term disaster recovery using remote sensing have not been widely explored. With increased availability and lower costs, remote sensing offers an objective perspective, systematic and repeatable analysis, and provides a substitute to multiple site visits. In addition, remote sensing allows access to large geographical areas and areas where ground access may be disrupted, restricted or denied. This dissertation addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators. Maximum likelihood classification and post-classification change detection were applied to multi-temporal high resolution aerial images to quantitatively measure the progress of recovery. Images were classified to automatically identify disaster recovery indicators and exploit the indicators that are visible within each image. The spectral analysis demonstrated that employing maximum likelihood classification to high resolution true color aerial images performed adequately and provided a good indication of spectral pattern recognition, despite the limited spectral information. Applying the change detection to the classified images was effective for determining the temporal trajectory of indicators categorized as blue tarps, FEMA trailers, houses, vegetation, bare earth and pavement. The results of the post classification change detection revealed a dominant change trajectory from bluetarp to house, as damaged houses became permanently repaired. Specifically, the level of activity of blue tarps, housing, vegetation, FEMA trailers (temporary housing) pavement and bare earth were derived from aerial image processing to measure and monitor the progress of recovery. Trajectories of recovery for each individual indicator were examined to provide a better understanding of activity during reconstruction. A collection of spatial metrics was explored in order to identify spatial patterns and characterize classes in terms of patches of pixels. One of the key findings of the spatial analysis is that patch shapes were more complex in the presence of debris and damaged or destroyed buildings. The combination of spectral, temporal, and spatial analysis provided a satisfactory, though limited, solution to the question of whether remote sensing alone, can be used to quantitatively assess and monitor the progress of long term recovery following a major disaster. The research described in this dissertation provided a detailed illustration of the level of activity experienced by different recovery indicators during the long term recovery process. It also addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators identified from classified high resolution true color aerial imagery. The results produced in this research demonstrate that the observed trajectories for actual indicators of recovery indicate different levels of recovery activity even within the same community. The level of activity of the long term reconstruction phase observed in the Kates model is not consistent with the level of activity of key recovery indicators in the Lower 9th Ward during the same period. Used in the proper context, these methods and results provide decision making information for determining resources. KEYWORDS: Change detection, classification, Katrina, New Orleans, remote sensing, disaster recovery, spatial metrics
Precipitation response by Qom Playa, Iran
NASA Astrophysics Data System (ADS)
Gillespie, A. R.; Enzel, Y.; Mushkin, A.; Abbott, E.; Amit, R.; Crouvi, O.
2006-12-01
Playas, or dry lakes, are common landforms in the arid and semi-arid parts of the world. They integrate hydrologic and sedimentologic responses to climate at all temporal scales (individual storm to millennial) and, equally important, at regional to basin scales. Playas are also a source or sink for dust, depending on the water-sediment interaction. Therefore, playas are potentially useful in mapping and understanding global and regional climate changes, and geologic studies on individual playas have been useful in paleoclimate studies. The main difficulties in constructing and/or using such records lie in the lack of measured hydrological data, simply because most are located in remote areas such as the Sahara, and central and west Asia. High- resolution multispectral satellite remote sensing has been conducted for most of the Earth since 1973 and the archives are publicly available. These images offer a means of examining current and historical regional variations in precipitation, independent of point measurements, and thus may be especially valuable where there are few weather-monitoring programs. However, spectral images are not simple to use and may be impractical because of cost and availability of expertise. We provide here an example how the immense remote-sensing database provides a >40-yr history of surface-wetting events in playas that complements NCEP reanalysis weather data and recent TRMM rainfall data, which are modeled from cloud-top temperatures. Our analysis takes advantage of the temporal length of the archive to detect changes in hydrological conditions in Qom playa, south of Tehran (Iran), based on the spectral changes that attend wetting and drying of salts and clay and changes in the depth of standing water. High-resolution Landsat and Terra images with ~16-day repeats show variations in hydrology as patterns of playa wetting and drying that we tested against precipitation data. We found 259 Landsat cloud-free archived images of Qom Playa. Even the lower-resolution but daily AVHRR and MODIS satellite imagers can resolve features in similarly large playas (>10 km), and even freely available reduced-resolution browse images capture much of the spectral signature necessary for hydrological analysis for playas >1 km in diameter. The results suggest that imaging between storms yields robust semi-quantitative data on basin-scale precipitation events and amounts. Vegetation monitoring augments this information by showing where the precipitation for playa- flooding events occurred.
Change detection from remotely sensed images: From pixel-based to object-based approaches
NASA Astrophysics Data System (ADS)
Hussain, Masroor; Chen, Dongmei; Cheng, Angela; Wei, Hui; Stanley, David
2013-06-01
The appetite for up-to-date information about earth's surface is ever increasing, as such information provides a base for a large number of applications, including local, regional and global resources monitoring, land-cover and land-use change monitoring, and environmental studies. The data from remote sensing satellites provide opportunities to acquire information about land at varying resolutions and has been widely used for change detection studies. A large number of change detection methodologies and techniques, utilizing remotely sensed data, have been developed, and newer techniques are still emerging. This paper begins with a discussion of the traditionally pixel-based and (mostly) statistics-oriented change detection techniques which focus mainly on the spectral values and mostly ignore the spatial context. This is succeeded by a review of object-based change detection techniques. Finally there is a brief discussion of spatial data mining techniques in image processing and change detection from remote sensing data. The merits and issues of different techniques are compared. The importance of the exponential increase in the image data volume and multiple sensors and associated challenges on the development of change detection techniques are highlighted. With the wide use of very-high-resolution (VHR) remotely sensed images, object-based methods and data mining techniques may have more potential in change detection.
NASA Technical Reports Server (NTRS)
Bizzell, R. M.; Prior, H. L.
1985-01-01
Analysis of the early thematic mapper (TM) data indicate the TM sensor and associated ground processing are performing equal to the high expectations and within advertised specifications. The overall TM system with improved resolution, together with additional and more optimumly placed spectral bands shows much promise for benefits in future analysis activities. By selecting man-made features of known dimensions (e.g., highways, airfields, buildings, and isolated water bodies), an assessment was made of the TM performance relative to the specified 30-meter (98-foot) resolution. The increase of spatial resolution of TM (30 m) over MSS (80 M) appears to be significant not only in resolving spectrally distinct classes that were previously undefinable but also in distinguishing within-field variability. An Important result of the early TM evaluation and pre-TM analyses was the development of an integrated system to receive LANDSAT-4 TM (as well as MSS) data and analyze the data via various approaches.
FFT-enhanced IHS transform method for fusing high-resolution satellite images
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2007-01-01
Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Overview
,
2008-01-01
The National Aeronautics and Space Administration (NASA) launched Terra, the Earth Observing System's (EOS) flagship satellite platform on December 18, 1999. The polar-orbiting Terra contains five remote sensing instruments, which enable the scientific study and analyses of global terrestrial processes and manifestations of global change. One of the five instruments is the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is built in Japan by a consortium of government, industry, and research groups. It has three spectral bands in the visible near-infrared region (VNIR), six bands in the shortwave infrared region (SWIR), and five bands in the thermal infrared region (TIR), with 15-, 30-, and 90-meter ground resolutions, respectively. This combination of wide spectral coverage and high spatial resolution allows ASTER to discriminate among a wide variety of surface materials. The VNIR subsystem also has a backward-viewing telescope for high-resolution (15-meter) stereoscopic observation in the along-track direction, which facilitates the generation of digital elevation models (DEM).
NASA Technical Reports Server (NTRS)
Vaughan, Greg R.; Calvin, Wendy M.
2005-01-01
To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of acidic drainage that were identified remotely.
Shi, Ting-Ting; Zhang, Xiao-Bo; Zhang, Ke; Guo, Lan-Ping; Huang, Lu-Qi
2017-11-01
The herbs used as the material for traditional Chinese medicine are always planted in the mountainous area where the natural environment is suitable. As the mountain terrain is complex and the distribution of planting plots is scattered, the traditional survey method is difficult to obtain accurate planting area. It is of great significance to provide decision support for the conservation and utilization of traditional Chinese medicine resources by studying the method of extraction of Chinese herbal medicine planting area based on remote sensing and realizing the dynamic monitoring and reserve estimation of Chinese herbal medicines. In this paper, taking the Peucedanum praeruptorum planted area in Ningguo prefecture of Anhui province as an example, the multispectral remote sensing images that include Landsat-8 with a 30 m resolution and China-made GF-1 with a 16 m resolution were used as data source. Since the spectral characteristics of P. praeruptorum in the two periods are different from those of other crops, the changes of the images at two stages in the same year could be used to extract the P. praeruptorum planted area intercropped in cultivated land. Then the texture and spectral characteristics of young pecan trees were used to extract the P. praeruptorum planted area intercropped in woodland. The results showed that the extracted area of planted P. praeruptorum with the original imagery of 30 m spatial resolution and 16 m spatial resolution was 25 635.43,24 585.43 mu, respectively. Copyright© by the Chinese Pharmaceutical Association.
Sarah A. Lewis; Andrew T. Hudak; Peter R. Robichaud; Penelope Morgan; Kevin L. Satterberg; Eva K. Strand; Alistair M. S. Smith; Joseph A. Zamudio; Leigh B. Lentile
2017-01-01
We collected field and remotely sensed data spanning 10 years after three 2003 Montana wildfires to monitor ecological change across multiple temporal and spatial scales. Multiple endmember spectral mixture analysis was used to create post-fire maps of: char, soil, green (GV) and non-photosynthetic (NPV) vegetation from high-resolution 2003 hyperspectral (HS) and 2007...
ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing
NASA Astrophysics Data System (ADS)
Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro
2015-10-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.
NASA Astrophysics Data System (ADS)
Zimmermann, Robert; Brandmeier, Melanie; Andreani, Louis; Gloaguen, Richard
2015-04-01
Remote sensing data can provide valuable information about ore deposits and their alteration zones at surface level. High spectral and spatial resolution of the data is essential for detailed mapping of mineral abundances and related structures. Carbonatites are well known for hosting economic enrichments in REE, Ta, Nb and P (Jones et al. 2013). These make them a preferential target for exploration for those critical elements. In this study we show how combining geomorphic, textural and spectral data improves classification result. We selected a site with a well-known occurrence in northern Namibia: the Epembe dyke. For analysis LANDSAT 8, SRTM and airborne hyperspectral (HyMap) data were chosen. The overlapping data allows a multi-scale and multi-resolution approach. Results from data analysis were validated during fieldwork in 2014. Data was corrected for atmospherical and geometrical effects. Image classification, mineral mapping and tectonic geomorphology allow a refinement of the geological map by lithological mapping in a second step. Detailed mineral abundance maps were computed using spectral unmixing techniques. These techniques are well suited to map abundances of carbonate minerals, but not to discriminate the carbonatite itself from surrounding rocks with similar spectral signatures. Thus, geometric indices were calculated using tectonic geomorphology and textures. For this purpose the TecDEM-toolbox (SHAHZAD & GLOAGUEN 2011) was applied to the SRTM-data for geomorphic analysis. Textural indices (e.g. uniformity, entropy, angular second moment) were derived from HyMap and SRTM by a grey-level co-occurrence matrix (CLAUSI 2002). The carbonatite in the study area is ridge-forming and shows a narrow linear feature in the textural bands. Spectral and geometric information were combined using kohonen Self-Organizing Maps (SOM) for unsupervised clustering. The resulting class spectra were visually compared and interpreted. Classes with similar signatures were merged according to geological context. The major conclusions are: 1. Carbonate minerals can be mapped using spectral unmixing techniques. 2. Carbonatites are associated with specific geometric pattern 3. The combination of spectral and geometric information improves classification result and reduces misclassification. References Clausi, D. A. (2002): An analysis of co-occurrence texture statistics as a function of grey-level quantization. - Canadian Journal of Remote Sensing, 28 (1), 45-62 Jones, A. P., Genge, M. and Carmody, L (2013): Carbonate Melts and Carbonatites. - Reviews in Mineralogy & Geochemistry, 75, 289-322 Shahzad, F. & Gloaguen, R. (2011): TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 2: Surface dynamics and basin analysis. - Computers and Geosciences, 37 (2), 261-271
UAV remote sening for precision agriculture
NASA Astrophysics Data System (ADS)
Vigneau, Nathalie; Chéron, Corentin; Mainfroy, Florent; Faroux, Romain
2014-05-01
Airinov offers to farmers, scientists and experimenters (plant breeders, etc.) its technical skills about UAVs, cartography and agronomic remote sensing. The UAV is a 2-m-wingspan flying wing. It can carry away either a RGB camera or a multispectral sensor, which records reflectance in 4 spectral bands. The spectral characteristics of the sensor are modular. Each spectral band is comprised between 400 and 850 nm and the FWHM (Full Width at Half Maximum) is between 10 and 40 nm. The spatial resolution varies according to sensor, flying height and user needs from 15cm/px for multispectral sensor at 150m to 1.5cm/px for RGB camera at 50m. The flight is totally automatic thanks to on-board autopilot, IMU (Inertial Measurement Unit) and GPS. Data processing (unvignetting, mosaicking, correction in reflectance) leads to agronomic variables as LAI (Leaf Area Index) or chlorophyll content for barley, wheat, rape and maize as well as vegetation indices as NDVI (Normalized Difference Vegetation Index). Using these data, Airinov can product advices for farmers as nitrogen preconisation for rape. For scientists, Airinov offers trial plot monitoring by micro-plots vectorisation and numerical data exctraction micro-plot by micro-plot. This can lead to kinetic curve for LAI or NDVI to compare cover establishment for different genotypes for example. Airinov's system is a new way to monitor plots with a lot of data (biophysical or biochemical parameters) at high rate, high spatial resolution and high precision.
Remote sensing of vegetation structure using computer vision
NASA Astrophysics Data System (ADS)
Dandois, Jonathan P.
High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.
Selkowitz, D.J.
2010-01-01
Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets, an expected result for a study area where most shrub cover is concentrated in narrow patches associated with rivers, drainages, and slopes. Including the middle infrared bands available from Landsat and MODIS in the regression tree models (in addition to the four standard visible and near-infrared spectral bands) typically results in a slight boost in accuracy. Including the multi-angular red band data available from MISR in the regression tree models, however, typically boosts accuracy more substantially, resulting in moderate resolution fractional shrub canopy estimates approaching the accuracy of estimates derived from the much higher spatial resolution Landsat sensor. Given the poor availability of snow and cloud-free Landsat scenes in many areas of the Arctic and the promising results demonstrated here by the MISR sensor, MISR may be the best choice for large area fractional shrub canopy mapping in the Alaskan Arctic for the period 2000-2009.
Assessing diversity of prairie plants using remote sensing
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.
2017-12-01
Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (P<0.001 for each case). At fine spatial scales, species composition also had a substantial influence on optical diversity. CV was sensitive to the background soil influence, but the spectral classification method was insensitive to background. These results provide a critical foundation for assessing biodiversity using imaging spectrometry and these findings can be used to guide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.
NASA Astrophysics Data System (ADS)
Kaufman, Y. J.; Tanré, D.; Remer, L. A.; Vermote, E. F.; Chu, A.; Holben, B. N.
1997-07-01
Daily distribution of the aerosol optical thickness and columnar mass concentration will be derived over the continents, from the EOS moderate resolution imaging spectroradiometer (MODIS) using dark land targets. Dark land covers are mainly vegetated areas and dark soils observed in the red and blue channels; therefore the method will be limited to the moist parts of the continents (excluding water and ice cover). After the launch of MODIS the distribution of elevated aerosol concentrations, for example, biomass burning in the tropics or urban industrial aerosol in the midlatitudes, will be continuously monitored. The algorithm takes advantage of the MODIS wide spectral range and high spatial resolution and the strong spectral dependence of the aerosol opacity for most aerosol types that result in low optical thickness in the mid-IR (2.1 and 3.8 μm). The main steps of the algorithm are (1) identification of dark pixels in the mid-IR; (2) estimation of their reflectance at 0.47 and 0.66 μm; and (3) derivation of the optical thickness and mass concentration of the accumulation mode from the detected radiance. To differentiate between dust and aerosol dominated by accumulation mode particles, for example, smoke or sulfates, ratios of the aerosol path radiance at 0.47 and 0.66 μm are used. New dynamic aerosol models for biomass burning aerosol, dust and aerosol from industrial/urban origin, are used to determine the aerosol optical properties used in the algorithm. The error in the retrieved aerosol optical thicknesses, τa is expected to be Δτa = 0.05±0.2τa. Daily values are stored on a resolution of 10×10 pixels (1 km nadir resolution). Weighted and gridded 8-day and monthly composites of the optical thickness, the aerosol mass concentration and spectral radiative forcing are generated for selected scattering angles to increase the accuracy. The daily aerosol information over land and oceans [Tanré et al., this issue], combined with continuous aerosol remote sensing from the ground, will be used to study aerosol climatology, to monitor the sources and sinks of specific aerosol types, and to study the interaction of aerosol with water vapor and clouds and their radiative forcing of climate. The aerosol information will also be used for atmospheric corrections of remotely sensed surface reflectance. In this paper, examples of applications and validations are provided.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Boldt, J.; Wilson, J. P.; Yee, J. H.; Stoffler, R.
2017-12-01
The multi-spectral STereo Atmospheric Remote Sensing (STARS) concept has the objective to provide high-spatial and -temporal-resolution observations of 3D cloud structures related to hurricane development and other severe weather events. The rapid evolution of severe weather demonstrates a critical need for mesoscale observations of severe weather dynamics, but such observations are rare, particularly over the ocean where extratropical and tropical cyclones can undergo explosive development. Coincident space-based measurements of wind velocity and cloud properties at the mesoscale remain a great challenge, but are critically needed to improve the understanding and prediction of severe weather and cyclogenesis. STARS employs a mature stereoscopic imaging technique on two satellites (e.g. two CubeSats, two hosted payloads) to simultaneously retrieve cloud motion vectors (CMVs), cloud-top temperatures (CTTs), and cloud geometric heights (CGHs) from multi-angle, multi-spectral observations of cloud features. STARS is a pushbroom system based on separate wide-field-of-view co-boresighted multi-spectral cameras in the visible, midwave infrared (MWIR), and longwave infrared (LWIR) with high spatial resolution (better than 1 km). The visible system is based on a pan-chromatic, low-light imager to resolve cloud structures under nighttime illumination down to ¼ moon. The MWIR instrument, which is being developed as a NASA ESTO Instrument Incubator Program (IIP) project, is based on recent advances in MWIR detector technology that requires only modest cooling. The STARS payload provides flexible options for spaceflight due to its low size, weight, power (SWaP) and very modest cooling requirements. STARS also meets AF operational requirements for cloud characterization and theater weather imagery. In this paper, an overview of the STARS concept, including the high-level sensor design, the concept of operations, and measurement capability will be presented.
RESOURCESAT-2: a mission for Earth resources management
NASA Astrophysics Data System (ADS)
Venkata Rao, M.; Gupta, J. P.; Rattan, Ram; Thyagarajan, K.
2006-12-01
The Indian Space Research Organisation (ISRO) has established an operational Remote sensing satellite system by launching its first satellite, IRS-1A in 1988, followed by a series of IRS spacecraft. The IRS-1C/1D satellites with their unique combination of Payloads have taken a lead position in the Global remote sensing scenario. Realising the growing User demands for the "Multi" level approach in terms of Spatial, Spectral, Temporal and Radiometric resolutions, ISRO identified the Resourcesat as a continuity as well as improved RS Satellite. The Resourcesat-1 (IRS-P6) was launched in October 2003 using PSLV launch vehicle and it is in operational service. Resourcesat-2 is its follow-on Mission scheduled for launch in 2008. Each Resourcesat satellite carries three Electro-optical cameras as its payload - LISS-3, LISS-4 and AWIFS. All the three are multi-spectral push-broom scanners with linear array CCDs as Detectors. LISS-3 and AWIFS operate in four identical spectral bands in the VIS-NIR-SWIR range while LISS-4 is a high resolution camera with three spectral bands in VIS-NIR range. In order to meet the stringent requirements of band-to-band registration and platform stability, several improvements have been incorporated in the mainframe Bus configuration like wide field Star trackers, precision Gyroscopes, on-board GPS receiver etc,. The Resourcesat data finds its application in several areas like agricultural crop discrimination and monitoring, crop acreage/yield estimation, precision farming, water resources, forest mapping, Rural infrastructure development, disaster management etc,. to name a few. A brief description of the Payload cameras, spacecraft bus elements and operational modes and few applications are presented.
NASA Astrophysics Data System (ADS)
Butz, Christoph; Grosjean, Martin; Enters, Dirk; Tylmann, Wojciech
2014-05-01
Varved lake sediments have successfully been used to make inferences about past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a new method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other fast and non-destructive methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. This study presents an advanced approach using a hyper-spectral camera and remote sensing techniques to infer climate proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging allows analysing an entire sediment core in a single measurement, producing a spectral dataset with very high spatial (30x30µm/pixel) and spectral resolutions (~1nm) and a higher spectral range (400-1000nm) compared to previously used spectrophotometers. This allows the analysis of data time series at sub-varve scales or spatial mapping of sedimentary substances (e.g. chlorophyll-a and diagenetic products) at very high resolution. The method is demonstrated on varved lake sediments from northern Poland showing the change of the relative concentrations of chlorin pigments within individual varve years. In a next step absolute concentrations of chlorins derived from HPLC measurements have been calibrated to the spectral data using a linear regression model. This results in a very high-resolution dataset of absolute sedimentary pigment concentrations. In a second example µXRF measurements are used to validate a spectral index for clay mineral detection.
NASA Astrophysics Data System (ADS)
Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.
2016-04-01
Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.
Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest
2014-01-01
Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).
Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring
Müllerová, Jana; Brůna, Josef; Bartaloš, Tomáš; Dvořák, Petr; Vítková, Michaela; Pyšek, Petr
2017-01-01
The rapid spread of invasive plants makes their management increasingly difficult. Remote sensing offers a means of fast and efficient monitoring, but still the optimal methodologies remain to be defined. The seasonal dynamics and spectral characteristics of the target invasive species are important factors, since, at certain time of the vegetation season (e.g., at flowering or senescing), plants are often more distinct (or more visible beneath the canopy). Our aim was to establish fast, repeatable and a cost-efficient, computer-assisted method applicable over larger areas, to reduce the costs of extensive field campaigns. To achieve this goal, we examined how the timing of monitoring affects the detection of noxious plant invaders in Central Europe, using two model herbaceous species with markedly different phenological, structural, and spectral characteristics. They are giant hogweed (Heracleum mantegazzianum), a species with very distinct flowering phase, and the less distinct knotweeds (Fallopia japonica, F. sachalinensis, and their hybrid F. × bohemica). The variety of data generated, such as imagery from purposely-designed, unmanned aircraft vehicle (UAV), and VHR satellite, and aerial color orthophotos enabled us to assess the effects of spectral, spatial, and temporal resolution (i.e., the target species' phenological state) for successful recognition. The demands for both spatial and spectral resolution depended largely on the target plant species. In the case that a species was sampled at the most distinct phenological phase, high accuracy was achieved even with lower spectral resolution of our low-cost UAV. This demonstrates that proper timing can to some extent compensate for the lower spectral resolution. The results of our study could serve as a basis for identifying priorities for management, targeted at localities with the greatest risk of invasive species' spread and, once eradicated, to monitor over time any return. The best mapping strategy should reflect morphological and structural features of the target plant and choose appropriate spatial, spectral, and temporal resolution. The UAV enables flexible data acquisition for required time periods at low cost and is, therefore, well-suited for targeted monitoring; while satellite imagery provides the best solution for larger areas. Nonetheless, users must be aware of their limits. PMID:28620399
Bringing the Coastal Zone into Finer Focus
NASA Astrophysics Data System (ADS)
Guild, L. S.; Hooker, S. B.; Kudela, R. M.; Morrow, J. H.; Torres-Perez, J. L.; Palacios, S. L.; Negrey, K.; Dungan, J. L.
2015-12-01
Measurements over extents from submeter to 10s of meters are critical science requirements for the design and integration of remote sensing instruments for coastal zone research. Various coastal ocean phenomena operate at different scales (e.g. meters to kilometers). For example, river plumes and algal blooms have typical extents of 10s of meters and therefore can be resolved with satellite data, however, shallow benthic ecosystem (e.g., coral, seagrass, and kelp) biodiversity and change are best studied at resolutions of submeter to meter, below the pixel size of typical satellite products. The delineation of natural phenomena do not fit nicely into gridded pixels and the coastal zone is complicated by mixed pixels at the land-sea interface with a range of bio-optical signals from terrestrial and water components. In many standard satellite products, these coastal mixed pixels are masked out because they confound algorithms for the ocean color parameter suite. In order to obtain data at the land/sea interface, finer spatial resolution satellite data can be achieved yet spectral resolution is sacrificed. This remote sensing resolution challenge thwarts the advancement of research in the coastal zone. Further, remote sensing of benthic ecosystems and shallow sub-surface phenomena are challenged by the requirements to sense through the sea surface and through a water column with varying light conditions from the open ocean to the water's edge. For coastal waters, >80% of the remote sensing signal is scattered/absorbed due to the atmospheric constituents, sun glint from the sea surface, and water column components. In addition to in-water measurements from various platforms (e.g., ship, glider, mooring, and divers), low altitude aircraft outfitted with high quality bio-optical radiometer sensors and targeted channels matched with in-water sensors and higher altitude platform sensors for ocean color products, bridge the sea-truth measurements to the pixels acquired from satellite and high altitude platforms. We highlight a novel NASA airborne calibration, validation, and research capability for addressing the coastal remote sensing resolution challenge.
NASA Astrophysics Data System (ADS)
Hershkovitz, Yaron; Anker, Yaakov; Ben-Dor, Eyal; Schwartz, Guy; Gasith, Avital
2010-05-01
In-stream vegetation is a key ecosystem component in many fluvial ecosystems, having cascading effects on stream conditions and biotic structure. Traditionally, ground-level surveys (e.g. grid and transect analyses) are commonly used for estimating cover of aquatic macrophytes. Nonetheless, this methodological approach is highly time consuming and usually yields information which is practically limited to habitat and sub-reach scales. In contrast, remote-sensing techniques (e.g. satellite imagery and airborne photography), enable collection of large datasets over section, stream and basin scales, in relatively short time and reasonable cost. However, the commonly used spatial high resolution (1m) is often inadequate for examining aquatic vegetation on habitat or sub-reach scales. We examined the utility of a pseudo-spectral methodology, using RGB digital photography for estimating the cover of in-stream vegetation in a small Mediterranean-climate stream. We compared this methodology with that obtained by traditional ground-level grid methodology and with an airborne hyper-spectral remote sensing survey (AISA-ES). The study was conducted along a 2 km section of an intermittent stream (Taninim stream, Israel). When studied, the stream was dominated by patches of watercress (Nasturtium officinale) and mats of filamentous algae (Cladophora glomerata). The extent of vegetation cover at the habitat and section scales (100 and 104 m, respectively) were estimated by the pseudo-spectral methodology, using an airborne Roli camera with a Phase-One P 45 (39 MP) CCD image acquisition unit. The swaths were taken in elevation of about 460 m having a spatial resolution of about 4 cm (NADIR). For measuring vegetation cover at the section scale (104 m) we also used a 'push-broom' AISA-ES hyper-spectral swath having a sensor configuration of 182 bands (350-2500 nm) at elevation of ca. 1,200 m (i.e. spatial resolution of ca. 1 m). Simultaneously, with every swath we used an Analytical Spectral Device (ASD) to measure hyper-spectral signatures (2150 bands configuration; 350-2500 nm) of selected ground-level targets (located by GPS) of soil, water; vegetation (common reed, watercress, filamentous algae) and standard EVA foam colored sheets (red, green, blue, black and white). Processing and analysis of the data were performed over an ITT ENVI platform. The hyper-spectral image underwent radiometric calibration according to the flight and sensor calibration parameters on CALIGEO platform and the raw DN scale was converted into radiance scale. Ground level visual survey of vegetation cover and height was applied at the habitat scale (100 m) by placing a 1m2 netted grids (10x10cm cells) along 'bank-to-bank' transect (in triplicates). Estimates of plant cover obtained by the pseudo-spectral methodology at the habitat scale were 35-61% for the watercress, 0.4-25% for the filamentous algae and 27-51% for plant-free patches. The respective estimates by ground level visual survey were 26-50, 14-43% and 36-50%. The pseudo-spectral methodology also yielded estimates for the section scale (104 m) of ca. 39% for the watercress, ca. 32% for the filamentous algae and 6% for plant-free patches. The respective estimates obtained by hyper-spectral swath were 38, 26 and 8%. Validation against ground-level measurements proved that pseudo-spectral methodology gives reasonably good estimates of in-stream plant cover. Therefore, this methodology can serve as a substitute for ground level estimates at small stream scales and for the low resolution hyper-spectral methodology at larger scales.
NASA Astrophysics Data System (ADS)
Langarica, Rosalia; Bernal, Abel; Rosado, Margarita; Cobos Duenas, Francisco J.; Garfias, Fernando; Gutierrez, Leonel; Le Coarer, Etienne; Tejada, Carlos; Tinoco, Silvio J.
1998-07-01
The kinematics of the interstellar medium may be studied by means of a scanning Fabry-Perot interferometer (SFPI). This allows the coverage of a wider field of view with higher spatial and spectral resolution than when a high-dispersion classical spectrograph is used. The system called PUMA consists of a focal reducer and a SFPI installed in the 2.1 m telescope of the San Pedro Martir National Astronomical Observatory (SPM), Mexico, in its f/7.5 configuration. It covers a field of view of 10 arcmin providing direct images as well as interferograms which are focused on a 1024 X 1024 Tektronix CCD, covering a wide spectral range. It is considered the integration of other optical elements for further developments. The optomechanical system and the developed software allow exact, remote positioning of all movable parts and control the FPI scanning and data acquisition. The parallelism of the interferometer plates is automatically achieved by a custom method. The PUMA provides spectral resolutions of 0.414 Angstrom and a free spectral range of 19.8 Angstrom. Results of high quality that compete with those obtained by similar systems in bigger telescopes, are presented.
a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.
2017-08-01
Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.
[Application of optical flow dynamic texture in land use/cover change detection].
Yan, Li; Gong, Yi-Long; Zhang, Yi; Duan, Wei
2014-11-01
In the present study, a novel change detection approach for high resolution remote sensing images is proposed based on the optical flow dynamic texture (OFDT), which could achieve the land use & land cover change information automatically with a dynamic description of ground-object changes. This paper describes the ground-object gradual change process from the principle using optical flow theory, which breaks the ground-object sudden change hypothesis in remote sensing change detection methods in the past. As the steps of this method are simple, it could be integrated in the systems and software such as Land Resource Management and Urban Planning software that needs to find ground-object changes. This method takes into account the temporal dimension feature between remote sensing images, which provides a richer set of information for remote sensing change detection, thereby improving the status that most of the change detection methods are mainly dependent on the spatial dimension information. In this article, optical flow dynamic texture is the basic reflection of changes, and it is used in high resolution remote sensing image support vector machine post-classification change detection, combined with spectral information. The texture in the temporal dimension which is considered in this article has a smaller amount of data than most of the textures in the spatial dimensions. The highly automated texture computing has only one parameter to set, which could relax the onerous manual evaluation present status. The effectiveness of the proposed approach is evaluated with the 2011 and 2012 QuickBird datasets covering Duerbert Mongolian Autonomous County of Daqing City, China. Then, the effects of different optical flow smooth coefficient and the impact on the description of the ground-object changes in the method are deeply analyzed: The experiment result is satisfactory, with an 87.29% overall accuracy and an 0.850 7 Kappa index, and the method achieves better performance than the post-classification change detection methods using spectral information only.
An evaluation of a UAV guidance system with consumer grade GPS receivers
NASA Astrophysics Data System (ADS)
Rosenberg, Abigail Stella
Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies. Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data. Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes. Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The accuracy achieved in the second and third manuscripts demonstrates that reasonably priced, high resolution remote sensing via RPVs and UAVs is practical for agriculture and natural resource professionals.
NASA Astrophysics Data System (ADS)
Sima, A. A.; Baeck, P.; Nuyts, D.; Delalieux, S.; Livens, S.; Blommaert, J.; Delauré, B.; Boonen, M.
2016-06-01
This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g), and captures 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm) allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level) where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry-Pérot interferometer.
NASA Astrophysics Data System (ADS)
Mõttus, Matti; Takala, Tuure
2014-12-01
Fertility, or the availability of nutrients and water, controls forest productivity. It affects its carbon sequestration, and thus the forest's effect on climate, as well as its commercial value. Although the availability of nutrients cannot be measured directly using remote sensing methods, fertility alters several vegetation traits detectable from the reflectance spectra of the forest stand, including its pigment content and water stress. However, forest reflectance is also influenced by other factors, such as species composition and stand age. Here, we present a case study demonstrating how data obtained using imaging spectroscopy is correlated with site fertility. The study was carried out in Hyytiälä, Finland, in the southern boreal forest zone. We used a database of state-owned forest stands including basic forestry variables and a site fertility index. To test the suitability of imaging spectroscopy with different spatial and spectral resolutions for site fertility mapping, we performed two airborne acquisitions using different sensor configurations. First, the sensor was flown at a high altitude with high spectral resolution resulting in a pixel size in the order of a tree crown. Next, the same area was flown to provide reflectance data with sub-meter spatial resolution. However, to maintain usable signal-to-noise ratios, several spectral channels inside the sensor were combined, thus reducing spectral resolution. We correlated a number of narrowband vegetation indices (describing canopy biochemical composition, structure, and photosynthetic activity) on site fertility. Overall, site fertility had a significant influence on the vegetation indices but the strength of the correlation depended on dominant species. We found that high spatial resolution data calculated from the spectra of sunlit parts of tree crowns had the strongest correlation with site fertility.
NASA Astrophysics Data System (ADS)
Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.
2017-12-01
A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.
Remote sensing of environmental impact of land use activities
NASA Technical Reports Server (NTRS)
Paul, C. K.
1977-01-01
The capability to monitor land cover, associated in the past with aerial film cameras and radar systems, was discussed in regard to aircraft and spacecraft multispectral scanning sensors. A proposed thematic mapper with greater spectral and spatial resolutions for the fourth LANDSAT is expected to usher in new environmental monitoring capability. In addition, continuing improvements in image classification by supervised and unsupervised computer techniques are being operationally verified for discriminating environmental impacts of human activities on the land. The benefits of employing remote sensing for this discrimination was shown to far outweigh the incremental costs of converting to an aircraft-satellite multistage system.
Comparison and evaluation of fusion methods used for GF-2 satellite image in coastal mangrove area
NASA Astrophysics Data System (ADS)
Ling, Chengxing; Ju, Hongbo; Liu, Hua; Zhang, Huaiqing; Sun, Hua
2018-04-01
GF-2 satellite is the highest spatial resolution Remote Sensing Satellite of the development history of China's satellite. In this study, three traditional fusion methods including Brovey, Gram-Schmidt and Color Normalized (CN were used to compare with the other new fusion method NNDiffuse, which used the qualitative assessment and quantitative fusion quality index, including information entropy, variance, mean gradient, deviation index, spectral correlation coefficient. Analysis results show that NNDiffuse method presented the optimum in qualitative and quantitative analysis. It had more effective for the follow up of remote sensing information extraction and forest, wetland resources monitoring applications.
NASA Technical Reports Server (NTRS)
Maddrea, G. L., Jr.; Bendura, R. J.
1981-01-01
A field experiment designed to further understand the formation and transport of visibility reducing aerosols and to characterize regional scale air masses and urban plumes is described. Measurements were made primarily in the Ohio River Valley region. The NASA participation included obtaining measurements for the determination of mixing layer height and ozone profiles by using airborne remote sensor systems such as the ultraviolet differential absorption lidar, the high spectral resolution lidar, and the laser absorption spectrometer. Other NASA systems included the microwave atmospheric remote sensor, tethered balloons, an in situ measurements aircraft, and several photometer/transmissiometer systems.
Education, outreach and the future of remote sensing in human health
NASA Technical Reports Server (NTRS)
Wood, B. L.; Beck, L. R.; Lobitz, B. M.; Bobo, M. R.
2000-01-01
The human health community has been slow to adopt remote sensing technology for research, surveillance, or control activities. This chapter presents a brief history of the National Aeronautics and Space Administration's experiences in the use of remotely sensed data for health applications, and explores some of the obstacles, both real and perceived, that have slowed the transfer of this technology to the health community. These obstacles include the lack of awareness, which must be overcome through outreach and proper training in remote sensing, and inadequate spatial, spectral and temporal data resolutions, which are being addressed as new sensor systems are launched and currently overlooked (and underutilized) sensors are newly discovered by the health community. A basic training outline is presented, along with general considerations for selecting training candidates. The chapter concludes with a brief discussion of some current and future sensors that show promise for health applications.
Miniature high-resolution guided-wave spectrometer for atmospheric remote sensing
NASA Astrophysics Data System (ADS)
Sloan, James; Kruzelecky, Roman; Wong, Brian; Zou, Jing; Jamroz, Wes; Haddad, Emile; Poirier, Michel
This paper describes the design and application of an innovative spectrometer in which a guided-wave integrated optical spectrometer (IOSPEC) has been coupled with a Fabry-Perot (FP) interferometer. This miniature spectrometer has a net mass under 3 kg, but is capable of broadband operation at spectral resolutions below 0.03 nm full width half maximum (FWHM). The tuneable FP filter provides very high spectral resolution combined with a large input aper-ture. The solid state guided-wave spectrometer is currently configured for a 512-channel array detector, which provides sub-nm coarse resolution. The ultimate resolution is determined by the FP filter, which is tuned across the desired spectral bands, thereby providing a signal-to-noise ratio (SNR) advantage over scanned spectrometer systems of the square root of the number of detector channels. The guided-wave optics provides robust, long-term optical alignment, while minimising the mechanical complexity. The miniaturisation of the FP-IOSPEC spectrometer allows multiple spectrometers to be accommodated on a single MicroSat. Each of these can be optimised for selected measurement tasks and views, thereby enabling more flexible data acquisition strategies with enhanced information content, while minimizing the mission cost. The application of this innovative technology in the proposed Miniature Earth Observation Satellite (MEOS) mission will also be discussed. The MEOS mission, which is designed for the investigation of the carbon and water cycles, relies on multiple IO-SPEC instruments for the simultaneous measurement of a range of atmospheric and surface properties important to climate change.
Satellite Remote Sensing of Cirrus: An Overview
NASA Technical Reports Server (NTRS)
Minnis, Patrick
1998-01-01
The determination of cirrus properties over relatively large spatial and temporal scales will, in most instances, require the use of satellite data. Global coverage, at resolutions as high as several meters are attainable with Landsat, while temporal coverage at 1-min intervals is now available with the latest Geostationary Operational Environmental Satellite (GOES) imagers. Cirrus can be analyzed via interpretation of the radiation that they reflect or emit over a wide range of the electromagnetic spectrum. Many of these spectra and high-resolution satellite data can be used to understand certain aspects of cirrus clouds in particular situations. Production of a global climatology of cirrus clouds, however, requires compromises in spatial, temporal, and spectral coverage. This paper summarizes the state of the art and the potential for future passive remote sensing systems for both understanding cirrus formation and acquiring sufficient statistics to constrain and refine weather and climate models.
New tools: potential medical applications of data from new and old environmental satellites.
Huh, O K; Malone, J B
2001-04-27
The last 40 years, beginning with the first TIROS (television infrared observational satellite) launched on 1 April 1960, has seen an explosion of earth environmental satellite systems and their capabilities. They can provide measurements in globe encircling arrays or small select areas, with increasing resolutions, and new capabilities. Concurrently there are expanding numbers of existing and emerging infectious diseases, many distributed according to areal patterns of physical conditions at the earth's surface. For these reasons, the medical and remote sensing communities can beneficially collaborate with the objective of making needed progress in public health activities by exploiting the advances of the national and international space programs. Major improvements in applicability of remotely sensed data are becoming possible with increases in the four kinds of resolution: spatial, temporal, radiometric and spectral, scheduled over the next few years. Much collaborative research will be necessary before data from these systems are fully exploited by the medical community.
Pixel decomposition for tracking in low resolution videos
NASA Astrophysics Data System (ADS)
Govinda, Vivekanand; Ralph, Jason F.; Spencer, Joseph W.; Goulermas, John Y.; Yang, Lihua; Abbas, Alaa M.
2008-04-01
This paper describes a novel set of algorithms that allows indoor activity to be monitored using data from very low resolution imagers and other non-intrusive sensors. The objects are not resolved but activity may still be determined. This allows the use of such technology in sensitive environments where privacy must be maintained. Spectral un-mixing algorithms from remote sensing were adapted for this environment. These algorithms allow the fractional contributions from different colours within each pixel to be estimated and this is used to assist in the detection and monitoring of small objects or sub-pixel motion.
The utility of Landsat-D for water-resources studies
NASA Technical Reports Server (NTRS)
Salomonson, V. V.
1980-01-01
The paper discusses applications of the Landsat-D remote sensing observations to hydrology and management of water resources. It is expected that the Landsat-D thematic mapper will provide spatial resolution of 30 m vs 79 m in the reflected solar radiation bands; additional spectral resolution in the 0.5 to 1.0 micron region and new bands covering regions in the 0.45 to 2.35 micron range will be available. The thematic mapper produces data at an 85 megabit/sec rate; an advanced data processing system will be used for improved monitoring of earth resources.
NASA Astrophysics Data System (ADS)
Sun, S.; Hu, C.
2017-12-01
Optical remote sensing is one of the most commonly used techniques in detecting oil in the surface ocean. This is because that oil has different optical properties from the surrounding oil-free water and oil can also modulate surface waves, thus providing a spatial contrast to facilitate delineating the oil-water boundary. Estimating oil volume or thickness from the delineated oil footprint, on the other hand, is much more difficult and currently represents a major challenge in remote sensing of oil spills. Several studies have attempted to associate reflectance spectra (magnitude and spectral shape) with oil thickness from experiments under controlled conditions, where such established relationships were used to quantify oil thickness. However, it is unclear whether or how these experiment derived relationships could be used in the real environment. Here, oil pixel spectra were extracted from several satellite sensors including Landsat, MERIS, MODIS and MISR together with airborne sensor AVIRIS that captured during the Deepwater Horizon oil spill in 2010. Same day imagery of these sensors were co-registered to compare spectra difference of oil under different observing conditions. Combining those resulted spectra with laboratory-measured oil spectra in previous study, oil's diverse spectral magnitudes and shapes were presented. Besides oil thickness, we concluded several other potential factors that may contribute significantly to the spectral response of oil slicks in the marine environment, which include sun glint strength, oil emulsification state, optical properties of oil covered water and remote sensing imagery's spatial resolution as well. And future perspectives for more accurate estimation of oil thickness are proposed.
Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network
NASA Astrophysics Data System (ADS)
Mukashema, A.; Veldkamp, A.; Vrieling, A.
2014-12-01
African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.
History of one family of atmospheric radiative transfer codes
NASA Astrophysics Data System (ADS)
Anderson, Gail P.; Wang, Jinxue; Hoke, Michael L.; Kneizys, F. X.; Chetwynd, James H., Jr.; Rothman, Laurence S.; Kimball, L. M.; McClatchey, Robert A.; Shettle, Eric P.; Clough, Shepard (.; Gallery, William O.; Abreu, Leonard W.; Selby, John E. A.
1994-12-01
Beginning in the early 1970's, the then Air Force Cambridge Research Laboratory initiated a program to develop computer-based atmospheric radiative transfer algorithms. The first attempts were translations of graphical procedures described in a 1970 report on The Optical Properties of the Atmosphere, based on empirical transmission functions and effective absorption coefficients derived primarily from controlled laboratory transmittance measurements. The fact that spectrally-averaged atmospheric transmittance (T) does not obey the Beer-Lambert Law (T equals exp(-(sigma) (DOT)(eta) ), where (sigma) is a species absorption cross section, independent of (eta) , the species column amount along the path) at any but the finest spectral resolution was already well known. Band models to describe this gross behavior were developed in the 1950's and 60's. Thus began LOWTRAN, the Low Resolution Transmittance Code, first released in 1972. This limited initial effort has how progressed to a set of codes and related algorithms (including line-of-sight spectral geometry, direct and scattered radiance and irradiance, non-local thermodynamic equilibrium, etc.) that contain thousands of coding lines, hundreds of subroutines, and improved accuracy, efficiency, and, ultimately, accessibility. This review will include LOWTRAN, HITRAN (atlas of high-resolution molecular spectroscopic data), FASCODE (Fast Atmospheric Signature Code), and MODTRAN (Moderate Resolution Transmittance Code), their permutations, validations, and applications, particularly as related to passive remote sensing and energy deposition.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Beck, S. M.; Mathis, J. J., Jr.
1981-01-01
In situ correlative measurements were obtained with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980persistent elevated pollution episode (PEPE) and Northeast regional oxidant study (NEROS) field program in order to provide data for evaluating the capability of two remote sensors for measuring mixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure temperature, dewpoint temperature, ozone concentrations, and light scattering coefficient. In situ measurements for ten correlative missions are given and discussed. Each data set is presented in graphical and tabular format aircraft flight plans are included.
Sizing up human health through remote sensing: uses and misuses.
Herbreteau, V; Salem, G; Souris, M; Hugot, J P; Gonzalez, J P
2005-03-01
Following the launch of new satellites, remote sensing (RS) has been increasingly implicated in human health research for thirty years, providing a growing availability of images with higher resolution and spectral ranges. However, the scope of applications, beyond theoretical large potentialities, appears limited both by their technical nature and the models developed. An exhaustive review of RS applications in human health highlights the real implication thus far regarding the diversity and range of health issues, remotely sensed data, processes and interpretations. The place of RS is far under its expected potential, revealing fundamental barriers in its implementation for health applications. The selection of images is done by practical considerations as trivial as price and availability, which are often not relevant to addressing health questions requiring suitable resolutions and spatio-temporal range. The relationships of environmental variables from RS, geospatial data from other sources for health investigations are poorly addressed and usually simplified. A discussion covering the potential of RS for human health is developed here to assist health scientists deal with spatial and temporal dynamics of health, by finding the most relevant data and analysis procedures.
Leifer, I.; Clark, R.; Jones, C.; Holt, B.; Svejkovsky, J.; Swayze, G.
2011-01-01
The vast, persistent, and unconstrained oil release from the DeepWater Horizon (DWH) challenged the spill response, which required accurate quantitative oil assessment at synoptic and operational scales. Experienced observers are the mainstay of oil spill response. Key limitations are weather, scene illumination geometry, and few trained observers, leading to potential observer bias. Aiding the response was extensive passive and active satellite and airborne remote sensing, including intelligent system augmentation, reviewed herein. Oil slick appearance strongly depends on many factors like emulsion composition and scene geometry, yielding false positives and great thickness uncertainty. Oil thicknesses and the oil to water ratios for thick slicks were derived quantitatively with a new spectral library approach based on the shape and depth of spectral features related to C-H vibration bands. The approach used near infrared, imaging spectroscopy data from the AVIRIS (Airborne Visual/InfraRed Imaging Spectrometer) instrument on the NASA ER-2 stratospheric airplane. Extrapolation to the total slick used MODIS satellite visual-spectrum broadband data, which observes sunglint reflection from surface slicks; i.e., indicates the presence of oil and/or surfactant slicks. Oil slick emissivity is less than seawater's allowing MODIS thermal infrared (TIR) nighttime identification; however, water temperature variations can cause false positives. Some strong emissivity features near 6.7 and 9.7 ??m could be analyzed as for the AVIRIS short wave infrared features, but require high spectral resolution data. TIR spectral trends can allow fresh/weathered oil discrimination. Satellite Synthetic Aperture Radar (SSAR) provided synoptic data under all-sky conditions by observing oil dampening of capillary waves; however, SSAR typically cannot discriminate thick from thin oil slicks. Airborne UAVSAR's significantly greater signal-to-noise ratio and fine spatial resolution allowed successful mapping of oil slick thickness-related patterns. Laser induced fluorescence (LIF) can quantify oil thicknesses by Raman scattering line distortions, but saturates for >20-??m thick oil and depends on oil optical characteristics and sea state. Combined with laser bathymetry LIF can provide submerged oil remote sensing.
Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick
2015-01-01
UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R2-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R2-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications. PMID:26437410
Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick
2015-09-30
UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications.
NASA Astrophysics Data System (ADS)
Hulslander, D.; Warren, J. N.; Weintraub, S. R.
2017-12-01
Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of samples subsequently analyzed for foliar chemistry.
NASA Astrophysics Data System (ADS)
Camy-Peyret, Claude; Payan, Sébastien; Jeseck, Pascal; Té, Yao
2001-09-01
Infrared spectroscopy is a powerful tool for precise measurements of atmospheric trace species concentrations through the use of characteristic spectral signatures of the different molecular species and their associated vibration-rotation bands in the mid- or near-infrared. Different methods based on quantitative spectroscopy permit tropospheric or stratospheric measurements: in situ long path absorption, atmospheric absorption/emission by Fourier transform spectroscopy with high spectral resolution instruments on the ground, airborne, balloon-borne or satellite-borne.
Landsat imagery: a unique resource
Miller, H.; Sexton, N.; Koontz, L.
2011-01-01
Landsat satellites provide high-quality, multi-spectral imagery of the surface of the Earth. These moderate-resolution, remotely sensed images are not just pictures, but contain many layers of data collected at different points along the visible and invisible light spectrum. These data can be manipulated to reveal what the Earth’s surface looks like, including what types of vegetation are present or how a natural disaster has impacted an area (Fig. 1).
Sudhanshu Panda; Devendra Amatya; Young Kim; Ge Sun
2016-01-01
Evapotranspiration (ET) is one of the most important hydrologic parameters for vegetation growth, carbon sequestration, and other associated biodiversity study and analysis. Plant stomatal conductance, leaf area index, canopy temperature, soil moisture, and wind speed values generally correlate well with ET. It is difficult to estimate these hydrologic parameters of...
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
NASA Astrophysics Data System (ADS)
Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.
2017-09-01
Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.
Estimation of sea surface temperature from remote measurements in the 11-13 micron window region
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Conrath, B. J.; Kunde, V. G.
1972-01-01
The Nimbus-4 IRIS data was examined in the spectral region 775 to 1250/cm (8-13 microns) for useful information to determine the sea surface temperature. The high spectral resolution data of IRIS was degraded to low resolution by averaging to simulate a multi-channel radiometer in the window region. These simulated data show that within the region 775-975/cm (12.9-10.25 microns) the brightness temperatures are linearly related to the absorption parameters. Such a linear relationship is observed over cloudy as well as clear regions and over a wide range of latitudes. From this linear relationship it is feasible to correct for the atmospheric attenuation and get the sea surface temperature, accurate to within 1 K, in a cloud free field of view. The information about the cloud cover is taken from the TV pictures and BUV albedo measurements on board the Nimbus-4 satellite.
NASA Astrophysics Data System (ADS)
Harris, Jennifer; Grindrod, Peter
2017-04-01
At present, martian meteorites represent the only samples of Mars available for study in terrestrial laboratories. However, these samples have never been definitively tied to source locations on Mars, meaning that the fundamental geological context is missing. The goal of this work is to link the bulk mineralogical analyses of martian meteorites to the surface geology of Mars through spectral mixture analysis of hyperspectral imagery. Hapke radiation transfer modelling has been shown to provide accurate (within 5 - 10% absolute error) mineral abundance values from laboratory derived hyperspectral measurements of binary [1] and ternary [2] mixtures of plagioclase, pyroxene and olivine. These three minerals form the vast bulk of the SNC meteorites [3] and the bedrock of the Amazonian provinces on Mars that are inferred to be the source regions for these meteorites based on isotopic aging. Spectral unmixing through the Hapke model could be used to quantitatively analyse the Martian surface and pinpoint the exact craters from which the SNC meteorites originated. However the Hapke model is complex with numerous variables, many of which are determinable in laboratory conditions but not from remote measurements of a planetary surface. Using binary and tertiary spectral mixtures and martian meteorite spectra from the RELAB spectral library, the accuracy of Hapke abundance estimation is investigated in the face of increasing constraints and simplifications to simulate CRISM data. Constraints and simplifications include reduced spectral resolution, additional noise, unknown endmembers and unknown particle physical characteristics. CRISM operates in two spectral resolutions, the Full Resolution Targeted (FRT) with which it has imaged approximately 2% of the martian surface, and the lower spectral resolution MultiSpectral Survey mode (MSP) with which it has covered the vast majority of the surface. On resampling the RELAB spectral mixtures to these two wavelength ranges it was found that with the lower spectral resolution the Hapke abundance results were just as accurate (within 7% absolute error) as with the higher resolution. Further results taking into account additional noise from both instrument and atmospheric sources and the potential presence of minor amounts of accessory minerals, and the selection of appropriate spectral endmembers where the exact endmembers present are unknown shall be presented. References [1] Mustard, J. F., Pieters, C. M., Quantitative abundance estimates from bidirectional reflectance measurements, Journal of Geophysical Research, Vol. 92, B4, E617 - E626, 1987 [2] Li, S., Milliken, R. E., Estimating the modal mineralogy of eucrite and diogenite meteorites using visible-near infrared reflectance spectroscopy, Meteoritics and Planetary Science, Vol. 50, 11, 1821 - 1850, 2015 [3] Hutchinson, R., Meteorites: A petrologic, chemical and isotopic synthesis, Cambridge University Press, 2004
NASA Technical Reports Server (NTRS)
1985-01-01
A photogeologic and remote sensing model of porphyry type mineral sytems is considered along with a Landsat application to development of a tectonic model for hydrocarbon exploration of Devonian shales in west-central Virginia, remote sensing and the funnel philosophy, Landsat-based tectonic and metallogenic synthesis of the southwest United States, and an evolving paradigm for computer vision. Attention is given to the neotectonics of the Tibetan plateau deduced from Landsat MSS image interpretation, remote sensing in northern Arizona, the use of an airborne laser system for vegetation inventories and geobotanical prospecting, an evaluation of Thematic Mapper data for hydrocarbon exploration in low-relief basins, and an evaluation of the information content of high spectral resolution imagery. Other topics explored are related to a major source of new radar data for exploration research, the accuracy of geologic maps produced from Landsat data, and an approach for the geometric rectification of radar imagery.
Mineral mapping and applications of imaging spectroscopy
Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.
2006-01-01
Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).
Integration of multispectral satellite and hyperspectral field data for aquatic macrophyte studies
NASA Astrophysics Data System (ADS)
John, C. M.; Kavya, N.
2014-11-01
Aquatic macrophytes (AM) can serve as useful indicators of water pollution along the littoral zones. The spectral signatures of various AM were investigated to determine whether species could be discriminated by remote sensing. In this study the spectral readings of different AM communities identified were done using the ASD Fieldspec® Hand Held spectro-radiometer in the wavelength range of 325-1075 nm. The collected specific reflectance spectra were applied to space borne multi-spectral remote sensing data from Worldview-2, acquired on 26th March 2011. The dimensionality reduction of the spectro-radiometric data was done using the technique principal components analysis (PCA). Out of the different PCA axes generated, 93.472 % variance of the spectra was explained by the first axis. The spectral derivative analysis was done to identify the wavelength where the greatest difference in reflectance is shown. The identified wavelengths are 510, 690, 720, 756, 806, 885, 907 and 923 nm. The output of PCA and derivative analysis were applied to Worldview-2 satellite data for spectral subsetting. The unsupervised classification was used to effectively classify the AM species using the different spectral subsets. The accuracy assessment of the results of the unsupervised classification and their comparison were done. The overall accuracy of the result of unsupervised classification using the band combinations Red-Edge, Green, Coastal blue & Red-edge, Yellow, Blue is 100%. The band combinations NIR-1, Green, Coastal blue & NIR-1, Yellow, Blue yielded an accuracy of 82.35 %. The existing vegetation indices and new hyper-spectral indices for the different type of AM communities were computed. Overall, results of this study suggest that high spectral and spatial resolution images provide useful information for natural resource managers especially with regard to the location identification and distribution mapping of macrophyte species and their communities.
The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Orphal, J.; Fellows, C. E.; Flaud, P.-M.
2003-02-01
The visible absorption spectrum of the nitrate radical NO3 has been measured using high-resolution Fourier transform spectroscopy. The spectrum was recorded at 294 K using a resolution of 0.6 cm-1 (corresponding to 0.026 nm at 662 nm) and covers the 12600-21500 cm-1 region (465-794 nm). Compared to absorption spectra of NO3 recorded previously, the new data show improvements concerning absolute wavelength calibration (uncertainty 0.02 cm-1), and spectral resolution. A new interpretation and model of the temperature dependence of the strong (0-0) band around 662 nm are proposed. The results are important for long-path tropospheric absorption measurements of NO3 and optical remote sensing of the Earth's atmosphere from space.
The Effectiveness of Hydrothermal Alteration Mapping based on Hyperspectral Data in Tropical Region
NASA Astrophysics Data System (ADS)
Muhammad, R. R. D.; Saepuloh, A.
2016-09-01
Hyperspectral remote sensing could be used to characterize targets at earth's surface based on their spectra. This capability is useful for mapping and characterizing the distribution of host rocks, alteration assemblages, and minerals. Contrary to the multispectral sensors, the hyperspectral identifies targets with high spectral resolution. The Wayang Windu Geothermal field in West Java, Indonesia was selected as the study area due to the existence of surface manifestation and dense vegetation environment. Therefore, the effectiveness of hyperspectral remote sensing in tropical region was targeted as the study objective. The Spectral Angle Mapper (SAM) method was used to detect the occurrence of clay minerals spatially from Hyperion data. The SAM references of reflectance spectra were obtained from field observation at altered materials. To calculate the effectiveness of hyperspectral data, we used multispectral data from Landsat-8. The comparison method was conducted by comparing the SAM's rule images from Hyperion and Landsat-8, resulting that hyperspectral was more accurate than multispectral data. Hyperion SAM's rule images showed lower value compared to Landsat-8, the significant number derived from using Hyperion was about 24% better. This inferred that the hyperspectral remote sensing is preferable for mineral mapping even though vegetation covered study area.
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram J.
2002-01-01
We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
Relating remotely sensed optical variability to marine benthic biodiversity.
Herkül, Kristjan; Kotta, Jonne; Kutser, Tiit; Vahtmäe, Ele
2013-01-01
Biodiversity is important in maintaining ecosystem viability, and the availability of adequate biodiversity data is a prerequisite for the sustainable management of natural resources. As such, there is a clear need to map biodiversity at high spatial resolutions across large areas. Airborne and spaceborne optical remote sensing is a potential tool to provide such biodiversity data. The spectral variation hypothesis (SVH) predicts a positive correlation between spectral variability (SV) of a remotely sensed image and biodiversity. The SVH has only been tested on a few terrestrial plant communities. Our study is the first attempt to apply the SVH in the marine environment using hyperspectral imagery recorded by Compact Airborne Spectrographic Imager (CASI). All coverage-based diversity measures of benthic macrophytes and invertebrates showed low but statistically significant positive correlations with SV whereas the relationship between biomass-based diversity measures and SV were weak or lacking. The observed relationships did not vary with spatial scale. SV had the highest independent effect among predictor variables in the statistical models of coverage-derived total benthic species richness and Shannon index. Thus, the relevance of SVH in marine benthic habitats was proved and this forms a prerequisite for the future use of SV in benthic biodiversity assessments.
NASA Astrophysics Data System (ADS)
Zhang, Yanmei; Huang, Haiying; Jiang, Zaisen; Fang, Ying; Cheng, Xiao
2014-12-01
Thermal anomaly appears to be a significant precursor of some strong earthquakes. In this study, time series of MODIS Land Surface Temperature (LST) products from 2001 to 2014 are processed and analyzed to locate possible anomalies prior to the Yutian earthquake (12 February 2014, Xinjiang, CHINA). In order to reduce the seasonal or annual effects from the LST variations, also to avoid the rainy and cloudy weather in this area, a background mean of ten-day nighttime LST are derived using averaged MOD11A2 products from 2001 to 2012. Then the ten-day LST data from Jan 2014 to FebJanuary 2014 were differenced using the above background. Abnormal LST increase before the earthquake is quite obvious from the differential images, indicating that this method is useful in such area with high mountains and wide-area deserts. Also, in order to assess the damage to infrastructure, China's latest civilian high-resolution remote sensing satellite - GF-1 remote sensed data are applied to the affected counties in this area. The damaged infrastructures and ground surface could be easily interpreted in the fused pan-chromatic and multi-spectral images integrating both texture and spectral information.
NASA Astrophysics Data System (ADS)
Li, R.; Kaufman, Y.
2002-12-01
ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
The micron- to kilometer-scale Moon: linking samples to orbital observations, Apollo to LRO
NASA Astrophysics Data System (ADS)
Crites, S.; Lucey, P. G.; Taylor, J.; Martel, L.; Sun, L.; Honniball, C.; Lemelin, M.
2017-12-01
The Apollo missions have shaped the field of lunar science and our understanding of the Moon, from global-scale revelations like the magma ocean hypothesis, to providing ground truth for compositional remote sensing and absolute ages to anchor cratering chronologies. While lunar meteorite samples can provide a global- to regional-level view of the Moon, samples returned from known locations are needed to directly link orbital-scale observations with laboratory measurements-a link that can be brought to full fruition with today's extremely high spatial resolution observations from Lunar Reconnaissance Orbiter and other recent missions. Korotev et al. (2005) described a scenario of the Moon without Apollo to speculate about our understanding of the Moon if our data were confined to lunar meteorites and remote sensing. I will review some of the major points discussed by Korotev et al. (2005), and focus on some of the ways in which spectroscopic remote sensing in particular has benefited from the Apollo samples. For example, could the causes and effects of lunar-style space weathering have been unraveled without the Apollo samples? What would be the limitations on remote sensing compositional measurements that rely on Apollo samples for calibration and validation? And what new opportunities to bring together orbital and sample analyses now exist, in light of today's high spatial and spectral resolution remote sensing datasets?
NASA Technical Reports Server (NTRS)
Cao, Chang-Yong; Blonski, Slawomir; Ryan, Robert; Gasser, Jerry; Zanoni, Vicki
1999-01-01
The verification and validation (V&V) target range developed at Stennis Space Center is a useful test site for the calibration of remote sensing systems. In this paper, we present a simple algorithm for generating synthetic radiance scenes or digital models of this target range. The radiation propagation for the target in the solar reflective and thermal infrared spectral regions is modeled using the atmospheric radiative transfer code MODTRAN 4. The at-sensor, in-band radiance and spectral radiance for a given sensor at a given altitude is predicted. Software is developed to generate scenes with different spatial and spectral resolutions using the simulated at-sensor radiance values. The radiometric accuracy of the simulation is evaluated by comparing simulated with AVIRIS acquired radiance values. The results show that in general there is a good match between AVIRIS sensor measured and MODTRAN predicted radiance values for the target despite the fact that some anomalies exist. Synthetic scenes provide a cost-effective way for in-flight validation of the spatial and radiometric accuracy of the data. Other applications include mission planning, sensor simulation, and trade-off analysis in sensor design.
NASA Astrophysics Data System (ADS)
Lang, A. F.; Salvaggio, C.
2016-12-01
Climate change, skyrocketing global population, and increasing urbanization have set the stage for more so-called "mega-disasters." We possess the knowledge to mitigate and predict the scope of these events, and recent advancements in remote sensing can inform these efforts. Satellite and aerial imagery can be obtained anywhere of interest; unmanned aerial systems can be deployed quickly; and improved sensor resolutions and image processing techniques allow close examination of the built environment. Combined, these technologies offer an unprecedented ability for the disaster community to visualize, assess, and communicate risk. Disaster mitigation and response efforts rely on an accurate representation of the built environment, including knowledge of building types, structural characteristics, and juxtapositions to known hazards. The use of remote sensing to extract these inventory data has come far in the last five years. Researchers in the Digital Imaging and Remote Sensing (DIRS) group at the Rochester Institute of Technology are meeting the needs of the disaster community through the development of novel image processing methods capable of extracting detailed information of individual buildings. DIRS researchers have pioneered the ability to generate three-dimensional building models from point cloud imagery (e.g., LiDAR). This method can process an urban area and recreate it in a navigable virtual reality environment such as Google Earth within hours. Detailed geometry is obtained for individual structures (e.g., footprint, elevation). In a recent step forward, these geometric data can now be combined with imagery from other sources, such as high resolution or multispectral imagery. The latter ascribes a spectral signature to individual pixels, suggesting construction material. Ultimately, these individual building data are amassed over an entire region, facilitating aggregation and risk modeling analyses. The downtown region of Rochester, New York is presented as a case study. High resolution optical, LiDAR, and multi-spectral imagery was captured of this region. Using the techniques described, these imagery sources are combined and processed to produce a holistic representation of the built environment, inclusive of individual building characteristics.
Grain size mapping in shallow rivers using spectral information: a lab spectroradiometry perspective
NASA Astrophysics Data System (ADS)
Niroumand-Jadidi, Milad; Vitti, Alfonso
2017-10-01
Every individual attribute of a riverine environment defines the overall spectral signature to be observed by an optical sensor. The spectral characteristic of riverbed is influenced not only by the type but also the roughness of substrates. Motivated by this assumption, potential of optical imagery for mapping grain size of shallow rivers (< 1 m deep) is examined in this research. The previous studies concerned with grain size mapping are all built upon the texture analysis of exposed bed material using very high resolution (i.e. cm resolution) imagery. However, the application of texturebased techniques is limited to very low altitude sensors (e.g. UAVs) to ensure the sufficient spatial resolution. Moreover, these techniques are applicable only in the presence of exposed substrates along the river channel. To address these drawbacks, this study examines the effectiveness of spectral information to make distinction among grain sizes for submerged substrates. Spectroscopic experiments are performed in controlled condition of a hydraulic lab. The spectra are collected over a water flume in a range of water depths and bottoms with several grain sizes. A spectral convolution is performed to match the spectra to WorldView-2 spectral bands. The material type of substrates is considered the same for all the experiments with only variable roughness/size of grains. The spectra observed over dry beds revealed that the brightness/reflectance increases with the grain size across all the spectral bands. Based on this finding, the above-water spectra over a river channel are simulated considering different grain sizes in the bottom. A water column correction method is then used to retrieve the bottom reflectances. Then the inferred bottom reflectances are clustered to segregate among grain sizes. The results indicate high potential of the spectral approach for clustering grain sizes (overall accuracy of 92%) which opens up some horizons for mapping this valuable attribute of rivers using remotely sensed data.
Factors affecting the identification of phytoplankton groups by means of remote sensing
NASA Technical Reports Server (NTRS)
Weaver, Ellen C.; Wrigley, Robert
1994-01-01
A literature review was conducted on the state of the art as to whether or not information about communities and populations of phytoplankton in aquatic environments can be derived by remote sensing. In order to arrive at this goal, the spectral characteristics of various types of phytoplankton were compared to determine first, whether there are characteristic differences in pigmentation among the types and second, whether such differences can be detected remotely. In addition to the literature review, an extensive, but not exhaustive, annotated bibliography of the literature that bears on these questions is included as an appendix, since it constitutes a convenient resource for anyone wishing an overview of the field of ocean color. The review found some progress has already been made in remote sensing of assemblages such as coccolithophorid blooms, mats of cyanobacteria, and red tides. Much more information about the composition of algal groups is potentially available by remote sensing particularly in water bodies having higher phytoplankton concentrations, but it will be necessary to develop the remote sensing techniques required for working in so-called Case 2 waters. It is also clear that none of the satellite sensors presently available or soon to be launched is ideal from the point of view of what we might wish to know; it would seem wise to pursue instruments with the planned characteristics of the Moderate Resolution Imaging Spectrometer-Tilt (MODIS-T) or Medium Resolution Imaging Spectrometer (MERIS).
Retrieval of high-spectral-resolution lidar for atmospheric aerosol optical properties profiling
NASA Astrophysics Data System (ADS)
Liu, Dong; Luo, Jing; Yang, Yongying; Cheng, Zhongtao; Zhang, Yupeng; Zhou, Yudi; Duan, Lulin; Su, Lin
2015-10-01
High-spectral-resolution lidars (HSRLs) are increasingly being developed for atmospheric aerosol remote sensing applications due to the straightforward and independent retrieval of aerosol optical properties without reliance on assumptions about lidar ratio. In HSRL technique, spectral discrimination between scattering from molecules and aerosol particles is one of the most critical processes, which needs to be accomplished by means of a narrowband spectroscopic filter. To ensure a high retrieval accuracy of an HSRL system, the high-quality design of its spectral discrimination filter should be made. This paper reviews the available algorithms that were proposed for HSRLs and makes a general accuracy analysis of the HSRL technique focused on the spectral discrimination, in order to provide heuristic guidelines for the reasonable design of the spectral discrimination filter. We introduce a theoretical model for retrieval error evaluation of an HSRL instrument with general three-channel configuration. Monte Carlo (MC) simulations are performed to validate the correctness of the theoretical model. Results from both the model and MC simulations agree very well, and they illustrate one important, although not well realized fact: a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial t o promote the retrieval accuracy. The application of the conclusions obtained in this paper in the designing of a new type of spectroscopic filter, that is, the field-widened Michelson interferometer, is illustrated in detail. These works are with certain universality and expected to be useful guidelines for HSRL community, especially when choosing or designing the spectral discrimination filter.
Wang, Hong-Mei; Wang, Kun; Xie, Ying-Zhong
2009-06-01
Studies of ecological boundaries are important and have become a rapidly evolving part of contemporary ecology. The ecotones are dynamic and play several functional roles in ecosystem dynamics, and the changes in their locations can be used as an indicator of environment changes, and for these reasons, ecotones have recently become a focus of investigation of landscape ecology and global climate change. As the interest in ecotone increases, there is an increased need for formal techniques to detect it. Hence, to better study and understand the functional roles and dynamics of ecotones in ecosystem, we need quantitative methods to characterize them. In the semi-arid region of northern China, there exists a farming-pasturing transition resulting from grassland reclamation and deforestation. With the fragmentation of grassland landscape, the structure and function of the grassland ecosystem are changing. Given this perspective; new-image processing approaches are needed to focus on transition themselves. Hyperspectral remote sensing data, compared with wide-band remote sensing data, has the advantage of high spectral resolution. Hyperspectral remote sensing can be used to visualize transitional zones and to detect ecotone based on surface properties (e. g. vegetation, soil type, and soil moisture etc). In this paper, the methods of hyperspectral remote sensing information processing, spectral analysis and its application in detecting the vegetation classifications, vegetation growth state, estimating the canopy biochemical characteristics, soil moisture, soil organic matter etc are reviewed in detail. Finally the paper involves further application of hyperspectral remote sensing information in research on local climate in ecological boundary in north farming-pasturing transition in China.
Portable Imagery Quality Assessment Test Field for Uav Sensors
NASA Astrophysics Data System (ADS)
Dąbrowski, R.; Jenerowicz, A.
2015-08-01
Nowadays the imagery data acquired from UAV sensors are the main source of all data used in various remote sensing applications, photogrammetry projects and in imagery intelligence (IMINT) as well as in other tasks as decision support. Therefore quality assessment of such imagery is an important task. The research team from Military University of Technology, Faculty of Civil Engineering and Geodesy, Geodesy Institute, Department of Remote Sensing and Photogrammetry has designed and prepared special test field- The Portable Imagery Quality Assessment Test Field (PIQuAT) that provides quality assessment in field conditions of images obtained with sensors mounted on UAVs. The PIQuAT consists of 6 individual segments, when combined allow for determine radiometric, spectral and spatial resolution of images acquired from UAVs. All segments of the PIQuAT can be used together in various configurations or independently. All elements of The Portable Imagery Quality Assessment Test Field were tested in laboratory conditions in terms of their radiometry and spectral reflectance characteristics.
NASA Technical Reports Server (NTRS)
Vandermeulen, Ryan A.; Mannino, Antonio; Neeley, Aimee; Werdell, Jeremy; Arnone, Robert
2017-01-01
Using a modified geostatistical technique, empirical variograms were constructed from the first derivative of several diverse remote sensing reflectance and phytoplankton absorbance spectra to describe how data points are correlated with distance across the spectra. The maximum rate of information gain is measured as a function of the kurtosis associated with the Gaussian structure of the output, and is determined for discrete segments of spectra obtained from a variety of water types (turbid river filaments, coastal waters, shelf waters, a dense Microcystis bloom, and oligotrophic waters), as well as individual and mixed phytoplankton functional types (PFTs; diatoms, chlorophytes, cyanobacteria, coccolithophores). Results show that a continuous spectrum of 5 to 7 nm spectral resolution is optimal to resolve the variability across mixed reflectance and absorbance spectra. In addition, the impact of uncertainty on subsequent derivative analysis is assessed, showing that a limit of 3 Gaussian noise (SNR 66) is tolerated without smoothing the spectrum, and 13 (SNR 15) noise is tolerated with smoothing.
NASA Astrophysics Data System (ADS)
Taylor, Sarah L.; Hill, Ross A.; Edwards, Colin
2013-07-01
Compared with traditional ground surveys, remote sensing has the potential to map the spatial extent of non-native invasive species rapidly and reliably. This paper assesses the potential of spectroradiometry to distinguish and characterise the status of invasive non-native rhododendron (Rhododendron ponticum). Absolute reflectance of target plant material was measured with an ASD Fieldspec Pro System under standardised laboratory conditions and in the field to characterise spectral signatures in the winter, during leaf-off conditions for woodland overstory, and in the summer when mature rhododendrons are flowering. A logistic regression model of absolute reflectance at key wavelengths (490, 550, 610, 1040 and 1490 nm) was used to determine the success of discriminating rhododendron from three other shrubby species likely to be encountered in woodlands during the winter. The logistic regression model was highly significant (p < 0.001), with 93.5% of 246 leaf sets correctly identified as rhododendron or non-rhododendron (i.e. cherry laurel (Prunus laurocerasus), holly (Ilex aquifolium), and beech (Fagus sylvatica)). Rescaling the data to emulate the spectral resolution of airborne and satellite acquired data decreased the total success rate of correctly identifying rhododendron by only 0.4%; although this error rate will likely increase for airborne or satellite data as a result of atmospheric attenuation and reduced spatial resolution. This demonstrates the potential to map bush presence using hyperspectral data and indicates the optimum spectral wavelengths required. Such information is critical to the development of successful strategic management plans to eradicate rhododendron (and the associated Phytophthora ramorum pathogen) effectively from a site.
A mobile laboratory for surface and subsurface imaging in geo-hazard monitoring activity
NASA Astrophysics Data System (ADS)
Cornacchia, Carmela; Bavusi, Massimo; Loperte, Antonio; Pergola, Nicola; Pignatti, Stefano; Ponzo, Felice; Lapenna, Vincenzo
2010-05-01
A new research infrastructure for supporting ground-based remote sensing observations in the different phases of georisk management cycle is presented. This instrumental facility has been designed and realised by TeRN, a public-private consortium on Earth Observations and Natural Risks, in the frame of the project "ImpresAmbiente" funded by Italian Ministry of Research and University. The new infrastructure is equipped with ground-based sensors (hyperspectral cameras, thermal cameras, laser scanning and electromagnetic antennae) able to remotely map physical parameters and/or earth-surface properties (temperature, soil moisture, land cover, etc…) and to illuminate near-surface geological structures (fault, groundwater tables, landslide bodies etc...). Furthermore, the system can be used for non-invasive investigations of architectonic buildings and civil infrastructures (bridges, tunnel, road pavements, etc...) interested by natural and man-made hazards. The hyperspectral cameras can acquire high resolution images of earth-surface and cultural objects. They are operating in the Visible Near InfraRed (0.4÷1.0μm) with 1600 spatial pixel and 3.7nm of spectral sampling and in the Short Wave InfraRed (1.3÷2.5µm) spectral region with 320 spatial pixel and 5nm of spectral sampling. The IR cameras are operating in the Medium Wavelength InfraRed (3÷5µm; 640x512; NETD< 20 mK) and in the Very Long Wavelength InfraRed region (7.7÷11.5 µm; 320x256; NETD<25 mK) with a frame rate higher than 100Hz and are both equipped with a set of optical filters in order to operate in multi-spectral configuration. The technological innovation of ground-based laser scanning equipment has led to an increased resolution performances of surveys with applications in several field, as geology, architecture, environmental monitoring and cultural heritage. As a consequence, laser data can be useful integrated with traditional monitoring techniques. The Laser Scanner is characterized by very high data acquisition repetition rate up to 500.000 pxl/sec with a range resolution of 0.1 mm, vertical and horizontal FoV of 310° and 360° respectively with a resolution of 0.0018°. The system is also equipped with a metric camera allows to georeference the high resolution images acquired. The electromagnetic sensors allow to obtain in near real time high-resolution 2D and 3D subsurface tomographic images. The main components are a fully automatic resistivity meter for DC electrical surveys (resistivity) and Induced Polarization, a Ground Penetrating Radar with antennas covering range for 400 MHz to 1.5 GHz and a gradiometric magnetometric system. All the sensors can be installed on a mobile van and remotely controlled using wi-fi technologies. An all-time network connection capability is guaranteed by a self-configurable satellite link for data communication, which allows to transmit in near-real time experimental data coming from the field surveys and to share other geospatial information. This ICT facility is well suited for emergency response activities during and after catastrophic events. Sensor synergy, multi-temporal and multi-scale resolutions of surface and sub-surface imaging are the key technical features of this instrumental facility. Finally, in this work we shortly present some first preliminary results obtained during the emergence phase of Abruzzo earthquake (Central Italy).
An integrated approach for updating cadastral maps in Pakistan using satellite remote sensing data
NASA Astrophysics Data System (ADS)
Ali, Zahir; Tuladhar, Arbind; Zevenbergen, Jaap
2012-08-01
Updating cadastral information is crucial for recording land ownership and property division changes in a timely fashioned manner. In most cases, the existing cadastral maps do not provide up-to-date information on land parcel boundaries. Such a situation demands that all the cadastral data and parcel boundaries information in these maps to be updated in a timely fashion. The existing techniques for acquiring cadastral information are discipline-oriented based on different disciplines such as geodesy, surveying, and photogrammetry. All these techniques require a large number of manpower, time, and cost when they are carried out separately. There is a need to integrate these techniques for acquiring cadastral information to update the existing cadastral data and (re)produce cadastral maps in an efficient manner. To reduce the time and cost involved in cadastral data acquisition, this study develops an integrated approach by integrating global position system (GPS) data, remote sensing (RS) imagery, and existing cadastral maps. For this purpose, the panchromatic image with 0.6 m spatial resolution and the corresponding multi-spectral image with 2.4 m spatial resolution and 3 spectral bands from QuickBird satellite were used. A digital elevation model (DEM) was extracted from SPOT-5 stereopairs and some ground control points (GCPs) were also used for ortho-rectifying the QuickBird images. After ortho-rectifying these images and registering the multi-spectral image to the panchromatic image, fusion between them was attained to get good quality multi-spectral images of these two study areas with 0.6 m spatial resolution. Cadastral parcel boundaries were then identified on QuickBird images of the two study areas via visual interpretation using participatory-GIS (PGIS) technique. The regions of study are the urban and rural areas of Peshawar and Swabi districts in the Khyber Pakhtunkhwa province of Pakistan. The results are the creation of updated cadastral maps with a lot of cadastral information which can be used in updating the existing cadastral data with less time and cost.
Using commercial software products for atmospheric remote sensing
NASA Astrophysics Data System (ADS)
Kristl, Joseph A.; Tibaudo, Cheryl; Tang, Kuilian; Schroeder, John W.
2002-02-01
The Ontar Corporation (www.Ontar.com) has developed several products for atmospheric remote sensing to calculate radiative transport, atmospheric transmission, and sensor performance in both the normal atmosphere and the atmosphere disturbed by battlefield conditions of smoke, dust, explosives and turbulence. These products include: PcModWin: Uses the USAF standard MODTRAN model to compute the atmospheric transmission and radiance at medium spectral resolution (2 cm-1) from the ultraviolet/visible into the infrared and microwave regions of the spectrum. It can be used for any geometry and atmospheric conditions such as aerosols, clouds and rain. PcLnWin: Uses the USAF standard FASCOD model to compute atmospheric transmission and emission at high (line-by-line) spectral resolution using the HITRAN 2000 database. It can be used over the same spectrum from the UV/visible into the infrared and microwave regions of the spectrum. HitranPC: Computes the absolute high (line-by-line) spectral resolution transmission spectrum of the atmosphere for different temperatures and pressures. HitranPC is a user-friendly program developed by the University of South Florida (USF) and uses the international standard molecular spectroscopic database, HITRAN. LidarPC: A computer program to calculate the Laser Radar/L&n Equation for hard targets and atmospheric backscatter using manual input atmospheric parameters or HitranPC and BETASPEC - transmission and backscatter calculations of the atmosphere. Also developed by the University of South Florida (USF). PcEosael: is a library of programs that mathematically describe aspects of electromagnetic propagation in battlefield environments. 25 modules are connected but can be exercised individually. Covers eight general categories of atmospheric effects, including gases, aerosols and laser propagation. Based on codes developed by the Army Research Lab. NVTherm: NVTherm models parallel scan, serial scan, and staring thermal imagers that operate in the mid and far infrared spectral bands (3 to 12 micrometers wavelength). It predicts the Minimum Resolvable Temperature Difference (MRTD) or just MRT) that can be discriminated by a human when using a thermal imager. NVTherm also predicts the target acquisition range performance likely to be achieved using the sensor.
Compositional Mapping of the Transantarctic Mountains Using Orbital Reflectance Data
NASA Astrophysics Data System (ADS)
Salvatore, M. R.; Niebuhr, S.; Morin, P. J.; Cox, S.
2014-12-01
We report on our progress of remotely mapping compositional variations throughout the Transantarctic Mountains (TAM) using orbital spectroscopic data. These techniques were originally proven effective in Antarctica using moderate spatial resolution (30 m/pixel) Advanced Land Imager (ALI) data, and showed great successes in identifying even minor variations in composition throughout the McMurdo Dry Valleys (MDV) [Salvatore et al., 2013]. However, due to the orbital inclination of the Earth Observing-1 spacecraft, ALI is unable to image the central and southern TAM, making comparable studies at comparable resolutions impossible on a continental scale. Fortunately, the WorldView-2 satellite (DigitalGlobe, Inc.) boasts high-resolution (2 m/pixel) multispectral capabilities, with 8 spectral bands located between 427 nm and 908 nm, and is able to image the entirety of the TAM through off-nadir pointing capabilities. This provides the ability to continue our remote spectral mapping campaign throughout the TAM to identify compositional variations in support of past and future field operations. We present an updated map of relative spectral variability (RSV) in the vicinity of Shackleton Glacier. This mapping product consists of 91 individual WorldView-2 images, each corrected to top-of-atmosphere radiance and parameterized to highlight known compositional properties. The mapped area covers approximately 17,850 square kilometers of ice-covered and exposed terrain. Compositional variations are easily mapped, and small-scale variations in iron-bearing mineralogy are particularly well resolved. We also describe our updated atmospheric correction algorithm for the WorldView-2 dataset, which utilizes in-scene techniques to derive surface reflectance and does not necessitate the use of radiative transfer modeling. Our technique is validated using laboratory reflectance measurements. In conjunction with the Polar Rock Repository at the Ohio State University, we have measured hundreds of individual samples in an effort to verify and "ground-truth" this atmospheric removal algorithm. Using these methodologies and revised techniques, our objective is to make a fully calibrated and atmospherically corrected spectral map of the central TAM available to the scientific community.
NASA Astrophysics Data System (ADS)
Filippi, Anthony Matthew
For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables included bottom depth z b, chlorophyll a concentration [chl- a], spectral bottom irradiance reflectance Rb(lambda), and spectral total absorption a(lambda) and spectral total backscattering bb(lambda) coefficients. When applying the cybernetic and neural models to in situ HyperTSRB-derived Rrs, the difference in the means of the absolute error of the inversion estimates for zb was significant (alpha = 0.05). GMDH yielded significantly better zb than the ANN. The ANN model posted a mean absolute error (MAE) of 0.62214 m, compared with 0.55161 m for GMDH.
Optical Technologies for UV Remote Sensing Instruments
NASA Technical Reports Server (NTRS)
Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.
1993-01-01
Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.
Gangodagamage, Chandana; Rowland, Joel C; Hubbard, Susan S; Brumby, Steven P; Liljedahl, Anna K; Wainwright, Haruko; Wilson, Cathy J; Altmann, Garrett L; Dafflon, Baptiste; Peterson, John; Ulrich, Craig; Tweedie, Craig E; Wullschleger, Stan D
2014-08-01
Landscape attributes that vary with microtopography, such as active layer thickness ( ALT ), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale ALT in a 5 km 2 area of ice-wedge polygon terrain in Barrow, Alaska. We use a simple regression-based, machine learning data-fusion algorithm that uses topographic and spectral metrics derived from multisensor data (LiDAR and WorldView-2) to estimate ALT (2 m spatial resolution) across the study area. Comparison of the ALT estimates with ground-based measurements, indicates the accuracy (r 2 = 0.76, RMSE ±4.4 cm) of the approach. While it is generally accepted that broad climatic variability associated with increasing air temperature will govern the regional averages of ALT , consistent with prior studies, our findings using high-resolution LiDAR and WorldView-2 data, show that smaller-scale variability in ALT is controlled by local eco-hydro-geomorphic factors. This work demonstrates a path forward for mapping ALT at high spatial resolution and across sufficiently large regions for improved understanding and predictions of coupled dynamics among permafrost, hydrology, and land-surface processes from readily available remote sensing data.
Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.
2013-01-01
Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805
Identification of mosquito larval habitats in high resolution satellite data
NASA Astrophysics Data System (ADS)
Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.
2003-09-01
Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.
Assessing the capabilities of hyperspectral remote sensing to map oil films on waters
NASA Astrophysics Data System (ADS)
Liu, Bingxin; Li, Ying; Zhu, Xueyuan
2014-11-01
The harm of oil spills has caused extensive public concern. Remote sensing technology has become one of the most effective means of monitoring oil spill. However, how to evaluate the information extraction capabilities of various sensors and choose the most effective one has become an important issue. The current evaluation of sensors to detect oil films was mainly using in-situ measured spectra as a reference to determine the favorable band, but ignoring the effects of environmental noise and spectral response function. To understand the precision and accuracy of environment variables acquired from remote sensing, it is important to evaluate the target detection sensitivity of the entire sensor-air-target system corresponding to the change of reflectivity. The measurement data associated with the evaluation is environmental noise equivalent reflectance difference (NEΔRE ), which depends on the instrument signal to noise ratio(SNR) and other image data noise (such as atmospheric variables, scattered sky light scattering and direct sunlight, etc.). Hyperion remote sensing data is taken as an example for evaluation of its oil spill detection capabilities with the prerequisite that the impact of the spatial resolution is ignored. In order to evaluate the sensor's sensitivity of the film of water, the reflectance spectral data of light diesel and crude oil film were used. To obtain Hyperion reflectance data, we used FLAASH to do the atmospheric correction. The spectral response functions of Hyperion sensor was used for filtering the measured reflectance of the oil films to the theoretic spectral response. Then, these spectral response spectra were normalized to NEΔRE, according to which, the sensitivity of the sensor in oil film detecting could be evaluated. For crude oil, the range for Hyperion sensor to identify the film is within the wavelength from 518nm to 610nm (Band 17 to Band 26 of Hyperion sensors), within which the thin film and thick film can also be distinguished. For light diesel oil film, the range for Hyperion sensor to identify the film is within the wavelength from 468nm to 752nm (Band 12 to Band 40 of Hyperion sensors).
NASA Astrophysics Data System (ADS)
Molinario, G.; Baraldi, A.; Altstatt, A. L.; Nackoney, J.
2011-12-01
The University of Maryland has been a USAID Central Africa Rregional Program for the Environment (CARPE) cross-cutting partner for many years, providing remote sensing derived information on forest cover and forest cover changes in support of CARPE's objectives of diminishing forest degradation, loss and biodiversity loss as a result of poor or inexistent land use planning strategies. Together with South Dakota State University, Congo Basin-wide maps have been provided that map forest cover loss at a maximum of 60m resolution, using Landsat imagery and higher resolution imagery for algorithm training and validation. However, to better meet the needs within the CARPE Landscapes, which call for higher resolution, more accurate land cover change maps, UMD has been exploring the use of the SIAM automatic spectral -rule classifier together with pan-sharpened Landsat data (15m resolution) and Very High Resolution imagery from various sources. The pilot project is being developed in collaboration with the African Wildlife Foundation in the Maringa Lopori Wamba CARPE Landscape. If successful in the future this methodology will make the creation of high resolution change maps faster and easier, making it accessible to other entities in the Congo Basin that need accurate land cover and land use change maps in order, for example, to create sustainable land use plans, conserve biodiversity and resources and prepare Reducing Emissions from forest Degradation and Deforestation (REDD) Measurement, Reporting and Verification (MRV) projects. The paper describes the need for higher resolution land cover change maps that focus on forest change dynamics such as the cycling between primary forests, secondary forest, agriculture and other expanding and intensifying land uses in the Maringa Lopori Wamba CARPE Landscape in the Equateur Province of the Democratic Republic of Congo. The Methodology uses the SIAM remote sensing imagery automatic spectral rule classifier, together with pan-sharpened Landsat imagery with 15m resolution and Very High Resolution imagery from different sensors, obtained from the Department of Defense database that was recently opened to NASA and its Earth Observation partners. Particular emphasis is placed on the detection of agricultural fields and their expansion in primary forests or intensification in secondary forests and fallow fields, as this is the primary driver of deforestation in this area. Fields in this area area also of very small size and irregular shapes, often partly obscured by neighboring forest canopy, hence the technical challenge of correctly detecting them and tracking them through time. Finally, the potential for use of this methodology in other regions where information on land cover changes is needed for land use sustainability planning, is also addressed.
NASA Astrophysics Data System (ADS)
Gholizadeh, Asa; Kopaekova, Veronika; Rogass, Christian; Mielke, Christian; Misurec, Jan
2016-08-01
Systematic quantification and monitoring of forest biophysical and biochemical variables is required to assess the response of ecosystems to climate change. Remote sensing has been introduced as a time and cost- efficient way to carry out large scale monitoring of vegetation parameters. Red-Edge Position (REP) is a hyperspectrally detectable parameter which is sensitive to vegetation Chl. In the current study, REP was modelled for the Norway spruce forest canopy resampled to HyMap and Sentinel-2 spectral resolution as well as calculated from the real HyMap and Sentinel-2 simulated data. Different REP extraction methods (4PLI, PF, LE, 4PLIH and 4PLIS) were assessed. The study showed the way for effective utilization of the forthcoming hyper and superspectral remote sensing sensors from orbit to monitor vegetation attributes.
NASA Astrophysics Data System (ADS)
Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Jonathan
2011-10-01
High spectral resolution lidars (HSRLs) designed for aerosol and cloud remote sensing are increasingly being deployed on aircraft and called for on future space-based missions. The HSRL technique relies on spectral discrimination of the atmospheric backscatter signals to enable independent, unambiguous retrieval of aerosol extinction and backscatter. A compact, monolithic field-widened Michelson interferometer is being developed as the spectral discrimination filter for an HSRL system at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid glass arm, and an air arm. The spacer that connects the air arm mirror to the main part of the interferometer is designed to optimize thermal compensation such that the frequency of maximum interference can be tuned with great precision to the transmitted laser wavelength. In this paper, a comprehensive radiometric model for the field-widened Michelson interferometeric spectral filter is presented. The model incorporates the angular distribution and finite cross sectional area of the light source, reflectance of all surfaces, loss of absorption, and lack of parallelism between the airarm and solid arm, etc. The model can be used to assess the performance of the interferometer and thus it is a useful tool to evaluate performance budgets and to set optical specifications for new designs of the same basic interferometer type.
A potential hyperspectral remote sensing imager for water quality measurements
NASA Astrophysics Data System (ADS)
Zur, Yoav; Braun, Ofer; Stavitsky, David; Blasberger, Avigdor
2003-04-01
Utilization of Pan Chromatic and Multi Spectral Remote Sensing Imagery is wide spreading and becoming an established business for commercial suppliers of such imagery like ISI and others. Some emerging technologies are being used to generate Hyper-Spectral imagery (HSI) by aircraft as well as other platforms. The commercialization of such technology for Remote Sensing from space is still questionable and depends upon several parameters including maturity, cost, market reception and many others. HSI can be used in a variety of applications in agriculture, urban mapping, geology and others. One outstanding potential usage of HSI is for water quality monitoring, a subject studied in this paper. Water quality monitoring is becoming a major area of interest in HSI due to the increase in water demand around the globe. The ability to monitor water quality in real time having both spatial and temporal resolution is one of the advantages of Remote Sensing. This ability is not limited only for measurements of oceans and inland water, but can be applied for drinking and irrigation water reservoirs as well. HSI in the UV-VNIR has the ability to measure a wide range of constituents that define water quality. Among the constituents that can be measured are the pigment concentration of various algae, chlorophyll a and c, carotenoids and phycocyanin, thus enabling to define the algal phyla. Other parameters that can be measured are TSS (Total Suspended Solids), turbidity, BOD (Biological Oxygen Demand), hydrocarbons, oxygen demand. The study specifies the properties of such a space borne device that results from the spectral signatures and the absorption bands of the constituents in question. Other parameters considered are the repetition of measurements, the spatial aspects of the sensor and the SNR of the sensor in question.
NASA Technical Reports Server (NTRS)
Hammer, Philip D.; Valero, Francisco P. J.; Peterson, David L.; Smith, William Hayden
1991-01-01
The capabilities of the digital array scanned interferometer (DASI) class of instruments for measuring terrestrial radiation fields over the visible to mid-infrared are evaluated. DASI's are capable of high throughput, sensitivity and spectral resolution and have the potential for field-of-view spatial discrimination (an imaging spectrometer). The simplicity of design and operation of DASI's make them particularly suitable for field and airborne platform based remote sensing. The long term objective is to produce a versatile field instrument which may be applied toward a variety of atmospheric and surface studies. The operation of DASI and its advantages over other spectrometers are discussed.
Review: advances in in situ and satellite phenological observations in Japan
NASA Astrophysics Data System (ADS)
Nagai, Shin; Nasahara, Kenlo Nishida; Inoue, Tomoharu; Saitoh, Taku M.; Suzuki, Rikie
2016-04-01
To accurately evaluate the responses of spatial and temporal variation of ecosystem functioning (evapotranspiration and photosynthesis) and services (regulating and cultural services) to the rapid changes caused by global warming, we depend on long-term, continuous, near-surface, and satellite remote sensing of phenology over wide areas. Here, we review such phenological studies in Japan and discuss our current knowledge, problems, and future developments. In contrast with North America and Europe, Japan has been able to evaluate plant phenology along vertical and horizontal gradients within a narrow area because of the country's high topographic relief. Phenological observation networks that support scientific studies and outreach activities have used near-surface tools such as digital cameras and spectral radiometers. Differences in phenology among ecosystems and tree species have been detected by analyzing the seasonal variation of red, green, and blue digital numbers (RGB values) extracted from phenological images, as well as spectral reflectance and vegetation indices. The relationships between seasonal variations in RGB-derived indices or spectral characteristics and the ecological and CO2 flux measurement data have been well validated. In contrast, insufficient satellite remote-sensing observations have been conducted because of the coarse spatial resolution of previous datasets, which could not detect the heterogeneous plant phenology that results from Japan's complex topography and vegetation. To improve Japanese phenological observations, multidisciplinary analysis and evaluation will be needed to link traditional phenological observations with "index trees," near-surface and satellite remote-sensing observations, "citizen science" (observations by citizens), and results published on the Internet.
Remote sensing imagery classification using multi-objective gravitational search algorithm
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2016-10-01
Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.
Li, Zhao-Liang
2018-01-01
Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548
Multiorder etalon sounder (MOES) development and test for balloon experiment
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Wnag, Jinxue; Wu, Jian
1993-01-01
The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES concept and laboratory experiments were worked on for the past several years. Both theoretical studies and laboratory prototype experiments showed that MOES is very competitive compared with other high resolution sounders in terms of complexity and performance and has great potential as a compact and rugged high resolution atmospheric temperature and trace species sounder from the polar platform or the geostationary platform. The logical next step is to convert our laboratory prototype to a balloon instrument, so that field test of MOES can be carried out to prove the feasibility and capability of this new technology. Some of the activities related to the development of MOES for a possible balloon flight demonstration are described. Those research activities include the imaging quality study on the CLIO, the design and construction of a MOES laboratory prototype, the test and calibration of the MOES prototype, and the design of the balloon flight gondola.
Forest cover type analysis of New England forests using innovative WorldView-2 imagery
NASA Astrophysics Data System (ADS)
Kovacs, Jenna M.
For many years, remote sensing has been used to generate land cover type maps to create a visual representation of what is occurring on the ground. One significant use of remote sensing is the identification of forest cover types. New England forests are notorious for their especially complex forest structure and as a result have been, and continue to be, a challenge when classifying forest cover types. To most accurately depict forest cover types occurring on the ground, it is essential to utilize image data that have a suitable combination of both spectral and spatial resolution. The WorldView-2 (WV2) commercial satellite, launched in 2009, is the first of its kind, having both high spectral and spatial resolutions. WV2 records eight bands of multispectral imagery, four more than the usual high spatial resolution sensors, and has a pixel size of 1.85 meters at the nadir. These additional bands have the potential to improve classification detail and classification accuracy of forest cover type maps. For this reason, WV2 imagery was utilized on its own, and in combination with Landsat 5 TM (LS5) multispectral imagery, to evaluate whether these image data could more accurately classify forest cover types. In keeping with recent developments in image analysis, an Object-Based Image Analysis (OBIA) approach was used to segment images of Pawtuckaway State Park and nearby private lands, an area representative of the typical complex forest structure found in the New England region. A Classification and Regression Tree (CART) analysis was then used to classify image segments at two levels of classification detail. Accuracies for each forest cover type map produced were generated using traditional and area-based error matrices, and additional standard accuracy measures (i.e., KAPPA) were generated. The results from this study show that there is value in analyzing imagery with both high spectral and spatial resolutions, and that WV2's new and innovative bands can be useful for the classification of complex forest structures.
Application possibilities of aerial and terrain data evaluation in particulate pollution effects
NASA Astrophysics Data System (ADS)
Kozma-Bognar, V.; Berke, J.; Martin, G.
2012-04-01
Recently, remote sensing has become a widely used technology in order to acquire information about our environment. Data collected using remote sensing technology indispensible criteria to recognise and monitor environmental problems caused by contamination from various human activities. According to great technological change and development in the previous decade high spectral and geometric resolution sensors are more often used. The higher resolution technology allows getting more accurate and reliable results in the research processes of the environmental pollution impacts. At University of Pannonia, Georgikon Faculty (Hungary) plant-soil-atmosphere system analyses are carried out for detecting the potential harmful effects of heavy metal pollution originated from vehicle industry. Related to this research at the Department of Meteorology and Water Management, black carbon and cadmium pollution effects are being analysed on maize crops. Testing area is situated at Agro-meteorological Research Station in Keszthely, where the first time in 2011 aerial imaging technology was used in parallel with field analyses. The experiment aims to analyses correlation of the field data with aerial data. During aerial photography were taken in different spectral bands (Visible, Near Infrared, Far Infrared). High intensity, spectral and spatial resolution data was an important part of the multitemporal imagine sensing and evaluating technology, therefore original technical solutions were applied. These resolutions served accurate plot-level evaluation. Fractal structure and intensity measurement evaluation methods were applied to examine black carbon and cadmium polluted and control maize canopy after data pre-processing. Research also focused on the examination of potential negative or positive effects of irrigation so that differences between irrigated and non-irrigated maize was investigated. For the period of growing season of 2011 time-series analyses were carried out in various phonological phases of maize. Finally, valued aerial and terrain parameters - including e.g. micro-climatic conditions, relative humidity, albedo, etc. - were compared. This article was made under the project TÁMOP-4.2.1/B-09/1/KONV-2010-0003 and TÁMOP-4.2.2/B-10/1-2010-0025. These projects are supported by the European Union and co-financed by the European Social Fund.
Snapshot hyperspectral fovea vision system (HyperVideo)
NASA Astrophysics Data System (ADS)
Kriesel, Jason; Scriven, Gordon; Gat, Nahum; Nagaraj, Sheela; Willson, Paul; Swaminathan, V.
2012-06-01
The development and demonstration of a new snapshot hyperspectral sensor is described. The system is a significant extension of the four dimensional imaging spectrometer (4DIS) concept, which resolves all four dimensions of hyperspectral imaging data (2D spatial, spectral, and temporal) in real-time. The new sensor, dubbed "4×4DIS" uses a single fiber optic reformatter that feeds into four separate, miniature visible to near-infrared (VNIR) imaging spectrometers, providing significantly better spatial resolution than previous systems. Full data cubes are captured in each frame period without scanning, i.e., "HyperVideo". The current system operates up to 30 Hz (i.e., 30 cubes/s), has 300 spectral bands from 400 to 1100 nm (~2.4 nm resolution), and a spatial resolution of 44×40 pixels. An additional 1.4 Megapixel video camera provides scene context and effectively sharpens the spatial resolution of the hyperspectral data. Essentially, the 4×4DIS provides a 2D spatially resolved grid of 44×40 = 1760 separate spectral measurements every 33 ms, which is overlaid on the detailed spatial information provided by the context camera. The system can use a wide range of off-the-shelf lenses and can either be operated so that the fields of view match, or in a "spectral fovea" mode, in which the 4×4DIS system uses narrow field of view optics, and is cued by a wider field of view context camera. Unlike other hyperspectral snapshot schemes, which require intensive computations to deconvolve the data (e.g., Computed Tomographic Imaging Spectrometer), the 4×4DIS requires only a linear remapping, enabling real-time display and analysis. The system concept has a range of applications including biomedical imaging, missile defense, infrared counter measure (IRCM) threat characterization, and ground based remote sensing.
A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
NASA Technical Reports Server (NTRS)
Porter, Wallace M.; Enmark, Harry T.
1987-01-01
The AVIRIS instrument has been designed to do high spectral resolution remote sensing of the Earth. Utilizing both silicon and indium antimonide line array detectors, AVIRIS covers the spectral region from 0.41 to 2.45 microns in 10-nm bands. It was designed to fly aboard NASA's U-2 and ER-2 aircraft, where it will simulate the performance of future spacecraft instrumentation. Flying at an altitude of 20 km, it has an instantaneous field of view of 20 m and views a swath over 10 km wide. With an ability to record 40 minutes of data, it can, during a single flight, capture 500 km of flight line.
Some practical aspects of lossless and nearly-lossless compression of AVHRR imagery
NASA Technical Reports Server (NTRS)
Hogan, David B.; Miller, Chris X.; Christensen, Than Lee; Moorti, Raj
1994-01-01
Compression of Advanced Very high Resolution Radiometers (AVHRR) imagery operating in a lossless or nearly-lossless mode is evaluated. Several practical issues are analyzed including: variability of compression over time and among channels, rate-smoothing buffer size, multi-spectral preprocessing of data, day/night handling, and impact on key operational data applications. This analysis is based on a DPCM algorithm employing the Universal Noiseless Coder, which is a candidate for inclusion in many future remote sensing systems. It is shown that compression rates of about 2:1 (daytime) can be achieved with modest buffer sizes (less than or equal to 2.5 Mbytes) and a relatively simple multi-spectral preprocessing step.
NASA Technical Reports Server (NTRS)
1982-01-01
Evaluating of the combined utility of narrowband and multispectral imaging in both the infrared and visible for the lithologic identification of geologic materials, and of the combined utility of multispectral imaging in the visible and infrared for lithologic mapping on a global bases are near term recommendations for future imaging capabilities. Long term recommendations include laboratory research into methods of field sampling and theoretical models of microscale mixing. The utility of improved spatial and spectral resolutions and radiometric sensitivity is also suggested for the long term. Geobotanical remote sensing research should be conducted to (1) separate geological and botanical spectral signatures in individual picture elements; (2) study geobotanical correlations that more fully simulate natural conditions; and use test sites designed to test specific geobotanical hypotheses.
Spectral Band Characterization for Hyperspectral Monitoring of Water Quality
NASA Technical Reports Server (NTRS)
Vermillion, Stephanie C.; Raqueno, Rolando; Simmons, Rulon
2001-01-01
A method for selecting the set of spectral characteristics that provides the smallest increase in prediction error is of interest to those using hyperspectral imaging (HSI) to monitor water quality. The spectral characteristics of interest to these applications are spectral bandwidth and location. Three water quality constituents of interest that are detectable via remote sensing are chlorophyll (CHL), total suspended solids (TSS), and colored dissolved organic matter (CDOM). Hyperspectral data provides a rich source of information regarding the content and composition of these materials, but often provides more data than an analyst can manage. This study addresses the spectral characteristics need for water quality monitoring for two reasons. First, determination of the greatest contribution of these spectral characteristics would greatly improve computational ease and efficiency. Second, understanding the spectral capabilities of different spectral resolutions and specific regions is an essential part of future system development and characterization. As new systems are developed and tested, water quality managers will be asked to determine sensor specifications that provide the most accurate and efficient water quality measurements. We address these issues using data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and a set of models to predict constituent concentrations.
Towards automatic lithological classification from remote sensing data using support vector machines
NASA Astrophysics Data System (ADS)
Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael
2010-05-01
Remote sensing data can be effectively used as a mean to build geological knowledge for poorly mapped terrains. Spectral remote sensing data from space- and air-borne sensors have been widely used to geological mapping, especially in areas of high outcrop density in arid regions. However, spectral remote sensing information by itself cannot be efficiently used for a comprehensive lithological classification of an area due to (1) diagnostic spectral response of a rock within an image pixel is conditioned by several factors including the atmospheric effects, spectral and spatial resolution of the image, sub-pixel level heterogeneity in chemical and mineralogical composition of the rock, presence of soil and vegetation cover; (2) only surface information and is therefore highly sensitive to the noise due to weathering, soil cover, and vegetation. Consequently, for efficient lithological classification, spectral remote sensing data needs to be supplemented with other remote sensing datasets that provide geomorphological and subsurface geological information, such as digital topographic model (DEM) and aeromagnetic data. Each of the datasets contain significant information about geology that, in conjunction, can potentially be used for automated lithological classification using supervised machine learning algorithms. In this study, support vector machine (SVM), which is a kernel-based supervised learning method, was applied to automated lithological classification of a study area in northwestern India using remote sensing data, namely, ASTER, DEM and aeromagnetic data. Several digital image processing techniques were used to produce derivative datasets that contained enhanced information relevant to lithological discrimination. A series of SVMs (trained using k-folder cross-validation with grid search) were tested using various combinations of input datasets selected from among 50 datasets including the original 14 ASTER bands and 36 derivative datasets (including 14 principal component bands, 14 independent component bands, 3 band ratios, 3 DEM derivatives: slope/curvatureroughness and 2 aeromagnetic derivatives: mean and variance of susceptibility) extracted from the ASTER, DEM and aeromagnetic data, in order to determine the optimal inputs that provide the highest classification accuracy. It was found that a combination of ASTER-derived independent components, principal components and band ratios, DEM-derived slope, curvature and roughness, and aeromagnetic-derived mean and variance of magnetic susceptibility provide the highest classification accuracy of 93.4% on independent test samples. A comparison of the classification results of the SVM with those of maximum likelihood (84.9%) and minimum distance (38.4%) classifiers clearly show that the SVM algorithm returns much higher classification accuracy. Therefore, the SVM method can be used to produce quick and reliable geological maps from scarce geological information, which is still the case with many under-developed frontier regions of the world.
NASA Astrophysics Data System (ADS)
Awumah, A.; Mahanti, P.; Robinson, M. S.
2017-12-01
Image fusion is often used in Earth-based remote sensing applications to merge spatial details from a high-resolution panchromatic (Pan) image with the color information from a lower-resolution multi-spectral (MS) image, resulting in a high-resolution multi-spectral image (HRMS). Previously, the performance of six well-known image fusion methods were compared using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images (1). Results showed the Intensity-Hue-Saturation (IHS) method provided the best spatial performance, but deteriorated the spectral content. In general, there was a trade-off between spatial enhancement and spectral fidelity from the fusion process; the more spatial details from the Pan fused with the MS image, the more spectrally distorted the final HRMS. In this work, we control the amount of spatial details fused (from the LROC NAC images to WAC images) using a controlled IHS method (2), to investigate the spatial variation in spectral distortion on fresh crater ejecta. In the controlled IHS method (2), the percentage of the Pan component merged with the MS is varied. The percent of spatial detail from the Pan used is determined by a variable whose value may be varied between 1 (no Pan utilized) to infinity (entire Pan utilized). An HRMS color composite image (red=415nm, green=321/415nm, blue=321/360nm (3)) was used to assess performance (via visual inspection and metric-based evaluations) at each tested value of the control parameter (1 to 10—after which spectral distortion saturates—in 0.01 increments) within three regions: crater interiors, ejecta blankets, and the background material surrounding the craters. Increasing the control parameter introduced increased spatial sharpness and spectral distortion in all regions, but to varying degrees. Crater interiors suffered the most color distortion, while ejecta experienced less color distortion. The controlled IHS method is therefore desirable for resolution-enhancement of fresh crater ejecta; larger values of the control parameter may be used to sharpen MS images of ejecta patterns but with less impact to color distortion than in the uncontrolled IHS fusion process. References: (1) Prasun et. al (2016) ISPRS. (2) Choi, Myungjin (2006) IEEE. (3) Denevi et. al (2014) JGR.
A Fabry-Perot interferometric imaging spectrometer in LWIR
NASA Astrophysics Data System (ADS)
Zhang, Fang; Gao, Jiaobo; Wang, Nan; Wu, Jianghui; Meng, Hemin; Zhang, Lei; Gao, Shan
2017-02-01
With applications ranging from the desktop to remote sensing, the long wave infrared (LWIR) interferometric spectral imaging system is always with huge volume and large weight. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (FP) interferometer is researched. With the system working principle analyzed, theoretically, it is researched that how to make certain the primary parameter, such as, wedge angle of interferometric cavity, f-number of the imaging lens and the relationship between the wedge angle and the modulation of the interferogram. A prototype is developed and a good experimental result of a uniform radiation source, a monochromatic source, is obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.
NASA Astrophysics Data System (ADS)
Wang, Zheng; Mao, Zhihua; Xia, Junshi; Du, Peijun; Shi, Liangliang; Huang, Haiqing; Wang, Tianyu; Gong, Fang; Zhu, Qiankun
2018-06-01
The cloud cover for the South China Sea and its coastal area is relatively large throughout the year, which limits the potential application of optical remote sensing. A HJ-charge-coupled device (HJ-CCD) has the advantages of wide field, high temporal resolution, and short repeat cycle. However, this instrument suffers from its use of only four relatively low-quality bands which can't adequately resolve the features of long wavelengths. The Landsat Enhanced Thematic Mapper-plus (ETM+) provides high-quality data, however, the Scan Line Corrector (SLC) stopped working and caused striping of remote sensed images, which dramatically reduced the coverage of the ETM+ data. In order to combine the advantages of the HJ-CCD and Landsat ETM+ data, we adopted a back-propagation artificial neural network (BP-ANN) to fuse these two data types for this study. The results showed that the fused output data not only have the advantage of data intactness for the HJ-CCD, but also have the advantages of the multi-spectral and high radiometric resolution of the ETM+ data. Moreover, the fused data were analyzed qualitatively, quantitatively and from a practical application point of view. Experimental studies indicated that the fused data have a full spatial distribution, multi-spectral bands, high radiometric resolution, a small difference between the observed and fused output data, and a high correlation between the observed and fused data. The excellent performance in its practical application is a further demonstration that the fused data are of high quality.
Potential of Sentinel Satellites for Schistosomiasis Monitoring
NASA Astrophysics Data System (ADS)
Li, C.-R.; Tang, L.-L.; Niu, H.-B.; Zhou, X.-N.; Liu, Z.-Y.; Ma, L.-L.; Zhou, Y.-S.
2012-04-01
Schistosomiasis is a parasitic disease that menaces human health. In terms of impact this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis is the unique intermediate host of Schistosoma, and hence monitoring and controlling of the number of oncomelania is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to oncomelania breeding and reproduction, such as temperature, moisture, vegetation, soil, and rainfall, and can also provide the efficient information to determine the location, area, and spread tendency of oncomelania. Many studies show that the correlation coefficient between oncomelania densities and remote sensing environmental factors depends largely on suitable and high quality remote sensing data used in retrieve environmental factors. Research achievements on retrieving environmental factors (which are related to the living, multiplying and transmission of oncomelania) by multi-source remote data are shown firstly, including: (a) Vegetation information (e.g., Modified Soil-Adjusted Vegetation Index, Normalized Difference Moisture Index, Fractional Vegetation Cover) extracted from optical remote sensing data, such as Landsat TM, HJ-1A/HSI image; (b) Surface temperature retrieval from Thermal Infrared (TIR) and passive-microwave remote sensing data; (c) Water region, soil moisture, forest height retrieval from synthetic aperture radar data, such as Envisat SAR, DLR's ESAR image. Base on which, the requirements of environmental factor accuracy for schistosomiasis monitoring will be analyzed and summarized. Our work on applying remote sensing technique to schistosomiasis monitoring is then presented. The fuzzy information theory is employed to analyze the sensitivity and feasibility relation between oncomelania densities and environmental factors. Then a mechanism model of predicting oncomelania distribution and densities is developed. The new model is validated with field data of Dongting Lake and the dynamic monitoring of schistosomiasis breeding in Dongting Lake region is presented. Finally, emphasis are placed on analyzing the potential of Sentinel satellites for schistosomiasis monitoring. The requirements of optical high resolution data on spectral resolution, spatial resolution, radiometric resolution/accuracy, as well as the requirements of synthetic aperture radar data on operation frequency, spatial resolution, polarization, radiometric accuracy, repeat cycle are presented and then compared with the parameters of Sentinel satellites. The parameters of Sentinel satellites are also compared with those of available remote satellites, such as Envisat, Landsat, whose data are being used for schistosomiasis monitoring. The application potential of Sentinel satellites for the schistosomiasis monitoring will be concluded in the end, which will benefit for the mission operation, model development, etc.
Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop
NASA Technical Reports Server (NTRS)
Vane, G. (Editor); Goetz, A. F. H. (Editor)
1985-01-01
The Airborne Imaging Spectrometer (AIS) Data Analysis Workshop was held at the Jet Propulsion Laboratory on April 8 to 10, 1985. It was attended by 92 people who heard reports on 30 investigations currently under way using AIS data that have been collected over the past two years. Written summaries of 27 of the presentations are in these Proceedings. Many of the results presented at the Workshop are preliminary because most investigators have been working with this fundamentally new type of data for only a relatively short time. Nevertheless, several conclusions can be drawn from the Workshop presentations concerning the value of imaging spectrometry to Earth remote sensing. First, work with AIS has shown that direct identification of minerals through high spectral resolution imaging is a reality for a wide range of materials and geological settings. Second, there are strong indications that high spectral resolution remote sensing will enhance the ability to map vegetation species. There are also good indications that imaging spectrometry will be useful for biochemical studies of vegetation. Finally, there are a number of new data analysis techniques under development which should lead to more efficient and complete information extraction from imaging spectrometer data. The results of the Workshop indicate that as experience is gained with this new class of data, and as new analysis methodologies are developed and applied, the value of imaging spectrometry should increase.
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
NASA Technical Reports Server (NTRS)
Labovitz, M. L.; Masuoka, E. J.; Bell, R.; Nelson, R. F.; Larsen, C. A.; Hooker, L. K.; Troensegaard, K. W.
1985-01-01
It is pointed out that in many regions of the world, vegetation is the predominant factor influencing variation in reflected energy in the 0.4-2.5 micron region of the spectrum. Studies have, therefore, been conducted regarding the utility of remote sensing for detecting changes in vegetation which could be related to the presence of mineralization. The present paper provides primarily a report on the results of the second year of a multiyear study of geobotanical-remote-sensing relationships as developed over areas of sulfide mineralization. The field study has a strong experimental design basis. It is proceeded by first delineating the boundaries of a large geographic region which satisfied a set of previously enumerated field-site criteria. Within this region, carefully selected pairs of mineralized and nonmineralized test sites were examined over the growing season. The experiment is to provide information about the spectral and temporal resolutions required for remote-sensing-geobotanical exploration. The obtained results are evaluated.
The Feasibility Evaluation of Land Use Change Detection Using GAOFEN-3 Data
NASA Astrophysics Data System (ADS)
Huang, G.; Sun, Y.; Zhao, Z.
2018-04-01
GaoFen-3 (GF-3) satellite, is the first C band and multi-polarimetric Synthetic Aperture Radar (SAR) satellite in China. In order to explore the feasibility of GF-3 satellite in remote sensing interpretation and land-use remote sensing change detection, taking Guangzhou, China as a study area, the full polarimetric image of GF-3 satellite with 8 m resolution of two temporal as the data source. Firstly, the image is pre-processed by orthorectification, image registration and mosaic, and the land-use remote sensing digital orthophoto map (DOM) in 2017 is made according to the each county. Then the classification analysis and judgment of ground objects on the image are carried out by means of ArcGIS combining with the auxiliary data and using artificial visual interpretation, to determine the area of changes and the category of change objects. According to the unified change information extraction principle to extract change areas. Finally, the change detection results are compared with 3 m resolution TerraSAR-X data and 2 m resolution multi-spectral image, and the accuracy is evaluated. Experimental results show that the accuracy of the GF-3 data is over 75 % in detecting the change of ground objects, and the detection capability of new filling soil is better than that of TerraSAR-X data, verify the detection and monitoring capability of GF-3 data to the change information extraction, also, it shows that GF-3 can provide effective data support for the remote sensing detection of land resources.
Unattended Radiation Sensor Systems for Remote Terrestrial Applications and Nuclear Nonproliferation
NASA Astrophysics Data System (ADS)
van den Berg, Lodewijk; Proctor, Alan E.; Pohl, Ken R.; Bolozdynya, Alex; De Vito, Raymond
2002-10-01
The design of instrumentation for remote sensing presents special requirements in the areas of power consumption, long-term stability, and compactness. At the same time, the high sensitivity and resolution of the devices needs to be preserved. This paper will describe several instruments suitable for remote sensing developed under the sponsorship of the Defense Threat Reduction Agency (DTRA). The first is a system consisting of a mechanical cryocooler coupled with a high-purity germanium (HPGe) detector. The system is portable and can be operated for extended periods of time at remote locations without servicing. The second is a hand-held radiation intensity meter with high sensitivity that can operate for several months on two small batteries. Intensity signals above a set limit can be transmitted to a central monitoring station by cable or radio transmission. The third is a small module incorporating one or more high resolution mercuric iodide detectors and front end electronics. This unit can be operated using standard electronic systems, or it can be connected to a separately designed, pocket-size module that can provide power to any detector system and can process detector signals. It incorporates a shaping amplifier, a multichannel analyzer, and gated integrator electronics to process the slow signal pulses generated by room temperature solid state detectors. The fourth is a high pressure xenon (HPXe) ionization chamber filled with very pure xenon gas at high pressure, so that the efficiency and spectral resolution are increased above the normally available gas-filled tubes. The performance of these systems will be described and discussed.
Spectral Band Selection for Urban Material Classification Using Hyperspectral Libraries
NASA Astrophysics Data System (ADS)
Le Bris, A.; Chehata, N.; Briottet, X.; Paparoditis, N.
2016-06-01
In urban areas, information concerning very high resolution land cover and especially material maps are necessary for several city modelling or monitoring applications. That is to say, knowledge concerning the roofing materials or the different kinds of ground areas is required. Airborne remote sensing techniques appear to be convenient for providing such information at a large scale. However, results obtained using most traditional processing methods based on usual red-green-blue-near infrared multispectral images remain limited for such applications. A possible way to improve classification results is to enhance the imagery spectral resolution using superspectral or hyperspectral sensors. In this study, it is intended to design a superspectral sensor dedicated to urban materials classification and this work particularly focused on the selection of the optimal spectral band subsets for such sensor. First, reflectance spectral signatures of urban materials were collected from 7 spectral libraires. Then, spectral optimization was performed using this data set. The band selection workflow included two steps, optimising first the number of spectral bands using an incremental method and then examining several possible optimised band subsets using a stochastic algorithm. The same wrapper relevance criterion relying on a confidence measure of Random Forests classifier was used at both steps. To cope with the limited number of available spectra for several classes, additional synthetic spectra were generated from the collection of reference spectra: intra-class variability was simulated by multiplying reference spectra by a random coefficient. At the end, selected band subsets were evaluated considering the classification quality reached using a rbf svm classifier. It was confirmed that a limited band subset was sufficient to classify common urban materials. The important contribution of bands from the Short Wave Infra-Red (SWIR) spectral domain (1000-2400 nm) to material classification was also shown.
Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean
NASA Astrophysics Data System (ADS)
Rudolf, Andreas; Walther, Thomas
2014-05-01
We report on the successful laboratory demonstration of a real-time lidar system to remotely measure temperature profiles in water. In the near future, it is intended to be operated from a mobile platform, e.g., a helicopter or vessel, in order to precisely determine the temperature of the surface mixed layer of the ocean with high spatial resolution. The working principle relies on the active generation and detection of spontaneous Brillouin scattering. The light source consists of a frequency-doubled fiber-amplified external cavity diode laser and provides high-energy, Fourier transform-limited laser pulses in the green spectral range. The detector is based on an atomic edge filter and allows the challenging extraction of the temperature information from the Brillouin scattered light. In the lab environment, depending on the amount of averaging, water temperatures were resolved with a mean accuracy of up to 0.07°C and a spatial resolution of 1 m, proving the feasibility and the large potential of the overall system.
A new method of Quickbird own image fusion
NASA Astrophysics Data System (ADS)
Han, Ying; Jiang, Hong; Zhang, Xiuying
2009-10-01
With the rapid development of remote sensing technology, the means of accessing to remote sensing data become increasingly abundant, thus the same area can form a large number of multi-temporal, different resolution image sequence. At present, the fusion methods are mainly: HPF, IHS transform method, PCA method, Brovey, Mallat algorithm and wavelet transform and so on. There exists a serious distortion of the spectrums in the IHS transform, Mallat algorithm omits low-frequency information of the high spatial resolution images, the integration results of which has obvious blocking effects. Wavelet multi-scale decomposition for different sizes, the directions, details and the edges can have achieved very good results, but different fusion rules and algorithms can achieve different effects. This article takes the Quickbird own image fusion as an example, basing on wavelet transform and HVS, wavelet transform and IHS integration. The result shows that the former better. This paper introduces the correlation coefficient, the relative average spectral error index and usual index to evaluate the quality of image.
Sub-parcel terroir mapping supported by UAV-based hyperspectral imagery
NASA Astrophysics Data System (ADS)
Takács, Katalin; Árvai, Mátyás; Koós, Sándor; Deák, Márton; Bakacsi, Zsófia; László, Péter; Pásztor, László
2017-04-01
There is a greater need to better understand the regional-to-parcel variations in viticultural potential. The differentiation and mapping of the variability of grape and wine quality require comprehensive spatial modelling of climatic, topographic and soil properties and a "terroir-based approach". Using remote and proximal sensing sensors and instruments are the most effective way for surveying vineyard status, such as geomorphologic and soil conditions, plant water and nutrient availability, plant health. UAV (Unmanned Aerial Vechicle) platforms are ideal for the remote monitoring of small and medium size vineyards, because flight planning is flexible and very high spatial ground resolution (even centimeters) can be achieved. Using hyperspectral remote sensing techniques the spectral response of the vegetation and the bare soil surface can be analyzed in very high spectral resolution, which can support terroir mapping on a sub-parcel level. Our study area is located in Hungary, in the Tokaj Wine Region, which is a historical region for botrityzed dessert wine making. The area of Tokaj Wine Region was formed mostly by Miocene volcanic activity, where andesite, rhyolite lavas and tuffs are characteristic and loess cover also occurs in some regions. The various geology and morphology of this area result diversity in soil types and soil properties as well. The study site was surveyed by a Cubert UHD-185 hyperspectral camera set on a Cortex Octocopter platform. The hyperspectral images were acquired in VIS-NIR (visible and near-infrared; 450-950 nm), with 4 nm sampling interval. The image acquisition was carried out at bare soil conditions, therefore the most important soil properties, which has dominant role by the delineation of terroir, can be predicted. In our paper we will present the first results of the hyperspectral survey.
A new hyperspectral image compression paradigm based on fusion
NASA Astrophysics Data System (ADS)
Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto
2016-10-01
The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.
Development of a fusion approach selection tool
NASA Astrophysics Data System (ADS)
Pohl, C.; Zeng, Y.
2015-06-01
During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
Potential impact of remote sensing data on sea-state analysis and prediction
NASA Technical Reports Server (NTRS)
Cardone, V. J.
1983-01-01
The severe North Atlantic storm which damaged the ocean liner Queen Elizabeth 2 (QE2) was studied to assess the impact of remotely sensed marine surface wind data obtained by SEASAT-A, on sea state specifications and forecasts. Alternate representations of the surface wind field in the QE2 storm were produced from the SEASAT enhanced data base, and from operational analyses based upon conventional data. The wind fields were used to drive a high resolution spectral ocean surface wave prediction model. Results show that sea state analyses would have been vastly improved during the period of storm formation and explosive development had remote sensing wind data been available in real time. A modest improvement in operational 12 to 24 hour wave forecasts would have followed automatically from the improved initial state specification made possible by the remote sensing data in both numerical and sea state prediction models. Significantly improved 24 to 48 hour wave forecasts require in addition to remote sensing data, refinement in the numerical and physical aspects of weather prediction models.
Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li
2011-06-01
Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.
Overall design of imaging spectrometer on-board light aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhongqi, H.; Zhengkui, C.; Changhua, C.
1996-11-01
Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraftmore » imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.« less
NASA Astrophysics Data System (ADS)
Delbart, Nicolas; Emmanuelle, Vaudour; Fabienne, Maignan; Catherine, Ottlé; Jean-Marc, Gilliot
2017-04-01
This study explores the potential of multi-temporal optical remote sensing, with high revisit frequency, to derive missing information on agricultural calendar and crop types over the agricultural lands in the Versailles plain in the western Paris suburbs. This study comes besides past and ongoing studies on the use of radar and high spatial resolution optical remote sensing to monitor agricultural practices in this study area (e.g. Vaudour et al. 2014). Agricultural statistics, such as the Land Parcel Identification System (LPIS) for France, permit to know the nature of annual crops for each digitized declared field of this land parcel registry. However, within each declared field several cropped plots and a diversity of practices may exist, being marked by agricultural rotations which vary both spatially and temporally within it and differ from one year to the other. Even though the new LPIS to be released in 2016 is expected to describe individual plots within declared fields, its attributes may not enable to discriminate between winter and spring crops. Here we evaluate the potential of high observation frequency remote sensing to differentiate seasonal crops based essentially on the seasonality of the spectral properties. In particular, we use the Landsat data to spatially disaggregate the LPIS statistical data, on the basis of the analysis of the remote sensing spectral seasonality measured on a number of selected ground-observed fields. This work is carried out in the framework of the CNES TOSCA-PLEIADES-CO of the French Space Agency.
Naishadham, Krishna; Piou, Jean E; Ren, Lingyun; Fathy, Aly E
2016-12-01
Ultra wideband (UWB) Doppler radar has many biomedical applications, including remote diagnosis of cardiovascular disease, triage and real-time personnel tracking in rescue missions. It uses narrow pulses to probe the human body and detect tiny cardiopulmonary movements by spectral analysis of the backscattered electromagnetic (EM) field. With the help of super-resolution spectral algorithms, UWB radar is capable of increased accuracy for estimating vital signs such as heart and respiration rates in adverse signal-to-noise conditions. A major challenge for biomedical radar systems is detecting the heartbeat of a subject with high accuracy, because of minute thorax motion (less than 0.5 mm) caused by the heartbeat. The problem becomes compounded by EM clutter and noise in the environment. In this paper, we introduce a new algorithm based on the state space method (SSM) for the extraction of cardiac and respiration rates from UWB radar measurements. SSM produces range-dependent system poles that can be classified parametrically with spectral peaks at the cardiac and respiratory frequencies. It is shown that SSM produces accurate estimates of the vital signs without producing harmonics and inter-modulation products that plague signal resolution in widely used FFT spectrograms.
A l% and 1cm Perspective Leads to a Novel CDOM Absorption Algorithm
NASA Technical Reports Server (NTRS)
Morrow, J. H.; Hooker, S. B.; Matsuoka, A.
2012-01-01
A next-generation in-water profiler designed to measure the apparent optical properties of seawater was developed and validated across a wide dynamic range of water properties. This new Compact-Optical Profiling System (C-OPS) design uses a novel, kite-shaped, free-falling backplane with adjustable buoyancy and is based on 19 state-of-the-art microradiometers, spanning 320-780 nm. Data collected as part of the field commissioning were of a previously unachievable quality and showed that systematic uncertainties in the sampling protocols were discernible at the 1% optical and 1cm depth resolution levels. A sensitivity analysis as a function of three water types, established by the peak in the remote sensing reflectance spectra, revealed which water types and spectral domains were the most indicative of data acquisition uncertainties. The unprecedented vertical resolution of C-OPS measurements provided near-surface data products at the spectral endpoints with a quality level that has not been obtainable. The improved data allowed development of an algorithm for predicting the spectral absorption due to chromophoric dissolved organic matter (CDOM) using ratios of diffuse attenuation coefficients with over 99% of the variance in the data explained.
Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent
2011-01-01
The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily coverage of the Earth's surface, MODIS provides comprehensive measurements that enable scientists and policy makers to better understand and effectively manage the natural resources on both regional and global scales. Terra, the first large multisensor EOS satellite, is operated in a 10:30 am (local equatorial crossing time, descending southwards) polar orbit. Aqua, the second multisensor EOS satellite is operated in a 1:30 pm (local equatorial crossing time, ascending northwards) polar orbit. With complementing morning and afternoon observations, the Terra and Aqua MODIS, together with other sensors housed on both satellites, have greatly improved our understanding of the dynamics of the global environmental system.
NASA Astrophysics Data System (ADS)
Mouw, Colleen; Greb, Steven
2012-09-01
Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revercomb, Henry; Tobin, David; Knuteson, Robert
2009-06-17
This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play amore » central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004.« less
Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011
NASA Astrophysics Data System (ADS)
Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.
2017-12-01
The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.
NASA Technical Reports Server (NTRS)
Snowden, S. L.
2008-01-01
Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.
Terrestrial remote sensing science and algorithms planned for EOS/MODIS
Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen
1994-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.
NASA Astrophysics Data System (ADS)
Jorgensen, Kira; Africano, John L.; Stansbery, Eugene G.; Kervin, Paul W.; Hamada, Kris M.; Sydney, Paul F.
2001-12-01
The purpose of this research is to improve the knowledge of the physical properties of orbital debris, specifically the material type. Combining the use of the fast-tracking United States Air Force Research Laboratory (AFRL) telescopes with a common astronomical technique, spectroscopy, and NASA resources was a natural step toward determining the material type of orbiting objects remotely. Currently operating at the AFRL Maui Optical Site (AMOS) is a 1.6-meter telescope designed to track fast moving objects like those found in lower Earth orbit (LEO). Using the spectral range of 0.4 - 0.9 microns (4000 - 9000 angstroms), researchers can separate materials into classification ranges. Within the above range, aluminum, paints, plastics, and other metals have different absorption features as well as slopes in their respective spectra. The spectrograph used on this telescope yields a three-angstrom resolution; large enough to see smaller features mentioned and thus determine the material type of the object. The results of the NASA AMOS Spectral Study (NASS) are presented herein.
Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images
NASA Astrophysics Data System (ADS)
Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.
2014-12-01
Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.
Characterization and delineation of caribou habitat on Unimak Island using remote sensing techniques
NASA Astrophysics Data System (ADS)
Atkinson, Brain M.
The assessment of herbivore habitat quality is traditionally based on quantifying the forages available to the animal across their home range through ground-based techniques. While these methods are highly accurate, they can be time-consuming and highly expensive, especially for herbivores that occupy vast spatial landscapes. The Unimak Island caribou herd has been decreasing in the last decade at rates that have prompted discussion of management intervention. Frequent inclement weather in this region of Alaska has provided for little opportunity to study the caribou forage habitat on Unimak Island. The overall objectives of this study were two-fold 1) to assess the feasibility of using high-resolution color and near-infrared aerial imagery to map the forage distribution of caribou habitat on Unimak Island and 2) to assess the use of a new high-resolution multispectral satellite imagery platform, RapidEye, and use of the "red-edge" spectral band on vegetation classification accuracy. Maximum likelihood classification algorithms were used to create land cover maps in aerial and satellite imagery. Accuracy assessments and transformed divergence values were produced to assess vegetative spectral information and classification accuracy. By using RapidEye and aerial digital imagery in a hierarchical supervised classification technique, we were able to produce a high resolution land cover map of Unimak Island. We obtained overall accuracy rates of 71.4 percent which are comparable to other land cover maps using RapidEye imagery. The "red-edge" spectral band included in the RapidEye imagery provides additional spectral information that allows for a more accurate overall classification, raising overall accuracy 5.2 percent.
Atmospheric Effect on Remote Sensing of the Earth's Surface
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J. (Principal Investigator)
1985-01-01
Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for understanding and correcting for the atmospheric effect on remote sensing of surface properties. In the present work the theory is generalized and tested successfully against laboratory and field measurements. There is still a need to generalize the RT approximation for off-nadir directions and to take into account anisotropic reflectance at the surface. The reflectance at the surface. The adjacency effect results in a significant modification of spectral signatures of the surface, and therefore results in modification of classifications, of separability of field classes, and of spatial resolution. For example, the 30 m resolution of the Thematic Mapper is reduced to 100 m by a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in general depends on these parameter, not just adjacency effects, but they are not known well enough for making accurate atmospheric corrections. It is important to establish methods for estimating these parameters in order to develop correction methods for atmospheric effects. Such estimations can be based on climatological data, which are not available yet, correlations between the optical parameters and meteorological data, and the same satellite measurements of radiances that are used for estimating surface properties. Knowledge about the atmospheric parameters important for remote sensing is being enlarged with current measurements of them.
Airborne multicamera system for geo-spatial applications
NASA Astrophysics Data System (ADS)
Bachnak, Rafic; Kulkarni, Rahul R.; Lyle, Stacey; Steidley, Carl W.
2003-08-01
Airborne remote sensing has many applications that include vegetation detection, oceanography, marine biology, geographical information systems, and environmental coastal science analysis. Remotely sensed images, for example, can be used to study the aftermath of episodic events such as the hurricanes and floods that occur year round in the coastal bend area of Corpus Christi. This paper describes an Airborne Multi-Spectral Imaging System that uses digital cameras to provide high resolution at very high rates. The software is based on Delphi 5.0 and IC Imaging Control's ActiveX controls. Both time and the GPS coordinates are recorded. Three successful test flights have been conducted so far. The paper present flight test results and discusses the issues being addressed to fully develop the system.
NASA Technical Reports Server (NTRS)
Schwarz, D. E.; Ellefsen, R. E.
1981-01-01
Several general guidelines should be kept in mind when considering the selection of field sites for teaching remote sensing fundamentals. Proximity and vantage point are two very practical considerations. Only through viewing a broad enough area to place the site in context can one make efficient use of a site. The effects of inclement weather when selecting sites should be considered. If field work is to be an effective tool to illustrate remote sensing principles, the following criteria are critical: (1) the site must represent the range of class interest; (2) the site must have a theme or add something no other site offers; (3) there should be intrasite variation within the theme; (4) ground resolution and spectral signature distinction should be illustrated; and (5) the sites should not be ordered sequentially.
High Resolution Investigation of the Ethane Spectrum at 7 μ
NASA Astrophysics Data System (ADS)
Brown, Linda R.; Sung, K.; Di Lauro, C.; Lattanzi, F.; Vander Auwera, J.; Mantz, A. W.; Smith, M. A. H.
2010-10-01
A new theoretical analysis of the ethane spectrum between 1330 and 1610 cm-1 has been undertaken in order to create the first line-by-line database of molecular parameters for this spectral region. For this, high resolution spectra were obtained at room and cold (130 K) temperatures with two Bruker Fourier transform spectrometers (at 0.002 cm-1 resolution in Brussels and at 0.003 cm-1 resolution in Pasadena). Over 5000 lines were assigned to five bands in the region: v6, v8, v4+v12 and 2v4+v9 cold bands, and one hot band (v4+v8-v4). This new study employed a much improved theoretical Hamiltonian to reproduce the very complicated spectral structures resulting from numerous interactions between these vibrational modes. This advancement has enabled us to provide a quantum mechanical prediction of line positions and intensities of C2H6 at 7 micron long needed for remote sensing of outer planets and Titan. Two manuscripts are in preparation. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley under contract with the National Aeronautics and Space Administration, and with funding from FRS-FNRS in Belgium.
Remote sensing strategic exploration of large or superlarge gold ore deposits
NASA Astrophysics Data System (ADS)
Yan, Shouxun; Liu, Qingsheng; Wang, Hongmei; Wang, Zhigang; Liu, Suhong
1998-08-01
To prospect large or superlarge gold ore deposits, blending of remote sensing techniques and modern metallogenitic theories is one of the effective measures. The theory of metallogeny plays a director role before and during remote sensing technique applications. The remote sensing data with different platforms and different resolutions can be respectively applied to detect direct or indirect metallogenic information, and to identify the ore-controlling structure, especially, the ore-controlling structural assemblage, which, conversely, usually are the new conditions to study and to modify the metallogenic model, and to further develop the exploration model of large or superlarge ore deposits. Guidance by an academic idea of 'adjustment structure' which is the conceptual model of transverse structure, an obscured ore- controlling transverse structure has been identified on the refined TM imagery in the Hadamengou gold ore deposit, Setai Hyperspectral Geological Remote Sensing Testing Site (SHGRSTS), Wulashan mountains, Inner Mongolia, China. Meanwhile, The MAIS data has been applied to quickly identify the auriferous alteration rocks with Correspondence Analysis method and Spectral Angle Mapping (SAM) technique. The theoretical system and technical method of remote sensing strategic exploration of large or superlarge gold ore deposits have been demonstrated by the practices in the SHGRSTS.
A compact LWIR imaging spectrometer with a variable gap Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Zhang, Fang; Gao, Jiaobo; Wang, Nan; Zhao, Yujie; Zhang, Lei; Gao, Shan
2017-02-01
Fourier transform spectroscopy is a widely employed method for obtaining spectra, with applications ranging from the desktop to remote sensing. The long wave infrared (LWIR) interferometric spectral imaging system is always with huge volume and large weight. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (FP) interferometer is researched. With the system working principle analyzed, theoretically, it is researched that how to make certain the primary parameter, such as, the reflectivity of the two interferometric cavity surfaces, field of view (FOV) and f-number of the imaging lens. A prototype is developed and a good experimental result of CO2 laser is obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.
High dimensional reflectance analysis of soil organic matter
NASA Technical Reports Server (NTRS)
Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.
1992-01-01
Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.
Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E
2014-12-15
In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.
NASA Technical Reports Server (NTRS)
Dozier, Jeff; Davis, Robert E.
1987-01-01
Remote sensing has been applied in recent years to monitoring snow cover properties for applications in hydrologic and energy balance modeling. In addition, snow cover has been recently shown to exert a considerable local influence on weather variables. Of particular importance is the potential of sensors to provide data on the physical properties of snow with high spatial and temporal resolution. Visible and near-infrared measurements of upwelling radiance can be used to infer near-surface properties through the calculation of albedo. Microwave signals usually come from deeper within the snow pack and thus provide depth-integrated information, which can be measured through clouds and does not relay on solar illumination.Fundamental studies examining the influence of snow properties on signals from various parts of the electromagnetic spectrum continue in part because of the promise of new remote sensors with higher spectral and spatial accuracy. Information in the visible and near-infrared parts of the spectrum comprise nearly all available data with high spatial resolution. Current passive microwave sensors have poor spatial resolution and the data are problematic where the scenes consist of mixed landscape features, but they offer timely observations that are independent of cloud cover and solar illumination.
Mapping project on land use changes in the carboniferous region of Santa Catarina
NASA Technical Reports Server (NTRS)
Valeriano, D. D.; Pereira, M. D. B.
1983-01-01
The utilization of remote sensing data for monitoring land use changes by means of digital image analysis is described. The following data were utilized: LANDSAT data from September 4, 1975, April 24, 1978, and September 8, 1981; LANDSAT paper photography data; area IV color photographs; IBGE topography maps, and auxiliary data about the Brazilian state of Santa Catarina. Three kinds of analyses of digital images were carried out. The project identified and mapped major classes of land use areas including urban areas, coal deposits, agricultural areas, forests, lakes, and flood plains. Five areas directly affected by coal exploration southeast of Santa Catarina are identified and described. In addition, the classification system used for organizing data about land cover in a hierarchical arrangement is presented. The project made use of two remote sensing data sources: data of MSS spectral (Mulitspectral Scanner System)/LANDSAT on a scale of 1:100,000 with approximately 80 m resolution, and infrared color aerial photographs on a scale of 1:45,000 with approximately 5 m resolution. Therefore, the classification system included three levels, two selected to be compatible with aerial photography data and the third to conform to the resolution of MSS/LANDSAT.
Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users
Calera, Alfonso; Campos, Isidro; Osann, Anna; D’Urso, Guido; Menenti, Massimo
2017-01-01
The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools. PMID:28492515
Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users.
Calera, Alfonso; Campos, Isidro; Osann, Anna; D'Urso, Guido; Menenti, Massimo
2017-05-11
The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools.
NASA Technical Reports Server (NTRS)
Maxwell, M. S.
1984-01-01
Present technology allows radiometric monitoring of the Earth, ocean and atmosphere from a geosynchronous platform with good spatial, spectral and temporal resolution. The proposed system could provide a capability for multispectral remote sensing with a 50 m nadir spatial resolution in the visible bands, 250 m in the 4 micron band and 1 km in the 11 micron thermal infrared band. The diffraction limited telescope has a 1 m aperture, a 10 m focal length (with a shorter focal length in the infrared) and linear and area arrays of detectors. The diffraction limited resolution applies to scenes of any brightness but for a dark low contrast scenes, the good signal to noise ratio of the system contribute to the observation capability. The capabilities of the AGP system are assessed for quantitative observations of ocean scenes. Instrument and ground system configuration are presented and projected sensor capabilities are analyzed.
University of Wisconsin Cirrus Remote Sensing Pilot Experiment
NASA Technical Reports Server (NTRS)
Ackerman, Steven A.; Eloranta, Ed W.; Grund, Chris J.; Knuteson, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.
1993-01-01
During the period of 26 October 1989 through 6 December 1989 a unique complement of measurements was made at the University of Wisconsin-Madison to study the radiative properties of cirrus clouds. Simultaneous observations were obtained from a scanning lidar, two interferometers, a high spectral resolution lidar, geostationary and polar orbiting satellites, radiosonde launches, and a whole-sky imager. This paper describes the experiment, the instruments deployed, and, as an example, the data collected during one day of the experiment.
Development of a CCD based solar speckle imaging system
NASA Astrophysics Data System (ADS)
Nisenson, Peter; Stachnik, Robert V.; Noyes, Robert W.
1986-02-01
A program to develop software and hardware for the purpose of obtaining high angular resolution images of the solar surface is described. The program included the procurement of a Charge Coupled Devices imaging system; an extensive laboratory and remote site testing of the camera system; the development of a software package for speckle image reconstruction which was eventually installed and tested at the Sacramento Peak Observatory; and experiments of the CCD system (coupled to an image intensifier) for low light level, narrow spectral band solar imaging.
Mapping soil types from multispectral scanner data.
NASA Technical Reports Server (NTRS)
Kristof, S. J.; Zachary, A. L.
1971-01-01
Multispectral remote sensing and computer-implemented pattern recognition techniques were used for automatic ?mapping' of soil types. This approach involves subjective selection of a set of reference samples from a gray-level display of spectral variations which was generated by a computer. Each resolution element is then classified using a maximum likelihood ratio. Output is a computer printout on which the researcher assigns a different symbol to each class. Four soil test areas in Indiana were experimentally examined using this approach, and partially successful results were obtained.
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Arvidson, Terry; Barsi, Julia A.; Choate, Michael; Kaita, Edward; Levy, Raviv; Lubke, Mark; Masek, Jeffrey G.
2016-01-01
Landsat initiated the revolution in moderate resolution Earth remote sensing in the 1970s. With seven successful missions over 40+ years, Landsat has documented - and continues to document - the global Earth land surface and its evolution. The Landsat missions and sensors have evolved along with the technology from a demonstration project in the analog world of visual interpretation to an operational mission in the digital world, with incremental improvements along the way in terms of spectral, spatial, radiometric and geometric performance as well as acquisition strategy, data availability, and products.
Airborne remote sensing for geology and the environment; present and future
Watson, Ken; Knepper, Daniel H.
1994-01-01
In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada (Radarsat), and the United States (EOS). There are currently two national airborne remote sensing programs (photography, radar) with data archived at the USGS' EROS Data Center. Airborne broadband multispectral data (comparable to Landsat MSS and TM but involving several more channels) for limited geographic areas also are available for digital processing and analysis. Narrow-band imaging spectrometer data are available for some NASA experiment sites and can be acquired for other locations commercially. Remote sensing data and derivative images, because of the uniform spatial coverage, availability at different resolutions, and digital format, are becoming important data sets for geographic information system (GIS) analyses. Examples range from overlaying digitized geologic maps on remote sensing images and draping these over topography, to maps of mineral distribution and inferred abundance. A large variety of remote sensing data sets are available, with costs ranging from a few dollars per square mile for satellite digital data to a few hundred dollars per square mile for airborne imaging spectrometry. Computer processing and analysis costs routinely surpass these expenses because of the equipment and expertise necessary for information extraction and interpretation. Effective use requires both an understanding of the current methodology and an appreciation of the most cost-effective solution.
Comparison of Landsat MSS and merged MSS/RBV data for analysis of natural vegetation
NASA Technical Reports Server (NTRS)
Roller, N. E. G.; Cox, S.
1980-01-01
Improved resolution could make satellite remote sensing data more useful for surveys of natural vegetation. Although improved satellite/sensor systems appear to be several years away, one potential interim solution to the problem of achieving greater resolution without sacrificing spectral sensitivity is through the merging of Landsat RBV and MSS data. This paper describes the results of a study performed to obtain a preliminary evaluation of the usefulness of two types of products that can be made by merging Landsat RBV and MSS data. The products generated were a false color composite image and a computer recognition map. Of these two products, the false color composite image appears to be the most useful.
Remote sensing of tropospheric constituents by OMI on the EOS Aura satellite
NASA Technical Reports Server (NTRS)
Bhartia, Pawan K.
2006-01-01
The Ozone Monitoring Instrument (OMI) was launched on NASA's EOS Aura satellite in July 2004. This instrument was built in the Netherlands with collaboration with Finland. The science data products are being developed jointly by scientists from the three countries. OMI is the first instrument to combine the high spatial resolution daily global mapping capability of TOMS with high spectral resolution measurements necessary for retrieving a number of trace gases of relevance to atmospheric chemistry, using techniques pioneered by GOME. In this talk I will show what our planet looks like at UV wavelengths and what these data can tell us about the effects of human activities on global air quality and climate.
Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation
NASA Astrophysics Data System (ADS)
Taylor, Andrew; Batishchev, Oleg
2012-10-01
Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.
Ghost imaging via optical parametric amplification
NASA Astrophysics Data System (ADS)
Li, Hong-Guo; Zhang, De-Jian; Xu, De-Qin; Zhao, Qiu-Li; Wang, Sen; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2015-10-01
We investigate theoretically and experimentally thermal light ghost imaging where the light transmitted through the object as the seed light is amplified by an optical parametric amplifier (OPA). In conventional lens imaging systems with OPA, the spectral bandwidth of OPA dominates the image resolution. Theoretically, we prove that in ghost imaging via optical parametric amplification (GIOPA) the bandwidth of OPA will not affect the image resolution. The experimental results show that for weak seed light the image quality in GIOPA is better than that of conventional ghost imaging. Our work may be valuable in remote sensing with ghost imaging technique, where the light passed through the object is weak after a long-distance propagation.
Land use in the Paraiba Valley through remotely sensed data. [Brazil
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.
1980-01-01
A methodology for land use survey was developed and land use modification rates were determined using LANDSAT imagery of the Paraiba Valley (state of Sao Paulo). Both visual and automatic interpretation methods were employed to analyze seven land use classes: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation and natural vegetation. By means of visual interpretation, little spectral differences are observed among those classes. The automatic classification of LANDSAT MSS data using maximum likelihood algorithm shows a 39% average error of omission and a 3.4% error of inclusion for the seven classes. The complexity of land uses in the study area, the large spectral variations of analyzed classes, and the low resolution of LANDSAT data influenced the classification results.
Application of AIS Technology to Forest Mapping
NASA Technical Reports Server (NTRS)
Yool, S. R.; Star, J. L.
1985-01-01
Concerns about environmental effects of large scale deforestation have prompted efforts to map forests over large areas using various remote sensing data and image processing techniques. Basic research on the spectral characteristics of forest vegetation are required to form a basis for development of new techniques, and for image interpretation. Examination of LANDSAT data and image processing algorithms over a portion of boreal forest have demonstrated the complexity of relations between the various expressions of forest canopies, environmental variability, and the relative capacities of different image processing algorithms to achieve high classification accuracies under these conditions. Airborne Imaging Spectrometer (AIS) data may in part provide the means to interpret the responses of standard data and techniques to the vegetation based on its relatively high spectral resolution.
NASA Technical Reports Server (NTRS)
Pieters, C.
1977-01-01
The types of basal to be found on the moon were identified using reflectance spectra from a variety of lunar mare surfaces and craters as well as geochemical interpretations of laboratory measurements of reflectance from lunar, terrestrial, and meteoritic samples. Findings indicate that major basaltic units are not represented in lunar sample collections. The existence of late stage high titanium basalts is confirmed. All maria contain lateral variations of compositionally heterogenous basalts; some are vertically inhomogenous with distinctly different subsurface composition. Some basalt types are spectrally gradational, suggesting minor variations in composition. Mineral components of unsampled units can be defined if spectra are obtained with sufficient spectral coverage (.3 to 2.5 micron m) and spatial resolution (approximating .5 km).
Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols
Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël
2017-01-01
Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170
NASA Astrophysics Data System (ADS)
Wright, L.; Coddington, O.; Pilewskie, P.
2017-12-01
Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. We describe the development of an Informed Non-Negative Matrix Factorization (INMF) spectral unmixing method to exploit this spectral information and separate atmospheric and surface signals based on their physical sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO), with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric and surface conditions. These include atmospheres with varying aerosol optical thicknesses and cloud cover. HICO images also provide a range of surface conditions including deep ocean regions, with only minor contributions from the ocean surfaces; and more complex shallow coastal regions with contributions from the seafloor or suspended sediments. We provide extensive comparison of INMF decomposition results against independent measurements of physical properties. These include comparison against traditional model-based retrievals of water-leaving, aerosol, and molecular scattering radiances and other satellite products, such as aerosol optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS).
CNR LARA project, Italy: Airborne laboratory for environmental research
NASA Technical Reports Server (NTRS)
Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.
1995-01-01
The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.
NASA Technical Reports Server (NTRS)
Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2001-01-01
Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.
A synthetic data set of high-spectral-resolution infrared spectra for the Arctic atmosphere
NASA Astrophysics Data System (ADS)
Cox, Christopher J.; Rowe, Penny M.; Neshyba, Steven P.; Walden, Von P.
2016-05-01
Cloud microphysical and macrophysical properties are critical for understanding the role of clouds in climate. These properties are commonly retrieved from ground-based and satellite-based infrared remote sensing instruments. However, retrieval uncertainties are difficult to quantify without a standard for comparison. This is particularly true over the polar regions, where surface-based data for a cloud climatology are sparse, yet clouds represent a major source of uncertainty in weather and climate models. We describe a synthetic high-spectral-resolution infrared data set that is designed to facilitate validation and development of cloud retrieval algorithms for surface- and satellite-based remote sensing instruments. Since the data set is calculated using pre-defined cloudy atmospheres, the properties of the cloud and atmospheric state are known a priori. The atmospheric state used for the simulations is drawn from radiosonde measurements made at the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site at Barrow, Alaska (71.325° N, 156.615° W), a location that is generally representative of the western Arctic. The cloud properties for each simulation are selected from statistical distributions derived from past field measurements. Upwelling (at 60 km) and downwelling (at the surface) infrared spectra are simulated for 260 cloudy cases from 50 to 3000 cm-1 (3.3 to 200 µm) at monochromatic (line-by-line) resolution at a spacing of ˜ 0.01 cm-1 using the Line-by-line Radiative Transfer Model (LBLRTM) and the discrete-ordinate-method radiative transfer code (DISORT). These spectra are freely available for interested researchers from the NSF Arctic Data Center data repository (doi:10.5065/D61J97TT).
Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.; ...
2016-03-26
In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.
In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less
Information-rich spectral channels for simulated retrievals of partial column-averaged methane
NASA Astrophysics Data System (ADS)
Su, Zhan; Xi, Xi; Natraj, Vijay; Li, King-Fai; Shia, Run-Lie; Miller, Charles E.; Yung, Yuk L.
2016-01-01
Space-based remote sensing of the column-averaged methane dry air mole fraction (XCH4) has greatly increased our understanding of the spatiotemporal patterns in the global methane cycle. The potential to retrieve multiple pieces of vertical profile information would further improve the quantification of CH4 across space-time scales. We conduct information analysis for channel selection and evaluate the prospects of retrieving multiple pieces of information as well as total column CH4 from both ground-based and space-based near-infrared remote sensing spectra. We analyze the degrees of freedom of signal (
The Effect of Remote Masking on the Reception of Speech by Young School-Age Children.
Youngdahl, Carla L; Healy, Eric W; Yoho, Sarah E; Apoux, Frédéric; Holt, Rachael Frush
2018-02-15
Psychoacoustic data indicate that infants and children are less likely than adults to focus on a spectral region containing an anticipated signal and are more susceptible to remote masking of a signal. These detection tasks suggest that infants and children, unlike adults, do not listen selectively. However, less is known about children's ability to listen selectively during speech recognition. Accordingly, the current study examines remote masking during speech recognition in children and adults. Adults and 7- and 5-year-old children performed sentence recognition in the presence of various spectrally remote maskers. Intelligibility was determined for each remote-masker condition, and performance was compared across age groups. It was found that speech recognition for 5-year-olds was reduced in the presence of spectrally remote noise, whereas the maskers had no effect on the 7-year-olds or adults. Maskers of different bandwidth and remoteness had similar effects. In accord with psychoacoustic data, young children do not appear to focus on a spectral region of interest and ignore other regions during speech recognition. This tendency may help account for their typically poorer speech perception in noise. This study also appears to capture an important developmental stage, during which a substantial refinement in spectral listening occurs.
NASA Astrophysics Data System (ADS)
Huang, C.; Zhang, L.; Qiao, N.; Zhang, X.; Li, Y.
2015-12-01
Remotely sensed solar-induced chlorophyll fluorescence (SIF) has been considered an ideal probe in monitoring global vegetation photosynthesis. However, challenges in accurate estimate of faint SIF (less than 5% of the total reflected radiation in near infrared bands) from the observed apparent reflected radiation greatly limit its wide applications. Currently, the telluric O2-B (~688nm) and O2-A (~761nm) have been proved to be capable of SIF retrieval based on Fraunhofer line depth (FLD) principle. They may still work well even using conventional ground-based commercial spectrometers with typical spectral resolutions of 2~5 nm and high enough signal-to-noise ratio (e.g., the ASD spectrometer). Nevertheless, almost all current FLD based algorithms were mainly developed for O2-A, a few concentrating on the other SIF emission peak in O2-B. One of the critical reasons is that it is very difficult to model the sudden varying reflectance around O2-B band located in the red-edge spectral region (about 680-800 nm). This study investigates a new method by combining the established inverted Gaussian reflectance model (IGM) and FLD principle using diurnal canopy spectra with relative low spectral resolutions of 1 nm (FluorMOD simulations) and 3 nm (measured by ASD spectrometer) respectively. The IGM has been reported to be an objective and good method to characterize the entire vegetation red-edge reflectance. Consequently, the proposed SIF retrieval method (hereinafter called IGMFLD) could exploit all the spectral information along the whole red-edge (680-800 nm) to obtain more reasonable reflectance and fluorescence correction coefficients than traditional FLD methods such as the iFLD. Initial results show that the IGMFLD can better capture the spectrally non-linear characterization of the reflectance in 680-800 nm and thereby yields much more accurate SIFs in O2-B than typical FLD methods, including sFLD, 3FLD and iFLD (see figure 1). Finally, uncertainties and prospect of the IGM-FLD, in contrast with sFLD, 3FLD and iFLD, were discussed here. This study may provide a test-bed for developing more robust methods to retrieve SIF in O2-B from aircraft (e.g. AisaIBIS fluorescence imager) or satellite (FLEX-FLORIS) remote sensing measurements.
Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach
NASA Astrophysics Data System (ADS)
Jazaeri, Amin
High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.
High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer
NASA Astrophysics Data System (ADS)
Popp, C.; Brunner, D.; Damm, A.; Van Roozendael, M.; Fayt, C.; Buchmann, B.
2012-09-01
We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm-2). The two-dimensional maps of NO2 VCD reveal a very convincing spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways) and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day with stronger winds and hence larger dilution in the afternoon. The remotely sensed NO2 VCD are also in reasonably good agreement with ground-based in-situ measurements from air quality networks considering the limitations of comparing column integrals with point measurements. Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modelling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.
High resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer
NASA Astrophysics Data System (ADS)
Popp, C.; Brunner, D.; Damm, A.; Van Roozendael, M.; Fayt, C.; Buchmann, B.
2012-03-01
We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm-2). The two-dimensional maps of NO2 VCD reveal a very plausible spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways) and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day (development of the boundary layer and increased wind speed in the afternoon) as well as to photochemical loss of NO2. The remotely sensed NO2 VCD are also highly correlated with ground-based in-situ measurements from local and national air quality networks (R=0.73). Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modeling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.
NASA Astrophysics Data System (ADS)
Hunger, Sebastian; Karrasch, Pierre; Wessollek, Christine
2016-10-01
The European Water Framework Directive (Directive 2000/60/EC) is a mandatory agreement that guides the member states of the European Union in the field of water policy to fulfill the requirements for reaching the aim of the good ecological status of water bodies. In the last years several workflows and methods were developed to determine and evaluate the characteristics and the status of the water bodies. Due to their area measurements remote sensing methods are a promising approach to constitute a substantial additional value. With increasing availability of optical and radar remote sensing data the development of new methods to extract information from both types of remote sensing data is still in progress. Since most limitations of these data sets do not agree the fusion of both data sets to gain data with higher spectral resolution features the potential to obtain additional information in contrast to the separate processing of the data. Based thereupon this study shall research the potential of multispectral and radar remote sensing data and the potential of their fusion for the assessment of the parameters of water body structure. Due to the medium spatial resolution of the freely available multispectral Sentinel-2 data sets especially the surroundings of the water bodies and their land use are part of this study. SAR data is provided by the Sentinel-1 satellite. Different image fusion methods are tested and the combined products of both data sets are evaluated afterwards. The evaluation of the single data sets and the fused data sets is performed by means of a maximum-likelihood classification and several statistical measurements. The results indicate that the combined use of different remote sensing data sets can have an added value.
NASA Astrophysics Data System (ADS)
Guo, H., II
2016-12-01
Spatial distribution information of mountainous area settlement place is of great significance to the earthquake emergency work because most of the key earthquake hazardous areas of china are located in the mountainous area. Remote sensing has the advantages of large coverage and low cost, it is an important way to obtain the spatial distribution information of mountainous area settlement place. At present, fully considering the geometric information, spectral information and texture information, most studies have applied object-oriented methods to extract settlement place information, In this article, semantic constraints is to be added on the basis of object-oriented methods. The experimental data is one scene remote sensing image of domestic high resolution satellite (simply as GF-1), with a resolution of 2 meters. The main processing consists of 3 steps, the first is pretreatment, including ortho rectification and image fusion, the second is Object oriented information extraction, including Image segmentation and information extraction, the last step is removing the error elements under semantic constraints, in order to formulate these semantic constraints, the distribution characteristics of mountainous area settlement place must be analyzed and the spatial logic relation between settlement place and other objects must be considered. The extraction accuracy calculation result shows that the extraction accuracy of object oriented method is 49% and rise up to 86% after the use of semantic constraints. As can be seen from the extraction accuracy, the extract method under semantic constraints can effectively improve the accuracy of mountainous area settlement place information extraction. The result shows that it is feasible to extract mountainous area settlement place information form GF-1 image, so the article proves that it has a certain practicality to use domestic high resolution optical remote sensing image in earthquake emergency preparedness.
Hyperspectral imaging utility for transportation systems
NASA Astrophysics Data System (ADS)
Bridgelall, Raj; Rafert, J. Bruce; Tolliver, Denver
2015-03-01
The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.
Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.
Remote Sensing of Water Quality in the Niger River Basin
NASA Astrophysics Data System (ADS)
Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.
2015-12-01
An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Moody, Eric G.
2002-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999 and the Aqua satellite in May 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this paper we will describe the various methods being used for the remote sensing of cloud, aerosol, and surface properties using MODIS data, focusing primarily on (i) the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, (ii) cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals, (iii) aerosol optical thickness and size characteristics both over land and ocean, and (iv) ecosystem classification and surface spectral reflectance. The physical principles behind the determination of each of these products will be described, together with an example of their application using MODIS observations to the east Asian region. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 min (Level-3 products).
Information extraction with object based support vector machines and vegetation indices
NASA Astrophysics Data System (ADS)
Ustuner, Mustafa; Abdikan, Saygin; Balik Sanli, Fusun
2016-07-01
Information extraction through remote sensing data is important for policy and decision makers as extracted information provide base layers for many application of real world. Classification of remotely sensed data is the one of the most common methods of extracting information however it is still a challenging issue because several factors are affecting the accuracy of the classification. Resolution of the imagery, number and homogeneity of land cover classes, purity of training data and characteristic of adopted classifiers are just some of these challenging factors. Object based image classification has some superiority than pixel based classification for high resolution images since it uses geometry and structure information besides spectral information. Vegetation indices are also commonly used for the classification process since it provides additional spectral information for vegetation, forestry and agricultural areas. In this study, the impacts of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) on the classification accuracy of RapidEye imagery were investigated. Object based Support Vector Machines were implemented for the classification of crop types for the study area located in Aegean region of Turkey. Results demonstrated that the incorporation of NDRE increase the classification accuracy from 79,96% to 86,80% as overall accuracy, however NDVI decrease the classification accuracy from 79,96% to 78,90%. Moreover it is proven than object based classification with RapidEye data give promising results for crop type mapping and analysis.
Criteria for the optimal selection of remote sensing optical images to map event landslides
NASA Astrophysics Data System (ADS)
Fiorucci, Federica; Giordan, Daniele; Santangelo, Michele; Dutto, Furio; Rossi, Mauro; Guzzetti, Fausto
2018-01-01
Landslides leave discernible signs on the land surface, most of which can be captured in remote sensing images. Trained geomorphologists analyse remote sensing images and map landslides through heuristic interpretation of photographic and morphological characteristics. Despite a wide use of remote sensing images for landslide mapping, no attempt to evaluate how the image characteristics influence landslide identification and mapping exists. This paper presents an experiment to determine the effects of optical image characteristics, such as spatial resolution, spectral content and image type (monoscopic or stereoscopic), on landslide mapping. We considered eight maps of the same landslide in central Italy: (i) six maps obtained through expert heuristic visual interpretation of remote sensing images, (ii) one map through a reconnaissance field survey, and (iii) one map obtained through a real-time kinematic (RTK) differential global positioning system (dGPS) survey, which served as a benchmark. The eight maps were compared pairwise and to a benchmark. The mismatch between each map pair was quantified by the error index, E. Results show that the map closest to the benchmark delineation of the landslide was obtained using the higher resolution image, where the landslide signature was primarily photographical (in the landslide source and transport area). Conversely, where the landslide signature was mainly morphological (in the landslide deposit) the best mapping result was obtained using the stereoscopic images. Albeit conducted on a single landslide, the experiment results are general, and provide useful information to decide on the optimal imagery for the production of event, seasonal and multi-temporal landslide inventory maps.
Multispectral thermal airborne TASI-600 data to study the Pompeii (IT) archaeological area
NASA Astrophysics Data System (ADS)
Palombo, Angelo; Pascucci, Simone; Pergola, Nicola; Pignatti, Stefano; Santini, Federico; Soldovieri, Francesco
2016-04-01
The management of archaeological areas refers to the conservation of the ruins/buildings and the eventual prospection of new areas having an archaeological potential. In this framework, airborne remote sensing is a well-developed geophysical tool for supporting the archaeological surveys of wide areas. The spectral regions applied in archaeological remote sensing spans from the VNIR to the TIR. In particular, the archaeological thermal imaging considers that materials absorb, emit, transmit, and reflect the thermal infrared radiation at different rate according to their composition, density and moisture content. Despite its potential, thermal imaging in archaeological applications are scarce. Among them, noteworthy are the ones related to the use of Landsat and ASTER [1] and airborne remote sensing [2, 3, 4 and 5]. In view of these potential in Cultural Heritage applications, the present study aims at analysing the usefulness of the high spatial resolution thermal imaging on the Pompeii archaeological park. To this purpose TASI-600 [6] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) was acquired on December the 7th, 2015. Airborne survey has been acquired to get useful information on the building materials (both ancient and of consolidation) characteristics and, whenever possible, to retrieve quick indicators on their conservation status. Thermal images will be, moreover, processed to have an insight of the critical environmental issues impacting the structures (e.g. moisture). The proposed study shows the preliminary results of the airborne deployments, the pre-processing of the multispectral thermal imagery and the retrieving of accurate land surface temperatures (LST). LST map will be analysed to describe the thermal pattern of the city of Pompeii and detect any thermal anomalies. As far as the ongoing TASI-600 sensors pre-processing, it will include: (a) radiometric calibration of the raw data by using the RADCORR software provided by ITRES (Canada) and the application of a new correction tool for blinking pixel correction, developed by CNR (Italy); (b) atmospheric compensation of the TIR data by applying the ISAC (In-Scene Atmospheric Compensation) algorithm [7]; (c) Temperature Emissivity Separation (TES) according to the methods described by [8] to obtain a LST map. The obtained preliminary results are encouraging, even though, suitable integration approaches with the classical geophysical investigation techniques have to be improved for a rapid and cost-effective assessment of the buildings status. The importance of this study, moreover, is related to the evaluation of the impact of the unmanned aerial vehicles (UAVs) imaging in the Conservation of Cultural Heritage that can provide: i) low cost imaging; ii) very high spatial resolution thermal imaging. References 1. Scollar, I., Tabbagh, A., Hesse, A., Herzog, A., 1990. Archaeological Prospecting andRemote Sensing. Cambridge University Press, Cambridge.Seitz, C., Altenbach, H., 2011. Project ARCHEYE: the quadrocopter as the archaeologists eye. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38 2. Sever, T.L., Wagner, D.W., 1991. Analysis of prehistoric roadways in Chaco Canyonusing remotely sensed data. In: Trombold, C.D. (Ed.), Ancient Road Networksand Settlement Hierarchies in the New World. Cambridge University Press,Cambridge, pp. 42 3. Pascucci S., Cavalli R M., Palombo A. & Pignatti S. (2010), Suitability of CASI and ATM airborne remote sensing data for archaeological subsurface structure detection under different land cover: the Arpi case study (Italy). In Journal of Geophysics and Engineering, Vol. 7 (2), pp. 183-189. 4. Bassani C., Cavalli R.M., Goffredo, R., Palombo A., Pascucci S. & Pignatti S. (2009), Specific spectral bands for different land cover contexts to improve the efficiency of remote sensing archaeological prospection: The Arpi case study. In Journal of Cultural Heritage, Vol. 10, pp. 41-48 5. Cavalli R.M., Marino C.M. & Pignatti S. (2000), Environmental Studies Through Active and Passive Airborne Remote Sensing Systems. In Non-Destructive Techniques Applied to Landscape Archaeology, The Archaeology Mediterranean Landscapes 4, Oxbow Books, Oxford, pp. 31-37, ISBN 1900188740; 6. Pignatti, S.; Lapenna, V.; Palombo, A.; Pascucci, S.; Pergola, N.; Cuomo, V. 2011. An advanced tool of the CNR IMAA EO facilities: Overview of the TASI-600 hyperspectral thermal spectrometer. 3rd Hyperspectral Image and Signal Processing: Evolution in Remote Sensing Conference (WHISPERS), 2011; DOI 10.1109/WHISPERS.2011.6080890. 7. Johnson, B. R. and S. J. Young, 1998. In-Scene Atmospheric Compensation: Application to SEBASS Data Collected at the ARM Site. Technical Report, Space and Environment Technology Center, The Aerospace Corporation, May 1998. 8. Z.L. Li, F. Becker, M.P Stoll and Z. Wan. 1999. Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sensing of Environment, vol. 69, 197-214.
Clues to Coral Reef Ecosystem Health: Spectral Analysis Coupled with Radiative Transfer Modeling
NASA Astrophysics Data System (ADS)
Guild, L.; Ganapol, B.; Kramer, P.; Armstrong, R.; Gleason, A.; Torres, J.; Johnson, L.; Garfield, N.
2003-12-01
Coral reefs are among the world's most productive and biologically rich ecosystems and are some of the oldest ecosystems on Earth. Coralline structures protect coastlines from storms, maintain high diversity of marine life, and provide nurseries for marine species. Coral reefs play a role in carbon cycling through high rates of organic carbon metabolism and calcification. Coral reefs provide fisheries habitat that are the sole protein source for humans on remote islands. Reefs respond immediately to environmental change and therefore are considered "canaries" of the oceans. However, the world's reefs are in peril: they have shrunk 10-50% from their historical extent due to climate change and anthropogenic activity. An important contribution to coral reef research is improved spectral distinction of reef species' health where anthropogenic activity and climate change impacts are high. Relatively little is known concerning the spectral properties of coral or how coral structures reflect and transmit light. New insights into optical processes of corals under stressed conditions can lead to improved interpretation of airborne and satellite data and forecasting of immediate or long-term impacts of events such as bleaching and disease in coral. We are investigating the spatial and spectral resolution required to detect remotely changes in reef health by coupling spectral analysis of in situ spectra and airborne spectral data with a new radiative transfer model called CorMOD2. Challenges include light attenuation by the water column, atmospheric scattering, and scattering caused by the coral themselves that confound the spectral signal. In CorMOD2, input coral reflectance measurements produce modeled absorption through an inversion at each visible wavelength. The first model development phase of CorMOD2 imposes a scattering baseline that is constant regardless of coral condition, and further specifies that coral is optically thick. Evolution of CorMOD2 is towards a coral-specific radiative transfer model that includes coral biochemical concentrations, specific absorptivities of coral components, and transmission measurements from coral surfaces.
sCMOS detector for imaging VNIR spectrometry
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian
2013-09-01
The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.
Alien Plant Monitoring with Ultralight Airborne Imaging Spectroscopy
Calviño-Cancela, María; Méndez-Rial, Roi; Reguera-Salgado, Javier; Martín-Herrero, Julio
2014-01-01
Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a large number of spectral bands and high spectral resolution) are especially suitable when very similar categories are to be distinguished (e.g. plant species). A main priority in the development of this technology is to lower its cost and simplify its use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have developed a system for hyperspectral imaging (200 spectral bands in the 380–1000 nm range and circa 3 nm spectral resolution) operated on board ultralight aircraft (namely a gyrocopter), which allows a drastic reduction of the running costs and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5–8 pixels/m2 at circa 65 km/h and 300 m height). The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis pes-caprae, and Carpobrotus aff. edulis and acinaciformis), with user’s and producer’s accuracy always exceeding 90%. The detection accuracy reported corresponds to patches down to 0.125 m2 (50% of pixels 0.5×0.5 m in size), a very small size for many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs, similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent record of the status of the study area, with great amount of information that can be analyzed in the future for other purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved management. PMID:25010601
Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data
2007-09-01
spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.
NASA Remote Sensing Research as Applied to Archaeology
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Thomas, Michael R.
2002-01-01
The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.
Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance
NASA Technical Reports Server (NTRS)
Lee, Zhongping; Carder, Kendall L.; Hawes, Steve K.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.
1994-01-01
Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/cu m and gelbstoff absorption at 440 nm from 0.02-0.4/m. Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.
[Modeling continuous scaling of NDVI based on fractal theory].
Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng
2013-07-01
Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.
Remote sensing of a coupled carbon-water-energy-radiation balances from the Globe to plot scales
NASA Astrophysics Data System (ADS)
Ryu, Y.; Jiang, C.; Huang, Y.; Kim, J.; Hwang, Y.; Kimm, H.; Kim, S.
2016-12-01
Advancements in near-surface and satellite remote sensing technologies have enabled us to monitor the global terrestrial ecosystems at multiple spatial and temporal scales. An emergent challenge is how to formulate a coupled water, carbon, energy, radiation, and nitrogen cycles from remote sensing. Here, we report Breathing Earth System Simulator (BESS), which coupled radiation (shortwave, longwave, PAR, diffuse PAR), carbon (gross primary productivity, ecosystem respiration, net ecosystem exchange), water (evaporation), and energy (latent and sensible heat) balances across the global land at 1 km resolution, 8 daily between 2000 and 2015 using multiple satellite remote sensing. The performance of BESS was tested against field observations (FLUXNET, BSRN) and other independent products (MPI-BGC, MODIS, GLASS). We found that the coupled model, BESS showed on par with, or better performance than the other products which computed land surface fluxes individually. Lastly, we show one plot-level study conducted in a paddy rice to demonstrate how to couple radiation, carbon, water, nitrogen balances with a series of near-surface spectral sensors.
Imaging spectrometry of the Earth and other solar system bodies
NASA Technical Reports Server (NTRS)
Vane, Gregg
1993-01-01
Imaging spectrometry is a relatively new tool for remote sensing of the Earth and other bodies of the solar system. The technique dates back to the late 1970's and early 1980's. It is a natural extension of the earlier multi-spectral imagers developed for remote sensing that acquire images in a few, usually broad spectral bands. Imaging spectrometers combine aspects of classical spectrometers and imaging systems, making it possible to acquire literally hundreds of images of an object, each image in a separate, narrow spectral band. It is thus possible to perform spectroscopy on a pixel-by-pixel basis with the data acquired with an imaging spectrometer. Two imaging spectrometers have flown in space and several others are planned for future Earth and planetary missions. The French-built Phobos Infrared Spectrometer (ISM) was part of the payload of the Soviet Mars mission in 1988, and the JPL-built Near Infrared Mapping Spectrometer (NIMS) is currently en route to Jupiter aboard the Galileo spacecraft. Several airborne imaging spectrometers have been built in the past decade including the JPL-built Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is the only such sensor that covers the full solar reflected portion of the spectrum in narrow, contiguous spectral bands. NASA plans two imaging spectrometers for its Earth Observing System, the Moderate and the High Resolution Imaging Spectrometers (MODIS and HIRIS). A brief overview of the applications of imaging spectrometry to Earth science will be presented to illustrate the value of the tool to remote sensing and indicate the types of measurements that are required. The system design for AVIRS and a planetary imaging spectrometer will be presented to illustrate the engineering considerations and challenges that must be met in building such instruments. Several key sensor technology areas will be discussed in which miniaturization and/or enhanced performance through micromachining and nanofabrication may allow smaller, more robust, and more capable imaging spectrometers to be built in the future.
Spectrally based mapping of riverbed composition
Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.
2016-01-01
Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range of fluvial environments is needed to substantiate our initial results, this case study suggests that bed composition in shallow, clear-flowing rivers potentially could be mapped remotely.
NASA Astrophysics Data System (ADS)
Chen, Jianyu; Mao, Zhihua; He, Xianqiang
2009-01-01
Coral reefs are complex marine ecosystems that are constructed and maintained by biological communities that thrive in tropical oceans. The Dong-Sha Atoll is located at the northern continental margin of the South China Sea. It has being abused by destructive activity of human being and natural event during recent decades. Remote sensing offers a powerful tool for studying coral reef geomorphology and is the most cost-effective approach for large-scale reef survey. In this paper, the high-resolution Quickbird2 imageries which covered the full atoll are used to categorize the current distribution of coral reefs geomorphological structure therein with the auxiliary SPOT5 and ASTER imageries. Spectral and texture analysis are used to distinguish the geomorphological diversity during data processing. The Gray Level Co-occurrence Matrices is adopted for texture feature extraction and atoll geomorphology mapping in the high-resolution pan-color image of Quickbird2. Quickbird2 is considered as the most appropriate image source for coral reefs studies. In the Dong-Sha Atoll, various dynamical geomorphologic units are developed according to wave energy zones. There the reef frame types are classified to 3 different types according as its diversity at the image. The radial structure system is the most characteristic and from high resolution imagery we can distinguish the discrepancy between them.
NASA Astrophysics Data System (ADS)
Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.
2017-12-01
Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.
NASA Technical Reports Server (NTRS)
Bell, James F., III; Roush, Ted L.; Morris, Richard V.
1995-01-01
Ferric-iron-bearing materials play an important role in the interpretation of visible to near-IR Mars spectra, and they may play a similarly important role in the analysis of new mid-IR spacecraft spectral observations to be obtained over the next decade. We review existing data on mid-IR transmission spectra of ferric oxides/oxyhydroxides and present new transmission spectra for ferric-bearing materials spanning a wide range of mineralogy and crystallinity. These materials include 11 samples of well-crystallized ferric oxides (hematite, maghemite, and magnetite) and ferric oxyhydroxides (goethite, lepidocrocite). We also report the first transmission spectra for purely nanophase ferric oxide samples that have been shown to exhibit spectral similarities to Mars in the visible to near-IR and we compare these data to previous and new transmission spectra of terrestrial palagonites. Most of these samples show numerous, diagnostic absorption features in the mid-IR due to Fe(3+)-O(2-) vibrational transitions, structural and/or bound OH, and/or silicates. These data indicate that high spatial resolution, moderate spectral resolution mid-IR ground-based and spacecraft observations of Mars may be able to detect and uniquely discriminate among different ferric-iron-bearing phases on the Martian surface or in the airborne dust.
NASA Technical Reports Server (NTRS)
Bell, James F., III; Roush, Ted L.; Morris, Richard V.
1995-01-01
Ferric-iron-bearing materials play an important role in the interpretation of visible to near-IR Mars spectra, and they may play a similarly important role in the analysis of new mid-IR spacecraft spectral observations to be obtained over the next decade. We review exisiting data on mid-IR transmission spectra of ferric oxides/oxyhydroxides and present new transmission spectra for ferric-bearing materials spanning a wide range of mineralogy and crystallinity. These materials include 11 samples of well-crystallized ferric oxides (hematite, maghemite, and magnetite) and ferric oxyhydroxides (goethite, lepidocrocite). We also report the first transmission spectra for purely nanophase ferric oxide samples that have been shown to exhibit spectral similarities to Mars in the visible to near-IR and we compare these data to previous and new transmission spectra of terrestial palagonites. Most of these samples show numerous, diagnostic absorption features in the mid-IR due to Fe(3+) - 0(2-) vibrational transitions, structural and/or bound OH, and/or silicates. These data indicate that high spatial resolution, moderate spectral resolution mid-IR ground-based and spacecraft observations of Mars may be able to detect and uniquely discriminate among different ferric-iron-bearing phases on the Martian surface or in the airborne dust.
First hyperspectral survey of the deep seafloor: DISCOL area, Peru Basin
NASA Astrophysics Data System (ADS)
Dumke, Ines; Nornes, Stein M.; Ludvigsen, Martin
2017-04-01
Conventional hyperspectral seafloor surveys using airborne or satellite platforms are typically limited to shallow coastal areas. This limitation is due to the requirement for illumination by sunlight, which does not penetrate into deeper waters. For hyperspectral studies in deeper marine environments, such as the deep sea, a close-range, sunlight-independent survey approach is therefore required. Here, we present the first hyperspectral data from the deep seafloor. The data were acquired in 4200 m water depth in the DISCOL (disturbance-recolonization) area in the Peru Basin (SW Pacific). This area is characterized by seafloor manganese nodules and recolonization by benthic fauna after a seafloor disturbance experiment conducted in 1989, and was revisited in 2015 by the JPI Oceans cruise SO-242. The acquisition setup consisted of a new Underwater Hyperspectral Imager (UHI) mounted on a remotely operated vehicle (ROV), which provided illumination of the seafloor. High spatial and spectral resolution were achieved by an ROV altitude of 1 m and recording of 112 spectral bands between 380 nm and 800 nm (4 nm resolution). Spectral classification was performed to classify manganese nodules and benthic fauna and map their distribution in the study area. The results demonstrate the high potential of underwater hyperspectral imaging in mapping and classifying seafloor deposits and habitats.
Unmixing of spectral components affecting AVIRIS imagery of Tampa Bay
NASA Astrophysics Data System (ADS)
Carder, Kendall L.; Lee, Z. P.; Chen, Robert F.; Davis, Curtiss O.
1993-09-01
According to Kirk's as well as Morel and Gentili's Monte Carlo simulations, the popular simple expression, R approximately equals 0.33 bb/a, relating subsurface irradiance reflectance (R) to the ratio of the backscattering coefficient (bb) to absorption coefficient (a), is not valid for bb/a > 0.25. This means that it may no longer be valid for values of remote-sensing reflectance (above-surface ratio of water-leaving radiance to downwelling irradiance) where Rrs4/ > 0.01. Since there has been no simple Rrs expression developed for very turbid waters, we developed one based in part on Monte Carlo simulations and empirical adjustments to an Rrs model and applied it to rather turbid coastal waters near Tampa Bay to evaluate its utility for unmixing the optical components affecting the water- leaving radiance. With the high spectral (10 nm) and spatial (20 m2) resolution of Airborne Visible-InfraRed Imaging Spectrometer (AVIRIS) data, the water depth and bottom type were deduced using the model for shallow waters. This research demonstrates the necessity of further research to improve interpretations of scenes with highly variable turbid waters, and it emphasizes the utility of high spectral-resolution data as from AVIRIS for better understanding complicated coastal environments such as the west Florida shelf.
2010-12-01
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
2010-12-06
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
Airborne Infrared Spectroscopy of 1994 Western Wildfires
NASA Technical Reports Server (NTRS)
Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.
1997-01-01
In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.
Fusion of MultiSpectral and Panchromatic Images Based on Morphological Operators.
Restaino, Rocco; Vivone, Gemine; Dalla Mura, Mauro; Chanussot, Jocelyn
2016-04-20
Nonlinear decomposition schemes constitute an alternative to classical approaches for facing the problem of data fusion. In this paper we discuss the application of this methodology to a popular remote sensing application called pansharpening, which consists in the fusion of a low resolution multispectral image and a high resolution panchromatic image. We design a complete pansharpening scheme based on the use of morphological half gradients operators and demonstrate the suitability of this algorithm through the comparison with state of the art approaches. Four datasets acquired by the Pleiades, Worldview-2, Ikonos and Geoeye-1 satellites are employed for the performance assessment, testifying the effectiveness of the proposed approach in producing top-class images with a setting independent of the specific sensor.
Space-Based Remote Imaging Spectroscopy of the Aliso Canyon CH4 Superemitter
NASA Technical Reports Server (NTRS)
Thompson, D. R.; Thorpe, A. K.; Frankenberg, C.; Green, R. O.; Duren, R.; Guanter, L.; Hollstein, A.; Middleton, E.; Ong, L.; Ungar, S.
2016-01-01
The Aliso Canyon gas storage facility near Porter Ranch, California, produced a large accidental CH4 release from October 2015 to February 2016. The Hyperion imaging spectrometer on board the EO-1 satellite successfully detected this event, achieving the first orbital attribution of CH4 to a single anthropogenic superemitter. Hyperion measured shortwave infrared signatures of CH4 near 2.3 microns at 0.01 micron spectral resolution and 30 meter spatial resolution. It detected the plume on three overpasses, mapping its magnitude and morphology. These orbital observations were consistent with measurements by airborne instruments. We evaluate Hyperion instrument performance, draw implications for future orbital instruments, and extrapolate the potential for a global survey of CH4 superemitters.
Mélin, Frédéric; Zibordi, Giuseppe
2007-06-20
An optically based technique is presented that produces merged spectra of normalized water-leaving radiances L(WN) by combining spectral data provided by independent satellite ocean color missions. The assessment of the merging technique is based on a four-year field data series collected by an autonomous above-water radiometer located on the Acqua Alta Oceanographic Tower in the Adriatic Sea. The uncertainties associated with the merged L(WN) obtained from the Sea-viewing Wide Field-of-view Sensor and the Moderate Resolution Imaging Spectroradiometer are consistent with the validation statistics of the individual sensor products. The merging including the third mission Medium Resolution Imaging Spectrometer is also addressed for a reduced ensemble of matchups.
Remote Sensing Data Fusion to Detect Illicit Crops and Unauthorized Airstrips
NASA Astrophysics Data System (ADS)
Pena, J. A.; Yumin, T.; Liu, H.; Zhao, B.; Garcia, J. A.; Pinto, J.
2018-04-01
Remote sensing data fusion has been playing a more and more important role in crop planting area monitoring, especially for crop area information acquisition. Multi-temporal data and multi-spectral time series are two major aspects for improving crop identification accuracy. Remote sensing fusion provides high quality multi-spectral and panchromatic images in terms of spectral and spatial information, respectively. In this paper, we take one step further and prove the application of remote sensing data fusion in detecting illicit crop through LSMM, GOBIA, and MCE analyzing of strategic information. This methodology emerges as a complementary and effective strategy to control and eradicate illicit crops.
NASA Astrophysics Data System (ADS)
Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.
2016-03-01
Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.
NASA Astrophysics Data System (ADS)
Han, Xinlei; Yao, Fengmei; Zhang, Jiahua; Waqar, Mirza Muhammad; Zha, Yong; He, Junliang
2016-04-01
This paper presents the development of index to detect haze from moderate resolution imaging spectroradiometer remote sensing data. Detection of haze over a large area has always been a problem. This study focuses on Beijing, Tianjin, and Shijiazhuang cities in China. These cities have suffered the worst hazy weather in recent years. The spectral influence of haze on surface features was determined through analysis of the spectral variations of surface covers between hazy and haze-free days. A spectral index known as modified normalized difference haze index (m-NDHI) is developed that can be used to monitor haze distribution and intensity. Correlation analysis of the derived m-NDHI and previously developed NDHI with in situ PM2.5 (particulate matter with diameter <2.5 μm) data reveals that m-NDHI over water bodies has a coefficient of 0.7096, 0.5864, and 0.4857 and NDHI has coefficient of 0.5625, 0.5321, and 0.4618 with PM2.5 for Beijing, Tianjin, and Shijiazhuang, respectively, in winter. Moreover, the correlation of m-NDHI with PM2.5 is 0.4097, 0.8092, and 0.5546 during the spring, summer, and autumn, respectively, in Beijing. This developed index can be a much easier and more effective method to detect haze in large scales from remotely sensing data and characterize the situation of urban atmospheric pollution.
Chlorophyll content retrieval from hyperspectral remote sensing imagery.
Yang, Xiguang; Yu, Ying; Fan, Wenyi
2015-07-01
Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.
Use of high-dimensional spectral data to evaluate organic matter, reflectance relationships in soils
NASA Technical Reports Server (NTRS)
Henderson, T. L.; Baumgardner, M. F.; Coster, D. C.; Franzmeier, D. P.; Stott, D. E.
1990-01-01
Recent breakthroughs in remote sensing technology have led to the development of a spaceborne high spectral resolution imaging sensor, HIRIS, to be launched in the mid-1990s for observation of earth surface features. The effects of organic carbon content on soil reflectance over the spectral range of HIRIS, and to examine the contributions of humic and fulvic acid fractions to soil reflectance was evaluated. Organic matter from four Indiana agricultural soils was extracted, fractionated, and purified, and six individual components of each soil were isolated and prepared for spectral analysis. The four soils, ranging in organic carbon content from 0.99 percent, represented various combinations of genetic parameters such as parent material, age, drainage, and native vegetation. An experimental procedure was developed to measure reflectance of very small soil and organic component samples in the laboratory, simulating the spectral coverage and resolution of the HIRIS sensor. Reflectance in 210 narrow (10 nm) bands was measured using the CARY 17D spectrophotometer over the 400 to 2500 nm wavelength range. Reflectance data were analyzed statistically to determine the regions of the reflective spectrum which provided useful information about soil organic matter content and composition. Wavebands providing significant information about soil organic carbon content were located in all three major regions of the reflective spectrum: visible, near infrared, and middle infrared. The purified humic acid fractions of the four soils were separable in six bands in the 1600 to 2400 nm range, suggesting that longwave middle infrared reflectance may be useful as a non-destructive laboratory technique for humic acid characterization.
NASA Astrophysics Data System (ADS)
Wright, L.; Coddington, O.; Pilewskie, P.
2015-12-01
Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.
Sugarcane Crop Extraction Using Object-Oriented Method from ZY-3 High Resolution Satellite Tlc Image
NASA Astrophysics Data System (ADS)
Luo, H.; Ling, Z. Y.; Shao, G. Z.; Huang, Y.; He, Y. Q.; Ning, W. Y.; Zhong, Z.
2018-04-01
Sugarcane is one of the most important crops in Guangxi, China. As the development of satellite remote sensing technology, more remotely sensed images can be used for monitoring sugarcane crop. With the help of Three Line Camera (TLC) images, wide coverage and stereoscopic mapping ability, Chinese ZY-3 high resolution stereoscopic mapping satellite is useful in attaining more information for sugarcane crop monitoring, such as spectral, shape, texture difference between forward, nadir and backward images. Digital surface model (DSM) derived from ZY-3 TLC images are also able to provide height information for sugarcane crop. In this study, we make attempt to extract sugarcane crop from ZY-3 images, which are acquired in harvest period. Ortho-rectified TLC images, fused image, DSM are processed for our extraction. Then Object-oriented method is used in image segmentation, example collection, and feature extraction. The results of our study show that with the help of ZY-3 TLC image, the information of sugarcane crop in harvest time can be automatic extracted, with an overall accuracy of about 85.3 %.
NASA Astrophysics Data System (ADS)
Riedel, Sebastian; Janas, Joanna; Gege, Peter; Oppelt, Natascha
2017-10-01
Uncertainties of aerosol parameters are the limiting factor for atmospheric correction over inland and coastal waters. For validating remote sensing products from these optically complex and spatially inhomogeneous waters the spatial resolution of automated sun photometer networks like AERONET is too coarse and additional measurements on the test site are required. We have developed a method which allows the derivation of aerosol parameters from measurements with any spectrometer with suitable spectral range and resolution. This method uses a pair of downwelling irradiance and sky radiance measurements for the extraction of the turbidity coefficient and aerosol Ångström exponent. The data can be acquired fast and reliable at almost any place during a wide range of weather conditions. A comparison to aerosol parameters measured with a Cimel sun photometer provided by AERONET shows a reasonable agreement for the Ångström exponent. The turbidity coefficient did not agree well with AERONET values due to fit ambiguities, indicating that future research should focus on methods to handle parameter correlations within the underlying model.
Payload Configurations for Efficient Image Acquisition - Indian Perspective
NASA Astrophysics Data System (ADS)
Samudraiah, D. R. M.; Saxena, M.; Paul, S.; Narayanababu, P.; Kuriakose, S.; Kiran Kumar, A. S.
2014-11-01
The world is increasingly depending on remotely sensed data. The data is regularly used for monitoring the earth resources and also for solving problems of the world like disasters, climate degradation, etc. Remotely sensed data has changed our perspective of understanding of other planets. With innovative approaches in data utilization, the demands of remote sensing data are ever increasing. More and more research and developments are taken up for data utilization. The satellite resources are scarce and each launch costs heavily. Each launch is also associated with large effort for developing the hardware prior to launch. It is also associated with large number of software elements and mathematical algorithms post-launch. The proliferation of low-earth and geostationary satellites has led to increased scarcity in the available orbital slots for the newer satellites. Indian Space Research Organization has always tried to maximize the utility of satellites. Multiple sensors are flown on each satellite. In each of the satellites, sensors are designed to cater to various spectral bands/frequencies, spatial and temporal resolutions. Bhaskara-1, the first experimental satellite started with 2 bands in electro-optical spectrum and 3 bands in microwave spectrum. The recent Resourcesat-2 incorporates very efficient image acquisition approach with multi-resolution (3 types of spatial resolution) multi-band (4 spectral bands) electro-optical sensors (LISS-4, LISS-3* and AWiFS). The system has been designed to provide data globally with various data reception stations and onboard data storage capabilities. Oceansat-2 satellite has unique sensor combination with 8 band electro-optical high sensitive ocean colour monitor (catering to ocean and land) along with Ku band scatterometer to acquire information on ocean winds. INSAT- 3D launched recently provides high resolution 6 band image data in visible, short-wave, mid-wave and long-wave infrared spectrum. It also has 19 band sounder for providing vertical profile of water vapour, temperature, etc. The same system has data relay transponders for acquiring data from weather stations. The payload configurations have gone through significant changes over the years to increase data rate per kilogram of payload. Future Indian remote sensing systems are planned with very high efficient ways of image acquisition. This paper analyses the strides taken by ISRO (Indian Space research Organisation) in achieving high efficiency in remote sensing image data acquisition. Parameters related to efficiency of image data acquisition are defined and a methodology is worked out to compute the same. Some of the Indian payloads are analysed with respect to some of the system/ subsystem parameters that decide the configuration of payload. Based on the analysis, possible configuration approaches that can provide high efficiency are identified. A case study is carried out with improved configuration and the results of efficiency improvements are reported. This methodology may be used for assessing other electro-optical payloads or missions and can be extended to other types of payloads and missions.
NASA Astrophysics Data System (ADS)
Xu, Saiping; Zhao, Qianjun; Yin, Kai; Cui, Bei; Zhang, Xiupeng
2016-10-01
Hollow village is a special phenomenon in the process of urbanization in China, which causes the waste of land resources. Therefore, it's imminent to carry out the hollow village recognition and renovation. However, there are few researches on the remote sensing identification of hollow village. In this context, in order to recognize the abandoned homesteads by remote sensing technique, the experiment was carried out as follows. Firstly, Gram-Schmidt transform method was utilized to complete the image fusion between multi-spectral images and panchromatic image of WorldView-2. Then the fusion images were made edge enhanced by high pass filtering. The multi-resolution segmentation and spectral difference segmentation were carried out to obtain the image objects. Secondly, spectral characteristic parameters were calculated, such as the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), the normalized difference Soil index (NDSI) etc. The shape feature parameters were extracted, such as Area, Length/Width Ratio and Rectangular Fit etc.. Thirdly, the SEaTH algorithm was used to determine the thresholds and optimize the feature space. Furthermore, the threshold classification method and the random forest classifier were combined, and the appropriate amount of samples were selected to train the classifier in order to determine the important feature parameters and the best classifier parameters involved in classification. Finally, the classification results was verified by computing the confusion matrix. The classification results were continuous and the phenomenon of salt and pepper using pixel classification was avoided effectively. In addition, the results showed that the extracted Abandoned Homesteads were in complete shapes, which could be distinguished from those confusing classes such as Homestead in Use and Roads.
[Prediction models of soil organic matter based on spectral curve in the upstream of Heihe basin].
Liu, Jiao; Li, Yi; Liu, Shi-Bin
2013-12-01
Benefiting from the high spectral resolution, ground hyperspectral remote sensing technology can express the ground surface feature in detail, meanwhile, multispectral remote sensing has more advantages in studying the features in a large space time region, because of its long time-series images and wide coverage. Investigating the prediction models between the soil organic matter (SOM) content and the hyperspectral data and the sensitive bands based on different indices mathematically obtained from reflectance could combine the advantages of both kinds of spectral data, and provide a new method to search the spatio-temporal characteristics of SOM. Two hundred twenty three soil samples were chosen from the upper reaches of Heihe Basin to measure the SOM content and hyperspectral curve. Taking 181 of them, the stepwise linear regression methods were used to establish models between the SOM and five indices, including reflectance (lambda), reciprocal (REC), logarithm of the reciprocal (LR), continuum-removal (CR) and the first derivative reflectance (FDR). After then, the left 42 samples were used for model validation: firstly, the best model of the same index was chosen by the values of Pearson correlation coefficient (r) and Root mean squared error (RMSE) between the measured value and predicted value; secondly, the best models of different indices were compared. As a result, the model built by reflectance has a better estimation of SOM with the r: 0.863 and RMSE: 4.79. And the sensitive bands of the reflectance model contain 474 nm during TM1, 636 nm during TM3 and 1 632 nm during TM5. This result could be a reference for the retrieval of SOM content of the upper reaches by using the TM remote sensing data.
A comparison of measured radiances from AIRS and HIRS across different cloud types
NASA Astrophysics Data System (ADS)
Schreier, M. M.; Kahn, B. H.; Staten, P.
2015-12-01
The observation of Earth's atmosphere with passive remote sensing instruments is ongoing for decades and resulting in a long-term global dataset. Two prominent examples are operational satellite platforms from the National Oceanic and Atmospheric Administration (NOAA) or research platforms like NASA's Earth Observing System (EOS). The observed spectral ranges of these observations are often similar among the different platforms, but have large differences when it comes to resolution, accuracy and quality control. Our approach is to combine different kinds of instruments at the pixel-scale to improve the characterization of infrared radiances. We focus on data from the High-resolution Infrared Radiation Sounder (HIRS) and compare the observations to radiances from the Atmospheric Infrared Sounder (AIRS) on Aqua. The high spectral resolution of AIRS is used to characterize and possibly recalibrate the observed radiances from HIRS. Our approach is unique in that we use additional information from other passive instruments on the same platforms including the Advanced Very High Resolution Radiometer (AVHRR) and the MODerate resolution Imaging Spectroradiometer (MODIS). We will present comparisons of radiances from HIRS and AIRS within different types of clouds that are determined from the imagers. In this way, we can analyze and select the most homogeneous conditions for radiance comparisons and a possible re-calibration of HIRS. We hope to achieve a cloud-type-dependent calibration and quality control for HIRS, which can be extrapolated into the past via inter-calibration of the different HIRS instruments beyond the time of AIRS.
Synchronous atmospheric radiation correction of GF-2 satellite multispectral image
NASA Astrophysics Data System (ADS)
Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan
2018-02-01
GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.
Beyond Population Distribution: Enhancing Sociocultural Resolution from Remote Sensing
NASA Astrophysics Data System (ADS)
Bhaduri, B. L.; Rose, A.
2017-12-01
At Oak Ridge National Laboratory, since late 1990s, we have focused on developing high resolution population distribution and dynamics data from local to global scales. Increasing resolutions of geographic data has been mirrored by population data sets developed across the community. However, attempts to increase temporal and sociocultural resolutions have been limited given the lack of high resolution data on human settlements and activities. While recent advancements in moderate to high resolution earth observation have led to better physiographic data, the approach of exploiting very high resolution (sub-meter resolution) imagery has also proven useful for generating accurate human settlement maps. It allows potential (social and vulnerability) characterization of population from settlement structures by exploiting image texture and spectral features. Our recent research utilizing machine learning and geocomputation has not only validated "poverty mapping from imagery" hypothesis, but has delineated a new paradigm of rapid analysis of high resolution imagery to enhance such "neighborhood" mapping techniques. Such progress in GIScience is allowing us to move towards the goal of creating a global foundation level database for impervious surfaces and "neighborhoods," and holds tremendous promise for key applications focusing on sustainable development including many social science applications.
A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.
Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo
2017-07-01
This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.
Classification of hyperspectral imagery with neural networks: comparison to conventional tools
NASA Astrophysics Data System (ADS)
Merényi, Erzsébet; Farrand, William H.; Taranik, James V.; Minor, Timothy B.
2014-12-01
Efficient exploitation of hyperspectral imagery is of great importance in remote sensing. Artificial intelligence approaches have been receiving favorable reviews for classification of hyperspectral data because the complexity of such data challenges the limitations of many conventional methods. Artificial neural networks (ANNs) were shown to outperform traditional classifiers in many situations. However, studies that use the full spectral dimensionality of hyperspectral images to classify a large number of surface covers are scarce if non-existent. We advocate the need for methods that can handle the full dimensionality and a large number of classes to retain the discovery potential and the ability to discriminate classes with subtle spectral differences. We demonstrate that such a method exists in the family of ANNs. We compare the maximum likelihood, Mahalonobis distance, minimum distance, spectral angle mapper, and a hybrid ANN classifier for real hyperspectral AVIRIS data, using the full spectral resolution to map 23 cover types and using a small training set. Rigorous evaluation of the classification accuracies shows that the ANN outperforms the other methods and achieves ≈90% accuracy on test data.
Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer
NASA Technical Reports Server (NTRS)
Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.
2006-01-01
The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.
NASA Technical Reports Server (NTRS)
Meek, C. E.; Manson, A. H.; Smith, M. J.
1983-01-01
Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.
NASA Technical Reports Server (NTRS)
Butera, M. K. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Major vegetative classes identified by the remote sensing technique were cypress swamp, pine, wetland grasses, salt grass, mixed mangrove, black mangrove, Brazilian pepper. Australian pine and melaleuca were not satisfactorily classified from LANDSAT. Aircraft scanners provided better resolution resulting in a classification of finer surface detail. An edge effect, created by the integration of diverse spectral responses within boundary elements of digital data, affected the wetlands classification. Accuracy classification for aircraft was 68% and for LANDSAT was 74%.
Relation of laboratory and remotely sensed spectral signatures of ocean-dumped acid waste
NASA Technical Reports Server (NTRS)
Lewis, B. W.
1978-01-01
Results of laboratory transmission and remotely sensed ocean upwelled spectral signatures of acid waste ocean water solutions are presented. The studies were performed to establish ocean-dumped acid waste spectral signatures and to relate them to chemical and physical interactions occurring in the dump plume. The remotely sensed field measurements and the laboratory measurements were made using the same rapid-scanning spectrometer viewing a dump plume and with actual acid waste and ocean water samples, respectively. Laboratory studies showed that the signatures were produced by soluble ferric iron being precipitated in situ as ferric hydroxide upon dilution with ocean water. Sea-truth water samples were taken and analyzed for pertinent major components of the acid waste. Relationships were developed between the field and laboratory data both for spectral signatures and color changes with concentration. The relationships allow for the estimation of concentration of the indicator iron from remotely sensed spectral data and the laboratory transmission concentration data without sea-truth samples.
Estimation of sea surface temperature from remote sensing in the 11to 13-micron window region
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Kunde, V. G.; Dalu, G.
1974-01-01
The Nimbus 3 and 4 Iris spectral data in the 11- to 13-micron water vapor window region are analyzed to determine the sea surface temperature (SST). The high spectral resolution data of Iris are averaged over approximately 1-micron-wide intervals to simulate channels of a radiometer to measure the SST. In the present exploratory study, three such channels in the 775- to 960-per cm (12.9-10.5 micron) region are utilized to measure the SST over cloud-free oceans. However, two of these channels are sufficient in routine SST determination. The differential absorption properties of water vapor in the two channels make it possible to determine the water vapor absorption correction without detailed knowledge of the vertical profiles of temperature and water vapor. The feasibility of determining the SST is demonstrated globally with Nimbus 3 data, where cloud-free areas can be selected with the help of albedo data from the medium-resolution infrared radiometer experiment on board the same satellite. The SST derived from this technique agrees with the measurements made by ships to about 1 C.-
Hyperspectral imager for components identification in the atmosphere
NASA Astrophysics Data System (ADS)
Dewandel, Jean-Luc; Beghuin, Didier; Dubois, Xavier; Antoine, Philippe
2017-11-01
Several applications require the identification of chemical elements during re-entry of material in the atmosphere. The materials can be from human origin or meteorites. The Automated Transfer Vehicle (ATV) re-entry has been filmed with conventional camera from airborne manual operation. In order to permit the identification of the separate elements from their glow, spectral analysis needs to be added to the video data. In a LET-SME contract with ESA, Lambda-X has built a Fourier Transform Imaging Spectrometer to permit, in a future work, to bring the technology to the readiness level required for the application. In this paper, the principles of the Fourier Transform Imaging spectroscopy are recalled, the different interferometers suitable for supporting the technique are reviewed and the selection process is explained. The final selection of the interferometer corresponds to a birefringent prism based common path shear interferometer. The design of the breadboard and its performances are presented in terms of spatial resolution, aperture, and spectral resolution. A discussion is open regarding perspective of the technique for other remote sensing applications compared to more usual push broom configurations.
Canopy reflectance related to marsh dieback onset and progression in Coastal Louisiana
Ramsey, Elijah W.; Rangoonwala, A.
2006-01-01
In this study, we extended previous work linking leaf spectral changes, dieback onset, and progression of Spartina alterniflora marshes to changes in site-specific canopy reflectance spectra. First, we obtained canopy reflectance spectra (approximately 20 m ground resolution) from the marsh sites occupied during the leaf spectral analyses and from additional sites exhibiting visual signs of dieback. Subsequently, the canopy spectra were analyzed at two spectral scales: the first scale corresponded to whole-spectra sensors, such as the NASA Earth Observing-1 (EO-1) Hyperion, and the second scale corresponded to broadband spectral sensors, such as the EO-1 Advanced Land Imager and the Landsat Enhanced Thematic Mapper. In the whole-spectra analysis, spectral indicators were generated from the whole canopy spectra (about 400 nm to 1,000 nm) by extracting typical dead and healthy marsh spectra, and subsequently using them to determine the percent composition of all canopy reflectance spectra. Percent compositions were then used to classify canopy spectra at each field site into groups exhibiting similar levels of dieback progression ranging from relatively healthy to completely dead. In the broadband reflectance analysis, blue, green, red, red-edge, and near infrared (NIR) spectral bands and NIR/green and NIR/red transforms were extracted from the canopy spectra. Spectral band and band transform indicators of marsh dieback and progression were generated by relating them to marsh status indicators derived from classifications of the 35 mm slides collected at the same time as the canopy reflectance recordings. The whole spectra and broadband spectral indicators were both able to distinguish (a) healthy marsh, (b) live marsh impacted by dieback, and (c) dead marsh, and they both provided some discrimination of dieback progression. Whole-spectra resolution sensors like the EO-1 Hyperion, however, offered an enhanced ability to categorize dieback progression. ?? 2006 American Society for Photogrammetry and Remote Sensing.
Application and evaluation of ISVR method in QuickBird image fusion
NASA Astrophysics Data System (ADS)
Cheng, Bo; Song, Xiaolu
2014-05-01
QuickBird satellite images are widely used in many fields, and applications have put forward high requirements for the integration of the spatial information and spectral information of the imagery. A fusion method for high resolution remote sensing images based on ISVR is identified in this study. The core principle of ISVS is taking the advantage of radicalization targeting to remove the effect of different gain and error of satellites' sensors. Transformed from DN to radiance, the multi-spectral image's energy is used to simulate the panchromatic band. The linear regression analysis is carried through the simulation process to find a new synthetically panchromatic image, which is highly linearly correlated to the original panchromatic image. In order to evaluate, test and compare the algorithm results, this paper used ISVR and other two different fusion methods to give a comparative study of the spatial information and spectral information, taking the average gradient and the correlation coefficient as an indicator. Experiments showed that this method could significantly improve the quality of fused image, especially in preserving spectral information, to maximize the spectral information of original multispectral images, while maintaining abundant spatial information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, H.; LeDrew, E.
1997-06-01
Remote discrimination of substrate types in relatively shallow coastal waters has been limited by the spatial and spectral resolution of available sensors. An additional limiting factor is the strong attenuating influence of the water column over the substrate. As a result, there have been limited attempts to map submerged ecosystems such as coral reefs based on spectral characteristics. Both healthy and bleached corals were measured at depth with a hand-held spectroradiometer, and their spectra compared. Two separate principal components analyses (PCA) were performed on two sets of spectral data. The PCA revealed that there is indeed a spectral difference basedmore » on health. In the first data set, the first component (healthy coral) explains 46.82%, while the second component (bleached coral) explains 46.35% of the variance. In the second data set, the first component (bleached coral) explained 46.99%; the second component (healthy coral) explained 36.55%; and the third component (healthy coral) explained 15.44 % of the total variance in the original data. These results are encouraging with respect to using an airborne spectroradiometer to identify areas of bleached corals thus enabling accurate monitoring over time.« less
Leifer, Ira; Lehr, William J.; Simecek-Beatty, Debra; Bradley, Eliza; Clark, Roger N.; Dennison, Philip E.; Hu, Yongxiang; Matheson, Scott; Jones, Cathleen E; Holt, Benjamin; Reif, Molly; Roberts, Dar A.; Svejkovsky, Jan; Swayze, Gregg A.; Wozencraft, Jennifer M.
2012-01-01
The vast and persistent Deepwater Horizon (DWH) spill challenged response capabilities, which required accurate, quantitative oil assessment at synoptic and operational scales. Although experienced observers are a spill response's mainstay, few trained observers and confounding factors including weather, oil emulsification, and scene illumination geometry present challenges. DWH spill and impact monitoring was aided by extensive airborne and spaceborne passive and active remote sensing.Oil slick thickness and oil-to-water emulsion ratios are key spill response parameters for containment/cleanup and were derived quantitatively for thick (> 0.1 mm) slicks from AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data using a spectral library approach based on the shape and depth of near infrared spectral absorption features. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite, visible-spectrum broadband data of surface-slick modulation of sunglint reflection allowed extrapolation to the total slick. A multispectral expert system used a neural network approach to provide Rapid Response thickness class maps.Airborne and satellite synthetic aperture radar (SAR) provides synoptic data under all-sky conditions; however, SAR generally cannot discriminate thick (> 100 μm) oil slicks from thin sheens (to 0.1 μm). The UAVSAR's (Uninhabited Aerial Vehicle SAR) significantly greater signal-to-noise ratio and finer spatial resolution allowed successful pattern discrimination related to a combination of oil slick thickness, fractional surface coverage, and emulsification.In situ burning and smoke plumes were studied with AVIRIS and corroborated spaceborne CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations of combustion aerosols. CALIPSO and bathymetry lidar data documented shallow subsurface oil, although ancillary data were required for confirmation.Airborne hyperspectral, thermal infrared data have nighttime and overcast collection advantages and were collected as well as MODIS thermal data. However, interpretation challenges and a lack of Rapid Response Products prevented significant use. Rapid Response Products were key to response utilization—data needs are time critical; thus, a high technological readiness level is critical to operational use of remote sensing products. DWH's experience demonstrated that development and operationalization of new spill response remote sensing tools must precede the next major oil spill.
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
NASA Astrophysics Data System (ADS)
Tatar, Nurollah; Saadatseresht, Mohammad; Arefi, Hossein; Hadavand, Ahmad
2018-06-01
Unwanted contrast in high resolution satellite images such as shadow areas directly affects the result of further processing in urban remote sensing images. Detecting and finding the precise position of shadows is critical in different remote sensing processing chains such as change detection, image classification and digital elevation model generation from stereo images. The spectral similarity between shadow areas, water bodies, and some dark asphalt roads makes the development of robust shadow detection algorithms challenging. In addition, most of the existing methods work on pixel-level and neglect the contextual information contained in neighboring pixels. In this paper, a new object-based shadow detection framework is introduced. In the proposed method a pixel-level shadow mask is built by extending established thresholding methods with a new C4 index which enables to solve the ambiguity of shadow and water bodies. Then the pixel-based results are further processed in an object-based majority analysis to detect the final shadow objects. Four different high resolution satellite images are used to validate this new approach. The result shows the superiority of the proposed method over some state-of-the-art shadow detection method with an average of 96% in F-measure.
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2005-01-01
NASA is developing active remote sensors to monitor the health of Planet Earth and for exploration of other planets. Development and deployment of these remote sensors can have a huge economic impact. Lasers for these active remote sensors span the spectral range from the ultraviolet to the mid infrared spectral regions. Development activities range from quantum mechanical modeling and prediction of new laser materials to the design, development, and demonstration be deployed in the field.
Hyperspectral Features of Oil-Polluted Sea Ice and the Response to the Contamination Area Fraction
Li, Ying; Liu, Chengyu; Xie, Feng
2018-01-01
Researchers have studied oil spills in open waters using remote sensors, but few have focused on extracting reflectance features of oil pollution on sea ice. An experiment was conducted on natural sea ice in Bohai Bay, China, to obtain the spectral reflectance of oil-contaminated sea ice. The spectral absorption index (SAI), spectral peak height (SPH), and wavelet detail coefficient (DWT d5) were calculated using stepwise multiple linear regression. The reflectances of some false targets were measured and analysed. The simulated false targets were sediment, iron ore fines, coal dust, and the melt pool. The measured reflectances were resampled using five common sensors (GF-2, Landsat8-OLI, Sentinel3-OLCI, MODIS, and AVIRIS). Some significant spectral features could discriminate between oil-polluted and clean sea ice. The indices correlated well with the oil area fractions. All of the adjusted R2 values exceeded 0.9. The SPH model1, based on spectral features at 507–670 and 1627–1746 nm, displayed the best fitting. The resampled data indicated that these multi-spectral and hyper-spectral sensors could be used to detect crude oil on the sea ice if the effect of noise and spatial resolution are neglected. The spectral features and their identified changes may provide reference on sensor design and band selection. PMID:29342945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostetler, Chris; Ferrare, Richard
The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institutemore » for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.« less
Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow
NASA Technical Reports Server (NTRS)
Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.
1993-01-01
A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.
AVAL - The ASTER Volcanic Ash Library
NASA Astrophysics Data System (ADS)
Williams, D.; Ramsey, M. S.
2016-12-01
Volcanic ash is a rich data source for understanding the causal mechanisms behind volcanic eruptions. Petrologic and morphometric information can provide direct information on the characteristics of the parent magma. Understanding how erupted ash interacts with the atmosphere can help quantify the effect that explosive volcanism has on the local to regional climate, whereas a measure of the particle size distribution enables more accurate modeling of plume propagation. Remote sensing is regularly employed to monitor volcanic plumes using a suite of high temporal/low spatial resolution sensors. These methods employ radiative transfer modeling with assumptions of the transmissive properties of infrared energy through the plume to determine ash density, particle size and sulfur dioxide content. However, such approaches are limited to the optically-transparent regions, and the low spatial resolution data are only useful for large-scale trends. In a new approach, we are treating the infrared-opaque regions of the plume in a similar way to a solid emitting surface. This allows high spatial resolution orbital thermal infrared data from the dense proximal plume to be modeled using a linear deconvolution approach coupled with a spectral library to extract the particle size and petrology. The newly created ASTER Volcanic Ash Library (AVAL) provides the end member spectral suite, and is comprised of laboratory emission measurements of volcanic ash taken from a variety of different volcanic settings, to obtain a wide range of petrologies. These samples have been further subdivided into particle size fractions to account for spectral changes due to diffraction effects. Once mapped to the ASTER sensor's spectral resolution, this library is applied to image data and the plume deconvolved to estimate composition and particle size. We have analyzed eruptions at the Soufrière Hills Volcano, Montserrat, Chaitén and Puyehue-Cordón Caulle, both Chile, and Eyjafjallajökull, Iceland. These results provide particle size distributions within actively-erupting volcanic plumes for the first time in high resolution, and the petrologic information is being studied to understand the underlying eruptive processes observed.
NASA Astrophysics Data System (ADS)
Tower, J. R.; Cope, A. D.; Pellion, L. E.; McCarthy, B. M.; Strong, R. T.; Kinnard, K. F.; Moldovan, A. G.; Levine, P. A.; Elabd, H.; Hoffman, D. M.
1985-12-01
Performance measurements of two Multispectral Linear Array focal planes are presented. Both pushbroom sensors have been developed for application in remote sensing instruments. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a but-table, two-spectral-band, linear-format, shortwave infrared charge coupled device (IRCCD) have been developed under NASA funding. These silicon integrated circuits may be butted end to end to provide very-high-resolution multispectral focal planes. The visible CCD is organized as four sensor lines of 1024 pixels each. Each line views the scene in a different spectral window defined by integral optical bandpass filters. A prototype focal plane with five devices, providing 4x5120-pixel resolution has been demonstrated. The high quantum efficiency of the backside-illuminated CCD technology provides excellent signal-to-noise performance and unusually high MTF across the entire visible and near-IR spectrum. The shortwave infrared (SWIR) sensor is organized as two line sensors of 512 detectors each. The SWIR (1-2.5 μm) spectral windows may be defined by bandpass filters placed in close proximity to the devices. The dual-band sensor consists of Schottky barrier detectors read out by CCD multiplexers. This monolithic sensor operates at 125°K with radiometric performance. A prototype five-device focal plane providing 2x2560 detectors has been demonstrated. The devices provide very high uniformity, and excellent MTF across the SWIR band.
Evaluation of appropriate sensor specifications for space based ballistic missile detection
NASA Astrophysics Data System (ADS)
Schweitzer, Caroline; Stein, Karin; Wendelstein, Norbert
2012-10-01
The detection and tracking of ballistic missiles (BMs) during launch or cloud break using satellite based electro-optical (EO) sensors is a promising possibility for pre-instructing early warning and fire control radars. However, the successful detection of a BM is depending on the applied infrared (IR)-channel, as emission and reflection of threat and background vary in different spectral (IR-) bands and for different observation scenarios. In addition, the spatial resolution of the satellite based system also conditions the signal-to-clutter-ratio (SCR) and therefore the predictability of the flight path. Generally available satellite images provide data in spectral bands, which are suitable for remote sensing applications and earth surface observations. However, in the fields of BM early warning, these bands are not of interest making the simulation of background data essential. The paper focuses on the analysis of IR-bands suitable for missile detection by trading off the suppression of background signature against threat signal strength. This comprises a radiometric overview of the background radiation in different spectral bands for different climates and seasons as well as for various cloud types and covers. A brief investigation of the BM signature and its trajectory within a threat scenario is presented. Moreover, the influence on the SCR caused by different observation scenarios and varying spatial resolution are pointed out. The paper also introduces the software used for simulating natural background spectral radiance images, MATISSE ("Advanced Modeling of the Earth for Environment and Scenes Simulation") by ONERA [1].