Sample records for spectrom ion processes

  1. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources

    PubMed Central

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  2. The expanding universe of mass analyzer configurations for biological analysis.

    PubMed

    Calvete, Juan J

    2014-01-01

    Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge ratio of electrically charged gas-phase particles. All mass spectrometers combine ion formation, mass analysis, and ion detection. Although mass analyzers can be regarded as sophisticated devices that manipulate ions in space and time, the rich diversity of possible ways to combine ion separation, focusing, and detection in dynamic mass spectrometers accounts for the large number of instrument designs. A historical perspective of the progress in mass spectrometry that since 1965 until today have contributed to position this technique as an indispensable tool for biological research has been recently addressed by a privileged witness of this golden age of MS (Gelpí J. Mass Spectrom 43:419-435, 2008; Gelpí J. Mass Spectrom 44:1137-1161, 2008). The aim of this chapter is to highlight the view that the operational principles of mass spectrometry can be understood by a simple mathematical language, and that an understanding of the basic concepts of mass spectrometry is necessary to take the most out of this versatile technique.

  3. Kinetics and Product Branching Fractions of Reactions between a Cation and a Radical: Ar+ + CH3 and O2+ + CH3 (Postprint)

    DTIC Science & Technology

    2015-01-13

    Gross group using a Chen nozzle coupled to a Fourier transform ion cyclotron reso- nance (FT-ICR) mass spectrometer for reactions of the benzyl radical...reactions: A Fourier transform ion cyclotron resonance study of allyl radical reacting with aromatic radical cations. Int. J. Mass Spectrom. 2009, 287, 8

  4. AMBIENT LEVEL VOLATILE ORGANIC COMPOUND (VOC) MONITORING USING SOLID ADSORBANTS - RECENT U.S. EPA STUDIES

    EPA Science Inventory

    Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in U.S. Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrome...

  5. Ion and Electron Interactions at Thermal and Suprathermal Energies

    DTIC Science & Technology

    1988-09-30

    Smith, D., in "Rate Coefficients in Astrochemistry" Ed. T.J. Millar and D.A. Williams (Reidel:Dordrecht, 1988) in press. 14)Smith, D., Dean , A.G. and...Adams, N.G., Z.Physik 253, 191 (1972). 15)Adams, N.G., Dean , A.G. and Smith, D., Int. J. Mass Spectrom. Ion Phys. 10, 63 (1972/73). 59 16)Ferguson...D. and Plumb I.C., J. Phys. D 5, 1226 (1972). 22)Smith, D., Adams, N.G., Dean , A.G. and Church, M.J., J.Phys. D. 8, 141 (1975). 23)Alge, E., Adams

  6. Characterization of a distonic isomer C6H5C+(OH)OCH2 of methyl benzoate radical cation by associative ion-molecule reactions

    NASA Astrophysics Data System (ADS)

    Dechamps, Noémie; Flammang, Robert; Gerbaux, Pascal; Nam, Pham-Cam; Nguyen, Minh Tho

    2006-03-01

    The C6H5C+(OH)OCH2 radical cation, formally a distonic isomer of ionized methyl benzoate, has been prepared by dissociative ionization of neopentyl benzoate, as earlier suggested by Audier et al. [H.E. Audier, A. Milliet, G. Sozzi, S. Hammerum, Org. Mass. Spectrom. 25 (1990) 44]. Its distonic character has now been firmly established by its high reactivity towards neutral methyl isocyanide (ionized methylene transfer) producing N-methyl ketenimine ions. Other mass spectrometric experiments and ab initio quantum chemical calculations also concur with each other pointing toward the existence of a stable distonic radical cation.

  7. Structure of [M + H - H(2)O](+) from protonated tetraglycine revealed by tandem mass spectrometry and IRMPD spectroscopy.

    PubMed

    Bythell, Benjamin J; Dain, Ryan P; Curtice, Stephanie S; Oomens, Jos; Steill, Jeffrey D; Groenewold, Gary S; Paizs, Béla; Van Stipdonk, Michael J

    2010-04-22

    Multiple-stage tandem mass spectrometry and collision-induced dissociation were used to investigate loss of H(2)O or CH(3)OH from protonated versions of GGGX (where X = G, A, and V), GGGGG, and the methyl esters of these peptides. In addition, wavelength-selective infrared multiple photon dissociation was used to characterize the [M + H - H(2)O](+) product derived from protonated GGGG and the major MS(3) fragment, [M + H - H(2)O - 29](+) of this peak. Consistent with the earlier work [ Ballard , K. D. ; Gaskell , S. J. J. Am. Soc. Mass Spectrom. 1993 , 4 , 477 - 481 ; Reid , G. E. ; Simpson , R. J. ; O'Hair , R. A. J. Int. J. Mass Spectrom. 1999 , 190/191 , 209 -230 ], CID experiments show that [M + H - H(2)O](+) is the dominant peak generated from both protonated GGGG and protonated GGGG-OMe. This strongly suggests that the loss of the H(2)O molecule occurs from a position other than the C-terminal free acid and that the product does not correspond to formation of the b(4) ion. Subsequent CID of [M + H - H(2)O](+) supports this proposal by resulting in a major product that is 29 mass units less than the precursor ion. This is consistent with loss of HN horizontal lineCH(2) rather than loss of carbon monoxide (28 mass units), which is characteristic of oxazolone-type b(n) ions. Comparison between experimental and theoretical infrared spectra for a group of possible structures confirms that the [M + H - H(2)O](+) peak is not a substituted oxazolone but instead suggests formation of an ion that features a five-membered ring along the peptide backbone, close to the amino terminus. Additionally, transition structure calculations and comparison of theoretical and experimental spectra of the [M + H - H(2)O - 29](+) peak also support this proposal.

  8. Accurate mass measurement by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. II. Measurement of negative radical ions using porphyrin and fullerene standard reference materials.

    PubMed

    Shao, Zhecheng; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2010-10-30

    A method for the accurate mass measurement of negative radical ions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI-TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C(60) compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Collision-induced dissociation of aminophospholipids (PE, MMPE, DMPE, PS): an apparently known fragmentation process revisited.

    PubMed

    Pittenauer, Ernst; Rehulka, Pavel; Winkler, Wolfgang; Allmaier, Günter

    2015-07-01

    A new type of low-mass substituted 4-oxazolin product ions of [M + H](+) precursor ions of aminophospholipids (glycerophosphatidylethanolamine, glycerophosphatidyl-N-methylethanolamine, glycerophosphatidyl-N,N-dimethylethanolamine, glycerophosphatidylserine) resulting from high-energy collision-induced dissociation (matrix-assisted laser desorption/ionization time-of-flight/reflectron time-of-flight mass spectrometry) and low-energy collision-induced dissociation (e.g., electrospray ionization quadrupole reflectron time-of-flight mass spectrometry) with accurate mass determination is described; these were previously misidentified as CHO-containing radical cationic product ions. The mechanism for the formation of these ions is proposed to be via rapid loss of water followed by cyclization to an 11-membered-ring transition state for the sn-1 fatty acid substituent and to a ten-membered-ring transition state for the sn-2 fatty acid substituent, and via final loss of monoacylglycerol phosphate, leading to substituted 4-oxazolin product ions. The minimum structural requirement for this interesting skeletal rearrangement fragmentation is an amino group linked to at least one hydrogen atom (i.e., ethanolamine, N-methylethanolamine, serine). Therefore, N,N-dimethylethanolamine derivates do not exhibit this type of fragmentation. The analytical value of these product ions is given by the fact that by post source decay and particularly high-energy collision-induced dissociation achieved via matrix-assisted laser desorption/ionization time-of-flight/reflectron time-of-flight mass spectrometry, the sn-2-related substituted 4-oxazolin product ion is always significantly more abundant than the sn-1-related one, which is quite helpful for detailed structural analysis of complex lipids. All other important product ions found are described in detail (following our previously published glycerophospholipid product ion nomenclature; Pittenauer and Allmaier, Int. J. Mass. Spectrom. 301:90-1012, 2011).

  10. Pyrolysis-Gas Chromatography/Mass Spectrometry of Thermoplastic Polymers

    DTIC Science & Technology

    1988-04-01

    e e- _.. d . %, % ." i WnU xu.U U W" V m Ifw V E IrWW W2’ V ~-.- , . . , S 3.3.5 Polyamide (Nylon 6, 6 T). The thermal degradation of aliphatic...POLYMERS * J.A. Hiltz - M.C. Bissonnette April 1988 Approved by L.J. Leggat Di7 5 tr/ecr;z v ;ion DISTRIBUTION APPROVED BY D /TO TECHNICAL MEMORANDUM 88...detection par spectrom6trie de masse et ionisation de flaime. Les r~sultats indiquent qu’un plastique inconnu peut Atre identifi6 d’apr& s ses produits

  11. Quality-assurance study of the special - purpose finite-element program - SPECTROM: I. Thermal, thermoelastic, and viscoelastic problems. [Comparison with MARC-CDC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, R.A.

    1980-12-01

    This comparison study involves a preliminary verification of finite element calculations. The methodology of the comparison study consists of solving four example problems with both the SPECTROM finite element program and the MARC-CDC general purpose finite element program. The results show close agreement for all example problems.

  12. Étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.

    2004-11-01

    Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.

  13. Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

    NASA Astrophysics Data System (ADS)

    Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena

    2018-04-01

    Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.

  14. Ambient aerodynamic ionization source for remote analyte sampling and mass spectrometric analysis.

    PubMed

    Dixon, R Brent; Sampson, Jason S; Hawkridge, Adam M; Muddiman, David C

    2008-07-01

    The use of aerodynamic devices in ambient ionization source development has become increasingly prevalent in the field of mass spectrometry. In this study, an air ejector has been constructed from inexpensive, commercially available components to incorporate an electrospray ionization emitter within the exhaust jet of the device. This novel aerodynamic device, herein termed remote analyte sampling, transport, and ionization relay (RASTIR) was used to remotely sample neutral species in the ambient and entrain them into an electrospray plume where they were subsequently ionized and detected using a linear ion trap Fourier transform mass spectrometer. Two sets of experiments were performed in the ambient environment to demonstrate the device's utility. The first involved the remote (approximately 1 ft) vacuum collection of pure sample particulates (i.e., dry powder) from a glass slide, entrainment and ionization at the ESI emitter, and mass spectrometric detection. The second experiment involved the capture (vacuum collection) of matrix-assisted laser desorbed proteins followed by entrainment in the ESI emitter plume, multiple charging, and mass spectrometric detection. This approach is in principle a RASTIR-assisted matrix-assisted laser desorption electrospray ionization source (Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2006, 17, 1712-1716; Rapid Commun. Mass Spectrom. 2007, 21, 1150-1154.). A detailed description of the device construction, operational parameters, and preliminary small molecule and protein data are presented.

  15. Microlocalization and Quantitation of Risk Associated Elements in Gleason Graded Prostate Tissue

    DTIC Science & Technology

    2006-03-01

    with NADC and NADH as studied by electrospray ionization mass spectrometry and 11B NMR spectroscopy , J. Mass Spectrom. 38 (2003) 632–640. [19] D.H. Kim...spectrometry and 11B NMR spectroscopy . J Mass Spectrom 38: 632 – 640 Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta...232 – 235 Semmelhack MF, Campagna SR, Hwa C, Federle MJ, Bassler BL (2004) Boron binding with the quorum sensing signal AI-2 and analogues . Org Lett 6

  16. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  17. Infrared Multiple-Photon Dissociation Action Spectroscopy of the b2 + Ion from PPG: Evidence of Third Residue Affecting b2 + Fragment Structure

    NASA Astrophysics Data System (ADS)

    Poutsma, John C.; Martens, Jonathan; Oomens, Jos; Maitre, Phillipe; Steinmetz, Vincent; Bernier, Matthew; Jia, Mengxuan; Wysocki, Vicki

    2017-07-01

    Infrared multiple-photon dissociation (IRMPD) action spectroscopy was performed on the b2 + fragment ion from the protonated PPG tripeptide. Comparison of the experimental infrared spectrum with computed spectra for both oxazolone and diketopiperazine structures indicates that the majority of the fragment ion population has an oxazolone structure with the remainder having a diketopiperazine structure. This result is in contrast with a recent study of the IRMPD action spectrum of the PP b2 + fragment ion from PPP, which was found to be nearly 100% diketopiperazine (Martens et al. Int. J. Mass Spectrom. 2015, 377, 179). The diketopiperazine b2 + ion is thermodynamically more stable than the oxazolone but normally requires a trans/cis peptide bond isomerization in the dissociating peptide. Martens et al. showed through IRMPD action spectroscopy that the PPP precursor ion was in a conformation in which the first peptide bond is already in the cis conformation and thus it was energetically favorable to form the thermodynamically-favored diketopiperazine b2 + ion. In the present case, solution-phase NMR spectroscopy and gas-phase IRMPD action spectroscopy show that the PPG precursor ion has its first amide bond in a trans configuration suggesting that the third residue is playing an important role in both the structure of the peptide and the associated ring-closure barriers for oxazolone and diketopiperazine formation.

  18. Gas phase basicities of polyfunctional molecules. Part 5: Non-aromatic sp2 nitrogen containing compounds.

    PubMed

    Bouchoux, Guy; Eckert-Maksic, Mirjana

    2018-03-01

    This paper constitutes the fifth part of a general review of the gas-phase protonation thermochemistry of polyfunctional molecules (Part 1: Theory and methods, Mass Spectrom Rev 2007, 26:775-835, Part 2: Saturated basic sites, Mass Spectrom Rev 2012, 31:353-390, Part 3: Amino acids, Mass Spectrom Rev 2012, 31:391-435, Part 4: Carbonyl as basic site, Mass Spectrom Rev 2015, 34:493-534). This part is devoted to non-aromatic molecules characterized by a lone pair located on a sp 2 nitrogen atom, it embraces functional groups such as imines, amidines, guanidines, diazenes, hydrazines, oximes, and phosphazenes. Specific examples are examined under five major chapters. In the first one, aliphatic and unsaturated (conjugated and cyclic) imines, hydrazones, and oximes are considered. A second chapter describes the protonation energetic of aliphatic, conjugated, or cyclic amidines. Guanidines, polyguanides, and biomolecules containing guanidine were examined in the third chapter. A fourth chapter describes the particular case of the phosphazene molecules. Finally, diazenes and azides were considered in the last chapter. Experimental data were re-evaluated according to the presently adopted basicity scale, i.e., PA(NH 3 ) = 853.6 kJ/mol, GB (NH 3 ) = 819 kJ/mol. Structural and energetic information given by G4MP2 quantum chemistry computations on typical systems are presented. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:139-170, 2018. © 2016 Wiley Periodicals, Inc.

  19. Ca(2+) -complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results.

    PubMed

    Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann

    2016-03-01

    Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Erratum to "The mechanism and thermodynamics of transesterification of acetate-ester enolates in the gas phase" : [Int. J. Mass Spectrom. Ion Process. 172 (1998) 25

    NASA Astrophysics Data System (ADS)

    Haas, George W.; Giblin, Daryl E.; Gross, Michael L.

    1998-02-01

    In solution, base-catalyzed hydrolysis and transesterification of esters are initiated by hydroxide- or alkoxide-ion attack at the carbonyl carbon. At low pressures in the gas phase, however, transesterification proceeds by an attack of the enolate anion of an acetate ester on an alcohol. Fourier transform mass spectrometry (FTMS) indicates that the reaction is the second-order process: -CH2-CO2-R+R'-OH-->-CH2-CO2-R'+R-OH and there is little to no detectable production of either alkoxide anion. Labeling studies show that the product and reactant enolate anion esters undergo exchange of hydrogens located [alpha] to the carbonyl carbon with the deuterium of R'--OD. The extent of the H/D exchange increases with reaction time, pointing to a short-lived intermediate. The alcoholysis reaction rate constants increase with increasing acidity of the primary, straight-chained alkyl alcohols, whereas steric effects associated with branched alcohols cause the rate constants to decrease. Equilibrium constants, which were determined directly from measurements at equilibrium and which were calculated from the forward and reverse rate constants, are near unity and show internal consistency. In the absence of steric effects, the larger enolate is always the favored product at equilibrium. The intermediate for the transesterification reaction, which can be generated at a few tenths of a torr in a tandem mass spectrometer, is tetrahedral, but other adducts that are collisionally stabilized under these conditions are principally loosely bound complexes.

  1. Study on the influence of X-ray tube spectral distribution on the analysis of bulk samples and thin films: Fundamental parameters method and theoretical coefficient algorithms

    NASA Astrophysics Data System (ADS)

    Sitko, Rafał

    2008-11-01

    Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272).

  2. Broadband ion mobility deconvolution for rapid analysis of complex mixtures.

    PubMed

    Pettit, Michael E; Brantley, Matthew R; Donnarumma, Fabrizio; Murray, Kermit K; Solouki, Touradj

    2018-05-04

    High resolving power ion mobility (IM) allows for accurate characterization of complex mixtures in high-throughput IM mass spectrometry (IM-MS) experiments. We previously demonstrated that pure component IM-MS data can be extracted from IM unresolved post-IM/collision-induced dissociation (CID) MS data using automated ion mobility deconvolution (AIMD) software [Matthew Brantley, Behrooz Zekavat, Brett Harper, Rachel Mason, and Touradj Solouki, J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. In our previous reports, we utilized a quadrupole ion filter for m/z-isolation of IM unresolved monoisotopic species prior to post-IM/CID MS. Here, we utilize a broadband IM-MS deconvolution strategy to remove the m/z-isolation requirement for successful deconvolution of IM unresolved peaks. Broadband data collection has throughput and multiplexing advantages; hence, elimination of the ion isolation step reduces experimental run times and thus expands the applicability of AIMD to high-throughput bottom-up proteomics. We demonstrate broadband IM-MS deconvolution of two separate and unrelated pairs of IM unresolved isomers (viz., a pair of isomeric hexapeptides and a pair of isomeric trisaccharides) in a simulated complex mixture. Moreover, we show that broadband IM-MS deconvolution improves high-throughput bottom-up characterization of a proteolytic digest of rat brain tissue. To our knowledge, this manuscript is the first to report successful deconvolution of pure component IM and MS data from an IM-assisted data-independent analysis (DIA) or HDMSE dataset.

  3. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  4. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    PubMed Central

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  5. Automated Lipid A Structure Assignment from Hierarchical Tandem Mass Spectrometry Data

    NASA Astrophysics Data System (ADS)

    Ting, Ying S.; Shaffer, Scott A.; Jones, Jace W.; Ng, Wailap V.; Ernst, Robert K.; Goodlett, David R.

    2011-05-01

    Infusion-based electrospray ionization (ESI) coupled to multiple-stage tandem mass spectrometry (MS n ) is a standard methodology for investigating lipid A structural diversity (Shaffer et al. J. Am. Soc. Mass. Spectrom. 18(6), 1080-1092, 2007). Annotation of these MS n spectra, however, has remained a manual, expert-driven process. In order to keep up with the data acquisition rates of modern instruments, we devised a computational method to annotate lipid A MS n spectra rapidly and automatically, which we refer to as hierarchical tandem mass spectrometry (HiTMS) algorithm. As a first-pass tool, HiTMS aids expert interpretation of lipid A MS n data by providing the analyst with a set of candidate structures that may then be confirmed or rejected. HiTMS deciphers the signature ions (e.g., A-, Y-, and Z-type ions) and neutral losses of MS n spectra using a species-specific library based on general prior structural knowledge of the given lipid A species under investigation. Candidates are selected by calculating the correlation between theoretical and acquired MS n spectra. At a false discovery rate of less than 0.01, HiTMS correctly assigned 85% of the structures in a library of 133 manually annotated Francisella tularensis subspecies novicida lipid A structures. Additionally, HiTMS correctly assigned 85% of the structures in a smaller library of lipid A species from Yersinia pestis demonstrating that it may be used across species.

  6. Chemical analysis of solid materials by a LIMS instrument designed for space research: 2D elemental imaging, sub-nm depth profiling and molecular surface analysis

    NASA Astrophysics Data System (ADS)

    Moreno-García, Pavel; Grimaudo, Valentine; Riedo, Andreas; Neuland, Maike B.; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Direct quantitative chemical analysis with high lateral and vertical resolution of solid materials is of prime importance for the development of a wide variety of research fields, including e.g., astrobiology, archeology, mineralogy, electronics, among many others. Nowadays, studies carried out by complementary state-of-the-art analytical techniques such as Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Glow Discharge Time-of-Flight Mass Spectrometry (GD-TOF-MS) or Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) provide extensive insight into the chemical composition and allow for a deep understanding of processes that might have fashioned the outmost layers of an analyte due to its interaction with the surrounding environment. Nonetheless, these investigations typically employ equipment that is not suitable for implementation on spacecraft, where requirements concerning weight, size and power consumption are very strict. In recent years Laser Ablation/Ionization Mass Spectrometry (LIMS) has re-emerged as a powerful analytical technique suitable not only for laboratory but also for space applications.[1-3] Its improved performance and measurement capabilities result from the use of cutting edge ultra-short femtosecond laser sources, improved vacuum technology and fast electronics. Because of its ultimate compactness, simplicity and robustness it has already proven to be a very suitable analytical tool for elemental and isotope investigations in space research.[4] In this contribution we demonstrate extended capabilities of our LMS instrument by means of three case studies: i) 2D chemical imaging performed on an Allende meteorite sample,[5] ii) depth profiling with unprecedented sub-nm vertical resolution on Cu electrodeposited interconnects[6,7] and iii) preliminary molecular desorption of polymers without assistance of matrix or functionalized substrates.[8] On the whole, these results prove the adequacy of LMS as a powerful analytical tool able to address a great variety of topics in in situ space research. References: [1] U. Rohner, J. A. Whitby, P. Wurz, Meas. Sci. Technol. 2003, 14, 2159. [2] W. B. Brinckerhoff, G. G. Managadze, R. W. McEntire, A. F. Cheng, W. J. Green, Rev. Sci. Instrum. 2000, 71, 536. [3] G. G. Managadze, P. Wurz, R. Z. Sagdeev, A. E. Chumikov, M. Tuley, M. Yakovleva, N. G. Managadze, A. L. Bondarenko, Sol. Syst. Res. 2010, 44, 376. [4] A. Riedo, M. Neuland, S. Meyer, M. Tulej, P. Wurz, J. Anal. At. Spectrom. 2013, 28, 1256. [5] M.B. Neuland, S. Meyer, K. Mezger, A. Riedo, M. Tulej, P. Wurz, Planet. Space Sci. 2014, 101, 196. [6] V. Grimaudo, P. Moreno-García, A. Riedo, M. B. Neuland, M. Tulej, P. Broekmann, P. Wurz, Anal. Chem. 2015, 87, 2037. [7] A. Riedo, V. Grimaudo, P. Moreno-García, M. B. Neuland, M. Tulej, P. Wurz, P. Broekmann, J. Anal. At. Spectrom. 2015, 30, 2371. [8] P. Moreno-García, V. Grimaudo, A. Riedo, M. Tulej, P. Wurz, P. Broekmann, submitted to Rapid. Commun. Mass Spectrom., 2016.

  7. Determination of ion mobility collision cross sections for unresolved isomeric mixtures using tandem mass spectrometry and chemometric deconvolution.

    PubMed

    Harper, Brett; Neumann, Elizabeth K; Stow, Sarah M; May, Jody C; McLean, John A; Solouki, Touradj

    2016-10-05

    Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting "pure" IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) "shift factors" to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å(2), 295.1 Å(2), 296.8 Å(2), and 300.1 Å(2); all four of these CCS values were within 1.5% of independently measured DTIM-MS values. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Un Détecteur de Neutrons pour la Spectrométrie de Masses Manquantes

    NASA Astrophysics Data System (ADS)

    Bollini, D.; Buhler-Broglin, A.; Dalpiaz, P.; Massam, T.; Navach, F.; Navarria, F. L.; Schneegans, M. A.; Zichichi, A.

    A large (2 × 0.39 m3 plastic scintillator) neutron detector capable to measure with high accuracy the coordinates of the neutron interaction point as well as its time-of-flight is described. As a missing mass spectrometer, it allows to observe for example the η, meson with a mass resolution of ± 4.2 MeV. Nous décrivous un détectcur de neutrons de grand volume sensible (2 x 0,39 m3 de scintillatcur plastique) capable de mesurer avec précision les coordonnées du point d'interaction du neutron détecté ainsi que son temp-de-vol. Employé comme spectrométre de masses manquantes, it permet d'observer par exemple le méson η avec une resolution de ± 4,2 MeY.

  9. A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) for extraction of drug metabolites in liquid chromatography/mass spectrometry data from biological matrices.

    PubMed

    Zhu, Peijuan; Ding, Wei; Tong, Wei; Ghosal, Anima; Alton, Kevin; Chowdhury, Swapan

    2009-06-01

    A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) is implemented using the statistical programming language R to remove non-drug-related ion signals from accurate mass liquid chromatography/mass spectrometry (LC/MS) data. The background-subtraction part of the algorithm is similar to a previously published procedure (Zhang H and Yang Y. J. Mass Spectrom. 2008, 43: 1181-1190). The noise reduction algorithm (NoRA) is an add-on feature to help further clean up the residual matrix ion noises after background subtraction. It functions by removing ion signals that are not consistent across many adjacent scans. The effectiveness of BgS-NoRA was examined in biological matrices by spiking blank plasma extract, bile and urine with diclofenac and ibuprofen that have been pre-metabolized by microsomal incubation. Efficient removal of background ions permitted the detection of drug-related ions in in vivo samples (plasma, bile, urine and feces) obtained from rats orally dosed with (14)C-loratadine with minimal interference. Results from these experiments demonstrate that BgS-NoRA is more effective in removing analyte-unrelated ions than background subtraction alone. NoRA is shown to be particularly effective in the early retention region for urine samples and middle retention region for bile samples, where the matrix ion signals still dominate the total ion chromatograms (TICs) after background subtraction. In most cases, the TICs after BgS-NoRA are in excellent qualitative correlation to the radiochromatograms. BgS-NoRA will be a very useful tool in metabolite detection and identification work, especially in first-in-human (FIH) studies and multiple dose toxicology studies where non-radio-labeled drugs are administered. Data from these types of studies are critical to meet the latest FDA guidance on Metabolite in Safety Testing (MIST). Copyright (c) 2009 John Wiley & Sons, Ltd.

  10. Investigation of Ion Transmission Effects on Intact Protein Quantification in a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Appulage, Dananjaya Kalu; McAllister, Erin A.; Schug, Kevin A.

    2017-09-01

    Recently, direct intact protein quantitation using triple quadrupole mass spectrometry (QqQ-MS) and multiple reaction monitoring (MRM) was demonstrated (J. Am. Soc. Mass Spectrom. 27, 886-896 (2016)). Even though QqQ-MS is known to provide extraordinary detection sensitivity for quantitative analysis, we found that intact proteins exhibited a less than 5% ion transmission from the first quadrupole to the third quadrupole mass analyzer in the presence of zero collision energy (ZCE). With the goal to enhance intact protein quantitation sensitivity, ion scattering effects, proton transfer effects, and mass filter resolution widths were examined for their contributions to the lost signal. Protein standards myoglobin and ubiquitin along with small molecules reserpine and vancomycin were analyzed together with various collision induced dissociation (CID) gases (N2, He, and Ar) at different gas pressures. Mass resolution settings played a significant role in reducing ion transmission signal. By narrowing the mass resolution window by 0.35 m/z on each side, roughly 75%-90% of the ion signal was lost. The multiply charged proteins experienced additional proton transfer effects, corresponding to 10-fold signal reduction. A study of increased sensitivity of the method was also conducted with various MRM summation techniques. Although the degree of enhancement was analyte-dependent, an up to 17-fold increase in sensitivity was observed for ubiquitin using a summation of multiple MRM transitions. Biological matrix, human urine, and equine plasma were spiked with proteins to demonstrate the specificity of the method. This study provides additional insight into optimizing the use and sensitivity of QqQ-MS for intact protein quantification. [Figure not available: see fulltext.

  11. Investigation of micrometre-sized fossil by laser mass spectrometer (LMS) designed for in situ space research

    NASA Astrophysics Data System (ADS)

    Tulej, Marek; Neubeck, Anna; Ivarsson, Magnus; Brigitte Neuland, Maike; Riedo, Andreas; Wurz, Peter

    2015-04-01

    Search for signatures of life on other planets is one of the most important goals of current planetary missions. Among various possible biomarkers, which can be investigated in situ on planetary surfaces, the detection of bio-relevant elements in planetary materials is of considerable interest and the abundance of isotopes can be important signatures of past and present bioactivities [1, 2]. We investigate the chemical composition of fossilised biological inclusions embedded in a carbonate host phase by a miniature laser ablation mass spectrometer (LMS) [3]. The LMS instrument combines a laser ablation ion source for ablation, atomisation and ionisation of surface material with a reflectron time-of-flight (TOF) mass spectrometer. LMS delivers mass spectra of almost all elements and their isotopes. In the current setup a fs-laser ablation ion source is applied with high lateral (15 um) and vertical (sub-um) resolution [4, 7] and the mass analyser supports mass resolution of 400-500 (at 56Fe mass peak) and dynamic range of eight orders of magnitude [5, 6]. From the 200 mass spectra recorded at 200 different locations on the carbonate sample surface, five mass spectra were identified which recorded the chemical composition of inclusions; from the other mass spectra the composition of the carbonate host matrix could be determined. The microscopic inspection of the sample surface and correlation with the coordinates of the laser ablation measurements made the confirmation to the location of the inclusion [8]. For the carbonate host matrix, the mass spectrometric analysis yielded the major elements H, C, O, Na, Mg, K and Ca and the trace elements Li, B and Cl. The measurements at the inclusion locations yielded in addition, the detection of F, Si, P, S, Mn, Fe, Ni, Co and Se. For most of the major elements the isotope ratios were found to be conform to the terrestrial values within a few per mills, while for minor and trace elements the determination of isotope ratios were less accurate due to low signal to noise ratios (SNR). The isotope abundances for the lightest isotope of B, S were observed to be larger than terrestrial, which is consistent with isotope fractionation by bio-relevant processes and a salty ocean. The studies demonstrates the current performance of the miniature LMS for in situ investigation of highly heterogeneous samples and its capabilities for the identification of fossilised biological matter. References: [1] Summons et al., Astrobiology, 11, 157, 2011. [2] Wurz et al., Sol. Sys. Res. 46 408, 2012. [3] Rohner et al.,Meas. Sci. Technol., 14, 2159, 2003. [4] Riedo et al., J. Anal. Atom. Spectrom. 28, 1256, 2013. [5] Riedo et al., J. Mass Spectrom.48, 1, 2013. [6] Neuland et al., Planet. Space. Sci. 101, 196, 2014. [7] Grimaudo et al., Anal. Chem. 2014, submitted. [8] Tulej et al. Geostand. Geoanal. Res., 2014; DOI: 10.1111/j.1751-908X.2014.00302.x

  12. Finite temperature m=0 upper-hybrid modes in a non-neutral plasma, theory and simulation.

    NASA Astrophysics Data System (ADS)

    Hart, Grant W.; Takeshi Nakata, M.; Spencer, Ross L.

    2007-11-01

    Axisymmetric upper-hybrid oscillations have been known to exist in non-neutral plasmas and FTICR/MS devices for a number of years^1,2. However, because they are electrostatic in nature and axisymmetric, they are self-shielding and therefore difficult to detect in long systems. Previous theoretical studies have assumed a zero temperature plasma. In the zero temperature limit these oscillations are not properly represented as a mode, because the frequency at a given radius depends only on the local density and is not coupled to neighboring radii, much like the zero temperature plasma oscillation. Finite temperature provides the coupling which links the oscillation into a coherent mode. We have analyzed the finite-temperature theory of these modes and find that they form an infinite set of modes with frequencies above 2̂c- 2̂p. For a constant density plasma the eigenmodes are Bessel functions. For a more general plasma the eigenmodes must be numerically calculated. We have simulated these modes in our r-θ particle-in-cell code that includes a full Lorentz-force mover^3 and find that the eigenmodes correspond well with the theory.^1 J.J. Bollinger, et al., Phys. Rev. A 48, 525 (1993).^2 S.E. Barlow, et al., Int. J. Mass Spectrom. Ion Processes 74, 97 (1986).^3 M. Takeshi Nakata, et al., Bull. Am. Phys. Soc. 51, 245 (2006).

  13. Finite temperature m=0 Bernstein modes in a non-neutral plasma, theory and simulation

    NASA Astrophysics Data System (ADS)

    Hart, Grant W.; Spencer, Ross L.; Takeshi Nakata, M.

    2008-11-01

    Axisymmetric upper-hybrid oscillations have been known to exist in non-neutral plasmas and FTICR/MS devices for a number of years. However, because they are electrostatic in nature and axisymmetric, they are self-shielding and therefore difficult to detect in long systems. Previous theoretical studies have assumed a zero temperature plasma. In the zero temperature limit these oscillations are not properly represented as a mode, because the frequency at a given radius depends only on the local density and is not coupled to neighboring radii, much like the zero temperature plasma oscillation. Finite temperature provides the coupling which links the oscillation into a coherent mode. We have analyzed the finite-temperature theory of these modes and find that they form an infinite set of modes with frequencies above 2̂c- 2̂p. We have simulated these modes in our r-θ particle-in-cell code that includes a full Lorentz-force mover and find that in a mostly flat-top plasma there are two eigenmodes that have essentially the same shape in the bulk of the plasma, but different frequencies. It appears likely that they have different boundary conditions in the boundary region. J.J. Bollinger, et al., Phys. Rev. A 48, 525 (1993). S.E. Barlow, et al., Int. J. Mass Spectrom. Ion Processes 74, 97 (1986). M. Takeshi Nakata, et al., Bull. Am. Phys. Soc. 51, 245 (2006).

  14. Fragmentation Pathways of Lithiated Hexose Monosaccharides

    NASA Astrophysics Data System (ADS)

    Abutokaikah, Maha T.; Frye, Joseph W.; Tschampel, John; Rabus, Jordan M.; Bythell, Benjamin J.

    2018-05-01

    We characterize the primary fragmentation reactions of three isomeric lithiated D-hexose sugars (glucose, galactose, and mannose) utilizing tandem mass spectrometry, regiospecific labeling, and theory. We provide evidence that these three isomers populate similar fragmentation pathways to produce the abundant cross-ring cleavage peaks (0,2A1 and 0,3A1). These pathways are highly consistent with the prior literature (Hofmeister et al. J. Am. Chem. Soc. 113, 5964-5970, 1991, Bythell et al. J. Am. Soc. Mass Spectrom. 28, 688-703, 2017, Rabus et al. Phys. Chem. Chem. Phys. 19, 25643-25652, 2017) and the present labeling data. However, the structure-specific energetics and rate-determining steps of these reactions differ as a function of precursor sugar and anomeric configuration. The lowest energy water loss pathways involve loss of the anomeric oxygen to furnish B1 ions. For glucose and galactose, the lithiated α-anomers generate ketone structures at C2 in a concerted reaction involving a 1,2-migration of the C2-H to the anomeric carbon (C1). In contrast, the β-anomers are predicted to form 1,3-anhydroglucose/galactose B1 ion structures. Initiation of the water loss reactions from each anomeric configuration requires distinct reactive conformers, resulting in different product ion structures. Inversion of the stereochemistry at C2 has marked consequences. Both lithiated mannose forms expel water to form 1,2-anhydromannose B1 ions with the newly formed epoxide group above the ring. Additionally, provided water loss is not instantaneous, the α-anomer can also isomerize to generate a ketone structure at C2 in a concerted reaction involving a 1,2-migration of the C2-H to C1. This product is indistinguishable to that from α-glucose. The energetics and interplay of these pathways are discussed. [Figure not available: see fulltext.

  15. Penultimate proline in neuropeptides.

    PubMed

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  16. Analysis of Biomolecules by Atmospheric Pressure Visible-Wavelength MALDI-Ion Trap-MS in Transmission Geometry

    NASA Astrophysics Data System (ADS)

    West, Raymond E.; Findsen, Eric W.; Isailovic, Dragan

    2013-10-01

    We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system ( Int. J. Mass Spectrom. 315, 66-73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MSn analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.

  17. Observation of different core water cluster ions Y-(H2O)n (Y = O2, HCN, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2010-12-01

    Atmospheric ion water clusters have been of long-standing interest in the field of atmospheric sciences, because of them playing a central role in the formation of tropospheric aerosols which affect the photochemistry, radiation budget of the atmosphere and climate. On the basis of a mechanism of aerosol formation in the troposphere proposed by Yu and Turco, termed “ion-mediated nucleation” (Geophys. Res. Lett. 2000, 27, 883), atmospheric ion water clusters are most likely to be produced via two processes; 1) direct attachment of polar solvent molecules H2O to atmospheric ions due to them having strong binding energy via ion-dipole interactions, and 2) growth of ion-induced hydrates into larger water clusters bound via hydrogen-bonding networks by condensation with H2O molecules. The stability and growth rates of water clusters are strongly dependent on the thermochemical properties of individual atmospheric core ions. A large number of thermochemical information of the positive atmospheric ion H3O+ and its hydrates H3O+(H2O)n have been reported so far, while there has been little information of the water clusters with the negative atmospheric core ions. Therefore, fundamental studies of the thermochemistry of various negative atmospheric ion water clusters will contribute towards furthering an understanding of their unique role in atmospheric sciences and climate change. We have recently established an atmospheric pressure DC corona discharge device containing a specific corona needle electrode that made it possible to reproducibly generate negative core ions Y- originating from ambient air (Int. J. Mass Spectrom. 2007, 261, 38; Eur. Phys. J. D 2008, 50, 297). The change in electric field strength on the needle tip resulted in the formation of negative atmospheric core ions Y- with various different lifetimes in air. The low field strength brought about the dominant formation of core ions with short lifetimes in air such as O2- and HOx-, while the longer-lived core ions HCN-, NOx- and COx- were mainly produced at higher field strength. Furthermore, the use of the discharge system coupled to mass spectrometers led to the stable formation of large water clusters Y-(H2O)n due to adiabatic expansion caused by the pressure difference between the ambient discharge area (760 torr) and vacuum region in the mass spectrometers (≈ 1 torr). Here we show the resulting mass spectra of large water clusters Y-(H2O)n (0 ≤ n ≥ 80) with the dominant negative core ion Y- such as O2-, HO-, HO2-, HCN-, NO2-, NO3-, NO3-(HNO3)2, CO3- and HCO4- which play a central role in tropospheric ion chemistry, as well as the detailed mechanism of formation of those negative ion water clusters by atmospheric pressure DC corona discharge mass spectrometry. Here we also provide new thermochemical information about magic numbers and first hydrated shells for individual negative core ions Y-, which have particular stability in the Y-(H2O)n cluster series, by using the reliable mass spectrometry data obtained and the relationship between the temperature condition in a reaction chamber and the resulting cluster distribution.

  18. Coupling of Ultrafast LC with Mass Spectrometry by DESI

    NASA Astrophysics Data System (ADS)

    Cai, Yi; Liu, Yong; Helmy, Roy; Chen, Hao

    2014-10-01

    Recently we reported a desorption electrospray ionization (DESI) interface to combine liquid chromatography (LC) with mass spectrometry (MS) using a new LC eluent splitting strategy through a tiny orifice on LC capillary tube [ J. Am. Soc. Mass Spectrom. 25, 286 (2014)]. The interface introduces negligible dead volume and back pressure, thereby allowing "near real-time" MS detection, fast LC elution, and online MS-directed purification. This study further evaluates the LC/DESI-MS performance with focus of using ultra-fast LC. Using a monolithic C18 column, metabolites in urine can be separated within 1.6 min and can be online collected for subsequent structure elucidation (e.g., by NMR, UV, IR) in a recovery yield up to 99%. Using a spray solvent with alkaline pH, negative ions could be directly generated for acidic analytes (e.g., ibuprofen) in acidic LC eluent by DESI, offering a novel protocol to realize "wrong-way around" ionization for LC/MS analysis. In addition, DESI-MS is found to be compatible with ultra-performance liquid chromatography (UPLC) for the first time.

  19. Rapid Online Non-Enzymatic Protein Digestion Analysis with High Pressure Superheated ESI-MS

    NASA Astrophysics Data System (ADS)

    Chen, Lee Chuin; Kinoshita, Masato; Noda, Masato; Ninomiya, Satoshi; Hiraoka, Kenzo

    2015-07-01

    Recently, we reported a new ESI ion source that could electrospray the super-heated aqueous solution with liquid temperature much higher than the normal boiling point ( J. Am. Soc. Mass Spectrom. 25, 1862-1869). The boiling of liquid was prevented by pressurizing the ion source to a pressure greater than atmospheric pressure. The maximum operating pressure in our previous prototype was 11 atm, and the highest achievable temperature was 180°C. In this paper, a more compact prototype that can operate up to 27 atm and 250°C liquid temperatures is constructed, and reproducible MS acquisition can be extended to electrospray temperatures that have never before been tested. Here, we apply this super-heated ESI source to the rapid online protein digestion MS. The sample solution is rapidly heated when flowing through a heated ESI capillary, and the digestion products are ionized by ESI in situ when the solution emerges from the tip of the heated capillary. With weak acid such as formic acid as solution, the thermally accelerated digestion (acid hydrolysis) has the selective cleavage at the aspartate (Asp, D) residue sites. The residence time of liquid within the active heating region is about 20 s. The online operation eliminates the need to transfer the sample from the digestion reactor, and the output of the digestive reaction can be monitored and manipulated by the solution flow rate and heater temperature in a near real-time basis.

  20. Simple method for determining fullerene negative ion formation★

    NASA Astrophysics Data System (ADS)

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  1. Heats of Vaporization of Room Temperature Ionic Liquids by Tunable Vacuum Ultraviolet Photoionization (Preprint)

    DTIC Science & Technology

    2009-08-31

    A.; deyko, A.; Lovelock , K. R. J.; Licence, P.; Jones, R. G. J. Phys. Chem. B 2008, 112, 11734. (19) Armstrong, J. P.; Hurst, C.; Jones, R. G...Licence, P.; Lovelock , K. R. J.; Satterly, C. J.; Villar-Garcia, I. J. PCCP 2007, 9, 982. (20) Gross, J. H. J. Am. Soc. Mass Spectrom. 2008, 19, 1347

  2. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2017-04-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4 th dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of Higher Order Solvation and Temperature on SN2 and E2 Reactivity (Postprint)

    DTIC Science & Technology

    2014-07-05

    effects in microsolvated gas-phase E2 reactions, J. Am. Soc. Mass Spectrom. 18 (6) (2007) 1046–1051. [16] J.V. Seeley , R.A. Morris, A.A. Viggiano...17] J.V. Seeley , et al., Temperature dependence of the rate constants and branching ratios for the reactions of Cl(D2O)1–3 with CH3Br and thermal

  4. High-field FT-ICR-MS and aromaticity equivalent approach for structural identification of water soluble organic compounds (WSOC)

    NASA Astrophysics Data System (ADS)

    Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2015-04-01

    Organic aerosol (OA) makes up a large and often dominant fraction, (20 to 90%) of the submicron atmospheric particulate mass, and its effects are becoming increasingly important in determining climatic and health effects of atmospheric aerosols. Despite the abundance of OA, our understanding of the sources, formation processes and atmospheric properties of OA is limited. Atmospheric OA has both primary (directly emitted) and secondary (formed in the atmosphere from precursor gases) sources, which can be natural (e.g. vegetation) and/or anthropogenic (e.g. fossil-based vehicle exhaust or biomass burning). A significant fraction of OA contains as much as 20-70% of water soluble organic compounds (WSOC). The WSOC fraction is a very complex mixture of low volatility, polyfunctional aliphatic and aromatic compounds containing carboxyl, alcohol, carbonyl, sulfo, nitro, and other functionalities. This high degree of chemical complexity of atmospheric organics has inspired a number of sophisticated approaches that are capable of identifying and detecting a variety of different analytes in OA. Accordingly, one of the most challenging areas of atmospheric particulate matter (PM) analysis is to comprehend the molecular complexity of the OA, especially WSOC fraction, a significant component of atmospheric fine PM (PM2.5). The sources of WSOC are not well understood, especially the relative contributions of primary vs. secondary organic aerosol. Therefore, the molecular characterization of WSOC is important because it allows gaining insight into aerosol sources and underlying mechanisms of secondary organic aerosols (SOA) formation and transformation. In this abstract, molecular characterization of WSOC was achieved using high-field mass spectrometry FT-ICR-MS and aromaticity equivalent approach. Aromaticity equivalent (Xc), defined recently as a new parameter calculated from the assigned molecular formulas (complementary to the aromaticity index [1]), is introduced to improve identification and characterization of aromatic and condensed aromatic compounds in WSOC [2]. We proposed threshold values of Xc≥ 2.5000 and Xc≥ 2.7143 as ambiguous minimum criteria for the presence of aromatic structure and condensed aromatic compounds, respectively. The advantage of employing this parameter is that Xc would have a constant value for each proposed core structure regardless the degree of alkylation, and thus visual representation and structural interpretations of the spectra become advantageous for characterizing and comparing complex samples. Diesel particulate matter (DPM) and two atmospheric aerosols collected in the industrial area affected by biomass burning events were used to study the applicability of the proposed criteria for the improved identification of aromatic and condensed aromatic structures in complex mixtures in the FT-ICR mass spectra. References [1] Koch.BP, Dittmar.T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926-932 [2] Yassine.MM, Harir.M, Dabek-Zlotorzynska.E, Schmitt-Kopplin.Ph. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach. Rapid Commun. Mass Spectrom. 2014. 28. 2445-2454

  5. Chemical analyses of micrometre-sized solids by a miniature laser ablation/ionisation mass spectrometer (LMS)

    NASA Astrophysics Data System (ADS)

    Tulej, Marek; Wiesendanger, Reto; Neuland, Maike; Meyer, Stefan; Wurz, Peter; Neubeck, Anna; Ivarsson, Magnus; Riedo, Valentine; Moreno-Garcia, Pavel; Riedo, Andreas; Knopp, Gregor

    2017-04-01

    Investigation of elemental and isotope compositions of planetary solids with high spatial resolution are of considerable interest to current space research. Planetary materials are typically highly heterogenous and such studies can deliver detailed chemical information of individual sample components with the sizes down to a few micrometres. The results of such investigations can yield mineralogical surface context including mineralogy of individual grains or the elemental composition of of other objects embedded in the sample surface such as micro-sized fossils. The identification of bio-relevant material can follow by the detection of bio-relevant elements and their isotope fractionation effects [1, 2]. For chemical analysis of heterogenous solid surfaces we have combined a miniature laser ablation mass spectrometer (LMS) (mass resolution (m/Dm) 400-600; dynamic range 105-108) with in situ microscope-camera system (spatial resolution ˜2um, depth 10 um). The microscope helps to find the micrometre-sized solids across the surface sample for the direct mass spectrometric analysis by the LMS instrument. The LMS instrument combines an fs-laser ion source and a miniature reflectron-type time-of-flight mass spectrometer. The mass spectrometric analysis of the selected on the sample surface objects followed after ablation, atomisation and ionisation of the sample by a focussed laser radiation (775 nm, 180 fs, 1 kHz; the spot size of ˜20 um) [4, 5, 6]. Mass spectra of almost all elements (isotopes) present in the investigated location are measured instantaneously. A number of heterogenous rock samples containing micrometre-sized fossils and mineralogical grains were investigated with high selectivity and sensitivity. Chemical analyses of filamentous structures observed in carbonate veins (in harzburgite) and amygdales in pillow basalt lava can be well characterised chemically yielding elemental and isotope composition of these objects [7, 8]. The investigation can be prepared with high selectivity since the host composition is typically readily different comparing to that of the analysed objects. In depth chemical analysis (chemical profiling) is found in particularly helpful allowing relatively easy isolation of the chemical composition of the host from the investigated objects [6]. Hence, both he chemical analysis of the environment and microstructures can be derived. Analysis of the isotope compositions can be measured with high level of confidence, nevertheless, presence of cluster of similar masses can make sometimes this analysis difficult. Based on this work, we are confident that similar studies can be conducted in situ planetary surfaces delivering important chemical context and evidences on bio-relevant processes. [1] Summons et al., Astrobiology, 11, 157, 2011. [2] Wurz et al., Sol. Sys. Res. 46, 408, 2012. [3] Riedo et al., J. Anal. Atom. Spectrom. 28, 1256, 2013. [4] Riedo et al., J. Mass Spectrom.48, 1, 2013. [5] Tulej et al., Geostand. Geoanal. Res., 38, 423, 2014. [6] Grimaudo et al., Anal. Chem. 87, 2041, 2015 [7] Tulej et al., Astrobiology, 15, 1, 2015. [8] Neubeck et al., Int. J. Astrobiology, 15, 133, 2016.

  6. Metapopulation Dynamics of the Softshell Clam, Mya arenaria

    DTIC Science & Technology

    2008-06-01

    LA-ICP-MS. J. Anal. At. Spectrom. 17:8-14. ing of gastropod statoliths to study larval dispersal trajecto- Jones, C. M., and Z. Chen. 2003. New...have expanded the use of elemental tags to inver- tebrates including decapods (DiBacco and Levin, 2000), gastropods (Zacherl et al., 2003a), bivalves...shell uptake has been examined only in one gastropod (Zacherl et al., 2003b) and in no bivalves. We explored the relationships between temperature

  7. Report Of The HST Strategy Panel: A Strategy For Recovery

    DTIC Science & Technology

    1991-01-01

    orbit change out: the Wide Field/Planetary Camera II (WFPC II), the Near-Infrared Camera and Multi- Object Spectrometer (NICMOS) and the Space ...are the Space Telescope Imaging Spectrograph (STB), the Near-Infrared Camera and Multi- Object Spectrom- eter (NICMOS), and the second Wide Field and...expected to fail to lock due to duplicity was 20%; on- orbit data indicates that 10% may be a better estimate, but the guide stars were preselected

  8. Progress in the analysis and interpretation of N2O isotopes: Potential and future challenges

    NASA Astrophysics Data System (ADS)

    Mohn, Joachim; Tuzson, Béla; Zellweger, Christoph; Harris, Eliza; Ibraim, Erkan; Yu, Longfei; Emmenegger, Lukas

    2017-04-01

    In recent years, research on nitrous oxide (N2O) stable isotopes has significantly advanced, addressing an increasing number of research questions in biogeochemical and atmospheric sciences [1]. An important milestone was the development of quantum cascade laser based spectroscopic devices [2], which are inherently specific for structural isomers (15N14N16O vs. 14N15N16O) and capable to collect real-time data with high temporal resolution, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. In combination with automated preconcentration, optical isotope ratio spectroscopy (OIRS) has been applied to disentangle source processes in suburban, rural and pristine environments [e.g. 3, 4]. Within the European Metrology Research Programme (EMRP) ENV52 project "Metrology for high-impact greenhouse gases (HIGHGAS)", the quality of N2O stable isotope analysis by OIRS, the comparability between laboratories, and the traceability to the international isotope ratio scales have been addressed. An inter-laboratory comparison between eleven IRMS and OIRS laboratories, organised within HIGHGAS, indicated limited comparability for 15N site preference, i.e. the difference between 15N abundance in central (N*NO) and end (*NNO) position [5]. In addition, the accuracy of the NH4NO3 decomposition reaction, which provides the link between 15N site preference and the international 15N/14N scale, was found to be limited by non-quantitative NH4NO3 decomposition in combination with substantially different isotope enrichment factors for both nitrogen atoms [6]. Results of the HIGHGAS project indicate that the following research tasks have to be completed to foster research on N2O isotopes: 1) develop improved techniques to link the 15N and 18O abundance and the 15N site preference in N2O to the international stable isotope ratio scales; 2) provide N2O reference materials, pure and diluted in an air matrix, to improve inter-laboratory compatibility. These tasks will be addressed in the upcoming European Metrology Programme for Innovation and Research (EMPIR) project "Metrology for Stable Isotope Reference Standards (SIRS)" starting in June 2017. Acknowledgement Part of this work has been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] S. Toyoda et al., Isotopocule analysis of biologically produced nitrous oxide in various environments, Mass Spectrom. Rev., Doi 10.1002/mas.21459 (2015). [2] J. Mohn et al., Site selective real-time measurements of atmospheric N2O isotopomers by laser spectroscopy, Atmos. Meas. Tech. 5(7), 1601-1609 (2012). [3] B. Wolf et al., First on-line isotopic characterization of N2O above intensively managed grassland, Biogeosci. 12, 2517-2531, (2015). [4] E. Harris et al., Tracking nitrous oxide emission processes at a suburban site with semi-continuous, in-situ measurements of isotopic composition, J. Geophys. Res. Atmos., accepted (2016). [5] J. Mohn et al., Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives, Rapid Commun. Mass Spectrom. 28, 1995-2007 (2014). [6] J. Mohn et al. Reassessment of the NH4NO3 thermal decomposition technique for calibration of the N2O isotopic composition, Rapid Commun. Mass Spectrom. 30, 2487-2496 (2016).

  9. An Integrated Field and Laboratory Study of the Bioavailability of Metal Contaminants in Sediments

    DTIC Science & Technology

    2012-12-01

    investigation using high-performance liquid chromatography with detection by inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 8:1075...exposure experiments consisted of two parts - uptake and efflux. Uptake rate constants (ku) equaled the metal concentration accumulated per body mass ...of dry mass of defecated sediment per dry mass of worm per time (g g-1 d-1), were calculated based on the dry mass of feces that were periodically

  10. Lake Superior lipids

    EPA Pesticide Factsheets

    Fish chemistry data (d13C, d15N, C:N, lipid content) published in Rapid Commun. Mass Spectrom. 2015, 29, 2069??2077 DOI: 10.1002/rcm.7367This dataset is associated with the following publication:Hoffman , J., M. Sierszen , and A. Cotter. Fish tissue lipid-C:N relationships for correcting ä13C values and estimating lipid content in aquatic food web studies. Rapid Communications in Mass Spectrometry. Wiley InterScience, Silver Spring, MD, USA, 29(21): 2069–2077, (2015).

  11. ORBS: A data reduction software for the imaging Fourier transform spectrometers SpIOMM and SITELLE

    NASA Astrophysics Data System (ADS)

    Martin, T.; Drissen, L.; Joncas, G.

    2012-09-01

    SpIOMM (Spectromètre-Imageur de l'Observatoire du Mont Mégantic) is still the only operational astronomical Imaging Fourier Transform Spectrometer (IFTS) capable of obtaining the visible spectrum of every source of light in a field of view of 12 arc-minutes. Even if it has been designed to work with both outputs of the Michelson interferometer, up to now only one output has been used. Here we present ORBS (Outils de Réduction Binoculaire pour SpIOMM/SITELLE), the reduction software we designed in order to take advantage of the two output data. ORBS will also be used to reduce the data of SITELLE (Spectromètre-Imageur pour l' Étude en Long et en Large des raies d' Émissions) { the direct successor of SpIOMM, which will be in operation at the Canada-France- Hawaii Telescope (CFHT) in early 2013. SITELLE will deliver larger data cubes than SpIOMM (up to 2 cubes of 34 Go each). We thus have made a strong effort in optimizing its performance efficiency in terms of speed and memory usage in order to ensure the best compliance with the quality characteristics discussed with the CFHT team. As a result ORBS is now capable of reducing 68 Go of data in less than 20 hours using only 5 Go of random-access memory (RAM).

  12. Multiple ion species fluid modeling of sprite halos and the role of electron detachment from O- in their dynamics

    NASA Astrophysics Data System (ADS)

    Liu, N.

    2011-12-01

    Sprite halos are brief descending glows appearing at the lower ionosphere boundary, which follow impulsive cloud-to-ground lightning discharges [e.g., Barrington-Leigh et al., JGR, 106, 1741, 2001, Wescott et al., JGR, 106, 10467, 2001; Pasko, JGR, 115, A00E35, 2010]. They last for a few milliseconds, with horizontal extension of tens of kilometers and vertical thickness of several kilometers. According to global survey of the occurrence of transient luminous events by the ISUAL instruments on the FORMOSAT-2 satellite, on average sprite halos occur once every minute on Earth [Chen et al., JGR, 113, A08306, 2008]. It has been established that sprite halos are caused by electron heating, and molecule excitation and ionization in the lower ionosphere due to lightning quasi-electrostatic field [e.g., Pasko et al., JGR, 102, 4529, 1997; Barrington-Leigh et al., 2001; Pasko, 2010]. Past modeling work on sprite halos was conducted using either a two dimensional (2D) model of at most three charged species or a zero dimensional model of multiple ion species. In this talk, we report a modeling study of sprite halos using a recently developed 2D fluid model of multiple charged species. The model charged species include the ion species set used in [Lehtinen and Inan, GRL, 34, L08804, 2007] to study the dynamics of ionization perturbations produced by gigantic jets in the middle and upper atmosphere. In addition, another charged species, O-, is added to this set, because electron detachment of O- can proceed very fast under moderate electric field [Rayment and Moruzzi, Int. J. Mass Spectrom., 26, 321, 1978], requiring a separate treatment from the other light negative ions. The modeling results of a sprite halo driven by positive cloud-to-ground lightning indicate that the halo can descend to lower altitude with much higher electron density behind its front when the O- detachment process is included. Electron density ahead of the halo front is not significantly reduced from the ambient value, so that there is no attachment "hole" forming in that region that is commonly observed in previous modeling work. According to recent work by Qin et al. [JGR, 116, A06305, 2011], electron density must be around 10^3 1/m^3 or less at sprite initiation altitude in order for individual streamers to form. This requires the ambient electron density at the sprite initiation altitude to be close to 10^3 1/m^3 from our results, because electron density is not greatly decreased below the halo front. In addition, the large downward extent of the halo shown by our results may offer an explanation for the initiation of sprite streamers at 65-70 km altitude observed previously.

  13. Chemistry and Physics of Weakly Ionized Plasmas

    DTIC Science & Technology

    2010-01-22

    temperature: Stabilization of the reactant intermediate A.A. Viggiano, Thomas . M. Miller, Skip Williams, S.T. Arnold, J.V. Seeley , and J.F. Friedman J...16. A Theoretical Study of High Electron Affinity Sulfur Oxyfluorides FSO3, F3SO2, and F5SO Susan T. Arnold, Thomas M. Miller, and A.A. Viggiano...McSweeney, M. D. Hargus, D. M Kerr, Thomas M. Miller, and A. A. Viggiano Int. J. Mass Spectrom. 228, 541-549 (Aug 2003). 37. Reactions and

  14. Etude par spectrométrie infrarouge et Raman de la pyrimidone-2 et de son chlorhydrate (chlorure d'oxo-2 pyrimidinium)

    NASA Astrophysics Data System (ADS)

    Picquenard, Eric; Lautié, Alain

    The i.r. and Raman spectra of crystalline 2-pyrimidone, its hydrochloride and corresponding N-deuterated derivatives have been investigated between 4000 and 200 cm -. Aqueous solutions were also examined. An assignment for all intramolecular fundamentals is given. Effects of the protonation on the C=O group and on the ring are discussed as well as strength and characteristics of the hydrogen bonds NH … O and NH … Cl -.

  15. Rapid Analysis of Energetic and Geo-Materials Using Laser Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2013-04-01

    et al ., Anal Bioanal Chem ( 2006 ) 385, 316. 5. Mohamed, W. T. Y., Prog Phys (2007) 2, 42. 6. Elhassan, A., et al ., Spectrochim Acta B (2008) 63...Anal (2005) 5, 21. 20. Anzano, J. M., et al ., Anal Chim Acta ( 2006 ) 575, 230. 21. Rusak, D. A., et al ., TrAC Trend Anal Chem (1998) 17, 453. 22. Martin...Spectrosc Reviews (2004) 39, 27. 25. Winefordner, J. D., et al ., J Anal Atom Spectrom (2004) 19, 1061. 26. Cremers , D. A., and Radziemski, L. J.,

  16. Classification of Explosive Residues on Organic Substrates Using Laser Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2013-04-01

    463–512 (2007). 2. D. A. Cremers and L. J. Radziemski, Handbook of Laser- Induced Breakdown Spectroscopy (Wiley, 2006 ). 3. D. A. Cremers , “The analysis...Acta, Part B 61, 88–95 ( 2006 ). 5. C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. De Lucia, Jr., A. W. Miziolek, J. Rose, R. A. Walters and A. I...Spectrom 21, 55–60 ( 2006 ). 6. A. Ferrero and J. J. Laserna, “A theoretical study of atmo- spheric propagation of laser and return light for stand-off

  17. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases

    DTIC Science & Technology

    2008-08-01

    about the fundamental molecular biology and bio- chemistry involved in the detoxification of this phytotoxin (Hannink et al., 2002). Active uptake into...fragment with a mass m/z 254, [M-H]-120 corre- sponded to a fragmentation 0,2X, in agreement with the fragmentation of the C-glucosides of flavonoids ...Trends Plant Sci. 2, 144–151. Cuyckens, F. and Claeys, M. (2004) Mass spectrometry in the structural analysis of flavonoids . J. Mass Spectrom. 39, 1–15

  18. Science and Technology Text Mining: Comparative Analysis of the Research Impact Assessment Literature and the Journal of the American Chemical Society

    DTIC Science & Technology

    2003-08-15

    Their analyses confirmed Swanson’s results, and showed that FISH OIL and EICOSAPENTAENOIC ACID (one of fish oil’s main chemical constituents) offered...therefore true candidates for discovery. They finally arrive at FISH OIL, and EICOSAPENTAENOIC ACID (one of fish oil’s main chemical constituents...CHEM 250 ; BIOPOLYMERS 242 ; LANGMUIR 239 ; MOL-PHYS 233 ; 24 PHYS-REV-B 232 ; ANAL-CHEM 225 ; INT-J-MASS-SPECTROM 222 ; NUCLEIC- ACIDS -RES 222 ; J

  19. Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from Small Samples.

    NASA Astrophysics Data System (ADS)

    Field, P.; Lloyd, N. S.

    2016-12-01

    V002: Advances in approaches and instruments for isotope studies Session ID#: 12653 Recent Developments in MC-ICP-MS for Uranium Isotopic Determination from small samples.M. Paul Field 1 & Nicholas S. Lloyd. 1 Elemental Scientific Inc., Omaha, Nebraska, USA. field@icpms.com 2 Thermo Fisher Scientific, Hanna-Kunath-Str. 11, 28199 Bremen, Germany. nicholas.lloyd@thermofisher.com Uranium isotope ratio determination for nuclear, nuclear safeguards and for environmental applications can be challenging due to, 1) the large isotopic differences between samples and 2) low abundance of 234U and 236U. For some applications the total uranium quantities can be limited, or it is desirable to run at lower concentrations for radiological protection. Recent developments in inlet systems and detector technologies allow small samples to be analyzed at higher precisions using MC-ICP-MS. Here we evaluate the combination of Elemental Scientific apex omega desolvation system and microFAST-MC dual loop-loading flow-injection system with the Thermo Scientific NEPTUNE Plus MC-ICP-MS. The inlet systems allow for the automated syringe loading and injecting handling of small sample volumes with efficient desolvation to minimize the hydride interference on 236U. The highest ICP ion sampling efficiency is realized using the Thermo Scientific Jet Interface. Thermo Scientific 1013 ohm amplifier technology allows small ion beams to be measured at higher precision, offering the highest signal/noise ratio with a linear and stable response that covers a wide dynamic range (ca. 1 kcps - 30 Mcps). For nanogram quantities of low enriched and depleted uranium standards the 235U was measured with 1013 ohm amplifier technology. The minor isotopes (234U and 236U) were measured by SEM ion counters with RPQ lens filters, which offer the lowest detection limits. For sample amounts ca. 20 ng the minor isotopes can be moved onto 1013 ohm amplifiers and the 235U onto standard 1011 ohm amplifier. To illustrate the application a set of solutions from environmental particles [1] were analyzed, the use of precise three isotope ratio plots allows for source attribution with increased confidence. [1] Lloyd et al. 2009, J. Anal. At. Spectrom., 24(6), 752-758.

  20. Mass Spectral Investigation of Laboratory Made Tholins and Their Reaction Products: Implications to Tholin Surface Chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Somogyi, Arpad; Smith, M. A.

    2006-09-01

    The success of the Huygens mission does not overshadow the importance of laboratory simulations of gas-phase and surface reactions that might occur in Titan's atmosphere and surface, respectively. We present here our latest results on chemical reactions (hydrolysis, peroxidation and hydrogenation) of laboratory made tholins obtained by FT-ICR mass spectrometry. The laboratory synthesis of tholins has been described in our earlier papers [1,2]. Overall, we conclude that our laboratory tholins are reactive materials that undergo fast hydrolysis, oxidation and reduction. Thus, if the tholin on Titan's surface resemble our laboratory made tholins, it can be considered as a potential starting material for several synthetic processes that can provide organic compounds of pre-biotic interest. Hydrolysis reactions occur with rate constants of 2-10 hour-1 at room temperature. Formal water addition to several species of CxHyNz has been observed by detecting the formation of CxHy+2NzO species. MS/MS fragmentation of the oxygen containing ions leads to the loss of water, ammonia, HCN, acetonitrile, etc. This suggests that tholin hydrolysis may occur in temporary melted ponds of water/ammonia ice on Titan. Peroxidation, which can be considered as a very harsh oxidation, leads to mono-, and multiple oxygenated compounds within a few minutes. The MS/MS fragmentation of these compounds suggests the presence of organic amides and, presumably, amino acid like compounds. Hydrogenation leads to compounds in which the originally present carbon-carbon or carbon-nitrogen double and triple bonds are saturated. H/D exchange experiments show different kinetics depending on the degree of unsaturation/saturation and the number of N atoms. [1] Sarker, N.; Somogyi, A.; Lunine, J. I.; Smith, M. A. Astrobiology, 2003, 3, 719-726. [2] Somogyi, A.; Oh, C-H.; Lunine, J. I.; Smith, M. A. J. Am. Soc. Mass Spectrom. 2005, 16, 850-859.

  1. Optimising the Number of Replicate- Versus Standard Measurements for Carbonate Clumped Isotope Thermometry

    NASA Astrophysics Data System (ADS)

    Kocken, I.; Ziegler, M.

    2017-12-01

    Clumped isotope measurements on carbonates are a quickly developing and promising palaeothermometry proxy1-3. Developments in the field have brought down the necessary sample amount and improved the precision and accuracy of the measurements. The developments have included inter-laboratory comparison and the introduction of an absolute reference frame4, determination of acid fractionation effects5, correction for the pressure baseline6, as well as improved temperature calibrations2, and most recently new approaches to improve efficiency in terms of sample gas usage7. However, a large-scale application of clumped isotope thermometry is still hampered by required large sample amounts, but also the time-consuming analysis. In general, a lot of time is goes into the measurement of standards. Here we present a study on the optimal ratio between standard- and sample measurements using the Kiel Carbonate Device method. We also consider the optimal initial signal intensity. We analyse ETH-standard measurements from several months to determine the measurement regime with the highest precision and optimised measurement time management.References 1. Eiler, J. M. Earth Planet. Sci. Lett. 262, 309-327 (2007).2. Kelson, J. R., et al. Geochim. Cosmochim. Acta 197, 104-131 (2017).3. Kele, S. et al. Geochim. Cosmochim. Acta 168, 172-192 (2015).4. Dennis, K. J. et al. Geochim. Cosmochim. Acta 75, 7117-7131 (2011).5. Müller, I. A. et al. Chem. Geol. 449, 1-14 (2017).6. Meckler, A. N. et al. Rapid Commun. Mass Spectrom. 28, 1705-1715 (2014).7. Hu, B. et al. Rapid Commun. Mass Spectrom. 28, 1413-1425 (2014).

  2. Thermochemistry and Dynamics of Reactive Species: Nitrogen-rich Substituted Heterocycles, and Anionic Components of Ionic Liquids

    DTIC Science & Technology

    2012-02-23

    Transfer and Anionic σ-Adduct Formation ," J. Am. Soc. Mass Spectrom. 22, 1260-72 (2011). 6. S. W. Wren, K. M. Vogelhuber, J. M. Garver, S. Kato, L...Lineberger, and V. M. Bierbaum, "Gas Phase Reactions of 1,3,5-Triazine: Proton Transfer, Hydride Transfer and Anionic σ-Adduct Formation ," J. Am. Soc. Mass...been used to study the furanide anion (C4H3O−), dihalomethyl anions (CHX2−, where X = Cl, Br, and I), the cyanopolyyne anions HC4N− and HCCN

  3. Fission of Polyanionic Metal Clusters

    NASA Astrophysics Data System (ADS)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  4. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    Straessner, Arno

    2018-04-16

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  5. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis

    NASA Astrophysics Data System (ADS)

    Gallego, Sandra F.; Højlund, Kurt; Ejsing, Christer S.

    2018-01-01

    Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for direct detection and quantification of cholesterol in extracts of human plasma. These approaches are high resolution full scan Fourier transform mass spectrometry (FTMS) analysis, parallel reaction monitoring (PRM), and novel multiplexed MS/MS (MSX) technology, where fragments from selected precursor ions are detected simultaneously. Evaluating the performance of these approaches in terms of dynamic quantification range, linearity, and analytical precision showed that the MSX-based approach is superior to that of the FTMS and PRM-based approaches. To further show the efficacy of this approach, we devised a simple routine for extensive plasma lipidome characterization using only 8 μL of plasma, using a new commercially available ready-to-spike-in mixture with 14 synthetic lipid standards, and executing a single 6 min sample injection with combined MSX analysis for cholesterol quantification and FTMS analysis for quantification of sterol esters, glycerolipids, glycerophospholipids, and sphingolipids. Using this simple routine afforded reproducible and absolute quantification of 200 lipid species encompassing 13 lipid classes in human plasma samples. Notably, the analysis time of this procedure can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MSALL technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. [Figure not available: see fulltext.

  6. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis.

    PubMed

    Gallego, Sandra F; Højlund, Kurt; Ejsing, Christer S

    2018-01-01

    Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for direct detection and quantification of cholesterol in extracts of human plasma. These approaches are high resolution full scan Fourier transform mass spectrometry (FTMS) analysis, parallel reaction monitoring (PRM), and novel multiplexed MS/MS (MSX) technology, where fragments from selected precursor ions are detected simultaneously. Evaluating the performance of these approaches in terms of dynamic quantification range, linearity, and analytical precision showed that the MSX-based approach is superior to that of the FTMS and PRM-based approaches. To further show the efficacy of this approach, we devised a simple routine for extensive plasma lipidome characterization using only 8 μL of plasma, using a new commercially available ready-to-spike-in mixture with 14 synthetic lipid standards, and executing a single 6 min sample injection with combined MSX analysis for cholesterol quantification and FTMS analysis for quantification of sterol esters, glycerolipids, glycerophospholipids, and sphingolipids. Using this simple routine afforded reproducible and absolute quantification of 200 lipid species encompassing 13 lipid classes in human plasma samples. Notably, the analysis time of this procedure can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MS ALL technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. Graphical Abstract ᅟ.

  7. Lipid Identification by Untargeted Tandem Mass Spectrometry Coupled with Ultra-High-Pressure Liquid Chromatography.

    PubMed

    Gugiu, Gabriel B

    2017-01-01

    Lipidomics refers to the large-scale study of lipids in biological systems (Wenk, Nat Rev Drug Discov 4(7):594-610, 2005; Rolim et al., Gene 554(2):131-139, 2015). From a mass spectrometric point of view, by lipidomics we understand targeted or untargeted mass spectrometric analysis of lipids using either liquid chromatography (LC) (Castro-Perez et al., J Proteome Res 9(5):2377-2389, 2010) or shotgun (Han and Gross, Mass Spectrom Rev 24(3):367-412, 2005) approaches coupled with tandem mass spectrometry. This chapter describes the former methodology, which is becoming rapidly the preferred method for lipid identification owing to similarities with established omics workflows, such as proteomics (Washburn et al., Nat Biotechnol 19(3):242-247, 2001) or genomics (Yadav, J Biomol Tech: JBT 18(5):277, 2007). The workflow described consists in lipid extraction using a modified Bligh and Dyer method (Bligh and Dyer, Can J Biochem Physiol 37(8):911-917, 1959), ultra high pressure liquid chromatography fractionation of lipid samples on a reverse phase C18 column, followed by tandem mass spectrometric analysis and in silico database search for lipid identification based on MSMS spectrum matching (Kind et al., Nat Methods 10(8):755-758, 2013; Yamada et al., J Chromatogr A 1292:211-218, 2013; Taguchi and Ishikawa, J Chromatogr A 1217(25):4229-4239, 2010; Peake et al., Thermoscientifices 1-3, 2015) and accurate mass of parent ion (Sud et al., Nucleic Acids Res 35(database issue):D527-D532, 2007; Wishart et al., Nucleic Acids Res 35(database):D521-D526, 2007).

  8. The application of simple mass spectrometers to planetary sub-surface sampling using penetrators

    NASA Astrophysics Data System (ADS)

    Sheridan, Simon; Morse, Andrew; Bardwell, Max; Barber, Simeon; Wright, Ian

    2010-05-01

    Ptolemy is an ion trap based gas-chromatograph isotope ratio mass spectrometer which is on-board the Rosetta Lander [Wright et al., 2006; Todd et al., 2007]. The instrument uses the principles of MODULUS (Methods of Determining and Understanding Light Elements From Unequivocal Stable Isotope Compositions [Pillinger and Wright, 1993], to enable results obtained in space to be interpreted directly in the context of terrestrial analyses of meteorites and returned samples. MODULUS typically involves use of a complex sample processing system to purify and separate individual species from a complex starting sample, allowing analysis by a relatively simple, low resolution, but stable and precise mass spectrometer instrumentation. A number of exciting future mission opportunities are arising where it is unlikely that it will be feasible to incorporate the full MODULUS-style sample processing system. Of particular interest are missions that offer the opportunity to gain access to surface and sub-surface material through the deployment of mass spectrometers from either high-speed penetrator platforms [Smith et al., 2009] or from sub-surface penetrating mole devices deployed by soft landers [Richter et al., 2003]. We will present work aimed at overcoming the resolution restrictions of ion trap mass spectrometers. It is anticipated that this will enable MODULUS style science return from relatively simple instrumentation which is compatible with the future miniaturised sampling platforms currently under consideration for Mars, asteroids, comets and planetary moons. References: Wright I. P., Barber S. J., Morgan G. H., Morse A. D., Sheridan S., Andrews D. J., Maynard J., Yau D., Evans S. T., Leese M. R., Zarnecki J. C., Kent B. J., Waltham N. R., Whalley M. S., Heys S., Drummond D. L., Edeson R. L., Sawyer E. C., Turner R. F., and Pillinger C. T. (2006). Ptolemy - an instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Space Science Reviews, 128 (1-4), 363-387. Todd, J.F.J., Barber, S.J., Wright, I.P., Morgan, G.H., Morse, A.D., Sheridan, S., Leese, M.R., Maynard, J., Evans, S.T., Pillinger, C.T. et al. (2007). Ion trap mass spectrometry on a comet nucleus: the Ptolemy instrument and the Rosetta space mission. J. Mass Spectrom. 42,1-10. Pillinger C. T., and Wright I. P. (1993). MODULUS - Methods Of Determining and Understanding Light elements from Unequivocal Stable isotope composition. A type 2 proposal submitted to the RoLand Cometary Lander of the ESA International Rosetta Mission for the provision of Ptolemy - an evolved gas analyser. Richter L., Coste P., Grzesik A., Magnani P., Nadalini R., Neuhaus D., Re E., Romstedt J., Sims M. and Sohl F. (2005). Instrumented Moles for Planetary Subsurface Regolith Studies. Geophysical Research Abstracts, Vol. 7, 08659 A. Smith A.,. Crawford I. A., Gowen R. A., Ball A. J., Barber S. J., Church P., Coates A. J., Gao Y., Griffiths A. D., Hagermann A.,•Joy K. H., Phipps A., Pike W. T., Scott R., Sheridan S., Sweeting M., Talboys D.,•Tong V.,•Wells N.,• Biele J., Chela-Flores J.,•Dabrowski B., Flannagan J., Grande M., Grygorczuk J., Kargl G.,. Khavroshkin O. B.,•Klingelhoefer G., Knapmeyer M.,• Marczewski W., McKenna-Lawlor S.,•Richter L., Rothery D. A., Seweryn K., Ulamec S., Wawrzaszek R., Wieczorek M., Wright I. P. and Sims M. (2009). LunarEX - a proposal to cosmic vision. Exp Astron 23:711-740: DOI 10.1007/s10686-008-9109-6

  9. Measurements of Isoprene and its Oxidation Products during the CLOUD9 Experiment

    NASA Astrophysics Data System (ADS)

    Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Coburn, Sean; Volkamer, Rainer; Hansel, Armin

    2015-04-01

    Isoprene (C5H8), being produced and emitted by the biosphere, is by far the dominant biogenic volatile organic compound (BVOC) in the atmosphere. Its complex reaction pathways with OH radicals, O3 and NO3, lead to compounds with lower volatilities and increasing water solubility. The high hydrophilicity allows for easy partitioning between the gas and liquid phase making those compounds good candidates for aqueous phase droplet chemistry that may contribute to particle growth. (Ervens et al., 2008). The CLOUD experiment (Cosmics Leaving Outdoor Droplets) at CERN allows the studying the evolution of particles originating from precursor gases in, in our case isoprene, in an ultraclean and very well controlled environmental chamber. Gas phase concentrations of isoprene and its first reaction products were measured in real-time with a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS, Graus et al., 2010) and Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS, Thalman and Volkamer, 2010). PTR-ToF-MS was calibrated using gas standards with known VOC concentrations. The PTR-ToF-MS was operated with H3O+ and NO+ as primary ions, continuously switching between both operating modes throughout the experiments. The use of different primary ions allows the discrimination of isomeric compounds like the main high NOx oxidation products methyl vinyl ketone (MVK) and methacroleine (MACR). The experiment was conducted at high isoprene concentrations and a constant level of O3. The highly water soluble gas phase oxidation products from the reaction of isoprene with O3 and OH radicals (from isoprene ozonolysis) were investigated and compared for two temperatures (+10 °C and -10 °C) and different NOx concentrations during cloud formation experiments. Here we will present first results of isoprene oxidation products observed with PTR-ToF-MS and CE-DOAS. References Ervens et al. (2008), Geophys. Res. Lett., 35, L02816 Graus et al. (2010), J. Am. Soc. Mass. Spectrom., 21, 1037-1044 Thalman and Volkamer (2010), Atmos. Meas. Tech., 3(6), 2681-2721.

  10. Vibrations et relaxations dans les molécules biologiques. Apports de la diffusion incohérente inélastique de neutrons

    NASA Astrophysics Data System (ADS)

    Zanotti, J.-M.

    2005-11-01

    Le présent document ne se veut pas un article de revue mais plutôt un élément d'initiation à une technique encore marginale en Biologie. Le lecteur est supposé être un non spécialiste de la diffusion de neutrons poursuivant une thématique à connotation biologique ou biophysique mettant en jeu des phénomènes dynamiques. En raison de la forte section de diffusion incohérente de l'atome d'hydrogène et de l'abondance de cet élément dans les protéines, la diffusion incohérente inélastique de neutrons est une technique irremplaçable pour sonder la dynamique interne des macromolécules biologiques. Après un rappel succinct des éléments théoriques de base, nous décrivons le fonctionnement de différents types de spectromètres inélastiques par temps de vol sur source continue ou pulsée et discutons leurs mérites respectifs. Les deux alternatives utilisées pour décrire la dynamique des protéines sont abordées: (i)l'une en termes de physique statistique, issue de la physique des verres, (ii) la seconde est une interprétation mécanistique. Nous montrons dans ce cas, comment mettre à profit les complémentarités de domaines en vecteur de diffusion et de résolution en énergie de différents spectromètres inélastiques de neutrons (temps de vol, backscattering et spin-écho) pour accéder, à l'aide d'un modèle physique simple, à la dynamique des protéines sur une échelle de temps allant d'une fraction de picoseconde à quelques nanosecondes.

  11. A multi-method approach toward de novo glycan characterization: a Man-5 case study.

    PubMed

    Prien, Justin M; Prater, Bradley D; Cockrill, Steven L

    2010-05-01

    Regulatory agencies' expectations for biotherapeutic approval are becoming more stringent with regard to product characterization, where minor species as low as 0.1% of a given profile are typically identified. The mission of this manuscript is to demonstrate a multi-method approach toward de novo glycan characterization and quantitation, including minor species at or approaching the 0.1% benchmark. Recently, unexpected isomers of the Man(5)GlcNAc(2) (M(5)) were reported (Prien JM, Ashline DJ, Lapadula AJ, Zhang H, Reinhold VN. 2009. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap mass spectrometry (MS). J Am Soc Mass Spectrom. 20:539-556). In the current study, quantitative analysis of these isomers found in commercial M(5) standard demonstrated that they are in low abundance (<1% of the total) and therefore an exemplary "litmus test" for minor species characterization. A simple workflow devised around three core well-established analytical procedures: (1) fluorescence derivatization; (2) online rapid resolution reversed-phase separation coupled with negative-mode sequential mass spectrometry (RRRP-(-)-MS(n)); and (3) permethylation derivatization with nanospray sequential mass spectrometry (NSI-MS(n)) provides comprehensive glycan structural determination. All methods have limitations; however, a multi-method workflow is an at-line stopgap/solution which mitigates each method's individual shortcoming(s) providing greater opportunity for more comprehensive characterization. This manuscript is the first to demonstrate quantitative chromatographic separation of the M(5) isomers and the use of a commercially available stable isotope variant of 2-aminobenzoic acid to detect and chromatographically resolve multiple M(5) isomers in bovine ribonuclease B. With this multi-method approach, we have the capabilities to comprehensively characterize a biotherapeutic's glycan array in a de novo manner, including structural isomers at >/=0.1% of the total chromatographic peak area.

  12. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    NASA Astrophysics Data System (ADS)

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.

    2008-12-01

    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  13. Hydrogeochemical processes controlling changes in fluoride ion concentration within alluvial and hard rock aquifers in a part of a semi-arid region of Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Priyadarshini; Ashthana, Harshita; Rena, Vikas; Kumar, Pardeep; Mukherjee, Saumitra

    2017-04-01

    Geochemical signatures from alluvial and hard rock aquifers in a part of Northern India elucidate the chemical processes controlling fluctuations in fluoride ion concentration linked to changes in major ion groundwater chemistry. Majority of samples from the hard rock and the alluvial aquifers for pre-monsoon show both carbonate and silicate weathering, ion exchange, evaporation and rock water interaction as the processes controlling major ion chemistry whereas for post monsoon samples, contribution of silicate weathering and ion exchange process were observed. Evaporative processes causing the increase in Na+ ion concentration in premonsoon enhance the reverse ion exchange processes causing increase in Ca2+ ions which impedes fluorite mineral dissolution in the premonsoon groundwater samples within the study area. Alternately, it is observed that the removal of Ca2+ ion from solution plays a key role in increase in fluorite mineral dissolution despite its saturation in groundwater in the postmonsoon samples. Also, ion exchange process on clay surfaces is more pronounced in the postmonsoon samples leading to the uptake of Ca2+ ion upon release of Na+ and K+ ion in solution. Ca2+ ion concentration is inversely correlated with F- ion concentration in both the aquifers in the postmonsoon season validating the role of calcite precipitation as a major reason for the fluoride ion increase. Moreover, increase in silicate weathering in the postmonsoon samples leads to increase in clay particles acting as suitable sites for ion exchange enhancing Ca2+ removal from groundwater. Cationic dominance of Na+ ion in the post monsoon samples also validates the occurrence of this process. Collectively, these processes set the ideal conditions for increase in the fluoride ion concentration particularly in the alluvium aquifer waters in the postmonsoon season Keywords: geochemistry, ion-exchange, rock-water interaction, mineral dissolution, weathering.

  14. Evaluation of stabilization techniques for ion implant processing

    NASA Astrophysics Data System (ADS)

    Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across several combinations of current and energy.

  15. Liquid microjunction surface sampling probe fluid dynamics: Characterization and application of an analyte plug formation operational mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElNaggar, Mariam S.; Van Berkel, Gary J.

    2011-08-10

    The recently discovered sample plug formation and injection operational mode of a continuous flow, coaxial tube geometry, liquid microjunction surface sampling probe (LMJ-SSP) (J. Am. Soc. Mass Spectrom, 2011) was further characterized and applied for concentration and mixing of analyte extracted from multiple areas on a surface and for nanoliter-scale chemical reactions of sampled material. A transparent LMJ-SSP was constructed and colored analytes were used so that the surface sampling process, plug formation, and the chemical reactions could be visually monitored at the sampling end of the probe before being analyzed by mass spectrometry of the injected sample plug. Injectionmore » plug peak widths were consistent for plug hold times as long as the 8 minute maximum attempted (RSD below 1.5%). Furthermore, integrated injection peak signals were not significantly different for the range of hold times investigated. The ability to extract and completely mix individual samples within a fixed volume at the sampling end of the probe was demonstrated and a linear mass spectral response to the number of equivalent analyte spots sampled was observed. Lastly, using the color and mass changing chemical reduction of the redox dye 2,6-dichlorophenol-indophenol with ascorbic acid, the ability to sample, concentrate, and efficiently run reactions within the same plug volume within the probe was demonstrated.« less

  16. Spectroscopie résolue en temps par continuum femtoseconde Applications en neurobiologie

    NASA Astrophysics Data System (ADS)

    Ramstein, S.; Mottin, S.

    2003-06-01

    La spectroscopie résolue en temps utilisant un laser blanc femtoseconde est appliquée à la mesure in vivo des principaux absorbeurs du cerveau. Après génération adéquate du continuum de lumière blanche femtoseconde (50mW/[580-756nm] à 1Hz), cette source se propage dans la calvaria, les méninges et le cortex chez le rat anesthésié. La transmission est étudiée sur 7mm de distance entre l'impact laser et la fibre optique de collection. Le signal transmis est analysé dans la fenêtre 580-760nm, par un spectromètre couplé à une caméra à balayage de fente permettant la décorrélation de l'absorption et de la diffusion.

  17. MULTI-DIMENSIONAL MASS SPECTROMETRY-BASED SHOTGUN LIPIDOMICS AND NOVEL STRATEGIES FOR LIPIDOMIC ANALYSES

    PubMed Central

    Han, Xianlin; Yang, Kui; Gross, Richard W.

    2011-01-01

    Since our last comprehensive review on multi-dimensional mass spectrometry-based shotgun lipidomics (Mass Spectrom. Rev. 24 (2005), 367), many new developments in the field of lipidomics have occurred. These developments include new strategies and refinements for shotgun lipidomic approaches that use direct infusion, including novel fragmentation strategies, identification of multiple new informative dimensions for mass spectrometric interrogation, and the development of new bioinformatic approaches for enhanced identification and quantitation of the individual molecular constituents that comprise each cell’s lipidome. Concurrently, advances in liquid chromatography-based platforms and novel strategies for quantitative matrix-assisted laser desorption/ionization mass spectrometry for lipidomic analyses have been developed. Through the synergistic use of this repertoire of new mass spectrometric approaches, the power and scope of lipidomics has been greatly expanded to accelerate progress toward the comprehensive understanding of the pleiotropic roles of lipids in biological systems. PMID:21755525

  18. L X-ray fluorescence cross sections of some rare earth elements ( Z = 62, 64, 66, 68 and 70) at 17.8, 22.6 and 25.8 keV

    NASA Astrophysics Data System (ADS)

    Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.

    2005-06-01

    L X-ray fluorescence cross sections of the elements with Z = 62, 64, 66, 68 and 70 have been measured at 17.8, 22.6 and 25.8 keV using an X-ray tube and secondary exciters of Mo, Ag and Sn. The measured cross sections have been compared with the theoretical predictions and with the data of others. Theoretical values calculated using photoionisation cross sections from Scofield [Lawrence Livermore Laboratory, UCRL-51326, 1973], fluorescence yields and Coster-Kronig transition probabilities from Puri et al. [X-ray Spectrom. 22 (1993) 358] and radiative widths from Campbell and Wang [At. Data Nucl. Data Tables 43 (1989) 281] show good agreement with our data. Except two sets of data on Lγ cross sections, all the data of other groups agree well with those of ours.

  19. Characterisation of DEFB107 by mass spectrometry

    NASA Astrophysics Data System (ADS)

    McCullough, Bryan J.; Eastwood, Hayden; Clark, Dave J.; Polfer, Nick C.; Campopiano, Dominic J.; Dorin, Julia A.; Maxwell, Alison; Langley, Ross J.; Govan, John R. W.; Bernstein, Summer L.; Bowers, Michael T.; Barran, Perdita E.

    2006-05-01

    Mammalian defensins are small endogenous cationic proteins which form a class of antimicrobial peptides that is part of the innate immune response of all mammalian species [R. Lehrer, Nat. Rev. Microbiol. 2 (9) (2004) 727; T. Ganz, R.I. Lehrer, Curr. Opin. Immunol. 6 (4) (1994) 584] [1] and [2]. We have developed mass spectrometry based strategies for characterising the structure-activity relationship of defensins [D.J. Campopiano, D.J. Clarke, N.C. Polfer, P.E. Barran, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, J. Biol. Chem. 279 (47) (2004) 48671; P.E. Barran, N.C. Polfer, D.J. Campopiano, D.J. Clarke, P.R.R. Langridge-Smith, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, R.P. Millar, M.T. Bowers, Int. J. Mass Spectrom. 240 (2005) 273] [3] and [4], and here we present data obtained from a five cysteine containing [beta]-defensin, DEFB107. The synthetic product of this human defensin exists with a glutathione capping group, its oxidation state and disulphide connectivity have been determined via accurate mass measurements and peptide mass mapping respectively, and despite possessing three disulphide bridges, it does not fit the [beta]-defensin canonical motif. With the use of molecular modelling, we have generated candidate geometries to discern the influence of disulphide bridging on the overall tertiary structure of DEFB107. These are compared with experimental results from ion mobility measurements. Defensins display activity against a wide variety of pathogens including both gram-negative and gram-positive bacteria. Their mechanism of mode of action is unknown, but is believed to involve defensin aggregation at cell surfaces, followed by cell permeabilisation and hence deathE To probe this mechanism, the localisation of DEFB107 in synthetic vesicles was studied using H/D exchange and mass spectrometry. The results obtained are used to analyse the antimicrobial activity of DEFB107.

  20. The quantitative analysis of OH in vesuvianite: a polarized FTIR and SIMS study

    NASA Astrophysics Data System (ADS)

    Bellatreccia, Fabio; della Ventura, Giancarlo; Ottolini, Luisa; Libowitzky, Eugen; Beran, Anton

    2005-05-01

    A well-characterized suite of vesuvianite samples from the volcanic ejecta (skarn or syenites) from Latium (Italy) was studied by single-crystal, polarized radiation, Fourier-transform infrared (FTIR) spectroscopy and secondary-ion mass-spectrometry (SIMS). OH-stretching FTIR spectra consist of a rather well-defined triplet of broad bands at higher-frequency (3,700 3,300 cm-1) and a very broad composite absorption below 3,300 cm-1. Measurements with E//c or E⊥c show that all bands are strongly polarized with maximum absorption for E//c. They are in agreement with previous band assignments (Groat et al. Can Mineral 33:609, 1995) to the two O(11) H(1) and O(10) H(2) groups in the structure. Pleochroic measurements with changing direction of the E vector of the incident radiation show that the orientation of the O(11) H(1) dipole is OH∧c~35°, in excellent agreement with the neutron data of Lager et al. (Can Mineral 37:763, 1999). A SIMS-based calibration curve at ~10% rel. accuracy has been worked out and used as reference for the quantitative analysis of H2O in vesuvianite by FTIR. Based on previous SIMS results for silicate minerals (Ottolini and Hawthorne in J Anal At Spectrom 16:1266, 2001; Ottolini et al. in Am Mineral 87:1477, 2002) the SiO2 and FeO content of the matrix were assumed as the major factors to be considered at a first approximation in the selection of the standards for H. The lack of vesuvianite standards for quantitative SIMS analysis of H2O has been here overcome by selecting low-silica elbaite crystals (Ottolini et al. in Am Mineral 87:1477, 2002). The resulting integrated molar absorption FTIR coefficient for vesuvianite is ɛi=100.000±2.000 l mol-1 cm-2. SIMS data for Li, B, F, Sr, Y, Be, Ba REE, U and Th are also provided in the paper.

  1. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  2. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  3. Detecting and Eliminating Interfering Organic Compounds in Waters Analyzed for Isotopic Composition by Crds

    NASA Astrophysics Data System (ADS)

    Richman, B. A.; Hsiao, G. S.; Rella, C.

    2010-12-01

    Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally approaches to minimize the effect of interfering compounds will be discussed including methods to assess the confidence level of an isotopic value obtained from a contaminated sample. [1] Rapid Commun. Mass Spectrom. 2010; 24: 1-7 [2] Rapid Commun. Mass Spectrom. 2009; 23: 1879-1884 Results from laboratory samples, most of which were spiked with interfering organic compounds. Samples are color coded as follows: blue=standard, green=no contamination, yellow=slight contamination, red=heavily contaminated.

  4. Orthogonal ion injection apparatus and process

    DOEpatents

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  5. Status and directions of modified tribological surfaces by ion processes

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1988-01-01

    An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.

  6. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  7. VUV Photoionisation of hydrocarbon radicals

    NASA Astrophysics Data System (ADS)

    Alcaraz, C.; Noller, Bastian; Hemberger, Patrick; Fischer, Ingo; Gans, Bérenger; Boyé-Peronne, Séverine; Douin, Stéphane; Gauyacq, Dolorès; Soldi-Lose, Héloïse; Garcia, Gustavo

    2008-09-01

    Hydrocarbon radicals CxHy are constituents of various planetary atmospheres, in particular Titan, as a result of the methane photochemistry induced by the solar radiation. They contribute to the neutral chemistry, but are also important for the ionosphere through their photoionisation leading to their cations CxHy +. These cations are also produced by ion-molecule reactions starting from the reaction of the primary ions CH4 + and CH3 + which are created in the non-dissociative and dissociative photoionisation of CH4. This work aims at caracterizing the VUV photoionisation of small hydrocarbon radicals as a function of photon energy. The objective is to provide laboratory data for modelers on the spectroscopy, the thermochemistry, and the reactivity of the radicals and their cations. The hydrocarbon radicals are much less caracterized than stable molecules since they have to be produced in situ in the laboratory experiment. We have adapted at Orsay [1-3] a pyrolysis source (Figure 1) well suited to produce cold beams of hydrocarbon radicals to our experimental setups. Available now at Orsay, we have two new sources of VUV radiation, complementary in terms of tunability and resolution, that can be used for these studies. The first one is the DESIRS beamline [4] at the new french synchrotron, SOLEIL. The second one is the VUV laser developped at the Centre Laser de l'Université Paris-Sud (CLUPS) [5]. At SOLEIL, a photoelectron-photoion coincidence spectrometer is used to monitor the photoionisation on a large photon energy range. At the CLUPS, a pulsedfield ionisation (PFI-ZEKE) spectrometer allows studies at higher resolution on selected photon energies. The first results obtained with these new setups will be presented. References [1] Fischer, I., Schussler, T., Deyerl, H.J., Elhanine, M. & Alcaraz, C., Photoionization and dissociative photoionization of the allyl radical, C3H5. Int. J. Mass Spectrom., 261 (2-3), 227-233 (2007) [2] Schüßler, T., Roth, W., Gerber, T., Alcaraz, C. & Fischer, I., The vacuum ultraviolet photochemistry of radicals: C3H3 and C2H5. Phys. Chem. Chem. Phys., 7 (5), 819-825 (2005) [3] Schüßler, T., Deyerl, H. J., Dummler, S., Fischer, I., Alcaraz, C. & Elhanine, M., The vacuum ultraviolet photochemistry of the allyl radical investigated using synchrotron radiation J. Chem. Phys., 118 (20), 9077-80 (2003) [4] DESIRS, http://www.synchrotronsoleil. fr/portal/page/portal/Recherche/LignesLumiere/ DESIRS [5] CLUPS, http://www.clups.u-psud.fr/

  8. Fractionation of Oxygen Isotopes by Thermal Ionization Mass Spectrometry Inferred from Simultaneous Measurement of (17)O/(16)O and (18)O/(16)O Ratios and Implications for the (182)Hf-(182)W Systematics.

    PubMed

    Trinquier, Anne

    2016-06-07

    Accurate (182)Hf-(182)W chronology of early planetary differentiation relies on highly precise and accurate tungsten isotope measurements. WO3(-) analysis by negative thermal ionization mass spectrometry requires W(17)O(16)O2(-), W(17)O2(16)O(-), W(18)O(16)O2(-), W(17)O3(-), W(17)O(18)O(16)O(-), and W(18)O2(16)O(-) isotopologue interference corrections on W(16)O3(-) species ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ; Touboul et al. Nature 2015 , 520 , 530 ; Touboul et al. Int. J. Mass Spectrom. 2012 , 309 , 109 ). In addition, low ion beam intensity counting statistics combined with Faraday cup detection noise limit the precision on the determination of (18)O/(16)O and (17)O/(16)O relative abundances. Mass dependent variability of (18)O/(16)O over the course of an analysis and between different analyses calls for oxide interference correction on a per integration basis, based on the in-run monitoring of the (18)O/(16)O ratio ( Harper et al. Geochim. Cosmochim. Acta 1996 , 60 , 1131 ; Quitté et al. Geostandard. Newslett. 2002 , 26 , 149 ; Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). Yet, the (17)O/(16)O variation is normally not being monitored and, instead, inferred from the measured (18)O/(16)O variation, assuming a δ(17)O-δ(18)O Terrestrial Fractionation Line ( Trinquier et al. Anal. Chem. 2016 , 88 , 1542 ). The purpose of the present study is to verify the validity of this assumption. Using high resistivity amplifiers, (238)U(17)O2 and (238)U(18)O2 ion beams down to 1.6 fA have been monitored simultaneously with (235,238)U(16)O2 species in a uranium certified reference material. This leads to a characterization of O isotope fractionation by thermal ionization mass spectrometry in variable loading and running conditions (additive-to-sample ratio, PO2 pressure, presence of ionized metal and oxide species). Proper determination of O isotope composition based on the simultaneous analysis of the (18)O/(16)O and (17)O/(16)O ratios could prevent tens of ppm bias or more on the (182)W/(184)W and (183)W/(184)W ratios.

  9. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H.

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  10. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1978-01-01

    The results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells are described. The program included: (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation.

  11. First Results From A Multi-Ion Beam Lithography And Processing System At The University Of Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gila, Brent; Appleton, Bill R.; Fridmann, Joel

    2011-06-01

    The University of Florida (UF) have collaborated with Raith to develop a version of the Raith ionLiNE IBL system that has the capability to deliver multi-ion species in addition to the Ga ions normally available. The UF system is currently equipped with a AuSi liquid metal alloy ion source (LMAIS) and ExB filter making it capable of delivering Au and Si ions and ion clusters for ion beam processing. Other LMAIS systems could be developed in the future to deliver other ion species. This system is capable of high performance ion beam lithography, sputter profiling, maskless ion implantation, ion beammore » mixing, and spatial and temporal ion beam assisted writing and processing over large areas (100 mm2)--all with selected ion species at voltages from 15-40 kV and nanometer precision. We discuss the performance of the system with the AuSi LMAIS source and ExB mass separator. We report on initial results from the basic system characterization, ion beam lithography, as well as for basic ion-solid interactions.« less

  12. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  13. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  14. Space processing applications of ion beam technology. [surface finishing, welding, milling and film deposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1977-01-01

    Ion thruster engines for spacecraft propulsion can serve as ion beam sources for potential space processing applications. The advantages of space vacuum environments and the possible gravity effects on thruster ion beam materials operations such as thin film growth, ion milling, and surface texturing were investigated. The direct gravity effect on sputter deposition and vapor deposition processes are discussed as well as techniques for cold and warm welding.

  15. Characterization and Infrared Emission Spectroscopy of Ball Plasmoid Discharges

    NASA Astrophysics Data System (ADS)

    Dubowsky, Scott E.; McCall, Benjamin J.

    2015-06-01

    Plasmas at atmospheric pressure serve many purposes, from ionization sources for ambient mass spectrometry (AMS) to plasma-assisted wound healing. Of the many naturally occurring ambient plasmas, ball lightning is one of the least understood; there is currently no solid explanation in the literature for the formation and lifetime of natural ball lightning. With the first measurements of naturally occurring ball lightning being reported last year, we have worked to replicate the natural phenomenon in order to elucidate the physical and chemical processes by which the plasma is sustained at ambient conditions. We are able to generate ball-shaped plasmoids (self-sustaining plasmas) that are analogous to natural ball lightning using a high-voltage, high-current, pulsed DC system. Improvements to the discharge electronics used in our laboratory and characterization of the plasmoids that are generated from this system will be described. Infrared emission spectroscopy of these plasmoids reveals emission from water and hydroxyl radical -- fitting methods for these molecular species in the complex experimental spectra will be presented. Rotational temperatures for the stretching and bending modes of H2O along with that of OH will be presented, and the non-equilibrium nature of the plasmoid will be discussed in this context. Cen, J.; Yuan, P,; Xue, S. Phys. Rev. Lett. 2014, 112, 035001. Dubowsky, S.E.; Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R.H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45.

  16. Dopant profile modeling by rare event enhanced domain-following molecular dynamics

    DOEpatents

    Beardmore, Keith M.; Jensen, Niels G.

    2002-01-01

    A computer-implemented molecular dynamics-based process simulates a distribution of ions implanted in a semiconductor substrate. The properties of the semiconductor substrate and ion dose to be simulated are first initialized, including an initial set of splitting depths that contain an equal number of virtual ions implanted in each substrate volume determined by the splitting depths. A first ion with selected velocity is input onto an impact position of the substrate that defines a first domain for the first ion during a first timestep, where the first domain includes only those atoms of the substrate that exert a force on the ion. A first position and velocity of the first ion is determined after the first timestep and a second domain of the first ion is formed at the first position. The first ion is split into first and second virtual ions if the first ion has passed through a splitting interval. The process then follows each virtual ion until all of the virtual ions have come to rest. A new ion is input to the surface and the process repeats until all of the ion dose has been input. The resulting ion rest positions form the simulated implant distribution.

  17. Fast ion swapping for quantum-information processing

    NASA Astrophysics Data System (ADS)

    Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-05-01

    We demonstrate a swap gate between laser-cooled ions in a segmented microtrap via fast physical swapping of the ion positions. This operation is used in conjunction with qubit initialization, manipulation, and readout and with other types of shuttling operations such as linear transport and crystal separation and merging. Combining these operations, we perform quantum process tomography of the swap gate, obtaining a mean process fidelity of 99.5(5)%. The swap operation is demonstrated with motional excitations below 0.05(1) quantum for all six collective modes of a two-ion crystal for a process duration of 42 μ s . Extending these techniques to three ions, we reverse the order of a three-ion crystal and reconstruct the truth table for this operation, resulting in a mean process fidelity of 99.96(13)% in the logical basis.

  18. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOEpatents

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  19. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1977-01-01

    Progress in developing the application of ion implantation techniques to silicon gate CMOS/SOS processing is described. All of the conventional doping techniques such as in situ doping of the epi-film and diffusion by means of doped oxides are replaced by ion implantation. Various devices and process parameters are characterized to generate an optimum process by the use of an existing SOS test array. As a result, excellent circuit performance is achieved. A general description of the all ion implantation process is presented.

  20. Increased Biocompatibility and Bioactivity after Energetic PVD Surface Treatments

    PubMed Central

    Mändl, Stephan

    2009-01-01

    Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII) and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes.

  1. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  2. SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS

    DOEpatents

    Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.

    1960-05-24

    An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.

  3. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    guides Taps for plastics Orthopedic implants (hip and knee joints, etc.) Extrusion spinnerettes Finishing rolls for copper rod Extrusion nozzles...detail in following sections. C. Comparison to Coating Techniques -,* Because ion implantation is a process that modifies surface properties it is often...Therefore, it is important to understand the differences between ion implantation and coating techniques, especially ion plating. The result of ion

  4. Ion processing element with composite media

    DOEpatents

    Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand

    2003-02-04

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  5. Ion processing element with composite media

    DOEpatents

    Mann, Nick R [Blackfoot, ID; Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Sebesta, Ferdinand [Prague, CZ

    2009-03-24

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  6. Thin Film Deposition Using Energetic Ions

    PubMed Central

    Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan

    2010-01-01

    One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323

  7. Photodetachment process for beam neutralization

    DOEpatents

    Fink, Joel H. [Livermore, CA; Frank, Alan M. [Livermore, CA

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process.

  8. Study of Primary Cosmic Ray Electrons In Energy Range 10^11 - 10^13 Ev By Pamela Instrument.

    NASA Astrophysics Data System (ADS)

    Voronov, S.; Pamela Collaboration

    The main goal of the magnetic spectrometer PAMELA is the study of antiparticle fluxes with energy up to 300 GeV in cosmic rays on board satellite. A modification of instrument was done by introducing of neutron detector. This device was placed under imaging calorimeter and bottom scintillator counter. It consists of two layers of 36 3He gas counters enveloped by a polyethylene moderator. The neutron detector gives additional possibility to identify the antiprotons going in aperture of spectrome- ter and generating the nuclear cascade in tungsten plates of calorimeter. This shower is followed by big number of neutrons in contrast to electromagnetic one caused by elec- tron or positron. From other side the combination of the imaging calorimeter, bottom scintillator and neutron detector constitute the independent instrument with large field of view which gives the possibility to measure the electron-positron cosmic ray com- ponent in energy range 1011-1013 eV with a rejection factor of order 10-4 regarding to nuclear one.

  9. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from themore » anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.« less

  10. Photodetachment process for beam neutralization

    DOEpatents

    Fink, J.H.; Frank, A.M.

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.

  11. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  12. Simplified power processing for ion-thruster subsystems

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Hancock, D. J.

    1983-01-01

    A design for a greatly simplified power-processing unit (SPPU) for the 8-cm diameter mercury-ion-thruster subsystem is discussed. This SPPU design will provide a tenfold reduction in parts count, a decrease in system mass and cost, and an increase in system reliability compared to the existing power-processing unit (PPU) used in the Hughes/NASA Lewis Research Center Ion Auxiliary Propulsion Subsystem. The simplifications achieved in this design will greatly increase the attractiveness of ion propulsion in near-term and future spacecraft propulsion applications. A description of a typical ion-thruster subsystem is given. An overview of the thruster/power-processor interface requirements is given. Simplified thruster power processing is discussed.

  13. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those mixtures was also observed. Despite this problem, the hydrocarbon signal response can be calibrated and the method can be used for quantitative analysis of volatile hydrocarbon compounds in air samples. This methodology should augment the efficiency of the MIMS approach in online and onsite monitoring of VOC emissions. Bier, M.R., and R.G. Cooks, Membrane Interface for Selective Introduction of Volatile Compounds Directly into The Ionization Chamber of a Mass Spectrometer, Anal. Chem., 59 (4), 597, 1987. Cisper, M.E., C.G. Gill, L.E. Townsend, and P.H. Hemberger, On-Line Detection of Volatile Organic Compounds in Air at Parts-per-Trillion Levels by Membrane Introduction Mass Spectrometry, Anal. Chem., 67 (8), 1413-1417, 1995. Ketola, R.A., M. Ojala, and J. Heikkonen, A Non-linear Asymmetric Error Function-based Least Mean Square Approach for the Analysis of Multicomponent Mass Spectra Measured by Membrane Inlet Mass Spectrometry, Rapid Commun. Mass Spectrom., 13 (8), 654, 1999. Kotiaho, T., and R.G. Cooks, Membrane Introduction Mass Spectrometry in Environmental Analysis, in: J.J. Breen, M. J. Dellarco, (Eds), Pollution in Industrial processes, 126 pp., ACS Symp. Ser., Washington, D.C. 508, 1992.

  14. Magnetic filter apparatus and method for generating cold plasma in semicoductor processing

    DOEpatents

    Vella, Michael C.

    1996-01-01

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

  15. Magnetic filter apparatus and method for generating cold plasma in semiconductor processing

    DOEpatents

    Vella, M.C.

    1996-08-13

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

  16. Numerical simulation of plasma processes driven by transverse ion heating

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  17. Evaluation of electron beam stabilization for ion implant processing

    NASA Astrophysics Data System (ADS)

    Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.

    1999-06-01

    With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.

  18. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.

    PubMed

    Moberlychan, Warren J

    2009-06-03

    Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.

  19. High Power, High Energy Density Lithium-Ion Batteries

    DTIC Science & Technology

    2010-11-29

    cells and to provide affordable Lithium - Ion battery packs for the combat and tactical vehicle systems. - To address the manufacturing processes that will...reduce cost of lithium - ion battery packs by one half through the improvement of manufacturing process to enhance production consistency and increase the production yield of high power lithium-ion cells.

  20. 77 FR 17566 - Notice of Proposed Buy America Waivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... their ongoing process to secure a domestic supplier of Lithium Ion batteries. FTA seeks public comment... ongoing process to secure and qualify a domestic supplier of Lithium Ion batteries. The ESU is one of five... Hydride (NiMH) batteries with Lithium Ion and determined Lithium Ion was appropriate for transit bus...

  1. Optimizing Catalysts for Solar Fuel Production: Spectroscopic Characterization of the Key Reaction Intermediates

    DTIC Science & Technology

    2013-04-01

    which freezes ions into well defined structures and coats them with an inert layer of weakly bound adducts. These cold aggregates were then...evaporation of the cryogenic solvent. Instrument development. Cryogenic ion processing. Cold ion spectroscopy. Trapped reaction intermediates U U U...spectrometer. The key advance incorporated into this instrument is the introduction of a cryogenic (10K) ion processing stage, where ions can be frozen

  2. A model of ion transport processes along and across the neuronal membrane.

    PubMed

    Xiang, Z X; Liu, G Z; Tang, C X; Yan, L X

    2017-01-01

    In this study, we provide a foundational model of ion transport processes in the intracellular and extracellular compartments of neurons at the nanoscale. There are two different kinds of ionic transport processes: (i) ionic transport across the neuronal membrane (trans-membrane), and (ii) ionic transport along both the intracellular and extracellular surfaces of the membrane. Brownian dynamics simulations are used to give a description of ionic trans-membrane transport. Electro-diffusion is used to model ion transport along the membrane surface, and the two transport processes can be linked analytically. In our model, we found that the interactions between ions and ion channels result in high-frequency ionic oscillations during trans-membrane transport. In ion transport along the membrane, high-frequency ionic oscillations may be evoked on both the intracellular and extracellular surfaces of the plasma membrane. The electric field caused by Coulomb interactions between the ions is found to be the most likely origin of those ionic oscillations.

  3. Numerical analysis of the spatial nonuniformity in a Cs-seeded H{sup -} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takado, N.; Hanatani, J.; Mizuno, T.

    The H{sup -} ion production and transport processes are numerically simulated to clarify the origin of H{sup -} beam nonuniformity. The three-dimensional transport code using the Monte Carlo method has been applied to H{sup 0} atoms and H{sup -} ions in the large 'JAERI 10A negative ion source' under the Cs-seeded condition, in which negative ions are dominantly produced by the surface production process. The results show that a large fraction of hydrogen atoms is produced in the region with high electron temperature. This leads to a spatial nonuniformity of H{sup 0} atom flux to the plasma grid and themore » resultant H{sup -} ion surface production. In addition, most surface-produced H{sup -} ions are extracted even through the high T{sub e} region without destruction. These results indicate a correlation between the production process of the H{sup -} ion and the spatial nonuniformity of the H{sup -} ion beam.« less

  4. Responses of hydrochemical inorganic ions in the rainfall-runoff processes of the experimental catchments and its significance for tracing

    USGS Publications Warehouse

    Gu, W.-Z.; Lu, J.-J.; Zhao, X.; Peters, N.E.

    2007-01-01

    Aimed at the rainfall-runoff tracing using inorganic ions, the experimental study is conducted in the Chuzhou Hydrology Laboratory with special designed experimental catchments, lysimeters, etc. The various runoff components including the surface runoff, interflow from the unsaturated zone and the groundwater flow from saturated zone were monitored hydrometrically. Hydrochemical inorganic ions including Na+, K+, Ca2+, Mg2+, Cl-, SO42-, HCO3- + CO32-, NO3-, F-, NH4-, PO42-, SiO2 and, pH, EC, 18O were measured within a one month period for all processes of rainfall, various runoff components and groundwater within the catchment from 17 boreholes distributed in the Hydrohill Catchment, few soil water samples were also included. The results show that: (a) all the runoff components are distinctly identifiable from both the relationships of Ca2+ versus Cl-/SO42-, EC versus Na+/(Na+ + Ca2+) and, from most inorganic ions individually; (b) the variation of inorganic ions in surface runoff is the biggest than that in other flow components; (c) most ions has its lowermost concentration in rainfall process but it increases as the generation depths of runoff components increased; (d) quantitatively, ion processes of rainfall and groundwater flow display as two end members of that of other runoff components; and (e) the 18O processes of rainfall and runoff components show some correlation with that of inorganic ions. The results also show that the rainfall input is not always the main source of inorganic ions of various runoff outputs due to the process of infiltration and dissolution resulted from the pre-event processes. The amount and sources of Cl- of runoff components with various generation mechanisms challenge the current method of groundwater recharge estimation using Cl-.

  5. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  6. MAVEN Observations of Escaping Planetary Ions from the Martian Atmosphere: Mass, Velocity, and Spatial Distributions

    NASA Astrophysics Data System (ADS)

    Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack

    2015-04-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.

  7. Quantum information processing with trapped ions

    NASA Astrophysics Data System (ADS)

    Gaebler, John

    2013-03-01

    Trapped ions are one promising architecture for scalable quantum information processing. Ion qubits are held in multizone traps created from segmented arrays of electrodes and transported between trap zones using time varying electric potentials applied to the electrodes. Quantum information is stored in the ions' internal hyperfine states and quantum gates to manipulate the internal states and create entanglement are performed with laser beams and microwaves. Recently we have made progress in speeding up the ion transport and cooling processes that were the limiting tasks for the operation speed in previous experiments. We are also exploring improved two-qubit gates and new methods for creating ion entanglement. This work was supported by IARPA, ARO contract No. EAO139840, ONR and the NIST Quantum Information Program

  8. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr{sup +} or Xe{sup +} ions is preferable to the most commonly used Ar{sup +} ions, since the undesirable phenomena mentioned above are minimized for the first two ions.more » These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs.« less

  9. Influence of hard water ions on the growth of salmonella in poultry processing water

    USDA-ARS?s Scientific Manuscript database

    The influence of magnesium and calcium ions in process water on the growth of Salmonella was evaluated and related to the contamination in process wastewater. Salmonella typhimurium was grown in the laboratory and exposed to 500 mg/kg and 1000 mg/kg of magnesium and calcium ions to simulate hard pr...

  10. Charge-Transfer Processes in Warm Dense Matter: Selective Spectral Filtering for Laser-Accelerated Ion Beams

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.

    2018-05-01

    We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.

  11. Ion-Deposited Polished Coatings

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1986-01-01

    Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.

  12. Process for improving moisture resistance of epoxy resins by addition of chromium ions

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Stoakley, D. M.; St.clair, T. L.; Singh, J. J. (Inventor)

    1985-01-01

    A process for improving the moisture resistance properties of epoxidized TGMDA and DGEBA resin system by chemically incorporating chromium ions is described. The addition of chromium ions is believed to prevent the absorption of water molecules.

  13. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed throughmore » the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.« less

  14. PRELIMINARY HIGH PERFORMANCE CAPILLARY ELECTROPHORESIS (HPCE) STUDIES OF ENZYMATIC DEGRADATION OF HYALURONIC ACID BY HYALURONIDASE IN THE PRESENCE OF POLYVALENT METAL IONS.

    PubMed

    Urbaniak, Bartosz; Plewa, Szymon; Kokot, Zenon Jozef

    2017-01-01

    The aim of this study was, at first, to examine the influence of metal ions on digestion process of hyaluronic acid by hyaluronidase (HAse) using high performance capillary electrophoresis (HPCE) method. The influence of copper(H), zinc(Il), manganese(II) ions on enzymatic degradation of HA by hyaluronidase enzyme (HA-se) were investigated. Secondly, the kinetic parameters, V(max), K(m), k(cat), and k (cat),/K(m) were determined to estimate the impact of these metal ions (Me) on digestion process of hyaluronic acid (HA). The two different HA-Me mole ratios were analyzed. The examined data were always compared to the digestion process of pure HA solution by hyaluronidase, to exhibit the differences in the digestion process of pure hyaluronan as well as the hyaluronan in the presence of metal ions. It was observed that all of the investigated metal ions have influenced the hyaluronic acid degradation process. The most important conclusion was a decrease of the kinetic parameters both K,, and V,. In the result, it can be assumed that in all of the studied samples with metal ions addition, the uncompetitive mechanism of enzyme inhibition occurred. The results of this study may give new insight into foregoing knowledge about hyaluronic acid behavior. Due to the fact that our study was carried out only for three different metal ions in two concentrations, it is necessary to continue further research comprising wider range of metal ions and their concentrations.

  15. Progress in ion figuring large optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, L.N.

    1995-12-31

    Ion figuring is an optical fabrication method that provides deterministic surface figure error correction of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Considerable process development has been completed and numerous large optical elements have been successfully final figured using this process. The process has been demonstrated to be highly deterministic, capable of completing complex-shaped optical element configurations in only a few process iterations, and capable of achieving high-quality surface figure accuracy`s. A review of the neutral ion beam figuring process will be provided, along with discussion ofmore » processing results for several large optics. Most notably, processing of Keck 10 meter telescope primary mirror segments and correction of one other large optic where a convergence ratio greater than 50 was demonstrated during the past year will be discussed. Also, the process has been demonstrated on various optical materials, including fused silica, ULE, zerodur, silicon and chemically vapor deposited (CVD) silicon carbide. Where available, results of surface finish changes caused by the ion bombardment process will be discussed. Most data have shown only limited degradation of the optic surface finish, and that it is generally a function of the quality of mechanical polishing prior to ion figuring. Removals of from 5 to 10 {mu}m on some materials are acceptable without adversely altering the surface finish specularity.« less

  16. Spectroscopic properties of the molecular ions BeX+ (X=Na, K, Rb): forming cold molecular ions from an ion-atom mixture by stimulated Raman adiabatic process

    NASA Astrophysics Data System (ADS)

    Ladjimi, Hela; Sardar, Dibyendu; Farjallah, Mohamed; Alharzali, Nisrin; Naskar, Somnath; Mlika, Rym; Berriche, Hamid; Deb, Bimalendu

    2018-07-01

    In this theoretical work, we calculate potential energy curves, spectroscopic parameters and transition dipole moments of molecular ions BeX+ (X=Na, K, Rb) composed of alkaline ion Be and alkali atom X with a quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarisation potentials and full configuration interaction. We study in detail collisions of the alkaline ion and alkali atom in quantum regime. Besides, we study the possibility of the formation of molecular ions from the ion-atom colliding systems by stimulated Raman adiabatic process and discuss the parameters regime under which the population transfer is feasible. Our results are important for ion-atom cold collisions and experimental realisation of cold molecular ion formation.

  17. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    NASA Astrophysics Data System (ADS)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-10-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  18. PRECIPITATION METHOD OF SEPARATION OF NEPTUNIUM

    DOEpatents

    Magnusson, L.B.

    1958-07-01

    A process is described for the separation of neptunium from plutonium in an aqueous solution containing neptunium ions in a valence state not greater than +4, plutonium ioms in a valence state not greater than +4, and sulfate ions. The Process consists of adding hypochlorite ions to said solution in order to preferentially oxidize the neptunium and then adding lanthanum ions and fluoride ions to form a precipitate of LaF/sub 3/ carrying the plutonium, and thereafter separating the supernatant solution from the precipitate.

  19. Dissociative recombination in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1989-01-01

    Molecular ions play a significant role in the chemistry and evolution of interstellar molecular clouds, even though these regions are overwhelmingly neutral. The dissociative recombination (DR) process governs the abundances of many of these ions and of related neutral species. The gas-phase ion-molecule chemistry of the simplest species is summarized, with emphasis on those problems which are most sensitive to uncertain rates or product branching ratios of DR processes. Examples of the kinds of information needed about DR processes are presented. The importance of the H3(+) ion and prospects for its direct observation are discussed.

  20. Ion-ion charge exchange processes. Final technical report, June 1, 1977-May 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, R.T.; Choi, B.H.

    Under the auspices of ERDA, we have undertaken a vigorous study of ion-ion charge exchange process pertinent to the storage-ring configurations in the heavy-ion fusion program. One particular reaction, singly charged helium charge exchange, was investigated in detail. General trend of the singly charged heavy-ion charge exchange reaction can be inferred from the present study. Some of our results were presented at Proceedings of the Heavy-Ion Fusion Workshop, Argonne National Laboratory (September 1978) as a paper entitled Charge Exchange Between Singly Ionized Helium Ions, by B.H. Choi, R.T. Poe and K.T. Tang. Here, we briefly describe our method and reportmore » the results.« less

  1. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  2. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  3. Process for disposing of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, L.F.; Gray, R.L.; McCoy, L.R.

    1988-05-03

    A process for removing water from the pores of spent, contaminated radioactive ion exchange resins and encasing radionuclides entrapped within the pores of the resins, the process is described consisting essentially of the sequential steps of: (a) heating the spent ion exchange resins at a temperature of from about 100/sup 0/C to about 150/sup 0/C to remove water from within and fill the pores of the ion exchange resins by heating the ion exchange resins for from about 46 to about 610 hours at a temperature at which the pores of the resins are sealed while avoiding any fusing ormore » melting of the ion exchange resins to encase radionuclides contained within the resins; and (b) cooling the resins to obtain dry, flowable ion exchange resins having radionuclides encased within sealed polymeric spheres.« less

  4. Wave-Particle Interactions and Particle Acceleration in Turbulent Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Kucharek, Harald; Pogorelov, Nikolai; Mueller, Hans; Gamayunov, Konstantin; Farrugia, Charles

    2015-04-01

    Wave-particle interactions and acceleration processes are present in all key regions inside and outside of the heliosphere. Spacecraft observations measure ion distributions and accelerated ion populations, which are the result of one or several processes. For instance STEREO measures energetic particles associated with interplanetary discontinuities and in the solar wind. Voyager and IBEX provide unique data of energetic particles from the termination shock and the inner and outer heliopause. The range of plasma conditions covered by observations is enormous. However, the physical processes causing particle acceleration and wave-particle interaction and determining the particle distributions are still unknown. Currently two mechanisms, the so-called pumping mechanism (Fisk and Gloeckler, 2010) and merging/contracting island (Fermo, Drake & Swisdak, 2010) are discussed as promising models. In order to determine these individual processes, numerical models or theoretical considerations are needed. Hybrid simulations, which include all kinetic processes self-consistently on the ion level, are a very proven, powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. In the framework of this study we performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the influence of self-generated waves. We investigated the energization of ions downstream of interplanetary discontinuities and shocks and downstream of the termination shock, the turbulence, and growth rate of instabilities and compared the results with theoretical predictions. The simulations show that ions can be accelerated downstream of collisionless shocks by trapping of charged particles in coherent wave fronts.

  5. Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S. Meyer, P. Wurz, N. Thomas, V. Grimaudo, P. Moreno-García, P. Broekmann, A. Neubeck and M. Ivarsson, "CAMAM: A miniature laser ablation ionisation mass spectrometer and microscope-camera system for in situ investigation of the composition and morphology of extraterrestrial materials", Geostand. Geoanal. Res., 2014, 38, 441. [4] A. Riedo, M. Neuland, S. Meyer, M. Tulej and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. [5] A. Riedo, S. Meyer, B. Heredia, M. Neuland, A. Bieler, M. Tulej, I. Leya, M. Iakovleva, K. Mezger and P. Wurz, "Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces", Planet. Space Sci., 2013, 87, 1.

  6. One-dimension modeling on the parallel-plate ion extraction process based on a non-electron-equilibrium fluid model

    NASA Astrophysics Data System (ADS)

    Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team

    2017-10-01

    Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.

  7. Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: A decrement solution for nuclide and heavy metal disposal.

    PubMed

    Liu, Mingxue; Dong, Faqin; Zhang, Wei; Nie, Xiaoqin; Sun, Shiyong; Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege

    2016-08-15

    One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO4 existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  9. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; ...

    2016-02-16

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposuremore » process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.« less

  10. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.

  11. PROCESSES FOR SEPARATING AND RECOVERING CONSTITUENTS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Connick, R.E.; Gofman, J.W.; Pimentel, G.C.

    1959-11-10

    Processes are described for preparing plutonium, particularly processes of separating plutonium from uranium and fission products in neutron-irradiated uraniumcontaining matter. Specifically, plutonium solutions containing uranium, fission products and other impurities are contacted with reducing agents such as sulfur dioxide, uranous ion, hydroxyl ammonium chloride, hydrogen peroxide, and ferrous ion whereby the plutoninm is reduced to its fluoride-insoluble state. The reduced plutonium is then carried out of solution by precipitating niobic oxide therein. Uranium and certain fission products remain behind in the solution. Certain other fission products precipitate along with the plutonium. Subsequently, the plutonium and fission product precipitates are redissolved, and the solution is oxidized with oxidizing agents such as chlorine, peroxydisulfate ion in the presence of silver ion, permanganate ion, dichromate ion, ceric ion, and a bromate ion, whereby plutonium is oxidized to the fluoride-soluble state. The oxidized solution is once again treated with niobic oxide, thus precipitating the contamirant fission products along with the niobic oxide while the oxidized plutonium remains in solution. Plutonium is then recovered from the decontaminated solution.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, P.

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describemore » inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.« less

  13. Iron oxide nanoparticles in modern microbiology and biotechnology.

    PubMed

    Dinali, Ranmadugala; Ebrahiminezhad, Alireza; Manley-Harris, Merilyn; Ghasemi, Younes; Berenjian, Aydin

    2017-08-01

    Iron oxide nanoparticles (IONs) are one of the most developed and used nanomaterials in biotechnology and microbiology. These particles have unique physicochemical properties, which make them unique among nanomaterials. Therefore, many experiments have been conducted to develop facile synthesis methods for these particles and to make them biocompatible. Various effects of IONs on microorganisms have been reported. Depending on the microbial strain and nanoparticle (NP) concentration, IONs can stimulate or inhibit microbial growth. Due to the superparamagnetic properties of IONs, these NPs have used as nano sources of heat for hyperthermia in infected tissues. Antibiotic-loaded IONs are used for targeted delivery of chemical therapy direct to the infected organ and IONs have been used as a dirigible carrier for more potent antimicrobial nanomaterials such as silver nanoparticles. Magnetic NPs have been used for specific separation of pathogen and non-pathogen bacterial strains. Very recently, IONs were used as a novel tool for magnetic immobilization of microbial cells and process intensification in a biotechnological process. This review provides an overview of application of IONs in different microbial processes. Recommendations are also given for areas of future research.

  14. Microfabrication Method using a Combination of Local Ion Implantation and Magnetorheological Finishing

    NASA Astrophysics Data System (ADS)

    Han, Jin; Kim, Jong-Wook; Lee, Hiwon; Min, Byung-Kwon; Lee, Sang Jo

    2009-02-01

    A new microfabrication method that combines localized ion implantation and magnetorheological finishing is proposed. The proposed technique involves two steps. First, selected regions of a silicon wafer are irradiated with gallium ions by using a focused ion beam system. The mechanical properties of the irradiated regions are altered as a result of the ion implantation. Second, the wafer is processed by using a magnetorheological finishing method. During the finishing process, the regions not implanted with ion are preferentially removed. The material removal rate difference is utilized for microfabrication. The mechanisms of the proposed method are discussed, and applications are presented.

  15. Very Large Area/Volume Microwave ECR Plasma and Ion Source

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor); Patterson, Michael J. (Inventor)

    2009-01-01

    The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows.

  16. Process and apparatus for the production of BI-213 cations

    DOEpatents

    Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark

    1998-01-01

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.

  17. Process and apparatus for the production of Bi-213 cations

    DOEpatents

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  18. A closed loop process for recycling spent lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan

    2014-09-01

    As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.

  19. Correlation of process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target

    NASA Astrophysics Data System (ADS)

    Bundesmann, Carsten; Lautenschläge, Thomas; Spemann, Daniel; Finzel, Annemarie; Mensing, Michael; Frost, Frank

    2017-10-01

    The correlation between process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target was investigated. TiO2 films were grown under systematic variation of ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, polar emission angle) and characterized with respect to film thickness, growth rate, structural properties, surface topography, composition, optical properties, and mass density. Systematic variations of film properties with the scattering geometry, namely the scattering angle, have been revealed. There are also considerable differences in film properties when changing the process gas from Ar to Xe. Similar systematics were reported for TiO2 films grown by reactive ion beam sputter deposition from a metal target [C. Bundesmann et al., Appl. Surf. Sci. 421, 331 (2017)]. However, there are some deviations from the previously reported data, for instance, in growth rate, mass density and optical properties.

  20. Nanopatterning of optical surfaces during low-energy ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui

    2014-06-01

    Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.

  1. Ion Exchange Method - Diffusion Barrier Investigations

    NASA Astrophysics Data System (ADS)

    Pielak, G.; Szustakowski, M.; Kiezun, A.

    1990-01-01

    Ion exchange method is used to GRIN-rod lenses manufacturing. In this process the ion exchange occurs between bulk glass (rod) and a molten salt. It was find that diffusion barrier exists on a border of glass surface and molten salt. The investigations of this barrier show that it value varies with ion exchange time and process temperature. It was find that in the case when thalium glass rod was treated in KNO3, bath, the minimum of the potential after 24 h was in temperature of 407°C, after 48 h in 422°C, after 72 h in 438°C and so on. So there are the possibility to keep the minimum of diffusion barrier by changing the temperature of the process and then the effectiveness of ion exchange process is the most effective. The time needed to obtain suitable refractive index distribution in a process when temperature was linearly changed from 400°C to 460°C was shorter of about 30% compare with the process in which temperature was constant and equal 450°C.

  2. Adsorption and ion exchange: basic principles and their application in food processing.

    PubMed

    Kammerer, Judith; Carle, Reinhold; Kammerer, Dietmar R

    2011-01-12

    A comprehensive overview of adsorption and ion exchange technology applied for food and nutraceutical production purposes is given in the present paper. Emanating from these fields of application, the main adsorbent and ion-exchange resin materials, their historical development, industrial production, and the main parameters characterizing these sorbents are covered. Furthermore, adsorption and ion exchange processes are detailed, also providing profound insights into kinetics, thermodynamics, and equilibrium model assumptions. In addition, the most important industrial adsorber and ion exchange processes making use of vessels and columns are summarized. Finally, an extensive overview of selected industrial applications of these technologies is provided, which is divided into general applications, food production applications, and the recovery of valuable bio- and technofunctional compounds from the byproducts of plant food processing, which may be used as natural food additives or for their potential health-beneficial effects in functional or enriched foods and nutraceuticals.

  3. Atmospheric CH 4 and H 2 O Monitoring With Near-Infrared InGaAs Laser Diodes by the SDLA, a Balloonborne Spectrometer for Tropospheric and Stratospheric In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Durry, Georges; Megie, Gerard

    1999-12-01

    The Spectrom tre Diodes Laser Accordables (SDLA), a balloonborne spectrometer devoted to the in situ measurement of CH 4 and H 2 O in the atmosphere that uses commercial distributed-feedback InGaAs laser diodes in combination with differential absorption spectroscopy, is described. Absorption spectra of CH 4 (in the 1.653- m region) and H 2 O (in the 1.393- m region) are simultaneously sampled at 1-s intervals by coupling with optical fibers of two near-infrared laser diodes to a Herriott multipass cell open to the atmosphere. Spectra of methane and water vapor in an altitude range of 1 to 31 km recorded during the recent balloon flights of the SDLA are presented. Mixing ratios with a precision error ranging from 5% to 10% are retrieved from the atmospheric spectra by a nonlinear least-squares fit to the spectral line shape in conjunction with in situ simultaneous pressure and temperature measurements.

  4. Analyse de plomb dans les peintures

    NASA Astrophysics Data System (ADS)

    Broll, N.; Frezouls, J.-M.

    2002-07-01

    The analysis of lead in paints was previously used for the characterisation of pigments. In this way, the analysis is able to specify the century of the painting of a work of art. Recently this technique was also used to determine the toxicity of lead paints in building. This paper compared the result of several X-ray fluorescence spectrometer, either wave length/energy dispersion laboratory apparatus or X-ray microtube/radioactive source portable equipment's. L'analyse du plomb dans les peintures a jusqu'à présent été appliquée essentiellement pour caractériser les pigments lors de leur fabrication et pour identifier des rouvres d'art. Récemment cette technique est également utilisée pour déterminer la toxicité des peintures au plomb dans les bâtiments. Nous avons comparé les performances de plusieurs spectromètres de fluorescence X, soit de laboratoire à dispersion en longueur d'onde ou à dispersion en énergie (avec tube à rayonsX), soit portable avec source radioactive ou tube à rayons X.

  5. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    PubMed

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  6. Solar Ion Processing of Itokawa Grains: Reconciling Model Predictions with Sample Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, Roy; Keller, L. P.

    2014-01-01

    Analytical TEM observations of Itokawa grains reported to date show complex solar wind ion processing effects in the outer 30-100 nm of pyroxene and olivine grains. The effects include loss of long-range structural order, formation of isolated interval cavities or "bubbles", and other nanoscale compositional/microstructural variations. None of the effects so far described have, however, included complete ion-induced amorphization. To link the array of observed relationships to grain surface exposure times, we have adapted our previous numerical model for progressive solar ion processing effects in lunar regolith grains to the Itokawa samples. The model uses SRIM ion collision damage and implantation calculations within a framework of a constant-deposited-energy model for amorphization. Inputs include experimentally-measured amorphization fluences, a Pi steradian variable ion incidence geometry required for a rotating asteroid, and a numerical flux-versus-velocity solar wind spectrum.

  7. Phage based green chemistry for gold ion reduction and gold retrieval.

    PubMed

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  8. [Detection of the lethal process in plankton noctiluca by means of a forbidden transition of ESR of Mn2+ ion].

    PubMed

    Kamenev, S E; Kopvillem, U Kh; Pasynkov, A S; Sharipov, R Z

    1981-01-01

    A forbidden ESR line of Mn2+ that is connected with the penetration of Mn into the plancton organism and binding it to a marcomolecule is selected from the experiment. A method for saturating the plancton organism with paramagnetic ions is proposed. It is shown that the constant of the axial electric field in the spin hamiltonian of Mn2+ ion described the dynamics of a selforganizing system. It is tested that the lethal process in the plancton with paramagnetic ion enrichment originated from boson avalanche. Experiments are performed with plancton noctiluca which illustrate the occurrence of avalancheline lethal process in the case of paramagnetic ion enrichment with limiting concentration. The meaning of these results for the problems of oceanology and pollution-ocean inhabitants interaction in the case of paramagnetic ions is discussed.

  9. Ion detection device and method with compressing ion-beam shutter

    DOEpatents

    Sperline, Roger P [Tucson, AZ

    2009-05-26

    An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.

  10. Energetic ion losses caused by magnetohydrodynamic activity resonant and non-resonant with energetic ions in Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Spong, Donald A.; Osakabe, Masaki; Yamamoto, Satoshi; the LHD Experiment Group

    2014-09-01

    Experiments to reveal energetic ion dynamics associated with magnetohydrodynamic activity are ongoing in the Large Helical Device (LHD). Interactions between beam-driven toroidal Alfvén eigenmodes (TAEs) and energetic ions have been investigated. Energetic ion losses induced by beam-driven burst TAEs have been observed using a scintillator-based lost fast-ion probe (SLIP) in neutral beam-heated high β plasmas. The loss flux of co-going beam ions increases as the TAE amplitude increases. In addition to this, the expulsion of beam ions associated with edge-localized modes (ELMs) has been also recognized in LHD. The SLIP has indicated that beam ions having co-going and barely co-going orbits are affected by ELMs. The relation between ELM amplitude and ELM-induced loss has a dispersed structure. To understand the energetic ion loss process, a numerical simulation based on an orbit-following model, DELTA5D, that incorporates magnetic fluctuations is performed. The calculation result shows that energetic ions confined in the interior region are lost due to TAE instability, with a diffusive process characterizing their loss. For the ELM, energetic ions existing near the confinement/loss boundary are lost through a convective process. We found that the ELM-induced loss flux measured by SLIP changes with the ELM phase. This relation between the ELM amplitude and measured ELM-induced loss results in a more dispersed loss structure.

  11. Repair of DNA damage induced by accelerated heavy ions--a mini review.

    PubMed

    Okayasu, Ryuichi

    2012-03-01

    Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents. Copyright © 2011 UICC.

  12. Validity of Binary Collision Theory in Ion-Surface Interactions at 50-500 eV

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Giapis, Kostas

    2003-10-01

    Ion-surface interactions in the 50-500 eV regime have become increasingly important in plasma processing. Concerns exist in literature about the validity of the binary collision approximation (BCA) at low impact energies because peculiarities are frequently seen in the scattered ion energy distribution. Sub-surface processes, multiple bouncing, and super-elastic phenomena have all been hypothesized. This talk will explore the usefulness of BCA theory in predicting energy transfer during ion-surface collisions in the 50-500 eV energy range. Well-defined beams of rare gas ions (Ne, Ar, Kr) were scattered off semiconductor (Si, Ge) and metal surfaces (Ag, Au, Ni, Nb) to measure energy loss upon impact. The ion beams were produced from a floating ICP reactor coupled to a small accelerator beamline for transport and mass filtering. Exit channel energies were measured using a 90 gegree electrostatic sector coupled to a quadrupole mass filter with single ion detection capability. Although the BCA presents an over-simplified picture of the collision process, our results demonstrate that it is remarkably accurate in the low energy range for a variety of projectile-target combinations. In addition, reactive ion scattering of O2+ and O+ on inert and reactive surfaces (Au vs. Ag, Pt) suggests there may be rather high energy threshold processes which determine exit channel selectivity.

  13. Relativistic Collisions of Highly-Charged Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu, Dorin; Belkacem, Ali

    1998-11-19

    The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less

  14. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1997-01-01

    A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  15. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  16. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    PubMed

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  17. Recent developments on ion-exchange membranes and electro-membrane processes.

    PubMed

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  18. Ion-induced particle desorption in time-of-flight medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Lohmann, S.; Primetzhofer, D.

    2018-05-01

    Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.

  19. Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei

    2015-12-15

    Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less

  20. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  1. Ion/Neutral, Ion/Electron, Ion/Photon, and Ion/Ion Interactions in Tandem Mass Spectrometry: Do we need them all? Are they enough?

    PubMed Central

    McLuckey, Scott A.; Mentinova, Marija

    2011-01-01

    A range of strategies and tools has been developed to facilitate the determination of primary structures of analyte molecules of interest via tandem mass spectrometry (MS/MS). The two main factors that determine the primary structural information present in an MS/MS spectrum are the type of ion generated from the analyte molecule and the dissociation method. The ion-type subjected to dissociation is determined by the ionization method/conditions and ion transformation processes that might take place after initial gas-phase ion formation. Furthermore, the range of analyte-related ion types can be expanded via derivatization reactions prior to mass spectrometry. Dissociation methods include those that simply alter the population of internal states of the mass-selected ion (i.e., activation methods like collision-induced dissociation) as well as processes that rely on transformation of the ion-type prior to dissociation (e.g., electron capture dissociation). A variety of ionic interactions has been studied for the purpose of ion dissociation and ion transformation that include ion/neutral, ion/photon, ion/electron, and ion/ion interactions. A wide range of phenomena has been observed, many of which have been explored/developed as means for structural analysis. The techniques arising from these phenomena are discussed within the context of the elements of structure determination in tandem mass spectrometry, viz., ion-type definition and dissociation. Unique aspects of the various ion interactions are emphasized along with any barriers to widespread implementation. PMID:21472539

  2. Product ion isotopologue pattern: A tool to improve the reliability of elemental composition elucidations of unknown compounds in complex matrices.

    PubMed

    Kaufmann, A; Walker, S; Mol, G

    2016-04-15

    Elucidation of the elemental compositions of unknown compounds (e.g., in metabolomics) generally relies on the availability of accurate masses and isotopic ratios. This study focuses on the information provided by the abundance ratio within a product ion pair (monoisotopic versus the first isotopic peak) when isolating and fragmenting the first isotopic ion (first isotopic mass spectrum) of the precursor. This process relies on the capability of the quadrupole within the Q Orbitrap instrument to isolate a very narrow mass window. Selecting only the first isotopic peak (first isotopic mass spectrum) leads to the observation of a unique product ion pair. The lighter ion within such an isotopologue pair is monoisotopic, while the heavier ion contains a single carbon isotope. The observed abundance ratio is governed by the percentage of carbon atoms lost during the fragmentation and can be described by a hypergeometric distribution. The observed carbon isotopologue abundance ratio (product ion isotopologue pattern) gives reliable information regarding the percentage of carbon atoms lost in the fragmentation process. It therefore facilitates the elucidation of the involved precursor and product ions. Unlike conventional isotopic abundances, the product ion isotopologue pattern is hardly affected by isobaric interferences. Furthermore, the appearance of these pairs greatly aids in cleaning up a 'matrix-contaminated' product ion spectrum. The product ion isotopologue pattern is a valuable tool for structural elucidation. It increases confidence in results and permits structural elucidations for heavier ions. This tool is also very useful in elucidating the elemental composition of product ions. Such information is highly valued in the field of multi-residue analysis, where the accurate mass of product ions is required for the confirmation process. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Space Plasma Ion Processing of Ilmenite in the Lunar Soil: Insights from In-Situ TEM Ion Irradiation Experiments

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Keller, L. P.

    2007-01-01

    Space weathering on the moon and asteroids results largely from the alteration of the outer surfaces of regolith grains by the combined effects of solar ion irradiation and other processes that include deposition of impact or sputter-derived vapors. Although no longer considered the sole driver of space weathering, solar ion irradiation remains a key part of the space weathering puzzle, and quantitative data on its effects on regolith minerals are still in short supply. For the lunar regolith, previous transmission electron microscope (TEM) studies performed by ourselves and others have uncovered altered rims on ilmenite (FeTiO3) grains that point to this phase as a unique "witness plate" for unraveling nanoscale space weathering processes. Most notably, the radiation processed portions of these ilmenite rims consistently have a crystalline structure, in contrast to radiation damaged rims on regolith silicates that are characteristically amorphous. While this has tended to support informal designation of ilmenite as a "radiation resistant" regolith mineral, there are to date no experimental data that directly and quantitatively compare ilmenite s response to ion radiation relative to lunar silicates. Such data are needed because the radiation processed rims on ilmenite grains, although crystalline, are microstructurally and chemically complex, and exhibit changes linked to the formation of nanophase Fe metal, a key space weathering process. We report here the first ion radiation processing study of ilmenite performed by in-situ means using the Intermediate Voltage Electron Microscope- Tandem Irradiation facility (IVEM-Tandem) at Argonne National Laboratory. The capability of this facility for performing real time TEM observations of samples concurrent with ion irradiation makes it uniquely suited for studying the dose-dependence of amorphization and other changes in irradiated samples.

  4. Characterization and evaluation of amorphous carbon thin film (ACTF) for sodium ion adsorption

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Mousa, Mahmoud Ahmed; Moghny, Th. Abdel; Awadallah, Ahmed E.

    2017-12-01

    The removal of sodium ions from aqueous solutions by adsorption onto amorphous carbon thin film (ACTF) has been studied in batch mode. In this work, the ACTF as new adsorbent was synthesized based on rice straw, then its structure and properties were taken into consideration to study its ability to adsorb sodium ions from synthetic water. The influence of pH, contact time, and temperature of the ion adsorption on ACTF was also studied using batch tests. We found that the contact time of sodium adsorption and its isothermal adsorption studied were described by pseudo-second-order kinetic model and Langmuir isotherm, respectively. Our results indicated that the adsorption of sodium ions on ACTF become be stronger and depends on pH, furthermore, the maximum adsorption capacities of sodium on ACTF recorded 107, 120 and 135 mg g-1 at 35, 45, and 65 °C. The thermodynamic parameters explain that the adsorption of sodium ions on ACTF is a spontaneous process and endothermic reaction. According to adsorption studies, we found that the ACTF can be used effectively for ion chromatography or desalinate sodium ion using ion exchange process in the hybrid desalination process with insignificant loss of adsorption capacity. However, the ACTF has better properties than any other carbon materials obtained from an agricultural byproduct.

  5. Sources and Losses of Ring Current Ions

    NASA Technical Reports Server (NTRS)

    Chen, Sheng-Hsien; Fok, Mei-Ching H.; Angeloupoulos, Vassilis

    2010-01-01

    During geomagnetic quiet times, in-situ measurements of ring current energetic ions (few to few tens of keVs) from THEMIS spacecraft often exhibit multiple ion populations at discrete energies that extend from the inner magnetosphere to the magnetopause at dayside or plasma sheet at nightside. During geomagnetic storm times, the levels of fluxes as well as the mean energies of these ions elevated dramatically and the more smooth distributions in energies and distances during quiet times are disrupted into clusters of ion populations with more confined spatial extends. This reveals local plasma heating processes that might have come into play. Several processes have been proposed. Magnetotail dipolarization, sudden enhancement of field-aligned current, local current disruptions, and plasma waves are possible mechanisms to heat the ions locally as well as strong convections of energetic ions directly from the magnetotail due to reconnections. We will examine two geomagnetic storms on October 11, 2008 and July 22, 2009 to reveal possible heating mechanisms. We will analyze in-situ plasma and magnetic field measurements from THEMIS, GOES, and DMSP for the events to study the ion pitch angle distributions and magnetic field perturbations in the auroral ionosphere and inner magnetosphere where the plasma heating processes occur.

  6. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  7. Estimates of Ionospheric Transport and Ion Loss at Mars

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Hamil, O.; Houston, S.; Bougher, S.; Ma, Y.; Brain, D.; Ledvina, S.

    2017-10-01

    Ion loss from the topside ionosphere of Mars associated with the solar wind interaction makes an important contribution to the loss of volatiles from this planet. Data from NASA's Mars Atmosphere and Volatile Evolution mission combined with theoretical modeling are now helping us to understand the processes involved in the ion loss process. Given the complexity of the solar wind interaction, motivation exists for considering a simple approach to this problem and for understanding how the loss rates might scale with solar wind conditions and solar extreme ultraviolet irradiance. This paper reviews the processes involved in the ionospheric dynamics. Simple analytical and semiempirical expressions for ion flow speeds and ion loss are derived. In agreement with more sophisticated models and with purely empirical studies, it is found that the oxygen loss rate from ion transport is about 5% (i.e., global O ion loss rate of Qion ≈ 4 × 1024 s-1) of the total oxygen loss rate. The ion loss is found to approximately scale as the square root of the solar ionizing photon flux and also as the square root of the solar wind dynamic pressure. Typical ion flow speeds are found to be about 1 km/s in the topside ionosphere near an altitude of 300 km on the dayside. Not surprisingly, the plasma flow speed is found to increase with altitude due to the decreasing ion-neutral collision frequency.

  8. ION INJECTION AT QUASI-PARALLEL SHOCKS SEEN BY THE CLUSTER SPACECRAFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johlander, A.; Vaivads, A.; Khotyaintsev, Yu. V.

    2016-01-20

    Collisionless shocks in space plasma are known to be capable of accelerating ions to very high energies through diffusive shock acceleration (DSA). This process requires an injection of suprathermal ions, but the mechanisms producing such a suprathermal ion seed population are still not fully understood. We study acceleration of solar wind ions resulting from reflection off short large-amplitude magnetic structures (SLAMSs) in the quasi-parallel bow shock of Earth using in situ data from the four Cluster spacecraft. Nearly specularly reflected solar wind ions are observed just upstream of a SLAMS. The reflected ions are undergoing shock drift acceleration (SDA) andmore » obtain energies higher than the solar wind energy upstream of the SLAMS. Our test particle simulations show that solar wind ions with lower energy are more likely to be reflected off the SLAMS, while high-energy ions pass through the SLAMS, which is consistent with the observations. The process of SDA at SLAMSs can provide an effective way of accelerating solar wind ions to suprathermal energies. Therefore, this could be a mechanism of ion injection into DSA in astrophysical plasmas.« less

  9. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuschel, Thomas; Keudell, Achim von

    2010-05-15

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with thismore » microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.« less

  10. Scalable ion-photon quantum interface based on integrated diffractive mirrors

    NASA Astrophysics Data System (ADS)

    Ghadimi, Moji; Blūms, Valdis; Norton, Benjamin G.; Fisher, Paul M.; Connell, Steven C.; Amini, Jason M.; Volin, Curtis; Hayden, Harley; Pai, Chien-Shing; Kielpinski, David; Lobino, Mirko; Streed, Erik W.

    2017-12-01

    Quantum networking links quantum processors through remote entanglement for distributed quantum information processing and secure long-range communication. Trapped ions are a leading quantum information processing platform, having demonstrated universal small-scale processors and roadmaps for large-scale implementation. Overall rates of ion-photon entanglement generation, essential for remote trapped ion entanglement, are limited by coupling efficiency into single mode fibers and scaling to many ions. Here, we show a microfabricated trap with integrated diffractive mirrors that couples 4.1(6)% of the fluorescence from a 174Yb+ ion into a single mode fiber, nearly triple the demonstrated bulk optics efficiency. The integrated optic collects 5.8(8)% of the π transition fluorescence, images the ion with sub-wavelength resolution, and couples 71(5)% of the collected light into the fiber. Our technology is suitable for entangling multiple ions in parallel and overcomes mode quality limitations of existing integrated optical interconnects.

  11. Descriptors for ions and ion-pairs for use in linear free energy relationships.

    PubMed

    Abraham, Michael H; Acree, William E

    2016-01-22

    The determination of Abraham descriptors for single ions is reviewed, and equations are given for the partition of single ions from water to a number of solvents. These ions include permanent anions and cations and ionic species such as carboxylic acid anions, phenoxide anions and protonated base cations. Descriptors for a large number of ions and ionic species are listed, and equations for the prediction of Abraham descriptors for ionic species are given. The application of descriptors for ions and ionic species to physicochemical processes is given; these are to water-solvent partitions, HPLC retention data, immobilised artificial membranes, the Finkelstein reaction and diffusion in water. Applications to biological processes include brain permeation, microsomal degradation of drugs, skin permeation and human intestinal absorption. The review concludes with a section on the determination of descriptors for ion-pairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Numerical analysis of effects of ion-neutral collision processes on RF ICP discharge

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Mattei, S.; Lettry, J.; Hatayama, A.

    2018-01-01

    The discharge process of a radiofrequency (RF) inductively coupled plasma (ICP) has been modeled by an ElectroMagnetic Particle-in-Cell Monte Carlo Collision method (EM PIC-MCC). Although the simulation had been performed by our previous model to investigate the discharge mode transition of the RF ICP from a kinetic point of view, the model neglected the collision processes of ions (H+ and H2+) with neutral particles. In this study, the RF ICP discharge process has been investigated by the latest version of the model which takes the ion-neutral collision processes into account. The basic characteristics of the discharge mode transition provided by the previous model have been verified by the comparison between the previous and present results. As for the H-mode discharge regime, on the other hand, the ion-neutral collisions play an important role in evaluating the growth of the plasma. Also, the effect of the ion-neutral collisions on the kinetic feature of the plasma has been investigated, which has highlighted the importance of kinetic perspective for modeling the RF ICP discharge.

  13. Sharpening of field emitter tips using high-energy ions

    DOEpatents

    Musket, Ronald G.

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  14. Advanced electric propulsion research, 1991

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeffery M.

    1992-01-01

    A simple model for the production of ions that impinge on and sputter erode the accelerator grid of an ion thruster is presented. Charge-exchange and electron-impact ion production processes are considered, but initial experimental results suggest the charge-exchange process dominates. Additional experimental results show the effects of changes in thruster operating conditions on the length of the region from which these ions are drawn upstream into the grid. Results which show erosion patterns and indicate molybdenum accelerator grids erode more rapidly than graphite ones are also presented.

  15. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  16. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    NASA Technical Reports Server (NTRS)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; hide

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In the Appendix, referenced computer simulations using existing sputtering data are reviewed.

  17. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-07

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  18. Ion traps fabricated in a CMOS foundry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size.more » This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.« less

  19. Energy transfer processes between Tm(3+) and Ho(3+) in LiYF4. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Oezen, Goenuel

    1991-01-01

    The spectroscopic properties of the crystal LiYF4 doped with Thulium (Tm) and Holmium (Ho) ions are studied. The basic processes are discussed that regulate the transfer of energy between these two ions in this crystal. In this system Tm is considered the donor ion and the Ho the acceptor ion. Spectral data were obtained on three samples available: LiYF4:Tm(3+) (0.5 percent), LiYF4:Ho(3+) (1 percent), and LiYF4:Tm(3+) (5 percent), Ho(3+) (0.2 percent). Spectral data, which include absorption, luminescence, excitation, and the response to pulsed excitation in a wide range of temperatures, allowed to look at the energy transfer processes by considering the kinetic evolution of the emission of the two ions (donor and acceptor) involved in the process and the basic spectroscopic properties related to them. This inclusive approach has led to the validation of the physical model.

  20. Influence of Ionization Source Conditions on the Gas-Phase Protomer Distribution of Anilinium and Related Cations

    NASA Astrophysics Data System (ADS)

    Attygalle, Athula B.; Xia, Hanxue; Pavlov, Julius

    2017-08-01

    The gas-phase-ion generation technique and specific ion-source settings of a mass spectrometer influence heavily the protonation processes of molecules and the abundance ratio of the generated protomers. Hitherto that has been attributed primarily to the nature of the solvent and the pH. By utilizing electrospray ionization and ion-mobility mass spectrometry (IM-MS), we demonstrate, even in the seemingly trivial case of protonated aniline, that the protomer ratio strongly depends on the source conditions. Under low in-source ion activation, nearly 100% of the N-protomer of aniline is produced, and it can be subsequently converted to the C-protomer by collisional activation effected by increasing the electrical potential difference between the entrance and exit orifices of the first vacuum region. This activation and transformation process takes place even before the ion is mass-selected and subjected to IM separation. Despite the apparent simplicity of the problem, the preferred protonation site of aniline in the gas phase—the amino group or the aromatic ring—has been a topic of controversy. Our results not only provide unambiguous evidence that ring- and nitrogen-protonated aniline can coexist and be interconverted in the gas phase, but also that the ratio of the protomers depends on the internal energy of the original ion. There are many dynamic ion-transformation and fragmentation processes that take place in the different physical compartments of a Synapt G2 HDMS instrument. Such processes can dramatically change the very identity even of small ions, and therefore should be taken into account when interpreting product-ion mass spectra.

  1. Ion-plasma protective coatings for gas-turbine engine blades

    NASA Astrophysics Data System (ADS)

    Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.

    2007-10-01

    Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).

  2. Study of the storm time fluxes of heavy ions

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The characteristics of the storm time ring current ions in the energy range of 0.5 to 16 keV were investigated. Data were processed and analyzed from the energetic ion mass spectrometer aboard the S3-3 satellite. Results are used for planning and operating the ion mass spectrometer experiment on the ISEE spacecraft, for selecting and processing the ISEE ion data, and for planning and conducting coordinated satellite experiments in support of the International Magnetospheric Study (IMS). It is established from the S3-3 ion data that relatively large fluxes of energetic (keV) 0(+) and H(+) ions are frequently flowing upward from the ionosphere along magnetic field lines in the polar auroral regions. Also, from investigations with the same instrument during the main phase of three moderate (D sub ST approximately 100) magnetic storms, it is found that the number density of 0(+) ions in the ring current was comparable to H(+) ion density the range 0.5 to 15 keV.

  3. The development of data acquisition and processing application system for RF ion source

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Wang, Xiaoying; Hu, Chundong; Jiang, Caichao; Xie, Yahong; Zhao, Yuanzhe

    2017-07-01

    As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi-threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.

  4. Motion of negative ion plasma near the boundary with electron−ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Yu. V., E-mail: medve@mail.ru

    2017-01-15

    Processes occurring near the boundary between three-component plasma with negative ions and two-component electron−ion plasma are considered. The excited waves and instability are described. Stability condition at the boundary is determined.

  5. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1997-02-18

    A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.

  6. Development of pulsed processes for the manufacture of solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.

    1979-01-01

    Low-energy ion implantation processes for the automated production of silicon solar cells were investigated. Phosphorus ions at an energy of 10 keV and dose of 2 x 10 to the 15th power/sq cm were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10 to the 15th power were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100 mA, automated implanter with a production capacity of 100 MW sub e/sq cm per year. Two process sequences were developed which employ ion implantation and furnace or pulse annealing. A computer program was used to determine costs for junction formation by ion implantation and various furnace annealing cycles to demonstrate cost effectiveness of these methods.

  7. Advances and directions of ion nitriding/carburizing

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1989-01-01

    Ion nitriding and carburizing are plasma activated thermodynamic processes for the production of case hardened surface layers not only for ferrous materials, but also for an increasing number of nonferrous metals. When the treatment variables are properly controlled, the use of nitrogenous or carbonaceous glow discharge medium offers great flexibility in tailoring surface/near-surface properties independently of the bulk properties. The ion nitriding process has reached a high level of maturity and has gained wide industrial acceptance, while the more recently introduced ion carburizing process is rapidly gaining industrial acceptance. The current status of plasma mass transfer mechanisms into the surface regarding the formation of compound and diffusion layers in ion nitriding and carbon build-up ion carburizing is reviewed. In addition, the recent developments in design and construction of advanced equipment for obtaining optimized and controlled case/core properties is summarized. Also, new developments and trends such as duplex plasma treatments and alternatives to dc diode nitriding are highlighted.

  8. An infrared high resolution silicon immersion grating spectrometer for airborne and space missions

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David

    2014-08-01

    Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.

  9. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.

    PubMed

    Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne

    2011-05-28

    Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011

  10. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  11. One-step separation by thermal treatment and cobalt acid-leaching from spent lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mu, Deying

    2017-10-01

    Lithium-ion batteries are extensively used in portable storage devices and automobiles, therefore the environment and resource problems caused by spent lithium ion batteries have become increasingly severe. This paper focuses on the recovery process of spent lithium cobalt oxide active material and comes up with reasonable processes and the best conditions for cobalt leaching ultimately.

  12. Laser-Induced Fluorescence Helps Diagnose Plasma Processes

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Mattosian, J. N.; Gaeta, C. J.; Turley, R. S.; Williams, J. D.; Williamson, W. S.

    1994-01-01

    Technique developed to provide in situ monitoring of rates of ion sputter erosion of accelerator electrodes in ion thrusters also used for ground-based applications to monitor, calibrate, and otherwise diagnose plasma processes in fabrication of electronic and optical devices. Involves use of laser-induced-fluorescence measurements, which provide information on rates of ion etching, inferred rates of sputter deposition, and concentrations of contaminants.

  13. Development of Pulsed Processes for the Manufacture of Solar Cells

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development status of the process based upon ion implantation for the introduction of junctions and back surface fields is described. A process sequence is presented employing ion implantation and pulse processing. Efforts to improve throughout and descrease process element costs for furnace annealing are described. Design studies for a modular 3,000 wafer per hour pulse processor are discussed.

  14. Investigation of ion-beam machining methods for replicated x-ray optics

    NASA Technical Reports Server (NTRS)

    Drueding, Thomas W.

    1996-01-01

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.

  15. Ion beam applications research. A summary of Lewis Research Center Programs

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1981-01-01

    A summary of the ion beam applications research (IBAR) program organized to enable the development of materials, products, and processes through the nonpropulsive application of ion thruster technology is given. Specific application efforts utilizing ion beam sputter etching, deposition, and texturing are discussed as well as ion source and component technology applications.

  16. A 5 x 40 cm rectangular-beam multipole ion source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Haynes, C. M.

    1981-01-01

    A rectangular ion source particularly suited for the continuous sputter processing of materials over a wide area is discussed. A multipole magnetic field configuration was used to design an ion source with a 5 x 40 cm beam area, while a three-grid ion optics system was used to maximize ion current density at the design ion energy of 500 eV. An average extracted current density of about 4 mA/sq cm could be obtained from 500 eV Ar ions. The difference between the experimental performance and the design value of 6 mA/sq cm is attributed to grid misalignment due to thermal expansion. The discharge losses at typical operating conditions ranged from about 600 to 1000 eV/ion, in reasonable agreement with the design value of 800 eV/ion. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source was also studied, and the most uniform coverage was found to be obtainable with a 0 to 2 cm overlap.

  17. Ion plating seals microcracks or porous metal components

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buckley, D. H.; Brainard, W. A.

    1972-01-01

    Description of ion plating process is given. Advantage of this process is that any plating metal or alloy can be selected, whereas, for conventional welding, material selection is limited by compatability.

  18. Understanding the conductive channel evolution in Na:WO3-x-based planar devices

    NASA Astrophysics Data System (ADS)

    Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias

    2015-03-01

    An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07545e

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, Lothar, E-mail: l.bischoff@hzdr.de; Mazarov, Paul, E-mail: Paul.Mazarov@raith.de; Bruchhaus, Lars, E-mail: Lars.Bruchhaus@raith.de

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionallymore » into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.« less

  20. Effect of Temperature on the Kinetics of Sorption of Co2+ and Ni2+ Ions by a Sorbent Based on an Inositol Hexaphosphoric Acid Derivative

    NASA Astrophysics Data System (ADS)

    Yarusova, S. B.; Makarenko, N. V.; Gordienko, P. S.; Karpenko, M. A.; Novikova, E. S.

    2018-03-01

    Data on the effect temperature has on the kinetics of the removal of Co2+ and Ni2+ ions under static conditions by a sorbent based on a derivative of phytic acid fabricated from rice production waste are presented. It is shown that when the temperature is raised from 20 to 60°C, the sorption capacity of the sorbent based on phytic acid increases over the period of sorption and within 180 min reaches values of 1.4 mmol g-1 for Co2+ ions and 1.3 mmol g-1 for Ni2+ ions. It is established that for the investigated range of temperatures, order n of the sorption of Co2+ and Ni2+ ions is <1, which characterizes the reactions accompanied by diffusion processes. It is found that the process of removal of Co2+ and Ni2+ ions is characterized with low activation energy (20.74 kJ mol-1 for Co2+ ions and 14.2 kJ mol-1 for Ni2+ ions). It is also demonstrated that the sorption process in the considered time frame is best described by a kinetic model of a pseudo-second order, as is indicated by respective correlation coefficients.

  1. Atomic Precision Plasma Processing - Modeling Investigations

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2016-09-01

    Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.

  2. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    PubMed

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  3. High current H2(+) and H3(+) beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source.

    PubMed

    Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  4. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  5. Continuous separation of copper ions from a mixture of heavy metal ions using a three-zone carousel process packed with metal ion-imprinted polymer.

    PubMed

    Jo, Se-Hee; Lee, See-Young; Park, Kyeong-Mok; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2010-11-05

    In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Limitations on the upconversion of ion sound to Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Papadopoulos, K.

    1982-01-01

    The weak turbulence theory of Tsytovich, Stenflo and Wilhelmsson (1981) for evaluation of the nonlinear transfer of ion acoustic waves to Langmuir waves is shown to be limited in its region of validity to the level of ion acoustic waves. It is also demonstrated that, in applying the upconversion of ion sound to Langmuir waves for electron acceleration, nonlinear scattering should be self-consistently included, with a suppression of the upconversion process resulting. The impossibility of accelerating electrons by such a process for any reasonable physical system is thereby reaffirmed.

  7. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  8. Phase locked multiple rings in the radiation pressure ion acceleration process

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Hua, J. F.; Pai, C.-H.; Li, F.; Wu, Y. P.; Lu, W.; Zhang, C. J.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2018-04-01

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. the interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. A theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.

  9. Unique, Non-Earthlike, Meteoritic Ion Behavior in Upper Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Benna, M.; Plane, J. M. C.; Collinson, G. A.; Mahaffy, P. R.; Jakosky, B. M.

    2017-01-01

    Abstract Interplanetary dust particles have long been expected to produce permanent ionospheric metal ion layers at Mars, as on Earth, but the two environments are so different that uncertainty existed as to whether terrestrial-established understanding would apply to Mars. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of the continuous presence of Na+, Mg+, and Fe+ at Mars and indeed revealed non-Earthlike features/processes. There is no separation of the light Mg+ and the heavy Fe+ with increasing altitude as expected for gravity control. The metal ions are well-mixed with the neutral atmosphere at altitudes where no mixing process is expected. Isolated metal ion layers mimicking Earths sporadic E layers occur despite the lack of a strong magnetic field as required at Earth. Further, the metal ion distributions are coherent enough to always show atmospheric gravity wave signatures. All features and processes are unique to Mars.

  10. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE PAGES

    Wan, Y.; Hua, J. F.; Pai, C. -H.; ...

    2018-03-05

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  11. Studies for determining thermal ion extraction potential for aluminium plasma generated by electron beam evaporator

    NASA Astrophysics Data System (ADS)

    Dileep Kumar, V.; Barnwal, Tripti A.; Mukherjee, Jaya; Gantayet, L. M.

    2010-02-01

    For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.

  12. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y.; Hua, J. F.; Pai, C. -H.

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  13. Distribution of escaping ions produced by non-specular reflection at the stationary quasi-perpendicular shock front

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Liverts, M.; Balikhin, M. A.

    2008-05-01

    Field-aligned and gyrophase bunched ion beams are observed in the foreshock of the Earth bow shock. One of the mechanisms proposed for their production is non-specular reflection at the shock front. We study the distributions which are formed at the stationary quasi-perpendicular shock front within the same process which is responsible for the generation of reflected ions and transmitted gyrating ions. The test particle motion analysis in a model shock allows one to identify the parameters which control the efficiency of the process and the features of the escaping ion distribution. These parameters are: the angle between the shock normal and the upstream magnetic field, the ratio of the ion thermal velocity to the flow velocity upstream, and the cross-shock potential. A typical distribution of escaping ions exhibits a bimodal pitch angle distribution (in the plasma rest frame).

  14. Development of pulsed processes for the manufacture of solar cells. Quarterly progress report No. 3, April--July 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-07-01

    Third quarter results under a program to develop ion implantation and specialized, associated processes necessary to achieve automated production of silicon solar cells are described. An ion implantation facility development for solar cell production is described, and a design for an automated production implanter is presented. Also, solar cell development efforts using combined ion implantation and pulsed energy techniques are discussed. Cell performance comparisons have also been made in which junctions and back surface fields were prepared by diffusion and ion implantation. A model is presented to explain the mechanism of ion implantation damage annealing using pulsed energy sources. Functionalmore » requirements have been determined for a pulsed electron beam processor for annealing ion implantation damage at a rate compatible with a 100 milliampere ion implanter. These rates result in a throughput of 100 megawatts of solar cell product per year.« less

  15. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  16. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.

    PubMed

    Zhang, Tao; He, Yaqun; Wang, Fangfang; Ge, Linhan; Zhu, Xiangnan; Li, Hong

    2014-06-01

    Mineral processing operation is a critical step in any recycling process to realize liberation, separation and concentration of the target parts. Developing effective recycling methods to recover all the valuable parts from spent lithium-ion batteries is in great necessity. The aim of this study is to carefully undertake chemical and process mineralogical characterizations of spent lithium-ion batteries by coupling several analytical techniques to provide basic information for the researches on effective mechanical crushing and separation methods in recycling process. The results show that the grade of Co, Cu and Al is fairly high in spent lithium ion batteries and up to 17.62 wt.%, 7.17 wt.% and 21.60 wt.%. Spent lithium-ion batteries have good selective crushing property, the crushed products could be divided into three parts, they are Al-enriched fraction (+2 mm), Cu and Al-enriched fraction (-2+0.25 mm) and Co and graphite-enriched fraction (-0.25 mm). The mineral phase and chemical state analysis reveal the electrode materials recovered from -0.25 mm size fraction keep the original crystal forms and chemical states in lithium-ion batteries, but the surface of the powders has been coated by a certain kind of hydrocarbon. Based on these results a flowsheet to recycle spent LiBs is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fundamentals of Focused Ion Beam Nanostructural Processing: Below, At, and Above the Surface

    DOE PAGES

    MoberlyChan, Warren J.; Adams, David P.; Aziz, Michael J.; ...

    2007-05-01

    This paper considers the fundamentals of what happens in a solid when it is impacted by a medium-energy gallium ion. The study of the ion/sample interaction at the nanometer scale is applicable to most focused ion beam (FIB)–based work even if the FIB/sample interaction is only a step in the process, for example, micromachining or microelectronics device processing. Whereas the objective in other articles in this issue is to use the FIB tool to characterize a material or to machine a device or transmission electron microscopy sample, the goal of the FIB in this article is to have the FIB/samplemore » interaction itself become the product. To that end, the FIB/sample interaction is considered in three categories according to geometry: below, at, and above the surface. First, the FIB ions can penetrate the top atom layer(s) and interact below the surface. Ion implantation and ion damage on flat surfaces have been comprehensively examined; however, FIB applications require the further investigation of high doses in three-dimensional profiles. Second, the ions can interact at the surface, where a morphological instability can lead to ripples and surface self-organization, which can depend on boundary conditions for site-specific and compound FIB processing. Third, the FIB may interact above the surface (and/or produce secondary particles that interact above the surface). Such ion beam–assisted deposition, FIB–CVD (chemical vapor deposition), offers an elaborate complexity in three dimensions with an FIB using a gas injection system. Finally, at the nanometer scale, these three regimes—below, at, and above the surface—can require an interdependent understanding to be judiciously controlled by the FIB.« less

  18. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  19. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  20. Infrared laser dissociation of single megadalton polymer ions in a gated electrostatic ion trap: the added value of statistical analysis of individual events.

    PubMed

    Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe

    2018-05-07

    In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.

  1. Study of ND3-enhanced MAR processes in D2-N2 plasmas to induce plasma detachment

    NASA Astrophysics Data System (ADS)

    Abe, Shota; Chakraborty Thakur, Saikat; Doerner, Russ; Tynan, George

    2017-10-01

    The Molecular Assisted Recombination (MAR) process is thought to be a main channel of volumetric recombination to induce the plasma detachment operation. Authors have focused on a new plasma recombination process supported by ammonia molecules, which will be formed by impurity seeding of N2 for controlling divertor plasma temperature and heat loads in ITER. This ammonia-enhanced MAR process would occur throughout two steps. In this study, the first step of the new MAR process is investigated in low density plasmas (Ne 1016 m-3, Te 4 eV) fueled by D2 and N2. Ion and neutral densities are measured by a calibrated Electrostatic Quadrupole Plasma (EQP) analyzer, combination of an ion energy analyzer and mass spectrometer. The EQP shows formation of ND3 during discharges. Ion densities calculated by a rate equation model are compared with experimental results. We find that the model can reproduce the observed ion densities in the plasma. The model calculation shows that the dominant neutralization channel of Dx+(x =1-3) ions in the volume is the formation of NDy+(y =3 or 4) throughout charge/D+ exchange reactions with ND3. Furthermore, high density plasmas (Ne 1016 m-3) have been achieved to investigate electron-impact dissociative recombination processes of formed NDy+,which is the second step of this MAR process.

  2. Low pressure electrospray ionization system and process for effective transmission of ions

    DOEpatents

    Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Kelly, Ryan T [Wet Richland, WA; Smith, Richard D [Richland, WA

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  3. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  4. Ion beam processing of surgical materials

    NASA Astrophysics Data System (ADS)

    Williams, James M.; Buchanan, Raymond A.; Lee, In-Seop

    1989-02-01

    Ion beam processing has now achieved a secure place in surface treatment of biomaterials. This development is largely a result of the success of the process for wear prevention of orthopedic Ti-alloy in rubbing contact with ultrahigh molecular-weight polyethylene. Basic contributions of the authors in this area, together with other pertinent literature will be reviewed. Research in ion beam processing of biomaterials is turning to other areas. Among these, bioelectronics is considered to be a promising area for further effort. Pertinent experiments on effects of implantation of iridium into titanium and Ti-6Al-4V alloy on corrosion and charge injection properties are presented.

  5. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  6. Power law "thermalization" of ion pickup and ionospheric outflows

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Ofman, L.; Glocer, A.; Gershman, D. J.; Khazanov, G. V.; Paterson, W. R.

    2016-12-01

    One observed feature of ionospheric outflows is that the active ion heating processes produce power law tails of the core plasma velocity distribution, as well as transverse or conic peaks in the angular distributions. This characteristic is shared with hot ion distributions produced by ion pickup in the solar wind, resulting from cometary or interstellar gas ionization, and with hot ions observed around the Space Transportation System during gas releases. We revisit relevant observations and consider the hypothesis that the ion pickup thermalization process tends to produce power law (𝛋) energy distributions, using a simulation of the instability of a simple pickup (ring) distribution. Simulation results are derived for cases representative of both solar wind pickup, where ion velocities exceed the local Alfvén speed, and ionospheric pickup, where the local Alfvén speed exceeds ion velocities. The sub-Alfvenic pickup ring distribution appears to have a slow growth rate (per ion gyro period), that is, the instability evolves more slowly in the latter case than in the former. Implications for ionospheric outflow are discussed.

  7. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE PAGES

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh; ...

    2018-03-20

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  8. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less

  9. Angular dependence of etch rates in the etching of poly-Si and fluorocarbon polymer using SF6, C4F8, and O2 plasmas

    NASA Astrophysics Data System (ADS)

    Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo

    2004-05-01

    The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .

  10. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  11. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  12. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  13. Characterization of stainless steel surface processed using electrolytic oxidation and titanium complex ion solution

    NASA Astrophysics Data System (ADS)

    Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae

    2017-09-01

    This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.

  14. Atomic Scale Picture of the Ion Conduction Mechanism in Tetrahedral Network of Lanthanum Barium Gallate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalarvo, Niina H; Gourdon, Olivier; Bi, Zhonghe

    2013-01-01

    Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activationmore » energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.« less

  15. Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.

    PubMed

    Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A

    2015-05-07

    The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.

  16. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    PubMed

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

    NASA Astrophysics Data System (ADS)

    Grünhaupt, Lukas; von Lüpke, Uwe; Gusenkova, Daria; Skacel, Sebastian T.; Maleeva, Nataliya; Schlör, Steffen; Bilmes, Alexander; Rotzinger, Hannes; Ustinov, Alexey V.; Weides, Martin; Pop, Ioan M.

    2017-08-01

    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic fields, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

  18. The influence of negative ions in helium-oxygen barrier discharges: III. Simulation of laser photodetachment and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Nemschokmichal, Sebastian; Tschiersch, Robert; Meichsner, Jürgen

    2017-11-01

    The laser photodetachment experiment in a diffuse helium-oxygen barrier discharge is evaluated by a 1D fluid simulation. As in the experiment, the simulated discharge operates in helium with 400 {ppm} oxygen admixture at 500 {mbar} inside a discharge gap of 3 {mm}. The laser photodetachment is included by the interaction of negative ions with a temporally and spatially dependent photon flux. The simulation with the usually applied set of reactions and rate coefficients provides a much lower negative ion density than needed to explain the impact on the discharge characteristics in the experiment. Further processes for an enhanced negative ion formation and their capabilities of reproducing the experimental results are discussed. These further processes are additional attachment processes in the volume and the negative ion formation at the negatively charged dielectric. Both approaches are able to reproduce the measured laser photodetachment effect partially, but the best agreement with the experimental results is achieved with the formation of negative ions at the negatively charged dielectric.

  19. System and process for pulsed multiple reaction monitoring

    DOEpatents

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  20. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water.

    PubMed

    Hao, Xiaolong; Zhou, Minghua; Xin, Qing; Lei, Lecheng

    2007-02-01

    To sufficiently utilize chemically active species and enhance the degradation rate and removal efficiency of toxic and biorefractory organic pollutant para-chlorophenol (para-CP), the introductions of iron metal ions (Fe2+/Fe3+) into either pulsed discharge plasma (PDP) process or the PDP process with TiO2 photo-catalyst were tentatively performed. The experimental results showed that under the same experimental condition, the degradation rate and removal efficiency of para-CP were greatly enhanced by the introduction of iron ions (Fe2+/Fe3+) into the PDP process. Moreover, when iron ions and TiO2 were added together in the PDP process, the degradation rate and removal energy of para-CP further improved. The possible mechanism was discussed that the obvious promoting effects were attributed to ferrous ions via plasma induced Fenton-like reactions by UV light irradiation excited and hydrogen peroxide formed in pulsed electrical discharge, resulting in a larger amount of hydroxyl radicals produced from the residual hydrogen peroxide. In addition, the regeneration of ferric ions to ferrous ions facilitates the progress of plasma induced Fenton-like reactions by photo-catalytic reduction of UV light, photo-catalytic reduction on TiO2 surface and electron transfer of quinone intermediates, i.e. 1,4-hydroquinone and 1,4-benzoquinone.

  1. Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer

    NASA Astrophysics Data System (ADS)

    Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Mai, Y. S.; Tang, F. C.; Lin, S. T.; Yeh, C. Y.; Horng, J. B.; Chia, C. T.; Liao, C. C.; Shu, D. Y.

    2006-06-01

    The following research describes the process of fabrication of pentacene films with submicron thickness, deposited by thermal evaporation in high vacuum. The films were fabricated with the aforementioned conditions and their characteristics were analyzed using x-ray diffraction, scanning electron microscopy, polarized Raman spectroscopy, and photoluminescence. Organic thin-film transistors (OTFTs) were fabricated on an indium tin oxide coated glass substrate, using an active layer of ordered pentacene molecules, which were grown at room temperature. Pentacene film was aligned using the ion-beam aligned method, which is typically employed to align liquid crystals. Electrical measurements taken on a thin-film transistor indicated an increase in the saturation current by a factor of 15. Pentacene-based OTFTs with argon ion-beam-processed gate dielectric layers of silicon dioxide, in which the direction of the ion beam was perpendicular to the current flow, exhibited a mobility that was up to an order of magnitude greater than that of the controlled device without ion-beam process; current on/off ratios of approximately 106 were obtained. Polarized Raman spectroscopy investigation indicated that the surface of the gate dielectric layer, treated with argon ion beam, enhanced the intermolecular coupling of pentacene molecules. The study also proposes the explanation for the mechanism of carrier transportation in pentacene films.

  2. Low pressure electrospray ionization system and process for effective transmission of ions

    DOEpatents

    Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Kelly, Ryan T [West Richland, WA; Smith, Richard D [Richland, WA

    2012-05-08

    Systems and methods that provide up to complete transmission of ions between coupled stages with low effective ion losses. An "interfaceless" electrospray ionization system is further described that operates an electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer. Furthermore, chambers maintained at different pressures can allow for more optimal operating conditions for an electrospray emitter and an ion guide.

  3. A SIFT study of the reactions of H2ONO+ ions with several types of organic molecules

    NASA Astrophysics Data System (ADS)

    Smith, David; Wang, Tianshu; Spanel, Patrik

    2003-11-01

    A selected ion flow tube (SIFT) study has been carried out of the reactions of hydrated nitrosonium ions, NO+H2O, which theory has equated to protonated nitrous acid ions, H2ONO+. One objective of this study was to investigate if this ion exhibits the properties of both a cluster ion and a protonated acid in their reactions with a variety of organic molecules. The chosen reactant molecules comprise two each of the following types--amines, terpenes, aromatic hydrocarbons, esters, carboxylic acids, ketones, aldehydes and alcohols. The reactant H2ONO+ (NO+H2O) ions are formed in a discharge ion source and injected into helium carrier gas where they are partially vibrationally excited and partially dissociated to NO+ ions. Hence, the reactions of the H2ONO+ ions had to be studies simultaneously with NO+ ions, the reactions of the latter ions readily being studied by selectively injecting NO+ ions into the carrier gas. The results of this study indicate that the H2ONO+ ions undergo a wide variety of reaction processes that depend on the properties of the reactant molecules such as their ionisation energies and proton affinities. These processes include charge transfer with compounds, M, that have low ionisation energies (producing M+), proton transfer with compounds possessing large proton affinities (MH+), hydride ion transfer (M---H+), alkyl radical (M---R+), alkoxide radical transfer (M---OR+), ion-molecule association (NO+H2OM) and ligand switching (NO+M), producing the ions given in parentheses.

  4. Direct measurement of the concentration of metastable ions produced from neutral gas particles using laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Chu, Feng; Skiff, Fred; Berumen, Jorge; Mattingly, Sean; Hood, Ryan

    2017-10-01

    Extensive information can be obtained on wave-particle interactions and wave fields by direct measurement of perturbed ion distribution functions using laser-induced fluorescence (LIF). For practical purposes, LIF is frequently performed on metastables that are produced from neutral gas particles and existing ions in other electronic states. We numerically simulate the ion velocity distribution measurement and wave-detection process using a Lagrangian model for the LIF signal. The results show that under circumstances where the metastable ion population is coming directly from the ionization of neutrals (as opposed to the excitation of ground-state ions), the velocity distribution will only faithfully represent processes which act on the ion dynamics in a time shorter than the metastable lifetime. Therefore, it is important to know the ratio of metastable population coming from neutrals to that from existing ions to correct the LIF measurements of plasma ion temperature and electrostatic waves. In this paper, we experimentally investigate the ratio of these two populations by externally launching an ion acoustic wave and comparing the wave amplitudes that are measured with LIF and a Langmuir probe using a lock-in amplifier. DE-FG02-99ER54543.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, A. L.; Chen, J. E.; State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Montemore » Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.« less

  6. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  7. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 3. Relating Solution-Phase to Gas-Phase Structures.

    PubMed

    Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J

    2018-06-01

    Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.

  8. ION ACCELERATION AT THE QUASI-PARALLEL BOW SHOCK: DECODING THE SIGNATURE OF INJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D.

    Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration; however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bowmore » shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.« less

  9. VLF waves in the foreshock

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1995-01-01

    Plasma waves observed in the VLF range upstream of planetary bow shocks not only modify the particle distributions, but also provide important information about the acceleration processes that occur at the bow shock. Electron plasma oscillations observed near the tangent field line in the electron foreshock are generated by electrons reflected at the bow shock through a process that has been referred to as Fast Fermi acceleration. Fast Fermi acceleration is the same as shock-drift acceleration, which is one of the mechanisms by which ions are energized at the shock. We have generated maps of the VLF emissions upstream of the Venus bow shock, using these maps to infer properties of the shock energization processes. We find that the plasma oscillations extend along the field line up to a distance that appears to be controlled by the shock scale size, implying that shock curvature restricsts the flux and energy of reflected electrons. We also find that the ion acoustic waves are observed in the ion foreshock, but at Venus these emissions are not detected near the ULF forshock boundary. Through analogy with terrestrial ion observations, this implies that the ion acoustic waves are not generated by ion beams, but are instead generated by diffuse ion distributions found deep within the ion foreshock. However, since the shock is much smaller at Venus, and there is no magnetosphere, we might expect ion distributions within the ion foreshock to be different than at the Earth. Mapping studies of the terrestrial foreshock similar to those carried out at Venus appear to be necessary to determine if the inferences drawn from Venus data are applicable to other foreshocks.

  10. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    PubMed

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  11. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  12. Hidden transition in multiferroic and magnetodielectric CuCrO2 evidenced by ac-susceptibility

    NASA Astrophysics Data System (ADS)

    Shukla, Kaushak K.; Pal, Arkadeb; Singh, Abhishek; Singh, Rahul; Saha, J.; Sinha, A. K.; Ghosh, A. K.; Patnaik, S.; Awasthi, A. M.; Chatterjee, Sandip

    2017-04-01

    Ferroelectric polarization, magnetic-field dependence of the dielectric constant and ac and dc magnetizations of frustrated CuCrO2 have been measured. A new spin freezing transition below 32 K is observed which is thermally driven. The nature of the spin freezing is to be a single-ion process. Dilution by the replacements of Cr ions by magnetic Mn ions showed suppression of the spin freezing transition suggesting it to be fundamentally a single-ion freezing process. The observed freezing, which is seemingly associated to geometrical spin frustration, represents a novel form of magnetic glassy behavior.

  13. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-02-03

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.

  14. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  15. MD and BCA simulations of He and H bombardment of fuzz in bcc elements

    NASA Astrophysics Data System (ADS)

    Klaver, T. P. C.; Zhang, S.; Nordlund, K.

    2017-08-01

    We present results of MD simulations of low energy He ion bombardment of low density fuzz in bcc elements. He ions can penetrate several micrometers into sparse fuzz, which allows for a sufficient He flux through it to grow the fuzz further. He kinetic energy falls off exponentially with penetration depth. A BCA code was used to carry out the same ion bombardment on the same fuzz structures as in MD simulations, but with simpler, 10 million times faster calculations. Despite the poor theoretical basis of the BCA at low ion energies, and the use of somewhat different potentials in MD and BCA calculations, the ion penetration depths predicted by BCA are only ∼12% less than those predicted by MD. The MD-BCA differences are highly systematic and trends in the results of the two methods are very similar. We have carried out more than 200 BCA calculation runs of ion bombardment of fuzz, in which parameters in the ion bombardment process were varied. For most parameters, the results show that the ion bombardment process is quite generic. The ion species (He or H), ion mass, fuzz element (W, Ta, Mo, Fe) and fuzz element lattice parameter turned out to have a modest influence on ion penetration depths at most. An off-normal angle of incidence strongly reduces the ion penetration depth. Increasing the ion energy increases the ion penetration, but the rate by which ion energy drops off at high ion energies follows the same exponential pattern as at lower energies.

  16. Process for separation of zirconium-88, rubidium-83 and yttrium-88

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1994-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.

  17. Electrodics: mesoscale physicochemical interactions in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mukherjee, Partha P.; Chen, Chien-Fan

    2014-06-01

    Recent years have witnessed an explosion of interest and research endeavor in lithium-ion batteries to enable vehicle electrification. In particular, a critical imperative is to accelerate innovation for improved performance, life and safety of lithium-ion batteries for electric drive vehicles. Lithium ion batteries are complex, dynamical systems which include a multitude of coupled physicochemical processes encompassing electronic/ionic/diffusive transport in solid/electrolyte phases, electrochemical and phase change reactions and diffusion induced stress generation in multi-scale porous electrode microstructures. While innovations in nanomaterials and nanostructures have spurred the recent advancements, fundamental understanding of the electrode processing - microstructure - performance interplay is of paramount importance. In this presentation, mesoscale physicochemical interactions in lithium-ion battery electrodes will be elucidated.

  18. Fabrication and ab initio study of downscaled graphene nanoelectronic devices

    NASA Astrophysics Data System (ADS)

    Mizuta, Hiroshi; Moktadir, Zakaria; Boden, Stuart A.; Kalhor, Nima; Hang, Shuojin; Schmidt, Marek E.; Cuong, Nguyen Tien; Chi, Dam Hieu; Otsuka, Nobuo; Muruganathan, Manoharan; Tsuchiya, Yoshishige; Chong, Harold; Rutt, Harvey N.; Bagnall, Darren M.

    2012-09-01

    In this paper we first present a new fabrication process of downscaled graphene nanodevices based on direct milling of graphene using an atomic-size helium ion beam. We address the issue of contamination caused by the electron-beam lithography process to pattern the contact metals prior to the ultrafine milling process in the helium ion microscope (HIM). We then present our recent experimental study of the effects of the helium ion exposure on the carrier transport properties. By varying the time of helium ion bombardment onto a bilayer graphene nanoribbon transistor, the change in the transfer characteristics is investigated along with underlying carrier scattering mechanisms. Finally we study the effects of various single defects introduced into extremely-scaled armchair graphene nanoribbons on the carrier transport properties using ab initio simulation.

  19. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drueding, T.W.

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less

  1. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. Appendix.

    DTIC Science & Technology

    1987-12-31

    CuCl Excimer Si x Ge Quadropole mass spectrometer ions photoionic emission, threshold low temperature processing low energy ion beam silicon oxidation ...Etching," ECS Proceedings, 1986. C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, "Optically-Induced, Room- Temperature Oxidation of Gallium...MOS transistors with gate dielectrics obtained by ion beam oxidation at room temperature . Introduction control over the process parameters and

  2. Turbulent cascade in a two-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Xin; Faculty of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000; Liu, San-Qiu, E-mail: sqlgroup@ncu.edu.cn

    2014-11-15

    It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.

  3. Improved Linear-Ion-Trap Frequency Standard

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    Improved design concept for linear-ion-trap (LIT) frequency-standard apparatus proposed. Apparatus contains lengthened linear ion trap, and ions processed alternately in two regions: ions prepared in upper region of trap, then transported to lower region for exposure to microwave radiation, then returned to upper region for optical interrogation. Improved design intended to increase long-term frequency stability of apparatus while reducing size, mass, and cost.

  4. Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Gu, Meng; Xiao, Haiyan

    2016-04-13

    Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes duringmore » lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.« less

  5. Potential immobilized Saccharomyces cerevisiae as heavy metal removal

    NASA Astrophysics Data System (ADS)

    Raffar, Nur Izzati Abdul; Rahman, Nadhratul Nur Ain Abdul; Alrozi, Rasyidah; Senusi, Faraziehan; Chang, Siu Hua

    2015-05-01

    Biosorption of copper ion using treated and untreated immobilized Saccharomyces cerevisiae from aqueous solution was investigate in this study. S.cerevisiae has been choosing as biosorbent due to low cost, easy and continuously available from various industries. In this study, the ability of treated and untreated immobilized S.cerevisiae in removing copper ion influence by the effect of pH solution, and initial concentration of copper ion with contact time. Besides, adsorption isotherm and kinetic model also studied. The result indicated that the copper ion uptake on treated and untreated immobilized S.cerevisiae was increased with increasing of contact time and initial concentration of copper ion. The optimum pH for copper ion uptake on untreated and treated immobilized S.cerevisiae at 4 and 6. From the data obtained of copper ion uptake, the adsorption isotherm was fitted well by Freundlich model for treated immobilized S.cerevisiae and Langmuir model for untreated immobilized S.cerevisiae according to high correlation coefficient. Meanwhile, the pseudo second order was described as suitable model present according to high correlation coefficient. Since the application of biosorption process has been received more attention from numerous researchers as a potential process to be applied in the industry, future study will be conducted to investigate the potential of immobilized S.cerevisiae in continuous process.

  6. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    NASA Astrophysics Data System (ADS)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  7. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  8. Influence of ion-implanted profiles on the performance of GaAs MESFET's and MMIC amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlidis, D.; Cazaux, J.L.; Graffeuil, J.

    1988-04-01

    The RF small-signal performance of GaAs MESFET's and MMIC amplifiers as a function of various ion-implanted profiles is theoretically and experimentally investigated. Implantation energy, dose, and recess depth influence are theoretically analyzed with the help of a specially developed device simulator. The performance of MMIC amplifiers processed with various energies, doses, recess depths, and bias conditions is discussed and compared to experimental characteristics. Some criteria are finally proposed for the choice of implantation conditions and process in order to optimize the characteristics of ion-implanted FET's and to realize process-tolerant MMIC amplifiers.

  9. Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX' (X, X' = H, CH3) with lithium cation and their chiral discrimination.

    PubMed

    Alkorta, Ibon; Elguero, José; Provasi, Patricio F; Pagola, Gabriel I; Ferraro, Marta B

    2011-09-14

    The set of 1:1 and 2:1 complexes of XOOX' (X, X' = H, CH(3)) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for (17)O nucleus in each compound. Additional calculations for (1)H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 × 10(8) V m(-1) should be applied to observe a shift of ≈1 ppm for (17)O magnetic shielding in the proposed set of complexes. © 2011 American Institute of Physics

  10. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    DOEpatents

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  11. Ion Channels in Brain Metastasis

    PubMed Central

    Klumpp, Lukas; Sezgin, Efe C.; Eckert, Franziska; Huber, Stephan M.

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial–mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood–brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  12. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOEpatents

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  13. Application of ion implantation in tooling industry

    NASA Astrophysics Data System (ADS)

    Straede, Christen A.

    1996-06-01

    In papers published during the last half of the 1980s it is often stated that the application of ion beams to non-semiconductor purposes seems ready for full-scale industrial exploitation. However, progress with respect to commercialisation of ion implantation has been slower than predicted, although the process is quite clearly building up niche markets, especially in the tooling industry. It is the main purpose of this paper to discuss the implementation of the process in the tooling market, and to describe strategies used to ensure its success. The basic idea has been to find niches where ion implantation out-performs other processes both technically and in prices. For instance, it has been clearly realised that one should avoid competing with physical vapour deposition or other coating techniques in market areas where they perform excellently, and instead find niches where the advantages of the ion implantation technique can be fully utilised. The paper will present typical case stories in order to illustrate market niches where the technique has its greatest successes and potential.

  14. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Habibi, M.; Ramezani, V.

    2017-02-01

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of 4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  15. High Power Ion Cyclotron Heating in the VASIMR

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Brukardt, M. S.; Bering, E. A.; Chang Diaz, F.; Squire, J.

    2009-12-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR® is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of ions through the resonance region. The plasma is generated by a helicon discharge of 35 kW then passes through a 176 kW RF booster stage that couples left hand polarized slow mode waves from the high field side of the resonance. VX-200 auroral simulation results from the past year are discussed. Ambipolar acceleration has been shown to produce 35eV argon ions in the helicon exhaust. The effects on the ion exhaust with an addition of 150-200 kW of ion cyclotron heating are presented. The changes to the VASIMR® experiment at Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments.

  16. The role of different ion species in the cessation of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Tenfjord, P.; Hesse, M.

    2017-12-01

    Ions of ionospheric, plasmaspheric, or plasma mantle origin mass-load the source plasma resulting in the reduction of the Alfvén velocity and reconnection rate. Among other parameters, the mass-loading effect is impacted by the gyroradii of the cold ions, which are much smaller than those of the hotter ions. Consequently the cold ions are magnetized down to smaller spatial scales compared to the hotter population. It is therefore likely that the magnitude and timescales of reconnection rate reductions are impacted not only by the mass density in the inflow region, but also by the nature of the ion species and their temperatures. Using Particle-In-Cell (PIC) simulations with time-dependent inflow of different ion species and different densities, we investigate possible mechanisms for the cessation of magnetic reconnection. We describe how protons and higher mass ions get captured by the reconnection process, and whether and when they slow down the reconnection process. Furthermore, we investigate in detail how the electron diffusion region responds to the rate changes imposed by varying inflow populations.

  17. TRPP2 ion channels: Critical regulators of organ morphogenesis in health and disease.

    PubMed

    Busch, Tilman; Köttgen, Michael; Hofherr, Alexis

    2017-09-01

    Ion channels control the membrane potential and mediate transport of ions across membranes. Archetypical physiological functions of ion channels include processes such as regulation of neuronal excitability, muscle contraction, or transepithelial ion transport. In that regard, transient receptor potential ion channel polycystin 2 (TRPP2) is remarkable, because it controls complex morphogenetic processes such as the establishment of properly shaped epithelial tubules and left-right-asymmetry of organs. The fascinating question of how an ion channel regulates morphogenesis has since captivated the attention of scientists in different disciplines. Four loosely connected key insights on different levels of biological complexity ranging from protein to whole organism have framed our understanding of TRPP2 physiology: 1) TRPP2 is a non-selective cation channel; 2) TRPP2 is part of a receptor-ion channel complex; 3) TRPP2 localizes to primary cilia; and 4) TRPP2 is required for organ morphogenesis. In this review, we will discuss the current knowledge in these key areas and highlight some of the challenges ahead. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.

    PubMed

    McCaffrey, Debra L; Nguyen, Son C; Cox, Stephen J; Weller, Horst; Alivisatos, A Paul; Geissler, Phillip L; Saykally, Richard J

    2017-12-19

    The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN - ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

  19. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia.

    PubMed

    Zaidi, Faisal K; Nazzal, Yousef; Jafri, Muhammad Kamran; Naeem, Muhammad; Ahmed, Izrar

    2015-10-01

    Assessment of groundwater quality is of utmost significance in arid regions like Saudi Arabia where the lack of present-day recharge and high evaporation rates coupled with increasing groundwater withdrawal may restrict its usage for domestic or agricultural purposes. In the present study, groundwater samples collected from agricultural farms in Hail (15 samples), Al Jawf (15 samples), and Tabuk (30 samples) regions were analyzed for their major ion concentration. The objective of the study was to determine the groundwater facies, the main hydrochemical process governing the groundwater chemistry, the saturation index with respect to the principal mineral phases, and the suitability of the groundwater for irrigational use. The groundwater samples fall within the Ca-Cl type, mixed Ca-Mg-Cl type, and Na-Cl type. Evaporation and reverse ion exchange appear to be the major processes controlling the groundwater chemistry though reverse ion exchange process is the more dominating factor. The various ionic relationships confirmed the reverse ion exchange process where the Ca and Mg in the aquifer matrix have been replaced by Na at favorable exchange sites. This phenomenon has accounted for the dominance of Ca and Mg ions over Na ion at all the sites. The process of reverse ion exchange was further substantiated by the use of modified Piper diagram (Chadha's classification) and the chloro-alkaline indices. Evaporation as a result of extreme aridity has resulted in the groundwater being oversaturated with aragonite/calcite and dolomite as revealed by the saturation indices. The groundwater samples were classified as safe (less than 10) in terms of sodium adsorption ratio (SAR) values, good (less than 1.25) in terms of residual sodium carbonate (RSC) values, and safe to moderate (between 0 and 3) in terms of Mg hazard for irrigation purposes. Though the high salinity groundwater in the three regions coupled with low SAR values are good for the soil structure, it can have a negative impact on the crop production by adversely affecting the crop physiology. Cultivation of high-salinity-resistant varieties of crops is recommended for maximum agricultural productivity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Qingtao; Li, Liyu; Nie, Zimin

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less

  1. Detection of singly ionized energetic lunar pick-up ions upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Hilchenbach, M.; Hovestadt, D.; Klecker, B.; Moebius, E.

    1992-01-01

    Singly ionized suprathermal ions upstream of the earth's bow shock have been detected by using the time-of-flight spectrometer SULEICA on the AMPTE/IRM satellite. The data were collected between August and December 1985. The flux of the ions in the mass range between 23 and 37 amu is highly anisotropic towards the earth. The ions are observed with a period of about 29 days around new moon (+/- 3 days). The correlation of the energy of the ions with the solar wind speed and the interplanetary magnetic field orientation indicates the relation to the pick-up process. We conclude that the source of these pick-up ions is the moon. We argue that due to the impinging solar wind, atoms are sputtered off the lunar surface, ionized in the sputtering process or by ensuing photoionization and picked up by the solar wind.

  2. Multiple products monitoring as a robust approach for peptide quantification.

    PubMed

    Baek, Je-Hyun; Kim, Hokeun; Shin, Byunghee; Yu, Myeong-Hee

    2009-07-01

    Quantification of target peptides and proteins is crucial for biomarker discovery. Approaches such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) rely on liquid chromatography and mass spectrometric analysis of defined peptide product ions. These methods are not very widespread because the determination of quantifiable product ion using either SRM or MRM is a very time-consuming process. We developed a novel approach for quantifying target peptides without such an arduous process of ion selection. This method is based on monitoring multiple product ions (multiple products monitoring: MpM) from full-range MS2 spectra of a target precursor. The MpM method uses a scoring system that considers both the absolute intensities of product ions and the similarities between the query MS2 spectrum and the reference MS2 spectrum of the target peptide. Compared with conventional approaches, MpM greatly improves sensitivity and selectivity of peptide quantification using an ion-trap mass spectrometer.

  3. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  4. Influence of Na+, K+, Mn2+, Fe2+ and Zn2+ ions on the electrodeposition of Ni-Co alloys: Implications for the recycling of Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Blanco, S.; Orta-Rodriguez, R.; Delvasto, P.

    2017-01-01

    A hydrometallurgical recycling procedure for the recovery of a mixed rare earths sulfate and an electrodeposited Ni-Co alloy has been described. The latter step was found to be complex, due to the presence of several ions in the battery electrode materials. Electrochemical evaluation of the influence of the ions on the Ni-Co alloy deposition was carried out by cyclic voltammetry test. It was found that ions such as K+, Fe2+ and Mn2+ improved the current efficiency for the Ni-Co deposition process on a copper surface. On the other hand, Na+ and Zn2+ ions exhibited a deleterious behaviour, minimizing the values of the reduction current. The results were used to suggest the inclusion of additional steps in the process flow diagram of the recycling operation, in order to eliminate deleterious ions from the electroplating solution.

  5. Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation

    NASA Astrophysics Data System (ADS)

    van der Heide, P. A. W.

    2005-02-01

    Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.

  6. Dynamic Agents of Magnetosphere-Ionosphere Coupling

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Rowland, Douglas E.; Moore, Thomas E.; Collier, Michael

    2011-01-01

    VISIONS sounding rocket mission (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) has been awarded to NASA/GSFC (PI Rowland) in order to provide the first combined remote sensing and in situ measurements of the regions where ion acceleration to above 5 e V is occurring, and of the sources of free energy and acceleration mechanisms that accelerate the ions. The key science question of VISIONS is how, when, and where, are ions accelerated to escape velocities in the auroral zone below 1000 km, following substorm onset? Sources of free energy that power this ion acceleration process include (but not limited) electron precipitation, field-aligned currents, velocity shears, and Alfvenic Poynting flux. The combine effect of all these processes on ionospheric ion outflows will be investigated in a framework of the kinetic model that has been developed by Khazanov et al. in order to study the polar wind transport in the presence of photoelectrons.

  7. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less

  8. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  9. Ion mediated targeting of cells with nanoparticles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Vivek; Fu, Jinlong

    2010-03-01

    In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.

  10. Biosorption of copper and lead ions by waste beer yeast.

    PubMed

    Han, Runping; Li, Hongkui; Li, Yanhu; Zhang, Jinghua; Xiao, Huijun; Shi, Jie

    2006-10-11

    Locally available waste beer yeast, a byproduct of brewing industry, was found to be a low cost and promising adsorbent for adsorbing copper and lead ions from wastewater. In this work, biosorption of copper and lead ions on waste beer yeast was investigated in batch mode. The equilibrium adsorptive quantity was determined to be a function of the solution pH, contact time, beer yeast concentration, salt concentration and initial concentration of copper and lead ions. The experimental results were fitted well to the Langmuir and Freundlich model isotherms. According to the parameters of Langmuir isotherm, the maximum biosorption capacities of copper and lead ions onto beer yeast were 0.0228 and 0.0277 mmol g(-1) at 293 K, respectively. The negative values of the standard free energy change (DeltaG degrees ) indicate spontaneous nature of the process. Competitive biosorption of two metal ions was investigated in terms of sorption quantity. The amount of one metal ion adsorbed onto unit weight of biosorbent (q(e)) decreased with increasing the competing metal ion concentration. The binding capacity for lead is more than for copper. Ion exchange is probably one of the main mechanism during adsorptive process.

  11. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Adam J.; Bartlett, Bart M., E-mail: bartmb@umich.edu

    2016-10-15

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg{sup 2+}), relative to lithium-ion (Li{sup +}) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg{sup 2+}, improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recentmore » advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.« less

  12. Organic toxins as tools to understand ion channel mechanisms and structure.

    PubMed

    Morales-Lázaro, Sara Luz; Hernández-García, Enrique; Serrano-Flores, Barbara; Rosenbaum, Tamara

    2015-01-01

    Ion channels constitute a varied class of membrane proteins with pivotal roles in cellular physiology and that are fundamental for neuronal signaling, hormone secretion and muscle contractility. Hence, it is not unanticipated that toxins from diverse organisms have evolved to modulate the activity of ion channels. For instance, animals such as cone snails, scorpions, spiders and snakes use toxins to immobilize and capture their prey by affecting ion channel function. This is a beautiful example of an evolutionary process that has led to the development of an injection apparatus from predators and to the existence of toxins with high affinity and specificity for a given target. Toxins have been used in the field of ion channel biophysics for several decades to gain insight into the gating mechanisms and the structure of ion channels. Through the use of these peptides, much has been learned about the ion conduction pathways, voltage-sensing mechanisms, pore sizes, kinetics, inactivation processes, etc. This review examines an assortment of toxins that have been used to study different ion channels and describes some key findings about the structure-function relationships in these proteins through the details of the toxin-ion channel interactions.

  13. Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.

  14. Induced in-source fragmentation pattern of certain novel (1Z,2E)-N-(aryl)propanehydrazonoyl chlorides by electrospray mass spectrometry (ESI-MS/MS)

    PubMed Central

    2013-01-01

    Background Collision induced dissociation (CID) in the triple quadrupole mass spectrometer system (QQQ) typically yields more abundant fragment ions than those produced with resonance excitation in the presence of helium gas in the ion trap mass spectrometer system (IT). Detailed product ion spectra can be obtained from one stage MS2 scan using the QQQ. In contrast, generating the same number of fragment ions in the ion trap requires multiple stages of fragmentation (MSn) using CID via in-trap resonance excitation with the associated time penalties and drop in sensitivity. Results The use of in-source fragmentation with electrospray ionization (ESI) followed by product ion scan (MS2) in a triple quadrupole mass spectrometer system, was demonstrated. This process enhances the qualitative power of tandem mass spectrometry to simulate the MS3 of ion trap for a comprehensive study of fragmentation mechanisms. A five pharmacologically significant (1Z, 2E)-N-arylpropanehydrazonoyl chlorides (3a-e) were chosen as model compounds for this study. In this work, detailed fragmentation pathways were elucidated by further dissociation of each fragment ion in the ion spectrum, essentially, by incorporating fragmentor voltage induced dissociation (in-source fragmentation) and isolation of fragments in a quadrupole cell Q1. Subsequently, CID occurs in cell, Q2, and fragment ions are analyzed in Q3 operated in product ion mode this process can be referred to as pseudo-MS3 scan mode. Conclusions This approach allowed unambiguous assignment of all fragment ions using tandem mass spectrometer and provided adequate sensitivity and selectivity. It is beneficial for structure determination of unknown trace components. The data presented in this paper provide useful information on the effect of different substituents on the ionization/fragmentation processes and can be used in the characterization of this important class of compounds. PMID:23351484

  15. Optimization and testing of solid thin film lubrication deposition processes

    NASA Astrophysics Data System (ADS)

    Danyluk, Michael J.

    A novel method for testing solid thin films in rolling contact fatigue (RCF) under ultra-high vacuum (UHV) and high rotational speeds (130 Hz) is presented in this thesis. The UHV-RCF platform is used to quantify the adhesion and lubrication aspects of two thin film coatings deposited on ball-bearings using a physical vapor deposition ion plating process. Plasma properties during ion plating were measured using a Langmuir probe and there is a connection between ion flux, film stress, film adhesion, process voltage, pressure, and RCF life. The UHV-RCF platform and vacuum chamber were constructed using off-the-shelf components and 88 RCF tests in high vacuum have been completed. Maximum RCF life was achieved by maintaining an ion flux between 10 13 to 1015 (cm-2 s-1) with a process voltage and pressure near 1.5 kV and 15 mTorr. Two controller schemes were investigated to maintain optimal plasma conditions for maximum RCF life: PID and LQR. Pressure disturbances to the plasma have a detrimental effect on RCF life. Control algorithms that mitigate pressure and voltage disturbances already exist. However, feedback from the plasma to detect disturbances has not been explored related to deposition processes in the thin-film science literature. Manometer based pressure monitoring systems have a 1 to 2 second delay time and are too slow to detect common pressure bursts during the deposition process. Plasma diagnostic feedback is much faster, of the order of 0.1 second. Plasma total-current feedback was used successfully to detect a typical pressure disturbance associated with the ion plating process. Plasma current is related to ion density and process pressure. A real-time control application was used to detect the pressure disturbance by monitoring plasma-total current and converting it to feedback-input to a pressure control system. Pressure overshoot was eliminated using a nominal PID controller with feedback from a plasma-current diagnostic measurement tool.

  16. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  17. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  18. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Krása, J.; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, A.; Prokůpek, J.; Láska, L.; Mocek, T.; Ullschmied, J.; Rus, B.

    2011-05-01

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  19. Chemical analysis of solids with sub-nm depth resolution by using a miniature LIMS system designed for in situ space research

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Brigitte Neuland, Maike; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2015-04-01

    Sensitive elemental and isotope analysis of solid samples are of considerable interest in nowadays in situ space research. For context in situ analysis, high spatial resolution is also of substantial importance. While the measurements conducted with high lateral resolution can provide compositional details of the surface of highly heterogeneous materials, depth profiling measurements yield information on compositional details of surface and subsurface. The mass spectrometric analysis with the vertical resolution at sub-µm levels is of special consideration and can deliver important information on processes, which may have modified the surface. Information on space weathering effects can be readily determined when the sample composition of the surface and sub-surface is studied with high vertical resolution. In this contribution we will present vertical depth resolution measurements conducted by our sensitive miniature laser ablation ionization time-of-flight mass spectrometer (160mm x Ø 60mm) designed for in situ space research [1-3]. The mass spectrometer is equipped with a fs-laser system (~190fs pulse width, λ = 775nm), which is used for ablation and ionization of the sample material [2]. Laser radiation is focussed on the target material to a spot size of about 10-20 µm in diameter. Mass spectrometric measurements are conducted with a mass resolution (m/Δm) of about 400-500 (at 56Fe mass peak) and with a superior dynamic range of more than eight orders of magnitude. The depth profiling performance studies were conducted on 10µm thick Cu films that were deposited by an additive-assisted electrochemical procedure on Si-wafers. The presented measurement study will show that the current instrument prototype is able to conduct quantitative chemical (elemental and isotope) analysis of solids with a vertical resolution at sub-nm level. Contaminants, incorporated by using additives (polymers containing e.g. C, N, O, S) and with layer thickness of a few nanometres, can be fully resolved [1]. The current measurement performance, including the sensitivity and the high vertical depth resolution, opens new perspectives for future applications in the laboratory, e.g. measurements of Genesis samples, and new measurement capabilities for in situ space research. References 1)V. Grimaudo, P. Moreno-García, M.B. Neuland, M. Tulej, P. Broekmann, P. Wurz and A. Riedo, "High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer", Anal. Chem., 2015, submitted. 2)A. Riedo, M. Neuland, S. Meyer, M. Tulej, and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. 3)Tulej et al. CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and Microscope-Camera System for In Situ Investigation of the Composition and Morphology of Extraterrestrial Materials, Geostand. Geoanal. Res., 2014, doi: 10.1111/j.1751-908X.2014.00302.x

  20. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  1. Dual ion beam assisted deposition of biaxially textured template layers

    DOEpatents

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  2. Mechanism of charged pollutants removal in an ion exchange membrane bioreactor: drinking water denitrification.

    PubMed

    Velizarov, S; Rodrigues, C M; Reis, M A; Crespo, J G

    The mechanism of anionic pollutant removal in an ion exchange membrane bioreactor (IEMB) was studied for drinking water denitrification. This hybrid process combines continuous ion exchange transport (Donnan dialysis) of nitrate and its simultaneous bioreduction to gaseous nitrogen. A nonporous mono-anion permselective membrane precludes direct contact between the polluted water and the denitrifying culture and prevents secondary pollution of the treated water with dissolved nutrients and metabolic products. Complete denitrification may be achieved without accumulation of NO3(-) and NO2(-) ions in the biocompartment. Focus was given to the effect of the concentration of co-ions, counterions, and ethanol on the IEMB performance. The nitrate overall mass transfer coefficient in this hybrid process was found to be 2.8 times higher compared to that in a pure Donnan dialysis process without denitrification. Furthermore, by adjusting the ratio of co-ions between the biocompartment and the polluted water compartment, the magnitude and direction of each individual anion flux can be easily regulated, allowing for flexible process operation and control. Synthetic groundwater containing 135-350 mg NO3(-) L(-1) was treated in the IEMB system. A surface denitrification rate of 33 g NO3(-) per square meter of membrane per day was obtained at a nitrate loading rate of 360 g NO3(-) m(-3)d(-1), resulting in a nitrate removal efficiency of 85%.

  3. Space Environmental Erosion of Polar Icy Regolith

    NASA Technical Reports Server (NTRS)

    Farrell, William M.; Killen, R. M.; Vondrak, R. R.; Hurley, D. M.; Stubbs, T. J.; Delory, G. T.; Halekas, J. S.; Zimmerman, M. I.

    2011-01-01

    While regions at the floors of permanently shadowed polar craters are isolated from direct sunlight, these regions are still exposed to the harsh space environment, including the interplanetary Lyman-a background, meteoric impacts, and obstacle-affected solar wind. We demonstrate that each of these processes can act to erode the polar icy regolith located at or near the surface along the crater floor. The Lyman-a background can remove/erode the icy-regolith via photon stimulated desorption [1], meteoric impacts can vaporize the regolith [2], and redirected solar wind ions can sputter the ice-regolith mix [3]. As an example we shall examine in detail the inflow of solar wind ions and electrons into polar craters, One might expect such ions to flow horizontally over the crater top (see Figure). However, we find that plasma ambipolar processes act to deflect passing ions into the craters [3]. We examine this plasma process and determine the ion flux as a function of position across a notional crater floor. We demonstrate that inflowing solar wind ions can indeed create sputtering along the crater floor, effectively eroding the surface. Erosion time scales rrom sputtering will be presented. We shall also consider the effect of impact vaporization on buried icy-regolith regions. There will also be a discussion of solar wind electrons that enter into the PSR, demonstrating that these also have the ability rree surface-bound atoms via electron stimulated desorption processes [l].

  4. Characteristics of water-soluble ions before, during and after fog events

    NASA Astrophysics Data System (ADS)

    Li, P.; Du, H.; Yang, C.; Yao, J.; Du, J.; Chen, J.

    2010-07-01

    Two atmospheric processes of rain-fog-haze and haze-fog-rain were observed on Feb.8th and Mar. 14th, 2010 in urban Shanghai. On-line characterization of water-soluble ions of aerosol was performed before, during and after two fog episodes by an instrument of Monitoring AeRosoles and GAses (MARGA). Fog water samples were also collected to study the chemical ion characteristics for identifying the property of fogs. After rain, total water-soluble ion concentration in PM2.5 increased by 71.9%. Afterwards, a fog formation was observed as a frontal fog. Six fog water samples were collected to measure concentration of water-soluble ions, whose total concentrations decreased from beginning to end of fog. At the end of fog, the total water-soluble ion concentration of aerosol was continually increased. Meanwhile with a sharp decline of RH down to 70% in two hours, and a haze episode was observed. The reverse process, haze-fog-rain process, was also investigated. After the haze episode, total water-soluble ions concentration of aerosol rarely increased, but fog appeared with sharp increase of RH. Concentration of water-soluble ions in the fog water sample was higher than mean concentration of samples in 2009. When the fog started to disperse, the ion concentration hardly changed. As water vapor continued to increase, rain was observed. The inorganic compositions of aerosol in both fog events were dominated by sulfate and ammonium. The in situ investigation clearly illustrated that fog water mainly influenced by continental sources was dirtier and contained more sediment comparing with fog water influenced by marine sources.

  5. Selective adsorption of Pt ions from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J.

    PubMed

    Shen, Shaobo; Guishen, Liang; Pan, Tonglin; He, JunZhang; Guo, Zhanchen

    2011-12-15

    Thermodynamic and kinetics studies for adsorption of Pt ions complexes from the chloride solutions obtained by leaching chlorinated spent automotive catalysts on anionic exchange resin Diaion WA21J were carried out. It was found that only Si, Pt, Rh and Pd from the solution were selectively adsorbed on the resin Diaion WA21J more strongly. The adsorption equilibrium time for Pt ions was about 20 h. The isothermal adsorption of Pt ions was found to fit Langmuir, Freundlich and DKR models. The maximum monolayer adsorption capacities Q(max) and X(m) of Pt ions on the resin based on Langmuir and DKR model were 4.85, 5.36 and 5.69 mg/g as well as 5.01, 5.63 and 5.98 mg/g for temperatures 18°C, 28°C and 40°C, respectively. The apparent adsorption energy E(ad) based on DKR model were -11.79, -11.04 and -11.04 kJ/mol for the temperatures 18°C, 28°C and 40°C, respectively. Ion exchange was the mechanism involved in the adsorption process. The adsorption of Pt ions on the resin underwent pseudo-first-order kinetic process, and the apparent adsorption activation energy E(a,1) was 12.6 kJ/mol. The intraparticle diffusion of Pt ions was a main rate-controlling step in most of time of adsorption process. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. The formation of magnetic cavities in comets

    NASA Technical Reports Server (NTRS)

    Klopman, Z.; Eviatar, A.; Goldstein, R.

    1992-01-01

    In this paper a unidimensional model for the formation of magnetic cavities in comets is presented. This model includes ion-neutral friction, dissociative recombination, photoionization, and thermal energetic ion pressure coupled with a nonconstant velocity profile which was chosen to simulate the flow pattern. The model explains the thermal ion population profile. Conditions under which a cavity may not form are discussed. In the paper the roles of the various processes are studied, and it is shown that focusing on ion-neutral friction as the major process in the creation of the cavity is not in general correct. In the last part of the paper, the limitations of the model are delineated.

  7. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    DOE PAGES

    Le, Ari Yitzchak; Kwan, Thomas J. T.; Schmitt, Mark J.; ...

    2016-10-24

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Finally, diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  8. Scratch-Resistant Lenses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Lewis Research Center developed a process for achieving diamond- hard coatings for aerospace systems. The technique involves coating the material with a film of diamond-like carbon (DLC) using direct ion deposition. An ion generator creates a stream of ions from a hydrocarbon gas source; the carbon ions impinge directly on the target substrate and 'grow' into a thin DLC film. In 1988, Air Products and Chemicals, Inc. received a license to the NASA patent. Diamonex, an Air Products spinoff company, further developed the NASA process to create the DiamondHard technology used on the Bausch & Lomb Ray- Ban Survivors sunglasses. The sunglasses are scratch-resistant and shed water more easily, thus reducing spotting.

  9. Computer-Controlled System for Plasma Ion Energy Auto-Analyzer

    NASA Astrophysics Data System (ADS)

    Wu, Xian-qiu; Chen, Jun-fang; Jiang, Zhen-mei; Zhong, Qing-hua; Xiong, Yu-ying; Wu, Kai-hua

    2003-02-01

    A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by Lab VIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provides important parameters of plasma process techniques based on semiconductor devices and microelectronics.

  10. Understanding the conductive channel evolution in Na:WO(3-x)-based planar devices.

    PubMed

    Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias

    2015-04-14

    An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO(3-x)) films on a soda-lime glass substrate, from which Na(+) diffuses into the WO(3-x) films during the deposition. The entire process of Na(+) migration driven by an alternating electric field is visualized in the Na-doped WO(3-x) films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na(+) mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.

  11. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  12. Effects of eletron heating on the current driven electrostatic ion cyclotron instability and plasma transport processes along auroral field lines

    NASA Technical Reports Server (NTRS)

    Ganguli, Supriya B.; Mitchell, Horace G.; Palmadesso, Peter J.

    1988-01-01

    Fluid simulations of the plasma along auroral field lines in the return current region have been performed. It is shown that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to a transverse ion temperature that is much higher than that produced by the current driven EIC instability (CDICI) alone. Two processes are presented for the enhancement of ion heating by anomalous resistivity. The anomalous resistivity associated with the turbulence is limited by electron heating, so that CDICI saturates at transverse temperature that is substantially higher than in the absence of resistivity. It is suggested that this process demonstrates a positive feedback loop in the interaction between CDICI, anomalous resistivity, and parallel large-scale dynamics in the topside ionosphere.

  13. Preparation of polyacrylonitrile nanofibrous membrane for fabrication of separator of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Arifeen, W. U.; Dong, T.; Kurniawan, R.; Ko, T. J.

    2018-03-01

    In this paper, the manufacturing process and morphology of nano fibrous membranes are discussed. These membranes are explored as separators in rechargeable lithium ion batteries. The function of separator is to allow the flow of ions while protecting the physical contact between positive and negative electrode. Therefore, the porosity, mechanical strength and thermal stability of separators possess significant importance. The separators are manufactured by electrospinning process and later the morphology is studied with the help of scanning electron microscope (SEM) images. The separator is prepared by polyacrylonitrile (PAN) and then exposed to the hot plate. The uniform, continuous and dense nano fibrous membrane is prepared with the help of electrospinning process providing the prevention of physical contact between electrode and stable enough to work in high temperatures leading to high performance lithium ion batteries separators.

  14. Millimeter-Wave Time Resolved Studies of the Formation and Decay of CO^+

    NASA Astrophysics Data System (ADS)

    Oesterling, Lee; Herbst, Eric; de Lucia, Frank

    1998-04-01

    Since the rate constants for ion-molecule interactions are typically much larger than neutral-neutral interactions, understanding ion-molecule interactions is essential to interpreting radio astronomical spectra from interstellar clouds and modeling the processes which lead to the formation of stars in these regions. We have developed a cell which allows us to study ion-molecule interactions in gases at low temperatures and pressures by using an electron gun technique to create ions. By centering our millimeter-wave source on a rotational resonance and gating the electron beam on and off, we are able to study the time-dependent rotational state distribution of the ion during its formation and decay, and so learn about excitation and relaxation processes as functions of temperature, pressure, electron beam energy, and electron beam current.

  15. Prediction of plasma properties in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  16. Scalable loading of a two-dimensional trapped-ion array

    PubMed Central

    Bruzewicz, Colin D.; McConnell, Robert; Chiaverini, John; Sage, Jeremy M.

    2016-01-01

    Two-dimensional arrays of trapped-ion qubits are attractive platforms for scalable quantum information processing. Sufficiently rapid reloading capable of sustaining a large array, however, remains a significant challenge. Here with the use of a continuous flux of pre-cooled neutral atoms from a remotely located source, we achieve fast loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive two-dimensional arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux. PMID:27677357

  17. Mass-selective isolation of ions stored in a quadrupole ion trap. A simulation study

    NASA Astrophysics Data System (ADS)

    March, Raymond E.; Londry, Frank A.; Alfred, Roland L.; Franklin, Anthony M.; Todd, John F. J.

    1992-01-01

    Trajectories of single ions stored in the quadrupole ion trap have been calculated using a simulation program described as the specific program for quadrupolar resonance (SPQR). Previously, the program has been used for the investigation of quadrupolar resonance excitation of ions with a static working point (or co-ordinates) in the stability diagram. The program has been modified to accommodate continuous d.c. and/or r.f. voltage ramps so as to permit calculation of ion trajectories while the working point is being changed. The modified program has been applied to the calculation of ion trajectories during ion isolation, or mass-selective storage, in the ion trap. The quadrupolar resonance excitation aspect of SPQR was not used in this study. Trajectories are displayed as temporal variations of ion kinetic energy, and axial and radial excursions from the centre of the ion trap. The working points of three ion species (m/z 144, 146 and 148), located initially on the qz, axis with qz [approximate] 0.12, were moved to the vicinity of the upper apex by a combination of r.f. and d.c. voltages applied in succession. Stable trajectories were maintained only for the ion species of m/z 146 for which the working point lay within this apex; the other ion species were ejected either radially or axially. The d.c. voltage was then reduced to zero so as to restore the working point of the isolated ion species to the qz axis. The amplitude of the r.f voltage was reduced to its initial value so as to retrieve the initial working point for m/z 146. The process extended over a real time of 2.9 ms, and was collision-free. The trajectory of the isolated ion was stable during this process; the ion species with m/z value lower than that of the target ion, that is, m/z 144, was ejected axially at the [beta]z = 1 boundary, while that with higher m/z value, that is, m/z 148, was ejected radially at the [beta]r = 0 boundary, as expected. The moderating effects of buffer gas were not taken into consideration and ion kinetic energies during the sorting period were found to be sufficiently great that dissociative losses may be appreciable in a collisional system. A possible strategy for reducing kinetic energy during this process has been proposed.

  18. Computational modeling of ion transport through nanopores.

    PubMed

    Modi, Niraj; Winterhalter, Mathias; Kleinekathöfer, Ulrich

    2012-10-21

    Nanoscale pores are ubiquitous in biological systems while artificial nanopores are being fabricated for an increasing number of applications. Biological pores are responsible for the transport of various ions and substrates between the different compartments of biological systems separated by membranes while artificial pores are aimed at emulating such transport properties. As an experimental method, electrophysiology has proven to be an important nano-analytical tool for the study of substrate transport through nanopores utilizing ion current measurements as a probe for the detection. Independent of the pore type, i.e., biological or synthetic, and objective of the study, i.e., to model cellular processes of ion transport or electrophysiological experiments, it has become increasingly important to understand the dynamics of ions in nanoscale confinements. To this end, numerical simulations have established themselves as an indispensable tool to decipher ion transport processes through biological as well as artificial nanopores. This article provides an overview of different theoretical and computational methods to study ion transport in general and to calculate ion conductance in particular. Potential new improvements in the existing methods and their applications are highlighted wherever applicable. Moreover, representative examples are given describing the ion transport through biological and synthetic nanopores as well as the high selectivity of ion channels. Special emphasis is placed on the usage of molecular dynamics simulations which already have demonstrated their potential to unravel ion transport properties at an atomic level.

  19. ESIS ions injection, holding and extraction control system

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Donets, D. E.; Lyuosev, D. A.; Ponkin, D. O.; Ramsdorf, A. Yu.; Boytsov, A. Yu.; Salnikov, V. V.; Shirikov, I. V.

    2018-04-01

    Electron string ion source (ESIS) KRION-6T is one of the main parts of the NICA injection complex [1]. During the work on creation of a new ion source for the NICA/MPD project the new ion motion control system was developed, produced and successfully put into operation. Modules development process and operation results are described.

  20. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  1. REMOVAL OF RADIUM FROM DRINKING WATER

    EPA Science Inventory

    This report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water...

  2. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  3. Silicon solar cells by ion implantation and pulsed energy processing

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.

    1976-01-01

    A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.

  4. Features of electrophoretic deposition process of nanostructured electrode materials for planar Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Melkozyorova, N. A.; Zinkevich, K. G.; Lebedev, E. A.; Alekseyev, A. V.; Gromov, D. G.; Kitsyuk, E. P.; Ryazanov, R. M.; Sysa, A. V.

    2017-11-01

    The features of electrophoretic deposition process of composite LiCoO2-based cathode and Si-based anode materials were researched. The influence of the deposition process parameters on the structure and composition of the deposit was revealed. The possibility of a local deposition of composites on a planar lithium-ion battery structure was demonstrated.

  5. Unique dielectric dipole and hopping ion dipole relaxation in disordered systems

    NASA Astrophysics Data System (ADS)

    Govindaraj, G.

    2018-04-01

    Dielectric or ac conductivity measurements of dielectric and ion conducting glass and crystalline systems provide considerable insight into the nature of the dipolar and ionic motions in disordered solids. However, interpreting the dielectric or ac conductivity has been a matter of considerable debate based on the existing models and empirical formalism, particularly in regards to how best to represent the relaxation process that is the result of a transition from correlated to uncorrelated dipolar and ionic motions. A unique dipole interaction process has been proposed for the (a) dielectric dipole process (b) the hopping ion conducting dipole process and the (c) combination (a) and (b) for the description of dielectric spectra and ac conductivityspectra and results are reported.

  6. Splitting algorithm for numerical simulation of Li-ion battery electrochemical processes

    NASA Astrophysics Data System (ADS)

    Iliev, Oleg; Nikiforova, Marina A.; Semenov, Yuri V.; Zakharov, Petr E.

    2017-11-01

    In this paper we present a splitting algorithm for a numerical simulation of Li-ion battery electrochemical processes. Liion battery consists of three domains: anode, cathode and electrolyte. Mathematical model of electrochemical processes is described on a microscopic scale, and contains nonlinear equations for concentration and potential in each domain. On the interface of electrodes and electrolyte there are the Lithium ions intercalation and deintercalation processes, which are described by Butler-Volmer nonlinear equation. To approximate in spatial coordinates we use finite element methods with discontinues Galerkin elements. To simplify numerical simulations we develop the splitting algorithm, which split the original problem into three independent subproblems. We investigate the numerical convergence of the algorithm on 2D model problem.

  7. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Schubert, W. Kent

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  8. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  9. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE PAGES

    Shukla, Anil K.

    2017-09-01

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  10. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil K.

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  11. Brief Talk about Lithium-ion Batteries’ Safety and Influencing Factors

    NASA Astrophysics Data System (ADS)

    Jin, Cheng

    2017-12-01

    A brief introduction of the development background, the concept, characteristic and advantages of lithium-ion battery was given. The typical fire accidents about lithium-ion battery in production process, the vehicle with new energy, portable electronic products were summarized. Some important factors for lithium-ion batteries’ safety were emphatically analyzed. Several constructive suggestions on improvement direction were given, meanwhile, we have a nice exception on the future of lithium-ion battery industry.

  12. SRAM As An Array Of Energetic-Ion Detectors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Lieneweg, Udo; Nixon, Robert H.

    1993-01-01

    Static random-access memory (SRAM) designed for use as array of energetic-ion detectors. Exploits well-known tendency of incident energetic ions to cause bit flips in cells of electronic memories. Design of ion-detector SRAM involves modifications of standard SRAM design to increase sensitivity to ions. Device fabricated by use of conventional complementary metal oxide/semiconductor (CMOS) processes. Potential uses include gas densimetry, position sensing, and measurement of cosmic-ray spectrum.

  13. Processing of hydroxylapatite coatings on titanium alloy bone prostheses

    DOEpatents

    Nastasi, M.A.; Levine, T.E.; Mayer, J.W.; Pizziconi, V.B.

    1998-10-06

    Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.

  14. Processing of hydroxylapatite coatings on titanium alloy bone prostheses

    DOEpatents

    Nastasi, Michael A.; Levine, Timothy E.; Mayer, James W.; Pizziconi, Vincent B.

    1998-01-01

    Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.

  15. Ion funnel ion trap and process

    DOEpatents

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  16. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    NASA Astrophysics Data System (ADS)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  17. Advanced GaAs Process Modeling. Volume 1

    DTIC Science & Technology

    1989-05-01

    COSATI CODES 18 . SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Gallium Arsenide, MESFET, Process...Background 9 3.2 Model Calculations 10 3.3 Conclusions 17 IV. ION-IMPLANTATION INTO GaAs PROFILE DETERMINATION 18 4.1 Ion Implantation Profile...Determination in GaAs 18 4.1.1. Background 18 4.1.2. Experimental Measurements 20 4.1.3. Results 22 4.1.3.1 Ion-Energy Dependence 22 4.1.3.2. Tilt and Rotation

  18. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  19. Increasing positive ion number densities below the peak of ion-electron pair production in Titan's ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Galand, M.; Shebanits, O.

    2014-05-01

    We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less

  20. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  1. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Banker, S.

    1982-01-01

    Development of a pulsed electron beam subsystem, wafer transport system, and ion implanter are discussed. A junction processing system integration and cost analysis are reviewed. Maintenance of the electron beam processor and the experimental test unit of the non-mass analyzed ion implanter is reviewed.

  2. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  3. Microscopic dynamics of charge separation at the aqueous electrochemical interface.

    PubMed

    Kattirtzi, John A; Limmer, David T; Willard, Adam P

    2017-12-19

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na + I - , or classical ions, and the products of water autoionization, H 3 O + OH - , or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water's collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface.

  4. Microscopic dynamics of charge separation at the aqueous electrochemical interface

    PubMed Central

    Kattirtzi, John A.; Limmer, David T.; Willard, Adam P.

    2017-01-01

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water–metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali–halide pair, Na+I−, or classical ions, and the products of water autoionization, H3O+OH−, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water’s collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface. PMID:28698368

  5. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  6. Loss of Water from Saturn's E-Ring Through Ion Pick-Up

    NASA Technical Reports Server (NTRS)

    Leisner, J. S.; Russell, C. T.; Dougherty, M. K.; Blanco-Cano, X.; Smith, E. J.; Tsurutani, B. T.

    2005-01-01

    One of the possible loss processes for Saturn s E-ring is ionization followed by acceleration by the electric field associated with the corotating magnetized plasma. It is possible to determine if this process is occurring by detecting electromagnetic waves at the gyrofrequency of water group ions. If the energy the particle gains in this pick-up process is sufficiently great, the picked up ions will generate ion cyclotron waves. Pioneer 11 and Voyager 1 both observed intervals of such waves associated with water group ions during their passes through Saturn s E-ring. Presently the magnetometer onboard the Cassini spacecraft is also seeing water group ion cyclotron oscillations. The Cassini data allow the spatial and temporal behavior of the waves to be mapped in ways not possible during the previous flybys. Analyses of these waves allow us to study the rate of mass loading and its latitudinal and local time variation. In conjunction with previous data, we can then determine the variation as the inclination of the ring to the Sun changes, in accordance with Saturn's seasons. These waves may be the clue to how Saturn powers its magnetosphere as the newly born ions could be the driver for the radial motion of the plasma and to how the E-ring may play the equivalent role to that of Io in the jovian magnetosphere.

  7. High-fidelity operations in microfabricated surface ion traps

    NASA Astrophysics Data System (ADS)

    Maunz, Peter

    2017-04-01

    Trapped ion systems can be used to implement quantum computation as well as quantum simulation. To scale these systems to the number of qubits required to solve interesting problems in quantum chemistry or solid state physics, the use of large multi-zone ion traps has been proposed. Microfabrication enables the realization of surface electrode ion traps with complex electrode structures. While these traps may enable the scaling of trapped ion quantum information processing (QIP), microfabricated ion traps also pose several technical challenges. Here, we present Sandia's trap fabrication capabilities and characterize trap properties and shuttling operations in our most recent high optical access trap (HOA-2). To demonstrate the viability of Sandia's microfabricated ion traps for QIP we realize robust single and two-qubit gates and characterize them using gate set tomography (GST). In this way we are able to demonstrate the first single qubit gates with a diamond norm of less than 1 . 7 ×10-4 , below a rigorous fault tolerance threshold for general noise of 6 . 7 ×10-4. Furthermore, we realize Mølmer-Sørensen two qubit gates with a process fidelity of 99 . 58(6) % also characterized by GST. These results demonstrate the viability of microfabricated surface traps for state of the art quantum information processing demonstrations. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  8. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  9. Electron Transfer Dissociation of iTRAQ Labeled Peptide Ions

    PubMed Central

    Han, Hongling; Pappin, Darryl J.; Ross, Philip L; McLuckey, Scott A.

    2009-01-01

    Triply and doubly charged iTRAQ (isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD + supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/z 162 yielded the reporter ion at m/z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents. PMID:18646790

  10. Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the solar system

    PubMed Central

    Mauk, B H

    2014-01-01

    Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magnetospheres must be addressed, given that the dispersion properties of the EMIC waves are strongly determined by the ion composition of the plasmas within which the waves propagate. Chosen for comparison are the ion spectra within these systems that are the most intense observed, specifically at 100 keV and 1 MeV. We find that Earth and Jupiter are unique in having their most intense ion spectra likely limited and sculpted by the Kennel-Petschek process. The ion spectra of Saturn, Uranus, and Neptune reside far below their respective limits and are likely limited by interactions with gas and dust (Saturn) and by the absence of robust ion acceleration processes (Uranus and Neptune). Suggestions are provided for further testing the efficacy of the differential Kennel-Petschek limit for ions using the Van Allen Probes. PMID:26167438

  11. Origin of poor doping efficiency in solution processed organic semiconductors.

    PubMed

    Jha, Ajay; Duan, Hong-Guang; Tiwari, Vandana; Thorwart, Michael; Miller, R J Dwayne

    2018-05-21

    Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ∼250 cm -1 with an intermolecular distance of ∼4.5 Å between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films.

  12. Equilibrium stable-isotope fractionation of thallium and mercury

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2005-12-01

    In this study first-principles quantum mechanical and empirical force-field models are used to estimate equilibrium mass-dependent isotopic fractionations among a variety of thallium and mercury compounds. High-precision MC-ICP-MS measurements have recently uncovered evidence of stable isotope fractionation for many elements, including 2-4‰ variability in the isotopic compositions of thallium[1] (atomic no. 81) and mercury[2] (atomic no. 80). The observed thallium- and mercury-isotope fractionations are remarkable, given that the magnitude of isotopic fractionation typically decreases as atomic number increases[3]. Stable isotope measurements could improve our understanding of geochemical and biogeochemical cycling of both elements, but little is known about the mechanisms driving these fractionations. A better understanding of the chemical processes controlling stable isotope compositions could help maximize the utility of these new geochemical tracers. Standard equilibrium stable isotope fractionation theory holds that the energy driving fractionation comes from isotopic effects on vibrational frequencies, which have generally not been measured. In the present study both quantum-mechanical and empirical force fields are used to estimate unknown frequencies. Results suggest that thallium and mercury fractionations of ≥ 0.5‰ are likely during the relevant redox reactions Tl+ ↔ Tl3+ and HgO ↔ Hg2+. Methyl-mercury and mercury-halide compounds like CH3HgCl will have ~ 1‰ higher 202Hg/198Hg than atomic vapor at room temperature. Fractionations between coexisting Hg2+ species appear to be much smaller, however. 205Tl/203Tl in Tl(H2O)_63+ is predicted to be ~0.5‰ higher than in coexisting Tl+-bearing substances. This result is in qualitative agreement with data from ferromanganese crusts [1], suggesting that Tl3+ in manganese-oxides will have higher 205Tl/203Tl than aqueous Tl+. Equilibrium fractionations for both elements are much smaller than the observed range of isotopic fractionations, however, which could point to a major role for kinetic-fractionation or Rayleigh-like distillation processes. Refs.: [1] Rehämper et al. (2002) EPSL 197:65. [2] Xie et al. (2005) J. Anal. Atomic Spectrom. 20:515. [3] Bigeleisen and Mayer (1947) J. Chem. Phys. 15:261.

  13. On the relation between the activation energy for electron attachment reactions and the size of their thermal rate coefficients.

    PubMed

    Hotop, H; Ruf, M-W; Kopyra, J; Miller, T M; Fabrikant, I I

    2011-02-14

    Rate coefficients k(T) for dissociative electron attachment (DEA) to molecules in many cases exhibit a more or less strong rise with increasing temperature T (the electron temperature T(e) and the molecular temperature T(G) are assumed to be in thermal equilibrium, i.e., T = T(e) = T(G)). This rise is frequently modeled by the Arrhenius equation k(T) = k(A) exp[-E(a)∕(k(B)T)], and an activation energy E(a) is deduced from fits to the experimental data k(T). This behavior reflects the presence of an energy barrier for the anion on its path to the dissociated products. In a recent paper [J. Kopyra, J. Wnorowska, M. Foryś, and I. Szamrej, Int. J. Mass Spectrom. 268, 60 (2007)] it was suggested that the size of the rate coefficients for DEA reactions at room temperature exhibits an exponential dependence on the activation energy, i.e., k(E(a); T ≈ 300 K) = k(1) exp[-E(a)∕E(0)]. More recent experimental data for molecules with high barriers [T. M. Miller, J. F. Friedman, L. C. Schaffer, and A. A. Viggiano, J. Chem. Phys. 131, 084302 (2009)] are compatible with such a correlation. We investigate the validity and the possible origin of this dependence by analyzing the results of R-matrix calculations for temperature-dependent rate coefficients of exothermic DEA processes with intermediate barrier toward dissociation. These include results for model systems with systematically varied barrier height as well as results of molecule-specific calculations for CH(3)Cl, CH(3)Br, CF(3)Cl, and CH(2)Cl(2) (activation energies above 0.2 eV) involving appropriate molecular parameters. A comparison of the experimental and theoretical results for the considered class of molecules (halogenated alkanes) supports the idea that the exponential dependence of k(T = 300 K) on the activation energy reflects a general phenomenon associated with Franck-Condon factors for getting from the initial neutral vibrational levels to the dissociating final anion state in a direct DEA process. Cases are discussed for which the proposed relation does not apply.

  14. Understanding ion association states and molecular dynamics using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Masser, Hanqing

    A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO microphase separates from the PEO-rich microphase, and ionic groups are preferentially solvated by PEO chains and reside in the PEO-rich microphase. As the ratio of PTMO increases, the fraction of aggregates increases, resulting in more highly coordinated aggregation states. Results on ion association states are in good agreement with previous results on ion conductivity, polymer dynamics and morphology. The effects of ion content, cation type and ionic side chain structure on ion association states are systemically studied in a series of ionomers with short ethylene oxide and ionic sulfonated styrene side chains, and then correlated to the ion and polymer dynamic characterization. It is found that ionomers with modest ion content, large cation and styrene ionic side chain have the most "free ions" and ion pairs, and highest ion conductivity. Ion conduction in ionomers is optimized by systematically changing their chemical structures. In addition to knowledge of ion association states, a IR band shape also contains information on molecular dynamics. In companion investigation, the vibrational relaxation and dynamic transitions of conformationally insensitive normal modes in two different polymer systems (atactic polystyrene and deuterated poly(methyl methacrylate)) are studied. The information on vibrational relaxations is resolved by conducting precisely controlled FTIR experiments, applying specialized curve resolving data analysis, and calculating time correlation functions through numerical Fourier transformation. The vibrational relaxations of these modes can be described by a two process model: a fast process on the time scale of 0.01 ps, which is inhomogeneously broadened by a slow process on the time scale of picoseconds.

  15. Investigating Reflectance Properties of Mercury's Surface Material: Effect of Swift Heavy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.

    2018-05-01

    Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.

  16. Electronic and Ionic Transport in Processable Conducting Polymers

    DTIC Science & Technology

    1991-05-28

    doping with nitrosonium fluoborate. 6. Polypyrrole containing luminescent ions has been shown to be useful as in-situ probes of ion transport during...blends, ion transport, fibers, theoretical calculations ABSTRACT (Continue on reverse if necessary and identify by block number) A summary of the research...polymer/dopant ion interactions, symmereically and asymmetrically substituted poly(di-2-heterocycle-2,5-disubstitutedphenylenes), poly(5

  17. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction

    Treesearch

    Grant T. Kirker; Samuel Zelinka; Sophie-Charlotte Gleber; David Vine; Lydia Finney; Si Chen; Young Pyo Hong; Omar Uyarte; Stefan Vogt; Jody Jellison; Barry Goodell; Joseph E. Jakes

    2017-01-01

    The role of ions in the fungal decay process of lignocellulose biomaterials, and more broadly fungal metabolism, has implications for diverse research disciplines ranging from plant pathology and forest ecology, to carbon sequestration. Despite the importance of ions in fungal decay mechanisms, the spatial distribution and quantification of ions in lignocellulosic cell...

  18. High Resolution Observations of Escaping Ions in the Martian Magnetotail

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Raman, C.; Brain, D.; DiBraccio, G. A.; Harada, Y.; McFadden, J. P.; Mitchell, D. L.; Connerney, J. E. P.; Jakosky, B. M.

    2016-12-01

    Ions escape from the Martian upper atmosphere via a number of channels, including the central plasmasheet of the magnetotail. Mars Express observations show that the heavy ions O+ and O2+ escaping through the central tail often have approximately the same energy, suggesting acceleration in a quasi-static electric field, which has been interpreted as a Hall electric field. The Solar Wind Ion Analyzer (SWIA) on MAVEN was designed to measure the upstream solar wind. However, during orbit segments with appropriate spacecraft attitude, SWIA can also make high resolution measurements of escaping ions in the tail. During the prime mission, these observations were only returned sporadically, during periods of intense escaping fluxes that fortuitously triggered a mode switch. Now, in the extended mission, we return high resolution observations from SWIA routinely. Some of these high resolution measurements reveal slight differences in both the direction and energy of escaping O+ and O2+ ions, which may help determine the acceleration process(es). We investigate the location and solar wind conditions for which the escaping ions separate in energy and angle and the systematics of their energies and flow vectors, and discuss the implications for ion acceleration and the overall picture of Martian atmospheric escape.

  19. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yunyi; Haso, Fadi; Szymanowski, Jennifer E. S.

    2015-11-16

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60-(H2O)n (m≈20 and n≈310) (U60) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestinglymore » high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.« less

  20. The Mechanism of Sodium and Chloride Uptake by the Gills of a Fresh-Water Fish, Carassius auratus

    PubMed Central

    García Romeu, F.; Maetz, J.

    1964-01-01

    Carassius auratus placed in a dilute sodium chloride solution (400 µM) is able to absorb sodium and chloride ions at very different rates, or to absorb one ion and to lose the other. This is the case not only for fish which have been previously kept in choline chloride or sodium sulfate solutions or deionized water, in order to stimulate their absorption processes, but also in control fish which have not been deprived of sodium or chloride. The absorption of sodium or chloride appears to be unaffected by the presence of a nonpermeant co-ion such as choline or sulfate. Conductivity measurements of the external medium show that during ion uptake the conductivity is constant or increases slowly. This suggests the existence of exchange processes between the ions absorbed and endogenous ions excreted. It is unlikely that potassium or calcium is exchanged for sodium, because of the low permeability of the gills to these ions. Finally, the flux ratios observed for both sodium and chloride ions in the present investigation can only be explained, in relation to their electrochemical gradients across the gills, in terms of active transport. PMID:14192553

  1. Hybrid Donor-Dot Devices made using Top-down Ion Implantation for Quantum Computing

    NASA Astrophysics Data System (ADS)

    Bielejec, Edward; Bishop, Nathan; Carroll, Malcolm

    2012-02-01

    We present progress towards fabricating hybrid donor -- quantum dots (QD) for quantum computing. These devices will exploit the long coherence time of the donor system and the surface state manipulation associated with a QD. Fabrication requires detection of single ions implanted with 10's of nanometer precision. We show in this talk, 100% detection efficiency for single ions using a single ion Geiger mode avalanche (SIGMA) detector integrated into a Si MOS QD process flow. The NanoImplanter (nI) a focused ion beam system is used for precision top-down placement of the implanted ion. This machine has a 10 nm resolution combined with a mass velocity filter, allowing for the use of multi-species liquid metal ion sources (LMIS) to implant P and Sb ions, and a fast blanking and chopping system for single ion implants. The combination of the nI and integration of the SIGMA with the MOS QD process flow establishes a path to fabricate hybrid single donor-dot devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Surface adsorption of poisonous Pb(II) ions from water using chitosan functionalised magnetic nanoparticles.

    PubMed

    Christopher, Femina Carolin; Anbalagan, Saravanan; Kumar, Ponnusamy Senthil; Pannerselvam, Sundar Rajan; Vaidyanathan, Vinoth Kumar

    2017-06-01

    In this study, chitosan functionalised magnetic nano-particles (CMNP) was synthesised and utilised as an effective adsorbent for the removal of Pb(II) ions from aqueous solution. The experimental studies reveal that adsorbent material has finer adsorption capacity for the removal of heavy metal ions. Parameters affecting the adsorption of Pb(II) ions on CMNP, such as initial Pb(II) ion concentration, contact time, solution pH, adsorbent dosage and temperature were studied. The adsorption equilibrium study showed that present adsorption system followed a Freundlich isotherm model. The experimental kinetic studies on the adsorption of Pb(II) ions exhibited that present adsorption process best obeyed with pseudo-first order kinetics. The maximum monolayer adsorption capacity of CMNP for the removal of Pb(II) ions was found to be 498.6 mg g -1 . The characterisation of present adsorbent material was done by FTIR, energy disperse X-ray analysis and vibrating sample magnetometer studies. Thermodynamic parameters such as Gibbs free energy (Δ G °), enthalpy (Δ H °) and entropy (Δ S °) have declared that the adsorption process was feasible, exothermic and spontaneous in nature. Sticking probability reported that adsorption of Pb(II) ions on CMNP was favourable at lower temperature and sticking capacity of Pb(II) ions was very high.

  3. Ion Figuring of Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Cantey, Thomas M.; Gregory, Don A.

    1997-01-01

    This investigation included experiments to demonstrate ion beam figuring effects on electroless nickel with the expressed desire to figure X-ray optic mandrels. It was important to establish that ion beam figuring did not induce any adverse effects to the nickel surface. The ion beam has consistently been shown to be an excellent indicator of the quality of the subsurface. Polishing is not the only cause for failure in the ion beam final figuring process, the material composition is equally important. Only by careful consideration of both these factors can the ion beam final figuring process achieve its greatest potential. The secondary goal was to construct a model for representing the ion beam material removal rate. Representing the ion beam removal rate is only an approximation and has a number of limiting factors. The resolution of the metrology apparatus limits the modeling of the beam function as well. As the surface error corrections demand more precision in the final figuring, the model representing beam function must be equally precise. The precision to which the beam function can be represented is not only determined by the model but also by the measurements producing that model. The method developed for determining the beam function has broad application to any material destined to be ion beam figured.

  4. Rectangular beam (5 X 40 cm multipole ion source). M.S. Thesis - Nov. 1979; [applications to electron bombardment in materials processing

    NASA Technical Reports Server (NTRS)

    Haynes, C. M.

    1980-01-01

    A 5 x 40 cm rectangular-beam ion source was designed and fabricated. A multipole field configuration was used to facilitate design of the modular rectangular chamber, while a three-grid ion optics system was used for increased ion current densities. For the multipole chamber, a magnetic integral of 0.000056 Tesla-m was used to contain the primary electrons. This integral value was reduced from the initial design value, with the reduction found necessary for discharge stability. The final value of magnetic integral resulted in discharge losses at typical operating conditions which ranged from 600 to 1000 eV/ion, in good agreement with the design value of 800 eV/ion. The beam current density at the ion optics was limited to about 3.2 mA/sq cm at 500 eV and to about 3.5 mA/sq cm at 1000 ev. The effects of nonuniform ion current, dimension tolerance, and grid thermal warping were considered. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source (approx. 40 cm) was also studied. Beam profiles were surveyed at a variety of operating conditions and the results of various amounts of beam overlap calculated.

  5. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  6. Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A. (Inventor)

    2018-01-01

    An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.

  7. Observations of Heavy Ions in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.

    2017-12-01

    There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.

  8. Mechanochemical Synthesis of Hydroxyapatite and Its Modifications: Composition, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Chaikina, M. V.; Bulina, N. V.; Ishchenko, A. V.; Prosanov, I. Yu.

    2014-02-01

    The mechanochemical method is used to synthesize samples of hydroxyapatite (HA) with substitution of the phosphate ion by silicate and zirconate ions, and substitution of calcium ions by copper ions. In the process of mechanochemical synthesis, carbonate ions and water molecules are incorporated into the structure of HA due to interaction of components of the reaction mixture with air. Intrusion of carbonate into the structure of HA is a competing process with modification of apatite by silicate and zirconate anions; therefore, the composition of the product during synthesis differs from the prescribed one. After annealing of the samples, the composition of the anion-modified HA can be described by the formula Са10(РО4)6- х (АО4) х (ОН)2- х , where (АО4)4- is the modifying anion. Substitution of calcium by copper ions localized at the Са1 position has been detected. Silver ions are not incorporated into the structure of HA, but are distributed in the apatite matrix in the form of nanocrystals of metallic silver.

  9. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    NASA Astrophysics Data System (ADS)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  10. Atomic-scale thermocapillary flow in focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Das, Kallol; Johnson, Harley; Freund, Jonathan

    2016-11-01

    Focused ion beams (FIB) offer an attractive tool for nanometer-scale manufacturing and material processing, particularly because they can be focused to a few nanometer diameter spot. This motivates their use for many applications, such as sample preparation for transmission electron microscopy (TEM), forming nanometer scale pores in thin films for DNA sequencing. Despite its widespread use, the specific mechanisms of FIB milling, especially at high ion fluxes for which significant phase change might occur, remains incompletely understood. Here we investigate the process of nanopore fabrication in thin Si films using molecular dynamics simulation where Ga+ ions are used as the focused ions. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it is driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A continuum flow model with Marangoni forcing reproduces the flow.

  11. Adsorption of heavy metal ions by sawdust of deciduous trees.

    PubMed

    Bozić, D; Stanković, V; Gorgievski, M; Bogdanović, G; Kovacević, R

    2009-11-15

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g(-1) of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu(2+) ions but it is very low for Fe(2+) ions, not exceeding 10%.

  12. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V.

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due tomore » the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.« less

  13. Dissociation of dicyclohexyl phthalate molecule induced by low-energy electron impact

    NASA Astrophysics Data System (ADS)

    Lacko, Michal; Papp, Peter; Matejčík, Štefan

    2018-06-01

    Experimental investigation of electron ionization (EI) of and electron attachment (EA) onto dicyclohexyl phthalate (DCHP) was carried out using a crossed electron and molecular beam technique. Formation of positive and negative ions by EI and EA with the corresponding dissociation processes was studied and discussed. Due to a low ion yield of the parent positive ion, we were not able to estimate the ionization energy of DCHP. However, we estimated the appearance energies for the protonated phthalate anhydride (m/z 149) to be 10.5 eV and other significant ionic fragments of m/z 249 [DCHP—(R—2H)]+, m/z 167 [DCHP—(2R—3H)]+, and m/z 83 [C6H11]+. The reaction mechanisms of the dissociative ionization process were discussed. In the case of negative ions, we estimated the relative cross sections for a transient negative ion (TNI) and for several detected ions. At low electron energies (close to 0 eV), the TNI of DCHP molecules was the dominant ion, with products of dissociative EA dominating in broad resonances at 7.5 and 8.5 eV.

  14. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    PubMed

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    PubMed

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Simulations of momentum transfer process between solar wind plasma and bias voltage tethers of electric sail thruster

    NASA Astrophysics Data System (ADS)

    Xia, Guangqing; Han, Yajie; Chen, Liuwei; Wei, Yanming; Yu, Yang; Chen, Maolin

    2018-06-01

    The interaction between the solar wind plasma and the bias voltage of long tethers is the basic mechanism of the electric sail thruster. The momentum transfer process between the solar wind plasma and electric tethers was investigated using a 2D full particle PIC method. The coupled electric field distribution and deflected ion trajectory under different bias voltages were compared, and the influence of bias voltage on momentum transfer process was analyzed. The results show that the high potential of the bias voltage of long tethers will slow down, stagnate, reflect and deflect a large number of ions, so that ion cavities are formed in the vicinity of the tether, and the ions will transmit the axial momentum to the sail tethers to produce the thrust. Compared to the singe tether, double tethers show a better thrust performance.

  17. An efficient approach to integrated MeV ion imaging.

    PubMed

    Nikbakht, T; Kakuee, O; Solé, V A; Vosuoghi, Y; Lamehi-Rachti, M

    2018-03-01

    An ionoluminescence (IL) spectral imaging system, besides the common MeV ion imaging facilities such as µ-PIXE and µ-RBS, is implemented at the Van de Graaff laboratory of Tehran. A versatile processing software is required to handle the large amount of data concurrently collected in µ-IL and common MeV ion imaging measurements through the respective methodologies. The open-source freeware PyMca, with image processing and multivariate analysis capabilities, is employed to simultaneously process common MeV ion imaging and µ-IL data. Herein, the program was adapted to support the OM_DAQ listmode data format. The appropriate performance of the µ-IL data acquisition system is confirmed through a case study. Moreover, the capabilities of the software for simultaneous analysis of µ-PIXE and µ-RBS experimental data are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  19. Surface dynamics of voltage-gated ion channels.

    PubMed

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-07-03

    Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks.

  20. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  1. Investigation of metal ions sorption of brown peat moss powder

    NASA Astrophysics Data System (ADS)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  2. Surface dynamics of voltage-gated ion channels

    PubMed Central

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-01-01

    ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  3. Permeant Ions, Impermeant Ions, Electrogenic Pumps, Cell Volume, and the Resting Membrane Potential.

    ERIC Educational Resources Information Center

    Edwards, Charles

    1982-01-01

    Students often have difficulty in understanding the processes responsible for the ionic basis of the membrane potential. Because descriptions in textbooks are not satisfactory and in some cases in error, a discussion of the processes underlying the potential (combining known results) is provided. (Author/JN)

  4. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-02-24

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  5. Space Plasma Ion Processing of the Lunar Soil: Modeling of Radiation-Damaged Rim Widths on Lunar Grains

    NASA Technical Reports Server (NTRS)

    Chamberlin, S.; Christoffersen, R.; Keller, L.

    2007-01-01

    Chemically and microstructurally complex altered rims around grains in the finest size fraction (<20 micron) of the lunar regolith are the result of multi-stage processes involving both solar ion radiation damage and nanoscale deposition of impact or sputter-derived vapors. The formation of the rims is an important part of the space weathering process, and is closely linked to key changes in optical reflectance and other bulk properties of the lunar surface. Recent application of field-emission scanning transmission electron microscope techniques, including energy dispersive X-ray spectral imaging, is making it easier to unravel the "nano-stratigraphy" of grain rims, and to delineate the portions of rims that represent Radiation-Amorphized (RA) host grain from overlying amorphous material that represents vapor/sputter deposits. For the portion of rims formed by host grain amorphization (henceforth called RA rims), we have been investigating the feasibility of using Monte Carlo-type ion-atom collision models, combined with experimental ion irradiation data, to derive predictive numerical models linking the width of RA rims to the grain s integrated solar ion radiation exposure time.

  6. Electron molecular ion recombination: product excitation and fragmentation.

    PubMed

    Adams, Nigel G; Poterya, Viktoriya; Babcock, Lucia M

    2006-01-01

    Electron-ion dissociative recombination is an important ionization loss process in any ionized gas containing molecular ions. This includes the interstellar medium, circumstellar shells, cometary comae, planetary ionospheres, fusion plasma boundaries, combustion flames, laser plasmas and chemical deposition and etching plasmas. In addition to controlling the ionization density, the process generates many radical species, which can contribute to a parallel neutral chemistry. Techniques used to obtain rate data and product information (flowing afterglows and storage rings) are discussed and recent data are reviewed including diatomic to polyatomic ions and cluster ions. The data are divided into rate coefficients and cross sections, including their temperature/energy dependencies, and quantitative identification of neutral reaction products. The latter involve both ground and electronically excited states and including vibrational excitation. The data from the different techniques are compared and trends in the data are examined. The reactions are considered in terms of the basic mechanisms (direct and indirect processes including tunneling) and recent theoretical developments are discussed. Finally, new techniques are mentioned (for product identification; electrostatic storage rings, including single and double rings; Coulomb explosion) and new ways forward are suggested.

  7. Particle Energization via Tearing Instability with Global Self-Organization Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarff, John; Guo, Fan

    The presentation reviews how tearing magnetic reconnection leads to powerful ion energization in reversed field pinch (RFP) plasmas. A mature MHD model for tearing instability has been developed that captures key nonlinear dynamics from the global to intermediate spatial scales. A turbulent cascade is also present that extends to at least the ion gyroradius scale, within which important particle energization mechanisms are anticipated. In summary, Ion heating and acceleration associated with magnetic reconnection from tearing instability is a powerful process in the RFP laboratory plasma (gyro-resonant and stochastic processes are likely candidates to support the observed rapid heating and othermore » features, reconnection-driven electron heating appears weaker or even absent, energetic tail formation for ions and electrons). Global self-organization strongly impacts particle energization (tearing interactions that span to core to edge, global magnetic flux change produces a larger electric field and runaway, correlations in electric and magnetic field fluctuations needed for dynamo feedback, impact of transport processes (which can be quite different for ions and electrons), inhomogeneity on the system scale, e.g., strong edge gradients).« less

  8. Distinct dissociation kinetics between ion pairs: Solvent-coordinate free-energy landscape analysis.

    PubMed

    Yonetani, Yoshiteru

    2015-07-28

    Different ion pairs exhibit different dissociation kinetics; however, while the nature of this process is vital for understanding various molecular systems, the underlying mechanism remains unclear. In this study, to examine the origin of different kinetic rate constants for this process, molecular dynamics simulations were conducted for LiCl, NaCl, KCl, and CsCl in water. The results showed substantial differences in dissociation rate constant, following the trend kLiCl < kNaCl < kKCl < kCsCl. Analysis of the free-energy landscape with a solvent reaction coordinate and subsequent rate component analysis showed that the differences in these rate constants arose predominantly from the variation in solvent-state distribution between the ion pairs. The formation of a water-bridging configuration, in which the water molecule binds to an anion and a cation simultaneously, was identified as a key step in this process: water-bridge formation lowers the related dissociation free-energy barrier, thereby increasing the probability of ion-pair dissociation. Consequently, a higher probability of water-bridge formation leads to a higher ion-pair dissociation rate.

  9. An approximate theoretical treatment of ion transfer processes at asymmetric microscopic and nanoscopic liquid-liquid interfaces: Single and double potential pulse techniques

    NASA Astrophysics Data System (ADS)

    Molina, A.; Laborda, E.; Compton, R. G.

    2014-03-01

    Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.

  10. Relativistic electron plasma oscillations in an inhomogeneous ion background

    NASA Astrophysics Data System (ADS)

    Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil

    2018-06-01

    The combined effect of relativistic electron mass variation and background ion inhomogeneity on the phase mixing process of large amplitude electron oscillations in cold plasmas have been analyzed by using Lagrangian coordinates. An inhomogeneity in the ion density is assumed to be time-independent but spatially periodic, and a periodic perturbation in the electron density is considered as well. An approximate space-time dependent solution is obtained in the weakly-relativistic limit by employing the Bogolyubov and Krylov method of averaging. It is shown that the phase mixing process of relativistically corrected electron oscillations is strongly influenced by the presence of a pre-existing ion density ripple in the plasma background.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.J.; Warner, J.A.; LeBarron, N.

    Processes that use energetic ions for large substrates require that the time-averaged erosion effects from the ion flux be uniform across the surface. A numerical model has been developed to determine this flux and its effects on surface etching of a silica/photoresist combination. The geometry of the source and substrate is very similar to a typical deposition geometry with single or planetary substrate rotation. The model was used to tune an inert ion-etching process that used single or multiple Kaufman sources to less than 3% uniformity over a 30-cm aperture after etching 8 {micro}m of material. The same model canmore » be used to predict uniformity for ion-assisted deposition (IAD).« less

  12. Chaotic ion motion in magnetosonic plasma waves

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  13. Demonstration and Analysis of Materials Processing by Ablation Plasma Ion Implantation (APII)

    NASA Astrophysics Data System (ADS)

    Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Jones, M. C.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.

    2001-10-01

    Experiments have demonstrated laser-ablated Fe ion implantation into Si substrates. Baseline laser deposited films (0 kV) showed an amorphous Fe-Si film overlying the Si substrate with a top layer of nanocrystalline Fe. APII films exhibited an additional Fe ion-induced damage layer, extending 7.6 nm below the Si surface. The overlying Fe-Si layer and Fe top layer were amorphized by fast ions. Results were confirmed by XPS vs Ar ion etching time for depth profile of the deposited films. XPS showed primarily Fe (top layer), transitioning to roughly equal Fe/Si , then mostly Si with lower Fe (implanted region). These data clearly prove Fe ion implantation into Si, verifying the feasibility of APII as an ion acceleration and implantation process [1]. SRIM simulations predict about 20 percent deeper Fe ion penetration than data, due to:(a) Subsequent ions must pass through the Fe film deposited by earlier ions, and (b) the bias voltage has a slow rise and fall time. Theoretical research has developed the scaling laws for APII [2]. Recently, a model has successfully explained the shortening of the decay time in the high voltage pulse with the laser ablation plasma. This reduces the theoretical RC time constant, which agrees with the experimental data. * Research supported by National Science Foundation Grant CTS-9907106 [1] Appl. Phys. Lett. 78, 3785 (2001) [2] Appl. Phys. Lett. 78, 706 (2001)),

  14. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  15. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLuckey, Scott

    2016-08-30

    The overall objectives of this research effort were to expand the capabilities of spectroscopic and ion chemistry tools for the structural characterization of polyatomic ions of relevance to the broad mission of the Department of Energy. Mass spectrometry currently plays an important role in virtually all of the molecular sciences by virtue of the value of the accurate measurement of mass and the structural information that can be derived from various structural probes based on, for example, ion chemistry, ion mobility, and ion spectroscopy. Mass spectrometry has long played important roles in supporting the missions of the Department of Energymore » and its predecessor agencies, particularly in the area of isotopic analysis of nuclides. Molecular mass spectrometry has played increasingly important roles is many aspects of the production and use of energy as the nation has diversified its energy portfolio. There is an ongoing need for the expansion of the measurement capabilities associated with molecular mass spectrometry that involves both technological developments as well as improved understanding of the chemical and physical processes that take place upon ionization and ion analysis in a mass spectrometer. Advances in mass spectrometry have impacted science broadly and further advances will be required to meet the needs of current energy and environmental research. This program has historically focused on the structural characterization of polyatomic ions, usually within the context of a tandem mass spectrometry experiment. A wide variety of physical and chemical processes can take place within a mass spectrometer and advantage can be taken of such processes to enhance the quality and quantity of information that can be derived for a given chemical system of interest. For example, ions can undergo interactions with neutral molecules/atoms, light, surfaces, electrons, or oppositely charged ions. The outcomes of all such interactions can be sensitive to the structures of the ions and are therefore candidates for probes of ion structure. This program has historically focused on the chemistry and physics associated with ion/neutral interactions at both low and high translational energies, and ion/ion reactions. The former area has involved the study of ion/molecule reactions at thermal energies and the extensive study of collisional activation under a wide variety of conditions. A major area of emphasis has been collisional activation in electrodynamic ion traps. The study of gas-phase ion/ion reactions within the context of tandem mass spectrometry was initiated in this program and has grown to be a major research area in this group. Most of the focus in ion/ion chemistry has been on proton transfer and electron transfer reactions and some of the work in the previous budget period was directed, in particular, to fundamental aspects of electron transfer. Recently, the discovery of selective covalent ion/ion reactions has opened up new vistas for research that will expand significantly the capabilities of tandem mass spectrometry for the structural characterization of polyatomic ions.« less

  16. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Rubio-Roy, M.; Bertran, E.; Portal, S.; Pascual, E.; Polo, M. C.; Andújar, J. L.

    2011-02-01

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH4) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  17. Importance of ion bombardment during coverage of Au nanoparticles on their structural features and optical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resta, V.; Peláez, R. J.; Afonso, C. N.

    2014-03-28

    This work studies the changes in the optical response and morphological features of 6 ± 1 nm diameter Au nanoparticles (NPs) when covered by a layer of a-Al{sub 2}O{sub 3} by pulsed laser deposition (PLD). The laser fluence used for ablating the Al{sub 2}O{sub 3} target is varied in order to modify the kinetic energy (KE) of the species bombarding the NPs during their coverage. When the ion KE < 200 eV, the structural features and optical properties of the NPs are close to those of uncovered ones. Otherwise, a shift to the blue and a strong damping of the surface plasmon resonance is observed asmore » fluence is increased. There are two processes responsible for these changes, both related to aluminum ions arriving to the substrate during the coverage process, i.e., sputtering of the metal and implantation of aluminum species in the metal. Both processes have been simulated using standard models for ion bombardment, the calculated effective implanted depths allow explaining the observed changes in the optical response, and the use of a size-dependent sputtering coefficient for the Au NPs predicts the experimental sputtering fractions. In spite of the work is based on PLD, the concepts investigated and conclusions can straightforwardly be extrapolated to other physical vapor deposition techniques or processes involving ion bombardment of metal NPs by ions having KE > 200 eV.« less

  18. Dynamical ion transfer between coupled Coulomb crystals in a double-well potential.

    PubMed

    Klumpp, Andrea; Zampetaki, Alexandra; Schmelcher, Peter

    2017-09-01

    We investigate the nonequilibrium dynamics of coupled Coulomb crystals of different sizes trapped in a double well potential. The dynamics is induced by an instantaneous quench of the potential barrier separating the two crystals. Due to the intra- and intercrystal Coulomb interactions and the asymmetric population of the potential wells, we observe a complex reordering of ions within the two crystals as well as ion transfer processes from one well to the other. The study and analysis of the latter processes constitutes the main focus of this work. In particular, we examine the dependence of the observed ion transfers on the quench amplitude performing an analysis for different crystalline configurations ranging from one-dimensional ion chains via two-dimensional zigzag chains and ring structures to three-dimensional spherical structures. Such an analysis provides us with the means to extract the general principles governing the ion transfer dynamics and we gain some insight on the structural disorder caused by the quench of the barrier height.

  19. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  20. An ion channel library for drug discovery and safety screening on automated platforms.

    PubMed

    Wible, Barbara A; Kuryshev, Yuri A; Smith, Stephen S; Liu, Zhiqi; Brown, Arthur M

    2008-12-01

    Ion channels represent the third largest class of targets in drug discovery after G-protein coupled receptors and kinases. In spite of this ranking, ion channels continue to be under exploited as drug targets compared with the other two groups for several reasons. First, with 400 ion channel genes and an even greater number of functional channels due to mixing and matching of individual subunits, a systematic collection of ion channel-expressing cell lines for drug discovery and safety screening has not been available. Second, the lack of high-throughput functional assays for ion channels has limited their use as drug targets. Now that automated electrophysiology has come of age and provided the technology to assay ion channels at medium to high throughput, we have addressed the need for a library of ion channel cell lines by constructing the Ion Channel Panel (ChanTest Corp., Cleveland, OH). From 400 ion channel genes, a collection of 82 of the most relevant human ion channels for drug discovery, safety, and human disease has been assembled.Each channel has been stably overexpressed in human embryonic kidney 293 or Chinese hamster ovary cells. Cell lines have been selected and validated on automated electrophysiology systems to facilitate cost-effective screening for safe and selective compounds at earlier stages in the drug development process. The screening and validation processes as well as the relative advantages of different screening platforms are discussed.

  1. Spontaneous Charge Separation and Sublimation Processes are Ubiquitous in Nature and in Ionization Processes in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah; Lu, I.-Chung; Rauschenbach, Stephan; Hoang, Khoa; Wang, Beixi; Chubatyi, Nicholas D.; Zhang, Wen-Jing; Inutan, Ellen D.; Pophristic, Milan; Sidorenko, Alexander; McEwen, Charles N.

    2018-02-01

    Ionization processes have been discovered by which small and large as well as volatile and nonvolatile compounds are converted to gas-phase ions when associated with a matrix and exposed to sub-atmospheric pressure. Here, we discuss experiments further defining these simple and unexpected processes. Charge separation is found to be a common process for small molecule chemicals, solids and liquids, passed through an inlet tube from a higher to a lower pressure region, with and without heat applied. This charge separation process produces positively- and negatively-charged particles with widely different efficiencies depending on the compound and its physical state. Circumstantial evidence is presented suggesting that in the new ionization process, charged particles carry analyte into the gas phase, and desolvation of these particles produce the bare ions similar to electrospray ionization, except that solid particles appear likely to be involved. This mechanistic proposition is in agreement with previous theoretical work related to ion emission from ice.

  2. Membrane Fusion Induced by Small Molecules and Ions

    PubMed Central

    Mondal Roy, Sutapa; Sarkar, Munna

    2011-01-01

    Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306

  3. The affects on Titan atmospheric modeling by variable molecular reaction rates

    NASA Astrophysics Data System (ADS)

    Hamel, Mark D.

    The main effort of this thesis is to study the production and loss of molecular ions in the ionosphere of Saturn's largest moon Titan. Titan's atmosphere is subject to complex photochemical processes that can lead to the production of higher order hydrocarbons and nitriles. Ion-molecule chemistry plays an important role in this process but remains poorly understood. In particular, current models that simulate the photochemistry of Titan's atmosphere overpredict the abundance of the ionosphere's main ions suggesting a flaw in the modeling process. The objective of this thesis is to determine which reactions are most important for production and loss of the two primary ions, C2H5+ and HCNH+, and what is the impact of uncertainty in the reaction rates on the production and loss of these ions. In reviewing the literature, there is a contention about what reactions are really necessary to illuminate what is occurring in the atmosphere. Approximately seven hundred reactions are included in the model used in this discussion (INT16). This paper studies what reactions are fundamental to the atmospheric processes in Titan's upper atmosphere, and also to the reactions that occur in the lower bounds of the ionosphere which are used to set a baseline molecular density for all species, and reflects what is expected at those altitudes on Titan. This research was conducted through evaluating reaction rates and cross sections available in the scientific literature and through conducting model simulations of the photochemistry in Titan's atmosphere under a range of conditions constrained by the literature source. The objective of this study is to determine the dependence of ion densities of C2H5+ and HCNH+ on the uncertainty in the reaction rates that involve these two ions in Titan's atmosphere.

  4. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  5. Fast computation of high energy elastic collision scattering angle for electric propulsion plume simulation

    NASA Astrophysics Data System (ADS)

    Araki, Samuel J.

    2016-11-01

    In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.

  6. Role of sodium ions in the vitrification process: glass matrix modification, slag structure depolymerization, and influence of metal immobilization.

    PubMed

    Kuo, Yi-Ming

    2014-07-01

    This study investigates the role of Na ions, a common flux, in the vitrification process. Artificial glass systems composed of Al2O3, CaO, and SiO2 with various Na concentrations were melted at 1450 degrees C. The specimens were cooled by air cooling and water quenching and the metal mobility was evaluated using a sequential extraction procedure. The X-ray diffraction analysis and scanning electron microscopy observations showed that Na ions governed the air-cooled slag's structure. Na ions initially depolymerized CaSiO3-linked chains into CaSiO3 chains, and further cut them into shorter and nonuniform ones, making the slag structure amorphous. With even more Na ions, CaSiO3 chains were divided into single SiO4 tetrahedrons and formed Na-related crystals (Na2Ca3Si2O8 and NaAlSiO4). The phase distributions of Al, Cr, Cu Mn, and Ni showed that Na has a positive effect on the immobilization of heavy metals at suitable concentrations, but a negative effect when in excess amounts. Implications: Vitrification has been widely used to treat hazardous materials. The Na-bearing additives were often used as a flux to improve the melting process. This study described the role of Na played in the vitrification process. The Na ions acted as glass modifier and depolymerize the chain structure of slag. With adequate addition amount of Na ions, the immobilization of heavy metals was improved. The results provided much information about the crystalline phase variation, metal mobility, and surface characteristics while Na serves as a flux.

  7. Physical Processes in the Heliospheric Interface Region and their Implications for ENA Images

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; Roelof, E. C.; McComas, D. J.; Funsten, H. O.; Krimigis, S. M.; Mitchell, D. G.

    2009-12-01

    The recent in situ measurements of particles and fields by Voyager 1 and 2 spacecraft and global heliospheric maps in fluxes of energetic neutral atoms (ENAs) obtained by IBEX and Cassini/INCA have challenged our established concepts of the heliosphere interaction with the surrounding local interstellar medium. We review the physics of the interaction in an attempt to identify most important processes determining the dynamics and properties of the heliospheric sheath region. The non-thermal ion component and interstellar magnetic field clearly play significant roles in the interaction, as well as the flow of the warm interstellar plasma. We stress here that the basic conservation laws for energetic ions and neutrals constrain the processes that must be included in any valid formulation of particle transport. The termination shock can be viewed as a continuous source of energetic ions that are transported throughout the inner heliosheath, through the heliopause, and outward through the outer heliosheath and into the local interstellar medium. ENA images integrate the ENA production by energetic ions along lines of sight (LOS) that extend in principle to infinity, and hence are quite sensitive to the way that energetic ions and ENAs eventually escape this huge (~1000AU) system. Non-thermal ion and ENA space densities can be changed by three mechanisms: spatial transport (which by itself only rearranges the numbers of energetic ions and ENAs), energy gain and loss of ions in electric field, and elastic and inelastic collisions. Thus, only if these mechanisms are properly included in computational models can the salient features observed ENA images be replicated by the model simulations.

  8. Recovery of Lithium from Geothermal Brine with Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi

    In this paper, we report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloridemore » from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ~91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. Finally, the present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.« less

  9. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    PubMed

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  10. Recovery of Lithium from Geothermal Brine with Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents

    DOE PAGES

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; ...

    2017-10-27

    In this paper, we report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloridemore » from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ~91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. Finally, the present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.« less

  11. Nano-SiC region formation in (100) Si-on-insulator substrate: Optimization of hot-C+-ion implantation process to improve photoluminescence intensity

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu

    2018-04-01

    We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.

  12. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    NASA Astrophysics Data System (ADS)

    Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen

    2015-02-01

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation magnetohydrodynamic simulation of the plasma shell Z-pinch. The trailing mass is about 20% of the total mass of the shell, and the maximum trailing current is about 7% of the driven current under our trailing definition. Our PIC simulation also demonstrates that the plasma shell first experiences a snow-plow like implosion process, which is relatively stable.

  13. Mismatch in cation size causes rapid anion dynamics in solid electrolytes: the role of the Arrhenius pre-factor.

    PubMed

    Breuer, Stefan; Wilkening, Martin

    2018-03-28

    Crystalline ion conductors exhibiting fast ion dynamics are of utmost importance for the development of, e.g., sensors or rechargeable batteries. In some layer-structured or nanostructured compounds fluorine ions participate in remarkably fast self-diffusion processes. As has been shown earlier, F ion dynamics in nanocrystalline, defect-rich BaF 2 is much higher than that in the coarse-grained counterpart BaF 2 . The thermally metastable fluoride (Ba,Ca)F 2 , which can be prepared by joint high-energy ball milling of the binary fluorides, exhibits even better ion transport properties. While long-range ion dynamics has been studied recently, less information is known about local ion hopping processes to which 19 F nuclear magnetic resonance (NMR) spin-lattice relaxation is sensitive. The present paper aims at understanding ion dynamics in metastable, nanocrystalline (Ba,Ca)F 2 by correlating short-range ion hopping with long-range transport properties. Variable-temperature NMR line shapes clearly indicate fast and slow F spin reservoirs. Surprisingly, from an atomic-scale point of view increased ion dynamics at intermediate values of composition is reflected by increased absolute spin-lattice relaxation rates rather than by a distinct minimum in activation energy. Hence, the pre-factor of the underlying Arrhenius relation, which is determined by the number of mobile spins, the attempt frequency and entropy effects, is identified as the parameter that directly enhances short-range ion dynamics in metastable (Ba,Ca)F 2 . Concerted ion migration could also play an important role to explain the anomalies seen in NMR spin-lattice relaxation.

  14. Analyzing Internal Fragmentation of Electrosprayed Ubiquitin Ions During Beam-Type Collisional Dissociation

    NASA Astrophysics Data System (ADS)

    Durbin, Kenneth R.; Skinner, Owen S.; Fellers, Ryan T.; Kelleher, Neil L.

    2015-05-01

    Gaseous fragmentation of intact proteins is multifaceted and can be unpredictable by current theories in the field. Contributing to the complexity is the multitude of precursor ion states and fragmentation channels. Terminal fragment ions can be re-fragmented, yielding product ions containing neither terminus, termed internal fragment ions. In an effort to better understand and capitalize upon this fragmentation process, we collisionally dissociated the high (13+), middle (10+), and low (7+) charge states of electrosprayed ubiquitin ions. Both terminal and internal fragmentation processes were quantified through step-wise increases of voltage potential in the collision cell. An isotope fitting algorithm matched observed product ions to theoretical terminal and internal fragment ions. At optimal energies for internal fragmentation of the 10+, nearly 200 internal fragments were observed; on average each of the 76 residues in ubiquitin was covered by 24.1 internal fragments. A pertinent finding was that formation of internal ions occurs at similar energy thresholds as terminal b- and y-ion types in beam-type activation. This large amount of internal fragmentation is frequently overlooked during top-down mass spectrometry. As such, we present several new approaches to visualize internal fragments through modified graphical fragment maps. With the presented advances of internal fragment ion accounting and visualization, the total percentage of matched fragment ions increased from approximately 40% to over 75% in a typical beam-type MS/MS spectrum. These sequence coverage improvements offer greater characterization potential for whole proteins with no needed experimental changes and could be of large benefit for future high-throughput intact protein analysis.

  15. Polymer Electrolyte Through Enzyme Catalysis for High Performance Lithium-Ion Batteries

    DTIC Science & Technology

    1998-10-16

    by block number) FIELD GROUP SUB-GROUP Polymer Electrolyte, Solid State, Enzyme Catalysis, Lithium - Ion Battery , Sol Gel, High Conductivity 19...excellent candidates for lithium - ion battery development. Furthermore, the processes used to achieve the final product yield very good mechanical properties...Objectives This research was initiated to investigate synthesis of improved polymer electrolytes for lithium - ion battery applications. The overall

  16. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    NASA Astrophysics Data System (ADS)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  17. Ion-Selective Deposition of Manganese Sulphate Solution from Trenggalek Manganese Ore by Active Carbon and Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Andriyah, L.; Sulistiyono, E.

    2017-02-01

    One of the step in manganese dioxide manufacturing process for battery industry is a purification process of lithium manganese sulphate solution. The elimination of impurities such as iron removal is important in hydrometallurgical processes. Therefore, this paper present the purification results of manganese sulphate solution by removing impurities using a selective deposition method, namely activated carbon adsorption and NaOH. The experimental results showed that the optimum condition of adsorption process occurs on the addition of 5 g adsorbent and the addition of 10 ml NaOH 1 N, processing time of 30 minutes and the best is the activated carbon adsorption of Japan. Because the absolute requirement of the cathode material of lithium ion manganese are free of titanium then of local wood charcoal is good enough in terms of eliminating ions Ti is equal to 70.88%.

  18. Correlation ion mobility spectroscopy

    DOEpatents

    Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  19. Electromagnetic tornadoes in space. Ion conics along auroral field lines generated by lower hybrid waves and electromagnetic turbulence in the ion-cyclotron range of frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, T.; Crew, G.B.; Retterer, J.M.

    1988-01-01

    The exotic phenomenon of energetic ion-conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail: lower-hybrid energization of ions in the boundary layer of the plasma sheet, and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations, and analytical treatments of the heating processes are described.

  20. Advanced Manufacturing Process for Lower Cost Rechargeable Lithium-ion Batteries for DOD Including the BB2590

    DTIC Science & Technology

    2013-11-30

    Rechargeable Lithium-ion Batteries for DOD Including the BB2590 Contract #SP4701-10-C-0032 Submitted by LithChem Energy (Div. of Retriev...Lithium-ion Batteries for DOD Including the BB2590 5a. CONTRACT NUMBER AP4701-10-C-0032 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...automated lithium-ion bi-cell production machine to produce lower cost prismatic lithium-ion batteries for the DOD. This machine was completed and

  1. Review of microscopic plasma processes of occurring during refilling of the plasmasphere

    NASA Technical Reports Server (NTRS)

    Singh, N.; Torr, D. G.

    1988-01-01

    Refilling of the plasmashere after geomagnetic storms involves both macroscopic and microscopic plasma processes. The latter types of processes facilitate the refilling by trapping the plasma in the flux tube and by thermalizing the interhemispheric flow. A review of studies on microscopic processes is presented. The primary focus in this review is on the processes when the density is low and the plasma is collisionless. The discussion includes electrostatic shock formation, pitch angle scatterring extended ion heating and localized ion heating in the equatorial region.

  2. Electrodialysis operation with buffer solution

    DOEpatents

    Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  3. Power processing systems for ion thrusters.

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.

    1972-01-01

    The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.

  4. Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation.

    PubMed

    Price, W D; Schnier, P D; Williams, E R

    1996-03-01

    A new method for the dissociation of large ions formed by electrospray ionization is demonstrated. Ions trapped in a Fourier transform mass spectrometer at pressures below 10(-)(8) Torr are dissociated by elevating the vacuum chamber to temperatures up to 215 °C. Rate constants for dissociation are measured and found to be independent of pressure below 10(-)(7) Torr. This indicates that the ions are activated by absorption of blackbody radiation emitted from the chamber walls. Dissociation efficiencies as high as 100% are obtained. There is no apparent mass limit to this method; ions as large as ubiquitin (8.6 kDa) are readily dissociated. Thermally stable ions, such as melittin 3+ (2.8 kDa), did not dissociate at temperatures up to 200 °C. This method is highly selective for low-energy fragmentation, from which limited sequence information can be obtained. From the temperature dependence of the dissociation rate constants, Arrhenius activation energies in the low-pressure limit are obtained. The lowest energy dissociation processes for the singly and doubly protonated ions of bradykinin are loss of NH(3) and formation of the b(2)/y(7) complementary pair, with activation energies of 1.3 and 0.8 eV, respectively. No loss of NH(3) is observed for the doubly protonated ion; some loss of H(2)O occurs. These results show that charge-charge interactions not only lower the activation energy for dissociation but also can dramatically change the fragmentation, most likely through changes in the gas-phase conformation of the ion. Dissociation of ubiquitin ions produces fragmentation similar to that obtained by IRMPD and SORI-CAD. Higher charge state ions dissociate to produce y and b ions; the primary fragmentation process for low charge state ions is loss of H(2)O.

  5. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirker, Grant; Zelinka, Sam; Gleber, Sophie -Charlotte

    Ions play an important role in the growth and development of filamentous fungi, particularly in the fungal decay process of lignocellulose materials. The role of ions in wood degradation, and more broadly fungal metabolism, have implications for diverse research disciplines ranging from plant pathology and forest ecology, to wood protection. Despite the importance of ions in both enzymatic and non-enzymatic fungal decay mechanisms, the spatial distribution of ions in wood and fungal hyphae during decay is not known. Here we employ synchrotron based X-ray fluorescence microscopy (XFM) to map physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn,more » in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood and hyphae. Three-dimensional ion volume reconstructions with submicron spatial resolution were also acquired of wood cell walls and fungal hyphae, and an estimation of oxalate concentration at the microscale was made. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cellular length scales. Within the fungal hyphae, ion volume reconstructions show inhomogeneous ion distributions at the micron length scale and this localization may be indicative of both physiological status and requirements or in some cases, potentially sites associated with the initiation of metal-catalyzed wood degradation. Finally, these measurements illustrate how synchrotron based XFM is uniquely qualified for probing the role of ions in the growth and metabolic processes of filamentous fungi.« less

  6. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction

    DOE PAGES

    Kirker, Grant; Zelinka, Sam; Gleber, Sophie -Charlotte; ...

    2017-01-31

    Ions play an important role in the growth and development of filamentous fungi, particularly in the fungal decay process of lignocellulose materials. The role of ions in wood degradation, and more broadly fungal metabolism, have implications for diverse research disciplines ranging from plant pathology and forest ecology, to wood protection. Despite the importance of ions in both enzymatic and non-enzymatic fungal decay mechanisms, the spatial distribution of ions in wood and fungal hyphae during decay is not known. Here we employ synchrotron based X-ray fluorescence microscopy (XFM) to map physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn,more » in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood and hyphae. Three-dimensional ion volume reconstructions with submicron spatial resolution were also acquired of wood cell walls and fungal hyphae, and an estimation of oxalate concentration at the microscale was made. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cellular length scales. Within the fungal hyphae, ion volume reconstructions show inhomogeneous ion distributions at the micron length scale and this localization may be indicative of both physiological status and requirements or in some cases, potentially sites associated with the initiation of metal-catalyzed wood degradation. Finally, these measurements illustrate how synchrotron based XFM is uniquely qualified for probing the role of ions in the growth and metabolic processes of filamentous fungi.« less

  7. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  8. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less

  9. Ion-Exchanged Waveguides for Signal Processing Applications - A Novel Electrolytic Process.

    DTIC Science & Technology

    1987-03-07

    were constructed of aluminium : the thermo- limitations in the melt are not expected to dominate couple sheath was stainless steel. the exchange rate...silver ion, D is its T, C0 , and t) with Schott 8011 glass (left) and a Fisher self-diffusion coefficient, and t is the time of diffusion. microscope

  10. ELECTROLYSIS AND ION EXCHANGE FOR THE IN PROCESS RECYCLING OF COPPER FROM SEMI-CONDUCTOR PROCESSING SOLUTIONS

    EPA Science Inventory

    The objectives of the study are to develop an understanding of the electrodeposition of copper onto extended-area electrodes, and of the adsorption/desorption of copper onto ion exchange resins with a high affinity for copper. The principles elucidated in this work will pave the ...

  11. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA).

    PubMed

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard

    2014-03-01

    During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Experimental study of copper-alkali ion exchange in glass

    NASA Astrophysics Data System (ADS)

    Gonella, F.; Caccavale, F.; Bogomolova, L. D.; D'Acapito, F.; Quaranta, A.

    1998-02-01

    Copper-alkali ion exchange was performed by immersing different silicate glasses (soda-lime and BK7) in different molten eutectic salt baths (CuSO4:Na2SO4 and CuSO4:K2SO4). The obtained optical waveguides were characterized by m-lines spectroscopy for the determination of refractive index profiles, and by secondary ion mass spectrometry for the concentration profiles of the ion species involved in the exchange process. The different oxidation states of copper inside the glass structure were studied by electron paramagnetic resonance and x-ray absorption techniques. Interdiffusion copper coefficients were also determined. The Cu-alkali exchange was observed to give rise to local structural rearrangement of the atoms in the glass matrix. The Cu+ ion was found to mainly govern the exchange process, while competition between Cu-Na and K-Na exchanges occurred when a potassium sulfate bath was used. In this case, significant waveguide modal birefringence was observed.

  13. Evidence for radical anion formation during liquid secondary ion mass spectrometry analysis of oligonucleotides and synthetic oligomeric analogues: a deconvolution algorithm for molecular ion region clusters.

    PubMed

    Laramée, J A; Arbogast, B; Deinzer, M L

    1989-10-01

    It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.

  14. Effect of ion-neutral collisions on the evolution of kinetic Alfvén waves in plasmas

    NASA Astrophysics Data System (ADS)

    Goyal, R.; Sharma, R. P.

    2018-03-01

    This paper studies the effect of ion-neutral collisions on the propagation of kinetic Alfvén waves (KAWs) in inhomogeneous magnetized plasma. The inhomogeneity in the plasma imposed by background density in a direction transverse as well as parallel to the ambient magnetic field plays a vital role in the localization process. The mass loading of ions takes place due to their collisions with neutral fluid leading to the damping of the KAWs. Numerical analysis of linear KAWs in inhomogeneous magnetized plasma is done for a fixed finite frequency taking into consideration the ion-neutral collisions. There is a prominent effect of collisional damping on the wave localization, wave magnetic field, and frequency spectrum. A semi-analytical technique has been employed to study the magnetic field amplitude decay process and the effect of wave frequency in the range of ion cyclotron frequency on the propagation of waves leading to damping.

  15. Magnetospheric space plasma investigations

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1994-01-01

    A time dependent semi-kinetic model that includes self collisions and ion-neutral collisions and chemistry was developed. Light ion outflow in the polar cap transition region was modeled and compared with data results. A model study of wave heating of O+ ions in the topside transition region was carried out using a code which does local calculations that include ion-neutral and Coulomb self collisions as well as production and loss of O+. Another project is a statistical study of hydrogen spin curve characteristics in the polar cap. A statistical study of the latitudinal distribution of core plasmas along the L=4.6 field line using DE-1/RIMS data was completed. A short paper on dual spacecraft estimates of ion temperature profiles and heat flows in the plasmasphere ionosphere system was prepared. An automated processing code was used to process RIMS data from 1981 to 1984.

  16. Plasma processes in inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.

  17. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    PubMed

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron.

    PubMed

    Penkov, Oleksiy V; Lee, Heon-Ju; Plaksin, Vadim Yu; Ko, Min Gook; Joa, Sang Beom; Yim, Chan Joo

    2008-02-01

    The deposition of polycrystalline ZnO film on a cold substrate was performed by using a plasmatron in rough vacuum condition. Low energy oxygen ion beam generated by a cold cathode ion source was introduced during the deposition process. The change of film property on the ion beam energy was checked. It is shown that irradiation by 200 eV ions improves crystalline structure of the film. Increasing of ion beam energy up to 400 eV leads to the degradation of a crystalline structure and decreases the deposition rate.

  19. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  20. Method for ion implantation induced embedded particle formation via reduction

    DOEpatents

    Hampikian, Janet M; Hunt, Eden M

    2001-01-01

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  1. Runaway of energetic test ions in a toroidal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eilerman, S., E-mail: eilerman@wisc.edu; Anderson, J. K.; Sarff, J. S.

    2015-02-15

    Ion runaway in the presence of a large-scale, reconnection-driven electric field has been conclusively measured in the Madison Symmetric Torus reversed-field pinch (RFP). Measurements of the acceleration of a beam of fast ions agree well with test particle and Fokker-Planck modeling of the runaway process. However, the runaway mechanism does not explain all measured ion heating in the RFP, particularly previous measurements of strong perpendicular heating. It is likely that multiple energization mechanisms occur simultaneously and with differing significance for magnetically coupled thermal ions and magnetically decoupled tail and beam ions.

  2. Dielectronic recombination of the 4p and 4d open sub-shell tungsten ions

    NASA Astrophysics Data System (ADS)

    Li, M. J.; Fu, Y. B.; Zhang, G. D.; Zhang, Y. Z.; Dong, C. Z.; Koike, F.

    2014-04-01

    Dielectronic recombination rate coefficients are given theoretically for several highly charged tungsten ions. As 4p open sub-shell ions, Ga-, Ge-, As-, Br-, Kr-like ions are considered. Rb-like ion is further considered as a 4d open sub-shell ion. Theoretical calculations are carried out using a relativistic atomic code FAC. The effect of configuration interaction is taking into account. Inner-shell electron excitations play a significant role for the dielectronic recombination process. Simple analytical formulae are given for the total rate coefficients by fitting to the presently obtained numerical results.

  3. The Award for the Development of Ion Exchange Systems for Food Processing

    NASA Astrophysics Data System (ADS)

    Yao, Eiya

    In the food industry, ion exchange resins have been used not only for water treatment, but also for the purification of foodstuff itself. Here I will introduce some topics in the development and improvement of ion exchange systems for food proccssing that I have worked on.

  4. NSAC Recommends a Relativistic Heavy-Ion Collider.

    ERIC Educational Resources Information Center

    Physics Today, 1984

    1984-01-01

    Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)

  5. Analysis of Voltage and Current Signal Processing in a Li-ion Battery Management System

    DTIC Science & Technology

    2010-09-01

    SUBJECT TERMS Pulsed Power, Charger, Buck Converter, Field Programmable Gate Array (FPGA), Lithium - ion Batteries 16. PRICE CODE 17. SECURITY...Congressional Research Service. July 31, 2000. [3] F. E. Filler, “A Pulsed Power System Design Using Lithium - ion Batteries and One Charger per Battery

  6. Ion hole formation and nonlinear generation of electromagnetic ion cyclotron waves: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu

    2017-09-01

    Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.

  7. The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes

    NASA Astrophysics Data System (ADS)

    Clites, Mallory; Pomerantseva, Ekaterina

    2017-08-01

    Chemical pre-intercalation is a soft chemistry synthesis approach that allows for the insertion of inorganic ions into the interlayer space of layered battery electrode materials prior to electrochemical cycling. Previously, we have demonstrated that chemical pre-intercalation of Na+ ions into the structure of bilayered vanadium oxide (δ-V2O5) results in record high initial capacities above 350 mAh g-1 in Na-ion cells. This performance is attributed to the expanded interlayer spacing and predefined diffusion pathways achieved by the insertion of charge-carrying ions. However, the effect of chemical pre-intercalation of δ-V2O5 has not been studied for other ion-based systems beyond sodium. In this work, we report the effect of the chemically preintercalated alkali ion size on the mechanism of charge storage of δ- MxV2O5 (M = Li, Na, K) in Li-ion, Na-ion, and K-ion batteries, respectively. The interlayer spacing of the δ-MxV2O5 varied depending on inserted ion, with 11.1 Å achieved for Li-preintercalated δ-V2O5, 11.4 Å for Na-preintercalated δ- V2O5, and 9.6 Å for K-preintercalated δ-V2O5. Electrochemical performance of each material has been studied in its respective ion-based system (δ-LixV2O5 in Li-ion cells, δ-NaxV2O5 in Na-ion cells, and δ-KxV2O5 in K-ion cells). All materials demonstrated high initial capacities above 200 mAh g-1. However, the mechanism of charge storage differed depending on the charge-carrying ion, with Li-ion cells demonstrating predominantly pseudocapacitive behavior and Naion and K-ion cells demonstrating a significant portion of capacity from diffusion-limited intercalation processes. In this study, the combination of increased ionic radii of the charge-carrying ions and decreased synthesized interlayer spacing of the bilayered vanadium oxide phase correlates to an increase in the portion of capacity attributed diffusion-limited charge-storage processes.

  8. Extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2000-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  9. Apparatus for extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2001-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  10. Power processing units for high power solar electric propulsion

    NASA Astrophysics Data System (ADS)

    Frisbee, Robert H.; Das, Radhe S.; Krauthamer, Stanley

    An evaluation of high-power processing units (PPUs) for multimegawatt solar electric propulsion (SEP) vehicles using advanced ion thrusters is presented. Significant savings of scale are possible for PPUs used to supply power to ion thrusters operating at 0.1 to 1.5 MWe per thruster. The PPU specific mass is found to be strongly sensitive to variations in the ion thruster's power per thruster and moderately sensitive to variations in the thruster's screen voltage due to varying the I(sp) of the thruster. Each PPU consists of a dc-to-dc converter to increase the voltage from the 500 V dc of the photovoltaic power system to the 5 to 13 kV dc required by the ion thrusters.

  11. Power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.

    1974-01-01

    A thermal vacuum power processor for the NASA Lewis 30cm Mercury Ion Engine was designed, fabricated and tested to determine compliance with electrical specifications. The power processor breadboard used the silicon controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to an ion engine. The power processor includes a digital interface unit to process all input commands and internal telemetry signals so that operation is compatible with a central computer system. The breadboard was tested in a thermal vacuum environment. Integration tests were performed with the ion engine and demonstrate operational compatibility and reliable operation without any component failures. Electromagnetic interference data were also recorded on the design to provide information on the interaction with total spacecraft.

  12. Simplified power processing for ion-thruster subsystems

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Hancock, D. J.

    1983-01-01

    Compared to chemical propulsion, ion propulsion offers distinct payload-mass increases for many future low-thrust earth-orbital and deep-space missions. Despite this advantage, the high initial cost and complexity of ion-propulsion subsystems reduce their attractiveness for most present and near-term spacecraft missions. Investigations have, therefore, been conducted with the objective to attempt to simplify the power-processing unit (PPU), which is the single most complex and expensive component in the thruster subsystem. The present investigation is concerned with a program to simplify the design of the PPU employed in a 8-cm mercury-ion-thruster subsystem. In this program a dramatic simplification in the design of the PPU could be achieved, while retaining essential thruster control and subsystem operational flexibility.

  13. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  14. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-08

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.

  15. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  16. Are ion acoustic waves supported by high-density plasmas in the Large Plasma Device (LaPD)?

    NASA Astrophysics Data System (ADS)

    Roycroft, Rebecca; Dorfman, Seth; Carter, Troy A.; Gekelman, Walter; Tripathi, Shreekrishna

    2012-10-01

    Ion acoustic waves are a type of longitudinal wave in a plasma, propagating though the motion of the ions. The wave plays a key role in a parametric decay process thought to be responsible for the spectrum of turbulence observed in the solar wind. In recent LaPD experiments aimed at studying this process, modes thought to be ion acoustic waves are strongly damped when the pump Alfven waves are turned off. This observation motivates an experiment focused on directly launching ion acoustic waves under similar conditions. Our first attempt to launch ion acoustic waves using a metal grid in the plasma was unsuccessful at high magnetic fields and densities due to electrons shorting out the bias applied between the grid and the wall. Results from a new device based on [1] to launch ion acoustic waves will be presented; this device will consist of a small chamber with a plasma source separated from the main chamber by two biased grids. The plasma created inside the small device will be held at a different potential from the main plasma; modulation of this difference should affect the ions, allowing ion acoustic waves to be launched and their properties compared to the prior LaPD experiments.[4pt] [1] W. Gekelman and R. L. Stenzel, Phys. Fluids 21, 2014 (1978).

  17. Ion-plating of solar cell arrays encapsulation task: LSA project 32

    NASA Technical Reports Server (NTRS)

    Volkers, J. C.

    1983-01-01

    An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.

  18. Adiabatic model of field reversal by fast ions in an axisymmetric open trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsidulko, Yu. A., E-mail: tsidulko@mail.ru

    2016-06-15

    A model of field reversal by fast ions has been developed under the assumption of preservation of fast-ion adiabatic invariants. Analytical solutions obtained in the approximation of a narrow fast-ion layer and numerical solutions to the evolutionary problem are presented. The solutions demonstrate the process of formation of a field reversed configuration with parameters close to those of the planned experiment.

  19. Ion Permeability of a Microtubule in Neuron Environment.

    PubMed

    Shen, Chun; Guo, Wanlin

    2018-04-19

    Microtubules, constituted by end-to-end negatively charged α- and β-tubulin dimers, are long, hollow, pseudohelical cylinders with internal and external diameters of about 16 and 26 nm, respectively, and widely exist in cell cytoplasm, neuron axons, and dendrites. Although their structural functions in physiological processes, such as cell mitosis, cell motility, and motor protein transport, have been widely accepted, their role in neuron activity remains attractively elusive. Here we show a new function of microtubules: they can generate instant response to a calcium pulse because of their specific permeability for ions. Our comprehensive simulations from all-atom molecular dynamics to potential of mean force and continuum modeling reveal that K + and Na + ions can permeate through the nanopores in the microtubule wall easily, while Ca 2+ ions are blocked by the wall with a much higher free energy barrier. These cations are adsorbed to the surfaces of the wall with affinity decreasing in the sequence Ca 2+ , Na + , and K + . As a result, when the concentration of Ca 2+ ions increases outside the microtubule during neuronal excitation, K + and Na + ions will be driven into the microtubule, triggering subsequent axial ion redistribution within the microtubule. The results shed light on the possibility of the ion-permeable microtubules being involved in neural signal processing.

  20. Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted 163Ho ions

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Ranitzsch, P. C.-O.; von Seggern, F.; Porst, J.-P.; Schäfer, S.; Pies, C.; Kempf, S.; Wolf, T.; Fleischmann, A.; Enss, C.; Herlert, A.; Johnston, K.

    2013-05-01

    For the first time we have investigated the behavior of fully micro-fabricated low temperature metallic magnetic calorimeters (MMCs) after undergoing an ion-implantation process. This experiment had the aim to show the possibility to perform a high precision calorimetric measurement of the energy spectrum following the electron capture of 163Ho using MMCs having the radioactive 163Ho ions implanted in the absorber. The isotope 163Ho decays through electron capture to 163Dy and features the smallest known QEC value. This peculiarity makes 163Ho a very interesting candidate to investigate the value of the electron neutrino mass by the analysis of the energy spectrum. The implantation of 163Ho ions was performed at ISOLDE-CERN. The performance of a detector that underwent an ion-implantation process is compared to the one of a detector without implanted ions. The results show that the implantation dose of ions used in this experiment does not compromise the properties of the detector. Moreover the performance of the detector prototype having the 163Ho ions implanted in the absorber is already close to the requirements needed for an experiment with sub-eV sensitivity to the electron neutrino mass. Based on these results, an optimized detector design for future 163Ho experiments is presented.

  1. Studying ion exchange in solution and at biological membranes by FCS.

    PubMed

    Widengren, Jerker

    2013-01-01

    By FCS, a wide range of processes can be studied, covering time ranges from subnanoseconds to seconds. In principle, any process at equilibrium conditions can be measured, which reflects itself by a change in the detected fluorescence intensity. In this review, it is described how FCS and variants thereof can be used to monitor ion exchange, in solution and along biological membranes. Analyzing fluorescence fluctuations of ion-sensitive fluorophores by FCS offers selective advantages over other techniques for measuring local ion concentrations, and, in particular, for studying exchange kinetics of ions on a very local scale. This opens for several areas of application. The FCS approach was used to investigate fundamental aspects of proton exchange at and along biological membranes. The protonation relaxation rate, as measured by FCS for a pH-sensitive dye, can also provide information about local accessibility/interaction of a particular labeling site and conformational states of biomolecules, in a similar fashion as in a fluorescence quenching experiment. The same FCS concept can also be applied to ion exchange studies using other ion-sensitive fluorophores, and by use of dyes sensitive to other ambient conditions the concept can be extended also beyond ion exchange studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Folding process of silk fibroin induced by ferric and ferrous ions

    NASA Astrophysics Data System (ADS)

    Ji, Dan; Deng, Yi-Bin; Zhou, Ping

    2009-12-01

    Bombyx mori silk fiber has useful mechanical properties largely due to a high content of ordered β-sheet crystallites separated by non-crystalline spacers. Metallic ions present in the silk dope in nature could affect the β-sheet content. In this work, we used solid-state 13C NMR, EPR and Raman spectroscopy to investigate how the ferric/ferrous ions affect the folding process of the silk fibroin. NMR and Raman results indicate that ferric and ferrous ions have different effects on the secondary structure of silk fibroin. Ferric ions can induce a conformation change from helix to β-sheet form in silk fibroin when their concentration exceeds a critical value, while ferrous ions cannot. EPR results indicate that the ferric ions bound with silk fibroin have a high-spin state ( S = 5/2) with g-value of g1 = 1.950, g2 = 1.990 and g3 = 1.995, zero-field splitting interaction D of 1.2-2 cm -1, and symmetric character of E/ D = 1/3, resulting in an effective g-value of g' = 4.25. The hydrophilic spacer GTGSSGFGPYVAN(H)GGYSGYEYAWSSESDFGT in the heavy chain of silk fibroin is likely to be involved in the binding of ferric ions, and His, Asn and Tyr residues are considered as the potential binding sites.

  3. Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities.

    PubMed

    Koivisto, H; Kalvas, T; Tarvainen, O; Komppula, J; Laulainen, J; Kronholm, R; Ranttila, K; Tuunanen, J; Thuillier, T; Xie, D; Machicoane, G

    2016-02-01

    Several ion source related research and development projects are in progress at the Department of Physics, University of Jyväskylä (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radiofrequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnet 18 GHz ECRIS, HIISI.

  4. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces.

    PubMed

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M; Brown, Warren; Liu, Juan; Wang, Gangli

    2015-01-01

    The dynamics of ion transport at nanostructured substrate-solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current-potential ( I - V ) measurements and theoretical analyses. First, a unique non-zero I - V cross-point and pinched I - V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging-discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current-potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.

  5. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    DOE PAGES

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; ...

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less

  6. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Heqiao; Liu Jianying; Malkas, Linda H.

    2009-04-15

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediatedmore » by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC{sub 50} of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases {alpha}, {delta} and {epsilon} is 15, 45 and 125 {mu}M, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC{sub 50} = 88 {mu}M), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells.« less

  7. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    PubMed Central

    Dai, Heqiao; Liu, Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi; Hickey, Robert J.

    2009-01-01

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC50 of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases α, δ and ε is 15, 45 and 125 μM, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC50 =88 μM), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2–13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr (III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells. PMID:19371627

  8. Collision cross section (CCS) measurement by ion cyclotron resonance mass spectrometry with short-time Fourier transform.

    PubMed

    Hu, Miao; Zhang, Linzhou; He, Shan; Xu, Chunming; Shi, Quan

    2018-05-15

    The collision cross section (CCS) is an important shape parameter which is often used in molecular structure investigation. In Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), the CCS affects the ion signal damping shape due to the effect of ion-neutral collisions. It is potential to obtain ion CCS values from FTICR-MS with the help of a proper ion-collision model. We have developed a rapid method to obtain the ion damping profile and CCS for mixtures by only one FTICR-MS measurement. The method utilizes short-time Fourier transform (STFT) to process FTICR-MS time domain signals. The STFT-processed result is a three-dimensional (3D) spectrum which has an additional time axis in addition to the conventional mass-to-charge ratio and intensity domains. The damping profile of each ion can be recognized from the 3D spectrum. After extracting the decay profile of a specified ion, all the three ion-neutral collision models were tested in curve fitting. The hard-sphere model was proven to be suitable for our experimental setup. A linear relationship was observed between the CCS value and hard-sphere model parameters. Therefore, the CCS values of all the peaks were obtained through the addition of internal model compounds and linear calibration. The proposed method was successfully applied to determine the CCSs of fatty acids and polyalanines in a petroleum gas oil matrix. This technique can be used for simultaneous measurement of cross sections for many ions in congested spectra. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  10. Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics

    PubMed Central

    Canterbury, Jesse D.; Merrihew, Gennifer E.; Goodlett, David R.; MacCoss, Michael J.; Shaffer, Scott A.

    2015-01-01

    A common strategy in mass spectrometry analyses of complex protein mixtures is to digest the proteins to peptides, separate the peptides by microcapillary liquid chromatography and collect tandem mass spectra (MS/MS) on the eluting, complex peptide mixtures, a process commonly termed “shotgun proteomics”. For years, the most common way of data collection was via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest, a process often leaving lower abundant signals unanalyzed and therefore unidentified in the experiment. Advances in both instrumentation duty cycle and sensitivity allow DDA to probe to lower peptide abundance and therefore enable mapping proteomes to a more significant depth. An alternative to acquiring data by DDA is by data-independent acquisition (DIA), in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum. As a consequence, DIA acquisition potentially offers more comprehensive analysis of peptides than DDA and in principle can yield tandem mass spectra of all ionized molecules following their conversion to the gas-phase. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified in-house with an electrodynamic ion funnel, and an LTQ-Velos. These instruments were chosen as they are representative of both older (LTQ) and newer (LTQ-Velos) ion trap designs i.e., linear ion trap and dual ion traps, respectively, and allow direct comparison of peptide identification using both DDA and DIA analysis. Further, as the LTQ-Velos has an improved “S-lens” ion guide in the high-pressure region to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, while the faster scanning LTQ-Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design. PMID:25261218

  11. Golf ball-assisted electrospray ionization of mass spectrometry for the determination of trace amino acids in complex samples.

    PubMed

    Li, Yen-Hsien; Chen, Chung-Yu; Kuo, Cheng-Hsiung; Lee, Maw-Rong

    2016-09-28

    During the electrospray ionization (ESI) process, ions move through a heated capillary aperture to be detected on arrival at a mass analyzer. However, the ESI process creates an ion plume, which expands into an ion cloud with an area larger than that of the heated capillary aperture, significantly contributing to an ion loss of 50% due to coulombic repulsion. The use of DC and RF fields to focus ions from the ion source into the vacuum chamber has been proposed in the literature, but the improvement of ion transmission efficiency is limited. To improve ion transmission, in this study we propose a novel method using a home-made golf ball positioned between the ion source and the inlet of the mass analyzer to hydrodynamically focus the ions passing through the golf ball. The ion plume produced by the ESI process passes through the golf ball will reduce the size of the ion cloud then be focused and most of them flowed into the mass analyzer. Therefore, the sensitivity will be improved, the aim of this investigation is to study the enhancing of the signal using golf ball-assisted electrospray ionization liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine 20 trace amino acids in complex samples, including tea, urine and serum. The results showed that the analytical performance of the determination of the 20 amino acids in tea, urine and serum samples using the home-made golf ball-assisted ESI source is better than that of a commercial ESI source. The signal intensities of the 20 amino acids were enhanced by factors of 2-2700, 11-2525, and 31-342680 in oolong tea, urine and serum analyses, respectively. The precision of the proposed method ranged from 1-9%, 0.4-9% and 0.4-8% at low, medium and high concentration levels of amino acids, respectively. The home-made golf ball-assisted ESI source effectively increased the signal intensity and enhanced the ion transmission efficiency and is also an easy, convenient and economical device. This technique can be applied to the analysis of trace compounds in complex matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.

    PubMed

    Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E

    2011-06-10

    Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.

  13. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process

    NASA Astrophysics Data System (ADS)

    Huang, Yanfang; Han, Guihong; Liu, Jiongtian; Chai, Wencui; Wang, Wenjuan; Yang, Shuzhen; Su, Shengpeng

    2016-09-01

    The recovering of valuable metals in spent lithium-ion battery cathodes brings about economic and environmental benefits. A stepwise leaching-flotation-precipitation process is adopted to separate and recover Li/Fe/Mn from the mixed types of cathode materials (hybrid wastes of LiFePO4 and LiMn2O4). The optimal operating conditions for the stepwise recovery process are determined and analyzed by factorial design, thermodynamics calculation, XRD and SEM characterization in this study. First, Li/Fe/Mn ions are released from the cathode using HCl assisted with H2O2 in the acid leaching step. The leachability of metals follows the series Li > Fe > Mn in the acidic environment. Then Fe3+ ions are selectively floated and recovered as FeCl3 from the leachate in the flotation step. Finally, Mn2+/Mn3+ and Li+ ions are sequentially precipitated and separated as MnO2/Mn2O3 and Li3PO4 using saturated KMnO4 solution and hot saturated Na3PO4 solution, respectively. Under the optimized and advisable conditions, the total recovery of Li, Fe and Mn is respectively 80.93 ± 0.16%, 85.40 ± 0.12% and 81.02 ± 0.08%. The purity for lithium, ferrum and manganese compounds is respectively 99.32 ± 0.07%, 97.91 ± 0.05% and 98.73 ± 0.05%. This stepwise process could provide an alternative way for the effective separation and recovery of metal values from spent Li-ion battery cathodes in industry.

  14. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B.

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) -• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H• and H+, it can be termed oxidative ionization. The superoxide radical-anion (O2 -•), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2 -• adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) - ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2 -• present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained.

  15. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  16. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    PubMed

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  17. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    PubMed

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  18. The pH and ionic composition of stratiform cloud water

    NASA Astrophysics Data System (ADS)

    Castillo, Raymond A.; Jiusto, James E.; Mclaren, Eugene

    Over 50 cloud water samples were collected during five comprehensive case studies of the water chemistry of stratiform clouds at Whiteface Mountain, New York. The water samples were analyzed for pH, conductivity and ions of sodium, potassium, magnesium, calcium, ammonium, sulfate, chloride and nitrate. Trajectory analyses and cloud condensation nucleus concentrations at 0.5 % confirmed that the air masses in all five of these cases represented continental air that was relatively clean (low aerosol concentration) for the northeystern United States. The major ions related to cloud water pH were found to be sulfate, nitrate, potassium, ammonium and calcium. The results revealed a mean hydrogen ion concentration [ H+] = 0.239 meq ℓ -1 ( σ = ± 0.21) which converts to a mean pH = 3.6 for all collected cloud samples. The low pH values are related to a normal background of nitrate ions found in the rural continental air masses plus sulfate ions largely from the industrial emissions of the midwestern United States. The [NO -3], in two of the three cases presented, demonstrates the importance of the nitrate ions' contribution to the pH of cloud water. A dependent means analysis of 40 events yielded a significant difference (0.04 level of significance), with the mean pH of precipitation (4.2) being greater than the mean pH of cloud water (4.0) for event samples. The ion concentrations indicated that the cloud rainout process contributed from 67 % to almost 100% of the total ion concentration of the precipitation. The washout process, i.e. precipitation scavenging below the cloud base, contributed considerably less than the cloud/rainout process of those total precipitation anions associated with air pollution.

  19. FTIR study of silicon carbide amorphization by heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Pluchery, Olivier

    2017-03-01

    We have measured at room temperature (RT) the Fourier-transform infra-red (FTIR) absorption spectra of ion-irradiated thin epitaxial films of cubic silicon carbide (3C-SiC) with 1.1 µm thickness on a 500 µm thick (1 0 0) silicon wafer substrate. Irradiations were carried out at RT with 2.3 MeV 28Si+ ions and 3.0 MeV 84Kr+ ions for various fluences in order to induce amorphization of the SiC film. Ion projected ranges were adjusted to be slightly larger than the film thickness so that the whole SiC layers were homogeneously damaged. FTIR spectra of virgin and irradiated samples were recorded for various incidence angles from normal incidence to Brewster’s angle. We show that the amorphization process in ion-irradiated 3C-SiC films can be monitored non-destructively by FTIR absorption spectroscopy without any major interference of the substrate. The compared evolutions of TO and LO peaks upon ion irradiation yield valuable information on the damage process. Complementary test experiments were also performed on virgin silicon nitride (Si3N4) self-standing films for similar conditions. Asymmetrical shapes were found for TO peaks of SiC, whereas Gaussian profiles are found for LO peaks. Skewed Gaussian profiles, with a standard deviation depending on wave number, were used to fit asymmetrical peaks for both materials. A new methodology for following the amorphization process is proposed on the basis of the evolution of fitted IR absorption peak parameters with ion fluence. Results are discussed with respect to Rutherford backscattering spectrometry channeling and Raman spectroscopy analysis.

  20. Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.

    2015-05-01

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )He 3 -reacted neutrons (DD beam-fusion neutrons) with the yield of 5 ×108 n /4 π sr . Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6 ×107 n /4 π sr , raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g /cm3 in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g /cm3 ); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

Top