Putz, Mihai V.; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian
2009-01-01
Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) “wave” and “conversion factor” in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein. PMID:19399244
Wavelet Filter Banks for Super-Resolution SAR Imaging
NASA Technical Reports Server (NTRS)
Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess
2011-01-01
This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.
SAR image change detection using watershed and spectral clustering
NASA Astrophysics Data System (ADS)
Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie
2011-12-01
A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.
Empirical wind retrieval model based on SAR spectrum measurements
NASA Astrophysics Data System (ADS)
Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad
The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction ambiguity from polarimetric SAR. A criterion based on the complex correlation coefficient between the VV and VH signals sign is applied to select the wind direction. An additional quality control on the wind speed value retrieved with the spectral method is applied. Here, we use the direction obtained with the spectral method and the backscattered signal for CMOD wind speed estimate. The algorithm described above may be refined by the use of numerous SAR data and wind measurements. In the present preliminary work the first results of SAR images combined with in situ data processing are presented. Our results are compared to the results obtained using previously developed models CMOD, C-2PO for VH polarization and statistical wind retrieval approaches [1]. Acknowledgments. This work is supported by the Russian Foundation of Basic Research (grants 13-05-00852-a). [1] M. Portabella, A. Stoffelen, J. A. Johannessen, Toward an optimal inversion method for synthetic aperture radar wind retrieval, Journal of geophysical research, V. 107, N C8, 2002
SAR image registration based on Susan algorithm
NASA Astrophysics Data System (ADS)
Wang, Chun-bo; Fu, Shao-hua; Wei, Zhong-yi
2011-10-01
Synthetic Aperture Radar (SAR) is an active remote sensing system which can be installed on aircraft, satellite and other carriers with the advantages of all day and night and all-weather ability. It is the important problem that how to deal with SAR and extract information reasonably and efficiently. Particularly SAR image geometric correction is the bottleneck to impede the application of SAR. In this paper we introduces image registration and the Susan algorithm knowledge firstly, then introduces the process of SAR image registration based on Susan algorithm and finally presents experimental results of SAR image registration. The Experiment shows that this method is effective and applicable, no matter from calculating the time or from the calculation accuracy.
Spaceborne SAR Imaging Algorithm for Coherence Optimized.
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.
Spaceborne SAR Imaging Algorithm for Coherence Optimized
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446
NASA Astrophysics Data System (ADS)
Nguyen, Lam
2017-05-01
The U.S. Army Research Laboratory (ARL) recently designed and tested a new prototype radar, the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar system, based on a stepped-frequency architecture to address issues associated with our previous impulse-based radars. This is a low-frequency ultra-wideband (UWB) radar with frequencies spanning from 300 to 2000 MHz. Mounted on a vehicle, the radar can be configured in either sidelooking or forward-looking synthetic aperture radar (SAR) mode. We recently conducted our first experiment at Yuma Proving Grounds (YPG). This paper summarizes the radar configurations, parameters, and SAR geometry. The radar data and other noise sources, to include the self-interference signals and radio-frequency interference (RFI) noise sources, are presented and characterized in both the raw (pre-focus) and SAR imagery domains. This paper also describes our signal processing techniques for extracting noise from radar data, as well as the SAR imaging algorithms for forming SAR imagery in both forward- and side-looking modes. Finally, this paper demonstrates our spectral recovery technique and results for a radar operating in a spectrally restricted environment.
Processor architecture for airborne SAR systems
NASA Technical Reports Server (NTRS)
Glass, C. M.
1983-01-01
Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.
Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images
NASA Astrophysics Data System (ADS)
Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong
2018-01-01
Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.
Synthetic Aperture Radar (SAR) data processing
NASA Technical Reports Server (NTRS)
Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.
1978-01-01
The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.
Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)
NASA Technical Reports Server (NTRS)
Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing
2011-01-01
An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.
A general rough-surface inversion algorithm: Theory and application to SAR data
NASA Technical Reports Server (NTRS)
Moghaddam, M.
1993-01-01
Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.
A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions
Huang, Shiqi; Huang, Wenzhun; Zhang, Ting
2016-01-01
The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application. PMID:27924935
A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions.
Huang, Shiqi; Huang, Wenzhun; Zhang, Ting
2016-12-07
The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application.
Applications of independent component analysis in SAR images
NASA Astrophysics Data System (ADS)
Huang, Shiqi; Cai, Xinhua; Hui, Weihua; Xu, Ping
2009-07-01
The detection of faint, small and hidden targets in synthetic aperture radar (SAR) image is still an issue for automatic target recognition (ATR) system. How to effectively separate these targets from the complex background is the aim of this paper. Independent component analysis (ICA) theory can enhance SAR image targets and improve signal clutter ratio (SCR), which benefits to detect and recognize faint targets. Therefore, this paper proposes a new SAR image target detection algorithm based on ICA. In experimental process, the fast ICA (FICA) algorithm is utilized. Finally, some real SAR image data is used to test the method. The experimental results verify that the algorithm is feasible, and it can improve the SCR of SAR image and increase the detection rate for the faint small targets.
Efficient geometric rectification techniques for spectral analysis algorithm
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Pang, S. S.; Curlander, J. C.
1992-01-01
The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.
Chirp Scaling Algorithms for SAR Processing
NASA Technical Reports Server (NTRS)
Jin, M.; Cheng, T.; Chen, M.
1993-01-01
The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.
MREG V1.1 : a multi-scale image registration algorithm for SAR applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichel, Paul H.
2013-08-01
MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962more » leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.« less
Target surface finding using 3D SAR data
NASA Astrophysics Data System (ADS)
Ruiter, Jason R.; Burns, Joseph W.; Subotic, Nikola S.
2005-05-01
Methods of generating more literal, easily interpretable imagery from 3-D SAR data are being studied to provide all weather, near-visual target identification and/or scene interpretation. One method of approaching this problem is to automatically generate shape-based geometric renderings from the SAR data. In this paper we describe the application of the Marching Tetrahedrons surface finding algorithm to 3-D SAR data. The Marching Tetrahedrons algorithm finds a surface through the 3-D data cube, which provides a recognizable representation of the target surface. This algorithm was applied to the public-release X-patch simulations of a backhoe, which provided densely sampled 3-D SAR data sets. The performance of the algorithm to noise and spatial resolution were explored. Surface renderings were readily recognizable over a range of spatial resolution, and maintained their fidelity even under relatively low Signal-to-Noise Ratio (SNR) conditions.
NASA Astrophysics Data System (ADS)
Changyong, Dou; Huadong, Guo; Chunming, Han; yuquan, Liu; Xijuan, Yue; Yinghui, Zhao
2014-03-01
Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc.
Phase unwrapping in three dimensions with application to InSAR time series.
Hooper, Andrew; Zebker, Howard A
2007-09-01
The problem of phase unwrapping in two dimensions has been studied extensively in the past two decades, but the three-dimensional (3D) problem has so far received relatively little attention. We develop here a theoretical framework for 3D phase unwrapping and also describe two algorithms for implementation, both of which can be applied to synthetic aperture radar interferometry (InSAR) time series. We test the algorithms on simulated data and find both give more accurate results than a two-dimensional algorithm. When applied to actual InSAR time series, we find good agreement both between the algorithms and with ground truth.
NASA Astrophysics Data System (ADS)
Mwaniki, M. W.; Kuria, D. N.; Boitt, M. K.; Ngigi, T. G.
2017-04-01
Image enhancements lead to improved performance and increased accuracy of feature extraction, recognition, identification, classification and hence change detection. This increases the utility of remote sensing to suit environmental applications and aid disaster monitoring of geohazards involving large areas. The main aim of this study was to compare the effect of image enhancement applied to synthetic aperture radar (SAR) data and Landsat 8 imagery in landslide identification and mapping. The methodology involved pre-processing Landsat 8 imagery, image co-registration, despeckling of the SAR data, after which Landsat 8 imagery was enhanced by Principal and Independent Component Analysis (PCA and ICA), a spectral index involving bands 7 and 4, and using a False Colour Composite (FCC) with the components bearing the most geologic information. The SAR data were processed using textural and edge filters, and computation of SAR incoherence. The enhanced spatial, textural and edge information from the SAR data was incorporated to the spectral information from Landsat 8 imagery during the knowledge based classification. The methodology was tested in the central highlands of Kenya, characterized by rugged terrain and frequent rainfall induced landslides. The results showed that the SAR data complemented Landsat 8 data which had enriched spectral information afforded by the FCC with enhanced geologic information. The SAR classification depicted landslides along the ridges and lineaments, important information lacking in the Landsat 8 image classification. The success of landslide identification and classification was attributed to the enhanced geologic features by spectral, textural and roughness properties.
NASA Astrophysics Data System (ADS)
Zhang, Siqian; Kuang, Gangyao
2014-10-01
In this paper, a novel three-dimensional imaging algorithm of downward-looking linear array SAR is presented. To improve the resolution, multiple signal classification (MUSIC) algorithm has been used. However, since the scattering centers are always correlated in real SAR system, the estimated covariance matrix becomes singular. To address the problem, a three-dimensional spatial smoothing method is proposed in this paper to restore the singular covariance matrix to a full-rank one. The three-dimensional signal matrix can be divided into a set of orthogonal three-dimensional subspaces. The main idea of the method is based on extracting the array correlation matrix as the average of all correlation matrices from the subspaces. In addition, the spectral height of the peaks contains no information with regard to the scattering intensity of the different scattering centers, thus it is difficulty to reconstruct the backscattering information. The least square strategy is used to estimate the amplitude of the scattering center in this paper. The above results of the theoretical analysis are verified by 3-D scene simulations and experiments on real data.
Time series analysis of InSAR data: Methods and trends
NASA Astrophysics Data System (ADS)
Osmanoğlu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cabral-Cano, Enrique
2016-05-01
Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ;unwrapping; of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.
NASA Astrophysics Data System (ADS)
Matgen, Patrick; Giustarini, Laura; Hostache, Renaud
2012-10-01
This paper introduces an automatic flood mapping application that is hosted on the Grid Processing on Demand (GPOD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver operationally flooded areas using both recent and historical acquisitions of SAR data. Having as a short-term target the flooding-related exploitation of data generated by the upcoming ESA SENTINEL-1 SAR mission, the flood mapping application consists of two building blocks: i) a set of query tools for selecting the "crisis image" and the optimal corresponding "reference image" from the G-POD archive and ii) an algorithm for extracting flooded areas via change detection using the previously selected "crisis image" and "reference image". Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate reference image. Potential users will also be able to apply the implemented flood delineation algorithm. The latter combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. Both algorithms are computationally efficient and operate with minimum data requirements. The case study of the high magnitude flooding event that occurred in July 2007 on the Severn River, UK, and that was observed with a moderateresolution SAR sensor as well as airborne photography highlights the performance of the proposed online application. The flood mapping application on G-POD can be used sporadically, i.e. whenever a major flood event occurs and there is a demand for SAR-based flood extent maps. In the long term, a potential extension of the application could consist in systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis.
Onboard Radar Processing Development for Rapid Response Applications
NASA Technical Reports Server (NTRS)
Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.
2011-01-01
We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.
Multistatic synthetic aperture radar image formation.
Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B
2010-05-01
In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.
Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar
2012-10-01
Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time. Copyright © 2012 Elsevier Ltd. All rights reserved.
SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing
NASA Astrophysics Data System (ADS)
Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane
2013-04-01
Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of operational services on the base of pre-existing algorithms and sensors on the one hand, and to aid the extension of radar remote sensing techniques to a broader field of application on the other. SAR-EDU therefore combines the knowledge, expertise and experience of an excellent German consortium.
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta
1995-01-01
In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.
Time Series Analysis of Insar Data: Methods and Trends
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique
2015-01-01
Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.
NASA Astrophysics Data System (ADS)
Hostache, Renaud; Chini, Marco; Matgen, Patrick; Giustarini, Laura
2013-04-01
There is a clear need for developing innovative processing chains based on earth observation (EO) data to generate products supporting emergency response and flood management at a global scale. Here an automatic flood mapping application is introduced. The latter is currently hosted on the Grid Processing on Demand (G-POD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver flooded areas using both recent and historical acquisitions of SAR data in an operational framework. It is worth mentioning that the method can be applied to both medium and high resolution SAR images. The flood mapping application consists of two main blocks: 1) A set of query tools for selecting the "crisis image" and the optimal corresponding pre-flood "reference image" from the G-POD archive. 2) An algorithm for extracting flooded areas using the previously selected "crisis image" and "reference image". The proposed method is a hybrid methodology, which combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method is based on the calibration of a statistical distribution of "open water" backscatter values inferred from SAR images of floods. Change detection with respect to a pre-flood reference image helps reducing over-detection of inundated areas. The algorithms are computationally efficient and operate with minimum data requirements, considering as input data a flood image and a reference image. Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate pre-flood reference image. Potential users will also be able to apply the implemented flood delineation algorithm. Case studies of several recent high magnitude flooding events (e.g. July 2007 Severn River flood, UK and March 2010 Red River flood, US) observed by high-resolution SAR sensors as well as airborne photography highlight advantages and limitations of the online application. A mid-term target is the exploitation of ESA SENTINEL 1 SAR data streams. In the long term it is foreseen to develop a potential extension of the application for systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis. On-going research activities investigate the usefulness of the method for mapping flood hazard at global scale using databases of historic SAR remote sensing-derived flood inundation maps.
Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions
Zhang, L.; Ding, X.; Lu, Z.
2011-01-01
An InSAR analysis approach for identifying and extracting the temporarily coherent points (TCP) that exist between two SAR acquisitions and for determining motions of the TCP is presented for applications such as ground settlement monitoring. TCP are identified based on the spatial characteristics of the range and azimuth offsets of coherent radar scatterers. A method for coregistering TCP based on the offsets of TCP is given to reduce the coregistration errors at TCP. An improved phase unwrapping method based on the minimum cost flow (MCF) algorithm and local Delaunay triangulation is also proposed for sparse TCP data. The proposed algorithms are validated using a test site in Hong Kong. The test results show that the algorithms work satisfactorily for various ground features.
NASA Astrophysics Data System (ADS)
Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.
2014-12-01
This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A quicklook of the wrapped differential TerraSAR-X ScanSAR co-seismic interferogram is provided in the attachment (range coverage is 100 km by using 4 subswaths).
PRF Ambiguity Detrmination for Radarsat ScanSAR System
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1998-01-01
PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.
NASA Technical Reports Server (NTRS)
Fijany, Amir; Collier, James B.; Citak, Ari
1997-01-01
A team of US Army Corps of Engineers, Omaha District and Engineering and Support Center, Huntsville, let Propulsion Laboratory (JPL), Stanford Research Institute (SRI), and Montgomery Watson is currently in the process of planning and conducting the largest ever survey at the Former Buckley Field (60,000 acres), in Colorado, by using SRI airborne, ground penetrating, Synthetic Aperture Radar (SAR). The purpose of this survey is the detection of surface and subsurface Unexploded Ordnance (UXO) and in a broader sense the site characterization for identification of contaminated as well as clear areas. In preparation for such a large-scale survey, JPL has been developing advanced algorithms and a high-performance restbed for processing of massive amount of expected SAR data from this site. Two key requirements of this project are the accuracy (in terms of UXO detection) and speed of SAR data processing. The first key feature of this testbed is a large degree of automation and a minimum degree of the need for human perception in the processing to achieve an acceptable processing rate of several hundred acres per day. For accurate UXO detection, novel algorithms have been developed and implemented. These algorithms analyze dual polarized (HH and VV) SAR data. They are based on the correlation of HH and VV SAR data and involve a rather large set of parameters for accurate detection of UXO. For each specific site, this set of parameters can be optimized by using ground truth data (i.e., known surface and subsurface UXOs). In this paper, we discuss these algorithms and their successful application for detection of surface and subsurface anti-tank mines by using a data set from Yuma proving Ground, A7, acquired by SRI SAR.
Synthetic aperture radar image formation for the moving-target and near-field bistatic cases
NASA Astrophysics Data System (ADS)
Ding, Yu
This dissertation addresses topics in two areas of synthetic aperture radar (SAR) image formation: time-frequency based SAR imaging of moving targets and a fast backprojection (BP) algorithm for near-field bistatic SAR imaging. SAR imaging of a moving target is a challenging task due to unknown motion of the target. We approach this problem in a theoretical way, by analyzing the Wigner-Ville distribution (WVD) based SAR imaging technique. We derive approximate closed-form expressions for the point-target response of the SAR imaging system, which quantify the image resolution, and show how the blurring in conventional SAR imaging can be eliminated, while the target shift still remains. Our analyses lead to accurate prediction of the target position in the reconstructed images. The derived expressions also enable us to further study additional aspects of WVD-based SAR imaging. Bistatic SAR imaging is more involved than the monostatic SAR case, because of the separation of the transmitter and the receiver, and possibly the changing bistatic geometry. For near-field bistatic SAR imaging, we develop a novel fast BP algorithm, motivated by a newly proposed fast BP algorithm in computer tomography. First we show that the BP algorithm is the spatial-domain counterpart of the benchmark o -- k algorithm in bistatic SAR imaging, yet it avoids the frequency-domain interpolation in the o -- k algorithm, which may cause artifacts in the reconstructed image. We then derive the band-limited property for BP methods in both monostatic and bistatic SAR imaging, which is the basis for developing the fast BP algorithm. We compare our algorithm with other frequency-domain based algorithms, and show that it achieves better reconstructed image quality, while having the same computational complexity as that of the frequency-domain based algorithms.
Multisensor comparison of ice concentration estimates in the marginal ice zone
NASA Technical Reports Server (NTRS)
Burns, B. A.; Cavalieri, D. J.; Gloersen, P.; Keller, M. R.; Campbell, W. J.
1987-01-01
Aircraft remote sensing data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) imagery, passive microwave imagery at several frequencies, aerial photography, and spectral photometer data. The comparison is carried out not only to evaluate SAR performance against more established techniques but also to investigate how ice surface conditions, imaging geometry, and choice of algorithm parameters affect estimates made by each sensor.Active and passive microwave sensor estimates of ice concentration derived using similar algorithms show an rms difference of 13 percent. Agreement between each microwave sensor and near-simultaneous aerial photography is approximately the same (14 percent). The availability of high-resolution microwave imagery makes it possible to ascribe the discrepancies in the concentration estimates to variations in ice surface signatures in the scene.
Processing Ultra Wide Band Synthetic Aperture Radar Data with Motion Detectors
NASA Technical Reports Server (NTRS)
Madsen, Soren Norvang
1996-01-01
Several issues makes the processing of ultra wide band (UWB) SAR data acquired from an airborne platform difficult. The character of UWB data invalidates many of the usual SAR batch processing techniques, leading to the application of wavenumber domain type processors...This paper will suggest and evaluate an algorithm which combines a wavenumber domain processing algorithm with a motion compensation procedure which enables motion compensation to be applied as a function of target range and the azimuth angle.
The artificial object detection and current velocity measurement using SAR ocean surface images
NASA Astrophysics Data System (ADS)
Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey
2017-10-01
Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.
Analysis of Wind and Sea State in SAR data of Hurricanes
NASA Astrophysics Data System (ADS)
Hoja, D.; Schulz-Stellenfleth, J.; Lehner, S.; Horstmann, J.
2003-04-01
Spaceborne synthetic aperture radar (SAR) is still the only instrument providing directional ocean wave and in addition surface wind information on a global and continuous basis. Operating in ASAR wave mode ENVISAT, launched in 2002, provides 10 km x 5 km SAR images every 100 km along the orbit. These SAR data continue and expand the SAR era of the European Remote Sensing satellites ERS-1 and ERS-2, which have acquired similar SAR data since 1991 on a global basis. To not only use the official ERS SAR wave mode product, which consists only of the SAR image power spectrum, but also the full SAR image information a subset of 27 days globally distributed ERS-2 SAR raw data were processed to single look complex SAR imagettes using the BSAR processor developed at the German Aerospace Center. These data have the same format as the official ESA product for ENVISAT ASAR wave mode data. This subset of 34,000 ERS-2 SAR imagettes was used to develop and validate algorithms for wind and wave retrieval, which are also applicable to ENVISAT ASAR wave mode data. The time frame of the dataset covers several tropical cyclones in the Atlantic Ocean of which hurricane Fran has been investigated in detail together with additional data available from scatterometers, buoys and weather centers. Hurricane Fran was active from August 23 to September 8, 1996. During this time, hurricane Fran developed near the African coast and progressed over the North Atlantic Ocean. Landfall occurred on September 5, 1996 at the coast of North Carolina, USA. Fran was part of a whole series of tropical cyclones travelling about the same course in a short time. The wind is extracted from SAR imagery and compared to results of the numerical model output provided by the European Center for Medium-Range Weather Forecast (ECMWF) and co-located ERS-2 scatterometer measurements. The Swell and wind sea systems generated by the tropical cyclones are measured using SAR cross spectra and a newly developed partitioning technique. For each component wave system (partition) spectral parameters like wavelength and wave propagation direction are calculated and compared to numerical model output provided by ECMWF. The progression of the tropical cyclones is presented and it is described, how the hurricanes are portrayed in the SAR data. The response of waves to fast turning winds is analyzed. Conclusions are drawn about the wave model forecast in hurricane situations using satellite wave mode data. Keywords: Hurricanes, SAR, ocean winds, ocean waves, wind sea and swell
NASA Astrophysics Data System (ADS)
Samsonov, S. V.; Feng, W.
2017-12-01
InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.
A new clustering algorithm applicable to multispectral and polarimetric SAR images
NASA Technical Reports Server (NTRS)
Wong, Yiu-Fai; Posner, Edward C.
1993-01-01
We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.
A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.
Zeng, Hong-Cheng; Wang, Peng-Bo; Chen, Jie; Liu, Wei; Ge, LinLin; Yang, Wei
2016-02-26
Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method.
A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR
Zeng, Hong-Cheng; Wang, Peng-Bo; Chen, Jie; Liu, Wei; Ge, LinLin; Yang, Wei
2016-01-01
Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method. PMID:26927117
SAR processing in the cloud for oil detection in the Arctic
NASA Astrophysics Data System (ADS)
Garron, J.; Stoner, C.; Meyer, F. J.
2016-12-01
A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.
Rapid Mapping Of Floods Using SAR Data: Opportunities And Critical Aspects
NASA Astrophysics Data System (ADS)
Pulvirenti, Luca; Pierdicca, Nazzareno; Chini, Marco
2013-04-01
The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view, the capability to operate in almost all-weather conditions and during both day time and night time and the sensitivity of the microwave band to water are the key features that make SAR data useful for monitoring inundation events. In addition, their high spatial resolution, which can reach 1m with the new generation of X-band instruments such as TerraSAR-X and COSMO-SkyMed (CSK), allows emergency managers to use flood maps at very high spatial resolution. CSK gives also the possibility of performing frequent observations of regions hit by floods, thanks to the four-satellite constellation. Current research on flood mapping using SAR is focused on the development of automatic algorithms to be used in near real time applications. The approaches are generally based on the low radar return from smooth open water bodies that behave as specular reflectors and appear dark in SAR images. The major advantage of automatic algorithms is the computational efficiency that makes them suitable for rapid mapping purposes. The choice of the threshold value that, in this kind of algorithms, separates flooded from non-flooded areas is a critical aspect because it depends on the characteristics of the observed scenario and on system parameters. To deal with this aspect an algorithm for automatic detection of the regions of low backscatter has been developed. It basically accomplishes three steps: 1) division of the SAR image in a set of non-overlapping sub-images or splits; 2) selection of inhomogeneous sub-images that contain (at least) two populations of pixels, one of which is formed by dark pixels; 3) the application in sequence of an automatic thresholding algorithm and a region growing algorithm in order to produce a homogeneous map of flooded areas. Besides the aforementioned choice of the threshold, rapid mapping of floods may present other critical aspects. Searching for low SAR backscatter areas only may cause inaccuracies because flooded soils do not always act as smooth open water bodies. The presence of wind or of vegetation emerging above the water surface may give rise to an increase of the radar backscatter. In particular, mapping flooded vegetation using SAR data may represent a difficult task since backscattering phenomena in the volume between canopy, trunks and floodwater are quite complex in the presence of vegetation. A typical phenomenon is the double-bounce effect involving soil and stems or trunks, which is generally enhanced by the floodwater, so that flooded vegetation may appear very bright in a SAR image. Even in the absence of dense vegetation or wind, some regions may appear dark because of artefacts due to topography (shadowing), absorption caused by wet snow, and attenuation caused by heavy precipitating clouds (X-band SARs). Examples of the aforementioned effects that may limit the reliability of flood maps will be presented at the conference and some indications to deal with these effects (e.g. presence of vegetation and of artefacts) will be provided.
Seismic migration for SAR focusing: Interferometrical applications
NASA Astrophysics Data System (ADS)
Prati, C.; Montiguarnieri, A.; Damonti, E.; Rocca, F.
SAR (Synthetic Aperture Radar) data focusing is analyzed from a theoretical point of view. Two applications of a SAR data processing algorithm are presented, where the phases of the returns are used for the recovery of interesting parameters of the observed scenes. Migration techniques, similar to those used in seismic signal processing for oil prospecting, were implemented for the determination of the terrain altitude map from a satellite and the evaluation of the sensor attitude for an airplane. A satisfying precision was achieved, since it was shown how an interferometric system is able to detect variations of the airplane roll angle of a small fraction of a degree.
Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time
NASA Astrophysics Data System (ADS)
Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.
2017-12-01
Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage losses and disaster alleviation/rescue at global scale.
Marapareddy, Ramakalavathi; Aanstoos, James V.; Younan, Nicolas H.
2016-01-01
Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ1, λ2, and λ3), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers. PMID:27322270
Using the time shift in single pushbroom datatakes to detect ships and their heading
NASA Astrophysics Data System (ADS)
Willburger, Katharina A. M.; Schwenk, Kurt
2017-10-01
The detection of ships from remote sensing data has become an essential task for maritime security. The variety of application scenarios includes piracy, illegal fishery, ocean dumping and ships carrying refugees. While techniques using data from SAR sensors for ship detection are widely common, there is only few literature discussing algorithms based on imagery of optical camera systems. A ship detection algorithm for optical pushbroom data has been developed. It takes advantage of the special detector assembly of most of those scanners, which allows apart from the detection of a ship also the calculation of its heading out of a single acquisition. The proposed algorithm for the detection of moving ships was developed with RapidEye imagery. It algorithm consists mainly of three steps: the creation of a land-watermask, the object extraction and the deeper examination of each single object. The latter step is built up by several spectral and geometric filters, making heavy use of the inter-channel displacement typical for pushbroom sensors with multiple CCD lines, finally yielding a set of ships and their direction of movement. The working principle of time-shifted pushbroom sensors and the developed algorithm is explained in detail. Furthermore, we present our first results and give an outlook to future improvements.
Modified Polar-Format Software for Processing SAR Data
NASA Technical Reports Server (NTRS)
Chen, Curtis
2003-01-01
HMPF is a computer program that implements a modified polar-format algorithm for processing data from spaceborne synthetic-aperture radar (SAR) systems. Unlike prior polar-format processing algorithms, this algorithm is based on the assumption that the radar signal wavefronts are spherical rather than planar. The algorithm provides for resampling of SAR pulse data from slant range to radial distance from the center of a reference sphere that is nominally the local Earth surface. Then, invoking the projection-slice theorem, the resampled pulse data are Fourier-transformed over radial distance, arranged in the wavenumber domain according to the acquisition geometry, resampled to a Cartesian grid, and inverse-Fourier-transformed. The result of this process is the focused SAR image. HMPF, and perhaps other programs that implement variants of the algorithm, may give better accuracy than do prior algorithms for processing strip-map SAR data from high altitudes and may give better phase preservation relative to prior polar-format algorithms for processing spotlight-mode SAR data.
Local SAR in Parallel Transmission Pulse Design
Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L.; Adalsteinsson, Elfar
2011-01-01
The management of local and global power deposition in human subjects (Specific Absorption Rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx RF pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo MRI scan. Additionally, the algorithm yields a Protocol-specific Ultimate Peak in Local SAR (PUPiL SAR), which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7T eight-channel transmit array. The method reduced peak local 10g SAR by 14–66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. PMID:22083594
Software for Generating Strip Maps from SAR Data
NASA Technical Reports Server (NTRS)
Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto
2004-01-01
Jurassicprok is a computer program that generates strip-map digital elevation models and other data products from raw data acquired by an airborne synthetic-aperture radar (SAR) system. This software can process data from a variety of airborne SAR systems but is designed especially for the GeoSAR system, which is a dual-frequency (P- and X-band), single-pass interferometric SAR system for measuring elevation both at the bare ground surface and top of the vegetation canopy. Jurassicprok is a modified version of software developed previously for airborne-interferometric- SAR applications. The modifications were made to accommodate P-band interferometric processing, remove approximations that are not generally valid, and reduce processor-induced mapping errors to the centimeter level. Major additions and other improvements over the prior software include the following: a) A new, highly efficient multi-stage-modified wave-domain processing algorithm for accurately motion compensating ultra-wideband data; b) Adaptive regridding algorithms based on estimated noise and actual measured topography to reduce noise while maintaining spatial resolution; c) Exact expressions for height determination from interferogram data; d) Fully calibrated volumetric correlation data based on rigorous removal of geometric and signal-to-noise decorrelation terms; e) Strip range-Doppler image output in user-specified Doppler coordinates; f) An improved phase-unwrapping and absolute-phase-determination algorithm; g) A more flexible user interface with many additional processing options; h) Increased interferogram filtering options; and i) Ability to use disk space instead of random- access memory for some processing steps.
Lim, Byoung-Gyun; Woo, Jea-Choon; Lee, Hee-Young; Kim, Young-Soo
2008-01-01
Synthetic wideband waveforms (SWW) combine a stepped frequency CW waveform and a chirp signal waveform to achieve high range resolution without requiring a large bandwidth or the consequent very high sampling rate. If an efficient algorithm like the range-Doppler algorithm (RDA) is used to acquire the SAR images for synthetic wideband signals, errors occur due to approximations, so the images may not show the best possible result. This paper proposes a modified subpulse SAR processing algorithm for synthetic wideband signals which is based on RDA. An experiment with an automobile-based SAR system showed that the proposed algorithm is quite accurate with a considerable improvement in resolution and quality of the obtained SAR image. PMID:27873984
Evaluation of the operational SAR based Baltic sea ice concentration products
NASA Astrophysics Data System (ADS)
Karvonen, Juha
Sea ice concentration is an important ice parameter both for weather and climate modeling and sea ice navigation. We have developed an fully automated algorithm for sea ice concentration retrieval using dual-polarized ScanSAR wide mode RADARSAT-2 data. RADARSAT-2 is a C-band SAR instrument enabling dual-polarized acquisition in ScanSAR mode. The swath width for the RADARSAT-2 ScanSAR mode is about 500 km, making it very suitable for operational sea ice monitoring. The polarization combination used in our concentration estimation is HH/HV. The SAR data is first preprocessed, the preprocessing consists of geo-rectification to Mercator projection, incidence angle correction fro both the polarization channels. and SAR mosaicking. After preprocessing a segmentation is performed for the SAR mosaics, and some single-channel and dual-channel features are computed for each SAR segment. Finally the SAR concentration is estimated based on these segment-wise features. The algorithm is similar as introduced in Karvonen 2014. The ice concentration is computed daily using a daily RADARSAT-2 SAR mosaic as its input, and it thus gives the concentration estimated at each Baltic Sea location based on the most recent SAR data at the location. The algorithm has been run in an operational test mode since January 2014. We present evaluation of the SAR-based concentration estimates for the Baltic ice season 2014 by comparing the SAR results with gridded the Finnish Ice Service ice charts and ice concentration estimates from a radiometer algorithm (AMSR-2 Bootstrap algorithm results). References: J. Karvonen, Baltic Sea Ice Concentration Estimation Based on C-Band Dual-Polarized SAR Data, IEEE Transactions on Geoscience and Remote Sensing, in press, DOI: 10.1109/TGRS.2013.2290331, 2014.
NASA Astrophysics Data System (ADS)
Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo
An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.
NASA Astrophysics Data System (ADS)
Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.
2006-12-01
The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific to help locate convergence zones for marine debris detection (i.e., the GhostNet project); (3) in marine sanctuaries for internal wave climatology in support of marine ecosystem studies, and vessel detection for sanctuary protection; and (4) in coastal areas for ocean feature mapping (eddies, river plumes, upwelling, fronts). These applications demonstrations have added to our understanding of ocean and atmospheric processes and their interaction, particularly in the coastal environment. A much improved knowledge of the highly variable nature of coastal winds such as gap winds and barrier jets is a good example of the contribution that SAR imagery and derived products have made to our understanding of coastal processes.
Becquaert, Mathias; Cristofani, Edison; Van Luong, Huynh; Vandewal, Marijke; Stiens, Johan; Deligiannis, Nikos
2018-05-31
This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1) between the components inside the side information and (2) between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.
Ship Detection in SAR Image Based on the Alpha-stable Distribution
Wang, Changcheng; Liao, Mingsheng; Li, Xiaofeng
2008-01-01
This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. PMID:27873794
SAR correlation technique - An algorithm for processing data with large range walk
NASA Technical Reports Server (NTRS)
Jin, M.; Wu, C.
1983-01-01
This paper presents an algorithm for synthetic aperture radar (SAR) azimuth correlation with extraneously large range migration effect which can not be accommodated by the existing frequency domain interpolation approach used in current SEASAT SAR processing. A mathematical model is first provided for the SAR point-target response in both the space (or time) and the frequency domain. A simple and efficient processing algorithm derived from the hybrid algorithm is then given. This processing algorithm enables azimuth correlation by two steps. The first step is a secondary range compression to handle the dispersion of the spectra of the azimuth response along range. The second step is the well-known frequency domain range migration correction approach for the azimuth compression. This secondary range compression can be processed simultaneously with range pulse compression. Simulation results provided here indicate that this processing algorithm yields a satisfactory compressed impulse response for SAR data with large range migration.
Applications and development of new algorithms for displacement analysis using InSAR time series
NASA Astrophysics Data System (ADS)
Osmanoglu, Batuhan
Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.
Further SEASAT SAR coastal ocean wave analysis
NASA Technical Reports Server (NTRS)
Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.
1981-01-01
Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.
Research on Airborne SAR Imaging Based on Esc Algorithm
NASA Astrophysics Data System (ADS)
Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.
2017-09-01
Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.
Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height
NASA Astrophysics Data System (ADS)
Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong
2013-08-01
The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.
Information extraction and transmission techniques for spaceborne synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.
1984-01-01
Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.
A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1989-01-01
Radar signal processing applications frequently require an estimate of the Doppler centroid of a received signal. The Doppler centroid estimate is required for synthetic aperture radar (SAR) processing. It is also required for some applications involving target motion estimation and antenna pointing direction estimation. In some cases, the Doppler centroid can be accurately estimated based on available information regarding the terrain topography, the relative motion between the sensor and the terrain, and the antenna pointing direction. Often, the accuracy of the Doppler centroid estimate can be improved by analyzing the characteristics of the received SAR signal. This kind of signal processing is also referred to as clutterlock processing. A Doppler centroid estimation (DCE) algorithm is described which contains a linear estimator optimized for the type of terrain surface that can be modeled by a quasi-homogeneous source (QHS). Information on the following topics is presented: (1) an introduction to the theory of Doppler centroid estimation; (2) analysis of the performance characteristics of previously reported DCE algorithms; (3) comparison of these analysis results with experimental results; (4) a description and performance analysis of a Doppler centroid estimator which is optimized for a QHS; and (5) comparison of the performance of the optimal QHS Doppler centroid estimator with that of previously reported methods.
Local SAR in parallel transmission pulse design.
Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L; Adalsteinsson, Elfar
2012-06-01
The management of local and global power deposition in human subjects (specific absorption rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx radio frequency pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo magnetic resonance imaging scan. Additionally, the algorithm yields a protocol-specific ultimate peak in local SAR, which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7 Tesla eight-channel transmit array. The method reduced peak local 10 g SAR by 14-66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. Copyright © 2011 Wiley Periodicals, Inc.
Observations and Mitigation of RFI in ALOS PALSAR SAR Data; Implications for the Desdyni Mission
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Hensley, Scott; Le, Charles
2008-01-01
Initial examination of ALOS PALSAR synthetic aperture radar (SAR) data has indicated significant radio frequency interference (RFI) in several geographic locations around the world. RFI causes significant reduction in image contrast, introduces periodic and quasi-periodic image artifacts, and introduces significant phase noise in repeat pass interferometric data reduction. The US National Research Council Decadal Survey of Earth Science has recommended DESDynI, a Deformation, Ecosystems, and Dynamics of Ice satellite mission comprising an L-band polarimetric radar configured for repeat pass interferometry. There is considerable interest internationally in other future L-band and lower frequency systems as well. Therefore the issues of prevalence and possibilities of mitigation of RFI in these crowded frequency bands is of considerable interest. RFI is observed in ALOS PALSAR in California, USA, and in southern Egypt in data examined to date. Application of several techniques for removing it from the data prior to SAR image formation, ranging from straightforward spectral normalization to time-domain, multi-phase filtering techniques are considered. Considerable experience has been gained from the removal of RFI from P-band acquired by the GeoSAR system. These techniques applied to the PALSAR data are most successful when the bandwidth of any particular spectral component of the RFI is narrow. Performance impacts for SAR imagery and interferograms are considered in the context of DESDynI measurement requirements.
Spectral mapping tools from the earth sciences applied to spectral microscopy data.
Harris, A Thomas
2006-08-01
Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique spectral signatures. (c) 2006 International Society for Analytical Cytology.
Despeckling Polsar Images Based on Relative Total Variation Model
NASA Astrophysics Data System (ADS)
Jiang, C.; He, X. F.; Yang, L. J.; Jiang, J.; Wang, D. Y.; Yuan, Y.
2018-04-01
Relatively total variation (RTV) algorithm, which can effectively decompose structure information and texture in image, is employed in extracting main structures of the image. However, applying the RTV directly to polarimetric SAR (PolSAR) image filtering will not preserve polarimetric information. A new RTV approach based on the complex Wishart distribution is proposed considering the polarimetric properties of PolSAR. The proposed polarization RTV (PolRTV) algorithm can be used for PolSAR image filtering. The L-band Airborne SAR (AIRSAR) San Francisco data is used to demonstrate the effectiveness of the proposed algorithm in speckle suppression, structural information preservation, and polarimetric property preservation.
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.
1981-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.
NASA Astrophysics Data System (ADS)
Aiello, Martina; Gianinetto, Marco
2017-10-01
Marine routes represent a huge portion of commercial and human trades, therefore surveillance, security and environmental protection themes are gaining increasing importance. Being able to overcome the limits imposed by terrestrial means of monitoring, ship detection from satellite has recently prompted a renewed interest for a continuous monitoring of illegal activities. This paper describes an automatic Object Based Image Analysis (OBIA) approach to detect vessels made of different materials in various sea environments. The combined use of multispectral and SAR images allows for a regular observation unrestricted by lighting and atmospheric conditions and complementarity in terms of geographic coverage and geometric detail. The method developed adopts a region growing algorithm to segment the image in homogeneous objects, which are then classified through a decision tree algorithm based on spectral and geometrical properties. Then, a spatial analysis retrieves the vessels' position, length and heading parameters and a speed range is associated. Optimization of the image processing chain is performed by selecting image tiles through a statistical index. Vessel candidates are detected over amplitude SAR images using an adaptive threshold Constant False Alarm Rate (CFAR) algorithm prior the object based analysis. Validation is carried out by comparing the retrieved parameters with the information provided by the Automatic Identification System (AIS), when available, or with manual measurement when AIS data are not available. The estimation of length shows R2=0.85 and estimation of heading R2=0.92, computed as the average of R2 values obtained for both optical and radar images.
The Nasa-Isro SAR Mission Science Data Products and Processing Workflows
NASA Astrophysics Data System (ADS)
Rosen, P. A.; Agram, P. S.; Lavalle, M.; Cohen, J.; Buckley, S.; Kumar, R.; Misra-Ray, A.; Ramanujam, V.; Agarwal, K. M.
2017-12-01
The NASA-ISRO SAR (NISAR) Mission is currently in the development phase and in the process of specifying its suite of data products and algorithmic workflows, responding to inputs from the NISAR Science and Applications Team. NISAR will provide raw data (Level 0), full-resolution complex imagery (Level 1), and interferometric and polarimetric image products (Level 2) for the entire data set, in both natural radar and geocoded coordinates. NASA and ISRO are coordinating the formats, meta-data layers, and algorithms for these products, for both the NASA-provided L-band radar and the ISRO-provided S-band radar. Higher level products will be also be generated for the purpose of calibration and validation, over large areas of Earth, including tectonic plate boundaries, ice sheets and sea-ice, and areas of ecosystem disturbance and change. This level of comprehensive product generation has been unprecedented for SAR missions in the past, and leads to storage processing challenges for the production system and the archive center. Further, recognizing the potential to support applications that require low latency product generation and delivery, the NISAR team is optimizing the entire end-to-end ground data system for such response, including exploring the advantages of cloud-based processing, algorithmic acceleration using GPUs, and on-demand processing schemes that minimize computational and transport costs, but allow rapid delivery to science and applications users. This paper will review the current products, workflows, and discuss the scientific and operational trade-space of mission capabilities.
Computer-Aided Discovery Tools for Volcano Deformation Studies with InSAR and GPS
NASA Astrophysics Data System (ADS)
Pankratius, V.; Pilewskie, J.; Rude, C. M.; Li, J. D.; Gowanlock, M.; Bechor, N.; Herring, T.; Wauthier, C.
2016-12-01
We present a Computer-Aided Discovery approach that facilitates the cloud-scalable fusion of different data sources, such as GPS time series and Interferometric Synthetic Aperture Radar (InSAR), for the purpose of identifying the expansion centers and deformation styles of volcanoes. The tools currently developed at MIT allow the definition of alternatives for data processing pipelines that use various analysis algorithms. The Computer-Aided Discovery system automatically generates algorithmic and parameter variants to help researchers explore multidimensional data processing search spaces efficiently. We present first application examples of this technique using GPS data on volcanoes on the Aleutian Islands and work in progress on combined GPS and InSAR data in Hawaii. In the model search context, we also illustrate work in progress combining time series Principal Component Analysis with InSAR augmentation to constrain the space of possible model explanations on current empirical data sets and achieve a better identification of deformation patterns. This work is supported by NASA AIST-NNX15AG84G and NSF ACI-1442997 (PI: V. Pankratius).
A Real-Time Convolution Algorithm and Architecture with Applications in SAR Processing
1993-10-01
multidimensional lOnnulation of the DFT and convolution. IEEE-ASSP, ASSP-25(3):239-242, June 1977. [6] P. Hoogenboom et al. Definition study PHARUS: final...algorithms and Ihe role of lhe tensor product. IEEE-ASSP, ASSP-40( 1 2):292 J-2930, December 1992. 181 P. Hoogenboom , P. Snoeij. P.J. Koomen. and H
TerraSAR-X Measurements of Wind Fields, Ocean Waves and Currents
NASA Astrophysics Data System (ADS)
Lehner, S.; Schulz-Stellenfleth, J.; Brusch, S.
2008-01-01
TerraSAR-X is a new german X-band radar satellite launched on June 15, 2007. In this mission an operational spaceborne synthetic aperture radar (SAR) system with very high spatial resolution is set up producing remote sensing products for commercial and scientific use. TerraSAR-X is a scientific and technological continuation of the successful Space Shuttle missions SIR-C/X and SRTM.The spacecraft is equipped with a phased array X-band SAR, which can operate in different polarisations and has furthermore beam stearing capabilities. In addition the system has a split antenna mode, which is able to provide along track interferometric information. The instrument is designed for multiple imaging modes like Stripmap, Spotlight and ScanSAR.Due to its polarimetric and interferometric capabilities as well as the high spatial resolution of up to 1 m, the TerraSAR-X sensor is a very interesting tool for oceanography. The presentation will give an overview of several applications, which are of both scientific and commercial interest, like e.g. current and ocean wave measurements, monitoring of morphodynamical processes or high resolution wind field retrieval. The potential as well as limitations of the instrument will be summarized and compared with existing sensors. Necessary steps to translate existing C-band SAR inversion algorithms for wind and wave measurements to X-band will be discussed. A strategy will be outlined to achieve this by a combination of theoretical investigations and the use of existing experimental data acquired by both airborne and groundbased X-band radar. First results on the adaption of existing C-band wind retrieval algorithms will be presented. Wind and ocean wave parameter retrievals will be presented, e.g., based on TerraSAR-X scenes taken over the English channel.
An integrated hyperspectral and SAR satellite constellation for environment monitoring
NASA Astrophysics Data System (ADS)
Wang, Jinnian; Ren, Fuhu; Xie, Chou; An, Jun; Tong, Zhanbo
2017-09-01
A fully-integrated, Hyperspectral optical and SAR (Synthetic Aperture Radar) constellation of small earth observation satellites will be deployed over multiple launches from last December to next five years. The Constellation is expected to comprise a minimum of 16 satellites (8 SAR and 8 optical ) flying in two orbital planes, with each plane consisting of four satellite pairs, equally-spaced around the orbit plane. Each pair of satellites will consist of a hyperspectral/mutispectral optical satellite and a high-resolution SAR satellite (X-band) flying in tandem. The constellation is expected to offer a number of innovative capabilities for environment monitoring. As a pre-launch experiment, two hyperspectral earth observation minisatellites, Spark 01 and 02 were launched as secondary payloads together with Tansat in December 2016 on a CZ-2D rocket. The satellites feature a wide-range hyperspectral imager. The ground resolution is 50 m, covering spectral range from visible to near infrared (420 nm - 1000 nm) and a swath width of 100km. The imager has an average spectral resolution of 5 nm with 148 channels, and a single satellite could obtain hyperspectral imagery with 2.5 million km2 per day, for global coverage every 16 days. This paper describes the potential applications of constellation image in environment monitoring.
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.
1984-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295
Lacrămă, Ana-Maria; Putz, Mihai V.; Ostafe, Vasile
2007-01-01
Within the recently launched the spectral-structure activity relationship (S-SAR) analysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, along with the associated algebraic correlation factor in terms of the measured and predicted activity norms. The reliability of the present scheme is tested by assessing the Hansch factors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicity endpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium, choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, while confirming the cationic dominant influence when only lipophylicity is considered, demonstrate that the anionic effect dominates all other more specific interactions. It was also proved that the S-SAR vectorial model predicts considerably higher activity for the ionic liquids than for its anionic and cationic subsystems separately, in all considered cases. Moreover, through applying the least norm-correlation path principle, the complete toxicological hierarchies are presented, unfolding the ecological rules of combined cationic and anionic influences in ionic liquid toxicity.
NASA Technical Reports Server (NTRS)
Hoffer, R. M.; Dean, M. E.; Knowlton, D. J.; Latty, R. S.
1982-01-01
Kershaw County, South Carolina was selected as the study site for analyzing simulated thematic mapper MSS data and dual-polarized X-band synthetic aperture radar (SAR) data. The impact of the improved spatial and spectral characteristics of the LANDSAT D thematic mapper data on computer aided analysis for forest cover type mapping was examined as well as the value of synthetic aperture radar data for differentiating forest and other cover types. The utility of pattern recognition techniques for analyzing SAR data was assessed. Topics covered include: (1) collection and of TMS and reference data; (2) reformatting, geometric and radiometric rectification, and spatial resolution degradation of TMS data; (3) development of training statistics and test data sets; (4) evaluation of different numbers and combinations of wavelength bands on classification performance; (5) comparison among three classification algorithms; and (6) the effectiveness of the principal component transformation in data analysis. The collection, digitization, reformatting, and geometric adjustment of SAR data are also discussed. Image interpretation results and classification results are presented.
Preliminary results of the comparative study between EO-1/Hyperion and ALOS/PALSAR
NASA Astrophysics Data System (ADS)
Koizumi, E.; Furuta, R.; Yamamoto, A.
2011-12-01
[Introduction]Hyper-spectral remote sensing images have been used for land-cover classification due to their high spectral resolutions. Synthetic Aperture Radar (SAR) remote sensing data are also useful to probe surface condition because radar image reflects surface geometry, although there are not so many reports about the land-cover detection with combination use of both hyper-spectral data and SAR data. Among SAR sensors, L-band SAR is thought to be useful tool to find physical properties because its comparatively long wave length can through small objects on surface. We are comparing the result of land cover classification and/or physical values from hyper-spectral and L-band SAR data to find the relationship between these two quite different sensors and to confirm the possibility of the combined analysis of hyper-spectral and L-band SAR data, and in this presentation we will report the preliminary result of this study. There are only few sources of both hyper-spectral and L-band SAR data from the space in this time, however, several space organizations plan to launch new satellites on which hyper-spectral or L-band SAR equipments are mounted in next few years. So, the importance of the combined analysis will increase more than ever. [Target Area]We are performing and planning analyses on the following areas in this study. (a)South of Cairo, Nile river area, Egypt, for sand, sandstone, limestone, river, crops. (b)Mount Sakurajima, Japan, for igneous rock and other related geological property. [Methods and Results]EO-1 Hyperion data are analyzed in this study as hyper-spectral data. The Hyperion equipment has 242 channels but some of them include full noise or have no data. We selected channels for analysis by checking each channel, and select about 150 channels (depend on the area). Before analysis, the atmospheric correction of ATCOR-3 was applied for the selected channels. The corrected data were analyzed by unsupervised classification or principal component analysis (PCA). We also did the unsupervised classification with the several components from PCA. According to the analysis results, several classifications can be extracted for each category (vegetation, sand and rocks, and water). One of the interesting results is that there are a few classes for sand as those of other categories, and these classes seem to reflect artificial and natural surface changes that are some result of excavation or scratching. ALOS PALSAR data are analyzed as L-band SAR data. We selected the Dual Polarization data for each target area. The data were converted to backscattered images, and then calculated some image statistic values. The topographic information also calculates with SAR interferometry technique as reference. Comparing the Hyperion classification results with the result of the calculation of statistic values from PALSAR, there are some areas where relativities seem to be confirmed. To confirm the combined analysis between hyper-spectral and L-band SAR data to detect and classify the surface material, further studies are still required. We will continue to investigate more efficient analytic methods and to examine other functions like the adopted channels, the number of class in classification, the kind of statistic information, and so on, to refine the method.
Inundation Mapping for Heterogeneous Land Covers with Synthetic Aperture Radar and Auxiliary Data
NASA Astrophysics Data System (ADS)
Aristizabal, F.; Judge, J.
2017-12-01
Synthetic Aperture Radar (SAR) has been widely used to detect surface water inundation and provides an advantage over multi-spectral instruments due to cloud penetration and higher spatial resolutions. However, detecting inundation for densely vegetated and urban areas with SAR remains a challenge due to corner reflection and diffuse scattering. Additionally, flat urban surfaces such as roads exhibit similar backscatter coefficients as urban surface water. Differences between inundated and non-inundated backscatter over vegetated land covers of static spatial domains have been demonstrated in previous studies. However, these backscatter differences are sensitive to changes in water depth, soil moisture, SAR sensor parameters, terrain, and vegetation properties. These factors tend to make accurate inundation mapping of heterogeneous regions across varying spatial and temporal extents difficult with exclusive use of SAR. This study investigates the utility of auxiliary data specifically high-resolution (10m) terrain information in conjunction with SAR (10m) for detecting inundated areas. Digital elevation models provide an absolute elevation which could enhance inundation mapping given a limited study extent with similar topography. To counter this limitation, a hydrologically relevant terrain index is proposed known as the Height Above Nearest Drainage (HAND) which normalizes topography to the local relative elevation of the nearest point along the relevant drainage line. HAND has been used for assisting remote sensing inundation mapping in the pre-processing stage as a terrain correction tool and as a post-processing mask that eliminates areas of low inundation risk. While the latter technique is useful for reduction of commission errors, it does not employ HAND for reducing omission errors that can occur from dense vegetation, spectral noise, and urban features. Sentinel-1 dual-pol SAR as well as auxiliary HAND will be used as predictors by various supervised and unsupervised classification algorithms. The October 2016 record flood caused by Hurricane Matthew along the Neuse River in North Carolina will be used as a study area. For validation, locally inundated areas will be derived from observed river stages and high water marks furnished by the U.S. Geological Survey.
e-Collaboration for Earth observation (E-CEO): the Cloud4SAR interferometry data challenge
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manunta, Michele; Boissier, Enguerran; Brito, Fabrice; Aas, Christina; Lavender, Samantha; Ribeiro, Rita; Farres, Jordi
2014-05-01
The e-Collaboration for Earth Observation (E-CEO) project addresses the technologies and architectures needed to provide a collaborative research Platform for automating data mining and processing, and information extraction experiments. The Platform serves for the implementation of Data Challenge Contests focusing on Information Extraction for Earth Observations (EO) applications. The possibility to implement multiple processors within a Common Software Environment facilitates the validation, evaluation and transparent peer comparison among different methodologies, which is one of the main requirements rose by scientists who develop algorithms in the EO field. In this scenario, we set up a Data Challenge, referred to as Cloud4SAR (http://wiki.services.eoportal.org/tiki-index.php?page=ECEO), to foster the deployment of Interferometric SAR (InSAR) processing chains within a Cloud Computing platform. While a large variety of InSAR processing software tools are available, they require a high level of expertise and a complex user interaction to be effectively run. Computing a co-seismic interferogram or a 20-years deformation time series on a volcanic area are not easy tasks to be performed in a fully unsupervised way and/or in very short time (hours or less). Benefiting from ESA's E-CEO platform, participants can optimise algorithms on a Virtual Sandbox environment without being expert programmers, and compute results on high performing Cloud platforms. Cloud4SAR requires solving a relatively easy InSAR problem by trying to maximize the exploitation of the processing capabilities provided by a Cloud Computing infrastructure. The proposed challenge offers two different frameworks, each dedicated to participants with different skills, identified as Beginners and Experts. For both of them, the contest mainly resides in the degree of automation of the deployed algorithms, no matter which one is used, as well as in the capability of taking effective benefit from a parallel computing environment.
Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing
2017-01-01
This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057
NASA Astrophysics Data System (ADS)
Liu, Meiling; Liu, Xiangnan; Li, Jin; Ding, Chao; Jiang, Jiale
2014-12-01
Satellites routinely provide frequent, large-scale, near-surface views of many oceanographic variables pertinent to plankton ecology. However, the nutrient fertility of water can be challenging to detect accurately using remote sensing technology. This research has explored an approach to estimate the nutrient fertility in coastal waters through the fusion of synthetic aperture radar (SAR) images and optical images using the random forest (RF) algorithm. The estimation of total inorganic nitrogen (TIN) in the Hong Kong Sea, China, was used as a case study. In March of 2009 and May and August of 2010, a sequence of multi-temporal in situ data and CCD images from China's HJ-1 satellite and RADARSAT-2 images were acquired. Four sensitive parameters were selected as input variables to evaluate TIN: single-band reflectance, a normalized difference spectral index (NDSI) and HV and VH polarizations. The RF algorithm was used to merge the different input variables from the SAR and optical imagery to generate a new dataset (i.e., the TIN outputs). The results showed the temporal-spatial distribution of TIN. The TIN values decreased from coastal waters to the open water areas, and TIN values in the northeast area were higher than those found in the southwest region of the study area. The maximum TIN values occurred in May. Additionally, the estimation accuracy for estimating TIN was significantly improved when the SAR and optical data were used in combination rather than a single data type alone. This study suggests that this method of estimating nutrient fertility in coastal waters by effectively fusing data from multiple sensors is very promising.
Digital correlation of DDRS data
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
The reduction of digital SAR (synthetic aperture radar) data to radar images for use in remote sensing applications was investigated. The critical software operations are discussed in detail, and suggestions and recommendations are made for improving the algorithms currently being used.
Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images
NASA Technical Reports Server (NTRS)
Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.
1991-01-01
The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.
NASA Astrophysics Data System (ADS)
Amiroch, S.; Pradana, M. S.; Irawan, M. I.; Mukhlash, I.
2017-09-01
Multiple Alignment (MA) is a particularly important tool for studying the viral genome and determine the evolutionary process of the specific virus. Application of MA in the case of the spread of the Severe acute respiratory syndrome (SARS) epidemic is an interesting thing because this virus epidemic a few years ago spread so quickly that medical attention in many countries. Although there has been a lot of software to process multiple sequences, but the use of pairwise alignment to process MA is very important to consider. In previous research, the alignment between the sequences to process MA algorithm, Super Pairwise Alignment, but in this study used a dynamic programming algorithm Needleman wunchs simulated in Matlab. From the analysis of MA obtained and stable region and unstable which indicates the position where the mutation occurs, the system network topology that produced the phylogenetic tree of the SARS epidemic distance method, and system area networks mutation.
NASA Astrophysics Data System (ADS)
Fabbrini, L.; Messina, M.; Greco, M.; Pinelli, G.
2011-10-01
In the context of augmented integrity Inertial Navigation System (INS), recent technological developments have been focusing on landmark extraction from high-resolution synthetic aperture radar (SAR) images in order to retrieve aircraft position and attitude. The article puts forward a processing chain that can automatically detect linear landmarks on highresolution synthetic aperture radar (SAR) images and can be successfully exploited also in the context of augmented integrity INS. The processing chain uses constant false alarm rate (CFAR) edge detectors as the first step of the whole processing procedure. Our studies confirm that the ratio of averages (RoA) edge detector detects object boundaries more effectively than Student T-test and Wilcoxon-Mann-Whitney (WMW) test. Nevertheless, all these statistical edge detectors are sensitive to violation of the assumptions which underlie their theory. In addition to presenting a solution to the previous problem, we put forward a new post-processing algorithm useful to remove the main false alarms, to select the most probable edge position, to reconstruct broken edges and finally to vectorize them. SAR images from the "MSTAR clutter" dataset were used to prove the effectiveness of the proposed algorithms.
Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping
NASA Astrophysics Data System (ADS)
Tamiminia, H.; Homayouni, S.; Safari, A.
2015-12-01
Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.
Hyper-heuristics with low level parameter adaptation.
Ren, Zhilei; Jiang, He; Xuan, Jifeng; Luo, Zhongxuan
2012-01-01
Recent years have witnessed the great success of hyper-heuristics applying to numerous real-world applications. Hyper-heuristics raise the generality of search methodologies by manipulating a set of low level heuristics (LLHs) to solve problems, and aim to automate the algorithm design process. However, those LLHs are usually parameterized, which may contradict the domain independent motivation of hyper-heuristics. In this paper, we show how to automatically maintain low level parameters (LLPs) using a hyper-heuristic with LLP adaptation (AD-HH), and exemplify the feasibility of AD-HH by adaptively maintaining the LLPs for two hyper-heuristic models. Furthermore, aiming at tackling the search space expansion due to the LLP adaptation, we apply a heuristic space reduction (SAR) mechanism to improve the AD-HH framework. The integration of the LLP adaptation and the SAR mechanism is able to explore the heuristic space more effectively and efficiently. To evaluate the performance of the proposed algorithms, we choose the p-median problem as a case study. The empirical results show that with the adaptation of the LLPs and the SAR mechanism, the proposed algorithms are able to achieve competitive results over the three heterogeneous classes of benchmark instances.
NASA Technical Reports Server (NTRS)
Jentz, R. R.; Wackerman, C. C.; Shuchman, R. A.; Onstott, R. G.; Gloersen, Per; Cavalieri, Don; Ramseier, Rene; Rubinstein, Irene; Comiso, Joey; Hollinger, James
1991-01-01
Previous research studies have focused on producing algorithms for extracting geophysical information from passive microwave data regarding ice floe size, sea ice concentration, open water lead locations, and sea ice extent. These studies have resulted in four separate algorithms for extracting these geophysical parameters. Sea ice concentration estimates generated from each of these algorithms (i.e., NASA/Team, NASA/Comiso, AES/York, and Navy) are compared to ice concentration estimates produced from coincident high-resolution synthetic aperture radar (SAR) data. The SAR concentration estimates are produced from data collected in both the Beaufort Sea and the Greenland Sea in March 1988 and March 1989, respectively. The SAR data are coincident to the passive microwave data generated by the Special Sensor Microwave/Imager (SSM/I).
NASA Astrophysics Data System (ADS)
Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.
2016-05-01
The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.
NASA Technical Reports Server (NTRS)
Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero
1988-01-01
The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.
A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs.
Zheng, Yu; Yang, Yang; Chen, Wu
2017-06-25
In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.
Ionospheric Specifications for SAR Interferometry (ISSI)
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco
2013-01-01
The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.
NASA Astrophysics Data System (ADS)
Lavalle, M.; Hensley, S.; Lou, Y.; Saatchi, S. S.; Pinto, N.; Simard, M.; Fatoyinbo, T. E.; Duncanson, L.; Dubayah, R.; Hofton, M. A.; Blair, J. B.; Armston, J.
2016-12-01
In this paper we explore the derivation of canopy height and vertical structure from polarimetric-interferometric SAR (PolInSAR) data collected during the 2016 AfriSAR campaign in Gabon. AfriSAR is a joint effort between NASA and ESA to acquire multi-baseline L- and P-band radar data, lidar data and field data over tropical forests and savannah sites to support calibration, validation and algorithm development in preparation for the NISAR, GEDI and BIOMASS missions. Here we focus on the L-band UAVSAR dataset acquired over the Lope National Park in Central Gabon to demonstrate mapping of canopy height and vertical structure using PolInSAR and tomographic techniques. The Lope site features a natural gradient of forest biomass from the forest-savanna boundary (< 100 Mg/ha) to dense undisturbed humid tropical forests (> 400 Mg/ha). Our dataset includes 9 long-baseline, full-polarimetric UAVSAR acquisitions along with field and lidar data from the Laser Vegetation Ice Sensor (LVIS). We first present a brief theoretical background of the PolInSAR and tomographic techniques. We then show the results of our PolInSAR algorithms to create maps of canopy height generated via inversion of the random-volume-over-ground (RVOG) and random-motion-over-ground (RVoG) models. In our approach multiple interferometric baselines are merged incoherently to maximize the interferometric sensitivity over a broad range of tree heights. Finally we show how traditional tomographic algorithms are used for the retrieval of the full vertical canopy profile. We compare our results from the different PolInSAR/tomographic algorithms to validation data derived from lidar and field data.
NASA Astrophysics Data System (ADS)
Oommen, T.; Baise, L. G.; Gens, R.; Prakash, A.; Gupta, R. P.
2008-12-01
Seismic liquefaction is the loss of strength of soil due to shaking that leads to various ground failures such as lateral spreading, settlements, tilting, and sand boils. It is important to document these failures after earthquakes to advance our study of when and where liquefaction occurs. The current approach of mapping these failures by field investigation teams suffers due to the inaccessibility to some of the sites immediately after the event, short life of some of these failures, difficulties in mapping the aerial extent of the failure, incomplete coverage etc. After the 2001 Bhuj earthquake (India), researchers, using the Indian remote sensing satellite, illustrated that satellite remote sensing can provide a synoptic view of the terrain and offer unbiased estimates of liquefaction failures. However, a multisensor (data from different sensors onboard of the same or different satellites) and multispectral (data collected in different spectral regions) approach is needed to efficiently document liquefaction incidences and/or its potential of occurrence due to the possibility of a particular satellite being located inappropriately to image an area shortly after an earthquake. The use of SAR satellite imagery ensures the acquisition of data in all weather conditions at day and night as well as information complimentary to the optical data sets. In this study, we analyze the applicability of the various satellites (Landsat, RADARSAT, Terra-MISR, IRS-1C, IRS-1D) in mapping liquefaction failures after the 2001 Bhuj earthquake using Support Vector Data Description (SVDD). The SVDD is a kernel based nonparametric outlier detection algorithm inspired by the Support Vector Machines (SVMs), which is a new generation learning algorithm based on the statistical learning theory. We present the applicability of SVDD for unsupervised change-detection studies (i.e. to identify post-earthquake liquefaction failures). The liquefaction occurrences identified from the different satellites using SVDD have been compared to the ground truth in terms of documented liquefaction failures by other researchers. We present the applicability and appropriateness of the various satellites and spectral regions for documenting liquefaction related failures. Results illustrate that the SVDD is a promising unsupervised change-detection algorithm, which can help in automating the documentation of earthquake induced liquefaction failures.
Edgelist phase unwrapping algorithm for time series InSAR analysis.
Shanker, A Piyush; Zebker, Howard
2010-03-01
We present here a new integer programming formulation for phase unwrapping of multidimensional data. Phase unwrapping is a key problem in many coherent imaging systems, including time series synthetic aperture radar interferometry (InSAR), with two spatial and one temporal data dimensions. The minimum cost flow (MCF) [IEEE Trans. Geosci. Remote Sens. 36, 813 (1998)] phase unwrapping algorithm describes a global cost minimization problem involving flow between phase residues computed over closed loops. Here we replace closed loops by reliable edges as the basic construct, thus leading to the name "edgelist." Our algorithm has several advantages over current methods-it simplifies the representation of multidimensional phase unwrapping, it incorporates data from external sources, such as GPS, where available to better constrain the unwrapped solution, and it treats regularly sampled or sparsely sampled data alike. It thus is particularly applicable to time series InSAR, where data are often irregularly spaced in time and individual interferograms can be corrupted with large decorrelated regions. We show that, similar to the MCF network problem, the edgelist formulation also exhibits total unimodularity, which enables us to solve the integer program problem by using efficient linear programming tools. We apply our method to a persistent scatterer-InSAR data set from the creeping section of the Central San Andreas Fault and find that the average creep rate of 22 mm/Yr is constant within 3 mm/Yr over 1992-2004 but varies systematically with ground location, with a slightly higher rate in 1992-1998 than in 1999-2003.
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1992-01-01
Estimation of the Doppler centroid ambiguity is a necessary element of the signal processing for SAR systems with large antenna pointing errors. Without proper resolution of the Doppler centroid estimation (DCE) ambiguity, the image quality will be degraded in the system impulse response function and the geometric fidelity. Two techniques for resolution of DCE ambiguity for the spaceborne SAR are presented; they include a brief review of the range cross-correlation technique and presentation of a new technique using multiple pulse repetition frequencies (PRFs). For SAR systems, where other performance factors control selection of the PRF's, an algorithm is devised to resolve the ambiguity that uses PRF's of arbitrary numerical values. The performance of this multiple PRF technique is analyzed based on a statistical error model. An example is presented that demonstrates for the Shuttle Imaging Radar-C (SIR-C) C-band SAR, the probability of correct ambiguity resolution is higher than 95 percent for antenna attitude errors as large as 3 deg.
What is missing? An operational inundation mapping framework by SAR data
NASA Astrophysics Data System (ADS)
Shen, X.; Anagnostou, E. N.; Zeng, Z.; Kettner, A.; Hong, Y.
2017-12-01
Compared to optical sensors, synthetic aperture radar (SAR) works all-day all-weather. In addition, its spatial resolution does not decrease with the height of the platform and is thus applicable to a range of important studies. However, existing studies did not address the operational demands of real-time inundation mapping. The direct proof is that no water body product exists for any SAR-based satellites. Then what is missing between science and products? Automation and quality. What makes it so difficult to develop an operational inundation mapping technique based on SAR data? Spectrum-wise, unlike optical water indices such as MNDWI, AWEI etc., where a relative constant threshold may apply across acquisition of images, regions and sensors, the threshold to separate water from non-water pixels in each SAR images has to be individually chosen. The optimization of the threshold is the first obstacle to the automation of the SAR data algorithm. Morphologically, the quality and reliability of the results have been compromised by over-detection caused by smooth surface and shadowing area, the noise-like speckle and under-detection caused by strong-scatter disturbance. In this study, we propose a three-step framework that addresses all aforementioned issues of operational inundation mapping by SAR data. The framework consists of 1) optimization of Wishart distribution parameters of single/dual/fully-polarized SAR data, 2) morphological removal of over-detection, and 3) machine-learning based removal of under-detection. The framework utilizes not only the SAR data, but also the synergy of digital elevation model (DEM), and optical sensor-based products of fine resolution, including the water probability map, land cover classification map (optional), and river width. The framework has been validated throughout multiple areas in different parts of the world using different satellite SAR data and globally available ancillary data products. Therefore, it has the potential to contribute as an operational inundation mapping algorithm to any SAR missions, such as SWOT, ALOS, Sentinel, etc. Selected results using ALOS/PALSAR-1 L-band dual polarized data around the Connecticut River is provided in the attached Figure.
Synthetic aperture radar target detection, feature extraction, and image formation techniques
NASA Technical Reports Server (NTRS)
Li, Jian
1994-01-01
This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.
Image synthesis for SAR system, calibration and processor design
NASA Technical Reports Server (NTRS)
Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.
1978-01-01
The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.
Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.
Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing
2017-11-07
This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.
A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs
Zheng, Yu; Yang, Yang; Chen, Wu
2017-01-01
In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm. PMID:28672830
Answering the right question - integration of InSAR with other datasets
NASA Astrophysics Data System (ADS)
Holley, Rachel; McCormack, Harry; Burren, Richard
2014-05-01
The capabilities of satellite Interferometric Synthetic Aperture Radar (InSAR) are well known, and utilized across a wide range of academic and commercial applications. However there is a tendency, particularly in commercial applications, for users to ask 'What can we study with InSAR?'. When establishing a new technique this approach is important, but InSAR has been possible for 20 years now and, even accounting for new and innovative algorithms, this ground has been thoroughly explored. Too many studies conclude 'We show the ground is moving here, by this much', and mention the wider context as an afterthought. The focus needs to shift towards first asking the right questions - in fields as diverse as hazard awareness, resource optimization, financial considerations and pure scientific enquiry - and then working out how to achieve the best possible answers. Depending on the question, InSAR (and ground deformation more generally) may provide a large or small contribution to the overall solution, and there are usually benefits to integrating a number of techniques to capitalize on the complementary capabilities and provide the most useful measurements. However, there is still a gap between measurements and answers, and unlocking the value of the data relies heavily on appropriate visualization, integrated analysis, communication between technique and application experts, and appropriate use of modelling. We present a number of application examples, and demonstrate how their usefulness can be transformed by moving from a focus on data to answers - integrating complementary geodetic, geophysical and geological datasets and geophysical modeling with appropriate visualization, to enable comprehensive solution-focused interpretation. It will also discuss how forthcoming developments are likely to further advance realisation of the full potential satellite InSAR holds.
Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-02-22
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.
Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-01-01
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406
1992-08-01
limits of these topics will be included. Digital SAR processing is for SAR indispensible. Theories and special algorithms will be given along with basic...traitement num~rique est indispensable aux SAP,. Des theories et des algorithmes sp~cifiques; seront proposes, ainsi que des configurations de processeur...equation If N independent pixel values are added than fol- lows from the laws of probability theory that the ra mean value of the sum is identical with
Decision-level fusion of SAR and IR sensor information for automatic target detection
NASA Astrophysics Data System (ADS)
Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon
2017-05-01
We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.
DInSAR time series generation within a cloud computing environment: from ERS to Sentinel-1 scenario
NASA Astrophysics Data System (ADS)
Casu, Francesco; Elefante, Stefano; Imperatore, Pasquale; Lanari, Riccardo; Manunta, Michele; Zinno, Ivana; Mathot, Emmanuel; Brito, Fabrice; Farres, Jordi; Lengert, Wolfgang
2013-04-01
One of the techniques that will strongly benefit from the advent of the Sentinel-1 system is Differential SAR Interferometry (DInSAR), which has successfully demonstrated to be an effective tool to detect and monitor ground displacements with centimetre accuracy. The geoscience communities (volcanology, seismicity, …), as well as those related to hazard monitoring and risk mitigation, make extensively use of the DInSAR technique and they will take advantage from the huge amount of SAR data acquired by Sentinel-1. Indeed, such an information will successfully permit the generation of Earth's surface displacement maps and time series both over large areas and long time span. However, the issue of managing, processing and analysing the large Sentinel data stream is envisaged by the scientific community to be a major bottleneck, particularly during crisis phases. The emerging need of creating a common ecosystem in which data, results and processing tools are shared, is envisaged to be a successful way to address such a problem and to contribute to the information and knowledge spreading. The Supersites initiative as well as the ESA SuperSites Exploitation Platform (SSEP) and the ESA Cloud Computing Operational Pilot (CIOP) projects provide effective answers to this need and they are pushing towards the development of such an ecosystem. It is clear that all the current and existent tools for querying, processing and analysing SAR data are required to be not only updated for managing the large data stream of Sentinel-1 satellite, but also reorganized for quickly replying to the simultaneous and highly demanding user requests, mainly during emergency situations. This translates into the automatic and unsupervised processing of large amount of data as well as the availability of scalable, widely accessible and high performance computing capabilities. The cloud computing environment permits to achieve all of these objectives, particularly in case of spike and peak requests of processing resources linked to disaster events. This work aims at presenting a parallel computational model for the widely used DInSAR algorithm named as Small BAseline Subset (SBAS), which has been implemented within the cloud computing environment provided by the ESA-CIOP platform. This activity has resulted in developing a scalable, unsupervised, portable, and widely accessible (through a web portal) parallel DInSAR computational tool. The activity has rewritten and developed the SBAS application algorithm within a parallel system environment, i.e., in a form that allows us to benefit from multiple processing units. This requires the devising a parallel version of the SBAS algorithm and its subsequent implementation, implying additional complexity in algorithm designing and an efficient multi processor programming, with the final aim of a parallel performance optimization. Although the presented algorithm has been designed to work with Sentinel-1 data, it can also process other satellite SAR data (ERS, ENVISAT, CSK, TSX, ALOS). Indeed, the performance analysis of the implemented SBAS parallel version has been tested on the full ASAR archive (64 acquisitions) acquired over the Napoli Bay, a volcanic and densely urbanized area in Southern Italy. The full processing - from the raw data download to the generation of DInSAR time series - has been carried out by engaging 4 nodes, each one with 2 cores and 16 GB of RAM, and has taken about 36 hours, with respect to about 135 hours of the sequential version. Extensive analysis on other test areas significant from DInSAR and geophysical viewpoint will be presented. Finally, preliminary performance evaluation of the presented approach within the Sentinel-1 scenario will be provided.
Zhang, Jinjin; Idiyatullin, Djaudat; Corum, Curtis A.; Kobayashi, Naoharu; Garwood, Michael
2017-01-01
Purpose Methods designed to image fast-relaxing spins, such as sweep imaging with Fourier transformation (SWIFT), often utilize high excitation bandwidth and duty cycle, and in some applications the optimal flip angle cannot be used without exceeding safe specific absorption rate (SAR) levels. The aim is to reduce SAR and increase the flexibility of SWIFT by applying time-varying gradient-modulation (GM). The modified sequence is called GM-SWIFT. Theory and Methods The method known as gradient-modulated offset independent adiabaticity was used to modulate the radiofrequency (RF) pulse and gradients. An expanded correlation algorithm was developed for GM-SWIFT to correct the phase and scale effects. Simulations and phantom and in vivo human experiments were performed to verify the correlation algorithm and to evaluate imaging performance. Results GM-SWIFT reduces SAR, RF amplitude, and acquisition time by up to 90%, 70%, and 45%, respectively, while maintaining image quality. The choice of GM parameter influences the lower limit of short T2* sensitivity, which can be exploited to suppress unwanted image haze from unresolvable ultrashort T2* signals originating from plastic materials in the coil housing and fixatives. Conclusions GM-SWIFT reduces peak and total RF power requirements and provides additional flexibility for optimizing SAR, RF amplitude, scan time, and image quality. PMID:25800547
Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.
Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng
2016-07-14
Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.
Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling
Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng
2016-01-01
Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974
Salehpour, Mehdi; Behrad, Alireza
2017-10-01
This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.
Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging
He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing
2017-01-01
This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data. PMID:29112151
Data compressive paradigm for multispectral sensing using tunable DWELL mid-infrared detectors.
Jang, Woo-Yong; Hayat, Majeed M; Godoy, Sebastián E; Bender, Steven C; Zarkesh-Ha, Payman; Krishna, Sanjay
2011-09-26
While quantum dots-in-a-well (DWELL) infrared photodetectors have the feature that their spectral responses can be shifted continuously by varying the applied bias, the width of the spectral response at any applied bias is not sufficiently narrow for use in multispectral sensing without the aid of spectral filters. To achieve higher spectral resolutions without using physical spectral filters, algorithms have been developed for post-processing the DWELL's bias-dependent photocurrents resulting from probing an object of interest repeatedly over a wide range of applied biases. At the heart of these algorithms is the ability to approximate an arbitrary spectral filter, which we desire the DWELL-algorithm combination to mimic, by forming a weighted superposition of the DWELL's non-orthogonal spectral responses over a range of applied biases. However, these algorithms assume availability of abundant DWELL data over a large number of applied biases (>30), leading to large overall acquisition times in proportion with the number of biases. This paper reports a new multispectral sensing algorithm to substantially compress the number of necessary bias values subject to a prescribed performance level across multiple sensing applications. The algorithm identifies a minimal set of biases to be used in sensing only the relevant spectral information for remote-sensing applications of interest. Experimental results on target spectrometry and classification demonstrate a reduction in the number of required biases by a factor of 7 (e.g., from 30 to 4). The tradeoff between performance and bias compression is thoroughly investigated. © 2011 Optical Society of America
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
Evaluation of Airborne l- Band Multi-Baseline Pol-Insar for dem Extraction Beneath Forest Canopy
NASA Astrophysics Data System (ADS)
Li, W. M.; Chen, E. X.; Li, Z. Y.; Jiang, C.; Jia, Y.
2018-04-01
DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR) based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.
Registration of interferometric SAR images
NASA Technical Reports Server (NTRS)
Lin, Qian; Vesecky, John F.; Zebker, Howard A.
1992-01-01
Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.
SAR image dataset of military ground targets with multiple poses for ATR
NASA Astrophysics Data System (ADS)
Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc
2017-10-01
Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.
Robotic disaster recovery efforts with ad-hoc deployable cloud computing
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Marsh, Ronald; Mohammad, Atif F.
2013-06-01
Autonomous operations of search and rescue (SaR) robots is an ill posed problem, which is complexified by the dynamic disaster recovery environment. In a typical SaR response scenario, responder robots will require different levels of processing capabilities during various parts of the response effort and will need to utilize multiple algorithms. Placing these capabilities onboard the robot is a mediocre solution that precludes algorithm specific performance optimization and results in mediocre performance. Architecture for an ad-hoc, deployable cloud environment suitable for use in a disaster response scenario is presented. Under this model, each service provider is optimized for the task and maintains a database of situation-relevant information. This service-oriented architecture (SOA 3.0) compliant framework also serves as an example of the efficient use of SOA 3.0 in an actual cloud application.
NASA Technical Reports Server (NTRS)
Saatchi, Sasan; Rignot, Eric; Vanzyl, Jakob
1995-01-01
In recent years, monitoring vegetation biomass over various climate zones has become the primary focus of several studies interested in assessing the role of the ecosystem responses to climate change and human activities. Airborne and spaceborne Synthetic Aperture Radar (SAR) systems provide a useful tool to directly estimate biomass due to its sensitivity to structural and moisture characteristics of vegetation canopies. Even though the sensitivity of SAR data to total aboveground biomass has been successfully demonstrated in many controlled experiments over boreal forests and forest plantations, so far, no biomass estimation algorithm has been developed. This is mainly due to the fact that the SAR data, even at lowest frequency (P-band) saturates at biomass levels of about 200 tons/ha, and the structure and moisture information in the SAR signal forces the estimation algorithm to be forest type dependent. In this paper, we discuss the development of a hybrid forest biomass algorithm which uses a SAR derived land cover map in conjunction with a forest backscatter model and an inversion algorithm to estimate forest canopy water content. It is shown that unlike the direct biomass estimation from SAR data, the estimation of water content does not depend on the seasonal and/or environmental conditions. The total aboveground biomass can then be derived from canopy water content for each type of forest by incorporating other ecological information. Preliminary results from this technique over several boreal forest stands indicate that (1) the forest biomass can be estimated with reasonable accuracy, and (2) the saturation level of the SAR signal can be enhanced by separating the crown and trunk biomass in the inversion algorithm. We have used the JPL AIRSAR data over BOREAS southern study area to test the algorithm and to generate regional scale water content and biomass maps. The results are compared with ground data and the sources of errors are discussed. Several SAR images in synoptic modes are used to generate the parameter maps. The maps are then combined to generate mosaic maps over the BOREAS modeling grid.
Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm.
Pickett, Stephen D; Green, Darren V S; Hunt, David L; Pardoe, David A; Hughes, Ian
2011-01-13
Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure-activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods.
Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm
2010-01-01
Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure−activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods. PMID:24900251
Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection
NASA Astrophysics Data System (ADS)
Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.
2015-04-01
SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.
On the Implementation of a Land Cover Classification System for SAR Images Using Khoros
NASA Technical Reports Server (NTRS)
Medina Revera, Edwin J.; Espinosa, Ramon Vasquez
1997-01-01
The Synthetic Aperture Radar (SAR) sensor is widely used to record data about the ground under all atmospheric conditions. The SAR acquired images have very good resolution which necessitates the development of a classification system that process the SAR images to extract useful information for different applications. In this work, a complete system for the land cover classification was designed and programmed using the Khoros, a data flow visual language environment, taking full advantages of the polymorphic data services that it provides. Image analysis was applied to SAR images to improve and automate the processes of recognition and classification of the different regions like mountains and lakes. Both unsupervised and supervised classification utilities were used. The unsupervised classification routines included the use of several Classification/Clustering algorithms like the K-means, ISO2, Weighted Minimum Distance, and the Localized Receptive Field (LRF) training/classifier. Different texture analysis approaches such as Invariant Moments, Fractal Dimension and Second Order statistics were implemented for supervised classification of the images. The results and conclusions for SAR image classification using the various unsupervised and supervised procedures are presented based on their accuracy and performance.
SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy
Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.
2016-01-01
Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012
Multi-temporal InSAR Datastacks for Surface Deformation Monitoring: a Review
NASA Astrophysics Data System (ADS)
Ferretti, A.; Novali, F.; Prati, C.; Rocca, F.
2009-04-01
In the last decade extensive processing of thousands of satellite radar scenes acquired by different sensors (e.g. ERS-1/2, ENVISAT and RADARSAT) has demonstrated how multi-temporal data-sets can be successfully exploited for surface deformation monitoring, by identifying objects on the terrain that have a stable, point-like behaviour. These objects, referred to as Permanent or Persistent Scatterers (PS), can be geo-coded and monitored for movement very accurately, acting as a "natural" geodetic network, integrating successfully continuous GPS data. After a brief analysis of both advantages and drawbacks of InSAR datastacks, the paper presents examples of applications of PS measurements for detecting and monitoring active faults, aquifers and oil/gas reservoirs, using experience in Europe, North America and Japan, and concludes with a discussion on future directions for PSInSAR analysis. Special attention is paid to the possibility of creating deformation maps over wide areas using historical archives of data already available. This second part of the paper will briefly discuss the technical features of the new radar sensors recently launched (namely: TerraSAR-X, RADARSAT-2, and CosmoSkyMed) and their impact on space geodesy, highlighting the importance of data continuity and standardized acquisition policies for almost all InSAR and PSInSAR applications. Finally, recent advances in the algorithms applied in PS analysis, such as detection of "temporary PS", PS characterization and exploitation of distributed scatterers, will be briefly discussed based on the processing of real data.
Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Moghaddam, Mahta
1995-01-01
In this paper, we report on the use of a semiempirical algorithm derived from a two layer radar backscatter model for forest canopies. The model stratifies the forest canopy into crown and stem layers, separates the structural and biometric attributes of the canopy. The structural parameters are estimated by training the model with polarimetric SAR (synthetic aperture radar) data acquired over homogeneous stands with known above ground biomass. Given the structural parameters, the semi-empirical algorithm has four remaining parameters, crown biomass, stem biomass, surface soil moisture, and surface rms height that can be estimated by at least four independent SAR measurements. The algorithm has been used to generate biomass maps over the entire images acquired by JPL AIRSAR and SIR-C SAR systems. The semi-empirical algorithms are then modified to be used by single frequency radar systems such as ERS-1, JERS-1, and Radarsat. The accuracy. of biomass estimation from single channel radars is compared with the case when the channels are used together in synergism or in a polarimetric system.
Effective Association of SAR and AIS Data Using Non-Rigid Point Pattern Matching
NASA Astrophysics Data System (ADS)
Zhao, Z.; Ji, K. F.; Xing, X. W.; Zou, H. X.
2014-03-01
Ship surveillance using multiple remote sensing sensors becomes more and more vital presently. Among the various sensors, space-borne Synthetic Aperture Radar (SAR) is optimal for its high resolution over wide swaths and all-weather working capabilities. Meanwhile, Automatic Identification System (AIS) is efficient to provide ship navigational information. Limited to the progress of ship surveillance using SAR image only, the integration of them significantly benefits more. Data association is the fundamental issue. Many algorithms have been developed including the Nearest-Neighbour (NN) algorithm, the Joint Probabilistic Data Association (JPDA) method, and the Multiple Hypothesis Testing (MHT) approach. Ship positions derived from SAR image can be associated with the ones provided by AIS. State-of-the-art method (NN algorithm) is proved to be feasible. But it faces more challenges under adverse circumstances, such as high-density-shipping condition. We investigate the non-rigid Point Pattern Matching (PPM) method to solve this problem. To the best of our knowledge, this paper is the first to introduce non-rigid PPM to the data association of SAR and AIS. On the basis of introduction to the data association, Coherent Point Drift (CPD) algorithm is investigated. Experiments are carried out and the results illustrate that the CPD algorithm achieves higher accuracy and outperforms state-of-the-art method, especially under high-density-shipping condition.
Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong
2018-01-31
Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.
Zhou, Rui; Hu, Yuxin; Qi, Yaolong
2018-01-01
Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059
Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions
Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.
2009-01-01
We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.
Onboard Science and Applications Algorithm for Hyperspectral Data Reduction
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Davies, Ashley G.; Silverman, Dorothy; Mandl, Daniel
2012-01-01
An onboard processing mission concept is under development for a possible Direct Broadcast capability for the HyspIRI mission, a Hyperspectral remote sensing mission under consideration for launch in the next decade. The concept would intelligently spectrally and spatially subsample the data as well as generate science products onboard to enable return of key rapid response science and applications information despite limited downlink bandwidth. This rapid data delivery concept focuses on wildfires and volcanoes as primary applications, but also has applications to vegetation, coastal flooding, dust, and snow/ice applications. Operationally, the HyspIRI team would define a set of spatial regions of interest where specific algorithms would be executed. For example, known coastal areas would have certain products or bands downlinked, ocean areas might have other bands downlinked, and during fire seasons other areas would be processed for active fire detections. Ground operations would automatically generate the mission plans specifying the highest priority tasks executable within onboard computation, setup, and data downlink constraints. The spectral bands of the TIR (thermal infrared) instrument can accurately detect the thermal signature of fires and send down alerts, as well as the thermal and VSWIR (visible to short-wave infrared) data corresponding to the active fires. Active volcanism also produces a distinctive thermal signature that can be detected onboard to enable spatial subsampling. Onboard algorithms and ground-based algorithms suitable for onboard deployment are mature. On HyspIRI, the algorithm would perform a table-driven temperature inversion from several spectral TIR bands, and then trigger downlink of the entire spectrum for each of the hot pixels identified. Ocean and coastal applications include sea surface temperature (using a small spectral subset of TIR data, but requiring considerable ancillary data), and ocean color applications to track biological activity such as harmful algal blooms. Measuring surface water extent to track flooding is another rapid response product leveraging VSWIR spectral information.
Assessment of DInSAR Potential in Simulating Geological Subsurface Structure
NASA Astrophysics Data System (ADS)
Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.
2013-12-01
High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations. The newly developed and modified algorithm will then be applied in another part of the region where subsurface information is limited.
Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.
Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen
2015-09-11
This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.
The Born approximation, multiple scattering, and the butterfly algorithm
NASA Astrophysics Data System (ADS)
Martinez, Alejandro F.
Radar works by focusing a beam of light and seeing how long it takes to reflect. To see a large region the beam is pointed in different directions. The focus of the beam depends on the size of the antenna (called an aperture). Synthetic aperture radar (SAR) works by moving the antenna through some region of space. A fundamental assumption in SAR is that waves only bounce once. Several imaging algorithms have been designed using that assumption. The scattering process can be described by iterations of a badly behaving integral. Recently a method for efficiently evaluating these types of integrals has been developed. We will give a detailed implementation of this algorithm and apply it to study the multiple scattering effects in SAR using target estimates from single scattering algorithms.
Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-01-01
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813
Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-06-24
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.
Extraction of linear features on SAR imagery
NASA Astrophysics Data System (ADS)
Liu, Junyi; Li, Deren; Mei, Xin
2006-10-01
Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.
An acceleration framework for synthetic aperture radar algorithms
NASA Astrophysics Data System (ADS)
Kim, Youngsoo; Gloster, Clay S.; Alexander, Winser E.
2017-04-01
Algorithms for radar signal processing, such as Synthetic Aperture Radar (SAR) are computationally intensive and require considerable execution time on a general purpose processor. Reconfigurable logic can be used to off-load the primary computational kernel onto a custom computing machine in order to reduce execution time by an order of magnitude as compared to kernel execution on a general purpose processor. Specifically, Field Programmable Gate Arrays (FPGAs) can be used to accelerate these kernels using hardware-based custom logic implementations. In this paper, we demonstrate a framework for algorithm acceleration. We used SAR as a case study to illustrate the potential for algorithm acceleration offered by FPGAs. Initially, we profiled the SAR algorithm and implemented a homomorphic filter using a hardware implementation of the natural logarithm. Experimental results show a linear speedup by adding reasonably small processing elements in Field Programmable Gate Array (FPGA) as opposed to using a software implementation running on a typical general purpose processor.
Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2011-09-01
We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.
NASA Astrophysics Data System (ADS)
Ajadi, Olaniyi A.
Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition.. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscale-driven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6.
Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Cox, Cary M.
This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.
Trace gas detection in hyperspectral imagery using the wavelet packet subspace
NASA Astrophysics Data System (ADS)
Salvador, Mark A. Z.
This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.
NASA Astrophysics Data System (ADS)
Chow, Candace; Twele, André; Martinis, Sandro
2016-10-01
Flood extent maps derived from Synthetic Aperture Radar (SAR) data can communicate spatially-explicit information in a timely and cost-effective manner to support disaster management. Automated processing chains for SAR-based flood mapping have the potential to substantially reduce the critical time delay between the delivery of post-event satellite data and the subsequent provision of satellite derived crisis information to emergency management authorities. However, the accuracy of SAR-based flood mapping can vary drastically due to the prevalent land cover and topography of a given scene. While expert-based image interpretation with the consideration of contextual information can effectively isolate flood surface features, a fully-automated feature differentiation algorithm mainly based on the grey levels of a given pixel is comparatively more limited for features with similar SAR-backscattering characteristics. The inclusion of ancillary data in the automatic classification procedure can effectively reduce instances of misclassification. In this work, a near-global `Height Above Nearest Drainage' (HAND) index [10] was calculated with digital elevation data and drainage directions from the HydroSHEDS mapping project [2]. The index can be used to separate flood-prone regions from areas with a low probability of flood occurrence. Based on the HAND-index, an exclusion mask was computed to reduce water look-alikes with respect to the hydrologictopographic setting. The applicability of this near-global ancillary data set for the thematic improvement of Sentinel-1 and TerraSAR-X based services for flood and surface water monitoring has been validated both qualitatively and quantitatively. Application of a HAND-based exclusion mask resulted in improvements to the classification accuracy of SAR scenes with high amounts of water look-alikes and considerable elevation differences.
Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures
NASA Astrophysics Data System (ADS)
Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.
2013-05-01
An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.
NASA Astrophysics Data System (ADS)
Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi
2014-01-01
The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.
Post-Disaster Damage Assessment Through Coherent Change Detection on SAR Imagery
NASA Astrophysics Data System (ADS)
Guida, L.; Boccardo, P.; Donevski, I.; Lo Schiavo, L.; Molinari, M. E.; Monti-Guarnieri, A.; Oxoli, D.; Brovelli, M. A.
2018-04-01
Damage assessment is a fundamental step to support emergency response and recovery activities in a post-earthquake scenario. In recent years, UAVs and satellite optical imagery was applied to assess major structural damages before technicians could reach the areas affected by the earthquake. However, bad weather conditions may harm the quality of these optical assessments, thus limiting the practical applicability of these techniques. In this paper, the application of Synthetic Aperture Radar (SAR) imagery is investigated and a novel approach to SAR-based damage assessment is presented. Coherent Change Detection (CCD) algorithms on multiple interferometrically pre-processed SAR images of the area affected by the seismic event are exploited to automatically detect potential damages to buildings and other physical structures. As a case study, the 2016 Central Italy earthquake involving the cities of Amatrice and Accumoli was selected. The main contribution of the research outlined above is the integration of a complex process, requiring the coordination of a variety of methods and tools, into a unitary framework, which allows end-to-end application of the approach from SAR data pre-processing to result visualization in a Geographic Information System (GIS). A prototype of this pipeline was implemented, and the outcomes of this methodology were validated through an extended comparison with traditional damage assessment maps, created through photo-interpretation of high resolution aerial imagery. The results indicate that the proposed methodology is able to perform damage detection with a good level of accuracy, as most of the detected points of change are concentrated around highly damaged buildings.
Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks
NASA Astrophysics Data System (ADS)
Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.
2012-04-01
The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster incorporates around 150 wireless measuring devices on a grid of approximately 30ha for distributed soil moisture sensing. Finally, the comparison of both distributed soil moisture products results in a discussion on potentials and limitations for obtaining soil moisture under vegetation cover with high resolution fully polarimetric SAR. [1] S.R. Cloude, Polarisation: applications in remote sensing. Oxford, Oxford University Press, 2010. [2] Jagdhuber, T., Hajnsek, I., Papathanassiou, K.P. and Bronstert, A.: A Hybrid Decomposition for Soil Moisture Estimation under Vegetation Cover Using Polarimetric SAR. Proc. of the 5th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, ESA-ESRIN, Frascati, Italy, January 24-28, 2011, p.1-6.
NASA Astrophysics Data System (ADS)
Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.
2016-11-01
Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.
Measuring grassland structure for recovery of grassland species at risk
NASA Astrophysics Data System (ADS)
Guo, Xulin; Gao, Wei; Wilmshurst, John
2005-09-01
An action plan for recovering species at risk (SAR) depends on an understanding of the plant community distribution, vegetation structure, quality of the food source and the impact of environmental factors such as climate change at large scale and disturbance at small scale, as these are fundamental factors for SAR habitat. Therefore, it is essential to advance our knowledge of understanding the SAR habitat distribution, habitat quality and dynamics, as well as developing an effective tool for measuring and monitoring SAR habitat changes. Using the advantages of non-destructive, low cost, and high efficient land surface vegetation biophysical parameter characterization, remote sensing is a potential tool for helping SAR recovery action. The main objective of this paper is to assess the most suitable techniques for using hyperspectral remote sensing to quantify grassland biophysical characteristics. The challenge of applying remote sensing in semi-arid and arid regions exists simply due to the lower biomass vegetation and high soil exposure. In conservation grasslands, this problem is enhanced because of the presence of senescent vegetation. Results from this study demonstrated that hyperspectral remote sensing could be the solution for semi-arid grassland remote sensing applications. Narrow band raw data and derived spectral vegetation indices showed stronger relationships with biophysical variables compared to the simulated broad band vegetation indices.
SAR Processing Based On Two-Dimensional Transfer Function
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.
1994-01-01
Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.
A modified sparse reconstruction method for three-dimensional synthetic aperture radar image
NASA Astrophysics Data System (ADS)
Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin
2018-03-01
There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.
Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD
NASA Astrophysics Data System (ADS)
Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun
2017-12-01
This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.
NASA Astrophysics Data System (ADS)
Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun
2018-03-01
Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.
Spectral correction algorithm for multispectral CdTe x-ray detectors
NASA Astrophysics Data System (ADS)
Christensen, Erik D.; Kehres, Jan; Gu, Yun; Feidenhans'l, Robert; Olsen, Ulrik L.
2017-09-01
Compared to the dual energy scintillator detectors widely used today, pixelated multispectral X-ray detectors show the potential to improve material identification in various radiography and tomography applications used for industrial and security purposes. However, detector effects, such as charge sharing and photon pileup, distort the measured spectra in high flux pixelated multispectral detectors. These effects significantly reduce the detectors' capabilities to be used for material identification, which requires accurate spectral measurements. We have developed a semi analytical computational algorithm for multispectral CdTe X-ray detectors which corrects the measured spectra for severe spectral distortions caused by the detector. The algorithm is developed for the Multix ME100 CdTe X-ray detector, but could potentially be adapted for any pixelated multispectral CdTe detector. The calibration of the algorithm is based on simple attenuation measurements of commercially available materials using standard laboratory sources, making the algorithm applicable in any X-ray setup. The validation of the algorithm has been done using experimental data acquired with both standard lab equipment and synchrotron radiation. The experiments show that the algorithm is fast, reliable even at X-ray flux up to 5 Mph/s/mm2, and greatly improves the accuracy of the measured X-ray spectra, making the algorithm very useful for both security and industrial applications where multispectral detectors are used.
Observation of melt onset on multiyear Arctic sea ice using the ERS 1 synthetic aperture radar
NASA Technical Reports Server (NTRS)
Winebrenner, D. P.; Nelson, E. D.; Colony, R.; West, R. D.
1994-01-01
We present nearly coincident observations of backscattering from the Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and of near-surface temperature from six drifting buoys in the Beaufort Sea, showing that the onset of melting in snow on multiyear sea ice is clearly detectable in the SAR data. Melt onset is marked by a clean, steep decrease in the backscattering cross section of multiyear ice at 5.3 GHz and VV polarization. We investigate the scattering physics responsible for the signature change and find that the cross section decrease is due solely to the appearance of liquid water in the snow cover overlying the ice. A thin layer of moist snow is sufficient to cause the observed decrease. We present a prototype algorithm to estimate the date of melt onset using the ERS 1 SAR and apply the algorithm first to the SAR data for which we have corresponding buoy temperatures. The melt onset dates estimated by the SAR algorithm agree with those obtained independently from the temperature data to within 4 days or less, with the exception of one case in which temperatures oscillated about 0 C for several weeks. Lastly, we apply the algorithm to the entire ERS 1 SAR data record acquired by the Alaska SAR Facility for the Beaufort Sea north of 73 deg N during the spring of 1992, to produce a map of the dates of melt onset over an area roughly 1000 km on a side. The progression of melt onset is primarily poleward but shows a weak meridional dependence at latitudes of approximately 76 deg-77 deg N. Melting begins in the southern part of the study region on June 13 and by June 20 has progressed to the northermost part of the region.
NASA Astrophysics Data System (ADS)
Xie, Q.; Wang, C.; Zhu, J.; Fu, H.; Wang, C.
2015-06-01
In recent years, a lot of studies have shown that polarimetric synthetic aperture radar interferometry (PolInSAR) is a powerful technique for forest height mapping and monitoring. However, few researches address the problem of terrain slope effect, which will be one of the major limitations for forest height inversion in mountain forest area. In this paper, we present a novel forest height retrieval algorithm by integration of dual-baseline PolInSAR data and external DEM data. For the first time, we successfully expand the S-RVoG (Sloped-Random Volume over Ground) model for forest parameters inversion into the case of dual-baseline PolInSAR configuration. In this case, the proposed method not only corrects terrain slope variation effect efficiently, but also involves more observations to improve the accuracy of parameters inversion. In order to demonstrate the performance of the inversion algorithm, a set of quad-pol images acquired at the P-band in interferometric repeat-pass mode by the German Aerospace Center (DLR) with the Experimental SAR (E-SAR) system, in the frame of the BioSAR2008 campaign, has been used for the retrieval of forest height over Krycklan boreal forest in northern Sweden. At the same time, a high accuracy external DEM in the experimental area has been collected for computing terrain slope information, which subsequently is used as an inputting parameter in the S-RVoG model. Finally, in-situ ground truth heights in stand-level have been collected to validate the inversion result. The preliminary results show that the proposed inversion algorithm promises to provide much more accurate estimation of forest height than traditional dualbaseline inversion algorithms.
Formation Flying for Distributed InSAR
NASA Technical Reports Server (NTRS)
Scharf, Daniel P.; Murray, Emmanuell A.; Ploen, Scott R.; Gromov, Konstantin G.; Chen, Curtis W.
2006-01-01
We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.
Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map
Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen
2015-01-01
This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543
Large Scale Assessment of Radio Frequency Interference Signatures in L-band SAR Data
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Nicoll, J.
2011-12-01
Imagery of L-band Synthetic Aperture Radar (SAR) systems such as the PALSAR sensor on board the Advanced Land Observing Satellite (ALOS) has proven to be a valuable tool for observing environmental changes around the globe. Besides offering 24/7 operability, the L-band frequency provides improved interferometric coherence, and L-band polarimetric data has shown great potential for vegetation monitoring, sea ice classification, and the observation of glaciers and ice sheets. To maximize the benefit of missions such as ALOS PALSAR for environmental monitoring, data consistency and calibration are vital. Unfortunately, radio frequency interference (RFI) signatures from ground-based radar systems regularly impair L-band SAR data quality and consistency. With this study we present a large-scale analysis of typical RFI signatures that are regularly observed in L-band SAR data over the Americas. Through a study of the vast archive of L-band SAR data in the US Government Research Consortium (USGRC) data pool at the Alaska Satellite Facility (ASF) we were able to address the following research goals: 1. Assessment of RFI Signatures in L-band SAR data and their Effects on SAR Data Quality: An analysis of time-frequency properties of RFI signatures in L-band SAR data of the USGRC data pool is presented. It is shown that RFI-filtering algorithms implemented in the operational ALOS PALSAR processor are not sufficient to remove all RFI-related artifacts. In examples, the deleterious effects of RFI on SAR image quality, polarimetric signature, SAR phase, and interferometric coherence are presented. 2. Large-Scale Assessment of Severity, Spatial Distribution, and Temporal Variation of RFI Signatures in L-band SAR data: L-band SAR data in the USGRC data pool were screened for RFI using a custom algorithm. Per SAR frame, the algorithm creates geocoded frame bounding boxes that are color-coded according to RFI intensity and converted to KML files for analysis in Google Earth. From the screening results, parameters such as RFI severity and spatial distribution of RFI were derived. Through a comparison of RFI signatures in older SAR data from JAXA's Japanese Earth Resources Satellite (JERS-1) and recent ALOS PALSAR data, changes in RFI signatures in the Americas were derived, indicating a strong increase of L-band signal contamination over time. 3. An Optimized RFI Filter and its Performance in Data Restoration: An optimized RFI filter has been developed and tested at ASF. The algorithm has proven to be effective in detecting and removing RFI signatures in L-band SAR data and restoring the advertised quality of SAR imagery, polarization, and interferometric phase. The properties of the RFI filter will be described and its performance will be demonstrated in examples. The presented work is a prime example of large-scale research that is made possible by the availability of SAR data through the extensive data archive of the USGRC data pool at ASF.
A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2001-01-01
A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.
NASA Astrophysics Data System (ADS)
Xue, D.; Yu, X.; Jia, S.; Chen, F.; Li, X.
2018-04-01
In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.
Model-based vision using geometric hashing
NASA Astrophysics Data System (ADS)
Akerman, Alexander, III; Patton, Ronald
1991-04-01
The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.
The Simultaneous Additive and Relative SysRem Algorithm
NASA Astrophysics Data System (ADS)
Ofir, A.
2011-02-01
We present the SARS algorithm, which is a generalization of the popular SysRem detrending technique. This generalization allows including multiple external parameters in a simultaneous solution with the unknown effects. Using SARS allowed us to show that the magnitude-dependant systematic effect discovered by Mazeh et al. (2009) in the CoRoT data is probably caused by an additive -rather than relative- noise source. A post-processing scheme based on SARS performs well and indeed allows for the detection of new transit-like signals that were not previously detected.
A three-dimensional spectral algorithm for simulations of transition and turbulence
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1985-01-01
A spectral algorithm for simulating three dimensional, incompressible, parallel shear flows is described. It applies to the channel, to the parallel boundary layer, and to other shear flows with one wall bounded and two periodic directions. Representative applications to the channel and to the heated boundary layer are presented.
NASA Astrophysics Data System (ADS)
Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.
2016-04-01
Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.
(abstract) The EOS SAR Mission: A New Approach
NASA Technical Reports Server (NTRS)
Way, JoBea
1993-01-01
The goal of the Earth Orbiting System Synthetic Aperture Radar (EOS SAR) program is to help develop the modeling and observational capabilities to predict and monitor terrestrial and oceanic processes that are either causing global change or resulting from global change. Specifically, the EOS SAR will provide important geophysical products to the EOS data set to improve our understanding of the state and functioning of the Earth system. The strategy for the EOS SAR program is to define the instrument requirements based on required input to geophysical algorithms, provide the processing capability and algorithms to generate such products on the required spatial (global) and temporal (3-5 days) scales, and to provide the spaceborne instrumentation with international partnerships. Initially this partnership has been with Germany; currently we are exploring broader international partnerships. A MultiSAR approach to the EOS SAR which includes a number of SARs provided by Japan, ESA, Germany, Canada, and the US in synergistic orbits could be used to attain a truly global monitoring capability using multifrequency polarimetric signatures. These concepts and several options for mission scenarios will be presented.
MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?
Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence
2017-09-01
Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.
Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images
NASA Astrophysics Data System (ADS)
Awumah, Anna; Mahanti, Prasun; Robinson, Mark
2016-10-01
Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).
Late summer sea ice segmentation with multi-polarisation SAR features in C- and X-band
NASA Astrophysics Data System (ADS)
Fors, A. S.; Brekke, C.; Doulgeris, A. P.; Eltoft, T.; Renner, A. H. H.; Gerland, S.
2015-09-01
In this study we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around zero degrees Celsius. In situ data consisting of sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporally consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent features. In general, the algorithm produces a good late summer sea ice segmentation. Excluding temporally inconsistent SAR features improved the segmentation at air temperatures above zero degrees Celcius.
NASA Astrophysics Data System (ADS)
He, G.; Xia, Z.; Chen, H.; Li, K.; Zhao, Z.; Guo, Y.; Feng, P.
2018-04-01
Real-time ship detection using synthetic aperture radar (SAR) plays a vital role in disaster emergency and marine security. Especially the high resolution and wide swath (HRWS) SAR images, provides the advantages of high resolution and wide swath synchronously, significantly promotes the wide area ocean surveillance performance. In this study, a novel method is developed for ship target detection by using the HRWS SAR images. Firstly, an adaptive sliding window is developed to propose the suspected ship target areas, based upon the analysis of SAR backscattering intensity images. Then, backscattering intensity and texture features extracted from the training samples of manually selected ship and non-ship slice images, are used to train a support vector machine (SVM) to classify the proposed ship slice images. The approach is verified by using the Sentinl1A data working in interferometric wide swath mode. The results demonstrate the improvement performance of the proposed method over the constant false alarm rate (CFAR) method, where the classification accuracy improved from 88.5 % to 96.4 % and the false alarm rate mitigated from 11.5 % to 3.6 % compared with CFAR respectively.
Advanced digital SAR processing study
NASA Technical Reports Server (NTRS)
Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.
1982-01-01
A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.
NASA Astrophysics Data System (ADS)
Jiang, Kaili; Zhu, Jun; Tang, Bin
2017-12-01
Periodic nonuniform sampling occurs in many applications, and the Nyquist folding receiver (NYFR) is an efficient, low complexity, and broadband spectrum sensing architecture. In this paper, we first derive that the radio frequency (RF) sample clock function of NYFR is periodic nonuniform. Then, the classical results of periodic nonuniform sampling are applied to NYFR. We extend the spectral reconstruction algorithm of time series decomposed model to the subsampling case by using the spectrum characteristics of NYFR. The subsampling case is common for broadband spectrum surveillance. Finally, we take example for a LFM signal under large bandwidth to verify the proposed algorithm and compare the spectral reconstruction algorithm with orthogonal matching pursuit (OMP) algorithm.
C-band Joint Active/Passive Dual Polarization Sea Ice Detection
NASA Astrophysics Data System (ADS)
Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.
2017-12-01
A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (<30 cm) ice under the difficult conditions of late melt and freeze-up is presented. As the Arctic sea ice cover thins and shrinks, the algorithm offers an approach to adapting existing sensors monitoring thicker ice to provide continuing coverage. Lower resolution (10-26 km) ice detections with spaceborne radiometers and scatterometers are challenged by rapidly changing thin ice. Synthetic Aperture Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (<5 cm thick) from water. As the ice thickens, the COV is less reliable, but adding a mask based on either the PRIC or the cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general, the dual-sensor detection algorithm reports 10-15% higher total ice concentrations than operational scatterometer or radiometer algorithms, mostly from ice edge and coastal areas. In conclusion, the algorithm presented combines high-resolution SAR returns with passive microwave emissions for automated ice detection at SAR resolutions.
Spectral Diffusion: An Algorithm for Robust Material Decomposition of Spectral CT Data
Clark, Darin P.; Badea, Cristian T.
2014-01-01
Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piece-wise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg/mL), gold (0.9 mg/mL), and gadolinium (2.9 mg/mL) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen. PMID:25296173
Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.
Clark, Darin P; Badea, Cristian T
2014-11-07
Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.
Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution
NASA Astrophysics Data System (ADS)
Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.
2015-12-01
Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.
Zhang, L.; Lu, Zhong; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.
2012-01-01
Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach – temporarily coherent point (TCP) InSAR (TCPInSAR) – to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6 mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms.
Ice tracking techniques, implementation, performance, and applications
NASA Technical Reports Server (NTRS)
Rothrock, D. A.; Carsey, F. D.; Curlander, J. C.; Holt, B.; Kwok, R.; Weeks, W. F.
1992-01-01
Present techniques of ice tracking make use both of cross-correlation and of edge tracking, the former being more successful in heavy pack ice, the latter being critical for the broken ice of the pack margins. Algorithms must assume some constraints on the spatial variations of displacements to eliminate fliers, but must avoid introducing any errors into the spatial statistics of the measured displacement field. We draw our illustrations from the implementation of an automated tracking system for kinematic analyses of ERS-1 and JERS-1 SAR imagery at the University of Alaska - the Alaska SAR Facility's Geophysical Processor System. Analyses of the ice kinematic data that might have some general interest to analysts of cloud-derived wind fields are the spatial structure of the fields, and the evaluation and variability of average deformation and its invariants: divergence, vorticity and shear. Many problems in sea ice dynamics and mechanics can be addressed with the kinematic data from SAR.
Performance analysis of multiple PRF technique for ambiguity resolution
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1992-01-01
For short wavelength spaceborne synthetic aperture radar (SAR), ambiguity in Doppler centroid estimation occurs when the azimuth squint angle uncertainty is larger than the azimuth antenna beamwidth. Multiple pulse recurrence frequency (PRF) hopping is a technique developed to resolve the ambiguity by operating the radar in different PRF's in the pre-imaging sequence. Performance analysis results of the multiple PRF technique are presented, given the constraints of the attitude bound, the drift rate uncertainty, and the arbitrary numerical values of PRF's. The algorithm performance is derived in terms of the probability of correct ambiguity resolution. Examples, using the Shuttle Imaging Radar-C (SIR-C) and X-SAR parameters, demonstrate that the probability of correct ambiguity resolution obtained by the multiple PRF technique is greater than 95 percent and 80 percent for the SIR-C and X-SAR applications, respectively. The success rate is significantly higher than that achieved by the range cross correlation technique.
Generation and assessment of turntable SAR data for the support of ATR development
NASA Astrophysics Data System (ADS)
Cohen, Marvin N.; Showman, Gregory A.; Sangston, K. James; Sylvester, Vincent B.; Gostin, Lamar; Scheer, C. Ruby
1998-10-01
Inverse synthetic aperture radar (ISAR) imaging on a turntable-tower test range permits convenient generation of high resolution two-dimensional images of radar targets under controlled conditions for testing SAR image processing and for supporting automatic target recognition (ATR) algorithm development. However, turntable ISAR images are often obtained under near-field geometries and hence may suffer geometric distortions not present in airborne SAR images. In this paper, turntable data collected at Georgia Tech's Electromagnetic Test Facility are used to begin to assess the utility of two- dimensional ISAR imaging algorithms in forming images to support ATR development. The imaging algorithms considered include a simple 2D discrete Fourier transform (DFT), a 2-D DFT with geometric correction based on image domain resampling, and a computationally-intensive geometric matched filter solution. Images formed with the various algorithms are used to develop ATR templates, which are then compared with an eye toward utilization in an ATR algorithm.
Wave propagation, scattering and emission in complex media
NASA Astrophysics Data System (ADS)
Jin, Ya-Qiu
I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M. Gitterman. Transformation of the spectrum of scattered radiation in randomly inhomogeneous absorptive plasma layer / G. V. Jandieri, G. D. Aburjunia, V. G. Jandieri. Numerical analysis of microwave heating on saponification reaction / K. Huang, K. Jia -- IV. Scattering from complex targets. Analysis of electromagnetic scattering from layered crossed-gratings of circular cylinders using lattice sums technique / K. Yasumoto, H. T. Jia. Scattering by a body in a random medium / M. Tateiba, Z. Q. Meng, H. El-Ocla. A rigorous analysis of electromagnetic scattering from multilayered crossed-arrays of metallic cylinders / H. T. Jia, K. Yasumoto. Vector models of non-stable and spatially-distributed radar objects / A. Surkov ... [et al.]. Simulation of algorithm of orthogonal signals forming and processing used to estimate back scattering matrix of non-stable radar objects / D. Nosov ... [et al.]. New features of scattering from a dielectric film on a reflecting metal substrate / Z. H. Gu, I. M. Fuks, M. Ciftan. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan -- V. Radiative transfer and remote sensing. Simulating microwave emission from Antarctica ice sheet with a coherent model / M. Tedesco, P. Pampaloni. Scattering and emission from inhomogeneous vegetation canopy and alien target by using three-dimensional Vector Radiative Transfer (3D-VRT) equation / Y. Q. Jin, Z. C. Liang. Analysis of land types using high-resolution satellite images and fractal approach / H. G. Zhang ... [et al.]. Data fusion of RADARSAT SAR and DMSP SSM/I for monitoring sea ice of China's Bohai Sea / Y. Q. Jin. Retrieving atmospheric temperature profiles from simulated microwave radiometer data with artificial neural networks / Z. G. Yao, H. B. Chen -- VI. Wave propagation and wireless communication. Wireless propagation in urban environments: modeling and experimental verification / D. Erricolo ... [et al.]. An overview of physics-based wave propagation in forested environment / K. Sarabandi, I. Koh. Angle-of-arrival fluctuations due to meteorological conditions in the diffraction zone of C-band radio waves, propagated over the ground surface / T. A. Tyufilina, A. A. Meschelyakov, M. V. Krutikov. Simulating radio channel statistics using ray based prediction codes / H. L. Bertoni. Measurement and simulation of ultra wideband antenna elements / W. Sörgel, W. Wiesbeck. The experimental investigation of a ground-placed radio complex synchronization system / V. P. Denisov ... [et al.] -- VII. Computational electromagnetics. Analysis of 3-D electromagnetic wave scattering with the Krylov subspace FFT iterative methods / R. S. Chen ... [et al.]. Sparse approximate inverse preconditioned iterative algorithm with block toeplitz matrix for fast analysis of microstrip circuits / L. Mo, R. S. Chen, E. K. N. Yung. An Efficient modified interpolation technique for the translation operators in MLFMA / J. Hu, Z. P. Nie, G. X. Zou. Efficient solution of 3-D vector electromagnetic scattering by CG-MLFMA with partly approximate iteration / J. Hu, Z. P. Nie. The effective constitution at interface of different media / L. G. Zheng, W. X. Zhang. Novel basis functions for quadratic hexahedral edge element / P. Liu ... [et al.]. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan. Attenuation of electric field eradiated by underground source / J. P. Dong, Y. G. Gao.
NASA Astrophysics Data System (ADS)
Zhong, Hua; Zhang, Song; Hu, Jian; Sun, Minhong
2017-12-01
This paper deals with the imaging problem for one-stationary bistatic synthetic aperture radar (BiSAR) with high-squint, large-baseline configuration. In this bistatic configuration, accurate focusing of BiSAR data is a difficult issue due to the relatively large range cell migration (RCM), severe range-azimuth coupling, and inherent azimuth-geometric variance. To circumvent these issues, an enhanced azimuth nonlinear chirp scaling (NLCS) algorithm based on an ellipse model is investigated in this paper. In the range processing, a method combining deramp operation and keystone transform (KT) is adopted to remove linear RCM completely and mitigate range-azimuth cross-coupling. In the azimuth focusing, an ellipse model is established to analyze and depict the characteristic of azimuth-variant Doppler phase. Based on the new model, an enhanced azimuth NLCS algorithm is derived to focus one-stationary BiSAR data. Simulating results exhibited at the end of this paper validate the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Diaz, J. C. F.
2016-12-01
Synthetic aperture radar (SAR) interferometry (InSAR) is a technique which uses two or more SAR images of the same area to estimate landscape topography or ground surface displacement. Differential InSAR (DInSAR) is capable of measuring ground displacements at the millimeter level, but a major drawback of traditional DInSAR is that only the deformation along the line-of-sight direction can be detected. Because most of the current spaceborne SAR systems have near-polar, sun-synchronous orbits, deformation measurements in the South-North direction are limited (except for polar regions). Compared with spaceborne SAR, airborne SAR systems have the advantages of flexible scanning geometry and revisit time, high spatial resolution, and no ionospheric distortion. In this study, we present a case study of the Slumgullion landslide conducted in July 2015 to assess an airborne SAR system known as ARTEMIS SlimSAR, which is a compact, modular, and multi-frequency radar system. The Slumgullion landslide, located in the San Juan Mountains near Lake City, Colorado is a long-term slow moving landslide that moves downhill continuously. For this study, the L-band SlimSAR was installed and data were collected on July 3, 7, and 10 and processed using the time-domain backprojection algorithm. GPS surveys and spaceborne DInSAR analysis using COSMO-SkyMed images were also conducted to verify the performance of the airborne SAR system. The airborne DInSAR results showed satisfying agreement with the GPS and spaceborne DInSAR results. The root mean square of the differences between the SlimSAR, and GPS and satellite derived velocities, were 0.6 mm/day, and 0.9 mm/day, respectively. A 3-D deformation map over Slumgullion landslide was generated, which displayed distinct correlation between the landslide motion and topography. This study also indicated that the primary source of the error for the SlimSAR system is the trajectory turbulences of the aircraft. The effect of the trajectory turbulences is analyzed and several possible solutions are proposed to improve the airborne SAR performance. In the long run, an improved airborne SAR system will open avenues for differential interferometry to be used in scientific studies and commercial applications previously prohibited by orbital constraints of spaceborne SAR.
NASA Astrophysics Data System (ADS)
Sadeghi, Yaser; St-Onge, Benoît; Leblon, Brigitte; Prieur, Jean-François; Simard, Marc
2018-06-01
We propose a method for mapping above-ground biomass (AGB) (Mg ha-1) in boreal forests based predominantly on Landsat 8 images and on canopy height models (CHM) generated using interferometric synthetic aperture radar (InSAR) from the Shuttle Radar Topographic Mission (SRTM) and the TanDEM-X mission. The original SRTM digital elevation model (DEM) was corrected by modelling the respective effects of landform and land cover on its errors and then subtracted from a TanDEM-X DSM to produce a SAR CHM. Among all the landform factors, the terrain curvature had the largest effect on SRTM elevation errors, with a r2 of 0.29. The NDSI was the best predictor of the residual SRTM land cover error, with a r2 of 0.30. The final SAR CHM had a RMSE of 2.45 m, with a bias of 0.07 m, compared to a lidar-based CHM. An AGB prediction model was developed based on a combination of the SAR CHM, TanDEM-X coherence, Landsat 8 NDVI, and other vegetation indices of RVI, DVI, GRVI, EVI, LAI, GNDVI, SAVI, GVI, Brightness, Greenness, and Wetness. The best results were obtained using a Random forest regression algorithm, at the stand level, yielding a RMSE of 26 Mg ha-1 (34% of average biomass), with a r2 of 0.62. This method has the potential of creating spatially continuous biomass maps over entire biomes using only spaceborne sensors and requiring only low-intensity calibration.
NASA Astrophysics Data System (ADS)
Fischer, Peter; Schuegraf, Philipp; Merkle, Nina; Storch, Tobias
2018-04-01
This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR) optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search) and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
An Efficient Image Recovery Algorithm for Diffraction Tomography Systems
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1993-01-01
A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...
Cavalié, Olivier; Vernotte, François
2016-04-01
The Allan variance was introduced 50 years ago for analyzing the stability of frequency standards. In addition to its metrological interest, it may be also considered as an estimator of the large trends of the power spectral density (PSD) of frequency deviation. For instance, the Allan variance is able to discriminate different types of noise characterized by different power laws in the PSD. The Allan variance was also used in other fields than time and frequency metrology: for more than 20 years, it has been used in accelerometry, geophysics, geodesy, astrophysics, and even finances. However, it seems that up to now, it has been exclusively applied for time series analysis. We propose here to use the Allan variance on spatial data. Interferometric synthetic aperture radar (InSAR) is used in geophysics to image ground displacements in space [over the synthetic aperture radar (SAR) image spatial coverage] and in time thanks to the regular SAR image acquisitions by dedicated satellites. The main limitation of the technique is the atmospheric disturbances that affect the radar signal while traveling from the sensor to the ground and back. In this paper, we propose to use the Allan variance for analyzing spatial data from InSAR measurements. The Allan variance was computed in XY mode as well as in radial mode for detecting different types of behavior for different space-scales, in the same way as the different types of noise versus the integration time in the classical time and frequency application. We found that radial Allan variance is the more appropriate way to have an estimator insensitive to the spatial axis and we applied it on SAR data acquired over eastern Turkey for the period 2003-2011. Spatial Allan variance allowed us to well characterize noise features, classically found in InSAR such as phase decorrelation producing white noise or atmospheric delays, behaving like a random walk signal. We finally applied the spatial Allan variance to an InSAR time series to detect when the geophysical signal, here the ground motion, emerges from the noise.
Automatic Mexico Gulf Oil Spill Detection from Radarsat-2 SAR Satellite Data Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Marghany, Maged
2016-10-01
In this work, a genetic algorithm is exploited for automatic detection of oil spills of small and large size. The route is achieved using arrays of RADARSAT-2 SAR ScanSAR Narrow single beam data obtained in the Gulf of Mexico. The study shows that genetic algorithm has automatically segmented the dark spot patches related to small and large oil spill pixels. This conclusion is confirmed by the receiveroperating characteristic (ROC) curve and ground data which have been documented. The ROC curve indicates that the existence of oil slick footprints can be identified with the area under the curve between the ROC curve and the no-discrimination line of 90%, which is greater than that of other surrounding environmental features. The small oil spill sizes represented 30% of the discriminated oil spill pixels in ROC curve. In conclusion, the genetic algorithm can be used as a tool for the automatic detection of oil spills of either small or large size and the ScanSAR Narrow single beam mode serves as an excellent sensor for oil spill patterns detection and surveying in the Gulf of Mexico.
Yuan, Xinzhe; Sun, Jian; Zhou, Wei; Zhang, Qingjun
2018-01-01
The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which includes the typhoons Noru, Doksuri and Talim. These images were collocated with wind simulations at 0.12° grids from a numeric model, called the Regional Assimilation and Prediction System-Typhoon model (GRAPES-TYM). Recent research shows that GRAPES-TYM has a good performance for typhoon simulation in the China Sea. Based on the dataset, the dependence of wind speed and of radar incidence angle on normalized radar cross (NRCS) of VH-polarization GF-3 SAR have been investigated, after which an empirical algorithm for wind speed retrieval from VH-polarization GF-3 SAR was tuned. An additional four VH-polarization GF-3 SAR images in three typhoons, Noru, Hato and Talim, were investigated in order to validate the proposed algorithm. SAR-derived winds were compared with measurements from Windsat winds at 0.25° grids with wind speeds up to 40 m/s, showing a 5.5 m/s root mean square error (RMSE) of wind speed and an improved RMSE of 5.1 m/s wind speed was achieved compared with the retrieval results validated against GRAPES-TYM winds. It is concluded that the proposed algorithm is a promising potential technique for strong wind retrieval from cross-polarization GF-3 SAR images without encountering a signal saturation problem. PMID:29385068
NASA Astrophysics Data System (ADS)
Vajedian, S.; Motagh, M.; Nilfouroushan, F.
2013-09-01
InSAR capacity to detect slow deformation over terrain areas is limited by temporal and geometric decorrelations. Multitemporal InSAR techniques involving Persistent Scatterer (Ps-InSAR) and Small Baseline (SBAS) are recently developed to compensate the decorrelation problems. Geometric decorrelation in mountainous areas especially for Envisat images makes phase unwrapping process difficult. To improve this unwrapping problem, we first modified phase filtering to make the wrapped phase image as smooth as possible. In addition, in order to improve unwrapping results, a modified unwrapping method has been developed. This method includes removing possible orbital and tropospheric effects. Topographic correction is done within three-dimensional unwrapping, Orbital and tropospheric corrections are done after unwrapping process. To evaluate the effectiveness of our improved method we tested the proposed algorithm by Envisat and ALOS dataset and compared our results with recently developed PS software (StaMAPS). In addition we used GPS observations for evaluating the modified method. The results indicate that our method improves the estimated deformation significantly.
Wavelet Analysis of SAR Images for Coastal Monitoring
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Wu, Sunny Y.; Tseng, William Y.; Pichel, William G.
1998-01-01
The mapping of mesoscale ocean features in the coastal zone is a major potential application for satellite data. The evolution of mesoscale features such as oil slicks, fronts, eddies, and ice edge can be tracked by the wavelet analysis using satellite data from repeating paths. The wavelet transform has been applied to satellite images, such as those from Synthetic Aperture Radar (SAR), Advanced Very High-Resolution Radiometer (AVHRR), and ocean color sensor for feature extraction. In this paper, algorithms and techniques for automated detection and tracking of mesoscale features from satellite SAR imagery employing wavelet analysis have been developed. Case studies on two major coastal oil spills have been investigated using wavelet analysis for tracking along the coast of Uruguay (February 1997), and near Point Barrow, Alaska (November 1997). Comparison of SAR images with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data for coccolithophore bloom in the East Bering Sea during the fall of 1997 shows a good match on bloom boundary. This paper demonstrates that this technique is a useful and promising tool for monitoring of coastal waters.
Saliency detection algorithm based on LSC-RC
NASA Astrophysics Data System (ADS)
Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu
2018-02-01
Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.
NASA Astrophysics Data System (ADS)
Arko, S. A.; Hogenson, R.; Geiger, A.; Herrmann, J.; Buechler, B.; Hogenson, K.
2016-12-01
In the coming years there will be an unprecedented amount of SAR data available on a free and open basis to research and operational users around the globe. The Alaska Satellite Facility (ASF) DAAC hosts, through an international agreement, data from the Sentinel-1 spacecraft and will be hosting data from the upcoming NASA ISRO SAR (NISAR) mission. To more effectively manage and exploit these vast datasets, ASF DAAC has begun moving portions of the archive to the cloud and utilizing cloud services to provide higher-level processing on the data. The Hybrid Pluggable Processing Pipeline (HyP3) project is designed to support higher-level data processing in the cloud and extend the capabilities of researchers to larger scales. Built upon a set of core Amazon cloud services, the HyP3 system allows users to request data processing using a number of canned algorithms or their own algorithms once they have been uploaded to the cloud. The HyP3 system automatically accesses the ASF cloud-based archive through the DAAC RESTful application programming interface and processes the data on Amazon's elastic compute cluster (EC2). Final products are distributed through Amazon's simple storage service (S3) and are available for user download. This presentation will provide an overview of ASF DAAC's activities moving the Sentinel-1 archive into the cloud and developing the integrated HyP3 system, covering both the benefits and difficulties of working in the cloud. Additionally, we will focus on the utilization of HyP3 for higher-level processing of SAR data. Two example algorithms, for sea-ice tracking and change detection, will be discussed as well as the mechanism for integrating new algorithms into the pipeline for community use.
Multiway spectral community detection in networks
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Newman, M. E. J.
2015-11-01
One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited, by and large, to the division of networks into only two or three communities, with divisions into more than three being achieved by repeated two-way division. Here we present a spectral algorithm that can directly divide a network into any number of communities. The algorithm makes use of a mapping from modularity maximization to a vector partitioning problem, combined with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm with previous approaches and find it to give superior results, particularly in cases where community sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world networks and find that it produces results in good agreement with expectations for the networks studied.
Large Oil Spill Classification Using SAR Images Based on Spatial Histogram
NASA Astrophysics Data System (ADS)
Schvartzman, I.; Havivi, S.; Maman, S.; Rotman, S. R.; Blumberg, D. G.
2016-06-01
Among the different types of marine pollution, oil spill is a major threat to the sea ecosystems. Remote sensing is used in oil spill response. Synthetic Aperture Radar (SAR) is an active microwave sensor that operates under all weather conditions and provides information about the surface roughness and covers large areas at a high spatial resolution. SAR is widely used to identify and track pollutants in the sea, which may be due to a secondary effect of a large natural disaster or by a man-made one . The detection of oil spill in SAR imagery relies on the decrease of the backscattering from the sea surface, due to the increased viscosity, resulting in a dark formation that contrasts with the brightness of the surrounding area. Most of the use of SAR images for oil spill detection is done by visual interpretation. Trained interpreters scan the image, and mark areas of low backscatter and where shape is a-symmetrical. It is very difficult to apply this method for a wide area. In contrast to visual interpretation, automatic detection algorithms were suggested and are mainly based on scanning dark formations, extracting features, and applying big data analysis. We propose a new algorithm that applies a nonlinear spatial filter that detects dark formations and is not susceptible to noises, such as internal or speckle. The advantages of this algorithm are both in run time and the results retrieved. The algorithm was tested in genesimulations as well as on COSMO-SkyMed images, detecting the Deep Horizon oil spill in the Gulf of Mexico (occurred on 20/4/2010). The simulation results show that even in a noisy environment, oil spill is detected. Applying the algorithm to the Deep Horizon oil spill, the algorithm classified the oil spill better than focusing on dark formation algorithm. Furthermore, the results were validated by the National Oceanic and Atmospheric Administration (NOAA) data.
Airborne SAR systems for infrastructures monitoring
NASA Astrophysics Data System (ADS)
Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio
2017-04-01
The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.
The Sentinel-3 Surface Topography Mission (S-3 STM): Level 2 SAR Ocean Retracker
NASA Astrophysics Data System (ADS)
Dinardo, S.; Lucas, B.; Benveniste, J.
2015-12-01
The SRAL Radar Altimeter, on board of the ESA Mission Sentinel-3 (S-3), has the capacity to operate either in the Pulse-Limited Mode (also known as LRM) or in the novel Synthetic Aperture Radar (SAR) mode. Thanks to the initial results from SAR Altimetry obtained exploiting CryoSat-2 data, lately the interest by the scientific community in this new technology has significantly increased and consequently the definition of accurate processing methodologies (along with validation strategies) has now assumed a capital importance. In this paper, we present the algorithm proposed to retrieve from S-3 STM SAR return waveforms the standard ocean geophysical parameters (ocean topography, wave height and sigma nought) and the validation results that have been so far achieved exploiting the CryoSat-2 data as well as the simulated data. The inversion method (retracking) to extract from the return waveform the geophysical information is a curve best-fitting scheme based on the bounded Levenberg-Marquardt Least-Squares Estimation Method (LEVMAR-LSE). The S-3 STM SAR Ocean retracking algorithm adopts, as return waveform’s model, the “SAMOSA” model [Ray et al, 2014], named after the R&D project SAMOSA (led by Satoc and funded by ESA), in which it has been initially developed. The SAMOSA model is a physically-based model that offers a complete description of a SAR Altimeter return waveform from ocean surface, expressed in the form of maps of reflected power in Delay-Doppler space (also known as stack) or expressed as multilooked echoes. SAMOSA is able to account for an elliptical antenna pattern, mispointing errors in roll and yaw, surface scattering pattern, non-linear ocean wave statistics and spherical Earth surface effects. In spite of its truly comprehensive character, the SAMOSA model comes with a compact analytical formulation expressed in term of Modified Bessel functions. The specifications of the retracking algorithm have been gathered in a technical document (DPM) and delivered as baseline for industrial implementation. For operational needs, thanks to the fine tuning of the fitting library parameters and the usage of look-up table for Bessel functions computation, the CPU execution time was accelerated over 100 times and made the execution in par with real time. In the course of the ESA-funded project CryoSat+ for Ocean (CP4O), new technical evolutions for the algorithm have been proposed (as usage of PTR width look up table and application of a stack masking). One of the main outcomes of the CP4O project was that, with these latest evolutions, the SAMOSA SAR retracking was giving equivalent results to CNES CPP retracking prototype, which was built with a totally different approach, which enforces the validation results. Work actually is underway to align the industrial implementation with the last new evolutions. Further, in order to test the algorithm with a dataset as realistic as possible, a set of simulated Test Data Set (generated by S-3 STM End-to-End Simulator) has been created by CLS following the specifications as described in a test data set requirements document drafted by ESA. In this work, we will show the baseline algorithm details, the evolutions, the impact of the evolutions and the results obtained processing the CryoSat-2 data and the simulated test data set.
Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm
NASA Astrophysics Data System (ADS)
Frisca, Bustamam, Alhadi; Siswantining, Titin
2017-03-01
Clustering is one of data analysis methods that aims to classify data which have similar characteristics in the same group. Spectral clustering is one of the most popular modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c-means, and k-means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k-means algorithm provide better accuracy than PAM algorithm. So in this paper we use k-means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset. Microarray data is a small-sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The purpose of this research is to classify the data that have high similarity in the same group and the data that have low similarity in the others. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k-means algorithm is two clusters.
Synthetic-Aperture Coherent Imaging From A Circular Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1995-01-01
Imaging algorithms based on exact point-target responses. Developed for use in reconstructing image of target from data gathered by radar, sonar, or other transmitting/receiving coherent-signal sensory apparatus following circular observation path around target. Potential applications include: Wide-beam synthetic-aperture radar (SAR) from aboard spacecraft in circular orbit around target planet; SAR from aboard airplane flying circular course at constant elevation around central ground point, toward which spotlight radar beam pointed; Ultrasonic reflection tomography in medical setting, using one transducer moving in circle around patient or else multiple transducers at fixed positions on circle around patient; and Sonar imaging of sea floor to high resolution, without need for large sensory apparatus.
SMV⊥: Simplex of maximal volume based upon the Gram-Schmidt process
NASA Astrophysics Data System (ADS)
Salazar-Vazquez, Jairo; Mendez-Vazquez, Andres
2015-10-01
In recent years, different algorithms for Hyperspectral Image (HI) analysis have been introduced. The high spectral resolution of these images allows to develop different algorithms for target detection, material mapping, and material identification for applications in Agriculture, Security and Defense, Industry, etc. Therefore, from the computer science's point of view, there is fertile field of research for improving and developing algorithms in HI analysis. In some applications, the spectral pixels of a HI can be classified using laboratory spectral signatures. Nevertheless, for many others, there is no enough available prior information or spectral signatures, making any analysis a difficult task. One of the most popular algorithms for the HI analysis is the N-FINDR because it is easy to understand and provides a way to unmix the original HI in the respective material compositions. The N-FINDR is computationally expensive and its performance depends on a random initialization process. This paper proposes a novel idea to reduce the complexity of the N-FINDR by implementing a bottom-up approach based in an observation from linear algebra and the use of the Gram-Schmidt process. Therefore, the Simplex of Maximal Volume Perpendicular (SMV⊥) algorithm is proposed for fast endmember extraction in hyperspectral imagery. This novel algorithm has complexity O(n) with respect to the number of pixels. In addition, the evidence shows that SMV⊥ calculates a bigger volume, and has lower computational time complexity than other poular algorithms on synthetic and real scenarios.
Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data
NASA Astrophysics Data System (ADS)
Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.
2017-12-01
We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).
A real-time spectral mapper as an emerging diagnostic technology in biomedical sciences.
Epitropou, George; Kavvadias, Vassilis; Iliou, Dimitris; Stathopoulos, Efstathios; Balas, Costas
2013-01-01
Real time spectral imaging and mapping at video rates can have tremendous impact not only on diagnostic sciences but also on fundamental physiological problems. We report the first real-time spectral mapper based on the combination of snap-shot spectral imaging and spectral estimation algorithms. Performance evaluation revealed that six band imaging combined with the Wiener algorithm provided high estimation accuracy, with error levels lying within the experimental noise. High accuracy is accompanied with much faster, by 3 orders of magnitude, spectral mapping, as compared with scanning spectral systems. This new technology is intended to enable spectral mapping at nearly video rates in all kinds of dynamic bio-optical effects as well as in applications where the target-probe relative position is randomly and fast changing.
NASA Astrophysics Data System (ADS)
Bell, J. R.; Molthan, A.; Dabboor, M.
2016-12-01
After a disaster occurs, decision makers require timely information to assist decision making and support. Earth observing satellites provide tools including optical remote sensors that sample in various spectral bands within the visible, near-infrared, and thermal infrared. However, views from optical sensors can be blocked when clouds are present, and cloud-free observations can be significantly delayed depending upon on their repeat cycle. Synthetic aperture radar (SAR) offers several advantages over optical sensors in terms of spatial resolution and the ability to map the Earth's surface whether skies are clear or cloudy. In cases where both SAR and cloud-free optical data are available, these instruments can be used together to provide additional confidence in what is being observed at the surface. This presentation demonstrates cases where SAR imagery can enhance the usefulness for mapping natural disasters and their impacts to the land surface, specifically from severe weather and flooding. The Missouri and Mississippi River flooding from early in 2016 and damage from hail swath in northwestern Iowa on 17 June 2016 are just two events that will be explored. Data collected specifically from the EO-1 (optical), Landsat (optical) and Sentinel 1 (SAR) missions are used to explore several applicable methodologies to determine which products and methodologies may provide decision makers with the best information to provide actionable information in a timely manner.
NASA Technical Reports Server (NTRS)
Hewes, C. R.; Brodersen, R. W.; De Wit, M.; Buss, D. D.
1976-01-01
Charge-coupled devices (CCDs) are ideally suited for performing sampled-data transversal filtering operations in the analog domain. Two algorithms have been identified for performing spectral analysis in which the bulk of the computation can be performed in a CCD transversal filter; the chirp z-transform and the prime transform. CCD implementation of both these transform algorithms is presented together with performance data and applications.
Comparison of four moderate-size earthquakes in southern California using seismology and InSAR
Mellors, R.J.; Magistrale, H.; Earle, P.; Cogbill, A.H.
2004-01-01
Source parameters determined from interferometric synthetic aperture radar (InSAR) measurements and from seismic data are compared from four moderate-size (less than M 6) earthquakes in southern California. The goal is to verify approximate detection capabilities of InSAR, assess differences in the results, and test how the two results can be reconciled. First, we calculated the expected surface deformation from all earthquakes greater than magnitude 4 in areas with available InSAR data (347 events). A search for deformation from the events in the interferograms yielded four possible events with magnitudes less than 6. The search for deformation was based on a visual inspection as well as cross-correlation in two dimensions between the measured signal and the expected signal. A grid-search algorithm was then used to estimate focal mechanism and depth from the InSAR data. The results were compared with locations and focal mechanisms from published catalogs. An independent relocation using seismic data was also performed. The seismic locations fell within the area of the expected rupture zone for the three events that show clear surface deformation. Therefore, the technique shows the capability to resolve locations with high accuracy and is applicable worldwide. The depths determined by InSAR agree with well-constrained seismic locations determined in a 3D velocity model. Depth control for well-imaged shallow events using InSAR data is good, and better than the seismic constraints in some cases. A major difficulty for InSAR analysis is the poor temporal coverage of InSAR data, which may make it impossible to distinguish deformation due to different earthquakes at the same location.
Synthetic aperture radar/LANDSAT MSS image registration
NASA Technical Reports Server (NTRS)
Maurer, H. E. (Editor); Oberholtzer, J. D. (Editor); Anuta, P. E. (Editor)
1979-01-01
Algorithms and procedures necessary to merge aircraft synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) imagery were determined. The design of a SAR/LANDSAT data merging system was developed. Aircraft SAR images were registered to the corresponding LANDSAT MSS scenes and were the subject of experimental investigations. Results indicate that the registration of SAR imagery with LANDSAT MSS imagery is feasible from a technical viewpoint, and useful from an information-content viewpoint.
Demosaicking for full motion video 9-band SWIR sensor
NASA Astrophysics Data System (ADS)
Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.
2014-05-01
Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.
Modified algorithm for mineral identification in LWIR hyperspectral imagery
NASA Astrophysics Data System (ADS)
Yousefi, Bardia; Sojasi, Saeed; Liaigre, Kévin; Ibarra Castanedo, Clemente; Beaudoin, Georges; Huot, François; Maldague, Xavier P. V.; Chamberland, Martin
2017-05-01
The applications of hyperspectral infrared imagery in the different fields of research are significant and growing. It is mainly used in remote sensing for target detection, vegetation detection, urban area categorization, astronomy and geological applications. The geological applications of this technology mainly consist in mineral identification using in airborne or satellite imagery. We address a quantitative and qualitative assessment of mineral identification in the laboratory conditions. We strive to identify nine different mineral grains (Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz). A hyperspectral camera in the Long Wave Infrared (LWIR, 7.7-11.8 ) with a LW-macro lens providing a spatial resolution of 100 μm, an infragold plate, and a heating source are the instruments used in the experiment. The proposed algorithm clusters all the pixel-spectra in different categories. Then the best representatives of each cluster are chosen and compared with the ASTER spectral library of JPL/NASA through spectral comparison techniques, such as Spectral angle mapper (SAM) and Normalized Cross Correlation (NCC). The results of the algorithm indicate significant computational efficiency (more than 20 times faster) as compared to previous algorithms and have shown a promising performance for mineral identification.
NASA Astrophysics Data System (ADS)
Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji
2016-09-01
Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.
Curvelet-based compressive sensing for InSAR raw data
NASA Astrophysics Data System (ADS)
Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David
2015-10-01
The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications, therefore, providing a feasibility for compressive sensing application.
Arctic coastal polynya observations with ERS-1 SAR and DMSP SSM/I
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Onstott, R. G.
1993-01-01
Work to improve the characterization of the distribution of new and young sea ice types and open water amount within Arctic coastal polynyas through the combined use of ERS-1 SAR (Synthetic Aperture Radar) and DMSP SSM/I (Defense Meteorological Satellite Program Special Sensor Microwave/Imager) data is described. Two St. Lawrence Island polynya events are studied using low resolution, geocoded SAR images and coincident SSM/I data. The SAR images are analyzed in terms of polarization and spectral gradient ratios. Results of the combined analysis show that the SAR ice type classification is consistent with that from SSM/I and that the combined use of SAR and SSM/I can improve the characterization of thin ice better than either data set can do alone.
NASA Astrophysics Data System (ADS)
Gambacorta, A.; Nalli, N. R.; Tan, C.; Iturbide-Sanchez, F.; Wilson, M.; Zhang, K.; Xiong, X.; Barnet, C. D.; Sun, B.; Zhou, L.; Wheeler, A.; Reale, A.; Goldberg, M.
2017-12-01
The NOAA Unique Combined Atmospheric Processing System (NUCAPS) is the NOAA operational algorithm to retrieve thermodynamic and composition variables from hyper spectral thermal sounders such as CrIS, IASI and AIRS. The combined use of microwave sounders, such as ATMS, AMSU and MHS, enables full atmospheric sounding of the atmospheric column under all-sky conditions. NUCAPS retrieval products are accessible in near real time (about 1.5 hour delay) through the NOAA Comprehensive Large Array-data Stewardship System (CLASS). Since February 2015, NUCAPS retrievals have been also accessible via Direct Broadcast, with unprecedented low latency of less than 0.5 hours. NUCAPS builds on a long-term, multi-agency investment on algorithm research and development. The uniqueness of this algorithm consists in a number of features that are key in providing highly accurate and stable atmospheric retrievals, suitable for real time weather and air quality applications. Firstly, maximizing the use of the information content present in hyper spectral thermal measurements forms the foundation of the NUCAPS retrieval algorithm. Secondly, NUCAPS is a modular, name-list driven design. It can process multiple hyper spectral infrared sounders (on Aqua, NPP, MetOp and JPSS series) by mean of the same exact retrieval software executable and underlying spectroscopy. Finally, a cloud-clearing algorithm and a synergetic use of microwave radiance measurements enable full vertical sounding of the atmosphere, under all-sky regimes. As we transition toward improved hyper spectral missions, assessing retrieval skill and consistency across multiple platforms becomes a priority for real time users applications. Focus of this presentation is a general introduction on the recent improvements in the delivery of the NUCAPS full spectral resolution upgrade and an overview of the lessons learned from the 2017 Hazardous Weather Test bed Spring Experiment. Test cases will be shown on the use of NPP and MetOp NUCAPS under pre-convective, capping inversion and dry layer intrusion events.
Glacier Frontal Line Extraction from SENTINEL-1 SAR Imagery in Prydz Area
NASA Astrophysics Data System (ADS)
Li, F.; Wang, Z.; Zhang, S.; Zhang, Y.
2018-04-01
Synthetic Aperture Radar (SAR) can provide all-day and all-night observation of the earth in all-weather conditions with high resolution, and it is widely used in polar research including sea ice, sea shelf, as well as the glaciers. For glaciers monitoring, the frontal position of a calving glacier at different moments of time is of great importance, which indicates the estimation of the calving rate and flux of the glaciers. In this abstract, an automatic algorithm for glacier frontal extraction using time series Sentinel-1 SAR imagery is proposed. The technique transforms the amplitude imagery of Sentinel-1 SAR into a binary map using SO-CFAR method, and then frontal points are extracted using profile method which reduces the 2D binary map to 1D binary profiles, the final frontal position of a calving glacier is the optimal profile selected from the different average segmented profiles. The experiment proves that the detection algorithm for SAR data can automatically extract the frontal position of glacier with high efficiency.
SAR Interferometry: On the Coherence Estimation in non Stationary Scenes
NASA Astrophysics Data System (ADS)
Ballatore, P.
2005-05-01
The possibility of producing good quality satellite SAR interferometry allows observations of terrain mass movement as small as millimetric scales, with applicability in researches about landslides, volcanoes, seismology and others. SAR interferometric images is characterized by the presence of random speckle, whose pattern does not correspond to the underlying image structure. However the local brightness of speckle reflects the local echogenicity of the underlying scatters. Specifically, the coherence between interferometric pair is generally considered as an indicator of interferogram quality. Moreover, it leads to useful image segmentations and it can be employed in data mining and database browsing algorithms. SAR coherence is generally computed by substituting the ensemble averages with the spatial averages, by assuming ergodicity in the estimation window sub-areas. Nevertheless, the actual results may depend on the spatial size scale of the sampling window used for the computation. This is especially true in the cases of fast coherence estimator algorithms, which make use of the correlation coefficient's square root (Rignon and van Zyl, IEEE Trans. Geosci.Remote Sensing, vol. 31, n. 4, pp. 896-906, 1993; Guarnieri and Prati, IEEE Trans. Geosci. Remote Sensing, vol. 35, n. 3, pp. 660-669, 1997). In fact, the correlation coefficient is increased by image texture, due to non stationary absolute values within single sample estimation windows. For example, this can happen in the case of mountainous lands, and, specifically, in the case of the Italian Southern Appennini region around Benevento city, which is of specific geophysical attention for its numerous seismic and landslide terrain movements. In these cases, dedicated techniques are applied for compensating texture effects. This presentation shows an example of interferometric coherence image depending on the spatial size of sampling window. Moreover, the different methodologies present in literature for texture effect control are briefly summarized and applied to our specific exemplary case. A quantitative comparison among resulting coherences is illustrated and discussed in terms of different experimental applicability.
Impact of JPEG2000 compression on spatial-spectral endmember extraction from hyperspectral data
NASA Astrophysics Data System (ADS)
Martín, Gabriel; Ruiz, V. G.; Plaza, Antonio; Ortiz, Juan P.; García, Inmaculada
2009-08-01
Hyperspectral image compression has received considerable interest in recent years. However, an important issue that has not been investigated in the past is the impact of lossy compression on spectral mixture analysis applications, which characterize mixed pixels in terms of a suitable combination of spectrally pure spectral substances (called endmembers) weighted by their estimated fractional abundances. In this paper, we specifically investigate the impact of JPEG2000 compression of hyperspectral images on the quality of the endmembers extracted by algorithms that incorporate both the spectral and the spatial information (useful for incorporating contextual information in the spectral endmember search). The two considered algorithms are the automatic morphological endmember extraction (AMEE) and the spatial spectral endmember extraction (SSEE) techniques. Experimental results are conducted using a well-known data set collected by AVIRIS over the Cuprite mining district in Nevada and with detailed ground-truth information available from U. S. Geological Survey. Our experiments reveal some interesting findings that may be useful to specialists applying spatial-spectral endmember extraction algorithms to compressed hyperspectral imagery.
Aircraft target detection algorithm based on high resolution spaceborne SAR imagery
NASA Astrophysics Data System (ADS)
Zhang, Hui; Hao, Mengxi; Zhang, Cong; Su, Xiaojing
2018-03-01
In this paper, an image classification algorithm for airport area is proposed, which based on the statistical features of synthetic aperture radar (SAR) images and the spatial information of pixels. The algorithm combines Gamma mixture model and MRF. The algorithm using Gamma mixture model to obtain the initial classification result. Pixel space correlation based on the classification results are optimized by the MRF technique. Additionally, morphology methods are employed to extract airport (ROI) region where the suspected aircraft target samples are clarified to reduce the false alarm and increase the detection performance. Finally, this paper presents the plane target detection, which have been verified by simulation test.
Assessment of Full and Compact Polarimetric SAR Observations for Land-Cover and Crop Classification
NASA Astrophysics Data System (ADS)
Nafari, Nima Fallah; Homayouni, Saeid; Safari, Abdolreza; Akbari, Vahid
2016-08-01
The recently developed compact polarimetric (CP) synthetic aperture radar (SAR) data tend to confer a valuable source of information -comparable to full polarimetric (FP) data- in many applications. However, this assertion still needs confirmation in practice. This paper evaluates the potential of FP and CP data in land- cover and crop classification and determines the prospects of CP data in such applications. To this end, two data sets including full polarimetric L-band data from UAVSAR, acquired over an agricultural area in Winnipeg (Canada), and full polarimetric C-band data acquired by RADARSAT-2 over San Francisco are used. CP data are simulated from the FP data of the both datasets and classified by the support vector machine (SVM) algorithm. Based on the results, CP system with a simpler design compared to FP system still has the potential to be used as an alternative when a larger swath width is required.
Acoustic Characterization of Soil
1996-03-28
modified SAR imaging algorithm. Page 26 Final Report In the acoustic subsurface imaging scenario, the "object" to be imaged (i.e., cultural artifacts... subsurface imaging scenario. To combat this potential difficulty we can utilize a new SAR imaging algorithm (Lee et al., 1996) derived from a geophysics...essentially a transmit plane wave. This is a cost-effective means to evaluate the feasibility of subsurface imaging . A more complete (and costly
NASA Astrophysics Data System (ADS)
Pleskachevsky, A. L.; Rosenthal, W.; Lehner, S.
2016-09-01
The German Bight of the North Sea is the area with highly variable sea state conditions, intensive ship traffic and with a high density of offshore installations, e.g. wind farms in use and under construction. Ship navigation and the docking on offshore constructions is impeded by significant wave heights HS > 1.3 m. For these reasons, improvements are required in recognition and forecasting of sea state HS in the range 0-3 m. Thus, this necessitates the development of new methods to determine the distribution of meteo-marine parameters from remote sensing data with an accuracy of decimetres for HS. The operationalization of these methods then allows the robust automatic processing in near real time (NRT) to support forecast agencies by providing validations for model results. A new empirical algorithm XWAVE_C (C = coastal) for estimation of significant wave height from X-band satellite-borne Synthetic Aperture Radar (SAR) data has been developed, adopted for coastal applications using TerraSAR-X (TS-X) and Tandem-X (TD-X) satellites in the German Bight and implemented into the Sea Sate Processor (SSP) for fully automatic processing for NRT services. The algorithm is based on the spectral analysis of subscenes and the model function uses integrated image spectra parameters as well as local wind information from the analyzed subscene. The algorithm is able to recognize and remove the influence of non-sea state produced signals in the Wadden Sea areas such as dry sandbars as well as nonlinear SAR image distortions produced by e.g. short wind waves and breaking waves. Also parameters of very short waves, which are not visible in SAR images and produce only unsystematic clutter, can be accurately estimated. The SSP includes XWAVE_C, a pre-filtering procedure for removing artefacts such as ships, seamarks, buoys, offshore constructions and slicks, and an additional procedure performing a check of results based on the statistics of the whole scene. The SSP allows an automatic processing of TS-X images with an error RMSE = 25 cm and Scatter Index SI = 20% for total significant wave height HS from sequences of TS-X StripMap images with a coverage of ∼30 km × 300 km across the German Bight. The SSP was tuned spatially with model data of the German Weather Service's (DWD) CWAM (Coastal WAve Model) with 900 m horizontal resolution and tuned in situ with 6 buoys located in DWD model domain in the German Bight. The collected, processed and analyzed data base for the German Bight consists of more than 60 TS-X StripMap scenes/overflights with more than 200 images since 2013 with sea state acquired in the domain HS = 0-7 m with a mean value of 1.25 m over all available scenes at buoy locations. The paper addresses the development and implementation of XWAVE_C, and presents the possibilities of SSP delivering sea state fields by reproducing local HS variations connected with local wind gusts, variable bathymetry and moving wind fronts under different weather conditions.
Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng
2016-01-01
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385
Device, Algorithm and Integrated Modeling Research for Performance-Drive Multi-Modal Optical Sensors
2012-12-17
to!feature!aided!tracking! using !spectral! information .! ! !iii! •! A!novel!technique!for!spectral!waveband!selection!was!developed!and! used !as! part! of ... of !spectral! information ! using !the!tunable!single;pixel!spectrometer!concept.! •! A! database! was! developed! of ! spectral! reflectance! measurements...exploring! the! utility! of ! spectral! and! polarimetric! information !to!help!with!the!vehicle!tracking!application.!Through!the! use ! of ! both
Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band
NASA Astrophysics Data System (ADS)
Fors, Ane S.; Brekke, Camilla; Doulgeris, Anthony P.; Eltoft, Torbjørn; Renner, Angelika H. H.; Gerland, Sebastian
2016-02-01
In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around 0 °C. Sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporal consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set and for a reduced SAR feature set limited to temporally consistent features. In C band, the algorithm produced a good late-summer sea ice segmentation, separating the scenes into segments that could be associated with different sea ice types in the next step. The X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved the segmentation in one of the X-band scenes.
InSAR data for monitoring land subsidence: time to think big
NASA Astrophysics Data System (ADS)
Ferretti, A.; Colombo, D.; Fumagalli, A.; Novali, F.; Rucci, A.
2015-11-01
Satellite interferometric synthetic aperture radar (InSAR) data have proven effective and valuable in the analysis of urban subsidence phenomena based on multi-temporal radar images. Results obtained by processing data acquired by different radar sensors, have shown the potential of InSAR and highlighted the key points for an operational use of this technology, namely: (1) regular acquisition over large areas of interferometric data stacks; (2) use of advanced processing algorithms, capable of estimating and removing atmospheric disturbances; (3) access to significant processing power for a regular update of the information over large areas. In this paper, we show how the operational potential of InSAR has been realized thanks to the recent advances in InSAR processing algorithms, the advent of cloud computing and the launch of new satellite platforms, specifically designed for InSAR analyses (e.g. Sentinel-1a operated by the ESA and ALOS2 operated by JAXA). The processing of thousands of SAR scenes to cover an entire nation has been performed successfully in Italy in a project financed by the Italian Ministry of the Environment. The challenge for the future is to pass from the historical analysis of SAR scenes already acquired in digital archives to a near real-time monitoring program where up to date deformation data are routinely provided to final users and decision makers.
Optimizing interconnections to maximize the spectral radius of interdependent networks
NASA Astrophysics Data System (ADS)
Chen, Huashan; Zhao, Xiuyan; Liu, Feng; Xu, Shouhuai; Lu, Wenlian
2017-03-01
The spectral radius (i.e., the largest eigenvalue) of the adjacency matrices of complex networks is an important quantity that governs the behavior of many dynamic processes on the networks, such as synchronization and epidemics. Studies in the literature focused on bounding this quantity. In this paper, we investigate how to maximize the spectral radius of interdependent networks by optimally linking k internetwork connections (or interconnections for short). We derive formulas for the estimation of the spectral radius of interdependent networks and employ these results to develop a suite of algorithms that are applicable to different parameter regimes. In particular, a simple algorithm is to link the k nodes with the largest k eigenvector centralities in one network to the node in the other network with a certain property related to both networks. We demonstrate the applicability of our algorithms via extensive simulations. We discuss the physical implications of the results, including how the optimal interconnections can more effectively decrease the threshold of epidemic spreading in the susceptible-infected-susceptible model and the threshold of synchronization of coupled Kuramoto oscillators.
Evaluation of RISAT-1 SAR data for tropical forestry applications
NASA Astrophysics Data System (ADS)
Padalia, Hitendra; Yadav, Sadhana
2017-01-01
India launched C band (5.35 GHz) RISAT-1 (Radar Imaging Satellite-1) on 26th April, 2012, equipped with the capability to image the Earth at multiple-resolutions and -polarizations. In this study the potential of Fine Resolution Strip (FRS) modes of RISAT-1 was evaluated for characterization and classification forests and estimation of biomass of early growth stages. The study was carried out at the two sites located in the foothills of western Himalaya, India. The pre-processing and classification of FRS-1 SAR data was performed using PolSAR Pro ver. 5.0 software. The scattering mechanisms derived from m-chi decomposition of FRS-1 RH/RV data were found physically meaningful for the characterization of various surface features types. The forest and land use type classification of the study area was developed applying Support Vector Machine (SVM) algorithm on FRS-1 derived appropriate polarimetric features. The biomass of early growth stages of Eucalyptus (up to 60 ton/ha) was estimated developing a multi-linear regression model using C band σ0 HV and σ0 HH backscatter information. The study outcomes has promise for wider application of RISAT-1 data for forest cover monitoring, especially for the tropical regions.
NASA Astrophysics Data System (ADS)
Redavid, Antonio; Bovenga, Fabio
2010-03-01
In the present work we describe a new and alternative repeat-pass interferometry algorithm designed and developed with the aim to: i) increase the robustness wrt to noise by increasing the number of differential interferograms and consequently the information redundancy; ii) guarantee high performances in the detection of non linear deformation without the need of specifying in input a particular cinematic model.The starting point is a previous paper [4] dedicated to the optimization of the InSAR coregistration by finding an ad hoc path between the images which minimizes the expected total decorrelation as in the SABS-like approaches [3]. The main difference wrt the PS-like algorithms [1],[2] is the use of couples of images which potentially can show high spatial coherence and, which are neglected by the standard PSI processing.The present work presents a detailed description of the algorithm processing steps as well as the results obtained by processing simulated InSAR data with the aim to evaluate the algorithm performances. Moreover, the algorithm has been also applied on a real test case in Poland, to study the subsidence affecting the Wieliczka Salt Mine. A cross validation wrt SPINUA PSI-like algorithm [5] has been carried out by comparing the resultant displacement fields.
NASA Astrophysics Data System (ADS)
Koyama, C.; Watanabe, M.; Shimada, M.
2016-12-01
Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above-ground biomass. The proposed methods are validated against independent in situ measurements for a variety of crops including winter wheat, rice, corn, and soy beans. Our results demonstrate the suitability of the approach to estimate biomass with an error smaller than 15%.
InSAR Scientific Computing Environment - The Home Stretch
NASA Astrophysics Data System (ADS)
Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.
2011-12-01
The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python. ISCE is now a complete, functional package, under configuration management, and with extensive documentation and tested use cases appropriate to geodetic imaging applications. The software has been tested with canonical simulated radar data ("point targets") as well as with a variety of existing satellite data, cross-compared with other software packages. Its extensibility has already been proven by the straightforward addition of polarimetric processing and calibration, and derived filtering and estimation routines associated with polarimetry that supplement the original InSAR geodetic functionality. As of October 2011, the software is available for non-commercial use through UNAVCO's WinSAR consortium.
Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.
Li, Liangping; Zhang, Meijing; Katzenstein, Kurt
2017-11-01
The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.
Fusion method of SAR and optical images for urban object extraction
NASA Astrophysics Data System (ADS)
Jia, Yonghong; Blum, Rick S.; Li, Fangfang
2007-11-01
A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.
The 2010 slow slip event and secular motion at Kilauea, Hawai`i inferred from TerraSAR-X InSAR data
Chen, Jingyi; Zebker, Howard A.; Segall, Paul; Miklius, Asta
2014-01-01
We present here an Small BAseline Subset (SBAS) algorithm to extract both transient and secular ground deformations on the order of millimeters in the presence of tropospheric noise on the order of centimeters, when the transient is of short duration and known time, and the background deformation is smooth in time. We applied this algorithm to study the 2010 slow slip event as well as the secular motion of Kīlauea's south flank using 49 TerraSAR-X images. We also estimate the tropospheric delay variation relative to a given reference pixel using an InSAR SBAS approach. We compare the InSAR SBAS solution for both ground deformation and tropospheric delays with existing GPS measurements and confirm that the ground deformation signal andtropospheric noise in InSAR data are successfully separated. We observe that the coastal region on the south side of the Hilina Pali moves at a higher background rate than the region north side of the Pali. We also conclude that the 2010 SSE displacement is mainly horizontal and the maximum magnitude of the 2010 SSE vertical component is less than 5 mm.
Satellite SAR interferometric techniques applied to emergency mapping
NASA Astrophysics Data System (ADS)
Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene
2017-04-01
This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.
Recent advances in time series InSAR
NASA Astrophysics Data System (ADS)
Hooper, Andrew; Bekaert, David; Spaans, Karsten
2010-05-01
Despite the multiple successes of InSAR at measuring surface displacement, in many instances the signal over much of an image either decorrelates too quickly to be useful or is swamped by atmospheric noise. Time series InSAR methods seek to address these issues by essentially increasing the signal-to-noise ratio (SNR) through the use of more data. These techniques are particularly useful for applications where the strain rates detected at the surface are low, such as postseismic/interseismic motion, magma/fluid movement, landslides and reservoir exploitation. Our previous developments in this field have included a persistent scatterer algorithm based on spatial correlation, a full resolution small baseline approach based on the same strategy, and procedure for combining the two [Hooper, GRL, 2008]. This combined method works well on small areas (up to one frame) at ERS or Envisat strip-map resolution. However, in applying it to larger areas, such as the Guerrero region of Mexico and western Anatolia in Turkey, or when processing data at higher resolution, e.g. from TerraSAR-X, computer resource problems can arise. We have therefore altered the processing strategy to involve smarter use of computer memory. Further improvement is achieved by the resampling of the selected pixels (whether persistent scatterers or distributed scatterers) to a coarser resolution - usually we do not require a resolution on the scale of individual resolution cells for geophysical applications. Aliasing is avoided by summing the phase of nearby selected pixels, weighted according to their estimated SNR. This is akin to smart multilooking, but note that better results can be achieved than by starting the analysis with low-resolution (multilooked) data. Another development concerns selecting pixels only in images where they appear reliable. This allows for resolution cells that become correlated/decorrelated either in a temporary fashion, e.g., due to snow cover, or in a permanent way due to the appearance or removal of scatterers. The detection algorithm relies on the degree of spatial correlation for the pixel of interest in each image. We have also modified our 3-D phase-unwrapping algorithms to allow for the resulting differing combinations of coherent pixels in every interferogram. We demonstrate our improved techniques on volcanoes in Iceland and the 2006 slow-slip event in Guerrero, Mexico.
Apodized RFI filtering of synthetic aperture radar images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
2014-02-01
Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFImore » Filtering (ARF).« less
NASA Astrophysics Data System (ADS)
Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret
2003-12-01
A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.
NASA Technical Reports Server (NTRS)
Lustman, L.
1984-01-01
An outline for spectral methods for partial differential equations is presented. The basic spectral algorithm is defined, collocation are emphasized and the main advantage of the method, the infinite order of accuracy in problems with smooth solutions are discussed. Examples of theoretical numerical analysis of spectral calculations are presented. An application of spectral methods to transonic flow is presented. The full potential transonic equation is among the best understood among nonlinear equations.
NASA Astrophysics Data System (ADS)
Polak, Mark L.; Hall, Jeffrey L.; Herr, Kenneth C.
1995-08-01
We present a ratioing algorithm for quantitative analysis of the passive Fourier-transform infrared spectrum of a chemical plume. We show that the transmission of a near-field plume is given by tau plume = (Lobsd - Lbb-plume)/(Lbkgd - Lbb-plume), where tau plume is the frequency-dependent transmission of the plume, L obsd is the spectral radiance of the scene that contains the plume, Lbkgd is the spectral radiance of the same scene without the plume, and Lbb-plume is the spectral radiance of a blackbody at the plume temperature. The algorithm simultaneously achieves background removal, elimination of the spectrometer internal signature, and quantification of the plume spectral transmission. It has applications to both real-time processing for plume visualization and quantitative measurements of plume column densities. The plume temperature (Lbb-plume ), which is not always precisely known, can have a profound effect on the quantitative interpretation of the algorithm and is discussed in detail. Finally, we provide an illustrative example of the use of the algorithm on a trichloroethylene and acetone plume.
NASA Technical Reports Server (NTRS)
Evans, D.; Vidal-Madjar, D.
1994-01-01
Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).
Road detection in SAR images using a tensor voting algorithm
NASA Astrophysics Data System (ADS)
Shen, Dajiang; Hu, Chun; Yang, Bing; Tian, Jinwen; Liu, Jian
2007-11-01
In this paper, the problem of the detection of road networks in Synthetic Aperture Radar (SAR) images is addressed. Most of the previous methods extract the road by detecting lines and network reconstruction. Traditional algorithms such as MRFs, GA, Level Set, used in the progress of reconstruction are iterative. The tensor voting methodology we proposed is non-iterative, and non-sensitive to initialization. Furthermore, the only free parameter is the size of the neighborhood, related to the scale. The algorithm we present is verified to be effective when it's applied to the road extraction using the real Radarsat Image.
The ZpiM algorithm: a method for interferometric image reconstruction in SAR/SAS.
Dias, José M B; Leitao, José M N
2002-01-01
This paper presents an effective algorithm for absolute phase (not simply modulo-2-pi) estimation from incomplete, noisy and modulo-2pi observations in interferometric aperture radar and sonar (InSAR/InSAS). The adopted framework is also representative of other applications such as optical interferometry, magnetic resonance imaging and diffraction tomography. The Bayesian viewpoint is adopted; the observation density is 2-pi-periodic and accounts for the interferometric pair decorrelation and system noise; the a priori probability of the absolute phase is modeled by a compound Gauss-Markov random field (CGMRF) tailored to piecewise smooth absolute phase images. We propose an iterative scheme for the computation of the maximum a posteriori probability (MAP) absolute phase estimate. Each iteration embodies a discrete optimization step (Z-step), implemented by network programming techniques and an iterative conditional modes (ICM) step (pi-step). Accordingly, the algorithm is termed ZpiM, where the letter M stands for maximization. An important contribution of the paper is the simultaneous implementation of phase unwrapping (inference of the 2pi-multiples) and smoothing (denoising of the observations). This improves considerably the accuracy of the absolute phase estimates compared to methods in which the data is low-pass filtered prior to unwrapping. A set of experimental results, comparing the proposed algorithm with alternative methods, illustrates the effectiveness of our approach.
A novel image-based BRDF measurement system and its application to human skin
NASA Astrophysics Data System (ADS)
Bintz, Jeffrey R.; Mendenhall, Michael J.; Marciniak, Michael A.; Butler, Samuel D.; Lloyd, James Tommy
2016-09-01
Human skin detection is an important first step in search and rescue (SAR) scenarios. Previous research performed human skin detection through an application specific camera system that ex- ploits the spectral properties of human skin at two visible and two near-infrared (NIR) wavelengths. The current theory assumes human skin is diffuse; however, it is observed that human skin exhibits specular and diffuse reflectance properties. This paper presents a novel image-based bidirectional reflectance distribution function (BRDF) measurement system, and applies it to the collection of human skin BRDF. The system uses a grid projecting laser and a novel signal processing chain to extract the surface normal from each grid location. Human skin BRDF measurements are shown for a variety of melanin content and hair coverage at the four spectral channels needed for human skin detection. The NIR results represent a novel contribution to the existing body of human skin BRDF measurements.
Radiofrequency pulse design in parallel transmission under strict temperature constraints.
Boulant, Nicolas; Massire, Aurélien; Amadon, Alexis; Vignaud, Alexandre
2014-09-01
To gain radiofrequency (RF) pulse performance by directly addressing the temperature constraints, as opposed to the specific absorption rate (SAR) constraints, in parallel transmission at ultra-high field. The magnitude least-squares RF pulse design problem under hard SAR constraints was solved repeatedly by using the virtual observation points and an active-set algorithm. The SAR constraints were updated at each iteration based on the result of a thermal simulation. The numerical study was performed for an SAR-demanding and simplified time of flight sequence using B1 and ΔB0 maps obtained in vivo on a human brain at 7T. The proposed adjustment of the SAR constraints combined with an active-set algorithm provided higher flexibility in RF pulse design within a reasonable time. The modifications of those constraints acted directly upon the thermal response as desired. Although further confidence in the thermal models is needed, this study shows that RF pulse design under strict temperature constraints is within reach, allowing better RF pulse performance and faster acquisitions at ultra-high fields at the cost of higher sequence complexity. Copyright © 2013 Wiley Periodicals, Inc.
A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.
Gregoire, John M; Dale, Darren; van Dover, R Bruce
2011-01-01
Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.
Gao, Han; Li, Jingwen
2014-06-19
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.
Gao, Han; Li, Jingwen
2014-01-01
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640
Algorithms for Spectral Decomposition with Applications to Optical Plume Anomaly Detection
NASA Technical Reports Server (NTRS)
Srivastava, Askok N.; Matthews, Bryan; Das, Santanu
2008-01-01
The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main approaches that can be taken to extract relevant features from these high-dimensional data streams. The first set of approaches relies on extracting features using a physics-based paradigm where the underlying physical mechanism that generates the spectra is used to infer the most important features in the data stream. We focus on a complementary methodology that uses a data-driven technique that is informed by the underlying physics but also has the ability to adapt to unmodeled system attributes and dynamics. We discuss the following four algorithms: Spectral Decomposition Algorithm (SDA), Non-Negative Matrix Factorization (NMF), Independent Component Analysis (ICA) and Principal Components Analysis (PCA) and compare their performance on a spectral emulator which we use to generate artificial data with known statistical properties. This spectral emulator mimics the real-world phenomena arising from the plume of the space shuttle main engine and can be used to validate the results that arise from various spectral decomposition algorithms and is very useful for situations where real-world systems have very low probabilities of fault or failure. Our results indicate that methods like SDA and NMF provide a straightforward way of incorporating prior physical knowledge while NMF with a tuning mechanism can give superior performance on some tests. We demonstrate these algorithms to detect potential system-health issues on data from a spectral emulator with tunable health parameters.
NASA Astrophysics Data System (ADS)
Zhao, Chaoying; Qu, Feifei; Zhang, Qin; Zhu, Wu
2012-10-01
The accuracy of DEM generated with interferometric synthetic aperture radar (InSAR) technique mostly depends on phase unwrapping errors, atmospheric effects, baseline errors and phase noise. The first term is more serious if the high-resolution TerraSAR-X data over urban regions and mountainous regions are applied. In addition, the deformation effect cannot be neglected if the study regions are suffering from surface deformation within the SAR acquisition dates. In this paper, several measures have been taken to generate high resolution DEM over urban regions and mountainous regions with TerraSAR data. The SAR interferometric pairs are divided into two subsets: (a) DEM subsets and (b) deformation subsets. These two interferometric sets serve to generate DEM and deformation, respectively. The external DEM is applied to assist the phase unwrapping with "remove-restore" procedure. The deformation phase is re-scaled and subtracted from each DEM observations. Lastly, the stochastic errors including atmospheric effects and phase noise are suppressed by averaging heights from several interferograms with weights. Six TerraSAR-X data are applied to generate a 6-m-resolution DEM over Xi'an, China using these procedures. Both discrete GPS heights and local high resolution and high precision DEM data are applied to calibrate the DEM generated with our algorithm, and around 4.1 m precision is achieved.
Modified fuzzy c-means applied to a Bragg grating-based spectral imager for material clustering
NASA Astrophysics Data System (ADS)
Rodríguez, Aida; Nieves, Juan Luis; Valero, Eva; Garrote, Estíbaliz; Hernández-Andrés, Javier; Romero, Javier
2012-01-01
We have modified the Fuzzy C-Means algorithm for an application related to segmentation of hyperspectral images. Classical fuzzy c-means algorithm uses Euclidean distance for computing sample membership to each cluster. We have introduced a different distance metric, Spectral Similarity Value (SSV), in order to have a more convenient similarity measure for reflectance information. SSV distance metric considers both magnitude difference (by the use of Euclidean distance) and spectral shape (by the use of Pearson correlation). Experiments confirmed that the introduction of this metric improves the quality of hyperspectral image segmentation, creating spectrally more dense clusters and increasing the number of correctly classified pixels.
Information extraction from dynamic PS-InSAR time series using machine learning
NASA Astrophysics Data System (ADS)
van de Kerkhof, B.; Pankratius, V.; Chang, L.; van Swol, R.; Hanssen, R. F.
2017-12-01
Due to the increasing number of SAR satellites, with shorter repeat intervals and higher resolutions, SAR data volumes are exploding. Time series analyses of SAR data, i.e. Persistent Scatterer (PS) InSAR, enable the deformation monitoring of the built environment at an unprecedented scale, with hundreds of scatterers per km2, updated weekly. Potential hazards, e.g. due to failure of aging infrastructure, can be detected at an early stage. Yet, this requires the operational data processing of billions of measurement points, over hundreds of epochs, updating this data set dynamically as new data come in, and testing whether points (start to) behave in an anomalous way. Moreover, the quality of PS-InSAR measurements is ambiguous and heterogeneous, which will yield false positives and false negatives. Such analyses are numerically challenging. Here we extract relevant information from PS-InSAR time series using machine learning algorithms. We cluster (group together) time series with similar behaviour, even though they may not be spatially close, such that the results can be used for further analysis. First we reduce the dimensionality of the dataset in order to be able to cluster the data, since applying clustering techniques on high dimensional datasets often result in unsatisfying results. Our approach is to apply t-distributed Stochastic Neighbor Embedding (t-SNE), a machine learning algorithm for dimensionality reduction of high-dimensional data to a 2D or 3D map, and cluster this result using Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The results show that we are able to detect and cluster time series with similar behaviour, which is the starting point for more extensive analysis into the underlying driving mechanisms. The results of the methods are compared to conventional hypothesis testing as well as a Self-Organising Map (SOM) approach. Hypothesis testing is robust and takes the stochastic nature of the observations into account, but is time consuming. Therefore, we successively apply our machine learning approach with the hypothesis testing approach in order to benefit from both the reduced computation time of the machine learning approach as from the robust quality metrics of hypothesis testing. We acknowledge support from NASA AISTNNX15AG84G (PI V. Pankratius)
NASA Astrophysics Data System (ADS)
Dehls, John F.; Larsen, Yngvar; Marinkovic, Petar; Perski, Zbigniew
2017-04-01
The Sentinel-1 mission has been in operational mode for more than two years, and with the successful commissioning of S1B in Sep 2016, the constellation is now complete. While the InSAR community initially faced many processing challenges due to the introduction of the new TOPS mode, these issues can by now considered resolved. However, truly operational workflows are still to be designed and deployed, and there are a number of integration and interpretation challenges that need to be addressed to achieve operational processing of 6-day revisit InSAR data. In this contribution, we will focus mainly on the integration and interpretation of InSAR products in scientific workflows, rather than on algorithmic details. We will motivate discussion with results obtained from selected pilot sites within the ESA SEOM InSARap project. The sites cover a large part of the application domain for InSAR - "from decimeter to millimeter". Specifically, landslide and corner reflector validation test sites in Norway and Poland will be discussed. The results will serve as basis for a discussion on how to communicate and streamline a portfolio of subsidence products to end users, which is a challenge in itself. We will conclude with a discussion on remaining open questions regarding how we as a community can address these issues to a wider audience.
[Relationship between simulated acid rain stress and leaf reflectance].
Song, Xiao-dong; Jiang, Hong; Yu, Shu-quan; Zhou, Guo-mo; Jiang, Zi-shan
2010-01-01
Acid rain is a worldwide environmental problem. Serious acid rain pollution in subtropical China has constituted a potential threat to the health of the local forest. In the present paper, the changing properties of the chlorophyll concentration and spectral reflectance at the visible wavelengths for the six subtropical broad-leaved tree species leaves under simulated acid rain (SAR) treatment with different pH levels were studied. With the increasing strength of the SAR, the chlorophyll concentrations of the experimental species under pH 2.5 and pH 4.0 treatment were higher than that under pH 5.6; the spectral reflectance at the visible wavelengths for pH 2.5 and pH 4.0 were lower than that for pH 5.6 in general; while there weren't significant differences between pH 2.5 and pH 4.0. After the treatment with different levels of SAR, the differences in spectral reflectance at the visible wavelengths mainly focused around the green peak and red edge on the reflectance curve. The subtropical broad-leaved tree species studied were relatively not sensitive to acid rain stresses; some stronger acid rain may accelerate the growth of the tree species used here to some extent.
Classification Accuracy Increase Using Multisensor Data Fusion
NASA Astrophysics Data System (ADS)
Makarau, A.; Palubinskas, G.; Reinartz, P.
2011-09-01
The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc.
NASA Technical Reports Server (NTRS)
Swayze, Gregg A.; Clark, Roger N.
1995-01-01
The rapid development of sophisticated imaging spectrometers and resulting flood of imaging spectrometry data has prompted a rapid parallel development of spectral-information extraction technology. Even though these extraction techniques have evolved along different lines (band-shape fitting, endmember unmixing, near-infrared analysis, neural-network fitting, and expert systems to name a few), all are limited by the spectrometer's signal to noise (S/N) and spectral resolution in producing useful information. This study grew from a need to quantitatively determine what effects these parameters have on our ability to differentiate between mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE, MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-resolution ranges. The study evaluates the performance of the Tricorder algorithm, in differentiating between mineral spectra in the 0.4-2.5 micrometer spectral region. The strength of the Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder algorithm is unparalleled among spectral-extraction techniques and that the results from this study, although dealing with minerals, will have direct applications to spectral identification in other disciplines.
Superresolution SAR Imaging Algorithm Based on Mvm and Weighted Norm Extrapolation
NASA Astrophysics Data System (ADS)
Zhang, P.; Chen, Q.; Li, Z.; Tang, Z.; Liu, J.; Zhao, L.
2013-08-01
In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and actual measured data.
Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants
NASA Astrophysics Data System (ADS)
Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo
2017-10-01
Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.
1991-01-01
Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less
Direct Geolocation of TerraSAR-X Spotlight Mode Image and Error Correction
NASA Astrophysics Data System (ADS)
Zhou, Xiao; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa; Gong, Lixia
2013-01-01
The GERMAN TerraSAR-X mission was launched in June 2007, operating a versatile new-generation SAR sensor in X-band. Its Spotlight mode providing SAR images at very high resolution of about 1m. The product’s specified 3-D geolocation accuracy is tightened to 1m according to the official technical report. However, this accuracy is able to be achieved relies on not only robust mathematical basis of SAR geolocation, but also well knowledge of error sources and their correction. The research focuses on geolocation of TerraSAR-X spotlight image. Mathematical model and resolving algorithms have been analyzed. Several error sources have been researched and corrected especially. The effectiveness and accuracy of the research was verified by the experiment results.
Fast iterative censoring CFAR algorithm for ship detection from SAR images
NASA Astrophysics Data System (ADS)
Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng
2017-11-01
Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.
Applications of SAR Interferometry in Earth and Environmental Science Research
Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun
2009-01-01
This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992
Applications of SAR Interferometry in Earth and Environmental Science Research.
Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun
2009-01-01
This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.
Operational multisensor sea ice concentration algorithm utilizing Sentinel-1 and AMSR2 data
NASA Astrophysics Data System (ADS)
Dinessen, Frode
2017-04-01
The Norwegian Ice Service provide ice charts of the European part of the Arctic every weekday. The charts are produced from a manually interpretation of satellite data where SAR (Synthetic Aperture Radar) data plays a central role because of its high spatial resolution and Independence of cloud cover. A new chart is produced every weekday and the charts are distributed through the CMEMS portal. After the launch of Sentinel-1A and B the number of available SAR data have significant increased making it difficult to utilize all the data in a manually process. This in combination with a user demand for a more frequent update of the ice conditions, also during the weekends, have made it important to focus the development on utilizing the high resolution Sentinel-1 data in an automatic sea ice concentration analysis. The algorithm developed here is based on a multi sensor approach using an optimal interpolation to combine sea ice concentration products derived from Sentinel-1 and passive microwave data from AMSR2. The Sentinel-1 data is classified with a Bayesian SAR classification algorithm using data in extra wide mode dual polarization (HH/HV) to separate ice and water in the full 40x40 meter spatial resolution. From the classification of ice/water the sea ice concentration is estimated by calculating amount of ice within an area of 1x1 km. The AMSR2 sea ice concentration are produced as part of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) project and utilize the 89 GHz channel to produce a concentration product with a 3km spatial resolution. Results from the automatic classification will be presented.
Method to analyze remotely sensed spectral data
Stork, Christopher L [Albuquerque, NM; Van Benthem, Mark H [Middletown, DE
2009-02-17
A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.
NASA Astrophysics Data System (ADS)
Li, C.; Zhou, X.; Tang, D.; Zhu, Z.
2018-04-01
Resolution and sidelobe are mutual restrict for SAR image. Usually sidelobe suppression is based on resolution reduction. This paper provide a method for resolution enchancement using sidelobe opposition speciality of hanning window and SAR image. The method can keep high resolution on the condition of sidelobe suppression. Compare to traditional method, this method can enchance 50 % resolution when sidelobe is -30dB.
Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR
Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng
2018-01-01
In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner. PMID:29439447
Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR.
Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng
2018-02-11
In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner.
Analysis and an image recovery algorithm for ultrasonic tomography system
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1994-01-01
The problem of an ultrasonic reflectivity tomography is similar to that of a spotlight-mode aircraft Synthetic Aperture Radar (SAR) system. The analysis for a circular path spotlight mode SAR in this paper leads to the insight of the system characteristics. It indicates that such a system when operated in a wide bandwidth is capable of achieving the ultimate resolution; one quarter of the wavelength of the carrier frequency. An efficient processing algorithm based on the exact two dimensional spectrum is presented. The results of simulation indicate that the impulse responses meet the predicted resolution performance. Compared to an algorithm previously developed for the ultrasonic reflectivity tomography, the throughput rate of this algorithm is about ten times higher.
NASA Astrophysics Data System (ADS)
Nielsen, Allan A.; Conradsen, Knut; Skriver, Henning
2016-10-01
Test statistics for comparison of real (as opposed to complex) variance-covariance matrices exist in the statistics literature [1]. In earlier publications we have described a test statistic for the equality of two variance-covariance matrices following the complex Wishart distribution with an associated p-value [2]. We showed their application to bitemporal change detection and to edge detection [3] in multilook, polarimetric synthetic aperture radar (SAR) data in the covariance matrix representation [4]. The test statistic and the associated p-value is described in [5] also. In [6] we focussed on the block-diagonal case, we elaborated on some computer implementation issues, and we gave examples on the application to change detection in both full and dual polarization bitemporal, bifrequency, multilook SAR data. In [7] we described an omnibus test statistic Q for the equality of k variance-covariance matrices following the complex Wishart distribution. We also described a factorization of Q = R2 R3 … Rk where Q and Rj determine if and when a difference occurs. Additionally, we gave p-values for Q and Rj. Finally, we demonstrated the use of Q and Rj and the p-values to change detection in truly multitemporal, full polarization SAR data. Here we illustrate the methods by means of airborne L-band SAR data (EMISAR) [8,9]. The methods may be applied to other polarimetric SAR data also such as data from Sentinel-1, COSMO-SkyMed, TerraSAR-X, ALOS, and RadarSat-2 and also to single-pol data. The account given here closely follows that given our recent IEEE TGRS paper [7]. Selected References [1] Anderson, T. W., An Introduction to Multivariate Statistical Analysis, John Wiley, New York, third ed. (2003). [2] Conradsen, K., Nielsen, A. A., Schou, J., and Skriver, H., "A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing 41(1): 4-19, 2003. [3] Schou, J., Skriver, H., Nielsen, A. A., and Conradsen, K., "CFAR edge detector for polarimetric SAR images," IEEE Transactions on Geoscience and Remote Sensing 41(1): 20-32, 2003. [4] van Zyl, J. J. and Ulaby, F. T., "Scattering matrix representation for simple targets," in Radar Polarimetry for Geoscience Applications, Ulaby, F. T. and Elachi, C., eds., Artech, Norwood, MA (1990). [5] Canty, M. J., Image Analysis, Classification and Change Detection in Remote Sensing,with Algorithms for ENVI/IDL and Python, Taylor & Francis, CRC Press, third revised ed. (2014). [6] Nielsen, A. A., Conradsen, K., and Skriver, H., "Change detection in full and dual polarization, single- and multi-frequency SAR data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(8): 4041-4048, 2015. [7] Conradsen, K., Nielsen, A. A., and Skriver, H., "Determining the points of change in time series of polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing 54(5), 3007-3024, 2016. [9] Christensen, E. L., Skou, N., Dall, J., Woelders, K., rgensen, J. H. J., Granholm, J., and Madsen, S. N., "EMISAR: An absolutely calibrated polarimetric L- and C-band SAR," IEEE Transactions on Geoscience and Remote Sensing 36: 1852-1865 (1998).
Synthetic aperture radar signal data compression using block adaptive quantization
NASA Technical Reports Server (NTRS)
Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian
1994-01-01
This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.
The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm
NASA Astrophysics Data System (ADS)
Tan, Linglong; Li, Changkai; Wang, Yueqin
2018-04-01
SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.
An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; LV, M.
2017-12-01
Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS/PALSAR data. The results show that the strategy can effectively improve the accuracy of velocity estimation by reducing the mean and standard deviation values from 0.32 m and 0.4 m to 0.16 m. It is proved to be highly appropriate for monitoring glacier motion over a widely varying range of ice velocities with a relatively high accuracy.
I/O efficient algorithms and applications in geographic information systems
NASA Astrophysics Data System (ADS)
Danner, Andrew
Modern remote sensing methods such a laser altimetry (lidar) and Interferometric Synthetic Aperture Radar (IfSAR) produce georeferenced elevation data at unprecedented rates. Many Geographic Information System (GIS) algorithms designed for terrain modelling applications cannot process these massive data sets. The primary problem is that these data sets are too large to fit in the main internal memory of modern computers and must therefore reside on larger, but considerably slower disks. In these applications, the transfer of data between disk and main memory, or I/O, becomes the primary bottleneck. Working in a theoretical model that more accurately represents this two level memory hierarchy, we can develop algorithms that are I/O-efficient and reduce the amount of disk I/O needed to solve a problem. In this thesis we aim to modernize GIS algorithms and develop a number of I/O-efficient algorithms for processing geographic data derived from massive elevation data sets. For each application, we convert a geographic question to an algorithmic question, develop an I/O-efficient algorithm that is theoretically efficient, implement our approach and verify its performance using real-world data. The applications we consider include constructing a gridded digital elevation model (DEM) from an irregularly spaced point cloud, removing topological noise from a DEM, modeling surface water flow over a terrain, extracting river networks and watershed hierarchies from the terrain, and locating polygons containing query points in a planar subdivision. We initially developed solutions to each of these applications individually. However, we also show how to combine individual solutions to form a scalable geo-processing pipeline that seamlessly solves a sequence of sub-problems with little or no manual intervention. We present experimental results that demonstrate orders of magnitude improvement over previously known algorithms.
NASA Astrophysics Data System (ADS)
Cheng, Liantao; Zhang, Fenghui; Kang, Xiaoyu; Wang, Lang
2018-05-01
In evolutionary population synthesis (EPS) models, we need to convert stellar evolutionary parameters into spectra via interpolation in a stellar spectral library. For theoretical stellar spectral libraries, the spectrum grid is homogeneous on the effective-temperature and gravity plane for a given metallicity. It is relatively easy to derive stellar spectra. For empirical stellar spectral libraries, stellar parameters are irregularly distributed and the interpolation algorithm is relatively complicated. In those EPS models that use empirical stellar spectral libraries, different algorithms are used and the codes are often not released. Moreover, these algorithms are often complicated. In this work, based on a radial basis function (RBF) network, we present a new spectrum interpolation algorithm and its code. Compared with the other interpolation algorithms that are used in EPS models, it can be easily understood and is highly efficient in terms of computation. The code is written in MATLAB scripts and can be used on any computer system. Using it, we can obtain the interpolated spectra from a library or a combination of libraries. We apply this algorithm to several stellar spectral libraries (such as MILES, ELODIE-3.1 and STELIB-3.2) and give the integrated spectral energy distributions (ISEDs) of stellar populations (with ages from 1 Myr to 14 Gyr) by combining them with Yunnan-III isochrones. Our results show that the differences caused by the adoption of different EPS model components are less than 0.2 dex. All data about the stellar population ISEDs in this work and the RBF spectrum interpolation code can be obtained by request from the first author or downloaded from http://www1.ynao.ac.cn/˜zhangfh.
Terrain Measurement with SAR/InSAR
NASA Astrophysics Data System (ADS)
Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang
2016-08-01
Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.
The Grand Banks ERS-1 SAR wave spectra validation experiment
NASA Technical Reports Server (NTRS)
Vachon, P. W.; Dobson, F. W.; Smith, S. D.; Anderson, R. J.; Buckley, J. R.; Allingham, M.; Vandemark, D.; Walsh, E. J.; Khandekar, M.; Lalbeharry, R.
1993-01-01
As part of the ERS-1 validation program, the ERS-1 Synthetic Aperture Radar (SAR) wave spectra validation experiment was carried out over the Grand Banks of Newfoundland (Canada) in Nov. 1991. The principal objective of the experiment was to obtain complete sets of wind and wave data from a variety of calibrated instruments to validate SAR measurements of ocean wave spectra. The field program activities are described and the rather complex wind and wave conditions which were observed are summarized. Spectral comparisons with ERS-1 SAR image spectra are provided. The ERS-1 SAR is shown to have measured swell and range traveling wind seas, but did not measure azimuth traveling wind seas at any time during the experiment. Results of velocity bunching forward mapping and new measurements of the relationship between wind stress and sea state are also shown.
NASA Astrophysics Data System (ADS)
Bigdeli, Behnaz; Pahlavani, Parham
2017-01-01
Interpretation of synthetic aperture radar (SAR) data processing is difficult because the geometry and spectral range of SAR are different from optical imagery. Consequently, SAR imaging can be a complementary data to multispectral (MS) optical remote sensing techniques because it does not depend on solar illumination and weather conditions. This study presents a multisensor fusion of SAR and MS data based on the use of classification and regression tree (CART) and support vector machine (SVM) through a decision fusion system. First, different feature extraction strategies were applied on SAR and MS data to produce more spectral and textural information. To overcome the redundancy and correlation between features, an intrinsic dimension estimation method based on noise-whitened Harsanyi, Farrand, and Chang determines the proper dimension of the features. Then, principal component analysis and independent component analysis were utilized on stacked feature space of two data. Afterward, SVM and CART classified each reduced feature space. Finally, a fusion strategy was utilized to fuse the classification results. To show the effectiveness of the proposed methodology, single classification on each data was compared to the obtained results. A coregistered Radarsat-2 and WorldView-2 data set from San Francisco, USA, was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with optical sensor based on the proposed methodology improve the classification results for most of the classes. The proposed fusion method provided approximately 93.24% and 95.44% for two different areas of the data.
Spectral imaging: principles and applications.
Garini, Yuval; Young, Ian T; McNamara, George
2006-08-01
Spectral imaging extends the capabilities of biological and clinical studies to simultaneously study multiple features such as organelles and proteins qualitatively and quantitatively. Spectral imaging combines two well-known scientific methodologies, namely spectroscopy and imaging, to provide a new advantageous tool. The need to measure the spectrum at each point of the image requires combining dispersive optics with the more common imaging equipment, and introduces constrains as well. The principles of spectral imaging and a few representative applications are described. Spectral imaging analysis is necessary because the complex data structure cannot be analyzed visually. A few of the algorithms are discussed with emphasis on the usage for different experimental modes (fluorescence and bright field). Finally, spectral imaging, like any method, should be evaluated in light of its advantages to specific applications, a selection of which is described. Spectral imaging is a relatively new technique and its full potential is yet to be exploited. Nevertheless, several applications have already shown its potential. (c) 2006 International Society for Analytical Cytology.
On the Capabilities of Using AIRSAR Data in Surface Energy/Water Balance Studies
NASA Technical Reports Server (NTRS)
Moreno, Jose F.; Saatchi, Susan S.
1996-01-01
The capabilities of using remote sensing data, and in particular multifrequency/multipolarization SAR data, like AIRSAR, for the retrieval of surface parameters, depend considerably on the specificity of each application. The potentials, and limitations, of SAR data in ecological investigations are well known. Because the chemistry is a major component in such studies and because of the almost lacking chemical information at the wavelengths of SAR data, the capabilities of using SAR-derived information in such studies are considerably limited. However, in the case of surface energy/water balance studies, the determination of the amount of water content, both in the soil and in the plants, is a major component in all modeling approaches. As the information about water content is present in the SAR signal, then the role of SAR data in studies where water content is to be determined becomes clearly predominant. Another situation where the role of SAR data becomes dominant over other remote sensing systems is the case of dense canopies. Because of the penetration capabilities of microwave data, which is especially superior as compared to optical data, information about the canopy as a whole and even the underlying soil is contained in the SAR data, while only the top canopy provides the information content in the case of optical data. In the case of relatively dense canopies, as has been demonstrated in this study, such different penetration capabilities provide very different results in terms of the derived total canopy water content, for instance. However, although all such capabilities are well known, unfortunately there are also well known limitations. Apart from calibration-related aspects (that we will not consider in this study), and apart from other intrinsic problems (like image noise, topographic corrections, etc.) which also significantly affect the derived results, we will concentrate on the problem of extracting information from the data. Even at this level, methods are still not fully well established, especially over vegetation-covered areas. In this paper, an algorithm is described which allows derivation of three fundamental parameters from SAR data: soil moisture, soil roughness and canopy water content, accounting for the effects of vegetation cover by using optical (Landsat) data as auxiliary. Capabilities and limitations of the data and algorithms are discussed, as well as possibilities to use these data in energy/water balance modeling studies. All the data used in this study were acquired as part of the Intensive Observation Period in June-July 1991 (European Multisensor Aircraft Campaign-91), as part of the European Field Experiment in a Desertification- threatened Area (EFEDA), a European contribution to the global-change research sponsored by the IGBP program (Bolle et al., 1993).
SAR-based sea traffic monitoring: a reliable approach for maritime surveillance
NASA Astrophysics Data System (ADS)
Renga, Alfredo; Graziano, Maria D.; D'Errico, M.; Moccia, A.; Cecchini, A.
2011-11-01
Maritime surveillance problems are drawing the attention of multiple institutional actors. National and international security agencies are interested in matters like maritime traffic security, maritime pollution control, monitoring migration flows and detection of illegal fishing activities. Satellite imaging is a good way to identify ships but, characterized by large swaths, it is likely that the imaged scenes contain a large number of ships, with the vast majority, hopefully, performing legal activities. Therefore, the imaging system needs a supporting system which identifies legal ships and limits the number of potential alarms to be further monitored by patrol boats or aircrafts. In this framework, spaceborne Synthetic Aperture Radar (SAR) sensors, terrestrial AIS and the ongoing satellite AIS systems can represent a great potential synergy for maritime security. Starting from this idea the paper develops different designs for an AIS constellation able to reduce the time lag between SAR image and AIS data acquisition. An analysis of SAR-based ship detection algorithms is also reported and candidate algorithms identified.
Magnetic Resonance Based Electrical Properties Tomography: A Review
Zhang, Xiaotong; Liu, Jiaen
2014-01-01
Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. PMID:24803104
Spectral analysis using the CCD Chirp Z-transform
NASA Technical Reports Server (NTRS)
Eversole, W. L.; Mayer, D. J.; Bosshart, P. W.; Dewit, M.; Howes, C. R.; Buss, D. D.
1978-01-01
The charge coupled device (CCD) Chirp Z transformation (CZT) spectral analysis techniques were reviewed and results on state-of-the-art CCD CZT technology are presented. The CZT algorithm was examined and the advantages of CCD implementation are discussed. The sliding CZT which is useful in many spectral analysis applications is described, and the performance limitations of the CZT are studied.
Processing techniques for software based SAR processors
NASA Technical Reports Server (NTRS)
Leung, K.; Wu, C.
1983-01-01
Software SAR processing techniques defined to treat Shuttle Imaging Radar-B (SIR-B) data are reviewed. The algorithms are devised for the data processing procedure selection, SAR correlation function implementation, multiple array processors utilization, cornerturning, variable reference length azimuth processing, and range migration handling. The Interim Digital Processor (IDP) originally implemented for handling Seasat SAR data has been adapted for the SIR-B, and offers a resolution of 100 km using a processing procedure based on the Fast Fourier Transformation fast correlation approach. Peculiarities of the Seasat SAR data processing requirements are reviewed, along with modifications introduced for the SIR-B. An Advanced Digital SAR Processor (ADSP) is under development for use with the SIR-B in the 1986 time frame as an upgrade for the IDP, which will be in service in 1984-5.
Advanced processing for high-bandwidth sensor systems
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.
2000-11-01
Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.
NASA Technical Reports Server (NTRS)
Burns, B. A.; Cavalieri, D. J.; Keller, M. R.
1986-01-01
Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.
Pixel-based flood mapping from SAR imagery: a comparison of approaches
NASA Astrophysics Data System (ADS)
Landuyt, Lisa; Van Wesemael, Alexandra; Van Coillie, Frieke M. B.; Verhoest, Niko E. C.
2017-04-01
Due to their all-weather, day and night capabilities, SAR sensors have been shown to be particularly suitable for flood mapping applications. Thus, they can provide spatially-distributed flood extent data which are valuable for calibrating, validating and updating flood inundation models. These models are an invaluable tool for water managers, to take appropriate measures in times of high water levels. Image analysis approaches to delineate flood extent on SAR imagery are numerous. They can be classified into two categories, i.e. pixel-based and object-based approaches. Pixel-based approaches, e.g. thresholding, are abundant and in general computationally inexpensive. However, large discrepancies between these techniques exist and often subjective user intervention is needed. Object-based approaches require more processing but allow for the integration of additional object characteristics, like contextual information and object geometry, and thus have significant potential to provide an improved classification result. As means of benchmark, a selection of pixel-based techniques is applied on a ERS-2 SAR image of the 2006 flood event of River Dee, United Kingdom. This selection comprises Otsu thresholding, Kittler & Illingworth thresholding, the Fine To Coarse segmentation algorithm and active contour modelling. The different classification results are evaluated and compared by means of several accuracy measures, including binary performance measures.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting
2017-04-01
Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a pixel spacing of 40 meters near Prydz Bay area, East Antarctica. Main work is listed as follows: 1) A mixture statistical distribution based CRF algorithm has been developed for leads detection from Sentinel-1A dual polarization images. 2) The assessment of the proposed mixture statistical distribution based CRF method and single distribution based CRF algorithm has been presented. 3) The preferable parameters sets including statistical distributions, the aspect ratio threshold and spatial smoothing window size have been provided. In the future, the proposed algorithm will be developed for the operational Sentinel series data sets processing due to its less time consuming cost and high accuracy in leads detection.
Pseudo-color coding method for high-dynamic single-polarization SAR images
NASA Astrophysics Data System (ADS)
Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi
2018-04-01
A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.
A P-band SAR interference filter
NASA Technical Reports Server (NTRS)
Taylor, Victor B.
1992-01-01
The synthetic aperture radar (SAR) interference filter is an adaptive filter designed to reduce the effects of interference while minimizing the introduction of undesirable side effects. The author examines the adaptive spectral filter and the improvement in processed SAR imagery using this filter for Jet Propulsion Laboratory Airborne SAR (JPL AIRSAR) data. The quality of these improvements is determined through several data fidelity criteria, such as point-target impulse response, equivalent number of looks, SNR, and polarization signatures. These parameters are used to characterize two data sets, both before and after filtering. The first data set consists of data with the interference present in the original signal, and the second set consists of clean data which has been coherently injected with interference acquired from another scene.
NASA Astrophysics Data System (ADS)
Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der
2010-08-01
Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.
From local to national scale DInSAR analysis for the comprehension of Earth's surface dynamics.
NASA Astrophysics Data System (ADS)
De Luca, Claudio; Casu, Francesco; Manunta, Michele; Zinno, Ivana; lanari, Riccardo
2017-04-01
Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. While the application of SBAS to ERS and ENVISAT data at local scale is widely testified, very few examples involving those archives for analysis at huge spatial scale are available in literature. This is mainly due to the required processing power (in terms of CPUs, memory and storage) and the limited availability of automatic processing procedures (unsupervised tools), which are mandatory requirements for obtaining displacement results in a time effective way. Accordingly, in this work we present a methodology for generating the Vertical and Horizontal (East-West) components of Earth's surface deformation at very large (national/continental) spatial scale. In particular, it relies on the availability of a set of SAR data collected over an Area of Interest (AoI), which could be some hundreds of thousands of square kilometers wide, from ascending and descending orbits. The exploited SAR data are processed, on a local basis, through the Parallel SBAS (P-SBAS) approach thus generating the displacement time series and the corresponding mean deformation velocity maps. Subsequently, starting from the so generated DInSAR results, the proposed methodology lays on a proper mosaicking procedure to finally retrieve the mean velocity maps of the Vertical and Horizontal (East-West) deformation components relevant to the overall AoI. This technique permits to account for possible regional trends (tectonics trend) not easily detectable by the local scale DInSAR analyses. We tested the proposed methodology with the ENVISAT ASAR archives that have been acquired, from ascending and descending orbits, over California (US), covering an area of about 100.000 km2. The presented methodology can be easily applied also to other SAR satellite data. Above all, it is particularly suitable to deal with the very large data flow provided by the Sentinel-1 constellation, which collects data with a global coverage policy and an acquisition mode specifically designed for interferometric applications.
Unsupervised DInSAR processing chain for multi-scale displacement analysis
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manunta, Michele
2016-04-01
Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps at both global and local spatial scale, with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. Moreover, since 2014 the new generation of Copernicus Sentinel satellites has started to acquire data with a short revisit time (12 days) and a global coverage policy, thus flooding the scientific EO community with an unprecedent amount of data. To efficiently manage such amount of data, proper processing facilities (as those coming from the emerging Cloud Computing technologies) have to be used, as well as novel algorithms aimed at their efficient exploitation have to be developed. In this work we present a set of results achieved by exploiting a recently proposed implementation of the SBAS algorithm, namely Parallel-SBAS (P-SBAS), which allows us to effectively process, in an unsupervised way and in a limited time frame, a huge number of SAR images, thus leading to the generation of Interferometric products for both global and local scale displacement analysis. Among several examples, we will show a wide displacement SBAS processing, carried out over the southern California, during which the whole ascending ENVISAT data set of more than 740 images has been fully processed on a Cloud Computing environment in less than 9 hours, leading to the generation of a displacement map of about 150,000 square kilometres. The P-SBAS characteristics allowed also us to integrate the algorithm within the ESA Geohazard Exploitation Platform (GEP), which is based on the use of GRID and Cloud Computing facilities, thus making freely available to the EO community a web tool for massive and systematic interferometric displacement time series generation. This work has been partially supported by: the Italian MIUR under the RITMARE project; the CNR-DPC agreement and the ESA GEP project.
NASA Technical Reports Server (NTRS)
Rawson, R. F.; Hamilton, R. E.; Liskow, C. L.; Dias, A. R.; Jackson, P. L.
1981-01-01
An analysis of synthetic aperture radar data of SP Mountain was undertaken to demonstrate the use of digital image processing techniques to aid in geologic interpretation of SAR data. These data were collected with the ERIM X- and L-band airborne SAR using like- and cross-polarizations. The resulting signal films were used to produce computer compatible tapes, from which four-channel imagery was generated. Slant range-to-ground range and range-azimuth-scale corrections were made in order to facilitate image registration; intensity corrections were also made. Manual interpretation of the imagery showed that L-band represented the geology of the area better than X-band. Several differences between the various images were also noted. Further digital analysis of the corrected data was done for enhancement purposes. This analysis included application of an MSS differencing routine and development of a routine for removal of relief displacement. It was found that accurate registration of the SAR channels is critical to the effectiveness of the differencing routine. Use of the relief displacement algorithm on the SP Mountain data demonstrated the feasibility of the technique.
NASA Astrophysics Data System (ADS)
Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David
2006-05-01
The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.
Separated Component-Based Restoration of Speckled SAR Images
2013-01-01
unsupervised change detection from SAR amplitude imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2972–2982, Oct. 2006. [5] F. Argenti , T...Sens., vol. 40, no. 10, pp. 2196–2212, Oct. 2002. [13] F. Argenti and L. Alparone, “Speckle removal from SAR images in the undecimated wavelet domain...iterative thresh- olding algorithm for linear inverse problems with a sparsity con- straint,” Commun . Pure Appl. Math., vol. 57, no. 11, pp. 1413
Fusion of radar and optical data for mapping and monitoring of water bodies
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyn
2017-10-01
Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.
The Alaska SAR processor - Operations and control
NASA Technical Reports Server (NTRS)
Carande, Richard E.
1989-01-01
The Alaska SAR (synthetic-aperture radar) Facility (ASF) will be capable of receiving, processing, archiving, and producing a variety of SAR image products from three satellite-borne SARs: E-ERS-1 (ESA), J-ERS-1 (NASDA) and Radarsat (Canada). Crucial to the success of the ASF is the Alaska SAR processor (ASP), which will be capable of processing over 200 100-km x 100-km (Seasat-like) frames per day from the raw SAR data, at a ground resolution of about 30 m x 30 m. The processed imagery is of high geometric and radiometric accuracy, and is geolocated to within 500 m. Special-purpose hardware has been designed to execute a SAR processing algorithm to achieve this performance. This hardware is currently undergoing acceptance testing for delivery to the University of Alaska. Particular attention has been devoted to making the operations semi-automated and to providing a friendly operator interface via a computer workstation. The operations and control of the Alaska SAR processor are described.
Experiment in Onboard Synthetic Aperture Radar Data Processing
NASA Technical Reports Server (NTRS)
Holland, Matthew
2011-01-01
Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.
Tutorial on Fourier space coverage for scattering experiments, with application to SAR
NASA Astrophysics Data System (ADS)
Deming, Ross W.
2010-04-01
The Fourier Diffraction Theorem relates the data measured during electromagnetic, optical, or acoustic scattering experiments to the spatial Fourier transform of the object under test. The theorem is well-known, but since it is based on integral equations and complicated mathematical expansions, the typical derivation may be difficult for the non-specialist. In this paper, the theorem is derived and presented using simple geometry, plus undergraduatelevel physics and mathematics. For practitioners of synthetic aperture radar (SAR) imaging, the theorem is important to understand because it leads to a simple geometric and graphical understanding of image resolution and sampling requirements, and how they are affected by radar system parameters and experimental geometry. Also, the theorem can be used as a starting point for imaging algorithms and motion compensation methods. Several examples are given in this paper for realistic scenarios.
A time series deformation estimation in the NW Himalayas using SBAS InSAR technique
NASA Astrophysics Data System (ADS)
Kumar, V.; Venkataraman, G.
2012-12-01
A time series land deformation studies in north western Himalayan region has been presented in this study. Synthetic aperture radar (SAR) interferometry (InSAR) is an important tool for measuring the land displacement caused by different geological processes [1]. Frequent spatial and temporal decorrelation in the Himalayan region is a strong impediment in precise deformation estimation using conventional interferometric SAR approach. In such cases, advanced DInSAR approaches PSInSAR as well as Small base line subset (SBAS) can be used to estimate earth surface deformation. The SBAS technique [2] is a DInSAR approach which uses a twelve or more number of repeat SAR acquisitions in different combinations of a properly chosen data (subsets) for generation of DInSAR interferograms using two pass interferometric approach. Finally it leads to the generation of mean deformation velocity maps and displacement time series. Herein, SBAS algorithm has been used for time series deformation estimation in the NW Himalayan region. ENVISAT ASAR IS2 swath data from 2003 to 2008 have been used for quantifying slow deformation. Himalayan region is a very active tectonic belt and active orogeny play a significant role in land deformation process [3]. Geomorphology in the region is unique and reacts to the climate change adversely bringing with land slides and subsidence. Settlements on the hill slopes are prone to land slides, landslips, rockslides and soil creep. These hazardous features have hampered the over all progress of the region as they obstruct the roads and flow of traffic, break communication, block flowing water in stream and create temporary reservoirs and also bring down lot of soil cover and thus add enormous silt and gravel to the streams. It has been observed that average deformation varies from -30.0 mm/year to 10 mm/year in the NW Himalayan region . References [1] Massonnet, D., Feigl, K.L.,Rossi, M. and Adragna, F. (1994) Radar interferometry mapping of deformation in the year after the Landers earthquake. Nature 1994, 369, 227-230. [2] Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. (2002). A new algorithm for surface deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40 (11), 2375-2383. [3] GEOLOGICAL SURVEY OF INDIA (GSI), (1999) Inventory of the Himalayan glaciers. Special publication, vol. 34, pp. 165-168. [4] Chen, C.W., and Zebker, H. A., (2000). Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. Journal of the Optical Society of America, A, 17, 401-414.
Bistatic synthetic aperture radar
NASA Astrophysics Data System (ADS)
Yates, Gillian
Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.
NASA Astrophysics Data System (ADS)
Liang, Cunren; Zeng, Qiming; Jia, Jianying; Jiao, Jian; Cui, Xi'ai
2013-02-01
Scanning synthetic aperture radar (ScanSAR) mode is an efficient way to map large scale geophysical phenomena at low cost. The work presented in this paper is dedicated to ScanSAR interferometric processing and its implementation by making full use of existing standard interferometric synthetic aperture radar (InSAR) software. We first discuss the properties of the ScanSAR signal and its phase-preserved focusing using the full aperture algorithm in terms of interferometry. Then a complete interferometric processing flow is proposed. The standard ScanSAR product is decoded subswath by subswath with burst gaps padded with zero-pulses, followed by a Doppler centroid frequency estimation for each subswath and a polynomial fit of all of the subswaths for the whole scene. The burst synchronization of the interferometric pair is then calculated, and only the synchronized pulses are kept for further interferometric processing. After the complex conjugate multiplication of the interferometric pair, the residual non-integer pulse repetition interval (PRI) part between adjacent bursts caused by zero padding is compensated by resampling using a sinc kernel. The subswath interferograms are then mosaicked, in which a method is proposed to remove the subswath discontinuities in the overlap area. Then the following interferometric processing goes back to the traditional stripmap processing flow. A processor written with C and Fortran languages and controlled by Perl scripts is developed to implement these algorithms and processing flow based on the JPL/Caltech Repeat Orbit Interferometry PACkage (ROI_PAC). Finally, we use the processor to process ScanSAR data from the Envisat and ALOS satellites and obtain large scale deformation maps in the radar line-of-sight (LOS) direction.
SAR processing using SHARC signal processing systems
NASA Astrophysics Data System (ADS)
Huxtable, Barton D.; Jackson, Christopher R.; Skaron, Steve A.
1998-09-01
Synthetic aperture radar (SAR) is uniquely suited to help solve the Search and Rescue problem since it can be utilized either day or night and through both dense fog or thick cloud cover. Other papers in this session, and in this session in 1997, describe the various SAR image processing algorithms that are being developed and evaluated within the Search and Rescue Program. All of these approaches to using SAR data require substantial amounts of digital signal processing: for the SAR image formation, and possibly for the subsequent image processing. In recognition of the demanding processing that will be required for an operational Search and Rescue Data Processing System (SARDPS), NASA/Goddard Space Flight Center and NASA/Stennis Space Center are conducting a technology demonstration utilizing SHARC multi-chip modules from Boeing to perform SAR image formation processing.
Marine Targets Detection in Pol-SAR Data
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Jingsong
2016-08-01
In this poster, we present a new method of marine target detection in Pol-SAR data. One band SAR image, like HH, VV or VH, can be used to find marine target using a Contant False Alarm Ratio (CFAR) algorithm. But some false detection may happen, as the sidelobe of antenna, Azimuth ambiguity, strong speckle noise and so on in the single band SAR image. Pol-SAR image can get more information of targets. After decomposition and false color composite, the sidelobe of antenna and Azimuth ambiguity could be deleted. So, the method presented include three steps, decomposion, false color composite and supervised classification. The result of Radarsat-2 SAR image test indicates a good accuracy. The detection results are compared with Automatic Indentify Sistem (AIS) data, the accuracy of right detection is above 95% and false detection ratio is below 5%.
Discrimination of crop types with TerraSAR-X-derived information
NASA Astrophysics Data System (ADS)
Sonobe, Rei; Tani, Hiroshi; Wang, Xiufeng; Kobayashi, Nobuyuki; Shimamura, Hideki
Although classification maps are required for management and for the estimation of agricultural disaster compensation, those techniques have yet to be established. This paper describes the comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, using TerraSAR-X (including TanDEM-X) dual-polarimetric data. In the study area, beans, beets, grasslands, maize, potatoes and winter wheat were cultivated. In this study, classification using TerraSAR-X-derived information was performed. Coherence values, polarimetric parameters and gamma nought values were also obtained and evaluated regarding their usefulness in crop classification. Accurate classification may be possible with currently existing supervised learning models. A comparison between the classification and regression tree (CART), support vector machine (SVM) and random forests (RF) algorithms was performed. Even though J-M distances were lower than 1.0 on all TerraSAR-X acquisition days, good results were achieved (e.g., separability between winter wheat and grass) due to the characteristics of the machine learning algorithm. It was found that SVM performed best, achieving an overall accuracy of 95.0% based on the polarimetric parameters and gamma nought values for HH and VV polarizations. The misclassified fields were less than 100 a in area and 79.5-96.3% were less than 200 a with the exception of grassland. When some feature such as a road or windbreak forest is present in the TerraSAR-X data, the ratio of its extent to that of the field is relatively higher for the smaller fields, which leads to misclassifications.
Zhang, Hong-guang; Lu, Jian-gang
2016-02-01
Abstract To overcome the problems of significant difference among samples and nonlinearity between the property and spectra of samples in spectral quantitative analysis, a local regression algorithm is proposed in this paper. In this algorithm, net signal analysis method(NAS) was firstly used to obtain the net analyte signal of the calibration samples and unknown samples, then the Euclidean distance between net analyte signal of the sample and net analyte signal of calibration samples was calculated and utilized as similarity index. According to the defined similarity index, the local calibration sets were individually selected for each unknown sample. Finally, a local PLS regression model was built on each local calibration sets for each unknown sample. The proposed method was applied to a set of near infrared spectra of meat samples. The results demonstrate that the prediction precision and model complexity of the proposed method are superior to global PLS regression method and conventional local regression algorithm based on spectral Euclidean distance.
Detection of illicit substances in fingerprints by infrared spectral imaging.
Ng, Ping Hei Ronnie; Walker, Sarah; Tahtouh, Mark; Reedy, Brian
2009-08-01
FTIR and Raman spectral imaging can be used to simultaneously image a latent fingerprint and detect exogenous substances deposited within it. These substances might include drugs of abuse or traces of explosives or gunshot residue. In this work, spectral searching algorithms were tested for their efficacy in finding targeted substances deposited within fingerprints. "Reverse" library searching, where a large number of possibly poor-quality spectra from a spectral image are searched against a small number of high-quality reference spectra, poses problems for common search algorithms as they are usually implemented. Out of a range of algorithms which included conventional Euclidean distance searching, the spectral angle mapper (SAM) and correlation algorithms gave the best results when used with second-derivative image and reference spectra. All methods tested gave poorer performances with first derivative and undifferentiated spectra. In a search against a caffeine reference, the SAM and correlation methods were able to correctly rank a set of 40 confirmed but poor-quality caffeine spectra at the top of a dataset which also contained 4,096 spectra from an image of an uncontaminated latent fingerprint. These methods also successfully and individually detected aspirin, diazepam and caffeine that had been deposited together in another fingerprint, and they did not indicate any of these substances as a match in a search for another substance which was known not to be present. The SAM was used to successfully locate explosive components in fingerprints deposited on silicon windows. The potential of other spectral searching algorithms used in the field of remote sensing is considered, and the applicability of the methods tested in this work to other modes of spectral imaging is discussed.
NASA Astrophysics Data System (ADS)
Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.
2017-10-01
Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.
NASA Technical Reports Server (NTRS)
An, S. H.; Yao, K.
1986-01-01
Lattice algorithm has been employed in numerous adaptive filtering applications such as speech analysis/synthesis, noise canceling, spectral analysis, and channel equalization. In this paper the application to adaptive-array processing is discussed. The advantages are fast convergence rate as well as computational accuracy independent of the noise and interference conditions. The results produced by this technique are compared to those obtained by the direct matrix inverse method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, R.D.; Srinivasan, A.
1996-10-01
The machine learning program Progol was applied to the problem of forming the structure-activity relationship (SAR) for a set of compounds tested for carcinogenicity in rodent bioassays by the U.S. National Toxicology Program (NTP). Progol is the first inductive logic programming (ILP) algorithm to use a fully relational method for describing chemical structure in SARs, based on using atoms and their bond connectivities. Progol is well suited to forming SARs for carcinogenicity as it is designed to produce easily understandable rules (structural alerts) for sets of noncongeneric compounds. The Progol SAR method was tested by prediction of a set ofmore » compounds that have been widely predicted by other SAR methods (the compounds used in the NTP`s first round of carcinogenesis predictions). For these compounds no method (human or machine) was significantly more accurate than Progol. Progol was the most accurate method that did not use data from biological tests on rodents (however, the difference in accuracy is not significant). The Progol predictions were based solely on chemical structure and the results of tests for Salmonella mutagenicity. Using the full NTP database, the prediction accuracy of Progol was estimated to be 63% ({+-}3%) using 5-fold cross validation. A set of structural alerts for carcinogenesis was automatically generated and the chemical rationale for them investigated-these structural alerts are statistically independent of the Salmonella mutagenicity. Carcinogenicity is predicted for the compounds used in the NTP`s second round of carcinogenesis predictions. The results for prediction of carcinogenesis, taken together with the previous successful applications of predicting mutagenicity in nitroaromatic compounds, and inhibition of angiogenesis by suramin analogues, show that Progol has a role to play in understanding the SARs of cancer-related compounds. 29 refs., 2 figs., 4 tabs.« less
Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry
Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna
2015-01-01
Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717
Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.
Shen, Shijian; Nie, Xin; Zhang, Xinggan
2018-02-03
Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.
A VLSI implementation for synthetic aperture radar image processing
NASA Technical Reports Server (NTRS)
Premkumar, A.; Purviance, J.
1990-01-01
A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory.
NASA Astrophysics Data System (ADS)
Liu, Tao; Li, Ying; Cao, Ying; Shen, Qiang
2017-10-01
This paper proposes a model of dual-channel convolutional neural network (CNN) that is designed for change detection in SAR images, in an effort to acquire higher detection accuracy and lower misclassification rate. This network model contains two parallel CNN channels, which can extract deep features from two multitemporal SAR images. For comparison and validation, the proposed method is tested along with other change detection algorithms on both simulated SAR images and real-world SAR images captured by different sensors. The experimental results demonstrate that the presented method outperforms the state-of-the-art techniques by a considerable margin.
Significant wave heights from Sentinel-1 SAR: Validation and applications
NASA Astrophysics Data System (ADS)
Stopa, J. E.; Mouche, A.
2017-03-01
Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.
Localized landslide risk assessment with multi pass L band DInSAR analysis
NASA Astrophysics Data System (ADS)
Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo
2014-05-01
In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error even in the advanced time series techniques such as StaMPS/MTI. We tried to compensate with the algorithmic base together with the usage of high resolution LIDAR DEM. The target area of this study is the eastern part of Korean peninsula centered. In there, the landslide originated by the geomorphic factors such as high sloped topography and localized torrential down pour is critical issue. The surface deformations from error corrected two pass DInSAR and StaMPS/MTI are crossly compared and validated with the landslide triggering factors such as vegetation, slope and geological properties. The study will be further extended for the application of future SAR sensors by incorporating the dynamic analysis of topography to implement practical landslide forecasting scheme.
NASA Astrophysics Data System (ADS)
Fiaschi, Simone; Di Martire, Diego; Tessitore, Serena; Achilli, Vladimiro; Ahmed, Ahmed; Borgstrom, Sven; Calcaterra, Domenico; Fabris, Massimo; Ramondini, Massimo; Serpelloni, Enrico; Siniscalchi, Valeria; Floris, Mario
2015-04-01
Land subsidence affecting the Ravenna Municipality (Emilia Romagna Region, NE Italy) is one of the best example on how the exploitation of natural resources can affect the environment and the territory. In fact, the pumping of groundwater and the extraction of gas from both on and off-shore reservoirs, started in the 1950s, have caused a strong land subsidence affecting most of the Emilia Romagna territory but in particular the Adriatic Sea coastline near Ravenna. In such area the current subsidence rate, even if lower than in the past, can reach the -2cm/y. Local Authorities have monitored this phenomenon over the years with different techniques: spirit levelling, GPS surveys and, more recently, Interferometric Synthetic Aperture Radar (InSAR) techniques, confirming the critical situation of land subsidence risk. In this work, we present the comparison between the results obtained with two different DInSAR techniques applied to the study of the land subsidence in the Ravenna territory: the Small Baseline Subset (SBAS) and the Coherent Pixel Technique (CPT) techniques. The SBAS works on SARscape software and is based on the Berardino et al., 2002 algorithm. This technique relies on the combination of differential interferograms created from stacks of SAR image pairs that have small temporal and perpendicular baselines. Thanks to the application of several interferograms for every single image, it is possible to obtain high spatial coherence, high data density and more effective error reduction. This allows us to obtain mean velocity maps with good data density even over non-urbanized territories. For the CPT we used the SUBsoft processor based on the algorithm implemented by Mora et al., 2003. CPT is able to extract from a stack of differential interferograms the deformation evolution over wide areas during large time spans. The processing scheme is composed of three main steps: a) the generation of the best interferogram set among all the available images of the zone under study; b) the selection of the pixels with reliable phase within the employed interferograms and, c) their phase analysis to calculate, as the main result, their deformation time series within the observation period. For this study, different SAR images have been used: 25 meters ground resolution ERS 1/2 (1992-2000) and ENVISAT (2003-2010), and 3 meters ground resolution TerraSAR-X (2012-2014). The results obtained for each stack of images with the two techniques are validated and compared with the C-GPS time series of more than three benchmarks stations. The aim is to test the two InSAR techniques in the monitoring of ground settlements in low urbanized territories. Furthermore, we have investigated the advantages (data accuracy and density) of using SAR images with higher ground resolution.
NASA Astrophysics Data System (ADS)
Schott, John R.; Brown, Scott D.; Raqueno, Rolando V.; Gross, Harry N.; Robinson, Gary
1999-01-01
The need for robust image data sets for algorithm development and testing has prompted the consideration of synthetic imagery as a supplement to real imagery. The unique ability of synthetic image generation (SIG) tools to supply per-pixel truth allows algorithm writers to test difficult scenarios that would require expensive collection and instrumentation efforts. In addition, SIG data products can supply the user with `actual' truth measurements of the entire image area that are not subject to measurement error thereby allowing the user to more accurately evaluate the performance of their algorithm. Advanced algorithms place a high demand on synthetic imagery to reproduce both the spectro-radiometric and spatial character observed in real imagery. This paper describes a synthetic image generation model that strives to include the radiometric processes that affect spectral image formation and capture. In particular, it addresses recent advances in SIG modeling that attempt to capture the spatial/spectral correlation inherent in real images. The model is capable of simultaneously generating imagery from a wide range of sensors allowing it to generate daylight, low-light-level and thermal image inputs for broadband, multi- and hyper-spectral exploitation algorithms.
Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng
2009-12-01
A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.
Geocoding of AIRSAR/TOPSAR SAR Data
NASA Technical Reports Server (NTRS)
Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob
1996-01-01
It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to geocode the new AIRSAR/TOPSAR data is presented. As an example an AIRSAR/TOPSAR image acquired in 1994 is geocoded and evaluated in terms of geometric accuracy.
Tie Points Extraction for SAR Images Based on Differential Constraints
NASA Astrophysics Data System (ADS)
Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.
2018-04-01
Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.
Detecting and visualizing weak signatures in hyperspectral data
NASA Astrophysics Data System (ADS)
MacPherson, Duncan James
This thesis evaluates existing techniques for detecting weak spectral signatures from remotely sensed hyperspectral data. Algorithms are presented that successfully detect hard-to-find 'mystery' signatures in unknown cluttered backgrounds. The term 'mystery' is used to describe a scenario where the spectral target and background endmembers are unknown. Sub-Pixel analysis and background suppression are used to find deeply embedded signatures which can be less than 10% of the total signal strength. Existing 'mystery target' detection algorithms are derived and compared. Several techniques are shown to be superior both visually and quantitatively. Detection performance is evaluated using confidence metrics that are developed. A multiple algorithm approach is shown to improve detection confidence significantly. Although the research focuses on remote sensing applications, the algorithms presented can be applied to a wide variety of diverse fields such as medicine, law enforcement, manufacturing, earth science, food production, and astrophysics. The algorithms are shown to be general and can be applied to both the reflective and emissive parts of the electromagnetic spectrum. The application scope is a broad one and the final results open new opportunities for many specific applications including: land mine detection, pollution and hazardous waste detection, crop abundance calculations, volcanic activity monitoring, detecting diseases in food, automobile or airplane target recognition, cancer detection, mining operations, extracting galactic gas emissions, etc.
The InSAR Scientific Computing Environment
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Gurrola, Eric; Sacco, Gian Franco; Zebker, Howard
2012-01-01
We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements rigorously componentized by separating input/output operations from the processing engines. This allows greater flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnecessary modification when new data types and sensors are available. In addition, the components support provenance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy processing codes, have been adapted to assume a common reference track approach for all images acquired from nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products. With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from other platforms
Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model
NASA Astrophysics Data System (ADS)
Li, X. L.; Zhao, Q. H.; Li, Y.
2017-09-01
Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.
specsim: A Fortran-77 program for conditional spectral simulation in 3D
NASA Astrophysics Data System (ADS)
Yao, Tingting
1998-12-01
A Fortran 77 program, specsim, is presented for conditional spectral simulation in 3D domains. The traditional Fourier integral method allows generating random fields with a given covariance spectrum. Conditioning to local data is achieved by an iterative identification of the conditional phase information. A flowchart of the program is given to illustrate the implementation procedures of the program. A 3D case study is presented to demonstrate application of the program. A comparison with the traditional sequential Gaussian simulation algorithm emphasizes the advantages and drawbacks of the proposed algorithm.
Composite SAR imaging using sequential joint sparsity
NASA Astrophysics Data System (ADS)
Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.
2017-06-01
This paper investigates accurate and efficient ℓ1 regularization methods for generating synthetic aperture radar (SAR) images. Although ℓ1 regularization algorithms are already employed in SAR imaging, practical and efficient implementation in terms of real time imaging remain a challenge. Here we demonstrate that fast numerical operators can be used to robustly implement ℓ1 regularization methods that are as or more efficient than traditional approaches such as back projection, while providing superior image quality. In particular, we develop a sequential joint sparsity model for composite SAR imaging which naturally combines the joint sparsity methodology with composite SAR. Our technique, which can be implemented using standard, fractional, or higher order total variation regularization, is able to reduce the effects of speckle and other noisy artifacts with little additional computational cost. Finally we show that generalizing total variation regularization to non-integer and higher orders provides improved flexibility and robustness for SAR imaging.
NASA Astrophysics Data System (ADS)
Das, N. N.; Entekhabi, D.; Dunbar, R. S.; Colliander, A.; Kim, S.; Yueh, S. H.
2017-12-01
NASA's Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. However, on July 7th, 2015, the SMAP radar encountered an anomaly and is currently inoperable. During the SMAP post-radar phase, many ways are explored to recover the high-resolution soil moisture capability of the SMAP mission. One of the feasible approaches is to substitute the SMAP radar with other available SAR data. Sentinel 1A/1B SAR data is found more suitable for combining with the SMAP radiometer data because of almost similar orbit configuration that allow overlapping of their swaths with minimal time difference that is key to the SMAP active-passive algorithm. The Sentinel SDV mode acquisition also provide the co-pol and x-pol observations required for the SMAP active-passive algorithm. Some differences do exist between the SMAP SAR data and Sentinel SAR data, they are mainly: 1) Sentinel has C-band SAR and SMAP is L-band; 2) Sentinel has multi incidence angle within its swath, where as SMAP has single incidence angle; and 3) Sentinel swath width is 300 km as compare to SMAP 1000 km swath width. On any given day, the narrow swath width of the Sentinel observations will significantly reduce the spatial coverage of SMAP active-passive approach as compared to the SMAP swath coverage. The temporal resolution (revisit interval) is also degraded from 3-days to 12-days when Sentinel 1A/1B data is used. One bright side of using Sentinel 1A/1B data in the SMAP active-passive algorithm is the potential of obtaining the disaggregated brightness temperature and soil moisture at much finer spatial resolutions of 3 km and 9 km with optimal accuracy. The Beta version of SMAP-Sentinel Active-Passive high-resolution product will be made available to public in September 2017.
Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics
NASA Astrophysics Data System (ADS)
Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian
2016-04-01
Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides applications, which typically occur over vegetated scenarios largely affected by temporal and geometrical phenomena, the number of persistent scatterers (PSs) available is crucial. The better the density and reliability of PSs, the better the delineation and characterization of landslides. In this context, an advanced high-resolution processing based on the use of the Non-Local Interferometric SAR (NL-InSAR) filtering will be evaluated. Finally, since SAR systems are only sensitive to the detection of displacements in the line-of-sight (LOS) direction, the importance of projecting final PSI displacement products along the steepest gradient of the terrain slope will be put forward. The high-resolution COSMO-SkyMed sensor will be used for this application. The test site selected to evaluate the performance of the techniques proposed corresponds to the region of Northern Apennines (Italy), which is affected by both landslides and tectonics displacement phenomena. Sentinel-1 (for tectonics) and COSMO-SkyMed (for landslides) SAR data will be employed for the monitoring of the activity within the area of interest. Users of the DRM (Disaster Risk Management) community have been associated to the project, in order to, once validated the algorithms, further evaluate the proposed solution considering selected trial cases.
Solar Occultation Retrieval Algorithm Development
NASA Technical Reports Server (NTRS)
Lumpe, Jerry D.
2004-01-01
This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.
Violante-Carvalho, Nelson
2005-12-01
Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.
Investigating the creeping section of the San Andreas Fault using ALOS PALSAR interferometry
NASA Astrophysics Data System (ADS)
Agram, P. S.; Wortham, C.; Zebker, H. A.
2010-12-01
In recent years, time-series InSAR techniques have been used to study the temporal characteristics of various geophysical phenomena that produce surface deformation including earthquakes and magma migration in volcanoes. Conventional InSAR and time-series InSAR techniques have also been successfully used to study aseismic creep across faults in urban areas like the Northern Hayward Fault in California [1-3]. However, application of these methods to studying the time-dependent creep across the Central San Andreas Fault using C-band ERS and Envisat radar satellites has resulted in limited success. While these techniques estimate the average long-term far-field deformation rates reliably, creep measurement close to the fault (< 3-4 Km) is virtually impossible due to heavy decorrelation at C-band (6cm wavelength). Shanker and Zebker (2009) [4] used the Persistent Scatterer (PS) time-series InSAR technique to estimate a time-dependent non-uniform creep signal across a section of the creeping segment of the San Andreas Fault. However, the identified PS network was spatially very sparse (1 per sq. km) to study temporal characteristics of deformation of areas close to the fault. In this work, we use L-band (24cm wavelength) SAR data from the PALSAR instrument on-board the ALOS satellite, launched by Japanese Aerospace Exploration Agency (JAXA) in 2006, to study the temporal characteristics of creep across the Central San Andreas Fault. The longer wavelength at L-band improves observed correlation over the entire scene which significantly increased the ground area coverage of estimated deformation in each interferogram but at the cost of decreased sensitivity of interferometric phase to surface deformation. However, noise levels in our deformation estimates can be decreased by combining information from multiple SAR acquisitions using time-series InSAR techniques. We analyze 13 SAR acquisitions spanning the time-period from March 2007 to Dec 2009 using the Short Baseline Subset Analysis (SBAS) time-series InSAR technique [3]. We present detailed comparisons of estimated time-series of fault creep as a function of position along the fault including the locked section around Parkfield, CA. We also present comparisons between the InSAR time-series and GPS network observations in the Parkfield region. During these three years of observation, the average fault creep is estimated to be 35 mm/yr. References [1] Bürgmann,R., E. Fielding and, J. Sukhatme, Slip along the Hayward fault, California, estimated from space-based synthetic aperture radar interferometry, Geology,26, 559-562, 1998. [2] Ferretti, A., C. Prati and F. Rocca, Permanent Scatterers in SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 39, 8-20, 2001. [3] Lanari, R.,F. Casu, M. Manzo, and P. Lundgren, Application of SBAS D- InSAR technique to fault creep: A case study of the Hayward Fault, California. Remote Sensing of Environment, 109(1), 20-28, 2007. [4] Shanker, A. P., and H. Zebker, Edgelist phase unwrapping algorithm for time-series InSAR. J. Opt. Soc. Am. A, 37(4), 2010.
NASA Astrophysics Data System (ADS)
D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.
2017-12-01
Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.
Polarimetric Interferometry - Remote Sensing Applications
2007-02-01
This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it
New Ground Truth Capability from InSAR Time Series Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, S; Vincent, P; Yang, D
2005-07-13
We demonstrate that next-generation interferometric synthetic aperture radar (InSAR) processing techniques applied to existing data provide rich InSAR ground truth content for exploitation in seismic source identification. InSAR time series analyses utilize tens of interferograms and can be implemented in different ways. In one such approach, conventional InSAR displacement maps are inverted in a final post-processing step. Alternatively, computationally intensive data reduction can be performed with specialized InSAR processing algorithms. The typical final result of these approaches is a synthesized set of cumulative displacement maps. Examples from our recent work demonstrate that these InSAR processing techniques can provide appealing newmore » ground truth capabilities. We construct movies showing the areal and temporal evolution of deformation associated with previous nuclear tests. In other analyses, we extract time histories of centimeter-scale surface displacement associated with tunneling. The potential exists to identify millimeter per year surface movements when sufficient data exists for InSAR techniques to isolate and remove phase signatures associated with digital elevation model errors and the atmosphere.« less
NASA Astrophysics Data System (ADS)
Chen, Yi; Ma, Yong; Lu, Zheng; Peng, Bei; Chen, Qin
2011-08-01
In the field of anti-illicit drug applications, many suspicious mixture samples might consist of various drug components—for example, a mixture of methamphetamine, heroin, and amoxicillin—which makes spectral identification very difficult. A terahertz spectroscopic quantitative analysis method using an adaptive range micro-genetic algorithm with a variable internal population (ARVIPɛμGA) has been proposed. Five mixture cases are discussed using ARVIPɛμGA driven quantitative terahertz spectroscopic analysis in this paper. The devised simulation results show agreement with the previous experimental results, which suggested that the proposed technique has potential applications for terahertz spectral identifications of drug mixture components. The results show agreement with the results obtained using other experimental and numerical techniques.
Observations with the ROWS instrument during the Grand Banks calibration/validation experiments
NASA Technical Reports Server (NTRS)
Vandemark, D.; Chapron, B.
1994-01-01
As part of a global program to validate the ocean surface sensors on board ERS-1, a joint experiment on the Grand Banks of Newfoundland was carried out in Nov. 1991. The principal objective was to provide a field validation of ERS-1 Synthetic Aperture Radar (SAR) measurement of ocean surface structure. The NASA-P3 aircraft measurements made during this experiment provide independent measurements of the ocean surface along the validation swath. The Radar Ocean Wave Spectrometer (ROWS) is a radar sensor designed to measure direction of the long wave components using spectral analysis of the tilt induced radar backscatter modulation. This technique greatly differs from SAR and thus, provides a unique set of measurements for use in evaluating SAR performance. Also, an altimeter channel in the ROWS gives simultaneous information on the surface wave height and radar mean square slope parameter. The sets of geophysical parameters (wind speed, significant wave height, directional spectrum) are used to study the SAR's ability to accurately measure ocean gravity waves. The known distortion imposed on the true directional spectrum by the SAR imaging mechanism is discussed in light of the direct comparisons between ERS-1 SAR, airborne Canadian Center for Remote Sensing (CCRS) SAR, and ROWS spectra and the use of the nonlinear ocean SAR transform.
NASA Astrophysics Data System (ADS)
Mirapeix, J.; García-Allende, P. B.; Cobo, A.; Conde, O.; López-Higuera, J. M.
2007-07-01
A new spectral processing technique designed for its application in the on-line detection and classification of arc-welding defects is presented in this paper. A non-invasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed by means of two consecutive stages. A compression algorithm is first applied to the data allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in a previous paper, giving rise to an improvement in the performance of the monitoring system.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator); Knowlton, D. J.; Dean, M. E.
1981-01-01
Supervised and cluster block training statistics were used to analyze the thematic mapper simulation MSS data (both 1979 and 1980 data sets). Cover information classes identified on SAR imagery include: hardwood, pine, mixed pine hardwood, clearcut, pasture, crops, emergent crops, bare soil, urban, and water. Preliminary analysis of the HH and HV polarized SAR data indicate a high variance associated with each information class except for water and bare soil. The large variance for most spectral classes suggests that while the means might be statistically separable, an overlap may exist between the classes which could introduce a significant classification error. The quantitative values of many cover types are much larger on the HV polarization than on the HH, thereby indicating the relative nature of the digitized data values. The mean values of the spectral classes in the areas with larger look angles are greater than the means of the same cover type in other areas having steeper look angles. Difficulty in accurately overlaying the dual polarization of the SAR data was resolved.
Simplification of multiple Fourier series - An example of algorithmic approach
NASA Technical Reports Server (NTRS)
Ng, E. W.
1981-01-01
This paper describes one example of multiple Fourier series which originate from a problem of spectral analysis of time series data. The example is exercised here with an algorithmic approach which can be generalized for other series manipulation on a computer. The generalized approach is presently pursued towards applications to a variety of multiple series and towards a general purpose algorithm for computer algebra implementation.
NASA Astrophysics Data System (ADS)
Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe
2016-11-01
For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.
An ice-motion tracking system at the Alaska SAR facility
NASA Technical Reports Server (NTRS)
Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross
1990-01-01
An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.
Graph Matching for the Registration of Persistent Scatterers to Optical Oblique Imagery
NASA Astrophysics Data System (ADS)
Schack, L.; Soergel, U.; Heipke, C.
2016-06-01
Matching Persistent Scatterers (PS) to airborne optical imagery is one possibility to augment applications and deepen the understanding of SAR processing and products. While recently this data registration task was done with PS and optical nadir images the alternatively available optical oblique imagery is mostly neglected. Yet, the sensing geometry of oblique images is very similar in terms of viewing direction with respect to SAR.We exploit the additional information coming with these optical sensors to assign individual PS to single parts of buildings. The key idea is to incorporate topology information which is derived by grouping regularly aligned PS at facades and use it together with a geometry based measure in order to establish a consistent and meaningful matching result. We formulate this task as an optimization problem and derive a graph matching based algorithm with guaranteed convergence in order to solve it. Two exemplary case studies show the plausibility of the presented approach.
Matched-filter algorithm for subpixel spectral detection in hyperspectral image data
NASA Astrophysics Data System (ADS)
Borough, Howard C.
1991-11-01
Hyperspectral imagery, spatial imagery with associated wavelength data for every pixel, offers a significant potential for improved detection and identification of certain classes of targets. The ability to make spectral identifications of objects which only partially fill a single pixel (due to range or small size) is of considerable interest. Multiband imagery such as Landsat's 5 and 7 band imagery has demonstrated significant utility in the past. Hyperspectral imaging systems with hundreds of spectral bands offer improved performance. To explore the application of differentpixel spectral detection algorithms a synthesized set of hyperspectral image data (hypercubes) was generated utilizing NASA earth resources and other spectral data. The data was modified using LOWTRAN 7 to model the illumination, atmospheric contributions, attenuations and viewing geometry to represent a nadir view from 10,000 ft. altitude. The base hypercube (HC) represented 16 by 21 spatial pixels with 101 wavelength samples from 0.5 to 2.5 micrometers for each pixel. Insertions were made into the base data to provide random location, random pixel percentage, and random material. Fifteen different hypercubes were generated for blind testing of candidate algorithms. An algorithm utilizing a matched filter in the spectral dimension proved surprisingly good yielding 100% detections for pixels filled greater than 40% with a standard camouflage paint, and a 50% probability of detection for pixels filled 20% with the paint, with no false alarms. The false alarm rate as a function of the number of spectral bands in the range from 101 to 12 bands was measured and found to increase from zero to 50% illustrating the value of a large number of spectral bands. This test was on imagery without system noise; the next step is to incorporate typical system noise sources.
Fast sparse Raman spectral unmixing for chemical fingerprinting and quantification
NASA Astrophysics Data System (ADS)
Yaghoobi, Mehrdad; Wu, Di; Clewes, Rhea J.; Davies, Mike E.
2016-10-01
Raman spectroscopy is a well-established spectroscopic method for the detection of condensed phase chemicals. It is based on scattered light from exposure of a target material to a narrowband laser beam. The information generated enables presumptive identification from measuring correlation with library spectra. Whilst this approach is successful in identification of chemical information of samples with one component, it is more difficult to apply to spectral mixtures. The capability of handling spectral mixtures is crucial for defence and security applications as hazardous materials may be present as mixtures due to the presence of degradation, interferents or precursors. A novel method for spectral unmixing is proposed here. Most modern decomposition techniques are based on the sparse decomposition of mixture and the application of extra constraints to preserve the sum of concentrations. These methods have often been proposed for passive spectroscopy, where spectral baseline correction is not required. Most successful methods are computationally expensive, e.g. convex optimisation and Bayesian approaches. We present a novel low complexity sparsity based method to decompose the spectra using a reference library of spectra. It can be implemented on a hand-held spectrometer in near to real-time. The algorithm is based on iteratively subtracting the contribution of selected spectra and updating the contribution of each spectrum. The core algorithm is called fast non-negative orthogonal matching pursuit, which has been proposed by the authors in the context of nonnegative sparse representations. The iteration terminates when the maximum number of expected chemicals has been found or the residual spectrum has a negligible energy, i.e. in the order of the noise level. A backtracking step removes the least contributing spectrum from the list of detected chemicals and reports it as an alternative component. This feature is particularly useful in detection of chemicals with small contributions, which are normally not detected. The proposed algorithm is easily reconfigurable to include new library entries and optional preferential threat searches in the presence of predetermined threat indicators. Under Ministry of Defence funding, we have demonstrated the algorithm for fingerprinting and rough quantification of the concentration of chemical mixtures using a set of reference spectral mixtures. In our experiments, the algorithm successfully managed to detect the chemicals with concentrations below 10 percent. The running time of the algorithm is in the order of one second, using a single core of a desktop computer.
Innovation Technologies and Applications for Coastal Archaeological sites
NASA Astrophysics Data System (ADS)
Di Iorio, A.; Biliouris, D.; Guzinski, R.; Hansen, L. B.; Bagni, M.
2015-04-01
Innovation Technologies and Applications for Coastal Archaeological sites project (ITACA) aims to develop and test a management system for underwater archaeological sites in coastal regions. The discovering and monitoring service will use innovative satellite remote sensing techniques combined with image processing algorithms. The project will develop a set of applications integrated in a system pursuing the following objectives: - Search and location of ancient ship wrecks; - Monitoring of ship wrecks, ruins and historical artefacts that are now submerged; - Integration of resulting search and monitoring data with on-site data into a management tool for underwater sites; - Demonstration of the system's suitability for a service. High resolution synthetic aperture radar (TerraSAR-X, Cosmo-SkyMed) and multispectral satellite data (WorldView) will be combined to derive the relative bathymetry of the bottom of the sea up to the depth of 50 meters. The resulting data fusion will be processed using shape detection algorithms specific for archaeological items. The new algorithms, the physical modelling and the computational capabilities will be integrated into the Web-GIS, together with data recorded from surface (2D and 3D modelling) and from underwater surveys. Additional specific archaeological layers will be included into the WebGIS to facilitate the object identification through shape detection techniques and mapping. The system will be verified and validated through an extensive onground (sea) campaign carried out with both cutting edge technologies (side-scan sonar, multi beam echo sounder) and traditional means (professional scuba divers) in two test sites in Italy and Greece. The project is leaded by Planetek Hellas E.P.E. and include ALMA Sistemi sas for the "shape detection" and dissemination tasks, DHI-GRAS and Kell Srl for multispectral and SAR bathymetry. The complete consortium is composed by eleven partners and the project Kick-Off has been held in January 2014. The present contribution aims to present the project research achievements and finding at the mid-term review.
Onboard FPGA-based SAR processing for future spaceborne systems
NASA Technical Reports Server (NTRS)
Le, Charles; Chan, Samuel; Cheng, Frank; Fang, Winston; Fischman, Mark; Hensley, Scott; Johnson, Robert; Jourdan, Michael; Marina, Miguel; Parham, Bruce;
2004-01-01
We present a real-time high-performance and fault-tolerant FPGA-based hardware architecture for the processing of synthetic aperture radar (SAR) images in future spaceborne system. In particular, we will discuss the integrated design approach, from top-level algorithm specifications and system requirements, design methodology, functional verification and performance validation, down to hardware design and implementation.
Theory and measure of certain image norms in SAR
NASA Technical Reports Server (NTRS)
Raney, R. K.
1984-01-01
The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms.
Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.
2017-12-01
In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.
A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT
NASA Astrophysics Data System (ADS)
Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo
2016-11-01
Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.
NASA Technical Reports Server (NTRS)
Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2001-01-01
Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.
GIAnT - Generic InSAR Analysis Toolbox
NASA Astrophysics Data System (ADS)
Agram, P.; Jolivet, R.; Riel, B. V.; Simons, M.; Doin, M.; Lasserre, C.; Hetland, E. A.
2012-12-01
We present a computing framework for studying the spatio-temporal evolution of ground deformation from interferometric synthetic aperture radar (InSAR) data. Several open-source tools including Repeat Orbit Interferometry PACkage (ROI-PAC) and InSAR Scientific Computing Environment (ISCE) from NASA-JPL, and Delft Object-oriented Repeat Interferometric Software (DORIS), have enabled scientists to generate individual interferograms from raw radar data with relative ease. Numerous computational techniques and algorithms that reduce phase information from multiple interferograms to a deformation time-series have been developed and verified over the past decade. However, the sharing and direct comparison of products from multiple processing approaches has been hindered by - 1) absence of simple standards for sharing of estimated time-series products, 2) use of proprietary software tools with license restrictions and 3) the closed source nature of the exact implementation of many of these algorithms. We have developed this computing framework to address all of the above issues. We attempt to take the first steps towards creating a community software repository for InSAR time-series analysis. To date, we have implemented the short baseline subset algorithm (SBAS), NSBAS and multi-scale interferometric time-series (MInTS) in this framework and the associated source code is included in the GIAnT distribution. A number of the associated routines have been optimized for performance and scalability with large data sets. Some of the new features in our processing framework are - 1) the use of daily solutions from continuous GPS stations to correct for orbit errors, 2) the use of meteorological data sets to estimate the tropospheric delay screen and 3) a data-driven bootstrapping approach to estimate the uncertainties associated with estimated time-series products. We are currently working on incorporating tidal load corrections for individual interferograms and propagation of noise covariance models through the processing chain for robust estimation of uncertainties in the deformation estimates. We will demonstrate the ease of use of our framework with results ranging from regional scale analysis around Long Valley, CA and Parkfield, CA to continental scale analysis in Western South America. We will also present preliminary results from a new time-series approach that simultaneously estimates deformation over the complete spatial domain at all time epochs on a distributed computing platform. GIAnT has been developed entirely using open source tools and uses Python as the underlying platform. We build on the extensive numerical (NumPy) and scientific (SciPy) computing Python libraries to develop an object-oriented, flexible and modular framework for time-series InSAR applications. The toolbox is currently configured to work with outputs from ROI-PAC, ISCE and DORIS, but can easily be extended to support products from other SAR/InSAR processors. The toolbox libraries include support for hierarchical data format (HDF5) memory mapped files, parallel processing with Python's multi-processing module and support for many convex optimization solvers like CSDP, CVXOPT etc. An extensive set of routines to deal with ASCII and XML files has also been included for controlling the processing parameters.
Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment
NASA Technical Reports Server (NTRS)
Tilley, David G.
1991-01-01
Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.
Reducing Speckle In One-Look SAR Images
NASA Technical Reports Server (NTRS)
Nathan, K. S.; Curlander, J. C.
1990-01-01
Local-adaptive-filter algorithm incorporated into digital processing of synthetic-aperture-radar (SAR) echo data to reduce speckle in resulting imagery. Involves use of image statistics in vicinity of each picture element, in conjunction with original intensity of element, to estimate brightness more nearly proportional to true radar reflectance of corresponding target. Increases ratio of signal to speckle noise without substantial degradation of resolution common to multilook SAR images. Adapts to local variations of statistics within scene, preserving subtle details. Computationally simple. Lends itself to parallel processing of different segments of image, making possible increased throughput.
Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks.
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2008-10-21
A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A noninvasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system.
Optimal Doppler centroid estimation for SAR data from a quasi-homogeneous source
NASA Technical Reports Server (NTRS)
Jin, M. Y.
1986-01-01
This correspondence briefly describes two Doppler centroid estimation (DCE) algorithms, provides a performance summary for these algorithms, and presents the experimental results. These algorithms include that of Li et al. (1985) and a newly developed one that is optimized for quasi-homogeneous sources. The performance enhancement achieved by the optimal DCE algorithm is clearly demonstrated by the experimental results.
NASA Astrophysics Data System (ADS)
Muckenhuber, Stefan; Sandven, Stein
2017-04-01
An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based on the combination of feature-tracking and pattern-matching. A computational efficient feature-tracking algorithm produces an initial drift estimate and limits the search area for the pattern-matching, that provides small to medium scale drift adjustments and normalised cross correlation values as quality measure. The algorithm is designed to utilise the respective advantages of the two approaches and allows drift calculation at user defined locations. The pre-processing of the Sentinel-1 data has been optimised to retrieve a feature distribution that depends less on SAR backscatter peak values. A recommended parameter set for the algorithm has been found using a representative image pair over Fram Strait and 350 manually derived drift vectors as validation. Applying the algorithm with this parameter setting, sea ice drift retrieval with a vector spacing of 8 km on Sentinel-1 images covering 400 km x 400 km, takes less than 3.5 minutes on a standard 2.7 GHz processor with 8 GB memory. For validation, buoy GPS data, collected in 2015 between 15th January and 22nd April and covering an area from 81° N to 83.5° N and 12° E to 27° E, have been compared to calculated drift results from 261 corresponding Sentinel-1 image pairs. We found a logarithmic distribution of the error with a peak at 300 m. All software requirements necessary for applying the presented sea ice drift algorithm are open-source to ensure free implementation and easy distribution.
Two-step single slope/SAR ADC with error correction for CMOS image sensor.
Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin
2014-01-01
Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μ m(2) · cycles/sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, D.W.; Murphy, M.; Rimmel, G.
1994-08-01
NATO and former Warsaw Pact nations have agreed to allow overflights of their countries in the interest of easing world tension. The United States has decided to implement two C-135 aircraft with a Synthetic Aperture Radar (SAR) that has a 3-meter resolution. This work is being sponsored by the Defense Nuclear Agency (DNA) and will be operational in Fall 1995. Since the SAR equipment must be exportable to foreign nations, a 20-year-old UPD-8 analog SAR system was selected as the front-end and refurbished for this application by Loral Defense Systems. Data processing is being upgraded to a currently exportable digitalmore » design by Sandia National Laboratories. Amplitude and phase histories will be collected during these overflights and digitized on VHS cassettes. Ground stations will use reduction algorithms to process the data and convert it to magnitude-detected images for member nations. System Planning Corporation is presently developing a portable ground station for use on the demonstration flights. Aircraft integration into the C-135 aircraft is being done by the Air Force at Wright-Patterson AFB, Ohio.« less
Shao, Zhenfeng; Zhang, Linjing
2016-01-01
Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378
SBAS-InSAR analysis of surface deformation at Mauna Loa and Kilauea volcanoes in Hawaii
Casu, F.; Lanari, Riccardo; Sansosti, E.; Solaro, G.; Tizzani, Pietro; Poland, M.; Miklius, Asta
2009-01-01
We investigate the deformation of Mauna Loa and K??lauea volcanoes, Hawai'i, by exploiting the advanced differential Synthetic Aperture Radar Interferometry (InSAR) technique referred to as the Small BAseline Subset (SBAS) algorithm. In particular, we present time series of line-of-sight (LOS) displacements derived from SAR data acquired by the ASAR instrument, on board the ENVISAT satellite, from the ascending (track 93) and descending (track 429) orbits between 2003 and 2008. For each coherent pixel of the radar images we compute time-dependent surface displacements as well as the average LOS deformation rate. Our results quantify, in space and time, the complex deformation of Mauna Loa and K??lauea volcanoes. The derived InSAR measurements are compared to continuous GPS data to asses the quality of the SBAS-InSAR products. ??2009 IEEE.
NASA Astrophysics Data System (ADS)
Xie, ChengJun; Xu, Lin
2008-03-01
This paper presents a new algorithm based on mixing transform to eliminate redundancy, SHIRCT and subtraction mixing transform is used to eliminate spectral redundancy, 2D-CDF(2,2)DWT to eliminate spatial redundancy, This transform has priority in hardware realization convenience, since it can be fully implemented by add and shift operation. Its redundancy elimination effect is better than (1D+2D)CDF(2,2)DWT. Here improved SPIHT+CABAC mixing compression coding algorithm is used to implement compression coding. The experiment results show that in lossless image compression applications the effect of this method is a little better than the result acquired using (1D+2D)CDF(2,2)DWT+improved SPIHT+CABAC, still it is much better than the results acquired by JPEG-LS, WinZip, ARJ, DPCM, the research achievements of a research team of Chinese Academy of Sciences, NMST and MST. Using hyper-spectral image Canal of American JPL laboratory as the data set for lossless compression test, on the average the compression ratio of this algorithm exceeds the above algorithms by 42%,37%,35%,30%,16%,13%,11% respectively.
Exploratory Item Classification Via Spectral Graph Clustering
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2017-01-01
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476
Cassani, Raymundo; Falk, Tiago H.; Fraga, Francisco J.; Kanda, Paulo A. M.; Anghinah, Renato
2014-01-01
Over the last decade, electroencephalography (EEG) has emerged as a reliable tool for the diagnosis of cortical disorders such as Alzheimer's disease (AD). EEG signals, however, are susceptible to several artifacts, such as ocular, muscular, movement, and environmental. To overcome this limitation, existing diagnostic systems commonly depend on experienced clinicians to manually select artifact-free epochs from the collected multi-channel EEG data. Manual selection, however, is a tedious and time-consuming process, rendering the diagnostic system “semi-automated.” Notwithstanding, a number of EEG artifact removal algorithms have been proposed in the literature. The (dis)advantages of using such algorithms in automated AD diagnostic systems, however, have not been documented; this paper aims to fill this gap. Here, we investigate the effects of three state-of-the-art automated artifact removal (AAR) algorithms (both alone and in combination with each other) on AD diagnostic systems based on four different classes of EEG features, namely, spectral, amplitude modulation rate of change, coherence, and phase. The three AAR algorithms tested are statistical artifact rejection (SAR), blind source separation based on second order blind identification and canonical correlation analysis (BSS-SOBI-CCA), and wavelet enhanced independent component analysis (wICA). Experimental results based on 20-channel resting-awake EEG data collected from 59 participants (20 patients with mild AD, 15 with moderate-to-severe AD, and 24 age-matched healthy controls) showed the wICA algorithm alone outperforming other enhancement algorithm combinations across three tasks: diagnosis (control vs. mild vs. moderate), early detection (control vs. mild), and disease progression (mild vs. moderate), thus opening the doors for fully-automated systems that can assist clinicians with early detection of AD, as well as disease severity progression assessment. PMID:24723886
Sea ice type dynamics in the Arctic based on Sentinel-1 Data
NASA Astrophysics Data System (ADS)
Babiker, Mohamed; Korosov, Anton; Park, Jeong-Won
2017-04-01
Sea ice observation from satellites has been carried out for more than four decades and is one of the most important applications of EO data in operational monitoring as well as in climate change studies. Several sensors and retrieval methods have been developed and successfully utilized to measure sea ice area, concentration, drift, type, thickness, etc [e.g. Breivik et al., 2009]. Today operational sea ice monitoring and analysis is fully dependent on use of satellite data. However, new and improved satellite systems, such as multi-polarisation Synthetic Apperture Radar (SAR), require further studies to develop more advanced and automated sea ice monitoring methods. In addition, the unprecedented volume of data available from recently launched Sentinel missions provides both challenges and opportunities for studying sea ice dynamics. In this study we investigate sea ice type dynamics in the Fram strait based on Sentinel-1 A, B SAR data. Series of images for the winter season are classified into 4 ice types (young ice, first year ice, multiyear ice and leads) using the new algorithm developed by us for sea ice classification, which is based on segmentation, GLCM calculation, Haralick texture feature extraction, unsupervised and supervised classifications and Support Vector Machine (SVM) [Zakhvatkina et al., 2016; Korosov et al., 2016]. This algorithm is further improved by applying thermal and scalloping noise removal [Park et al. 2016]. Sea ice drift is retrieved from the same series of Sentinel-1 images using the newly developed algorithm based on combination of feature tracking and pattern matching [Mukenhuber et al., 2016]. Time series of these two products (sea ice type and sea ice drift) are combined in order to study sea ice deformation processes at small scales. Zones of sea ice convergence and divergence identified from sea ice drift are compared with ridges and leads identified from texture features. That allows more specific interpretation of SAR imagery and more accurate automatic classification. In addition, the map of four ice types calculated using the texture features from one SAR image is propagated forward using the sea ice drift vectors. The propagated ice type is compared with ice type derived from the next image. The comparison identifies changes in ice type which occurred during drift and allows to reduce uncertainties in sea ice type calculation.
NASA Astrophysics Data System (ADS)
Xing, X.; Yuan, Z.; Chen, L. F.; Yu, X. Y.; Xiao, L.
2018-04-01
The stability control is one of the major technical difficulties in the field of highway subgrade construction engineering. Building deformation model is a crucial step for InSAR time series deformation monitoring. Most of the InSAR deformation models for deformation monitoring are pure empirical mathematical models, without considering the physical mechanism of the monitored object. In this study, we take rheology into consideration, inducing rheological parameters into traditional InSAR deformation models. To assess the feasibility and accuracy for our new model, both simulation and real deformation data over Lungui highway (a typical highway built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. In order to solve the unknows of the non-linear rheological model, three algorithms: Gauss-Newton (GN), Levenberg-Marquarat (LM), and Genetic Algorithm (GA), are utilized and compared to estimate the unknown parameters. Considering both the calculation efficiency and accuracy, GA is chosen as the final choice for the new model in our case study. Preliminary real data experiment is conducted with use of 17 TerraSAR-X Stripmap images (with a 3-m resolution). With the new deformation model and GA aforementioned, the unknown rheological parameters over all the high coherence points are obtained and the LOS deformation (the low-pass component) sequences are generated.
Cutrale, Francesco; Salih, Anya; Gratton, Enrico
2013-01-01
The phasor global analysis algorithm is common for fluorescence lifetime applications, but has only been recently proposed for spectral analysis. Here the phasor representation and fingerprinting is exploited in its second harmonic to determine the number and spectra of photo-activated states as well as their conversion dynamics. We follow the sequence of photo-activation of proteins over time by rapidly collecting multiple spectral images. The phasor representation of the cumulative images provides easy identification of the spectral signatures of each photo-activatable protein. PMID:24040513
NASA Astrophysics Data System (ADS)
Dondurur, Mehmet
The primary objective of this study was to determine the degree to which modern SAR systems can be used to obtain information about the Earth's vegetative resources. Information obtainable from microwave synthetic aperture radar (SAR) data was compared with that obtainable from LANDSAT-TM and SPOT data. Three hypotheses were tested: (a) Classification of land cover/use from SAR data can be accomplished on a pixel-by-pixel basis with the same overall accuracy as from LANDSAT-TM and SPOT data. (b) Classification accuracy for individual land cover/use classes will differ between sensors. (c) Combining information derived from optical and SAR data into an integrated monitoring system will improve overall and individual land cover/use class accuracies. The study was conducted with three data sets for the Sleeping Bear Dunes test site in the northwestern part of Michigan's lower peninsula, including an October 1982 LANDSAT-TM scene, a June 1989 SPOT scene and C-, L- and P-Band radar data from the Jet Propulsion Laboratory AIRSAR. Reference data were derived from the Michigan Resource Information System (MIRIS) and available color infrared aerial photos. Classification and rectification of data sets were done using ERDAS Image Processing Programs. Classification algorithms included Maximum Likelihood, Mahalanobis Distance, Minimum Spectral Distance, ISODATA, Parallelepiped, and Sequential Cluster Analysis. Classified images were rectified as necessary so that all were at the same scale and oriented north-up. Results were analyzed with contingency tables and percent correctly classified (PCC) and Cohen's Kappa (CK) as accuracy indices using CSLANT and ImagePro programs developed for this study. Accuracy analyses were based upon a 1.4 by 6.5 km area with its long axis east-west. Reference data for this subscene total 55,770 15 by 15 m pixels with sixteen cover types, including seven level III forest classes, three level III urban classes, two level II range classes, two water classes, one wetland class and one agriculture class. An initial analysis was made without correcting the 1978 MIRIS reference data to the different dates of the TM, SPOT and SAR data sets. In this analysis, highest overall classification accuracy (PCC) was 87% with the TM data set, with both SPOT and C-Band SAR at 85%, a difference statistically significant at the 0.05 level. When the reference data were corrected for land cover change between 1978 and 1991, classification accuracy with the C-Band SAR data increased to 87%. Classification accuracy differed from sensor to sensor for individual land cover classes, Combining sensors into hypothetical multi-sensor systems resulted in higher accuracies than for any single sensor. Combining LANDSAT -TM and C-Band SAR yielded an overall classification accuracy (PCC) of 92%. The results of this study indicate that C-Band SAR data provide an acceptable substitute for LANDSAT-TM or SPOT data when land cover information is desired of areas where cloud cover obscures the terrain. Even better results can be obtained by integrating TM and C-Band SAR data into a multi-sensor system.
Automatic SAR/optical cross-matching for GCP monograph generation
NASA Astrophysics Data System (ADS)
Nutricato, Raffaele; Morea, Alberto; Nitti, Davide Oscar; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio; Chiaradia, Maria Teresa
2016-10-01
Ground Control Points (GCP), automatically extracted from Synthetic Aperture Radar (SAR) images through 3D stereo analysis, can be effectively exploited for an automatic orthorectification of optical imagery if they can be robustly located in the basic optical images. The present study outlines a SAR/Optical cross-matching procedure that allows a robust alignment of radar and optical images, and consequently to derive automatically the corresponding sub-pixel position of the GCPs in the optical image in input, expressed as fractional pixel/line image coordinates. The cross-matching in performed in two subsequent steps, in order to gradually gather a better precision. The first step is based on the Mutual Information (MI) maximization between optical and SAR chips while the last one uses the Normalized Cross-Correlation as similarity metric. This work outlines the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight stereo images with different beams and passes are available. The experimental analysis involves different satellite images, in order to evaluate the performances of the algorithm w.r.t. the optical spatial resolution. An assessment of the performances of the algorithm has been carried out, and errors are computed by measuring the distance between the GCP pixel/line position in the optical image, automatically estimated by the tool, and the "true" position of the GCP, visually identified by an expert user in the optical images.
Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis
NASA Astrophysics Data System (ADS)
Zhong, Ming
In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.
Future of synthetic aperture radar
NASA Technical Reports Server (NTRS)
Barath, F. T.
1978-01-01
The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.
Film grain synthesis and its application to re-graining
NASA Astrophysics Data System (ADS)
Schallauer, Peter; Mörzinger, Roland
2006-01-01
Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.
Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach
NASA Astrophysics Data System (ADS)
Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai
2006-01-01
With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.
NASA Astrophysics Data System (ADS)
Ma, Suodong; Pan, Qiao; Shen, Weimin
2016-09-01
As one kind of light source simulation devices, spectrally tunable light sources are able to generate specific spectral shape and radiant intensity outputs according to different application requirements, which have urgent demands in many fields of the national economy and the national defense industry. Compared with the LED-type spectrally tunable light source, the one based on a DMD-convex grating Offner configuration has advantages of high spectral resolution, strong digital controllability, high spectrum synthesis accuracy, etc. As a key link of the above type light source to achieve target spectrum outputs, spectrum synthesis algorithm based on spectrum matching is therefore very important. An improved spectrum synthesis algorithm based on linear least square initialization and Levenberg-Marquardt iterative optimization is proposed in this paper on the basis of in-depth study of the spectrum matching principle. The effectiveness of the proposed method is verified by a series of simulations and experimental works.
Alaska SAR Facility (ASF5) SAR Communications (SARCOM) Data Compression System
NASA Technical Reports Server (NTRS)
Mango, Stephen A.
1989-01-01
The real-time operational requirements for SARCOM translation into a high speed image data handler and processor to achieve the desired compression ratios and the selection of a suitable image data compression technique with as low as possible fidelity (information) losses and which can be implemented in an algorithm placing a relatively low arithmetic load on the system are described.
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
A discussion on the use of X-band SAR images in marine applications
NASA Astrophysics Data System (ADS)
Schiavulli, D.; Sorrentino, A.; Migliaccio, M.
2012-10-01
The Synthetic Aperture Radar (SAR) is able to generate images of the sea surface that can be exploited to extract geophysical information of environmental interest. In order to enhance the operational use of these data in the marine applications the revisit time is to be improved. This goal can be achieved by using SAR virtual or real constellations and/or exploiting new antenna technologies that allow huge swath and fine resolution. Within this framework, the presence of the Italian and German X-band SAR constellations is of special interest while the new SAR technologies are not nowadays operated. Although SAR images are considered to be independent of weather conditions, this is only partially true at higher frequencies, e.g. X-band. In fact, observations can present signature corresponding to high intensity precipitating clouds, i.e. rain cells. Further, ScanSAR images may be characterized by the presence of processing artifacts, called scalloping, that corrupt image interpretation. In this paper we review these key facts that are at the basis of an effective use of X-band SAR images for marine applications.
A high resolution InSAR topographic reconstruction research in urban area based on TerraSAR-X data
NASA Astrophysics Data System (ADS)
Qu, Feifei; Qin, Zhang; Zhao, Chaoying; Zhu, Wu
2011-10-01
Aiming at the problems of difficult unwrapping and phase noise in InSAR DEM reconstruction, especially for the high-resolution TerraSAR-X data, this paper improved the height reconstruction algorithm in view of "remove-restore" based on external coarse DEM and multi-interferogram processing, proposed a height calibration method based on CR+GPS data. Several measures have been taken for urban high resolution DEM reconstruction with TerraSAR data. The SAR interferometric pairs with long spatial and short temporal baselines are served for the DEM. The external low resolution and low accuracy DEM is applied for the "remove-restore" concept to ease the phase unwrapping. The stochastic errors including atmospheric effects and phase noise are suppressed by weighted averaging of DEM phases. Six TerraSAR-X data are applied to create the twelve-meter's resolution DEM over Xian, China with the newly-proposed method. The heights in discrete GPS benchmarks are used to calibrate the result, and the RMS of 3.29 meter is achieved by comparing with 1:50000 DEM.
Object-oriented feature-tracking algorithms for SAR images of the marginal ice zone
NASA Technical Reports Server (NTRS)
Daida, Jason; Samadani, Ramin; Vesecky, John F.
1990-01-01
An unsupervised method that chooses and applies the most appropriate tracking algorithm from among different sea-ice tracking algorithms is reported. In contrast to current unsupervised methods, this method chooses and applies an algorithm by partially examining a sequential image pair to draw inferences about what was examined. Based on these inferences the reported method subsequently chooses which algorithm to apply to specific areas of the image pair where that algorithm should work best.
Spectral anomaly methods for aerial detection using KUT nuisance rejection
NASA Astrophysics Data System (ADS)
Detwiler, R. S.; Pfund, D. M.; Myjak, M. J.; Kulisek, J. A.; Seifert, C. E.
2015-06-01
This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land-water interfaces.
Target discrimination method for SAR images based on semisupervised co-training
NASA Astrophysics Data System (ADS)
Wang, Yan; Du, Lan; Dai, Hui
2018-01-01
Synthetic aperture radar (SAR) target discrimination is usually performed in a supervised manner. However, supervised methods for SAR target discrimination may need lots of labeled training samples, whose acquirement is costly, time consuming, and sometimes impossible. This paper proposes an SAR target discrimination method based on semisupervised co-training, which utilizes a limited number of labeled samples and an abundant number of unlabeled samples. First, Lincoln features, widely used in SAR target discrimination, are extracted from the training samples and partitioned into two sets according to their physical meanings. Second, two support vector machine classifiers are iteratively co-trained with the extracted two feature sets based on the co-training algorithm. Finally, the trained classifiers are exploited to classify the test data. The experimental results on real SAR images data not only validate the effectiveness of the proposed method compared with the traditional supervised methods, but also demonstrate the superiority of co-training over self-training, which only uses one feature set.
Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping
NASA Astrophysics Data System (ADS)
Maghsoudi, Yasser
Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be useful for forest mapping. To assess the potential of the proposed methods their performance have been compared with each other and with the baseline classifiers. The baseline methods include the Wishart classifier, which is a commonly used classification method in PolSAR community, as well as an SVM classifier with the full set of parameters. Experimental results showed a better performance of the leaf-off image compared to that of leaf-on image for forest mapping. It is also shown that combining leaf-off parameters with leaf-on parameters can significantly improve the classification accuracy. Also, the classification results (in terms of the overall accuracy) compared to the baseline classifiers demonstrate the effectiveness of the proposed nonparametric scheme for forest mapping.
A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.
Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui
2017-01-08
Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.
Sea-Ice Feature Mapping using JERS-1 Imagery
NASA Technical Reports Server (NTRS)
Maslanik, James; Heinrichs, John
1994-01-01
JERS-1 SAR and OPS imagery are examined in combination with other data sets to investigate the utility of the JERS-1 sensors for mapping fine-scale sea ice conditions. Combining ERS-1 C band and JERS-1 L band SAR aids in discriminating multiyear and first-year ice. Analysis of OPS imagery for a field site in the Canadian Archipelago highlights the advantages of OPS's high spatial and spectral resolution for mapping ice structure, melt pond distribution, and surface albedo.
NASA Astrophysics Data System (ADS)
Pichierri, Manuele; Hajnsek, Irena
2015-04-01
In this work, the potential of multi-baseline Pol-InSAR for crop parameter estimation (e.g. crop height and extinction coefficients) is explored. For this reason, a novel Oriented Volume over Ground (OVoG) inversion scheme is developed, which makes use of multi-baseline observables to estimate the whole stack of model parameters. The proposed algorithm has been initially validated on a set of randomly-generated OVoG scenarios, to assess its stability over crop structure changes and its robustness against volume decorrelation and other decorrelation sources. Then, it has been applied to a collection of multi-baseline repeat-pass SAR data, acquired over a rural area in Germany by DLR's F-SAR.
NASA Astrophysics Data System (ADS)
Ghosh, S. M.; Behera, M. D.
2017-12-01
Forest aboveground biomass (AGB) is an important factor for preparation of global policy making decisions to tackle the impact of climate change. Several previous studies has concluded that remote sensing methods are more suitable for estimating forest biomass on regional scale. Among all available remote sensing data and methods, Synthetic Aperture Radar (SAR) data in combination with decision tree based machine learning algorithms has shown better promise in estimating higher biomass values. There aren't many studies done for biomass estimation of dense Indian tropical forests with high biomass density. In this study aboveground biomass was estimated for two major tree species, Sal (Shorea robusta) and Teak (Tectona grandis), of Katerniaghat Wildlife Sanctuary, a tropical forest situated in northern India. Biomass was estimated by combining C-band SAR data from Sentinel-1A satellite, vegetation indices produced using Sentinel-2A data and ground inventory plots. Along with SAR backscatter value, SAR texture images were also used as input as earlier studies had found that image texture has a correlation with vegetation biomass. Decision tree based nonlinear machine learning algorithms were used in place of parametric regression models for establishing relationship between fields measured values and remotely sensed parameters. Using random forest model with a combination of vegetation indices with SAR backscatter as predictor variables shows best result for Sal forest, with a coefficient of determination value of 0.71 and a RMSE value of 105.027 t/ha. In teak forest also best result can be found in the same combination but for stochastic gradient boosted model with a coefficient of determination value of 0.6 and a RMSE value of 79.45 t/ha. These results are mostly better than the results of other studies done for similar kind of forests. This study shows that Sentinel series satellite data has exceptional capabilities in estimating dense forest AGB and machine learning algorithms are better means to do so than parametric regression models.
Ice/water Classification of Sentinel-1 Images
NASA Astrophysics Data System (ADS)
Korosov, Anton; Zakhvatkina, Natalia; Muckenhuber, Stefan
2015-04-01
Sea Ice monitoring and classification relies heavily on synthetic aperture radar (SAR) imagery. These sensors record data either only at horizontal polarization (RADARSAT-1) or vertically polarized (ERS-1 and ERS-2) or at dual polarization (Radarsat-2, Sentinel-1). Many algorithms have been developed to discriminate sea ice types and open water using single polarization images. Ice type classification, however, is still ambiguous in some cases. Sea ice classification in single polarization SAR images has been attempted using various methods since the beginning of the ERS programme. The robust classification using only SAR images that can provide useful results under varying sea ice types and open water tend to be not generally applicable in operational regime. The new generation SAR satellites have capability to deliver images in several polarizations. This gives improved possibility to develop sea ice classification algorithms. In this study we use data from Sentinel-1 at dual-polarization, i.e. HH (horizontally transmitted and horizontally received) and HV (horizontally transmitted, vertically received). This mode assembles wide SAR image from several narrower SAR beams, resulting to an image of 500 x 500 km with 50 m resolution. A non-linear scheme for classification of Sentinel-1 data has been developed. The processing allows to identify three classes: ice, calm water and rough water at 1 km spatial resolution. The raw sigma0 data in HH and HV polarization are first corrected for thermal and random noise by extracting the background thermal noise level and smoothing the image with several filters. At the next step texture characteristics are computed in a moving window using a Gray Level Co-occurence Matrix (GLCM). A neural network is applied at the last step for processing array of the most informative texture characteristics and ice/water classification. The main results are: * the most informative texture characteristics to be used for sea ice classification were revealed; * the best set of parameters including the window size, number of levels of quantization of sigma0 values and co-occurence distance was found; * a support vector machine (SVM) was trained on results of visual classification of 30 Sentinel-1 images. Despite the general high accuracy of the neural network (95% of true positive classification) problems with classification of young newly formed ice and rough water arise due to the similar average backscatter and texture. Other methods of smoothing and computation of texture characteristics (e.g. computation of GLCM from a variable size window) is assessed. The developed scheme will be utilized in NRT processing of Sentinel-1 data at NERSC within the MyOcean2 project.
InSAR Scientific Computing Environment
NASA Astrophysics Data System (ADS)
Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.
2010-12-01
The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with graduated exposure to the levels of sophistication, allowing novices to apply it readily for common tasks and experienced users to mine data with great facility and flexibility. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. In this paper we briefly describe both the legacy and the new core processing algorithms and their integration into the new computing environment. We describe the ISCE component and application architecture and the features that permit the desired flexibility, extensibility and ease-of-use. We summarize the state of progress of the environment and the plans for completion of the environment and for its future introduction into the radar processing community.
NASA Astrophysics Data System (ADS)
Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Dini, L.
2009-04-01
The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools geophysical parameters suitable for volcanic risk management. The ASI-SRV is devoted to the development of an integrated system based on Earth Observation (EO) data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes during all the risk phases (Pre Crisis, Crisis and Post Crisis). The ASI-SRV system provides support to risk managers during the different volcanic activity phases and its results are addressed to the Italian Civil Protection Department (DPC). SRV provides the capability to manage the import many different EO data into the system, it maintains a repository where the acquired data have to be stored and generates selected volcanic products. The processing modules for EO Optical sensors data are based on procedures jointly developed by INGV and University of Modena. This procedures allow to estimate a number of parameters such as: surface thermal proprieties, gas, aerosol and ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information during the prevention phase and during the Warning and Crisis phase. In the prevention phase the thermal analysis is directed to the identification of temperature variation on volcanic structure which may indicate a change in the volcanic activity state. At the moment the only sensor that shows good technical characteristics for the prevention phase is the ASTER sensor (90 m pixel) on NASA satellite TERRA. The product regarding the Crisis phase is mainly finalized to the estimation of the effusion rate for active lava flows, the algorithms for this product are well consolidated and could be applied to the low spatial resolution space sensors (eg. AVHRR, MODIS) and to high spatial resolution space sensors (eg. Hyperion, ASTER). A further class of products regards the analysis of degassing plumes and eruptive clouds. The analysis of the emitted gas species from degassing plume is usually performed trough ground networks of instruments based on the spectral behaviour of the gas species, although many volcanoes in the world do not have such permanent networks. The SRV system will produce information on the concentration and flux of sulphur dioxide (SO2) water vapour and volcanic aerosol optical thickness by means of ASTER, MODIS and HYPERION data on Etna test site. The analysis of ash clouds will be made by means of already consolidated procedures which uses low spatial resolution sensors with an high revisit time (eg. AVHRR, MSG, MODIS). For the Post Crisis phase the required products will be obtained through classification algorithms and spectral analysis operated by the scientific personnel of INGV and introduced in the system repository after the use of modules. The processing modules for EO RADAR sensors data for ground deformation measurement via Differential Interferometric SAR (DInSAR) techniques is performed by IREA-CNR. The selected test sites are Etna, Vesuvius and Campi Flegrei caldera. In particular, ground deformation time series will be generated by using ERS and ENVISAT SAR data and via the application of the Small BAeline Subset (SBAS) technique. This algorithm has the advantage of being both simple and very effective; moreover, it allows an easy combination of multiplatform data, provided that the acquisition geometries of both platform are compatible. In this paper the first results obtained by means of modules developed within the ASI-SRV project and dedicated to the processing of EO historical series are presented.
NASA Astrophysics Data System (ADS)
Bonano, Manuela; Buonanno, Sabatino; Ojha, Chandrakanta; Berardino, Paolo; Lanari, Riccardo; Zeni, Giovanni; Manunta, Michele
2017-04-01
The advanced DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm has already largely demonstrated its effectiveness to carry out multi-scale and multi-platform surface deformation analyses relevant to both natural and man-made hazards. Thanks to its capability to generate displacement maps and long-term deformation time series at both regional (low resolution analysis) and local (full resolution analysis) spatial scales, it allows to get more insights on the spatial and temporal patterns of localized displacements relevant to single buildings and infrastructures over extended urban areas, with a key role in supporting risk mitigation and preservation activities. The extensive application of the multi-scale SBAS-DInSAR approach in many scientific contexts has gone hand in hand with new SAR satellite mission development, characterized by different frequency bands, spatial resolution, revisit times and ground coverage. This brought to the generation of huge DInSAR data stacks to be efficiently handled, processed and archived, with a strong impact on both the data storage and the computational requirements needed for generating the full resolution SBAS-DInSAR results. Accordingly, innovative and effective solutions for the automatic processing of massive SAR data archives and for the operational management of the derived SBAS-DInSAR products need to be designed and implemented, by exploiting the high efficiency (in terms of portability, scalability and computing performances) of the new ICT methodologies. In this work, we present a novel parallel implementation of the full resolution SBAS-DInSAR processing chain, aimed at investigating localized displacements affecting single buildings and infrastructures relevant to very large urban areas, relying on different granularity level parallelization strategies. The image granularity level is applied in most steps of the SBAS-DInSAR processing chain and exploits the multiprocessor systems with distributed memory. Moreover, in some processing steps very heavy from the computational point of view, the Graphical Processing Units (GPU) are exploited for the processing of blocks working on a pixel-by-pixel basis, requiring strong modifications on some key parts of the sequential full resolution SBAS-DInSAR processing chain. GPU processing is implemented by efficiently exploiting parallel processing architectures (as CUDA) for increasing the computing performances, in terms of optimization of the available GPU memory, as well as reduction of the Input/Output operations on the GPU and of the whole processing time for specific blocks w.r.t. the corresponding sequential implementation, particularly critical in presence of huge DInSAR datasets. Moreover, to efficiently handle the massive amount of DInSAR measurements provided by the new generation SAR constellations (CSK and Sentinel-1), we perform a proper re-design strategy aimed at the robust assimilation of the full resolution SBAS-DInSAR results into the web-based Geonode platform of the Spatial Data Infrastructure, thus allowing the efficient management, analysis and integration of the interferometric results with different data sources.
Watershed identification of polygonal patterns in noisy SAR images.
Moreels, Pierre; Smrekar, Suzanne E
2003-01-01
This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.
Analysis on Vertical Scattering Signatures in Forestry with PolInSAR
NASA Astrophysics Data System (ADS)
Guo, Shenglong; Li, Yang; Zhang, Jingjing; Hong, Wen
2014-11-01
We apply accurate topographic phase to the Freeman-Durden decomposition for polarimetric SAR interferometry (PolInSAR) data. The cross correlation matrix obtained from PolInSAR observations can be decomposed into three scattering mechanisms matrices accounting for the odd-bounce, double-bounce and volume scattering. We estimate the phase based on the Random volume over Ground (RVoG) model, and as the initial input parameter of the numerical method which is used to solve the parameters of decomposition. In addition, the modified volume scattering model introduced by Y. Yamaguchi is applied to the PolInSAR target decomposition in forest areas rather than the pure random volume scattering as proposed by Freeman-Durden to make best fit to the actual measured data. This method can accurately retrieve the magnitude associated with each mechanism and their vertical location along the vertical dimension. We test the algorithms with L- and P- band simulated data.
A comparative study of SAR data compression schemes
NASA Technical Reports Server (NTRS)
Lambert-Nebout, C.; Besson, O.; Massonnet, D.; Rogron, B.
1994-01-01
The amount of data collected from spaceborne remote sensing has substantially increased in the last years. During same time period, the ability to store or transmit data has not increased as quickly. At this time, there is a growing interest in developing compression schemes that could provide both higher compression ratios and lower encoding/decoding errors. In the case of the spaceborne Synthetic Aperture Radar (SAR) earth observation system developed by the French Space Agency (CNES), the volume of data to be processed will exceed both the on-board storage capacities and the telecommunication link. The objective of this paper is twofold: to present various compression schemes adapted to SAR data; and to define a set of evaluation criteria and compare the algorithms on SAR data. In this paper, we review two classical methods of SAR data compression and propose novel approaches based on Fourier Transforms and spectrum coding.
de Salles, Alvaro A; Bulla, Giovani; Rodriguez, Claudio E Fernández
2006-01-01
The Specific Absorption Rate (SAR) produced by mobile phones in the head of adults and children is simulated using an algorithm based on the Finite Difference Time Domain (FDTD) method. Realistic models of the child and adult head are used. The electromagnetic parameters are fitted to these models. Comparison also are made with the SAR calculated in the children model when using adult human electromagnetic parameters values. Microstrip (or patch) antennas and quarter wavelength monopole antennas are used in the simulations. The frequencies used to feed the antennas are 1850 MHz and 850 MHz. The SAR results are compared with the available international recommendations. It is shown that under similar conditions, the 1g-SAR calculated for children is higher than that for the adults. When using the 10-year old child model, SAR values higher than 60% than those for adults are obtained.
1km Soil Moisture from Downsampled Sentinel-1 SAR Data: Harnessing Assets and Overcoming Obstacles.
NASA Astrophysics Data System (ADS)
Bauer-Marschallinger, Bernhard; Cao, Senmao; Schaufler, Stefan; Paulik, Christoph; Naeimi, Vahid; Wagner, Wolfgang
2017-04-01
Radars onboard Earth observing satellites allow estimating Surface Soil Moisture (SSM) regularly and globally. The use of coarse-scale measurements from active or passive radars for SSM retrieval is well established and in operational use. Thanks to the Sentinel-1 mission, launched in 2014 and deploying Synthetic Aperture Radars (SAR), high-resolution radar imagery is routinely available at the scale of 20 meters, with a high revisit frequency of 3-6 days and with unprecedented radiometric accuracy. However, the direct exploitation of high-resolution SAR data for SSM retrieval is complicated by several problems: Small-scaled contributions to the radar backscatter from individual ground features often obscure the soil moisture signal, rendering common algorithms insensitive to SSM. Furthermore, the influence of vegetation dynamics on the radar signal is less understood than in the coarse-scale case, leading to biases during the vegetation period. Finally, the large data volumes of high-resolution remote sensing data present a great load on hardware systems. Consequently, a spatial resampling of the high-resolution SAR data to a 500 meters sampling is done, allowing the exploitation of information at 10 meter sampling, but reducing effectively the inherent uncertainties. The thereof retrieved 1km SSM product aims to describe the soil moisture dynamics at medium scale with high quality. We adopted the TU-Wien Change Detection algorithm to the Sentinel-1 data, which was already successfully used for retrieving SSM from ERS-1/2 and Envisat-ASAR observations. The adoption entails a new method for SAR image resampling, including a masking for pixels that do not carry soil moisture signals, preventing them to spread during downsampling. Furthermore, the observation angle between the radar sensors and the ground is treated in a different way, as Sentinel-1 sensors observe from fixed orbit paths (in contrast to other radar sensors). Here, a regression model is developed that successfully estimates the dependency of radar backscatter to observation angle with statistical parameters from the Sentinel-1 SAR time series archive. We present the Sentinel-1 1km-SSM product generated by the adopted change detection algorithm. The dataset covers the European continent and holds data from October 2014 ongoing. In addition to a validation of the SSM product, the statistical SAR parameters used during SSM retrieval are examined.
High Resolution Deformation Time Series Estimation for Distributed Scatterers Using Terrasar-X Data
NASA Astrophysics Data System (ADS)
Goel, K.; Adam, N.
2012-07-01
In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are estimated. We present here the technical details and a processing example of this newly developed algorithm.
NASA Astrophysics Data System (ADS)
Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude
2017-09-01
The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh
The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is oftenmore » unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. Lastly, the results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.« less
Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; ...
2017-02-27
The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is oftenmore » unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. Lastly, the results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.« less
A Quality Assessment Method Based on Common Distributed Targets for GF-3 Polarimetric SAR Data.
Jiang, Sha; Qiu, Xiaolan; Han, Bing; Hu, Wenlong
2018-03-07
The GaoFen-3 (GF-3) satellite, launched on 10 August 2016, is the first C-band polarimetric synthetic aperture radar (PolSAR) satellite in China. The PolSAR system of GF-3 can collect a significant wealth of information for geophysical research and applications. Being used for related applications, GF-3 PolSAR images must be of good quality. It is necessary to evaluate the quality of polarimetric data and achieve the normalized quality monitoring during 8-year designed life of GF-3. In this study, a new quality assessment method of PolSAR data based on common distributed targets is proposed, and the performance of the method is analyzed by simulations and GF-3 experiments. We evaluate the quality of GF-3 PolSAR data by this method. Results suggest that GF-3 antenna is highly isolated, and the quality of calibrated data satisfies the requests of quantitative applications.
NASA Astrophysics Data System (ADS)
Mechlem, Korbinian; Ehn, Sebastian; Sellerer, Thorsten; Pfeiffer, Franz; Noël, Peter B.
2017-03-01
In spectral computed tomography (spectral CT), the additional information about the energy dependence of attenuation coefficients can be exploited to generate material selective images. These images have found applications in various areas such as artifact reduction, quantitative imaging or clinical diagnosis. However, significant noise amplification on material decomposed images remains a fundamental problem of spectral CT. Most spectral CT algorithms separate the process of material decomposition and image reconstruction. Separating these steps is suboptimal because the full statistical information contained in the spectral tomographic measurements cannot be exploited. Statistical iterative reconstruction (SIR) techniques provide an alternative, mathematically elegant approach to obtaining material selective images with improved tradeoffs between noise and resolution. Furthermore, image reconstruction and material decomposition can be performed jointly. This is accomplished by a forward model which directly connects the (expected) spectral projection measurements and the material selective images. To obtain this forward model, detailed knowledge of the different photon energy spectra and the detector response was assumed in previous work. However, accurately determining the spectrum is often difficult in practice. In this work, a new algorithm for statistical iterative material decomposition is presented. It uses a semi-empirical forward model which relies on simple calibration measurements. Furthermore, an efficient optimization algorithm based on separable surrogate functions is employed. This partially negates one of the major shortcomings of SIR, namely high computational cost and long reconstruction times. Numerical simulations and real experiments show strongly improved image quality and reduced statistical bias compared to projection-based material decomposition.
NASA Astrophysics Data System (ADS)
Zhang, Xing; Wen, Gongjian
2015-10-01
Anomaly detection (AD) becomes increasingly important in hyperspectral imagery analysis with many practical applications. Local orthogonal subspace projection (LOSP) detector is a popular anomaly detector which exploits local endmembers/eigenvectors around the pixel under test (PUT) to construct background subspace. However, this subspace only takes advantage of the spectral information, but the spatial correlat ion of the background clutter is neglected, which leads to the anomaly detection result sensitive to the accuracy of the estimated subspace. In this paper, a local three dimensional orthogonal subspace projection (3D-LOSP) algorithm is proposed. Firstly, under the jointly use of both spectral and spatial information, three directional background subspaces are created along the image height direction, the image width direction and the spectral direction, respectively. Then, the three corresponding orthogonal subspaces are calculated. After that, each vector along three direction of the local cube is projected onto the corresponding orthogonal subspace. Finally, a composite score is given through the three direction operators. In 3D-LOSP, the anomalies are redefined as the target not only spectrally different to the background, but also spatially distinct. Thanks to the addition of the spatial information, the robustness of the anomaly detection result has been improved greatly by the proposed 3D-LOSP algorithm. It is noteworthy that the proposed algorithm is an expansion of LOSP and this ideology can inspire many other spectral-based anomaly detection methods. Experiments with real hyperspectral images have proved the stability of the detection result.
Intelligent MEMS spectral sensor for NIR applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kantojärvi, Uula; Antila, Jarkko E.; Mäkynen, Jussi; Suhonen, Janne
2017-05-01
Near Infrared (NIR) spectrometers have been widely used in many material inspection applications, but mainly in central laboratories. The role of miniaturization, robustness of spectrometer and portability are really crucial when field inspection tools should be developed. We present an advanced spectral sensor based on a tunable Microelectromechanical (MEMS) Fabry-Perot Interferometer which will meet these requirements. We describe the wireless device design, operation principle and easy-to-use algorithms to adapt the sensor to number of applications. Multiple devices can be operated simultaneously and seamlessly through cloud connectivity. We also present some practical NIR applications carried out with truly portable NIR device.
Radar signatures of road vehicles: airborne SAR experiments
NASA Astrophysics Data System (ADS)
Palubinskas, G.; Runge, H.; Reinartz, P.
2005-10-01
The German radar satellite TerraSAR-X is a high resolution, dual receive antenna SAR satellite, which will be launched in spring 2006. Since it will have the capability to measure the velocity of moving targets, the acquired interferometric data can be useful for traffic monitoring applications on a global scale. DLR has started already the development of an automatic and operational processing system which will detect cars, measure their speed and assign them to a road. Statistical approaches are used to derive the vehicle detection algorithm, which require the knowledge of the radar signatures of vehicles, especially under consideration of the geometry of the radar look direction and the vehicle orientation. Simulation of radar signatures is a very difficult task due to the lack of realistic models of vehicles. In this paper the radar signatures of the parking cars are presented. They are estimated experimentally from airborne E-SAR X-band data, which have been collected during flight campaigns in 2003-2005. Several test cars of the same type placed in carefully selected orientation angles and several over-flights with different heading angles made it possible to cover the whole range of aspect angles from 0° to 180°. The large synthetic aperture length or beam width angle of 7° can be divided into several looks. Thus processing of each look separately allows to increase the angle resolution. Such a radar signature profile of one type of vehicle over the whole range of aspect angles in fine resolution can be used further for the verification of simulation studies and for the performance prediction for traffic monitoring with TerraSAR-X.
Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery
Sun, Jian
2017-01-01
The Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) launched by the China Academy of Space Technology (CAST) has operated at C-band since September 2016. To date, we have collected 16/42 images in vertical-vertical (VV)/horizontal-horizontal (HH) polarization, covering the National Data Buoy Center (NDBC) buoy measurements of the National Oceanic and Atmospheric Administration (NOAA) around U.S. western coastal waters. Wind speeds from NDBC in situ buoys are up to 15 m/s and buoy-measured significant wave height (SWH) has ranged from 0.5 m to 3 m. In this study, winds were retrieved using the geophysical model function (GMF) together with the polarization ratio (PR) model and waves were retrieved using a new empirical algorithm based on SAR cutoff wavelength in satellite flight direction, herein called CSAR_WAVE. Validation against buoy measurements shows a 1.4/1.9 m/s root mean square error (RMSE) of wind speed and a 24/23% scatter index (SI) of SWH for VV/HH polarization. In addition, wind and wave retrieval results from 166 GF-3 images were compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis winds, as well as the SWH from the WaveWatch-III model, respectively. Comparisons show a 2.0 m/s RMSE for wind speed with a 36% SI of SWH for VV-polarization and a 2.2 m/s RMSE for wind speed with a 37% SI of SWH for HH-polarization. Our work gives a preliminary assessment of the wind and wave retrieval results from GF-3 SAR images for the first time and will provide guidance for marine applications of GF-3 SAR. PMID:28757571
Basic to Advanced InSAR Processing: GMTSAR
NASA Astrophysics Data System (ADS)
Sandwell, D. T.; Xu, X.; Baker, S.; Hogrelius, A.; Mellors, R. J.; Tong, X.; Wei, M.; Wessel, P.
2017-12-01
Monitoring crustal deformation using InSAR is becoming a standard technique for the science and application communities. Optimal use of the new data streams from Sentinel-1 and NISAR will require open software tools as well as education on the strengths and limitations of the InSAR methods. Over the past decade we have developed freely available, open-source software for processing InSAR data. The software relies on the Generic Mapping Tools (GMT) for the back-end data analysis and display and is thus called GMTSAR. With startup funding from NSF, we accelerated the development of GMTSAR to include more satellite data sources and provide better integration and distribution with GMT. In addition, with support from UNAVCO we have offered 6 GMTSAR short courses to educate mostly novice InSAR users. Currently, the software is used by hundreds of scientists and engineers around the world to study deformation at more than 4300 different sites. The most challenging aspect of the recent software development was the transition from image alignment using the cross-correlation method to a completely new alignment algorithm that uses only the precise orbital information to geometrically align images to an accuracy of better than 7 cm. This development was needed to process a new data type that is being acquired by the Sentinel-1A/B satellites. This combination of software and open data is transforming radar interferometry from a research tool into a fully operational time series analysis tool. Over the next 5 years we are planning to continue to broaden the user base through: improved software delivery methods; code hardening; better integration with data archives; support for high level products being developed for NISAR; and continued education and outreach.
ESTCP Pilot Project Wide Area Assessment for Munitions Response
2008-07-01
Data A broadband normalized difference vegetation index ( NDVI ) was computed from the high- resolution spectral data to provide a detection of canopy...chlorophyll content. The NDVI strongly correlates with the green yucca, cactus, juniper, and other SAR-responsive vegetation species on the site...Vegetation Index. NDVI is broadband normalized difference vegetation index computed from high resolution spectral data using (RED-NIR) / (RED +NIR) to
NASA Astrophysics Data System (ADS)
Wadhams, Peter; Aulicino, Giuseppe; Parmiggiani, Flavio
2017-04-01
Pancake and frazil ice represent an important component of the Arctic and Antarctic cryosphere, especially in the Marginal Ice Zones. In particular, pancake ice is the result of a freezing process that takes place in turbulent surface conditions, typically associated with wind and wave fields. The retrieval of its thickness by remote sensing is, in general, a very difficult task. This study presents our ongoing work in the EU SPICES project, in which we aim to use the results of theory and observations developed so far in order to refine a processing system for routinely deriving ice thicknesses in frazil-pancake regions of the Arctic and Antarctic. The change in dispersion of ocean waves as they penetrate into pancake icefield is analyzed in order to derive ice thickness estimation. The spectral changes in wave spectra from imagery provided by space-borne SAR systems (mainly Cosmo-SkyMed and Sentinel-1 satellites) is used to retrieve pancake ice thickness run trough by the R/V Sikuliaq research cruise in the Beaufort Sea (October-November 2015). During several experiments, a line of wave buoys was deployed along a pre-declared line, which could thus be covered by simultaneous overhead Cosmo-SkyMed images. The inversion procedures was then applied to SAR images, the final goal being the comparison between the ice thicknesses measured in situ and those inferred from SAR wave number analysis with the application of a viscous theory. Results show a broad agreement between observed thicknesses and those retrieved from the SAR, the latter slightly overestimating the former in several case studies. In the case of November 1, for example, the agreement is excellent (SAR retrievals 4.9, 5.0, 6.5 cm; observed mean 6.7 cm); on October 11 the agreement is also very good between the SAR retriveal (21 cm) and the output from an along-track EM-sounder; on October 23-24 the SAR retrieval of 18.1 cm is double the observed pancake thickness of 8.7 cm, but this difference can be ascribed to the presence of large floes in the icefield. Even though quite resilient to relatively large changes in viscosity, the method resulted very sensitive to i) the input wind speed accuracy, ii) the presence of different ice types than frazil-pancake in the enquired region, iii) the exact co-location between the SAR extracted sub-scenes and the in situ measurements.
Deep learning model-based algorithm for SAR ATR
NASA Astrophysics Data System (ADS)
Friedlander, Robert D.; Levy, Michael; Sudkamp, Elizabeth; Zelnio, Edmund
2018-05-01
Many computer-vision-related problems have successfully applied deep learning to improve the error rates with respect to classifying images. As opposed to optically based images, we have applied deep learning via a Siamese Neural Network (SNN) to classify synthetic aperture radar (SAR) images. This application of Automatic Target Recognition (ATR) utilizes an SNN made up of twin AlexNet-based Convolutional Neural Networks (CNNs). Using the processing power of GPUs, we trained the SNN with combinations of synthetic images on one twin and Moving and Stationary Target Automatic Recognition (MSTAR) measured images on a second twin. We trained the SNN with three target types (T-72, BMP2, and BTR-70) and have used a representative, synthetic model from each target to classify new SAR images. Even with a relatively small quantity of data (with respect to machine learning), we found that the SNN performed comparably to a CNN and had faster convergence. The results of processing showed the T-72s to be the easiest to identify, whereas the network sometimes mixed up the BMP2s and the BTR-70s. In addition we also incorporated two additional targets (M1 and M35) into the validation set. Without as much training (for example, one additional epoch) the SNN did not produce the same results as if all five targets had been trained over all the epochs. Nevertheless, an SNN represents a novel and beneficial approach to SAR ATR.
Satellite Radar Interferometry For Risk Management Of Gas Pipeline Networks
NASA Astrophysics Data System (ADS)
Ianoschi, Raluca; Schouten, Mathijs; Bas Leezenberg, Pieter; Dheenathayalan, Prabu; Hanssen, Ramon
2013-12-01
InSAR time series analyses can be fine-tuned for specific applications, yielding a potential increase in benchmark density, precision and reliability. Here we demonstrate the algorithms developed for gas pipeline monitoring, enabling operators to precisely pinpoint unstable locations. This helps asset management in planning, prioritizing and focusing in-situ inspections, thus reducing maintenance costs. In unconsolidated Quaternary soils, ground settlement contributes to possible failure of brittle cast iron gas pipes and their connections to houses. Other risk factors include the age and material of the pipe. The soil dynamics have led to a catastrophic explosion in the city of Amsterdam, which triggered an increased awareness for the significance of this problem. As the extent of the networks can be very wide, InSAR is shown to be a valuable source of information for identifying the hazard regions. We monitor subsidence affecting an urban gas transportation network in the Netherlands using both medium and high resolution SAR data. Results for the 2003-2010 period provide clear insights on the differential subsidence rates in the area. This enables characterization of underground motion that affects the integrity of the pipeline. High resolution SAR data add extra detail of door-to-door pipeline connections, which are vulnerable due to different settlements between house connections and main pipelines. The rates which we measure represent important input in planning of maintenance works. Managers can decide the priority and timing for inspecting the pipelines. The service helps manage the risk and reduce operational cost in gas transportation networks.
Integration of ERS and ASAR Time Series for Differential Interferometric SAR Analysis
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmüller, U.; Strozzi, T.; Wiesmann, A.
2005-12-01
Time series SAR interferometric analysis requires SAR data with good temporal sampling covering the time period of interest. The ERS satellites operated by ESA have acquired a large global archive of C-Band SAR data since 1991. The ASAR C-Band instrument aboard the ENVISAT platform launched in 2002 operates in the same orbit as ERS-1 and ERS-2 and has largely replaced the remaining operational ERS-2 satellite. However, interferometry between data acquired by ERS and ASAR is complicated by a 31 MHz offset in the radar center frequency between the instruments leading to decorrelation over distributed targets. Only in rare instances, when the baseline exceeds 1 km, can the spectral shift compensate for the difference in the frequencies of the SAR instruments to produce visible fringes. Conversely, point targets do not decorrelate due to the frequency offset making it possible to incorporate the ERS-ASAR phase information and obtain improved temporal coverage. We present an algorithm for interferometric point target analysis that integrates ERS-ERS, ASAR-ASAR and ERS-ASAR data. Initial analysis using the ERS-ERS data is used to identify the phase stable point-like scatterers within the scene. Height corrections relative to the initial DEM are derived by regression of the residual interferometric phases with respect to perpendicular baseline for a set of ERS-ERS interferograms. The ASAR images are coregistered with the ERS scenes and the point phase values are extracted. The different system pixel spacing values between ERS and ASAR requires additional refinement in the offset estimation and resampling procedure. Calculation of the ERS-ASAR simulated phase used to derive the differential interferometric phase must take into account the slightly different carrrier frequencies. Differential ERS-ASAR point phases contain an additional phase component related to the scatterer location within the resolution element. This additional phase varies over several cycles making the differential interferogram appear as uniform phase noise. We present how this point phase difference can be determined and used to correct the ERS-ASAR interferograms. Further processing proceeds as with standard ERS-ERS interferogram stacks utilizing the unwrapped point phases to obtain estimates of the deformation history, and path delay due to variations in tropospheric water vapor. We show and discuss examples demonstrating the success of this approach.
InSAR time series analysis of ALOS-2 ScanSAR data and its implications for NISAR
NASA Astrophysics Data System (ADS)
Liang, C.; Liu, Z.; Fielding, E. J.; Huang, M. H.; Burgmann, R.
2017-12-01
The JAXA's ALOS-2 mission was launched on May 24, 2014. It operates at L-band and can acquire data in multiple modes. ScanSAR is the main operational mode and has a 350 km swath, somewhat larger than the 250 km swath of the SweepSAR mode planned for the NASA-ISRO SAR (NISAR) mission. ALOS-2 has been acquiring a wealth of L-band InSAR data. These data are of particular value in areas of dense vegetation and high relief. The InSAR technical development for ALOS-2 also enables the preparation for the upcoming NISAR mission. We have been developing advanced InSAR processing techniques for ALOS-2 over the past two years. Here, we report the important issues for doing InSAR time series analysis using ALOS-2 ScanSAR data. First, we present ionospheric correction techniques for both regular ScanSAR InSAR and MAI (multiple aperture InSAR) ScanSAR InSAR. We demonstrate the large-scale ionospheric signals in the ScanSAR interferograms. They can be well mitigated by the correction techniques. Second, based on our technical development of burst-by-burst InSAR processing for ALOS-2 ScanSAR data, we find that the azimuth Frequency Modulation (FM) rate error is an important issue not only for MAI, but also for regular InSAR time series analysis. We identify phase errors caused by azimuth FM rate errors during the focusing process of ALOS-2 product. The consequence is mostly a range ramp in the InSAR time series result. This error exists in all of the time series results we have processed. We present the correction techniques for this error following a theoretical analysis. After corrections, we present high quality ALOS-2 ScanSAR InSAR time series results in a number of areas. The development for ALOS-2 can provide important implications for NISAR mission. For example, we find that in most cases the relative azimuth shift caused by ionosphere can be as large as 4 m in a large area imaged by ScanSAR. This azimuth shift is half of the 8 m azimuth resolution of the SweepSAR mode planned for NISAR, which implies that a good coregistration strategy for NISAR's SweepSAR mode is geometrical coregistration followed by MAI or spectral diversity analysis. Besides, our development also provides implications for the processing and system parameter requirements of NISAR, such as the accuracy requirement of azimuth FM rate and range timing.
Mathematical modeling and SAR simulation multifunction SAR technology efforts
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
The orbital SAR (synthetic aperture radar) simulation data was used in several simulation efforts directed toward advanced SAR development. Efforts toward simulating an operational radar, simulation of antenna polarization effects, and simulation of SAR images at serveral different wavelengths are discussed. Avenues for improvements in the orbital SAR simulation and its application to the development of advanced digital radar data processing schemes are indicated.
Operational wave forecasting with spaceborne SAR: Prospects and pitfalls
NASA Technical Reports Server (NTRS)
Beal, R. C.
1986-01-01
Measurements collected in the Shuttle Imaging Radar (SIR-B) Extreme Waves Experiment confirm the ability of Synthetic Aperture Radar (SAR) to yield useful estimates of wave directional energy spectra over global scales, at least for shuttle altitudes. However, azimuth fall-off effects tend to become severe for wavelengths shorter than about 100 m in most sea states. Moreover, the azimuth fall-off problem becomes increasingly severe as the platform altitude increases beyond 300 km. The most viable solution to the global wave measurements problem may be a low altitude spacecraft containing a combination of both the SAR and the Radar Ocean Wave Spectrometry (ROWS). Such a combination could have a synergy which yield global spectral estimates superior to those of either instrument singly employed.
Multisource oil spill detection
NASA Astrophysics Data System (ADS)
Salberg, Arnt B.; Larsen, Siri O.; Zortea, Maciel
2013-10-01
In this paper we discuss how multisource data (wind, ocean-current, optical, bathymetric, automatic identification systems (AIS)) may be used to improve oil spill detection in SAR images, with emphasis on the use of automatic oil spill detection algorithms. We focus particularly on AIS, optical, and bathymetric data. For the AIS data we propose an algorithm for integrating AIS ship tracks into automatic oil spill detection in order to improve the confidence estimate of a potential oil spill. We demonstrate the use of ancillary data on a set of SAR images. Regarding the use of optical data, we did not observe a clear correspondence between high chlorophyll values (estimated from products derived from optical data) and observed slicks in the SAR image. Bathymetric data was shown to be a good data source for removing false detections caused by e.g. sand banks on low tide. For the AIS data we observed that a polluter could be identified for some dark slicks, however, a precise oil drift model is needed in order to identify the polluter with high certainty.
NASA Technical Reports Server (NTRS)
Dillman, R. D.; Eav, B. B.; Baldwin, R. R.
1984-01-01
The Office of Space and Terrestrial Applications-3 payload, scheduled for flight on STS Mission 17, consists of four earth-observation experiments. The Feature Identification and Location Experiment-1 will spectrally sense and numerically classify the earth's surface into water, vegetation, bare earth, and ice/snow/cloud-cover, by means of spectra ratio techniques. The Measurement of Atmospheric Pollution from Satellite experiment will measure CO distribution in the middle and upper troposphere. The Imaging Camera-B uses side-looking SAR to create two-dimensional images of the earth's surface. The Large Format Camera/Attitude Reference System will collect metric quality color, color-IR, and black-and-white photographs for topographic mapping.
Global Characterization of Tropospheric Noise for InSAR Analysis Using MODIS Data
NASA Astrophysics Data System (ADS)
Yun, S.; Hensley, S.; Chaubell, M.; Fielding, E. J.; Pan, L.; Rosen, P. A.
2013-12-01
Radio wave's differential phase delay variation through the troposphere is one of the largest error sources in Interferometric Synthetic Aperture Radar (InSAR) measurements, and water vapor variability in the troposphere is known to be the dominant factor. We use the precipitable water vapor products from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors mounted on Terra and Aqua satellites to produce tropospheric noise maps of InSAR. Then we extract a small set of characteristic parameters of its power spectral density curve and 1-D covariance function, and calculate the structure function to estimate the expected tropospheric noise level as a function of distance. The results serve two purposes: 1) to provide guidance on the expected covariance matrix for geophysical modeling, 2) to provide quantitative basis of the measurement requirements for the planned US L-band SAR mission. We build over a decade span (2000-2013) of a lookup table of the parameters derived from 2-by-2 degree tiles at 1-by-1 degree posting of global coverage, representing 10 days of each season in each year. The MODIS data were retrieved from OSCAR (Online Services for Correcting Atmosphere in Radar) server. MODIS images with 5 percent or more cloud cover were discarded. Cloud mask and sensor scanning artifacts were removed with interpolation and spectral filtering, respectively. We also mitigate topography dependent stratified tropospheric delay variation using the European Centre for Medium-Range Weather Forecasts (ECMWF) and Shuttle Radar Topography Mission Digital Elevation Models (SRTM DEMs).
Open-path FTIR data reduction algorithm with atmospheric absorption corrections: the NONLIN code
NASA Astrophysics Data System (ADS)
Phillips, William; Russwurm, George M.
1999-02-01
This paper describes the progress made to date in developing, testing, and refining a data reduction computer code, NONLIN, that alleviates many of the difficulties experienced in the analysis of open path FTIR data. Among the problems that currently effect FTIR open path data quality are: the inability to obtain a true I degree or background, spectral interferences of atmospheric gases such as water vapor and carbon dioxide, and matching the spectral resolution and shift of the reference spectra to a particular field instrument. This algorithm is based on a non-linear fitting scheme and is therefore not constrained by many of the assumptions required for the application of linear methods such as classical least squares (CLS). As a result, a more realistic mathematical model of the spectral absorption measurement process can be employed in the curve fitting process. Applications of the algorithm have proven successful in circumventing open path data reduction problems. However, recent studies, by one of the authors, of the temperature and pressure effects on atmospheric absorption indicate there exist temperature and water partial pressure effects that should be incorporated into the NONLIN algorithm for accurate quantification of gas concentrations. This paper investigates the sources of these phenomena. As a result of this study a partial pressure correction has been employed in NONLIN computer code. Two typical field spectra are examined to determine what effect the partial pressure correction has on gas quantification.
Doppler centroid estimation ambiguity for synthetic aperture radars
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1989-01-01
A technique for estimation of the Doppler centroid of an SAR in the presence of large uncertainty in antenna boresight pointing is described. Also investigated is the image degradation resulting from data processing that uses an ambiguous centroid. Two approaches for resolving ambiguities in Doppler centroid estimation (DCE) are presented: the range cross-correlation technique and the multiple-PRF (pulse repetition frequency) technique. Because other design factors control the PRF selection for SAR, a generalized algorithm is derived for PRFs not containing a common divisor. An example using the SIR-C parameters illustrates that this algorithm is capable of resolving the C-band DCE ambiguities for antenna pointing uncertainties of about 2-3 deg.
Spectral methods in machine learning and new strategies for very large datasets
Belabbas, Mohamed-Ali; Wolfe, Patrick J.
2009-01-01
Spectral methods are of fundamental importance in statistics and machine learning, because they underlie algorithms from classical principal components analysis to more recent approaches that exploit manifold structure. In most cases, the core technical problem can be reduced to computing a low-rank approximation to a positive-definite kernel. For the growing number of applications dealing with very large or high-dimensional datasets, however, the optimal approximation afforded by an exact spectral decomposition is too costly, because its complexity scales as the cube of either the number of training examples or their dimensionality. Motivated by such applications, we present here 2 new algorithms for the approximation of positive-semidefinite kernels, together with error bounds that improve on results in the literature. We approach this problem by seeking to determine, in an efficient manner, the most informative subset of our data relative to the kernel approximation task at hand. This leads to two new strategies based on the Nyström method that are directly applicable to massive datasets. The first of these—based on sampling—leads to a randomized algorithm whereupon the kernel induces a probability distribution on its set of partitions, whereas the latter approach—based on sorting—provides for the selection of a partition in a deterministic way. We detail their numerical implementation and provide simulation results for a variety of representative problems in statistical data analysis, each of which demonstrates the improved performance of our approach relative to existing methods. PMID:19129490
Sparse interferometric millimeter-wave array for centimeter-level 100-m standoff imaging
NASA Astrophysics Data System (ADS)
Suen, Jonathan Y.; Lubin, Philip M.; Solomon, Steven L.; Ginn, Robert P.
2013-05-01
We present work on the development of a long range standoff concealed weapons detection system capable of imaging under very heavy clothing at distances exceeding 100 m with a cm resolution. The system is based off a combination of phased array technologies used in radio astronomy and SAR radar by using a coherent, multi-frequency reconstruction algorithm which can run at up to 1000 Hz frame rates and high SNR with a multi-tone transceiver. We show the flexible design space of our system as well as algorithm development, predicted system performance and impairments, and simulated reconstructed images. The system can be used for a variety of purposes including portal applications, crowd scanning and tactical situations. Additional uses include seeing through dust and fog.
Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data
NASA Technical Reports Server (NTRS)
Henderson, F. M. (Principal Investigator)
1980-01-01
Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.
NASA Technical Reports Server (NTRS)
Liu, Kuojuey Ray
1990-01-01
Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.
NASA Astrophysics Data System (ADS)
Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun
2016-08-01
The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.
NASA Astrophysics Data System (ADS)
Shirzaei, Manoochehr; Walter, Thomas
2010-05-01
Volcanic unrest and eruptions are one of the major natural hazards next to earthquakes, floods, and storms. It has been shown that many of volcanic and tectonic unrests are triggered by changes in the stress field induced by nearby seismic and magmatic activities. In this study, as part of a mobile volcano fast response system so-called "Exupery" (www.exupery-vfrs.de) we present an arrangement for semi real time assessing the stress field excited by volcanic activity. This system includes; (1) an approach called "WabInSAR" dedicated for advanced processing of the satellite data and providing an accurate time series of the surface deformation [1, 2], (2) a time dependent inverse source modeling method to investigate the source of volcanic unrest using observed surface deformation data [3, 4], (3) the assessment of the changes in stress field induced by magmatic activity at the nearby volcanic and tectonic systems. This system is implemented in a recursive manner that allows handling large 3D data sets in an efficient and robust way which is requirement of an early warning system. We have applied and validated this arrangement on Mauna Loa volcano, Hawaii Island, to assess the influence of the time dependent activities of Mauna Loa on earthquake occurrence at the Kaoiki seismic zone. References [1] M. Shirzaei and T. R. Walter, "Wavelet based InSAR (WabInSAR): a new advanced time series approach for accurate spatiotemporal surface deformation monitoring," IEEE, pp. submitted, 2010. [2] M. Shirzaei and R. T. Walter, "Deformation interplay at Hawaii Island through InSAR time series and modeling," J. Geophys Res., vol. submited, 2009. [3] M. Shirzaei and T. R. Walter, "Randomly Iterated Search and Statistical Competency (RISC) as powerful inversion tools for deformation source modeling: application to volcano InSAR data," J. Geophys. Res., vol. 114, B10401, doi:10.1029/2008JB006071, 2009. [4] M. Shirzaei and T. R. Walter, "Genetic algorithm combined with Kalman filter as powerful tool for nonlinear time dependent inverse modelling: Application to volcanic deformation time series," J. Geophys. Res., pp. submitted, 2010.
Changes to the COS Extraction Algorithm for Lifetime Position 3
NASA Astrophysics Data System (ADS)
Proffitt, Charles R.; Bostroem, K. Azalee; Ely, Justin; Foster, Deatrick; Hernandez, Svea; Hodge, Philip; Jedrzejewski, Robert I.; Lockwood, Sean A.; Massa, Derck; Peeples, Molly S.; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Roman-Duval, Julia; Sana, Hugues; Sahnow, David J.; Sonnentrucker, Paule; Taylor, Joanna M.
2015-09-01
The COS FUV Detector Lifetime Position 3 (LP3) has been placed only 2.5" below the original lifetime position (LP1). This is sufficiently close to gain-sagged regions at LP1 that a revised extraction algorithm is needed to ensure good spectral quality. We provide an overview of this new "TWOZONE" extraction algorithm, discuss its strengths and limitations, describe new output columns in the X1D files that show the boundaries of the new extraction regions, and provide some advice on how to manually tune the algorithm for specialized applications.
NASA Astrophysics Data System (ADS)
Doin, Marie-Pierre; Lodge, Felicity; Guillaso, Stephane; Jolivet, Romain; Lasserre, Cecile; Ducret, Gabriel; Grandin, Raphael; Pathier, Erwan; Pinel, Virginie
2012-01-01
We assemble a processing chain that handles InSAR computation from raw data to time series analysis. A large part of the chain (from raw data to geocoded unwrapped interferograms) is based on ROI PAC modules (Rosen et al., 2004), with original routines rearranged and combined with new routines to process in series and in a common radar geometry all SAR images and interferograms. A new feature of the software is the range-dependent spectral filtering to improve coherence in interferograms with long spatial baselines. Additional components include a module to estimate and remove digital elevation model errors before unwrapping, a module to mitigate the effects of the atmospheric phase delay and remove residual orbit errors, and a module to construct the phase change time series from small baseline interferograms (Berardino et al. 2002). This paper describes the main elements of the processing chain and presents an example of application of the software using a data set from the ENVISAT mission covering the Etna volcano.
Sea ice type maps from Alaska synthetic aperture radar facility imagery: An assessment
NASA Technical Reports Server (NTRS)
Fetterer, Florence M.; Gineris, Denise; Kwok, Ronald
1994-01-01
Synthetic aperture radar (SAR) imagery received at the Alaskan SAR Facility is routinely and automatically classified on the Geophysical Processor System (GPS) to create ice type maps. We evaluated the wintertime performance of the GPS classification algorithm by comparing ice type percentages from supervised classification with percentages from the algorithm. The root mean square (RMS) difference for multiyear ice is about 6%, while the inconsistency in supervised classification is about 3%. The algorithm separates first-year from multiyear ice well, although it sometimes fails to correctly classify new ice and open water owing to the wide distribution of backscatter for these classes. Our results imply a high degree of accuracy and consistency in the growing archive of multiyear and first-year ice distribution maps. These results have implications for heat and mass balance studies which are furthered by the ability to accurately characterize ice type distributions over a large part of the Arctic.
Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart
2011-01-01
We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.
Comparison of multihardware parallel implementations for a phase unwrapping algorithm
NASA Astrophysics Data System (ADS)
Hernandez-Lopez, Francisco Javier; Rivera, Mariano; Salazar-Garibay, Adan; Legarda-Sáenz, Ricardo
2018-04-01
Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar (SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis. Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial Gauss-Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work, our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with the original serial version. In addition, we present a detailed comparative performance of the developed parallel versions.
NASA Astrophysics Data System (ADS)
Wang, Ke; Guo, Ping; Luo, A.-Li
2017-03-01
Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.
A comparison of SAR ATR performance with information theoretic predictions
NASA Astrophysics Data System (ADS)
Blacknell, David
2003-09-01
Performance assessment of automatic target detection and recognition algorithms for SAR systems (or indeed any other sensors) is essential if the military utility of the system / algorithm mix is to be quantified. This is a relatively straightforward task if extensive trials data from an existing system is used. However, a crucial requirement is to assess the potential performance of novel systems as a guide to procurement decisions. This task is no longer straightforward since a hypothetical system cannot provide experimental trials data. QinetiQ has previously developed a theoretical technique for classification algorithm performance assessment based on information theory. The purpose of the study presented here has been to validate this approach. To this end, experimental SAR imagery of targets has been collected using the QinetiQ Enhanced Surveillance Radar to allow algorithm performance assessments as a number of parameters are varied. In particular, performance comparisons can be made for (i) resolutions up to 0.1m, (ii) single channel versus polarimetric (iii) targets in the open versus targets in scrubland and (iv) use versus non-use of camouflage. The change in performance as these parameters are varied has been quantified from the experimental imagery whilst the information theoretic approach has been used to predict the expected variation of performance with parameter value. A comparison of these measured and predicted assessments has revealed the strengths and weaknesses of the theoretical technique as will be discussed in the paper.
A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing
Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui
2017-01-01
Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343
Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth.
Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris
2009-01-01
The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year(-1), overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year(-1) occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique.
Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth
Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris
2009-01-01
The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year-1, overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year-1 occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique. PMID:22389587
G0-WISHART Distribution Based Classification from Polarimetric SAR Images
NASA Astrophysics Data System (ADS)
Hu, G. C.; Zhao, Q. H.
2017-09-01
Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Kwok, R.; Curlander, J. C.
1987-01-01
Five coding techniques in the spatial and transform domains have been evaluated for SAR image compression: linear three-point predictor (LTPP), block truncation coding (BTC), microadaptive picture sequencing (MAPS), adaptive discrete cosine transform (ADCT), and adaptive Hadamard transform (AHT). These techniques have been tested with Seasat data. Both LTPP and BTC spatial domain coding techniques provide very good performance at rates of 1-2 bits/pixel. The two transform techniques, ADCT and AHT, demonstrate the capability to compress the SAR imagery to less than 0.5 bits/pixel without visible artifacts. Tradeoffs such as the rate distortion performance, the computational complexity, the algorithm flexibility, and the controllability of compression ratios are also discussed.
Marine Targets Classification in PolInSAR Data
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Jingsong; Ren, Lin
2014-11-01
In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then, A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.
Marine Targets Classification in PolInSAR Data
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Jingsong; Ren, Lin
2014-11-01
In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then , A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.
NASA Astrophysics Data System (ADS)
Cao, Bin; Liao, Ningfang; Li, Yasheng; Cheng, Haobo
2017-05-01
The use of spectral reflectance as fundamental color information finds application in diverse fields related to imaging. Many approaches use training sets to train the algorithm used for color classification. In this context, we note that the modification of training sets obviously impacts the accuracy of reflectance reconstruction based on classical reflectance reconstruction methods. Different modifying criteria are not always consistent with each other, since they have different emphases; spectral reflectance similarity focuses on the deviation of reconstructed reflectance, whereas colorimetric similarity emphasizes human perception. We present a method to improve the accuracy of the reconstructed spectral reflectance by adaptively combining colorimetric and spectral reflectance similarities. The different exponential factors of the weighting coefficients were investigated. The spectral reflectance reconstructed by the proposed method exhibits considerable improvements in terms of the root-mean-square error and goodness-of-fit coefficient of the spectral reflectance errors as well as color differences under different illuminants. Our method is applicable to diverse areas such as textiles, printing, art, and other industries.
Spectral unmixing of multi-color tissue specific in vivo fluorescence in mice
NASA Astrophysics Data System (ADS)
Zacharakis, Giannis; Favicchio, Rosy; Garofalakis, Anikitos; Psycharakis, Stylianos; Mamalaki, Clio; Ripoll, Jorge
2007-07-01
Fluorescence Molecular Tomography (FMT) has emerged as a powerful tool for monitoring biological functions in vivo in small animals. It provides the means to determine volumetric images of fluorescent protein concentration by applying the principles of diffuse optical tomography. Using different probes tagged to different proteins or cells, different biological functions and pathways can be simultaneously imaged in the same subject. In this work we present a spectral unmixing algorithm capable of separating signal from different probes when combined with the tomographic imaging modality. We show results of two-color imaging when the algorithm is applied to separate fluorescence activity originating from phantoms containing two different fluorophores, namely CFSE and SNARF, with well separated emission spectra, as well as Dsred- and GFP-fused cells in F5-b10 transgenic mice in vivo. The same algorithm can furthermore be applied to tissue-specific spectroscopy data. Spectral analysis of a variety of organs from control, DsRed and GFP F5/B10 transgenic mice showed that fluorophore detection by optical systems is highly tissue-dependent. Spectral data collected from different organs can provide useful insight into experimental parameter optimisation (choice of filters, fluorophores, excitation wavelengths) and spectral unmixing can be applied to measure the tissue-dependency, thereby taking into account localized fluorophore efficiency. Summed up, tissue spectral unmixing can be used as criteria in choosing the most appropriate tissue targets as well as fluorescent markers for specific applications.
Pancake Ice Thickness Mapping in the Beaufort Sea From Wave Dispersion Observed in SAR Imagery
NASA Astrophysics Data System (ADS)
Wadhams, P.; Aulicino, G.; Parmiggiani, F.; Persson, P. O. G.; Holt, B.
2018-03-01
The early autumn voyage of RV Sikuliaq to the southern Beaufort Sea in 2015 offered very favorable opportunities for observing the properties and thicknesses of frazil-pancake ice types. The operational region was overlaid by a dense network of retrieved satellite imagery, including synthetic aperture radar (SAR) imagery from Sentinel-1 and COSMO-SkyMed (CSK). This enabled us to fully test and apply the SAR-waves technique, first developed by Wadhams and Holt (1991), for deriving the thickness of frazil-pancake icefields from changed wave dispersion. A line of subimages from a main SAR image (usually CSK) is analyzed running into the ice along the main wave direction. Each subimage is spectrally analyzed to yield a wave number spectrum, and the change in the shape of the spectrum between open water and ice, or between two thicknesses of ice, is interpreted in terms of the viscous equations governing wave propagation in frazil-pancake ice. For each of the case studies considered here, there was good or acceptable agreement on thickness between the extensive in situ observations and the SAR-wave calculation. In addition, the SAR-wave analysis gave, parametrically, effective viscosities for the ice covering a consistent and narrow range of 0.03-0.05 m2 s-1.
Quantifying sub-pixel urban impervious surface through fusion of optical and inSAR imagery
Yang, L.; Jiang, L.; Lin, H.; Liao, M.
2009-01-01
In this study, we explored the potential to improve urban impervious surface modeling and mapping with the synergistic use of optical and Interferometric Synthetic Aperture Radar (InSAR) imagery. We used a Classification and Regression Tree (CART)-based approach to test the feasibility and accuracy of quantifying Impervious Surface Percentage (ISP) using four spectral bands of SPOT 5 high-resolution geometric (HRG) imagery and three parameters derived from the European Remote Sensing (ERS)-2 Single Look Complex (SLC) SAR image pair. Validated by an independent ISP reference dataset derived from the 33 cm-resolution digital aerial photographs, results show that the addition of InSAR data reduced the ISP modeling error rate from 15.5% to 12.9% and increased the correlation coefficient from 0.71 to 0.77. Spatially, the improvement is especially noted in areas of vacant land and bare ground, which were incorrectly mapped as urban impervious surfaces when using the optical remote sensing data. In addition, the accuracy of ISP prediction using InSAR images alone is only marginally less than that obtained by using SPOT imagery. The finding indicates the potential of using InSAR data for frequent monitoring of urban settings located in cloud-prone areas.
A prototype of an automated high resolution InSAR volcano-monitoring system in the MED-SUV project
NASA Astrophysics Data System (ADS)
Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas
2016-04-01
Volcanic processes which produce a variety of geological and hydrological hazards are difficult to predict and capable of triggering natural disasters on regional to global scales. Therefore it is important to monitor volcano continuously and with a high spatial and temporal sampling rate. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities and it helps for the better understanding and modelling of the involved geophysical processes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide a powerful tool for observing the eruptive activities and measuring the surface changes of millimetre accuracy. All the mentioned techniques with deformation time series extraction address the challenges by exploiting medium to large SAR image stacks. The process of selecting, ordering, downloading, storing, logging, extracting and preparing the data for processing is very time consuming has to be done manually for every single data-stack. In many cases it is even an iterative process which has to be done regularly and continuously. Therefore, data processing becomes slow which causes significant delays in data delivery. The SAR Satellite based High Resolution Data Acquisition System, which will be developed at DLR, will automate this entire time consuming tasks and allows an operational volcano monitoring system. Every 24 hours the system runs for searching new acquired scene over the volcanoes and keeps track of the data orders, log the status and download the provided data via ftp-transfer including E-Mail alert. Furthermore, the system will deliver specified reports and maps to a database for review and use by specialists. The user interaction will be minimized and iterative processes will be totally avoided. In this presentation, a prototype of SAR Satellite based High Resolution Data Acquisition System, which is developed and operated by DLR, will be described in detail. The workflow of the developed system is described which allow a meaningful contribution of SAR for monitoring volcanic eruptive activities. A more robust and efficient InSAR data processing in IWAP processor will be introduced in the framework of a remote sensing task of MED-SUV project. An application of the developed prototype system to a historic eruption of Mount Etna and Piton de la Fournaise will be depicted in the last part of the presentation.
Functional Flow and Event-Driven Methods for Predicting System Performance
2015-09-01
The thesis process was difficult and at times painful , but the modeling applications were something that I thoroughly enjoyed working through and...21. 2. SAR Mission initiates; SAR Assets conduct search but no objects of interest are found; SAR assets continue to scan but OSC aborts mission...be related to the SAR, so the OSC aborts mission and all Assets RTB. 45 4. SAR Mission initiates; SAR Assets conduct search and find an object of
Using SAR satellite data time series for regional glacier mapping
NASA Astrophysics Data System (ADS)
Winsvold, Solveig H.; Kääb, Andreas; Nuth, Christopher; Andreassen, Liss M.; van Pelt, Ward J. J.; Schellenberger, Thomas
2018-03-01
With dense SAR satellite data time series it is possible to map surface and subsurface glacier properties that vary in time. On Sentinel-1A and RADARSAT-2 backscatter time series images over mainland Norway and Svalbard, we outline how to map glaciers using descriptive methods. We present five application scenarios. The first shows potential for tracking transient snow lines with SAR backscatter time series and correlates with both optical satellite images (Sentinel-2A and Landsat 8) and equilibrium line altitudes derived from in situ surface mass balance data. In the second application scenario, time series representation of glacier facies corresponding to SAR glacier zones shows potential for a more accurate delineation of the zones and how they change in time. The third application scenario investigates the firn evolution using dense SAR backscatter time series together with a coupled energy balance and multilayer firn model. We find strong correlation between backscatter signals with both the modeled firn air content and modeled wetness in the firn. In the fourth application scenario, we highlight how winter rain events can be detected in SAR time series, revealing important information about the area extent of internal accumulation. In the last application scenario, averaged summer SAR images were found to have potential in assisting the process of mapping glaciers outlines, especially in the presence of seasonal snow. Altogether we present examples of how to map glaciers and to further understand glaciological processes using the existing and future massive amount of multi-sensor time series data.
Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kilgour, David P. A.; Hughes, Sam; Kilgour, Samantha L.; Mackay, C. Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K.; Clarke, David J.; Goodlett, David R.
2017-02-01
We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks.
Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry.
Kilgour, David P A; Hughes, Sam; Kilgour, Samantha L; Mackay, C Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K; Clarke, David J; Goodlett, David R
2017-02-01
We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks. Graphical Abstract ᅟ.
Quantized Spectral Compressed Sensing: Cramer–Rao Bounds and Recovery Algorithms
NASA Astrophysics Data System (ADS)
Fu, Haoyu; Chi, Yuejie
2018-06-01
Efficient estimation of wideband spectrum is of great importance for applications such as cognitive radio. Recently, sub-Nyquist sampling schemes based on compressed sensing have been proposed to greatly reduce the sampling rate. However, the important issue of quantization has not been fully addressed, particularly for high-resolution spectrum and parameter estimation. In this paper, we aim to recover spectrally-sparse signals and the corresponding parameters, such as frequency and amplitudes, from heavy quantizations of their noisy complex-valued random linear measurements, e.g. only the quadrant information. We first characterize the Cramer-Rao bound under Gaussian noise, which highlights the trade-off between sample complexity and bit depth under different signal-to-noise ratios for a fixed budget of bits. Next, we propose a new algorithm based on atomic norm soft thresholding for signal recovery, which is equivalent to proximal mapping of properly designed surrogate signals with respect to the atomic norm that motivates spectral sparsity. The proposed algorithm can be applied to both the single measurement vector case, as well as the multiple measurement vector case. It is shown that under the Gaussian measurement model, the spectral signals can be reconstructed accurately with high probability, as soon as the number of quantized measurements exceeds the order of K log n, where K is the level of spectral sparsity and $n$ is the signal dimension. Finally, numerical simulations are provided to validate the proposed approaches.
Classification Comparisons Between Compact Polarimetric and Quad-Pol SAR Imagery
NASA Astrophysics Data System (ADS)
Souissi, Boularbah; Doulgeris, Anthony P.; Eltoft, Torbjørn
2015-04-01
Recent interest in dual-pol SAR systems has lead to a novel approach, the so-called compact polarimetric imaging mode (CP) which attempts to reconstruct fully polarimetric information based on a few simple assumptions. In this work, the CP image is simulated from the full quad-pol (QP) image. We present here the initial comparison of polarimetric information content between QP and CP imaging modes. The analysis of multi-look polarimetric covariance matrix data uses an automated statistical clustering method based upon the expectation maximization (EM) algorithm for finite mixture modeling, using the complex Wishart probability density function. Our results showed that there are some different characteristics between the QP and CP modes. The classification is demonstrated using a E-SAR and Radarsat2 polarimetric SAR images acquired over DLR Oberpfaffenhofen in Germany and Algiers in Algeria respectively.
Spectral compression algorithms for the analysis of very large multivariate images
Keenan, Michael R.
2007-10-16
A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.
Guérin, Bastien; Stockmann, Jason P; Baboli, Mehran; Torrado-Carvajal, Angel; Stenger, Andrew V; Wald, Lawrence L
2016-08-01
To design parallel transmission spokes pulses with time-shifted profiles for joint mitigation of intensity variations due to B1+ effects, signal loss due to through-plane dephasing, and the specific absorption rate (SAR) at 7T. We derived a slice-averaged small tip angle (SA-STA) approximation of the magnetization signal at echo time that depends on the B1+ transmit profiles, the through-slice B0 gradient and the amplitude and time-shifts of the spoke waveforms. We minimize a magnitude least-squares objective based on this signal equation using a fast interior-point approach with analytical expressions of the Jacobian and Hessian. Our algorithm runs in less than three minutes for the design of two-spoke pulses subject to hundreds of local SAR constraints. On a B0/B1+ head phantom, joint optimization of the channel-dependent time-shifts and spoke amplitudes allowed signal recovery in high-B0 regions at no increase of SAR. Although the method creates uniform magnetization profiles (ie, uniform intensity), the flip angle varies across the image, which makes it ill-suited to T1-weighted applications. The SA-STA approach presented in this study is best suited to T2*-weighted applications with long echo times that require signal recovery around high B0 regions. Magn Reson Med 76:540-554, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G A
2004-06-08
In general, the Phase Retrieval from Modulus problem is very difficult. In this report, we solve the difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase reconstruction. We exploit the real-and imaginary part sufficiency properties of the Fourier and Hilbert Transforms of causal sequences to develop an algorithm for reconstructing spectral phase given only spectral modulus. The algorithm uses homeomorphic signal processing methods with the complex cepstrum. The formal problem of interest is: Given measurements of only the modulus {vert_bar}H(k){vert_bar} (no phase) of the Discrete Fourier Transform (DFT) of a real, finite-length, stable,more » causal time domain signal h(n), compute a minimum phase reconstruction {cflx h}(n) of the signal. Then compute the phase of {cflx h}(n) using a DFT, and exploit the result as an estimate of the phase of h(n). The development of the algorithm is quite involved, but the final algorithm and its implementation are very simple. This work was motivated by a Phase Retrieval from Modulus Problem that arose in LLNL Defense Sciences Engineering Division (DSED) projects in lightning protection for buildings. The measurements are limited to modulus-only spectra from a spectrum analyzer. However, it is desired to perform system identification on the building to compute impulse responses and transfer functions that describe the amount of lightning energy that will be transferred from the outside of the building to the inside. This calculation requires knowledge of the entire signals (both modulus and phase). The algorithm and software described in this report are proposed as an approach to phase retrieval that can be used for programmatic needs. This report presents a brief tutorial description of the mathematical problem and the derivation of the phase retrieval algorithm. The efficacy of the theory is demonstrated using simulated signals that meet the assumptions of the algorithm. We see that for the noiseless case, the reconstructions are extremely accurate. When moderate to heavy simulated white Gaussian noise was added, the algorithm performance remained reasonably robust, especially in the low frequency part of the spectrum, which is the part of most interest for lightning protection. Limitations of the algorithm include the following: (1) It does not account for noise in the given spectral modulus. Fortunately, the lightning protection signals of interest generally have a reasonably high signal-to-noise ratio (SNR). (2) The DFT length N must be even and larger than the length of the nonzero part of the measured signals. These constraints are simple to meet in practice. (3) Regardless of the properties of the actual signal h(n), the phase retrieval results are constrained to have the minimum phase property. In most problems of practical interest, these assumptions are very reasonable and probably valid. They are reasonable assumptions for Lightning Protection applications. Proposed future work includes (a) Evaluating the efficacy of the algorithm with real Lightning Protection signals from programmatic applications, (b) Performing a more rigorous analysis of noise effects, (c) Using the algorithm along with advanced system identification algorithms to estimate impulse responses and transfer functions, (d) Developing algorithms to deal with measured partial (truncated) spectral moduli, and (e) R & D of phase retrieval algorithms that specifically deal with general (not necessarily minimum phase) signals, and noisy spectral moduli.« less
Modified Optimization Water Index (mowi) for LANDSAT-8 Oli/tirs
NASA Astrophysics Data System (ADS)
Moradi, M.; Sahebi, M.; Shokri, M.
2017-09-01
Water is one of the most important resources that essential need for human life. Due to population growth and increasing need of human to water, proper management of water resources will be one of the serious challenges of next decades. Remote sensing data is the best way to the management of water resources due time and cost effectiveness over a greater range of temporal and spatial scales. Between many kinds of satellite data, from SAR to optic or from high resolution to low resolution, Landsat imagery is more interesting data for water detection and management of earth surface water. Landsat8 OLI/TIRS is the newest version of Landsat satellite series. In this paper, we investigated the full spectral potential of Landsat8 for water detection. It is developed many kinds of methods for this purpose that index based methods have some advantages than other methods. Pervious indices just use a limited number of spectral band. In this paper, Modified Optimization Water Index (MOWI) defined by consideration of a linear combination of bands that each coefficient of bands calculated by particle swarm algorithm. The result shows that modified optimization water index (MOWI) has a proper performance on different condition like cloud, cloud shadow and mountain shadow.
Historical series and Near Real Time data analysis produced within ASI-SRV project infrastructures
NASA Astrophysics Data System (ADS)
Silvestri, M.; Musacchio, M.; Buongiorno, M.; Corradini, S.; Lombardo, V.; Merucci, L.; Spinetti, C.; Sansosti, E.; Pugnaghi, S.; Teggi, S.; Vignoli, S.; Amodio, A.; Dini, L.
2009-12-01
ASI-Sistema Rischio Vulcanico (SRV) project is devoted to the development of a pre-operative integrated system managing different Earth Observation (EO) and Non EO data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes. The project provides the capability to maintain a repository where the acquired data are stored and generates products offering a support to risk managers during the different volcanic activity phases. All the products are obtained considering technical choices and developments of ASI-SRV based on flexible and scalable modules which take into account also the new coming space sensors and new processing algorithms. An important step of the project development regards the technical and scientific feasibility of the provided products that depends on the data availability, accuracy algorithms and models used in the processing and of course the possibility to validate the results by means of comparison with non-EO independent measurements. The ASI-SRV infrastrucutre is based on a distributed client/server architecture which implies that different processors need to ingest data set characterized by a constant and common structure. ASI-SRV will develop, in its final version, a centralized HW-SW system located at INGV which will control two complete processing chains, one located at INGV for Optical data, and the other located at IREA for SAR data. The produced results will be disseminated through a WEB-GIS interface which will allow the DPC to overview and assimilate the products in a compatible format respect to their local monitoring system in order to have an immediate use of the provided information. In this paper the first results producing ground deformation measurement via Differential Interferometric SAR (DInSAR) techniques by using SAR data and via the application of the Small BAseline Subset (SBAS) technique developed at IREA, are reported. Moreover different products obtained using optical data (ASTER, MODIS, HYPERION, and AVHRR) are also reported. The processing modules for EO Optical sensors data are based on procedures those allow to estimate a number of parameters which include: surface thermal proprieties, concentration and flux of sulphur dioxide (SO2), water vapor and volcanic aerosol optical thickness, ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information useful to detect small changes in the retrieved parameters. ASI-SRV foresees the generation of significant information also for the definition of the new lava and ash cover distribution after the end of an eruption.
NASA Technical Reports Server (NTRS)
Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.
1996-01-01
This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.
Diverse Power Iteration Embeddings and Its Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang H.; Yoo S.; Yu, D.
2014-12-14
Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detectionmore » and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.« less
Peak picking NMR spectral data using non-negative matrix factorization.
Tikole, Suhas; Jaravine, Victor; Rogov, Vladimir; Dötsch, Volker; Güntert, Peter
2014-02-11
Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap.
Masterlark, Timothy; Lu, Zhong; Rykhus, Russell P.
2006-01-01
Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992–1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 107m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500–800 °C.
Potential inundated coastal area estimation in Shanghai with multi-platform SAR and altimetry data
NASA Astrophysics Data System (ADS)
Ma, Guanyu; Yang, Tianliang; Zhao, Qing; Kubanek, Julia; Pepe, Antonio; Dong, Hongbin; Sun, Zhibin
2017-09-01
As global warming problem is becoming serious in recent decades, the global sea level is continuously rising. This will cause damages to the coastal deltas with the characteristics of low-lying land, dense population, and developed economy. Continuously reclamation costal intertidal and wetland areas are making Shanghai, the mega city of Yangtze River Delta, more vulnerable to sea level rise. In this paper, we investigate the land subsidence temporal evolution of patterns and processes on a stretch of muddy coast located between the Yangtze River Estuary and Hangzou Bay with differential synthetic aperture radar interferometry (DInSAR) analyses. By exploiting a set of 31 SAR images acquired by the ENVISAT/ASAR from February 2007 to May 2010 and a set of 48 SAR images acquired by the COSMO-SkyMed (CSK) sensors from December 2013 to March 2016, coherent point targets as long as land subsidence velocity maps and time series are identified by using the Small Baseline Subset (SBAS) algorithm. With the DInSAR constrained land subsidence model, we predict the land subsidence trend and the expected cumulative subsidence in 2020, 2025 and 2030. Meanwhile, we used altimetrydata and densely distributed in the coastal region are identified (EEMD) algorithm to obtain the average sea level rise rate in the East China Sea. With the land subsidence predictions, sea level rise predictions, and high-precision digital elevation model (DEM), we analyze the combined risk of land subsidence and sea level rise on the coastal areas of Shanghai. The potential inundated areas are mapped under different scenarios.
Adaptive Noise Suppression Using Digital Signal Processing
NASA Technical Reports Server (NTRS)
Kozel, David; Nelson, Richard
1996-01-01
A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.
NASA Astrophysics Data System (ADS)
Liu, F.; Chen, T.; He, J.; Wen, Q.; Yu, F.; Gu, X.; Wang, Z.
2018-04-01
In recent years, the quick upgrading and improvement of SAR sensors provide beneficial complements for the traditional optical remote sensing in the aspects of theory, technology and data. In this paper, Sentinel-1A SAR data and GF-1 optical data were selected for image fusion, and more emphases were put on the dryland crop classification under a complex crop planting structure, regarding corn and cotton as the research objects. Considering the differences among various data fusion methods, the principal component analysis (PCA), Gram-Schmidt (GS), Brovey and wavelet transform (WT) methods were compared with each other, and the GS and Brovey methods were proved to be more applicable in the study area. Then, the classification was conducted based on the object-oriented technique process. And for the GS, Brovey fusion images and GF-1 optical image, the nearest neighbour algorithm was adopted to realize the supervised classification with the same training samples. Based on the sample plots in the study area, the accuracy assessment was conducted subsequently. The values of overall accuracy and kappa coefficient of fusion images were all higher than those of GF-1 optical image, and GS method performed better than Brovey method. In particular, the overall accuracy of GS fusion image was 79.8 %, and the Kappa coefficient was 0.644. Thus, the results showed that GS and Brovey fusion images were superior to optical images for dryland crop classification. This study suggests that the fusion of SAR and optical images is reliable for dryland crop classification under a complex crop planting structure.
Research on Remote Sensing Image Classification Based on Feature Level Fusion
NASA Astrophysics Data System (ADS)
Yuan, L.; Zhu, G.
2018-04-01
Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.
First Image Products from EcoSAR - Osa Peninsula, Costa Rica
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon
2016-01-01
Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
NASA Technical Reports Server (NTRS)
Harwit, M.; Swift, R.; Wattson, R.; Decker, J.; Paganetti, R.
1976-01-01
A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed.
A framework for evaluating mixture analysis algorithms
NASA Astrophysics Data System (ADS)
Dasaratha, Sridhar; Vignesh, T. S.; Shanmukh, Sarat; Yarra, Malathi; Botonjic-Sehic, Edita; Grassi, James; Boudries, Hacene; Freeman, Ivan; Lee, Young K.; Sutherland, Scott
2010-04-01
In recent years, several sensing devices capable of identifying unknown chemical and biological substances have been commercialized. The success of these devices in analyzing real world samples is dependent on the ability of the on-board identification algorithm to de-convolve spectra of substances that are mixtures. To develop effective de-convolution algorithms, it is critical to characterize the relationship between the spectral features of a substance and its probability of detection within a mixture, as these features may be similar to or overlap with other substances in the mixture and in the library. While it has been recognized that these aspects pose challenges to mixture analysis, a systematic effort to quantify spectral characteristics and their impact, is generally lacking. In this paper, we propose metrics that can be used to quantify these spectral features. Some of these metrics, such as a modification of variance inflation factor, are derived from classical statistical measures used in regression diagnostics. We demonstrate that these metrics can be correlated to the accuracy of the substance's identification in a mixture. We also develop a framework for characterizing mixture analysis algorithms, using these metrics. Experimental results are then provided to show the application of this framework to the evaluation of various algorithms, including one that has been developed for a commercial device. The illustration is based on synthetic mixtures that are created from pure component Raman spectra measured on a portable device.
A seismic coherency method using spectral amplitudes
NASA Astrophysics Data System (ADS)
Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong
2015-09-01
Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
Optimisation and evaluation of hyperspectral imaging system using machine learning algorithm
NASA Astrophysics Data System (ADS)
Suthar, Gajendra; Huang, Jung Y.; Chidangil, Santhosh
2017-10-01
Hyperspectral imaging (HSI), also called imaging spectrometer, originated from remote sensing. Hyperspectral imaging is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the objects physiology, morphology, and composition. The present work involves testing and evaluating the performance of the hyperspectral imaging system. The methodology involved manually taking reflectance of the object in many images or scan of the object. The object used for the evaluation of the system was cabbage and tomato. The data is further converted to the required format and the analysis is done using machine learning algorithm. The machine learning algorithms applied were able to distinguish between the object present in the hypercube obtain by the scan. It was concluded from the results that system was working as expected. This was observed by the different spectra obtained by using the machine-learning algorithm.
Operational algorithm for ice-water classification on dual-polarized RADARSAT-2 images
NASA Astrophysics Data System (ADS)
Zakhvatkina, Natalia; Korosov, Anton; Muckenhuber, Stefan; Sandven, Stein; Babiker, Mohamed
2017-01-01
Synthetic Aperture Radar (SAR) data from RADARSAT-2 (RS2) in dual-polarization mode provide additional information for discriminating sea ice and open water compared to single-polarization data. We have developed an automatic algorithm based on dual-polarized RS2 SAR images to distinguish open water (rough and calm) and sea ice. Several technical issues inherent in RS2 data were solved in the pre-processing stage, including thermal noise reduction in HV polarization and correction of angular backscatter dependency in HH polarization. Texture features were explored and used in addition to supervised image classification based on the support vector machines (SVM) approach. The study was conducted in the ice-covered area between Greenland and Franz Josef Land. The algorithm has been trained using 24 RS2 scenes acquired in winter months in 2011 and 2012, and the results were validated against manually derived ice charts of the Norwegian Meteorological Institute. The algorithm was applied on a total of 2705 RS2 scenes obtained from 2013 to 2015, and the validation results showed that the average classification accuracy was 91 ± 4 %.
3D Tomographic SAR Imaging in Densely Vegetated Mountainous Rural Areas in China and Sweden
NASA Astrophysics Data System (ADS)
Feng, L.; Muller, J. P., , Prof
2017-12-01
3D SAR Tomography (TomoSAR) and 4D SAR Differential Tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to create an important new innovation of SAR Interferometry, to unscramble complex scenes with multiple scatterers mapped into the same SAR cell. In addition to this 3-D shape reconstruction and deformation solution in complex urban/infrastructure areas, and recent cryospheric ice investigations, emerging tomographic remote sensing applications include forest applications, e.g. tree height and biomass estimation, sub-canopy topographic mapping, and even search, rescue and surveillance. However, these scenes are characterized by temporal decorrelation of scatterers, orbital, tropospheric and ionospheric phase distortion and an open issue regarding possible height blurring and accuracy losses for TomoSAR applications particularly in densely vegetated mountainous rural areas. Thus, it is important to develop solutions for temporal decorrelation, orbital, tropospheric and ionospheric phase distortion.We report here on 3D imaging (especially in vertical layers) over densely vegetated mountainous rural areas using 3-D SAR imaging (SAR tomography) derived from data stacks of X-band COSMO-SkyMed Spotlight and L band ALOS-1 PALSAR data stacks over Dujiangyan Dam, Sichuan, China and L and P band airborne SAR data (BioSAR 2008 - ESA) in the Krycklan river catchment, Northern Sweden. The new TanDEM-X 12m DEM is used to assist co - registration of all the data stacks over China first. Then, atmospheric correction is being assessed using weather model data such as ERA-I, MERRA, MERRA-2, WRF; linear phase-topography correction and MODIS spectrometer correction will be compared and ionospheric correction methods are discussed to remove tropospheric and ionospheric delay. Then the new TomoSAR method with the TanDEM-X 12m DEM is described to obtain the number of scatterers inside each pixel, the scattering amplitude and phase of each scatterer and finally extract tomograms (imaging), their 3D positions and motion parameters (deformation). A progress report will be shown on these different aspects.This work is partially supported by the CSC and UCL MAPS Dean prize through a PhD studentship at UCL-MSSL.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.; Bassuony, M. A.
2013-03-01
This paper is concerned with spectral Galerkin algorithms for solving high even-order two point boundary value problems in one dimension subject to homogeneous and nonhomogeneous boundary conditions. The proposed algorithms are extended to solve two-dimensional high even-order differential equations. The key to the efficiency of these algorithms is to construct compact combinations of Chebyshev polynomials of the third and fourth kinds as basis functions. The algorithms lead to linear systems with specially structured matrices that can be efficiently inverted. Numerical examples are included to demonstrate the validity and applicability of the proposed algorithms, and some comparisons with some other methods are made.
Robust Multipoint Water-Fat Separation Using Fat Likelihood Analysis
Yu, Huanzhou; Reeder, Scott B.; Shimakawa, Ann; McKenzie, Charles A.; Brittain, Jean H.
2016-01-01
Fat suppression is an essential part of routine MRI scanning. Multiecho chemical-shift based water-fat separation methods estimate and correct for Bo field inhomogeneity. However, they must contend with the intrinsic challenge of water-fat ambiguity that can result in water-fat swapping. This problem arises because the signals from two chemical species, when both are modeled as a single discrete spectral peak, may appear indistinguishable in the presence of Bo off-resonance. In conventional methods, the water-fat ambiguity is typically removed by enforcing field map smoothness using region growing based algorithms. In reality, the fat spectrum has multiple spectral peaks. Using this spectral complexity, we introduce a novel concept that identifies water and fat for multiecho acquisitions by exploiting the spectral differences between water and fat. A fat likelihood map is produced to indicate if a pixel is likely to be water-dominant or fat-dominant by comparing the fitting residuals of two different signal models. The fat likelihood analysis and field map smoothness provide complementary information, and we designed an algorithm (Fat Likelihood Analysis for Multiecho Signals) to exploit both mechanisms. It is demonstrated in a wide variety of data that the Fat Likelihood Analysis for Multiecho Signals algorithm offers highly robust water-fat separation for 6-echo acquisitions, particularly in some previously challenging applications. PMID:21842498
Dai, Qiong; Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An
2015-01-01
There is an increased interest in the applications of hyperspectral imaging (HSI) for assessing food quality, safety, and authenticity. HSI provides abundance of spatial and spectral information from foods by combining both spectroscopy and imaging, resulting in hundreds of contiguous wavebands for each spatial position of food samples, also known as the curse of dimensionality. It is desirable to employ feature selection algorithms for decreasing computation burden and increasing predicting accuracy, which are especially relevant in the development of online applications. Recently, a variety of feature selection algorithms have been proposed that can be categorized into three groups based on the searching strategy namely complete search, heuristic search and random search. This review mainly introduced the fundamental of each algorithm, illustrated its applications in hyperspectral data analysis in the food field, and discussed the advantages and disadvantages of these algorithms. It is hoped that this review should provide a guideline for feature selections and data processing in the future development of hyperspectral imaging technique in foods.
Dynamics of Kilauea's Magmatic System Imaged Using a Joint Analysis of Geodetic and Seismic Data
NASA Astrophysics Data System (ADS)
Wauthier, C.; Roman, D. C.; Poland, M. P.; Fukushima, Y.; Hooper, A. J.
2012-12-01
Nowadays, Interferometric Synthetic Aperture Radar (InSAR) is commonly used to study a wide range of active volcanic areas. InSAR provides high-spatial-resolution measurements of surface deformation with centimeter-scale accuracy. At Kilauea Volcano, Hawai'i, InSAR shows complex processes that are not well constrained by GPS data (which have relatively poor spatial resolution). However, GPS data have higher temporal resolution than InSAR data. Both datasets are thus complementary. To overcome some of the limitations of conventional InSAR, which are mainly induced by temporal decorrelation, topographic, orbital and atmospheric delays, a Multi-Temporal InSAR (MT-InSAR) approach can be used. MT-InSAR techniques involve the processing of multiple SAR acquisitions over the same area. Two classes of MT-InSAR algorithms are defined: the persistent scatterers (PS) and small baseline (SBAS) methods. Each method is designed for a specific type of scattering mechanism. A PS pixel is a pixel in which a single scatterer dominates, while the contributions from other scatterers are negligible. A SBAS pixel is a pixel that includes distributed scatterers, which have a phase with little decorrelation over short time periods. Here, we apply the "StaMPS" ("Stanford Method for Permanent Scatterers") technique, which incorporates both a PS and SBAS approach, on ENVISAT and ALOS datasets acquired from 2003 to 2010 at Kilauea. In particular, we focus our InSAR analysis on the time period before the June 2007 "Father's Day" dike intrusion and eruption, and also incorporate seismic and GPS data in our models. Our goal is to identify any precursors to the Father's Day event within Kilauea's summit magma system, east rift zone, and/or southwest rift zone.
Simulated annealing with restart strategy for the blood pickup routing problem
NASA Astrophysics Data System (ADS)
Yu, V. F.; Iswari, T.; Normasari, N. M. E.; Asih, A. M. S.; Ting, H.
2018-04-01
This study develops a simulated annealing heuristic with restart strategy (SA_RS) for solving the blood pickup routing problem (BPRP). BPRP minimizes the total length of the routes for blood bag collection between a blood bank and a set of donation sites, each associated with a time window constraint that must be observed. The proposed SA_RS is implemented in C++ and tested on benchmark instances of the vehicle routing problem with time windows to verify its performance. The algorithm is then tested on some newly generated BPRP instances and the results are compared with those obtained by CPLEX. Experimental results show that the proposed SA_RS heuristic effectively solves BPRP.
SAR image segmentation using skeleton-based fuzzy clustering
NASA Astrophysics Data System (ADS)
Cao, Yun Yi; Chen, Yan Qiu
2003-06-01
SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.
NASA Astrophysics Data System (ADS)
Williams, Arnold C.; Pachowicz, Peter W.
2004-09-01
Current mine detection research indicates that no single sensor or single look from a sensor will detect mines/minefields in a real-time manner at a performance level suitable for a forward maneuver unit. Hence, the integrated development of detectors and fusion algorithms are of primary importance. A problem in this development process has been the evaluation of these algorithms with relatively small data sets, leading to anecdotal and frequently over trained results. These anecdotal results are often unreliable and conflicting among various sensors and algorithms. Consequently, the physical phenomena that ought to be exploited and the performance benefits of this exploitation are often ambiguous. The Army RDECOM CERDEC Night Vision Laboratory and Electron Sensors Directorate has collected large amounts of multisensor data such that statistically significant evaluations of detection and fusion algorithms can be obtained. Even with these large data sets care must be taken in algorithm design and data processing to achieve statistically significant performance results for combined detectors and fusion algorithms. This paper discusses statistically significant detection and combined multilook fusion results for the Ellipse Detector (ED) and the Piecewise Level Fusion Algorithm (PLFA). These statistically significant performance results are characterized by ROC curves that have been obtained through processing this multilook data for the high resolution SAR data of the Veridian X-Band radar. We discuss the implications of these results on mine detection and the importance of statistical significance, sample size, ground truth, and algorithm design in performance evaluation.
Spectral Analysis of Breast Cancer on Tissue Microarrays: Seeing Beyond Morphology
2005-04-01
Harvey N., Szymanski J.J., Bloch J.J., Mitchell M. investigation of image feature extraction by a genetic algorithm. Proc. SPIE 1999;3812:24-31. 11...automated feature extraction using multiple data sources. Proc. SPIE 2003;5099:190-200. 15 4 Spectral-Spatial Analysis of Urine Cytology Angeletti et al...Appendix Contents: 1. Harvey, N.R., Levenson, R.M., Rimm, D.L. (2003) Investigation of Automated Feature Extraction Techniques for Applications in
Tropical forest plantation biomass estimation using RADARSAT-SAR and TM data of south china
NASA Astrophysics Data System (ADS)
Wang, Chenli; Niu, Zheng; Gu, Xiaoping; Guo, Zhixing; Cong, Pifu
2005-10-01
Forest biomass is one of the most important parameters for global carbon stock model yet can only be estimated with great uncertainties. Remote sensing, especially SAR data can offers the possibility of providing relatively accurate forest biomass estimations at a lower cost than inventory in study tropical forest. The goal of this research was to compare the sensitivity of forest biomass to Landsat TM and RADARSAT-SAR data and to assess the efficiency of NDVI, EVI and other vegetation indices in study forest biomass based on the field survey date and GIS in south china. Based on vegetation indices and factor analysis, multiple regression and neural networks were developed for biomass estimation for each species of the plantation. For each species, the better relationships between the biomass predicted and that measured from field survey was obtained with a neural network developed for the species. The relationship between predicted and measured biomass derived from vegetation indices differed between species. This study concludes that single band and many vegetation indices are weakly correlated with selected forest biomass. RADARSAT-SAR Backscatter coefficient has a relatively good logarithmic correlation with forest biomass, but neither TM spectral bands nor vegetation indices alone are sufficient to establish an efficient model for biomass estimation due to the saturation of bands and vegetation indices, multiple regression models that consist of spectral and environment variables improve biomass estimation performance. Comparing with TM, a relatively well estimation result can be achieved by RADARSAT-SAR, but all had limitations in tropical forest biomass estimation. The estimation results obtained are not accurate enough for forest management purposes at the forest stand level. However, the approximate volume estimates derived by the method can be useful in areas where no other forest information is available. Therefore, this paper provides a better understanding of relationships of remote sensing data and forest stand parameters used in forest parameter estimation models.
A data compression technique for synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Minden, G. J.
1986-01-01
A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple.
Rainfall Estimation over the Nile Basin using Multi-Spectral, Multi- Instrument Satellite Techniques
NASA Astrophysics Data System (ADS)
Habib, E.; Kuligowski, R.; Sazib, N.; Elshamy, M.; Amin, D.; Ahmed, M.
2012-04-01
Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite- derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared (IR) algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). In this study, the authors report on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self- Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application by NFC over the Nile Basin. The algorithm uses a set of rainfall predictors that come from multi-spectral Infrared cloud top observations and self-calibrate them to a set of predictands that come from the more accurate, but less frequent, Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels that have become recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager and Sounder (SSMIS), the Advanced Microwave Sounding Unit (AMSU), the Advanced Microwave Scanning Radiometer on EOS (AMSR-E), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real- time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) CMORPH product. The algorithm has several potential future applications such as: improving the performance accuracy of hydrologic forecasting models over the Nile Basin, and utilizing the enhanced rainfall datasets and better-calibrated hydrologic models to assess the impacts of climate change on the region's water availability using global circulation models and regional climate models.
NASA Astrophysics Data System (ADS)
Ma, Xiaoke; Wang, Bingbo; Yu, Liang
2018-01-01
Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.
Margarit, Gerard; Mallorqui, Jordi J.
2008-01-01
This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR) in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels' geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS) and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA) working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions. PMID:27873954
NASA Astrophysics Data System (ADS)
Reppucci, Antonio; Moreno, Laura
2010-12-01
Information on Soil moisture spatial and temporal evolution is of great importance for managing the utilization of soils and vegetation, in particular in environments where the water resources are scarce. In-situ measurement of soil moisture are costly and not able to sample the spatial behaviour of a whole region. Thanks to their all weather capability and wide coverage, Synthetic Aperture Radar (SAR) images offer the opportunity to monitor large area with high resolution. This study presents the results of a project, partially founded by the Catalan government, to improve the monitoring of soil moisture using Earth Observation data. In particular the project is focused on the calibration of existing semi-empirical algorithm in the area of study. This will be done using co-located SAR and in-situ measurements acquired during several field campaigns. Observed deviations between SAR measurements and in-situ measurement are discussed.
Carter, William D.
1981-01-01
Launched in June 1978, Seasat operated for only 100 days, but successfully acquired much information over both sea and land. The collection of synthetic aperture radar (SAR) imagery and radar altimetry was particularly important to geologists. Although there are difficulties in processing and distributing these data in a timely manner, initial evaluations indicate that the radar imagery supplements Landsat data by increasing the spectral range and offering a different look angle. The radar altimeter provides accurate profiles over narrow strips of land (1 km wide) and has demonstrated usefulness in measuring icecap surfaces (Greenland, Iceland, and Antarctica). The Salar of Uyuni in southern Bolivia served as a calibration site for the altimeter and has enabled investigators to develop a land-based smoothing algorithm that is believed to increase the accuracy of the system to 10 cm. Data from the altimeter are currently being used to measure subsidence resulting from ground water withdrawal in the Phoenix-Tucson area.
Komarov, Denis A; Hirata, Hiroshi
2017-08-01
In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Martinis, Sandro; Clandillon, Stephen; Twele, André; Huber, Claire; Plank, Simon; Maxant, Jérôme; Cao, Wenxi; Caspard, Mathilde; May, Stéphane
2016-04-01
Optical and radar satellite remote sensing have proven to provide essential crisis information in case of natural disasters, humanitarian relief activities and civil security issues in a growing number of cases through mechanisms such as the Copernicus Emergency Management Service (EMS) of the European Commission or the International Charter 'Space and Major Disasters'. The aforementioned programs and initiatives make use of satellite-based rapid mapping services aimed at delivering reliable and accurate crisis information after natural hazards. Although these services are increasingly operational, they need to be continuously updated and improved through research and development (R&D) activities. The principal objective of ASAPTERRA (Advancing SAR and Optical Methods for Rapid Mapping), the ESA-funded R&D project being described here, is to improve, automate and, hence, speed-up geo-information extraction procedures in the context of natural hazards response. This is performed through the development, implementation, testing and validation of novel image processing methods using optical and Synthetic Aperture Radar (SAR) data. The methods are mainly developed based on data of the German radar satellites TerraSAR-X and TanDEM-X, the French satellite missions Pléiades-1A/1B as well as the ESA missions Sentinel-1/2 with the aim to better characterize the potential and limitations of these sensors and their synergy. The resulting algorithms and techniques are evaluated in real case applications during rapid mapping activities. The project is focussed on three types of natural hazards: floods, landslides and fires. Within this presentation an overview of the main methodological developments in each topic is given and demonstrated in selected test areas. The following developments are presented in the context of flood mapping: a fully automated Sentinel-1 based processing chain for detecting open flood surfaces, a method for the improved detection of flooded vegetation in Sentinel-1data using Entropy/Alpha decomposition, unsupervised Wishart Classification, and object-based post-classification as well as semi-automatic approaches for extracting inundated areas and flood traces in rural and urban areas from VHR and HR optical imagery using machine learning techniques. Methodological developments related to fires are the implementation of fast and robust methods for mapping burnt scars using change detection procedures using SAR (Sentinel-1, TerraSAR-X) and HR optical (e.g. SPOT, Sentinel-2) data as well as the extraction of 3D surface and volume change information from Pléiades stereo-pairs. In the context of landslides, fast and transferable change detection procedures based on SAR (TerraSAR-X) and optical (SPOT) data as well methods for extracting the extent of landslides only based on polarimetric VHR SAR (TerraSAR-X) data are presented.
Weighted graph cuts without eigenvectors a multilevel approach.
Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian
2007-11-01
A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.
NASA Astrophysics Data System (ADS)
Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.
2016-08-01
Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.
On the merging of optical and SAR satellite imagery for surface water mapping applications
NASA Astrophysics Data System (ADS)
Markert, Kel N.; Chishtie, Farrukh; Anderson, Eric R.; Saah, David; Griffin, Robert E.
2018-06-01
Optical and Synthetic Aperture Radar (SAR) imagery from satellite platforms provide a means to discretely map surface water; however, the application of the two data sources in tandem has been inhibited by inconsistent data availability, the distinct physical properties that optical and SAR instruments sense, and dissimilar data delivery platforms. In this paper, we describe a preliminary methodology for merging optical and SAR data into a common data space. We apply our approach over a portion of the Mekong Basin, a region with highly variable surface water cover and persistent cloud cover, for surface water applications requiring dense time series analysis. The methods include the derivation of a representative index from both sensors that transforms data from disparate physical units (reflectance and backscatter) to a comparable dimensionless space applying a consistent water extraction approach to both datasets. The merging of optical and SAR data allows for increased observations in cloud prone regions that can be used to gain additional insight into surface water dynamics or flood mapping applications. This preliminary methodology shows promise for a common optical-SAR water extraction; however, data ranges and thresholding values can vary depending on data source, yielding classification errors in the resulting surface water maps. We discuss some potential future approaches to address these inconsistencies.
Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey
2014-05-01
1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the coast of Borkum, Germany, and consists of twelve 5-Megawatt wind power turbines. The retrieved results are validated by comparing with QuikSCAT measurements, the results of the German Weather Service (DWD) atmospheric model and in-situ measurements of wind speed and wind direction, obtained from the research platform FiNO1, installed 400 m west of Alpha Ventus. 4. Conclusion In the presented case study we quantify the wake characteristics of wake length, wake width, maximum velocity de?cit, wake merging and wake meandering. We show that SAR has the capability to map the sea surface two-dimensionally in high spatial resolution which provides a unique opportunity to observe spatial characteristics of offshore wind turbine wakes. The SAR derived information can support offshore wind farming with respect to optimal siting and design and help to estimate their effects on the environment.
Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device
NASA Astrophysics Data System (ADS)
Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben
2015-02-01
The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project
NASA Astrophysics Data System (ADS)
Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.
2016-09-01
The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.
ARIA: Delivering state-of-the-art InSAR products to end users
NASA Astrophysics Data System (ADS)
Agram, P. S.; Owen, S. E.; Hua, H.; Manipon, G.; Sacco, G. F.; Bue, B. D.; Fielding, E. J.; Yun, S. H.; Simons, M.; Webb, F.; Rosen, P. A.; Lundgren, P.; Liu, Z.
2016-12-01
Advanced Rapid Imaging and Analysis (ARIA) Center for Natural Hazards aims to bring state-of-the-art geodetic imaging capabilities to an operational level in support of local, national, and international hazard response communities. ARIA project's first foray into operational generation of InSAR products was with Calimap Project, in collaboration with ASI-CIDOT, using X-band data from the Cosmo-SkyMed constellation. Over the last year, ARIA's processing infrastructure has been significantly upgraded to exploit the free stream of high quality C-band SAR data from ESA's Sentinel-1 mission and related algorithmic improvements to the ISCE software. ARIA's data system can now operationally generate geocoded unwrapped phase and coherence products in GIS-friendly formats from Sentinel-1 TOPS mode data in an automated fashion, and this capability is currently being exercised various study sites across the United States including Hawaii, Central California, Iceland and South America. The ARIA team, building on the experience gained from handling X-band data and C-band data, has also built an automated machine learning-based classifier to label the auto-generated interferograms based on phase unwrapping quality. These high quality "time-series ready" InSAR products generated using state-of-the-art processing algorithms can be accessed by end users using two different mechanisms - 1) a Faceted-search interface that includes browse imagery for quick visualization and 2) an ElasticSearch-based API to enable bulk automated download, post-processing and time-series analysis. In this talk, we will present InSAR results from various global events that ARIA system has responded to. We will also discuss the set of geospatial big data tools including GIS libraries and API tools, that end users will need to familiarize themselves with in order to maximize the utilization of continuous stream of InSAR products from the Sentinel-1 and NISAR missions that the ARIA project will generate.
NASA Astrophysics Data System (ADS)
Protheroe, Mark; Sloggett, David R.; Sieber, Alois J.
1994-12-01
Traditionally, the production of high quality Synthetic Aperture Radar imagery has been an area where a potential user would have to expend large amounts of money in either the bespoke development of a processing chain dedicated to his requirements or in the purchase of a dedicated hardware platform adapted using accelerator boards and enhanced memory management. Whichever option the user adopted there were limitations based on the desire for a realistic throughput in data load and time. The user had a choice, made early in the purchase, for either a system that adopted innovative algorithmic manipulation, to limit the processing time of the purchase of expensive hardware. The former limits the quality of the product, while the latter excludes the user from any visibility into the processing chain. Clearly there was a need for a SAR processing architecture that gave the user a choice into the methodology to be adopted for a particular processing sequence, allowing him to decide on either a quick (lower quality) product or a detailed slower (high quality) product, without having to change the algorithmic base of his processor or the hardware platform. The European Commission, through the Advanced Techniques unit of the Joint Research Centre (JRC) Institute for Remote Sensing at Ispra in Italy, realizing the limitations on current processing abilities, initiated its own program to build airborne SAR and Electro-Optical (EO) sensor systems. This program is called the European Airborne Remote Sensing Capabilities (EARSEC) program. This paper describes the processing system developed for the airborne SAR sensor system. The paper considers the requirements for the system and the design of the EARSEC Airborne SAR Processing System. It highlights the development of an open SAR processing architecture where users have full access to intermediate products that arise from each of the major processing stages. It also describes the main processing stages in the overall architecture and illustrates the results of each of the key stages in the processor.