Sample records for spectrometer aviris sensor

  1. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): Sensor improvements for 1994 and 1995

    NASA Technical Reports Server (NTRS)

    Sarture, C. M.; Chrien, T. G.; Green, R. O.; Eastwood, M. L.; Raney, J. J.; Hernandez, M. A.

    1995-01-01

    AVIRIS is a NASA-sponsored Earth-remote-sensing imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory (JPL). While AVIRIS has been operational since 1989, major improvements have been completed in most of the sensor subsystems during the winter maintenance cycles. As a consequence of these efforts, the capabilities of AVIRIS to reliably acquire and deliver consistently high quality, calibrated imaging spectrometer data continue to improve annually, significantly over those in 1989. Improvements to AVIRIS prior to 1994 have been described previously. This paper details recent and planned improvements to AVIRIS in the sensor task.

  2. Use of the Airborne Visible/Infrared Imaging Spectrometer to calibrate the optical sensor on board the Japanese Earth Resources Satellite-1

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.; Vandenbosch, Jeannette; Shimada, Masanobu

    1993-01-01

    We describe an experiment to calibrate the optical sensor (OPS) on board the Japanese Earth Resources Satellite-1 with data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). On 27 Aug. 1992 both the OPS and AVIRIS acquired data concurrently over a calibration target on the surface of Rogers Dry Lake, California. The high spectral resolution measurements of AVIRIS have been convolved to the spectral response curves of the OPS. These data in conjunction with the corresponding OPS digitized numbers have been used to generate the radiometric calibration coefficients for the eight OPS bands. This experiment establishes the suitability of AVIRIS for the calibration of spaceborne sensors in the 400 to 2500 nm spectral region.

  3. Water Vapor Sensitivity Analysis for AVIRIS Radiactive-Transfer-Model-Based Reflectance Inversion

    NASA Technical Reports Server (NTRS)

    Green, R.

    2000-01-01

    As with other imaging spectrometers, AVIRIS measures the upwelling specral radiance incident at the sensor. Most research and applications objectives for AVIRIS are based on the molecular absorption and scattering features expressed in the surface reflectance.

  4. Analysis of the boreal forest-tundra ecotone: A test of AVIRIS capabilities in the Eastern Canadian subarctic

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Petzold, Donald E.

    1989-01-01

    A comparison was conducted between ground reflectance spectra collected in Schefferville, Canada and imaging spectrometer observations acquired by the AVIRIS sensor in a flight of the ER-2 Aircraft over the same region. The high spectral contrasts present in the Canadian Subarctic appeared to provide an effective test of the operational readiness of the AVIRIS sensor. Previous studies show that in this location various land cover materials possess a wide variety of visible/near infrared reflectance properties. Thus, this landscape served as an excellent test for the sensing variabilities of the newly developed AVIRIS sensor. An underlying hypothesis was that the unique visible/near infrared spectral reflectance patterns of Subarctic lichens could be detected from high altitudes by this advanced imaging spectrometer. The relation between lichen occurrence and boreal forest-tundra ecotone dynamics was investigated.

  5. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

  6. Detection of spectral line curvature in imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Neville, Robert A.; Sun, Lixin; Staenz, Karl

    2003-09-01

    A procedure has been developed to measure the band-centers and bandwidths for imaging spectrometers using data acquired by the sensor in flight. This is done for each across-track pixel, thus allowing the measurement of the instrument's slit curvature or spectral 'smile'. The procedure uses spectral features present in the at-sensor radiance which are common to all pixels in the scene. These are principally atmospheric absorption lines. The band-center and bandwidth determinations are made by correlating the sensor measured radiance with a modelled radiance, the latter calculated using MODTRAN 4.2. Measurements have been made for a number of instruments including Airborne Visible and Infra-Red Imaging Spectrometer (AVIRIS), SWIR Full Spectrum Imager (SFSI), and Hyperion. The measurements on AVIRIS data were performed as a test of the procedure; since AVIRIS is a whisk-broom scanner it is expected to be free of spectral smile. SFSI is an airborne pushbroom instrument with considerable spectral smile. Hyperion is a satellite pushbroom sensor with a relatively small degree of smile. Measurements of Hyperion were made using three different data sets to check for temporal variations.

  7. Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1988-01-01

    The focus of the workshop was the assessment of data quality by the AVIRIS project. Summaries of 16 of the presentations are published. The AVIRIS performance evaluation period began in June 87 with flight data collection in the eastern U.S., and continued in the west until Oct. 87, after which the instrument was returned for post flight calibration. At the beginning, the sensor met all of the spatial, spectral and radiometric performance requirements except in spectrometer D, where the signal to noise ratio was below the required value. By the end, sensor performance had deteriorated due to failure of 2 critical parts and to some design deficiences. The independent assessment by the NASA investigators confirmed the assessment by the AVIRIS project. Some scientific results were derived and are presented. These include the mapping of the spatial variation of atmospheric precipitable water, detection of shift in chlorophyll red, and mineral identification.

  8. AVIRIS calibration and application in coastal oceanic environments

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.

    1992-01-01

    The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) is a test-bed for future spacecraft sensors such as the High-Resolution Imaging Spectrometer and the Moderate-Resolution Imaging Spectrometers planned for the Earth Observing System. To use this sensor for ocean applications, S/N was increased by spatial averaging of images. Post-flight recalibration was accomplished using in situ the water-leaving radiance measured at flight time, modeling radiance transmission to the aircraft, and adding modeled atmospheric radiance to that value. The preflight calibration curve was then adjusted until aircraft and modeled total radiance values matched. Water-leaving radiance values from the recalibrated AVIRIS imagery were consistent with in situ data supporting the validity of the approach. Imagery of the absorption coefficient at 415 nm and backscattering coefficient at 671 nm were used to depict the dissolved and particulate constituents of an ebb-tidal esturance plume on the East coast of Florida.

  9. Evaluation of Sun Glint Correction Algorithms for High-Spatial Resolution Hyperspectral Imagery

    DTIC Science & Technology

    2012-09-01

    ACRONYMS AND ABBREVIATIONS AISA Airborne Imaging Spectrometer for Applications AVIRIS Airborne Visible/Infrared Imaging Spectrometer BIL Band...sensor bracket mount combining Airborne Imaging Spectrometer for Applications ( AISA ) Eagle and Hawk sensors into a single imaging system (SpecTIR 2011...The AISA Eagle is a VNIR sensor with a wavelength range of approximately 400–970 nm and the AISA Hawk sensor is a SWIR sensor with a wavelength

  10. Estimation of crown closure from AVIRIS data using regression analysis

    NASA Technical Reports Server (NTRS)

    Staenz, K.; Williams, D. J.; Truchon, M.; Fritz, R.

    1993-01-01

    Crown closure is one of the input parameters used for forest growth and yield modelling. Preliminary work by Staenz et al. indicates that imaging spectrometer data acquired with sensors such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) have some potential for estimating crown closure on a stand level. The objectives of this paper are: (1) to establish a relationship between AVIRIS data and the crown closure derived from aerial photography of a forested test site within the Interior Douglas Fir biogeoclimatic zone in British Columbia, Canada; (2) to investigate the impact of atmospheric effects and the forest background on the correlation between AVIRIS data and crown closure estimates; and (3) to improve this relationship using multiple regression analysis.

  11. AVIRIS data calibration information: Wasatch Mountains and Park City region, Utah

    USGS Publications Warehouse

    Rockwell, Barnaby W.; Clark, Roger N.; Livo, K. Eric; McDougal, Robert R.; Kokaly, Raymond F.

    2002-01-01

    This report contains information regarding the reflectance calibration of spectroscopic imagery acquired over the Wasatch Mountains and Park City region, Utah, by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor on August 5, 1998. This information was used by the USGS Spectroscopy Laboratory to calibrate the Park City AVIRIS imagery to unitless reflectance prior to spectral analysis.  The Utah AVIRIS data were analyzed as a part of the USEPA-USGS Utah Abandoned Mine Lands Imaging Spectroscopy Project.

  12. First results from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg

    1987-01-01

    After engineering flights aboard the NASA U-2 research aircraft in the winter of 1986 to 1987 and spring of 1987, extensive data collection across the United States was begun with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in the summer of 1987 in support of a NASA data evaluation and technology assessment program. This paper presents some of the first results obtained from AVIRIS. Examples of spectral imagery acquired over Mountain View and Mono Lake, California, and the Cuprite Mining District in western Nevada are presented. Sensor performance and data quality are described, and in the final section of this paper, plans for the future are discussed.

  13. AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.

    1988-01-01

    Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.

  14. Imaging Spectroscopy Enables Novel Applications and Continuity with the Landsat Record to Sustain Legacy Applications: An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Landsat 8 OLI Case Study

    NASA Astrophysics Data System (ADS)

    Stavros, E. N.; Seidel, F.; Cable, M. L.; Green, R. O.; Freeman, A.

    2017-12-01

    While, imaging spectrometers offer additional information that provide value added products for applications that are otherwise underserved, there is need to demonstrate their ability to augment the multi-spectral (e.g., Landsat) optical record by both providing more frequent temporal revisit and lengthening the existing record. Here we test the hypothesis that imaging spectroscopic optical data is compatible with multi-spectral data to within ±5% radiometric accuracy, as desirable to continue the long-term Landsat data record. We use a coincident Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) flight with over-passing Operational Land Imager (OLI) data on Landsat 8 to document a procedure for simulating OLI multi-spectral bands from AVIRIS, evaluate influencing factors on the observed radiance, and assess AVIRIS radiometric accuracy compared to OLI. The procedure for simulating OLI data includes spectral convolution, accounting for atmospheric effects introduced by different sensor altitude and viewing geometries, and spatial resampling. After accounting for these influences, we expect the remaining differences between the simulated and the real OLI data result from differences in sensor calibration, surface bi-directional reflectance, from the different viewing geometries, and spatial sampling. The median radiometric percent difference for each band in the data used range from 0.6% to 8.3%. After bias-correction to minimize potential calibration discrepancies, we find no more than 1.2% radiometric percent difference for any OLI band. This analysis therefore successfully demonstrates that imaging spectrometer data can not only address novel applications, but also contribute to the Landsat-type or other multi-spectral data records to sustain legacy applications.

  15. Estimating the signal-to-noise ratio of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.

    1988-01-01

    To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.

  16. AVIRIS user's guide

    NASA Technical Reports Server (NTRS)

    Johnson, Howell K.; Green, Robert O.

    1995-01-01

    This paper serves as a brief overview of the AVIRIS instrument (Airborne Visible/Infrared Imaging Spectrometer). The AVIRIS sensor collects data that will be used for quantitative characterization of the Earth's surface and atmosphere from geometrically coherent spectroradiometric measurements. This data can be applied to studies in the fields of oceanography, environmental science, snow hydrology, geology, volcanology, soil and land management, atmospheric and aerosol studies, agriculture, and limnology. Applications under development include the assessment and monitoring of environmental hazards such as toxic waste, oil spills, and land/air/water pollution. Mission planning and flight operations are discussed, and recommendations are given regarding the deployment of ground truth experiments.

  17. Mineral Mapping Using AVIRIS Data at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    McCubbin, Ian; Lang, Harold; Green, Robert O.; Roberts, Dar

    1998-01-01

    Imaging Spectroscopy enables the identification and mapping of surface mineralogy over large areas. This study focused on assessing the utility of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for environmental impact analysis over the Environmental Protection Agency's (EPA) high priority Superfund site Ray Mine, AZ. Using the Spectral Angle Mapper (SAM) algorithm to analyze AVIRIS data makes it possible to map surface materials that are indicative of acid generating minerals. The improved performance of the AVIRIS sensor since 1996 provides data with sufficient signal to noise ratio to characterize up to 8 image endmembers. Specifically we employed SAM to map minerals associated with mine generated acid waste, namely jarositc, goethite, and hematite, in the presence of a complex mineralogical background.

  18. AVIRIS data characteristics and their effects on spectral discrimination of rocks exposed in the Drum Mountains, Utah: Results of a preliminary study

    NASA Technical Reports Server (NTRS)

    Bailey, G. B.; Dwyer, J. L.; Meyer, D. J.

    1988-01-01

    Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over a geologically diverse field site and over a nearby calibration site were analyzed and interpreted in efforts to document radiometric and geometric characteristics of AVIRIS, quantify and correct for detrimental sensor phenomena, and evaluate the utility of AVIRIS data for discriminating rock types and identifying their constituent mineralogy. AVIRIS data acquired for these studies exhibit a variety of detrimental artifacts and have lower signal-to-noise ratios than expected in the longer wavelength bands. Artifacts are both inherent in the image data and introduced during ground processing, but most may be corrected by appropriate processing techniques. Poor signal-to-noise characteristics of this AVIRIS data set limited the usefulness of the data for lithologic discrimination and mineral identification. Various data calibration techniques, based on field-acquired spectral measurements, were applied to the AVIRIS data. Major absorption features of hydroxyl-bearing minerals were resolved in the spectra of the calibrated AVIRIS data, and the presence of hydroxyl-bearing minerals at the corresponding ground locations was confirmed by field data.

  19. Evaluation of Landscape Structure Using AVIRIS Quicklooks and Ancillary Data

    NASA Technical Reports Server (NTRS)

    Sanderson, Eric W.; Ustin, Susan L.

    1998-01-01

    Currently the best tool for examining landscape structure is remote sensing, because remotely sensed data provide complete and repeatable coverage over landscapes in many climatic regimes. Many sensors, with a variety of spatial scales and temporal repeat cycles, are available. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has imaged over 4000 scenes from over 100 different sites throughout North America. For each of these scenes, one-band "quicklook" images have been produced for review by AVIRIS investigators. These quicklooks are free, publicly available over the Internet, and provide the most complete set of landscape structure data yet produced. This paper describes the methodologies used to evaluate the landscape structure of quicklooks and generate corresponding datasets for climate, topography and land use. A brief discussion of preliminary results is included at the end. Since quicklooks correspond exactly to their parent AVIRIS scenes, the methods used to derive climate, topography and land use data should be applicable to any AVIRIS analysis.

  20. Lossless compression of AVIRIS data: Comparison of methods and instrument constraints

    NASA Technical Reports Server (NTRS)

    Roger, R. E.; Arnold, J. F.; Cavenor, M. C.; Richards, J. A.

    1992-01-01

    A family of lossless compression methods, allowing exact image reconstruction, are evaluated for compressing Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) image data. The methods are used on Differential Pulse Code Modulation (DPCM). The compressed data have an entropy of order 6 bits/pixel. A theoretical model indicates that significantly better lossless compression is unlikely to be achieved because of limits caused by the noise in the AVIRIS channels. AVIRIS data differ from data produced by other visible/near-infrared sensors, such as LANDSAT-TM or SPOT, in several ways. Firstly, the data are recorded at a greater resolution (12 bits, though packed into 16-bit words). Secondly, the spectral channels are relatively narrow and provide continuous coverage of the spectrum so that the data in adjacent channels are generally highly correlated. Thirdly, the noise characteristics of the AVIRIS are defined by the channels' Noise Equivalent Radiances (NER's), and these NER's show that, at some wavelengths, the least significant 5 or 6 bits of data are essentially noise.

  1. Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.

    1991-01-01

    An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.

  2. Measurement of water colour using AVIRIS imagery to assess the potential for an operational monitoring capability in the Pamlico Sound Estuary, USA

    PubMed Central

    Ross, S. Lunetta; Joseph, F. Knight; Hans, W. Paerl; John, J. Streicher; Benjamin, L. Peierls; Tom, Gallo; John, G. Lyon; Thomas, H. Mace; Christopher, P. Buzzelli

    2009-01-01

    The monitoring of water colour parameters can provide an important diagnostic tool for the assessment of aquatic ecosystem condition. Remote sensing has long been used to effectively monitor chlorophyll concentrations in open ocean systems; however, operational monitoring in coastal and estuarine areas has been limited because of the inherent complexities of coastal systems, and the coarse spectral and spatial resolutions of available satellite systems. Data were collected using the National Aeronautics and Space Administration (NASA) Advanced Visible-Infrared Imaging Spectrometer (AVIRIS) flown at an altitude of approximately 20000 m to provide hyperspectral imagery and simulate both MEdium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectrometer (MODIS) data. AVIRIS data were atmospherically corrected using a radiative transfer modelling approach and analysed using band ratio and linear regression models. Regression analysis was performed with simultaneous field measurements data in the Neuse River Estuary (NRE) and Pamlico Sound on 15 May 2002. Chlorophyll a (Chl a) concentrations were optimally estimated using AVIRIS bands (9.5 nm) centred at 673.6 and 692.7 nm, resulting in a coefficient of determination (R2) of 0.98. Concentrations of Chromophoric Dissolved Organic Matter (CDOM), Total Suspended Solids (TSS) and Fixed Suspended Solids (FSS) were also estimated, resulting in coefficients of determination of R2=0.90, 0.59 and 0.64, respectively. Ratios of AVIRIS bands centred at or near those corresponding to the MERIS and MODIS sensors indicated that relatively good satellite-based estimates could potentially be derived for water colour constituents at a spatial resolution of 300 and 500 m, respectively. PMID:25937680

  3. MAC Europe 1991 campaign: AIRSAR/AVIRIS data integration for agricultural test site classification

    NASA Technical Reports Server (NTRS)

    Sangiovanni, S.; Buongiorno, M. F.; Ferrarini, M.; Fiumara, A.

    1993-01-01

    During summer 1991, multi-sensor data were acquired over the Italian test site 'Otrepo Pavese', an agricultural flat area in Northern Italy. This area has been the Telespazio pilot test site for experimental activities related to agriculture applications. The aim of the investigation described in the following paper is to assess the amount of information contained in the AIRSAR (Airborne Synthetic Aperture Radar) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data, and to evaluate classification results obtained from each sensor data separately and from the combined dataset. All classifications are examined by means of the resulting confusion matrices and Khat coefficients. Improvements of the classification results obtained by using the integrated dataset are finally evaluated.

  4. Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

    1988-01-01

    Spectral and radiometric calibrations of AVIRIS are described together with changes in instrument characteristics that occurred during the flight season. These changes include detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. Means of improving the instrument are discussed.

  5. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  6. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) spectrometer design and performance

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1987-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  7. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  8. Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

    1988-01-01

    Spectral and radiometric calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were performed in the laboratory in June and November, 1987, at the beginning and end of the first flight season. Those calibrations are described along with changes in instrument characteristics that occurred during the flight season as a result of factors such as detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally-induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. These factors caused loss of signal in three spectrometers, loss of spectral resolution in two spectrometers, and added uncertainty in the radiometry of AVIRIS. Results from in-flight assessment of the laboratory calibrations are presented. A discussion is presented of improvements made to the instrument since the end of the first flight season and plans for the future. Improvements include: (1) a new thermal control system for stabilizing spectrometer temperatures, (2) kinematic mounting of the spectrometers to the instrument rack, and (3) new epoxy for attaching the optical fibers inside their mounting tubes.

  9. Instantaneous field of view and spatial sampling of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures the upwelling radiance in 224 spectral bands. These data are required as images of approximately 11 by up to 100 km in extent at nominally 20 by 20 meter spatial resolution. In this paper we describe the underlying spatial sampling and spatial response characteristics of AVIRIS.

  10. Impact of differences in the solar irradiance spectrum on surface reflectance retrieval with different radiative transfer codes

    NASA Technical Reports Server (NTRS)

    Staenz, K.; Williams, D. J.; Fedosejevs, G.; Teillet, P. M.

    1995-01-01

    Surface reflectance retrieval from imaging spectrometer data as acquired with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has become important for quantitative analysis. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes such as 5S and MODTRAN2 play an increasing role for removal of scattering and absorption effects of the atmosphere. Accurate knowledge of the exo-atmospheric solar irradiance (E(sub 0)) spectrum at the spectral resolution of the sensor is important for this purpose. The present study investigates the impact of differences in the solar irradiance function, as implemented in a modified version of 5S (M5S), 6S, and MODTRAN2, and as proposed by Green and Gao, on the surface reflectance retrieved from AVIRIS data. Reflectance measured in situ is used as a basis of comparison.

  11. AVIRIS data quality for coniferous canopy chemistry

    NASA Technical Reports Server (NTRS)

    Swanberg, Nancy A.

    1988-01-01

    An assessment of AVIRIS data quality for studying coniferous canopy chemistry was made. Seven flightlines of AVIRIS data were acquired over a transect of coniferous forest sites in central Oregon. Both geometric and radiometric properties of the data were examined including: pixel size, swath width, spectral position and signal-to-noise ratio. A flat-field correction was applied to AVIRIS data from a coniferous forest site. Future work with this data set will exclude data from spectrometers C and D due to low signal-to-noise ratios. Data from spectrometers A and B will be used to examine the relationship between the canopy chemical composition of the forest sites and AVIRIS spectral response.

  12. Preliminary analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mineralogic mapping at sites in Nevada and Colorado

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Taranik, Dan L.; Kierein-Young, Kathryn S.

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for sites in Nevada and Colorado were evaluated to determine their utility for mineralogical mapping in support of geologic investigations. Equal energy normalization is commonly used with imaging spectrometer data to reduce albedo effects. Spectra, profiles, and stacked, color-coded spectra were extracted from the AVIRIS data using an interactive analysis program (QLook) and these derivative data were compared to Airborne Imaging Spectrometer (AIS) results, field and laboratory spectra, and geologic maps. A feature extraction algorithm was used to extract and characterize absorption features from AVIRIS and laboratory spectra, allowing direct comparison of the position and shape of absorption features. Both muscovite and carbonate spectra were identified in the Nevada AVIRIS data by comparison with laboratory and AIS spectra, and an image was made that showed the distribution of these minerals for the entire site. Additional, distinctive spectra were located for an unknown mineral. For the two Colorado sites, the signal-to-noise problem was significantly worse and attempts to extract meaningful spectra were unsuccessful. Problems with the Colorado AVIRIS data were accentuated by the IAR reflectance technique because of moderate vegetation cover. Improved signal-to-noise and alternative calibration procedures will be required to produce satisfactory reflectance spectra from these data. Although the AVIRIS data were useful for mapping strong mineral absorption features and producing mineral maps at the Nevada site, it is clear that significant improvements to the instrument performance are required before AVIRIS will be an operational instrument.

  13. Utility of high-altitude infrared spectral data in mineral exploration: Application to Northern Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Berger, B.R.; King, T.V.V.; Morath, L.C.; Phillips, J.D.

    2003-01-01

    Synoptic views of hydrothermal alteration assemblages are of considerable utility in regional-scale minerals exploration. Recent advances in data acquisition and analysis technologies have greatly enhanced the usefulness of remotely sensed imaging spectroscopy for reliable alteration mineral assemblages mapping. Using NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor, this study mapped large areas of advanced argillic and phyllic-argillic alteration assemblages in the southeastern Santa Rita and northern Patagonia mountains, Arizona. Two concealed porphyry copper deposits have been identified during past exploration, the Red Mountain and Sunnyside deposits, and related published hydrothermal alteration zoning studies allow the comparison of the results obtained from AVIRIS data to the more traditional field mapping approaches. The AVIRIS mapping compares favorably with field-based studies. An analysis of iron-bearing oxide minerals above a concealed supergene chalcocite deposit at Red Mountain also indicates that remotely sensed data can be of value in the interpretation of leached caps above porphyry copper deposits. In conjunction with other types of geophysical data, AVIRIS mineral maps can be used to discriminate different exploration targets within a region.

  14. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity

    USGS Publications Warehouse

    Van Wagtendonk, Jan W.; Root, Ralph R.; Key, Carl H.

    2004-01-01

    Our study compares data on burn severity collected from multi-temporal Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) with similar data from the Enhanced Thematic Mapper Plus (ETM+) using the differenced Normalized Burn Ratio (dNBR). Two AVIRIS and ETM+ data acquisitions recorded surface conditions immediately before the Hoover Fire began to spread rapidly and again the following year. Data were validated with 63 field plots using the Composite Burn Index (CBI). The relationship between spectral channels and burn severity was examined by comparing pre- and post-fire datasets. Based on the high burn severity comparison, AVIRIS channels 47 and 60 at wavelengths of 788 and 913 nm showed the greatest negative response to fire. Post-fire reflectance values decreased the most on average at those wavelengths, while channel 210 at 2370 nm showed the greatest positive response on average. Fire increased reflectance the most at that wavelength over the entire measured spectral range. Furthermore, channel 210 at 2370 nm exhibited the greatest variation in spectral response, suggesting potentially high information content for fire severity. Based on general remote sensing principles and the logic of variable spectral responses to fire, dNBR from both sensors should produce useful results in quantifying burn severity. The results verify the band–response relationships to burn severity as seen with ETM+ data and confirm the relationships by way of a distinctly different sensor system.

  15. MAC Europe 1991: Evaluation of AVIRIS, GER imaging spectrometry data for the land application testsite Oberpfaffenhofen

    NASA Technical Reports Server (NTRS)

    Lehmann, F.; Richter, R.; Rothfuss, H.; Werner, K.; Hausknecht, P.; Mueller, A.; Strobl, P.

    1992-01-01

    During the MAC Europe 91 Campaign, the area of Oberpfaffenhofen including the land application testsite Oberpfaffenhofen was flown by the AVIRIS imaging spectrometer, the GER 2 imaging spectrometer (63 band scanner), and two SAR systems (NASA/JPL AIRSAR and DLR E-SAR). In parallel to the overflights ground spectrometry (ASD, IRIS M IV) and atmospheric measurements were carried out in order to provide data for optical sensor calibration. Ground spectrometry measurements were carried out in the runway area of the DLR research center Oberpfaffenhofen. This area was used as well during the GER 2 European flight campaign EISAC 89 as a calibration target. The land application testsite Oberpfaffenhofen is located 3 km north of the DLR research center. During the MAC Europe 91 Campaign a ground survey was carried out for documentation in the ground information data base (vegetation type, vegetation geometry, soil type, and soil mixture). Crop stands analyzed were corn, barley and rape. The DLR runway area and the land application testsite Oberpfaffenhofen were flown with the AVIRIS on 29 July and with the GER 2 on 12 and 23 July and 3 Sep. AVIRIS and GER 2 scenes were processed and atmospherically corrected for optical data analysis of optical and radar data. For the AVIRIS and the GER 2 scenes, signal-to-noise ratios (SNR) estimates were calculated. An example of the reflectance of 6 calibration targets inside a GER 2 scene of Oberpfaffenhofen is given. SNR values for the GER 2 for a medium albedo target are given. The integrated analysis for the optical and radar data was carried out in cooperation with the DLR Institute for Microwave Technologies.

  16. The data facility of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Nielsen, Pia J.; Green, Robert O.; Murray, Alex T.; Eng, Bjorn T.; Novack, H. Ian; Solis, Manuel; Olah, Martin

    1993-01-01

    AVIRIS operations at the Jet Propulsion Laboratory include a significant data task. The AVIRIS data facility is responsible for data archiving, data calibration, quality monitoring and distribution. Since 1987, the data facility has archived over one terabyte of AVIRIS data and distributed these data to science investigators as requested. In this paper we describe recent improvements in the AVIRIS data facility.

  17. Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California

    Treesearch

    D. A. Roberts; P.E. Dennison; S. Peterson; S. Sweeney; J. Rechel

    2006-01-01

    Dynamic changes in live fuel moisture (LFM) and fuel condition modify fire danger in shrublands. We investigated the empirical relationship between field-measured LFM and remotely sensed greenness and moisture measures from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Moderate Resolution Imaging Spectrometer (MODIS). Key goals were to assess the...

  18. Mapping Agricultural Crops with AVIRIS Spectra in Washington State

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pavri, Betina; Roberts, Dar; Ustin, Susan

    2000-01-01

    Spectroscopy is used in the laboratory to measure the molecular components and concentrations of plant constituents to answer questions about the plant type, status, and health. Imaging spectrometers measure the upwelling spectral radiance above the Earth's surface as images. Ideally, imaging spectrometer data sets should be used to understand plant type, plant status, and health of plants in an agricultural setting. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set was acquired over agricultural fields near Wallula, Washington on July 23rd, 1997. AVIRIS measures upwelling radiance spectra through 224 spectral channels with contiguous 10-nm sampling from 400 to 2500 run in the solar-reflected spectrum. The spectra are measured as images of 11 by up to 800 km with 20-m spatial resolution. The spectral images measured by AVIRIS represent the integrated signal resulting from: the solar irradiance; two way transmittance and scattering of the atmosphere; the absorptions and scattering of surface materials; as well as the spectral, radiometric and spatial response functions of AVIRIS. This paper presents initial research to derive properties of the agricultural fields near Wallula from the calibrated spectral images measured by AVIRIS near the top of the atmosphere.

  19. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 4)

    NASA Image and Video Library

    2017-04-20

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  20. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 2)

    NASA Image and Video Library

    2017-04-03

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  1. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 3)

    NASA Image and Video Library

    2017-04-12

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  2. Calibration Of Airborne Visible/IR Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Vane, G. A.; Chrien, T. G.; Miller, E. A.; Reimer, J. H.

    1990-01-01

    Paper describes laboratory spectral and radiometric calibration of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) applied to all AVIRIS science data collected in 1987. Describes instrumentation and procedures used and demonstrates that calibration accuracy achieved exceeds design requirements. Developed for use in remote-sensing studies in such disciplines as botany, geology, hydrology, and oceanography.

  3. Seasonal and Inter-Annual Patterns of Chlorophyll and Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2016-02-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, track energy flow through ecosystems, and identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable the use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. Consequently, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. The coastal marine environment has special atmospheric correction needs due to error introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals to estimate chlorophyll (OC3) and phytoplankton functional type (PHYDOTax) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons in 2013 and 2014. These two periods are dominated by either diatom blooms or red tides. Results to be presented include chlorophyll and phytoplankton community structure and in-water validation data for these dates during the two seasons.

  4. Demonstration of Technologies for Remote and in Situ Sensing of Atmospheric Methane Abundances - a Controlled Release Experiment

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Thorpe, A. K.; Christensen, L. E.; Dinardo, S.; Frankenberg, C.; Rahn, T. A.; Dubey, M.

    2013-12-01

    It is critical to constrain both natural and anthropogenic sources of methane to better predict the impact on global climate change. Critical technologies for this assessment include those that can detect methane point and concentrated diffuse sources over large spatial scales. Airborne spectrometers can potentially fill this gap for large scale remote sensing of methane while in situ sensors, both ground-based and mounted on aerial platforms, can monitor and quantify at small to medium spatial scales. The Jet Propulsion Laboratory (JPL) and collaborators recently conducted a field test located near Casper, WY, at the Rocky Mountain Oilfield Test Center (RMOTC). These tests were focused on demonstrating the performance of remote and in situ sensors for quantification of point-sourced methane. A series of three controlled release points were setup at RMOTC and over the course of six experiment days, the point source flux rates were varied from 50 LPM to 2400 LPM (liters per minute). During these releases, in situ sensors measured real-time methane concentration from field towers (downwind from the release point) and using a small Unmanned Aerial System (sUAS) to characterize spatiotemporal variability of the plume structure. Concurrent with these methane point source controlled releases, airborne sensor overflights were conducted using three aircraft. The NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) participated with a payload consisting of a Fourier Transform Spectrometer (FTS) and an in situ methane sensor. Two imaging spectrometers provided assessment of optical and thermal infrared detection of methane plumes. The AVIRIS-next generation (AVIRIS-ng) sensor has been demonstrated for detection of atmospheric methane in the short wave infrared region, specifically using the absorption features at ~2.3 μm. Detection of methane in the thermal infrared region was evaluated by flying the Hyperspectral Thermal Emission Spectrometer (HyTES), retrievals which interrogate spectral features in the 7.5 to 8.5 μm region. Here we discuss preliminary results from the JPL activities during the RMOTC controlled release experiment, including capabilities of airborne sensors for total columnar atmospheric methane detection and comparison to results from ground measurements and dispersion models. Potential application areas for these remote sensing technologies include assessment of anthropogenic and natural methane sources over wide spatial scales that represent significant unconstrained factors to the global methane budget.

  5. Integration of AIRSAR and AVIRIS data for Trail Canyon alluvial fan, Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1995-01-01

    Combining quantitative geophysical information extracted from the optical and microwave wavelengths provides complementary information about both the surface mineralogy and morphology. This study combines inversion results from two remote sensing instruments, a polarimetric synthetic aperture radar, AIRSAR, and an imaging spectrometer, AVIRIS, for Trail Canyon alluvial fan in Death Valley, California. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) is a quad-polarization, three frequency instrument. AIRSAR collects data at C-band = 5.66 cm, L-band = 23.98 cm, and P-band = 68.13 cm. The data are processed to four-looks and have a spatial resolution of 10 m and a swath width of 12 km. The AIRSAR data used in this study were collected as part of the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley on 9/14/89. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is a NASA/JPL instrument that flies in an ER-2 aircraft at an altitude of 20 km. AVIRIS uses four spectrometers to collect data in 224 spectral channels from 0.4 micrometer to 2.45 micrometer. The width of each spectral band is approximately 10 nm. AVIRIS collects data with a swath width of 11 km and a pixel size of 20 m. The AVIRIS data used in this study were collected over Death Valley on 5/31/92.

  6. Quantifying Fractional Ground Cover on the Climate Sensitive High Plains Using AVIRIS and Landsat TM Data

    NASA Technical Reports Server (NTRS)

    Warner, Amanda Susan

    2002-01-01

    The High Plains is an economically important and climatologically sensitive region of the United States and Canada. The High Plains contain 100,000 sq km of Holocene sand dunes and sand sheets that are currently stabilized by natural vegetation. Droughts and the larger threat of global warming are climate phenomena that could cause depletion of natural vegetation and make this region susceptible to sand dune reactivation. This thesis is part of a larger study that is assessing the effect of climate variability on the natural vegetation that covers the High Plains using Landsat 5 and Landsat 7 data. The question this thesis addresses is how can fractional vegetation cover be mapped with the Landsat instruments using linear spectral mixture analysis and to what accuracy. The method discussed in this thesis made use of a high spatial and spectral resolution sensor called AVIRIS (Airborne Visible and Infrared Imaging Spectrometer) and field measurements to test vegetation mapping in three Landsat 7 sub-scenes. Near-simultaneous AVIRIS images near Ft. Morgan, Colorado and near Logan, New Mexico were acquired on July 10, 1999 and September 30, 1999, respectively. The AVIRIS flights preceded Landsat 7 overpasses by approximately one hour. These data provided the opportunity to test spectral mixture algorithms with AVIRIS and to use these data to constrain the multispectral mixed pixels of Landsat 7. The comparisons of mixture analysis between the two instruments showed that AVIRIS endmembers can be used to unmix Landsat 7 data with good estimates of soil cover, and reasonable estimates of non-photosynthetic vegetation and green vegetation. Landsat 7 derived image endmembers correlate with AVIRIS fractions, but the error is relatively large and does not give a precise estimate of cover.

  7. Signal chain for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bunn, James S., Jr.

    1988-01-01

    The AVIRIS instrument has a separate dedicated analog signal processing chain for each of its four spectrometers. The signal chains amplify low-level focal-plane line array signals (5 to 10 mV full-scale span) in the presence of larger multiplexing signals (approx 150 mV) providing the data handling system a ten-bit digital word (for each spectrometer) each 1.3 microns. This signal chain provides automatic correction for the line array dark signal nonuniformity (which can approach the full-scale signal span).

  8. Signal chain for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bunn, James S., Jr.

    1987-01-01

    The AVIRIS instrument has a separate dedicated analog signal processing chain for each of its four spectrometers. The signal chains amplify low-level focal-plane line array signals (5 to 10 mV full-scale span) in the presence of larger multiplexing signals (approx 150 mV) providing the data handling system a ten-bit digital word (for each spectrometer) each 1.3 microns. This signal chain provides automatic correction for the line array dark signal nonuniformity (which can approach the full-scale signal span).

  9. Evaluation of spatial productivity patterns in an annual grassland during an AVIRIS overflight

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Field, Christopher B.; Ustin, Susan L.

    1992-01-01

    In May 1991, coincident with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) overflight, a ground-based study covering 9 hectares of an annual grassland was completed. There were two goals of this ground study: (1) obtain ecologically and physiologically meaningful data for relating AVIRIS images to canopy structure, biochemistry, and physiology; and (2) evaluate the suitability of the 20-m AVIRIS pixel size for depicting detailed spatial patterns of productivity.

  10. HYDICE data from Lake Tahoe: comparison to coincident AVIRIS and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Kappus, Mary E.; Davis, Curtiss O.; Rhea, W. J.

    1996-11-01

    Coordinated flights of two calibrated airborne imaging spectrometers, HYDICE and AVIRIS, were conducted on June 22, 1995 over Lake Tahoe. As part of HYDICE's first operational mission, one objective was to test the system performance over the dark homogeneous target provided by the clear deep waters of the lake. The high altitude and clear atmosphere makes Lake Tahoe a simpler test target than near-shore marine environments, where large aerosols complicate atmospheric correction and sediment runoff and high chlorophyll levels make interpretation of he data difficult. Calibrated data from both runoff and high chlorophyll levels make interpretation of the data difficult. Calibrated data from both sensors was provided in physical units of radiance. The atmospheric radiative transfer code, MODTRAN was used to remove the path radiance between the ground and sensor and the skylight reflected from the water surface. The resulting water-leaving spectrometer, and with values calculated form in-water properties using the HYDROLIGHT radiative transfer code. The agreement of the water-leaving radiance for the HYDICE data, the ground-truth spectral measurements, and the results of the radiative transfer code are excellent for wavelengths greater than 0.45 micrometers . The AVIRIS flight took place more than an hour closer to noon, which makes the radiance measurements not directly comparable. Comparisons to radiative transfer output for this later time indicate that the AVIRIS data is strongly by sun glint. Because water-leaving radiance is dependent upon the characteristics of the water, it can be analyzed for some of those properties. Using the CZCS algorithm based on the water-leaving radiance at two wavelengths, the chlorophyll content of Lake Tahoe was computed from the HYDICE and ground-truth data. Resulting values are slightly higher than measurements made two weeks earlier from water samples, indicating a growth in the phytoplankton population which is very plausible given the intervening atmospheric conditions. The success in determining water-leaving radiance and interpreting it for pigment concentration are very positive results for this early HYDICE flight. The interpretations made so far do not make use of the full spectral content of the data, so much room for advancement remains.

  11. Oregon transect: Comparison of leaf-level reflectance with canopy-level and modelled reflectance

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Baret, Frederic; Peterson, David L.

    1992-01-01

    The Oregon Transect Ecosystem Research (OTTER) project involves the collection of a variety of remotely-sensed and in situ measurements for characterization of forest biophysical and biochemical parameters. The project includes nine study plots located along an environmental gradient in west-central Oregon, extending from the Pacific coast inland approximately 300km. These plots represent a broad range in ecosystem structure and function. Within the OTTER project, the sensitivity of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) signal to absorption by foliar biochemicals is being examined. AVIRIS data were acquired over all plots in conjunction with the four OTTER Multi-sensor Aircraft Campaigns spanning the growing season. Foilage samples were gathered during each campaign for biochemical determination (at Ames Research Center), to estimate stand-level constituency at each plot. Directional-hemispheric leaf reflectance throughout the 400-2400nm region was measured in the laboratory as an aid to interpreting concurrent AVIRIS data. Obtaining leaf spectra in this manner reduces or eliminates the confounding influences of atmosphere, canopy architecture, and reflectance by woody components, understory, and exposed soils which are present in airborne observations. These laboratory spectra were compared to simulated spectra derived by inverting the PROSPECT leaf-level canopy reflectance derived from AVIRIS data by use of the LOWTRAN-7 atmospheric radiative-transfer model.

  12. Exploring the remote sensing of foliar biochemical concentrations with AVIRIS data

    NASA Technical Reports Server (NTRS)

    Smith, Geoffrey M.; Curran, Paul J.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data shows promise for the estimation of foliar biochemical concentrations at the scale of the canopy. There are, however, several problems associated with the use of AVIRIS data in this way and these are detailed in recent Plant Biochemical Workshop Report. The research reported was concentrated upon three of these problems: field sampling of forest canopies, wet laboratory assay of foliar chemicals, and the visualization of AVIRIS data.

  13. Using hyperspectral remote sensing for land cover classification

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy W.; Sriharan, Shobha

    2005-01-01

    This project used hyperspectral data set to classify land cover using remote sensing techniques. Many different earth-sensing satellites, with diverse sensors mounted on sophisticated platforms, are currently in earth orbit. These sensors are designed to cover a wide range of the electromagnetic spectrum and are generating enormous amounts of data that must be processed, stored, and made available to the user community. The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) collects data in 224 bands that are approximately 9.6 nm wide in contiguous bands between 0.40 and 2.45 mm. Hyperspectral sensors acquire images in many, very narrow, contiguous spectral bands throughout the visible, near-IR, and thermal IR portions of the spectrum. The unsupervised image classification procedure automatically categorizes the pixels in an image into land cover classes or themes. Experiments on using hyperspectral remote sensing for land cover classification were conducted during the 2003 and 2004 NASA Summer Faculty Fellowship Program at Stennis Space Center. Research Systems Inc.'s (RSI) ENVI software package was used in this application framework. In this application, emphasis was placed on: (1) Spectrally oriented classification procedures for land cover mapping, particularly, the supervised surface classification using AVIRIS data; and (2) Identifying data endmembers.

  14. Geologic remote sensing - New technology, new information

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.

    1992-01-01

    Results of geologic studies using data collected by the NASA/JPL Thermal Infrared Imaging Spectrometer (TIMS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Airborne Synthetic Aperture Radar (AIRSAR) are discussed. These instruments represent prototypes for the Earth Observing System (EOS) satellite instruments ASTER, High Resolution Imaging Spectrometer (HIRIS), and EOS SAR. Integrated analysis of this data type is one of the keys to successful geologic research using EOS. TIMS links the physical properties of surface materials in the 8-12-*mm region to their composition. Calibrated aircraft data make direct lithological mapping possible. AVIRIS, an analog for HIRIS, provides quantitative information about the surface composition of materials based on their detailed visible and infrared spectral signatures (0.4-2.45 mm). Calibrated AVIRIS data make direct identification of minerals possible. The AIRSAR provides additional complementary information about the surface morphology of rocks and soils.

  15. NASA's AVIRIS Instrument Sheds New Light on Southern California Wildfires

    NASA Image and Video Library

    2017-12-08

    NASA's Airborne Visible Infrared Imaging Spectrometer instrument (AVIRIS), flying aboard a NASA Armstrong Flight Research Center high-altitude ER-2 aircraft, flew over the wildfires burning in Southern California on Dec. 5, 2017 and acquired this false-color image. Active fires are visible in red, ground surfaces are in green and smoke is in blue. AVIRIS is an imaging spectrometer that observes light in visible and infrared wavelengths, measuring the full spectrum of radiated energy. Unlike regular cameras with three colors, AVIRIS has 224 spectral channels from the visible through the shortwave infrared. This permits mapping of fire temperatures, fractional coverage, and surface properties, including how much fuel is available for a fire. Spectroscopy is also valuable for characterizing forest drought conditions and health to assess fire risk. AVIRIS has been observing fire-prone areas in Southern California for many years, forming a growing time series of before/after data cubes. These data are helping improve scientific understanding of fire risk and how ecosystems respond to drought and fire. https://photojournal.jpl.nasa.gov/catalog/PIA11243

  16. Mineral Potential in India Using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) Data

    NASA Astrophysics Data System (ADS)

    Oommen, T.; Chatterjee, S.

    2017-12-01

    NASA and the Indian Space Research Organization (ISRO) are generating Earth surface features data using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) within 380 to 2500 nm spectral range. This research focuses on the utilization of such data to better understand the mineral potential in India and to demonstrate the application of spectral data in rock type discrimination and mapping for mineral exploration by using automated mapping techniques. The primary focus area of this research is the Hutti-Maski greenstone belt, located in Karnataka, India. The AVIRIS-NG data was integrated with field analyzed data (laboratory scaled compositional analysis, mineralogy, and spectral library) to characterize minerals and rock types. An expert system was developed to produce mineral maps from AVIRIS-NG data automatically. The ground truth data from the study areas was obtained from the existing literature and collaborators from India. The Bayesian spectral unmixing algorithm was used in AVIRIS-NG data for endmember selection. The classification maps of the minerals and rock types were developed using support vector machine algorithm. The ground truth data was used to verify the mineral maps.

  17. Seasonal and Inter-Annual Patterns of Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2015-12-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, to track energy flow through ecosystems, and to identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species, evaluating iron stress of phytoplankton, and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. As a consequence, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. However, the coastal marine environment has special atmospheric correction needs due to error that may be introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals for use in estimating chlorophyll (OC3 algorithm) and phytoplankton functional type (PHYDOTax algorithm) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons - upwelling and the warm, stratified oceanic period for 2013 and 2014. These two periods are dominated by either diatom blooms (occasionally toxic) or red tides. Results presented include chlorophyll and phytoplankton community structure and in-water validation data for these dates during these two seasons.

  18. NASA AVIRIS Aids in Gulf Oil Spill Response

    NASA Image and Video Library

    2010-05-27

    This image from NASA Airborne Visible/Infrared Imaging Spectrometer instrument AVIRIS was collected on May 17, 2010, over the site of the Deepwater Horizon BP oil spill disaster. In the image, crude oil on the surface appears orange to brown.

  19. Spectral Dimensionality and Scale of Urban Radiance

    NASA Technical Reports Server (NTRS)

    Small, Christopher

    2001-01-01

    Characterization of urban radiance and reflectance is important for understanding the effects of solar energy flux on the urban environment as well as for satellite mapping of urban settlement patterns. Spectral mixture analyses of Landsat and Ikonos imagery suggest that the urban radiance field can very often be described with combinations of three or four spectral endmembers. Dimensionality estimates of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance measurements of urban areas reveal the existence of 30 to 60 spectral dimensions. The extent to which broadband imagery collected by operational satellites can represent the higher dimensional mixing space is a function of both the spatial and spectral resolution of the sensor. AVIRIS imagery offers the spatial and spectral resolution necessary to investigate the scale dependence of the spectral dimensionality. Dimensionality estimates derived from Minimum Noise Fraction (MNF) eigenvalue distributions show a distinct scale dependence for AVIRIS radiance measurements of Milpitas, California. Apparent dimensionality diminishes from almost 40 to less than 10 spectral dimensions between scales of 8000 m and 300 m. The 10 to 30 m scale of most features in urban mosaics results in substantial spectral mixing at the 20 m scale of high altitude AVIRIS pixels. Much of the variance at pixel scales is therefore likely to result from actual differences in surface reflectance at pixel scales. Spatial smoothing and spectral subsampling of AVIRIS spectra both result in substantial loss of information and reduction of apparent dimensionality, but the primary spectral endmembers in all cases are analogous to those found in global analyses of Landsat and Ikonos imagery of other urban areas.

  20. Evaluation of Airborne Visible/Infrared Imaging Spectrometer Data of the Mountain Pass, California carbonatite complex

    NASA Technical Reports Server (NTRS)

    Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.

  1. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  2. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  3. On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.

    2011-12-01

    The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.

  4. Atmospheric correction for hyperspectral ocean color sensors

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Ahmad, Z.; Franz, B. A.; Knobelspiesse, K. D.

    2017-12-01

    NASA's heritage Atmospheric Correction (AC) algorithm for multi-spectral ocean color sensors is inadequate for the new generation of spaceborne hyperspectral sensors, such as NASA's first hyperspectral Ocean Color Instrument (OCI) onboard the anticipated Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission. The AC process must estimate and remove the atmospheric path radiance contribution due to the Rayleigh scattering by air molecules and by aerosols from the measured top-of-atmosphere (TOA) radiance. Further, it must also compensate for the absorption by atmospheric gases and correct for reflection and refraction of the air-sea interface. We present and evaluate an improved AC for hyperspectral sensors beyond the heritage approach by utilizing the additional spectral information of the hyperspectral sensor. The study encompasses a theoretical radiative transfer sensitivity analysis as well as a practical application of the Hyperspectral Imager for the Coastal Ocean (HICO) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensors.

  5. Mapping methane emissions using the airborne imaging spectrometer AVIRIS-NG

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Bue, B. D.; Green, R. O.

    2017-12-01

    The next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) has been used to survey large regions and map methane plumes with unambiguous identification of emission source locations. This capability is aided by real time detection and geolocation of gas plumes, permitting adaptive surveys and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in Colorado, New Mexico, and California. Hundreds of plumes were observed, reflecting emissions from the energy sector that include hydraulic fracturing, gas processing plants, tanks, pumpjacks, and pipeline leaks. In some cases, plumes observed by AVIRIS-NG resulted in mitigation. Additional examples will be shown for methane from dairy lagoons, landfills, natural emissions, as well as carbon dioxide from power plants and refineries. We describe the unique capabilities of airborne imaging spectrometers to augment other measurement techniques by efficiently surveying key regions for methane point sources and supporting timely assessment and mitigation. We summarize the outlook for near- and longer-term monitoring capabilities including future satellite systems. Figure caption. AVIRIS-NG true color image subset with superimposed methane plume showing retrieved gas concentrations. Plume extends 200 m downwind of the southern edge of the well pad. Google Earth imagery with finer spatial resolution is also included (red box), indicating that tanks in the inset scene as the source of emissions. Five wells are located at the center of this well pad and all use horizontal drilling to produce mostly natural gas.

  6. Expert system-based mineral mapping using AVIRIS

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Lefkoff, A. B.; Dietz, J. B.

    1992-01-01

    Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal surface mineralogy. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rock-forming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image-maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface. The 'northern Grapevine Mountains' (NGM) study area was reported on in numerous papers. This area is an unnamed northwestward extension of the range. Most of the research here has concentrated on mapping of Jurassic-age plutons and associated hydrothermal alteration, however, the nature and scope of these studies is much broader, pertaining to the geologic history and development of the entire Death Valley region. AVIRIS data for the NGM site were obtained during May 1989. Additional AVIRIS data were acquired during September 1989 as part of the Geologic Remote Sensing Field Experiment (GRSFE). The area covered by these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes total were analyzed.

  7. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  8. The effects of AVIRIS atmospheric calibration methodology on identification and quantitative mapping of surface mineralogy, Drum Mountains, Utah

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dwyer, John L.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.

  9. In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Alley, Ronald E.; Bruegge, Carol J.; Carrere, Veronique; Margolis, Jack S.; Vane, Gregg; Chrien, Thomas G.; Slater, Philip N.; Biggard, Stuart F.

    1988-01-01

    A reflectance-based method was used to provide an analysis of the in-flight radiometric performance of AVIRIS. Field spectral reflectance measurements of the surface and extinction measurements of the atmosphere using solar radiation were used as input to atmospheric radiative transfer calculations. Five separate codes were used in the analysis. Four include multiple scattering, and the computed radiances from these for flight conditions were in good agreement. Code-generated radiances were compared with AVIRIS-predicted radiances based on two laboratory calibrations (pre- and post-season of flight) for a uniform highly reflecting natural dry lake target. For one spectrometer (C), the pre- and post-season calibration factors were found to give identical results, and to be in agreement with the atmospheric models that include multiple scattering. This positive result validates the field and laboratory calibration technique. Results for the other spectrometers (A, B and D) were widely at variance with the models no matter which calibration factors were used. Potential causes of these discrepancies are discussed.

  10. Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm

    USGS Publications Warehouse

    Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Chrien, T.H.; Gorelick, N.S.

    2003-01-01

    Estimates of spectrometer band pass, sampling interval, and signal-to-noise ratio required for identification of pure minerals and plants were derived using reflectance spectra convolved to AVIRIS, HYDICE, MIVIS, VIMS, and other imaging spectrometers. For each spectral simulation, various levels of random noise were added to the reflectance spectra after convolution, and then each was analyzed with the Tetracorder spectra identification algorithm [Clark et al., 2003]. The outcome of each identification attempt was tabulated to provide an estimate of the signal-to-noise ratio at which a given percentage of the noisy spectra were identified correctly. Results show that spectral identification is most sensitive to the signal-to-noise ratio at narrow sampling interval values but is more sensitive to the sampling interval itself at broad sampling interval values because of spectral aliasing, a condition when absorption features of different materials can resemble one another. The band pass is less critical to spectral identification than the sampling interval or signal-to-noise ratio because broadening the band pass does not induce spectral aliasing. These conclusions are empirically corroborated by analysis of mineral maps of AVIRIS data collected at Cuprite, Nevada, between 1990 and 1995, a period during which the sensor signal-to-noise ratio increased up to sixfold. There are values of spectrometer sampling and band pass beyond which spectral identification of materials will require an abrupt increase in sensor signal-to-noise ratio due to the effects of spectral aliasing. Factors that control this threshold are the uniqueness of a material's diagnostic absorptions in terms of shape and wavelength isolation, and the spectral diversity of the materials found in nature and in the spectral library used for comparison. Array spectrometers provide the best data for identification when they critically sample spectra. The sampling interval should not be broadened to increase the signal-to-noise ratio in a photon-noise-limited system when high levels of accuracy are desired. It is possible, using this simulation method, to select optimum combinations of band-pass, sampling interval, and signal-to-noise ratio values for a particular application that maximize identification accuracy and minimize the volume of imaging data.

  11. Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg; Bruegge, Carol J.; Gary, Bruce L.

    1988-01-01

    Observations are given of the spatial variation of atmospheric precipitable water using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a desert area in eastern California, derived using a band ratio method and the 940 nm atmospheric water band and 870 nm continuum radiances. The ratios yield total path water from curves of growth supplied by the LOWTRAN 7 atmospheric model. An independent validation of the AVIRIS-derived column abundance at a point is supplied by a spectral hygrometer calibrated with respect to radiosonde observations. Water values conform to topography and fall off with surface elevation. The edge of the water vapor boundary layer defined by topography is thought to have been recovered. The ratio method yields column abundance estimates of good precision and high spatial resolution.

  12. Multi-Sensor Characterization of the Boreal Forest: Initial Findings

    NASA Technical Reports Server (NTRS)

    Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.

  13. Measurements of canopy chemistry with 1992 AVIRIS data at Blackhawk Island and Harvard Forest

    NASA Technical Reports Server (NTRS)

    Martin, Mary E.; Aber, John D.

    1993-01-01

    The research described in this paper was designed to determine if high spectral resolution imaging spectrometer data can be used to measure the chemical composition of forest foliage, specifically nitrogen and lignin concentration. Information about the chemical composition of forest canopies can be used to determine nutrient cycling rates and carbon balances in forest ecosystems. This paper will describe the results relating data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to field measured canopy chemistry at Blackhawk Island, WI and Harvard Forest, MA.

  14. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  15. AVIRIS ground data-processing system

    NASA Technical Reports Server (NTRS)

    Reimer, John H.; Heyada, Jan R.; Carpenter, Steve C.; Deich, William T. S.; Lee, Meemong

    1987-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been under development at JPL for the past four years. During this time, a dedicated ground data-processing system has been designed and implemented to store and process the large amounts of data expected. This paper reviews the objectives of this ground data-processing system and describes the hardware. An outline of the data flow through the system is given, and the software and incorporated algorithms developed specifically for the systematic processing of AVIRIS data are described.

  16. AVIRIS foreoptics, fiber optics and on-board calibrator

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P.; Chrien, Thomas G.; Steimle, L.

    1987-01-01

    The foreoptics, fiber optic system and calibration source of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are described. The foreoptics, based on a modified Kennedy scanner, is coupled by optical fibers to the four spectrometers. The optical fibers allow convenient positioning of the spectrometers in the limited space and enable simple compensation of the scanner's thermal defocus (at the -23 C operating temp) by active control of the fiber focal plane position. A challenging requirement for the fiber optic system was the transmission to the spectral range 1.85 to 2.45 microns at .45 numerical aperture. This was solved with custom fluoride glass fibers from Verre Fluore. The onboard calibration source is also coupled to the spectrometers by the fibers and provides two radiometric levels and a reference spectrum to check the spectrometers' alignment. Results of the performance of the assembled subsystems are presented.

  17. Low Altitude AVIRIS Data for Mapping Land Form Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Otvos, Ervin G.; Giardino, Marco J.

    2002-01-01

    Barrier islands help protect the southern and southeastern U.S. shoreline from hurricanes and severe storms. They are important for coastal resource management and geologic research, especially in studies that involve changes in island areas and surface environments, and they display a dynamically changing and diverse mix of landform and vegetative cover habitats. Many Gulf Coast barrier islands have undergone dramatic decreases in areal extent, often due to hurricane and severe storm damage. For example, Louisiana's barrier islands have lost 55 percent of their surface area over the past 100 years. Aerial photography and Landsat data have been used to monitor changes in barrier island areal extent, although neither data source is optimal for making maps of detailed landform types at site-specific scales. High spatial resolution hyperspectral imagery, such as that obtained from the high spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, may enable improved mapping of landform types, which would benefit studies of the dynamics of barrier island environments. During the summers of 2000 and 2001, a study was conducted to assess low-altitude AVIRIS data for mapping the landform types of West Ship Island, a barrier island in Harrison County, Mississippi. This study area was selected because of the availability of low-altitude AVIRIS data acquired on July 22, 1999, and because of the area's accessibility to the investigating team. West Ship Island is one of the six barrier islands that belong to the Gulf Shores National Seashore, which is managed by the National Park Service. This island contains an impressive range of landform categories. Surface types include beach, dune, and sand flat environments. West Ship Island also harbors Fort Massachusetts, a historic fort used during the Civil War. Because it is located near Stennis Space Center, the island is frequently imaged by NASA's airborne and spaceborne sensors.

  18. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  19. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and AVIRIS pixels. Fractions of Impervious, Soil, Green Vegetation (GV) and Non-photosynthetic Vegetation (NPV), were estimated using Multiple Endmember Spectral Mixture Analysis (MESMA) applied to AVIRIS data at 7.5, 15 and 60 m spatial scales. Surface energy parameters, including albedo, vegetation cover fraction, broadband emissivity and LST were also determined for urban and natural land-cover classes in the region. Fractions were validated using 1m digital photography.

  20. Evaluation of the airborne visible-infrared imaging spectrometer for mapping subtle lithological variation

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.

    1990-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), flown aboard the NASA ER-2 aircraft in 1987 and 1989, used four linear arrays and four individual spectrometers to collect data simultaneously from the 224 bands in a scanned 614 pixel-wide swath perpendicular to the aircraft direction. The research had two goals. One was to evaluate the AVIRIS data. The other was to look at the subtle lithological variation at the two test sites to develop a better understanding of the regional geology and surficial processes. The geometric characteristics of the data, adequacy of the spatial resolution, and adequacy of the spectral sampling interval are evaluated. Geologic differences at the test sites were mapped. They included lithological variation caused by primary sedimentary layering, facies variation, and weathering; and subtle mineralogical differences caused by hydrothermal alterations of igneous and sedimentary rocks. The investigation used laboratory, field, and aircraft spectral measurements; known properties of geological materials; digital image processing and spectrum processing techniques; and field geologic data to evaluate the selected characteristics of the AVIRIS data.

  1. AVIRIS and TIMS data processing and distribution at the land processes distributed active archive center

    NASA Technical Reports Server (NTRS)

    Mah, G. R.; Myers, J.

    1993-01-01

    The U.S. Government has initiated the Global Change Research program, a systematic study of the Earth as a complete system. NASA's contribution of the Global Change Research Program is the Earth Observing System (EOS), a series of orbital sensor platforms and an associated data processing and distribution system. The EOS Data and Information System (EOSDIS) is the archiving, production, and distribution system for data collected by the EOS space segment and uses a multilayer architecture for processing, archiving, and distributing EOS data. The first layer consists of the spacecraft ground stations and processing facilities that receive the raw data from the orbiting platforms and then separate the data by individual sensors. The second layer consists of Distributed Active Archive Centers (DAAC) that process, distribute, and archive the sensor data. The third layer consists of a user science processing network. The EOSDIS is being developed in a phased implementation. The initial phase, Version 0, is a prototype of the operational system. Version 0 activities are based upon existing systems and are designed to provide an EOSDIS-like capability for information management and distribution. An important science support task is the creation of simulated data sets for EOS instruments from precursor aircraft or satellite data. The Land Processes DAAC, at the EROS Data Center (EDC), is responsible for archiving and processing EOS precursor data from airborne instruments such as the Thermal Infrared Multispectral Scanner (TIMS), the Thematic Mapper Simulator (TMS), and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). AVIRIS, TIMS, and TMS are flown by the NASA-Ames Research Center ARC) on an ER-2. The ER-2 flies at 65000 feet and can carry up to three sensors simultaneously. Most jointly collected data sets are somewhat boresighted and roughly registered. The instrument data are being used to construct data sets that simulate the spectral and spatial characteristics of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument scheduled to be flown on the first EOS-AM spacecraft. The ASTER is designed to acquire 14 channels of land science data in the visible and near-IR (VNIR), shortwave-IR (SWIR), and thermal-IR (TIR) regions from 0.52 micron to 11.65 micron at high spatial resolutions of 15 m to 90 m. Stereo data will also be acquired in the VNIR region in a single band. The AVIRIS and TMS cover the ASTER VNIR and SWIR bands, and the TIMS covers the TIR bands. Simulated ASTER data sets have been generated over Death Valley, California, Cuprite, Nevada, and the Drum Mountains, Utah using a combination of AVIRIS, TIMS, amd TMS data, and existing digital elevation models (DEM) for the topographic information.

  2. Using AVIRIS data and multiple-masking techniques to map urban forest trees species

    Treesearch

    Q. Xiao; S.L. Ustin; E.G. McPherson

    2004-01-01

    Tree type and species information are critical parameters for urban forest management, benefit cost analysis and urban planning. However, traditionally, these parameters have been derived based on limited field samples in urban forest management practice. In this study we used high-resolution Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data and multiple-...

  3. Characteristics of AVIRIS Band Measurements in Desert Agroecosystems in the Area of Blythe, California. 1; Studies of Cotton Spectra

    NASA Technical Reports Server (NTRS)

    Hanna, Safwat H. Shakir

    2001-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from Blythe, California, were acquired in June 1997 to study agricultural spectra from different crops and to identify crops in other areas with similar environmental factors and similar spectral properties. The main objectives of this study are: (1) to compare the spectral and radiometric characteristics of AVIRIS data from agriculture crops with ground spectra measured by a FieldSpec ASD spectrometer; (2) to explore the use of AVIRIS spectral images for identifying agricultural crops; (3) to study the spectral expression of environmental factors on selected crops; and (4) to build a spectral library for the crops that were studied. A long-term goal is to extend the spectral library for different vegetation or crops in different stages of growth. To support our study, on July 18 and 19, 2000, we collected spectra using the FieldSpec spectrometer from selected fields with different crops in the Blythe area of California (longitude 114 deg 33.28 W and latitude 33 deg 25.42 N to longitude 1140 44.53 W and latitude 33 deg 39.77 N). These crops were cotton in different stages of growth, varieties of grass pure or mixed, Sudan grass, Bermuda grass, Teff grass, and alfalfa. Some of the fields were treated with different types of irrigation (i.e., wet to dry conditions). Additional parameters were studied such as the soil water content (WC), pH, and organic matter (OM). The results of this study showed that for crops known to be similar, there is a significant correlation between the spectra that were collected by AVIRIS in 1997 and spectra measured by the FieldSpec (registered) spectrometer in 2000. This correlation allowed development of a spectral library to be used in ENVI-IDL analysis software. This library was used successfully to identify different crops. Furthermore, using IDL algorithms of Spectral Angle Mapper classification (SAM), spectral feature fitting (SFF) and spectral binary encoding (SPE) showed that there is excellent agreement between the predicted and the actual crop type (i.e., the correlation is between 85-90% match). Further use of the AVIRIS images can be of a value to crop identification or crop yield for commercial use.

  4. Spatio-temporal dynamics of alpine snow algae measured with multi-year imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Painter, T.; Thomas, W. H.; Duval, B.

    2003-04-01

    The spatio-temporal dynamics of alpine snow algae have not been documented at the basin scale. This study focuses on the interannual variability of the concentration of alga chlamydomonas nivalis as mapped with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over the Sierra Nevada, California, USA in the springs of 2000, 2001, and 2002. AVIRIS was flown at high spatial resolution (1.5 m) and medium spatial resolution (8 m) on board the NOAA Twin Otter and the NASA ER-2. AVIRIS data were atmospherically-corrected to apparent surface reflectance using a non-linear least squares vapor-fitting algorithm coupled with the atmospheric transmission MODTRAN4. We calculated algal concentration using a model that relates concentration to the continuum-normalized integral of the coupled chlorophyll-a, b absorption features with peak at 680 nm wavelength in the snow spectral reflectance signatures (Painter et al., 2001, Applied and Environmental Microbiology). The AVIRIS data were georeferenced to a digital elevation model of the Tioga Pass, CA region generated in the NASA Shuttle Radar Topography Mission. Interannual variability in basin-wide concentration and pixel-by-pixel concentration trajectories were evaluated.

  5. A Ground Truthing Method for AVIRIS Overflights Using Canopy Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Serrano, Lydia; Roberts, Dar A.; Ustin, Susan L.

    1996-01-01

    Remote sensing for ecological field studies requires ground truthing for accurate interpretation of remote imagery. However, traditional vegetation sampling methods are time consuming and hard to relate to the scale of an AVIRIS scene. The large errors associated with manual field sampling, the contrasting formats of remote and ground data, and problems with coregistration of field sites with AVIRIS pixels can lead to difficulties in interpreting AVIRIS data. As part of a larger study of fire risk in the Santa Monica Mountains of southern California, we explored a ground-based optical method of sampling vegetation using spectrometers mounted both above and below vegetation canopies. The goal was to use optical methods to provide a rapid, consistent, and objective means of "ground truthing" that could be related both to AVIRIS imagery and to conventional ground sampling (e.g., plot harvests and pigment assays).

  6. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  7. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  8. Spatial/Spectral Identification of Endmembers from AVIRIS Data using Mathematical Morphology

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Martinez, Pablo; Gualtieri, J. Anthony; Perez, Rosa M.

    2001-01-01

    During the last several years, a number of airborne and satellite hyperspectral sensors have been developed or improved for remote sensing applications. Imaging spectrometry allows the detection of materials, objects and regions in a particular scene with a high degree of accuracy. Hyperspectral data typically consist of hundreds of thousands of spectra, so the analysis of this information is a key issue. Mathematical morphology theory is a widely used nonlinear technique for image analysis and pattern recognition. Although it is especially well suited to segment binary or grayscale images with irregular and complex shapes, its application in the classification/segmentation of multispectral or hyperspectral images has been quite rare. In this paper, we discuss a new completely automated methodology to find endmembers in the hyperspectral data cube using mathematical morphology. The extension of classic morphology to the hyperspectral domain allows us to integrate spectral and spatial information in the analysis process. In Section 3, some basic concepts about mathematical morphology and the technical details of our algorithm are provided. In Section 4, the accuracy of the proposed method is tested by its application to real hyperspectral data obtained from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer. Some details about these data and reference results, obtained by well-known endmember extraction techniques, are provided in Section 2. Finally, in Section 5 we expose the main conclusions at which we have arrived.

  9. The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1992-01-01

    The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.

  10. Measurement of atmospheric water vapor, leaf liquid water and reflectance with AVIRIS in the Boreal Ecosystem-Atmosphere Study: Initial results

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.; Roberts, Dar A.

    1995-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) acquired data as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) in 1994. Flights occurred over the northern study area (NSA) in the region of 56 degrees north latitude and 98.5 degrees west longitude and over the southern study area (SSA) at 54 degrees north latitude and 105 degrees west longitude. These data will be used to directly derive spectral properties of the surface and atmosphere and to provide supporting data for other instruments, models, and experiments in support of the BOREAS objectives. We present a preliminary evaluation of the AVIRIS data collected in BOREAS in terms of the AVIRIS-derived parameters: water vapor, leaf water, and apparent spectral reflectance.

  11. Assessment of AVIRIS data from vegetated sites in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Elvidge, Christopher D.; Defeo, N. J.

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired from the Bishop, CA area, located at the northern end of the Owens Valley, on July 30, 1987. Radiometrically-corrected AVIRIS data were flat-field corrected, and spectral curves produced and analyzed for pixels taken from both native and cultivated vegetation sites, using the JPS SPAM software program and PC-based spreadsheet programs. Analyses focussed on the chlorophyll well and red edge portions of the spectral curves. Results include the following: AVIRIS spectral data are acquired at sufficient spectral resolution to allow detection of blue shifts of both the chlorophyll well and red edge in moisture-stressed vegetation when compared with non-stressed vegetation; a normalization of selected parameters (chlorophyll well and near infrared shoulder) may be used to emphasize the shift in red edge position; and the presence of the red edge in AVIRIS spectral curves may be useful in detecting small amounts (20 to 30 pct cover) of semi-arid and arid vegetation ground cover. A discussion of possible causes of AVIRIS red edge shifts in respsonse to stress is presented.

  12. ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery

    PubMed Central

    Li, Na; Xu, Zhaopeng; Zhao, Huijie; Huang, Xinchen; Drummond, Jane; Wang, Daming

    2018-01-01

    The diverse density (DD) algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels). However, the feature vector learned by the DD algorithm cannot always effectively represent one type of ground cover. To handle this problem, an instance space-based diverse density (ISBDD) model that employs a novel training strategy is proposed in this paper. In the ISBDD model, DD values of each pixel are computed instead of learning a feature vector, and as a result, the pixel can be classified according to its DD values. Airborne hyperspectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and the Push-broom Hyperspectral Imager (PHI) are applied to evaluate the performance of the proposed model. Results show that the overall classification accuracy of ISBDD model on the AVIRIS and PHI images is up to 97.65% and 89.02%, respectively, while the kappa coefficient is up to 0.97 and 0.88, respectively. PMID:29510547

  13. Attributing Methane and Carbon Dioxide Emissions from Anthropogenic and Natural Sources Using AVIRIS-NG

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.

    2016-12-01

    Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.

  14. Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Hamilton, Michael K.; Davis, Curtiss O.; Rhea, W. J.; Pilorz, Stuart H.; Carder, Kendall L.

    1993-01-01

    Data on chlorophyll content and bathymetry of Lake Tahoe obtained on August 9, 1990 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are compared to concurrent in situ surface and in-water measurements. Measured parameters included profiles of percent transmission of monochromatic light, stimulated chlorophyll fluorescence, photosynthetically available radiation, spectral upwelling and downwelling irradiance, and upwelling radiance. Several analyses were performed illustrating the utility of the AVIRIS over a dark water scene. Image-derived chlorophyll concentration compared extremely well with that measured with bottle samples. A bathymetry map of the shallow parts of the lake was constructed which compares favorably with published lake soundings.

  15. AVIRIS onboard data handling and control

    NASA Technical Reports Server (NTRS)

    Steinkraus, Ronald E.; Hickok, Roger W.

    1987-01-01

    The timing and flow of detector and ancillary data for the Airborne Visible/Infrared imaging spectrometer (AVIRIS) are controlled within the instrument by its digital electronics assembly. In addition to providing detector and signal chain timing, the digital electronics receives, formats, and rate-buffers digitized science data; collects and formats ancillary (calibration and engineering) data; and merges both into a single tape record. Overall AVIRIS data handling is effected by a combination of dedicated digital electronics to control instrument timing, image data flow, and data rate buffering and a microcomputer programmed to handle real-time control of instrument mechanisms and the coordinated preparation of ancillary data.

  16. Imaging spectrometry of the Earth and other solar system bodies

    NASA Technical Reports Server (NTRS)

    Vane, Gregg

    1993-01-01

    Imaging spectrometry is a relatively new tool for remote sensing of the Earth and other bodies of the solar system. The technique dates back to the late 1970's and early 1980's. It is a natural extension of the earlier multi-spectral imagers developed for remote sensing that acquire images in a few, usually broad spectral bands. Imaging spectrometers combine aspects of classical spectrometers and imaging systems, making it possible to acquire literally hundreds of images of an object, each image in a separate, narrow spectral band. It is thus possible to perform spectroscopy on a pixel-by-pixel basis with the data acquired with an imaging spectrometer. Two imaging spectrometers have flown in space and several others are planned for future Earth and planetary missions. The French-built Phobos Infrared Spectrometer (ISM) was part of the payload of the Soviet Mars mission in 1988, and the JPL-built Near Infrared Mapping Spectrometer (NIMS) is currently en route to Jupiter aboard the Galileo spacecraft. Several airborne imaging spectrometers have been built in the past decade including the JPL-built Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is the only such sensor that covers the full solar reflected portion of the spectrum in narrow, contiguous spectral bands. NASA plans two imaging spectrometers for its Earth Observing System, the Moderate and the High Resolution Imaging Spectrometers (MODIS and HIRIS). A brief overview of the applications of imaging spectrometry to Earth science will be presented to illustrate the value of the tool to remote sensing and indicate the types of measurements that are required. The system design for AVIRS and a planetary imaging spectrometer will be presented to illustrate the engineering considerations and challenges that must be met in building such instruments. Several key sensor technology areas will be discussed in which miniaturization and/or enhanced performance through micromachining and nanofabrication may allow smaller, more robust, and more capable imaging spectrometers to be built in the future.

  17. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper Ridge scene were transformed to apparent surface reflectance using a radiative transfer code-based inversion algorithm.

  18. An algorithm for chlorophyll using first difference transformations of AVIRIS reflectance spectra

    NASA Technical Reports Server (NTRS)

    Novo, Evlyn; Gastil, Mary; Melack, John

    1995-01-01

    Experimental results have shown the existence of a strong relationship between chlorophyll alpha concentration and remote sensing reflectance measured at lake level with a high resolution spectroradiometer. The objective of our study was to investigate the relationship between surface chlorophyll alpha concentration at Mono Lake and water reflectance retrieved from Airborne Visible - Infrared Imaging Spectrometer (AVIRIS) data obtained in october 7, 1992. AVIRIS data were atmospherically corrected as described by Green et al. A description of the lake-level sampling is found in Melack and Gastil. The relationship between chlorophyll concentration and both the single band reflectance and the first difference transformation of the reflectance spectra for the first 40 AVIRIS spectral bands (400 nm to 740 nm) was examined. The relationship was then used to produce a map of the surface chlorophyll distribution.

  19. Proceedings of the 11th JPL Airborne Earth Science Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2002-01-01

    This publication contains the proceedings of the JPL Airborne Earth Science Workshop forum held to report science research and applications results with spectral images measured by the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). These papers were presented at the Jet Propulsion Laboratory from March 5-8, 2001. Electronic versions of these papers may be found at the A VIRIS Web http://popo.jpl.nasa.gov/pub/docs/workshops/aviris.proceedings.html

  20. Mapping the spectral variability in photosynthetic and non-photosynthetic vegetation, soils, and shade using AVIRIS

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Smith, Milton O.; Sabol, Donald E.; Adams, John B.; Ustin, Susan L.

    1992-01-01

    The primary objective of this research was to map as many spectrally distinct types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade, and soil (endmembers) in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene as is warranted by the spectral variability of the data. Once determined, a secondary objective was to interpret these endmembers and their abundances spatially and spectrally in an ecological context.

  1. Field observations using an AOTF polarimetric imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Hamilton, Mike; Mahoney, Colin; Reyes, George

    1993-01-01

    This paper reports preliminary results of recent field observations using a prototype acousto-optic tunable filter (AOTF) polarimetric imaging spectrometer. The data illustrate application potentials for geoscience. The operation principle of this instrument is different from that of current airborne multispectral imaging instruments, such as AVIRIS. The AOTF instrument takes two orthogonally polarized images at a desired wavelength at one time, whereas AVIRIS takes a spectrum over a predetermined wavelength range at one pixel at a time and the image is constructed later. AVIRIS does not have any polarization measuring capability. The AOTF instrument could be a complement tool to AVIRIS. Polarization measurement is a desired capability for many applications in remote sensing. It is well know that natural light is often polarized due to various scattering phenomena in the atmosphere. Also, scattered light from canopies is reported to have a polarized component. To characterize objects of interest correctly requires a remote sensing imaging spectrometer capable of measuring object signal and background radiation in both intensity and polarization so that the characteristics of the object can be determined. The AORF instrument has the capability to do so. The AOTF instrument has other unique properties. For example, it can provide spectral images immediately after the observation. The instrument can also allow observations to be tailored in real time to perform the desired experiments and to collect only required data. Consequently, the performance in each mission can be increased with minimal resources. The prototype instrument was completed in the beginning of this year. A number of outdoor field experiments were performed with the objective to evaluate the capability of this new technology for remote sensing applications and to determine issues for further improvements.

  2. A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Porter, Wallace M.; Enmark, Harry T.

    1987-01-01

    The AVIRIS instrument has been designed to do high spectral resolution remote sensing of the Earth. Utilizing both silicon and indium antimonide line array detectors, AVIRIS covers the spectral region from 0.41 to 2.45 microns in 10-nm bands. It was designed to fly aboard NASA's U-2 and ER-2 aircraft, where it will simulate the performance of future spacecraft instrumentation. Flying at an altitude of 20 km, it has an instantaneous field of view of 20 m and views a swath over 10 km wide. With an ability to record 40 minutes of data, it can, during a single flight, capture 500 km of flight line.

  3. Band-Moment Compression of AVIRIS Hyperspectral Data and its Use in the Detection of Vegetation Stress

    NASA Technical Reports Server (NTRS)

    Estep, L.; Davis, B.

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test farm at Shelton, Nebraska. An experimental field was set off in plots that were differentially treated with anhydrous ammonia. Four replicates of 0-kg/ha to 200-kg/ha plots, in 50-kg/ha increments, were set out in a random block design. Low-altitude (GSD of 3 m) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data were collected over the site in 224 bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to reduce data load while maintaining or enhancing algorithm performance for vegetation stress detection, band-moment compression and analysis was applied to the AVIRIS image cube. The results indicated that band-moment techniques compress the AVIRIS dataset significantly while retaining the capability of detecting environmentally induced vegetation stress.

  4. Evaluation of the Use of Dark and Bright Targets for the In-Flight Calibration of AVIRIS

    NASA Technical Reports Server (NTRS)

    Thome, K.; Parada, R.; Schiller, S.; Conel, J.; LaMarr, J.

    1998-01-01

    During a field campaign at Lake Tahoe on June 22, 1995, calibrations of AVIRIS were attempted using both the reflectance-based and radiance-based methods. This experiment shows that the use of dark water targets to calibrate radiometric sensors can result in meaningful sensor characterization. In particular, the reflectance-based method shows promise towards meeting the desired 2-3% uncertainty levels for ocean color sensors since experimental agreement of better than 1.5% is found for the Lake Tahoe AVIRIS experiment. Similarly promising results were found from reflectance-based calibrations at Lunar Lake with large portions of the spectrum having less than a 5% difference between the reflectance-based predictions and the measured AVIRIS radiances. These results are still in the preliminary stage and it is likely that further study of this data set will lead to even better agreement. The results of the radiance-based calibration at Lake Tahoe are quite good at the shorter wavelengths where atmospheric scattering leads to larger signals and smaller effects of specularly reflected solar energy. The results also showed the sensitivity to radiometer pointing when using water targets for vicarious calibration.

  5. BOREAS RSS-18 Level-1B AVIRIS Imagery: At-Sensor Radiance in BIL Format

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Green, Robert O.; Smith, David E. (Technical Monitor)

    2000-01-01

    These data were collected and processed by the BOREAS RSS-18 team at NASA JPL. Data were acquired for BOREAS with NASA's AVIRIS. This optical sensor measures images that consist of spectra from 400 to 2500 nm at 10-nm sampling. These spectra are acquired as images with 20-meter spatial resolution, 11-km swath width and up to 800-km length. The measurements are spectrally, radiometrically, and geometrically calibrated. Spatially, the data are focused on the BOREAS NSA and SSA near Thompson, Manitoba, and Candle Lake, Saskatchewan, Canada, respectively. AVIRIS data were collected in 1994 during the Thaw campaign at the NSA and SSA, at the SSA in IFC-1, and at the NSA and SSA in both IFC-2 and IFC-3. In 1996, AVIRIS was deployed in the winter and summer campaigns in the SSA only. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Vane, Gregg; Conel, James E.

    1988-01-01

    An assessment of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) performance was made for a flight over Mountain Pass, California, July 30, 1987. The flight data were reduced to reflectance using an empirical algorithm which compensates for solar, atmospheric and instrument factors. AVIRIS data in conjunction with surface and atmospheric measurements acquired concurrently were used to develop an improved spectral calibration. An accurate in-flight radiometric calibration was also performed using the LOWTRAN 7 radiative transfer code together with measured surface reflectance and atmospheric optical depths. A direct comparison with coincident Thematic Mapper imagery of Mountain Pass was used to demonstrate the high spatial resolution and good geometric performance of AVIRIS. The in-flight instrument noise was independently determined with two methods which showed good agreement. A signal-to-noise ratio was calculated using data from a uniform playa. This ratio was scaled to the AVIRIS reference radiance model, which provided a basis for comparison with laboratory and other in-flight signal-to-noise determinations.

  7. Multiple Aspects of the Southern California Wildfires as Seen by NASA's AVIRIS

    NASA Image and Video Library

    2017-12-15

    NASA's Airborne Visible Infrared Imaging Spectrometer instrument (AVIRIS), flying aboard a NASA Armstrong Flight Research Center high-altitude ER-2 aircraft, observed wildfires burning in Southern California on Dec. 5-7, 2017. AVIRIS is an imaging spectrometer that observes light in visible and infrared wavelengths, measuring the full spectrum of radiated energy. Unlike regular cameras with three colors, AVIRIS has 224 spectral channels, measuring contiguously from the visible through the shortwave infrared. Data from these flights, compared against measurements acquired earlier in the year, show many ways this one instrument can improve both our understanding of fire risk and the response to fires in progress. The top row in this image compilation shows pre-fire data acquired from June 2017. At top left is a visible-wavelength image similar to what our own eyes would see. The top middle image is a map of surface composition based on analyzing the full electromagnetic spectrum, revealing green vegetated areas and non-photosynthetic vegetation that is potential fuel as well as non-vegetated surfaces that may slow an advancing fire. The image at top right is a remote measurement of the water in tree canopies, a proxy for how much moisture is in the vegetation. The bottom row in the compilation shows data acquired from the Thomas fire in progress in December 2017. At bottom left is a visible wavelength image. The bottom middle image is an infrared image, with red at 2,250 nanometers showing fire energy, green at 1,650 nanometers showing the surface through the smoke, and blue at 1,000 nanometers showing the smoke itself. The image at bottom right is a fire temperature map using spectroscopic analysis to measure fire thermal emission recorded in the AVIRIS spectra. https://photojournal.jpl.nasa.gov/catalog/PIA22194

  8. Mapping playa evaporite minerals with AVIRIS data: A first report from death valley, California

    USGS Publications Warehouse

    Crowley, J.K.

    1993-01-01

    Efflorescent salt crusts in Death Valley, California, were mapped by using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and a recently developed least-squares spectral band-fitting algorithm. Eight different saline minerals were remotely identified, including three borates, hydroboracite, pinnoite, and rivadavite, that have not been previously reported from the Death Valley efflorescent crusts. The three borates are locally important phases in the crusts, and at least one of the minerals, rivadavite, appears to be forming directly from brine. Borates and other evaporite minerals provide a basis for making remote chemical measurements of desert hydrologic systems. For example, in the Eagle Borax Spring area, the AVIRIS mineral maps pointed to elevated magnesium and boron levels in the ground waters, and to the action of chemical divides causing subsurface fractionation of calcium. Many other chemical aspects of playa brines should have an expression in the associated evaporite assemblages. Certain anhydrous evaporites, including anhydrite, glauberite, and thenardite, lack absorption bands in the visible and near-infrared wavelength range, and crusts composed of these minerals could not be characterized by using AVIRIS. In these situations, thermal-infrared remote sensing data may complement visible and near-infrared data for mapping evaporites. Another problem occurred in wet areas of Death Valley, where water absorption caused low signal levels in the 2.0-2.5 ??m wavelength region that obscured any spectral features of evaporite minerals. Despite these difficulties, the results of this study demonstrate the potential for using AVIRIS and other imaging spectrometer data to study playa chemistry. Such data can be useful for understanding chemical linkages between evaporites and ground waters, and will facilitate studies of how desert ground-water regimes change through time in response to climatic and other variables. ?? 1993.

  9. Mapped minerals at Questa, New Mexico, using airborne visible-infrared imaging spectrometer (AVIRIS) data -- Preliminary report

    USGS Publications Warehouse

    Livo, K. Eric; Clark, Roger N.

    2002-01-01

    This preliminary study for the First Quarterly Report has spectrally mapped hydrothermally altered minerals useful in assisting in assessment of water quality of the Red River. Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) data was analyzed to characterize mined and unmined ground at Questa, New Mexico. AVIRIS data covers the Red River drainage north of the river, from between the town of Questa on the west, to east of the town of Red River. The data was calibrated and analyzed using U.S. Geological Survey custom software and spectral mineral library. AVIRIS data was tested for spectral features that matched similar features in the spectral mineral library. Goodness-of-fit and band-depth were calculated for each comparison of spectral features and used to identify surface mineralogy. Mineral distribution, mineral associations, and AVIRIS pixel spectra were examined. Mineral maps show the distribution of iron hydroxides, iron sulfates, clays, micas, carbonates, and other minerals. Initial results show a system of alteration suites that overprint each other. Quartz-sericite-pyrite (QSP) alteration grading out to propylitic alteration (epidote and calcite) was identified at the Questa Mine (molybdenum porphyry) and a similar alteration pattern was mapped at the landslide (?scar?) areas. Supergene weathering overprints the altered rock, as shown by jarosite, kaolinite, and gypsum. In the spectral analysis, hydrothermally altered ground appears to be more extensive at the unmined Goat Hill Gulch and the mined ground, than the ?scars? to the east. Though the ?scars? have similar overall altered mineral suites, there are differences between the ?scars? in sericite, kaolinite, jarosite, gypsum, and calcite abundance. Fieldwork has verified the results at the central unmined ?scar? areas.

  10. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) onboard calibration system

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Eastwood, Mike; Green, Robert O.; Sarture, Charles; Johnson, Howell; Chovit, Chris; Hajek, Pavel

    1995-01-01

    The AVIRIS instrument uses an onboard calibration system to provide auxiliary calibration data. The system consist of a tungsten halogen cycle lamp imaged onto a fiber bundle through an eight position filter wheel. The fiber bundle illuminates the back side of the foreoptics shutter during a pre-run and post-run calibration sequence. The filter wheel contains two neutral density filters, five spectral filters and one blocked position. This paper reviews the general workings of the onboard calibrator system and discusses recent modifications.

  11. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  12. Calibration and Vegetation Field Spectra Collection for the 2000 AVIRIS Hawaii Deployment

    NASA Technical Reports Server (NTRS)

    Dennison, Philip E.; Gardner, Margaret E.; Roberts, Dar A.; Green, Robert O.

    2001-01-01

    As part of the April 2000 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Hawaii deployment, two researchers from the University of California, Santa Barbara, were sent to Hawaii to collect supporting field data. The primary goal of the fieldwork was to obtain spectra of bright targets to be used for retrieving surface reflectance from AVIRIS imagery. Secondary goals included recording the spectra of dominant vegetation, marking the position of homogeneous land cover for use as potential image endmembers (PIEs), and recording firsthand impressions of cover types. Primary and secondary goals were met. Spectra were recorded for 12 calibration targets on 5 islands and spectra were obtained for 61 vegetation species. Twenty PIEs were located, and video was used to document cover at 56 locations.

  13. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Smith, M. O.; Adams, J. B.

    1993-01-01

    The problem of distinguishing between green vegetation, nonphotosynthetic vegetation (NPV, such as dry grass, leaf litter, and woody material), and soils in imaging-spectrometer data is addressed by analyzing an image taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Jasper Ridge Biological Preserve (California) on September 20, 1989, using spectral mixture analysis. Over 98 percent of the spectral variation could be explained by linear mixtures of three endmembers, green vegetation, shade, and soil. NPV, which could not be distinguished from soil when included as an endmember, was discriminated by residual spectra that contained cellulose and lignin absorptions. Distinct communities of green vegetation were distinguished by (1) nonlinear mixing effect caused by transmission and scattering by green leaves, (2) variations in a derived canopy-shade spectrum, and (3) the fraction of NPV.

  14. Land cover mapping at Alkali Flat and Lake Lucero, White Sands, New Mexico, USA using multi-temporal and multi-spectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Ghrefat, Habes A.; Goodell, Philip C.

    2011-08-01

    The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.

  15. Validation of Airborne Visible-Infrared Imaging Spectrometer Data at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    Lang, H.; Baloga, S.

    1999-01-01

    We validate 1997 Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) reflectance spectra covering 0.4 meu - 2.4 meu from a stable, flat mineralogically characterized man-made target at Ray Mine, AZ, the site for an EPA/NASA assessment of the utility of remote sensing for monitoring acid drainage from an active open pit mine.

  16. Retrieval of Marine Water Constituents Using Atmospherically Corrected AVIRIS Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Bagheri, Sima; Peters, Steef

    2004-01-01

    This paper reports on the validation of bio-optical models in estuarine and nearshore (case 2) waters of New Jersey-New York to retrieve accurate water-leaving radiance spectra and chlorophyll concentration from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer data. MODTRAN-4 was applied to remove the effects of the atmosphere so as to infer the water-leaving radiance. The study area - Hudson/Raritan of New York and New Jersey (Figure 1) is an extremely complex estuarine system where tidal and wind-driven currents are modified by freshwater discharges from the Hudson, Raritan, Hackensack, and Passaic rivers. Over the last century, the estuarine water quality has degraded in part due to eutrophication, which has disrupted the preexisting natural balance, resulting in phytoplankton blooms of both increased frequency and intensity, increasing oxygen demand, and leading to episodes of hypoxia. As the end result, a thematic map of chlorophyll-a concentration was generated using an atmospherically corrected AVIRIS ratio image. This thematic map serves as an indication of phytoplankton concentration. Such maps are important input into the geographic information system (GIS) for use as a management tool for monitoring water resources.

  17. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors

    USGS Publications Warehouse

    Sun, Shaojie; Hu, Chuanmin; Feng, Lian; Swayze, Gregg A.; Holmes, Jamie; Graettinger, George; MacDonald, Ian R.; Garcia, Oscar; Leifer, Ira

    2016-01-01

    Using fine spatial resolution (~ 7.6 m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, we statistically estimated slick lengths, widths and length/width ratios to characterize oil slick morphology for different thickness classes. For all AVIRIS-detected oil slicks (N = 52,100 continuous features) binned into four thickness classes (≤ 50 μm but thicker than sheen, 50–200 μm, 200–1000 μm, and > 1000 μm), the median lengths, widths, and length/width ratios of these classes ranged between 22 and 38 m, 7–11 m, and 2.5–3.3, respectively. The AVIRIS data were further aggregated to 30-m (Landsat resolution) and 300-m (MERIS resolution) spatial bins to determine the fractional oil coverage in each bin. Overall, if 50% fractional pixel coverage were to be required to detect oil with thickness greater than sheen for most oil containing pixels, a 30-m resolution sensor would be needed.

  18. Derivative Analysis of AVIRIS Data for Crop Stress Detection

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Carter, Gregory A.; Berglund, Judith

    2003-01-01

    Low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery of a cornfield in Nebraska was used to determine whether derivative analysis methods provided enhanced plant stress detection compared with narrow-band ratios. The field was divided into 20 plots representing 4 replicates each of 5 nitrogen (N) fertilization treatments that ranged from 0 to 200 kg N/ha in 50 kg/ha increments. The imagery yielded a 3 m ground pixel size for 224 spectral bands. Derivative analysis provided no advantage in stress detection compared with the performance of narrow-band indices derived from the literature. This result was attributed to a high leaf area index at the time of overflight (LAI approx. equal to 5 to 6t) and the high signal-to-noise character of the narrow AVIRIS bands.

  19. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.

  20. Correction of thin cirrus effects in AVIRIS images using the sensitive 1.375-micron cirrus detecting channel

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yorman J.

    1995-01-01

    Using spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during various field programs, it was found that narrow channels near the center of the strong 1.38-micrometer water vapor band are very effective in detecting think cirrus clouds. Based on this observation from AVIRIS data, Gao and Kaufman proposed to put a channel centered at 1.375 micrometers with a width of 30 nm on the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micrometer MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, much larger fraction of the satellite data is expected to be identified as being covered by cirrus clouds, some of them so thin that their obscuration of the surface is very small. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. Therefore, there is a need to study radiative properties of thin cirrus clouds, so that a strategy for correction or removal of the thin cirrus effects, similar to the correction of atmospheric aerosol effect, can be formed. In this extended abstract, we describe an empirical approach for removing/correcting thin cirrus effects in AVIRIS images using channels near 1.375 microns - one step beyond the detection of cirrus clouds using these channels.

  1. Evaluating the Effects of Surface Properties on Methane Detection with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

    NASA Astrophysics Data System (ADS)

    Ayasse, A.; Thorpe, A. K.; Roberts, D. A.; Aubrey, A. D.; Dennison, P. E.; Thompson, D. R.; Frankenberg, C.

    2016-12-01

    Atmospheric methane has been increasing since the industrial revolution and is thought to be responsible for about 25% of global radiative forcing (Hofman et al., 2006; Montzka et al., 2011). Given the importance of methane to global climate, it is essential that we identify methane sources to better understand the proportion of emissions coming from various sectors. Recently the Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) has proven to be a valuable instrument for mapping methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). However, it is important to determine how land cover and albedo affect the ability of AVIRIS-NG to detect methane. This study aims to quantify the effect these surface properties have on detection. To do so we are using a synthetic AVIRIS-NG image that has multiple land cover types, albedos, and methane concentrations and applying the Cluster Tunes Matched Filter (CTMF) algorithm (Funk et al. 2001, Thorpe et al., 2013) to detect methane enhancements within the image. CTMF results are compared to the surface properties to characterize how different surface properties affect detection. We will also evaluate the effect of surface properties with examples of methane plumes observed from oil fields and manure ponds in the San Joaquin Valley of California, two important methane sources (Figure 1). Initial results suggest that darker surfaces, such as water absent sun glint, will make detecting the methane signal challenging, while bright surfaces such as dry soils produce a much clearer signal. Characterizing the effect of surface properties on methane detection is of increasing importance given the application of this technology will likely expand to map methane across a diverse range of emission sources. Figure 1. AVIRIS-NG image acquired Apr. 29, 2015. True color image with a superimposed methane plume from a manure pond. Bright surfaces, such as the dirt road, provide a better surface for retrievals than dark surfaces, such as the vegetation.

  2. Characterizing the Impacts of the Deepwater Horizon Oil Spill on Marshland Vegetation, Gulf Coast Louisiana, Using Airborne Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.; Roberts, D. A.; Heckman, D.; Piazza, S.; Steyer, G.; Couvillion, B.; Holloway, J. M.; Mills, C. T.; Hoefen, T. M.

    2010-12-01

    Between April-July 2010 oil from the nation's largest oil spill contaminated the coastal marshlands of Louisiana. Data from the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) are being used to (1) delineate the area of impact, (2) quantify the depth of oil penetration into the marsh and (3) characterize the physical and chemical impacts of the oil on the ecosystem. AVIRIS was flown on NASA ER-2 and Twin Otter aircraft, acquiring data at 7.5 and 4.4 meter pixel size, respectively. Concurrently, field surveys and sample collections were made in the imaged areas. Data were collected in early May, early July, late July and mid-August over the area ranging from Terrebonne Bay to the end of the Mississippi River delta. AVIRIS data were converted from radiance to reflectance. Oiled areas were detected by comparing AVIRIS spectra to field and laboratory spectrometer measurements of oiled and unaffected vegetation using the USGS Material Identification and Characterization Algorithm (MICA). Results indicate that the area in and around Barataria Bay was most extensively and heavily affected. In field surveys, stems of Spartina alterniflora and Juncus roemerianus, the dominant species observed in the heavily oiled zones, were bent and broken by the weight of the oil, resulting in a damaged canopy that extended up to 30 meters into marsh. In less impacted zones, oil was observed on the plant stems but the canopy remained intact. In the bird's foot region of the delta, the area impacted was less extensive and the dominant affected species, Phragmites australis, suffered oiled stems but only minor fracturing of the canopy. Additional AVIRIS flights and field surveys are planned for the fall of 2010 and summer 2011. By comparing plant species composition, canopy biochemical content, and vegetation fractional cover within affected areas and to unaffected areas, we will continue to monitor degradation and recovery in the ecosystem, including on the longer-term chemical impacts of the oil in the marsh.

  3. Visible and infrared linear detector arrays for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bailey, Gary C.

    1987-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument uses four separate focal plane assemblies consisting of line array detectors that are multiplexed to a common J-FET preamp using a FET switch multiplexing (MUX) technique. A 32-element silicon line array covers the spectral range from 0.41 to 0.70 microns. Three additional 64-element indium antimonide (InSb) line arrays cover the spectral range from 0.68 to 2.45 microns. The spectral sampling interval per detector element is nominally 9.8 nm, giving a total of 224 spectral channels. All focal planes operate at liquid nitrogen temperature and are housed in separate dewars. Electrical performance characteristics include a read noise of less than 1000 e(-) in all channels, response and dark nonuniformity of 5 percent peak to peak, and quantum efficiency of greater than 60 percent.

  4. Retrieval of biophysical parameters with AVIRIS and ISM: The Landes Forest, south west France

    NASA Technical Reports Server (NTRS)

    Zagolski, F.; Gastellu-Etchegorry, J. P.; Mougin, E.; Giordano, G.; Marty, G.; Letoan, T.; Beaudoin, A.

    1992-01-01

    The first steps of an experiment for investigating the capability of airborne spectrometer data for retrieval of biophysical parameters of vegetation, especially water conditions are presented. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ISM data were acquired in the frame of the 1991 NASA/JPL and CNES campaigns on the Landes, South west France, a large and flat forest area with mainly maritime pines. In-situ measurements were completed at that time; i.e. reflectance spectra, atmospheric profiles, sampling for further laboratory analyses of elements concentrations (lignin, water, cellulose, nitrogen,...). All information was integrated in an already existing data base (age, LAI, DBH, understory cover,...). A methodology was designed for (1) obtaining geometrically and atmospherically corrected reflectance data, (2) registering all available information, and (3) analyzing these multi-source informations. Our objective is to conduct comparative studies with simulation reflectance models, and to improve these models, especially in the MIR.

  5. AVIRIS Reflectance Retrievals: UCSB Users Manual. Appendix 1

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    The following write-up is designed to help students and researchers take Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance data and retrieve surface reflectance. In the event that the software is not available, but a user has access to a reflectance product, this document is designed to provide a better understanding of how AVIRIS reflectance was retrieved. This guide assumes that the reader has both a basic understanding of the UNIX computing environment, and that of spectroscopy. Knowledge of the Interactive Data Language (IDL) and the Environment for Visualizing Images (ENVI) is helpful. This is a working document, and many of the fine details described in the following pages have been previously undocumented. After having read this document the reader should be able to process AVIRIS to reflectance, provided access to all of the code is possible. The AVIRIS radiance data itself is pre-processed at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The first section of this paper describes how to read data from tape and byte-swap the data. Section 2 describes the procedure in preparing support files before running the 'h2o' suite of programs. Section 3 describes the four programs used in the process, h2olut9.f, h2ospl9.f, vlsfit9.f and rfl9.f.

  6. Comparative mineral mapping in the Colorado Mineral Belt using AVIRIS and ASTER remote sensing data

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2013-01-01

    This report presents results of interpretation of spectral remote sensing data covering the eastern Colorado Mineral Belt in central Colorado, USA, acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. This study was part of a multidisciplinary mapping and data integration project at the U.S. Geological Survey that focused on long-term resource planning by land-managing entities in Colorado. The map products were designed primarily for the regional mapping and characterization of exposed surface mineralogy, including that related to hydrothermal alteration and supergene weathering of pyritic rocks. Alteration type was modeled from identified minerals based on standard definitions of alteration mineral assemblages. Vegetation was identified using the ASTER data and subdivided based on per-pixel chlorophyll content (depth of 0.68 micrometer absorption band) and dryness (fit and depth of leaf biochemical absorptions in the shortwave infrared spectral region). The vegetation results can be used to estimate the abundance of fire fuels at the time of data acquisition (2002 and 2003). The AVIRIS- and ASTER-derived mineral mapping results can be readily compared using the toggleable layers in the GeoPDF file, and by using the provided GIS-ready raster datasets. The results relating to mineral occurrence and distribution were an important source of data for studies documenting the effects of mining and un-mined, altered rocks on aquatic ecosystems at the watershed level. These studies demonstrated a high correlation between metal concentrations in streams and the presence of hydrothermal alteration and (or) pyritic mine waste as determined by analysis of the map products presented herein. The mineral mapping results were also used to delineate permissive areas for various mineral deposit types.

  7. Mapping Arid Vegetation Species Distributions in the White Mountains, Eastern California, Using AVIRIS, Topography, and Geology

    NASA Technical Reports Server (NTRS)

    VandeVen, C.; Weiss, S. B.

    2001-01-01

    Our challenge is to model plant species distributions in complex montane environments using disparate sources of data, including topography, geology, and hyperspectral data. From an ecologist's point of view, species distributions are determined by local environment and disturbance history, while spectral data are 'ancillary.' However, a remote sensor's perspective says that spectral data provide picture of what vegetation is there, topographic and geologic data are ancillary. In order to bridge the gap, all available data should be used to get the best possible prediction of species distributions using complex multivariate techniques implemented on a GIS. Vegetation reflects local climatic and nutrient conditions, both of which can be modeled, allowing predictive mapping of vegetation distributions. Geologic substrate strongly affects chemical, thermal, and physical properties of soils, while climatic conditions are determined by local topography. As elevation increases, precipitation increases and temperature decreases. Aspect, slope, and surrounding topography determine potential insolation, so that south-facing slopes are warmer and north-facing slopes cooler at a given elevation. Topographic position (ridge, slope, canyon, or meadow) and slope angle affect sediment accumulation and soil depth. These factors combine as complex environmental gradients, and underlie many features of plant distributions. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, digital elevation models, digitized geologic maps, and 378 ground control points were used to predictively map species distributions in the central and southern White Mountains, along the western boundary of the Basin and Range province. Minimum Noise Fraction (MNF) bands were calculated from the visible and near-infrared AVIRIS bands, and combined with digitized geologic maps and topographic variables using Canonical Correspondence Analysis (CCA). CCA allows for modeling species 'envelopes' in multidimensional environmental space, which can then be projected across entire landscapes.

  8. The AVIRIS Low Altitude Option-An Approach to Increase Geometric Resolution and Improve Operational Flexibility Simultaneously

    NASA Technical Reports Server (NTRS)

    Sarture, Charles M.; Chovit, Christopher J.; Chrien, Thomas G.; Eastwood, Michael L.; Green, Robert O.; Kurzwell, Charles G.

    1998-01-01

    From 1987 through 1997 the Airborne Visible-InfraRed Imaging Spectrometer has matured into a remote sensing instrument capable of producing prodigious amounts of high quality data. Using the NASA/Ames ER-2 high altitude aircraft platform, flight operations have become very reliable as well. Being exclusively dependent on the ER-2, however, has limitations: the ER-2 has a narrow cruise envelope which fixes the AVIRIS ground pixel at 20 meters; it requires a significant support infrastructure; and it has a very limited number of bases it can operate from. In the coming years, the ER-2 will also become less available for AVIRIS flights as NASA Earth Observing System satellite underflights increase. Adapting AVIRIS to lower altitude, less specialized aircraft will create a much broader envelope for data acquisition, i.e., higher ground geometric resolution while maintaining nearly the ideal spatial sampling. This approach will also greatly enhance flexibility while decreasing the overall cost of flight operations and field support. Successful adaptation is expected to culminate with a one-month period of demonstration flights.

  9. SIMPL/AVIRIS-NG Greenland 2015: Flight Report

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas A.; Markus, Thorsten

    2015-01-01

    In August 2015, NASA conducted a two-­aircraft, coordinated campaign based out of Thule Air Base, Greenland, in support of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. The survey targeted the Greenland Ice Sheet and sea ice in the Arctic Ocean during the summer melt season. The survey was conducted with a photon-counting laser altimeter in one aircraft and an imaging spectrometer in the second aircraft. Ultimately, the mission, SIMPL/AVIRIS-NG Greenland 2015, conducted nine coordinated science flights, for a total of 37 flight hours over the ice sheet and sea ice.

  10. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D. C. October 25-29, 1993 The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, October 25-26 (the summaries for this workshop appear in this volume, Volume 1); The Thermal Infrared Multispectral Scanner (TMIS) workshop, on October 27 (the summaries for this workshop appear in Volume 2); and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, October 28-29 (the summaries for this workshop appear in Volume 3).

  11. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such studies. We present here our results on detection of algal accessory pigments using AVIRIS data.

  12. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric

    2003-01-01

    Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).

  13. Empirical relationships among atmospheric variables from rawinsonde and field data as surrogates for AVIRIS measurements: Estimation of regional land surface evapotranspiration

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Hoover, Gordon; Nolin, Anne; Alley, Ron; Margolis, Jack

    1992-01-01

    Empirical relationships between variables are ways of securing estimates of quantities difficult to measure by remote sensing methods. The use of empirical functions was explored between: (1) atmospheric column moisture abundance W (gm H2O/cm(sup 2) and surface absolute water vapor density rho(q-bar) (gm H2O/cm(sup 3), with rho density of moist air (gm/cm(sup 3), q-bar specific humidity (gm H2O/gm moist air), and (2) column abundance and surface moisture flux E (gm H2O/(cm(sup 2)sec)) to infer regional evapotranspiration from Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) water vapor mapping data. AVIRIS provides, via analysis of atmospheric water absorption features, estimates of column moisture abundance at very high mapping rate (at approximately 100 km(sup 2)/40 sec) over large areas at 20 m ground resolution.

  14. Imaging spectrometer measurement of water vapor in the 400 to 2500 nm spectral region

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.; Conel, James E.; Dozier, Jeff

    1995-01-01

    The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) measures the total upwelling spectral radiance from 400 to 2500 nm sampled at 10 nm intervals. The instrument acquires spectral data at an altitude of 20 km above sea level, as images of 11 by up to 100 km at 17x17 meter spatial sampling. We have developed a nonlinear spectral fitting algorithm coupled with a radiative transfer code to derive the total path water vapor from the spectrum, measured for each spatial element in an AVIRIS image. The algorithm compensates for variation in the surface spectral reflectance and atmospheric aerosols. It uses water vapor absorption bands centered at 940 nm, 1040 nm, and 1380 nm. We analyze data sets with water vapor abundances ranging from 1 to 40 perceptible millimeters. In one data set, the total path water vapor varies from 7 to 21 mm over a distance of less than 10 km. We have analyzed a time series of five images acquired at 12 minute intervals; these show spatially heterogeneous changes of advocated water vapor of 25 percent over 1 hour. The algorithm determines water vapor for images with a range of ground covers, including bare rock and soil, sparse to dense vegetation, snow and ice, open water, and clouds. The precision of the water vapor determination approaches one percent. However, the precision is sensitive to the absolute abundance and the absorption strength of the atmospheric water vapor band analyzed. We have evaluated the accuracy of the algorithm by comparing several surface-based determinations of water vapor at the time of the AVIRIS data acquisition. The agreement between the AVIRIS measured water vapor and the in situ surface radiometer and surface interferometer measured water vapor is 5 to 10 percent.

  15. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed. This research is ongoing, and the current set of measurements, analyses, and results are presented in this paper.

  16. Remotely sensed geology from lander-based to orbital perspectives: Results of FIDO rover May 2000 field tests

    USGS Publications Warehouse

    Jolliff, B.; Knoll, A.; Morris, R.V.; Moersch, J.; McSween, H.; Gilmore, M.; Arvidson, R.; Greeley, R.; Herkenhoff, K.; Squyres, S.

    2002-01-01

    Blind field tests of the Field Integration Design and Operations (FIDO) prototype Mars rover were carried out 7-16 May 2000. A Core Operations Team (COT), sequestered at the Jet Propulsion Laboratory without knowledge of test site location, prepared command sequences and interpreted data acquired by the rover. Instrument sensors included a stereo panoramic camera, navigational and hazard-avoidance cameras, a color microscopic imager, an infrared point spectrometer, and a rock coring drill. The COT designed command sequences, which were relayed by satellite uplink to the rover, and evaluated instrument data. Using aerial photos and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, and information from the rover sensors, the COT inferred the geology of the landing site during the 18 sol mission, including lithologic diversity, stratigraphic relationships, environments of deposition, and weathering characteristics. Prominent lithologic units were interpreted to be dolomite-bearing rocks, kaolinite-bearing altered felsic volcanic materials, and basalt. The color panoramic camera revealed sedimentary layering and rock textures, and geologic relationships seen in rock exposures. The infrared point spectrometer permitted identification of prominent carbonate and kaolinite spectral features and permitted correlations to outcrops that could not be reached by the rover. The color microscopic imager revealed fine-scale rock textures, soil components, and results of coring experiments. Test results show that close-up interrogation of rocks is essential to investigations of geologic environments and that observations must include scales ranging from individual boulders and outcrops (microscopic, macroscopic) to orbital remote sensing, with sufficient intermediate steps (descent images) to connect in situ and remote observations.

  17. Spectral decomposition of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Gaddis, Lisa; Soderblom, Laurence; Kieffer, Hugh; Becker, Kris; Torson, Jim; Mullins, Kevin

    1993-01-01

    A set of techniques is presented that uses only information contained within a raw Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene to estimate and to remove additive components such as multiple scattering and instrument dark current. Multiplicative components (instrument gain, topographic modulation of brightness, atmospheric transmission) can then be normalized, permitting enhancement, extraction, and identification of relative reflectance information related to surface composition and mineralogy. The technique for derivation of additive-component spectra from a raw AVIRIS scene is an adaption of the 'regression intersection method' of Crippen. This method uses two surface units that are spatially extensive, and located in rugged terrain. For a given wavelength pair, subtraction of the derived additive component from individual band values will remove topography in both regions in a band/band ratio image. Normalization of all spectra in the scene to the average scene spectrum then results in cancellation of multiplicative components and production of a relative-reflectance scene. The resulting AVIRIS product contains relative-reflectance features due to mineral absorption that depart from the average spectrum. These features commonly are extremely weak and difficult to recognize, but they can be enhanced by using two simple 3-D image-processing tools. The validity of these techniques will be demonstrated by comparisons between relative-reflectance AVIRIS spectra and those derived by using JPL standard calibrations. The AVIRIS data used in this analysis were acquired over the Kelso Dunes area (34 deg 55' N, 115 deg 43' W) of the eastern Mojave Desert, CA (in 1987) and the Upheaval Dome area (38 deg 27' N, 109 deg 55' W) of the Canyonlands National Park, UT (in 1991).

  18. Evaluation and application of new AVIRIS data for the study of coral reefs in Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Wei, J.; Lee, Z.

    2017-12-01

    During the HyspIRI Hawaii campaign in early 2017, we collected hyperspectral remote sensing reflectance over coral reef environments in Kaneohe Bay in Oahu and the coastal waters of Maui Island. Based on in-situ measurements, we evaluated the data quality of reflectance measurements by the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS). Further, these data were used to refine the remote sensing algorithms for identification of live corals, water bathymetry, and water clarity for the entire flight lines. Our results suggested great improvement in our understanding and capabilities of using HyspIRI-like data to observe and monitor coral reef environments.

  19. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  20. Primary studies of trace quantities of green vegetation in Mono Lake area using 1990 AVIRIS data

    NASA Technical Reports Server (NTRS)

    Chen, Zhi-Kang; Elvidge, Chris D.; Groeneveld, David P.

    1992-01-01

    Our primary results in Jasper Ridge Biological Preserve indicate that high spectral resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data may provide a substantial advantage in vegetation, based on the chlorophyll red edge feature from 700-780 nm. The chlorophyll red edge was detected for green vegetation cover as low as 4.8 percent. The objective of our studies in Mono Lake area is to continue the experiments performed in Jasper Ridge and to examine the persistence of red edge feature of trace quantities of green vegetation for different plant communities with non-uniform soil backgrounds.

  1. Comparison of ASTER- and AVIRIS-Derived Mineraland Vegetation Maps of the White Horse Replacement Alunite Deposit and Surrounding Area, Marysvale Volcanic Field, Utah

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2009-01-01

    This report presents and compares mineral and vegetation maps of parts of the Marysvale volcanic field in west-central Utah that were published in a recent paper describing the White Horse replacement alunite deposit. Detailed, field-verified maps of the deposit were produced from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired from a low-altitude Twin Otter turboprop airborne platform. Reconnaissance-level maps of surrounding areas including the central and northern Tushar Mountains, Pahvant Range, and portions of the Sevier Plateau to the east were produced from visible, near-infrared, and shortwave-infrared data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried aboard the Terra satellite platform. These maps are also compared to a previously published mineral map of the same area generated from AVIRIS data acquired from the high-altitude NASA ER-2 jet platform. All of the maps were generated by similar analysis methods, enabling the direct comparison of the spatial scale and mineral composition of surface geologic features that can be identified using the three types of remote sensing data. The high spatial (2-17 meter) and spectral (224 bands) resolution AVIRIS data can be used to generate detailed mineral and vegetation maps suitable for geologic and geoenvironmental studies of individual deposits, mines, and smelters. The lower spatial (15-30 meter) and spectral (9 bands) resolution ASTER data are better suited to less detailed mineralogical studies of lithology and alteration across entire hydrothermal systems and mining districts, including regional mineral resource and geoenvironmental assessments. The results presented here demonstrate that minerals and mineral mixtures can be directly identified using AVIRIS and ASTER data to elucidate spatial patterns of mineralogic zonation; AVIRIS data can enable the generation of maps with significantly greater detail and accuracy. The vegetation mapping results suggest that ASTER data may provide an efficient alternative to spectroscopic data for studies of burn severity after wildland fires. A new, semiautomated methodology for the analysis of ASTER data is presented that is currently being applied to ASTER data coverage of large areas for regional assessments of mineral-resource potential and mineral-environmental effects. All maps are presented in a variety of digital formats, including jpeg, pdf, and ERDAS Imagine (.img). The Imagine format files are georeferenced and suitable for viewing with other geospatial data in Imagine, ArcGIS, and ENVI. The mineral and vegetation maps are attributed so that the material identified for a pixel can be determined easily in ArcMap by using the Identify tool and in Imagine by using the Inquire Cursor tool.

  2. Improving Aerosol and Visibility Forecasting Capabilities Using Current and Future Generations of Satellite Observations

    DTIC Science & Technology

    2015-08-27

    and 2) preparing for the post-MODIS/MISR era using the Geostationary Operational Environmental Satellite (GOES). 3. Improve model representations of...meteorological property retrievals. In this study, using collocated data from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geostationary

  3. REMOTE SENSING OF SEAGRASS WITH AVIRIS AND HIGH ALTITUDE AERIAL PHOTOGRAPHY

    EPA Science Inventory

    On May 15,2002 AVIRlS (Advanced VisuaJ/lnfrared Imaging Spectrometer) data and high altitude aerial photographs were acquired tor coastal .waters from Cape Lookout to Oregon Inlet, North Carolina. The study encompasses extensive areas of seagrass, federally protected submersed, r...

  4. Measuring dry plant residues in grasslands: A case study using AVIRIS

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Michael; Ustin, Susan L.

    1992-01-01

    Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.

  5. Feature-based and statistical methods for analyzing the Deepwater Horizon oil spill with AVIRIS imagery

    USGS Publications Warehouse

    Rand, R.S.; Clark, R.N.; Livo, K.E.

    2011-01-01

    The Deepwater Horizon oil spill covered a very large geographical area in the Gulf of Mexico creating potentially serious environmental impacts on both marine life and the coastal shorelines. Knowing the oil's areal extent and thickness as well as denoting different categories of the oil's physical state is important for assessing these impacts. High spectral resolution data in hyperspectral imagery (HSI) sensors such as Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) provide a valuable source of information that can be used for analysis by semi-automatic methods for tracking an oil spill's areal extent, oil thickness, and oil categories. However, the spectral behavior of oil in water is inherently a highly non-linear and variable phenomenon that changes depending on oil thickness and oil/water ratios. For certain oil thicknesses there are well-defined absorption features, whereas for very thin films sometimes there are almost no observable features. Feature-based imaging spectroscopy methods are particularly effective at classifying materials that exhibit specific well-defined spectral absorption features. Statistical methods are effective at classifying materials with spectra that exhibit a considerable amount of variability and that do not necessarily exhibit well-defined spectral absorption features. This study investigates feature-based and statistical methods for analyzing oil spills using hyperspectral imagery. The appropriate use of each approach is investigated and a combined feature-based and statistical method is proposed.

  6. Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes

    USGS Publications Warehouse

    Kokaly, Raymond F.; Couvillion, Brady; Holloway, JoAnn M.; Roberts, Dar A.; Ustin, Susan L.; Peterson, Seth H.; Khanna, Shruti; Piazza, Sarai C.

    2013-01-01

    We applied a spectroscopic analysis to Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data collected from low and medium altitudes during and after the Deepwater Horizon oil spill to delineate the distribution of oil-damaged canopies in the marshes of Barataria Bay, Louisiana. Spectral feature analysis compared the AVIRIS data to reference spectra of oiled marsh by using absorption features centered near 1.7 and 2.3 μm, which arise from CH bonds in oil. AVIRIS-derived maps of oiled shorelines from the individual dates of July 31, September 14, and October 4, 2010, were 89.3%, 89.8%, and 90.6% accurate, respectively. A composite map at 3.5 m grid spacing, accumulated from the three dates, was 93.4% accurate in detecting oiled shorelines. The composite map had 100% accuracy for detecting damaged plant canopy in oiled areas that extended more than 1.2 m into the marsh. Spatial resampling of the AVIRIS data to 30 m reduced the accuracy to 73.6% overall. However, detection accuracy remained high for oiled canopies that extended more than 4 m into the marsh (23 of 28 field reference points with oil were detected). Spectral resampling of the 3.5 m AVIRIS data to Landsat Enhanced Thematic Mapper (ETM) spectral response greatly reduced the detection of oil spectral signatures. With spatial resampling of simulated Landsat ETM data to 30 m, oil signatures were not detected. Overall, ~ 40 km of coastline, marsh comprised mainly of Spartina alterniflora and Juncus roemerianus, were found to be oiled in narrow zones at the shorelines. Zones of oiled canopies reached on average 11 m into the marsh, with a maximum reach of 21 m. The field and airborne data showed that, in many areas, weathered oil persisted in the marsh from the first field survey, July 10, to the latest airborne survey, October 4, 2010. The results demonstrate the applicability of high spatial resolution imaging spectrometer data to identifying contaminants in the environment for use in evaluating ecosystem disturbance and response.

  7. Using AVIRIS Data to Map and Characterize Subaerially and Subaqueously Erupted BasalticVolcanic Tephras: The Challenge of Mapping Low-Albedo Materials

    NASA Technical Reports Server (NTRS)

    Farrand, William H.

    2004-01-01

    Increases in the signal-to-noise ratio (SNR) in AVIRIS has enabled the mapping and characterization of low albedo materials. Low albedo materials of interest include certain soils, man-made materials (asphalt, certain building materials, tires, etc.), and basaltic lava flows and ashes. Early in its history, the response of the AVIRIS sensor was not sensitive enough so that these low albedo materials could be reliably mapped. However, as indicated by Green and Pavri (2002) the noise equivalent delta radiance (NEdL) of AVIRIS in the 2001 flight season was below 0.010 in all but the shortest wavelength channels. This is approximately a ten-fold improvement from the 1989 flight season when NEdL was closer to 0.1 (Green et al., 1990). In the current investigation, AVIRIS data from the 2002 flight season collected over the Pavant Butte tuff cone, Tabernacle Hill tuff ring, and an associated lava flow in the Black Rock Desert of west central Utah were examined to determine how well these generally low albedo volcanic lavas and tephras could be discriminated from background materials. The Pavant Butte tuff cone was examined by the author in an earlier study with a 1989 AVIRIS dataset (Farrand and Singer,

  8. Hyperspectral data analysis for estimation of foliar biochemical content along the Oregon transect

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Peterson, David L.

    1991-01-01

    The NASA Oregon Transect Ecosystem Research (OTTER) project completed a data acquisition phase. Data were acquired with several airborne imaging spectrometers. Included were the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) aboard the ER-2, the Advanced Solidstate Array Spectrometer (ASAS) aboard the C-130, and the Fluorescence Line Imager (FLI) and Compact Airborne Spectrographic Imager (CASI), both aboard light aircraft. In addition, Spectron visible and near-infrared data were acquired in transects across study areas from a low-altitude ultralight craft. Sunphotometer data were taken approximately coincident with each overflight for atmospheric correction of the aircraft data.

  9. Algorithm for Lossless Compression of Calibrated Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B.; Klimesh, Matthew A.

    2010-01-01

    A two-stage predictive method was developed for lossless compression of calibrated hyperspectral imagery. The first prediction stage uses a conventional linear predictor intended to exploit spatial and/or spectral dependencies in the data. The compressor tabulates counts of the past values of the difference between this initial prediction and the actual sample value. To form the ultimate predicted value, in the second stage, these counts are combined with an adaptively updated weight function intended to capture information about data regularities introduced by the calibration process. Finally, prediction residuals are losslessly encoded using adaptive arithmetic coding. Algorithms of this type are commonly tested on a readily available collection of images from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imager. On the standard calibrated AVIRIS hyperspectral images that are most widely used for compression benchmarking, the new compressor provides more than 0.5 bits/sample improvement over the previous best compression results. The algorithm has been implemented in Mathematica. The compression algorithm was demonstrated as beneficial on 12-bit calibrated AVIRIS images.

  10. Mapping the spatial and temporal dynamics of the velvet mesquite with MODIS and AVIRIS: Case study at the Santa Rita Experimental Range

    NASA Astrophysics Data System (ADS)

    Kaurivi, Jorry Zebby Ujama

    The general objective of this research is to develop a methodology that will allow mapping and quantifying shrub encroachment with remote sensing. The multitemporal properties of the Moderate Resolution Imaging Spectroradiometer (MODIS) -250m, 16-day vegetation index products were combined with the hyperspectral and high spatial resolution (3.6m) computation of the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to detect the dynamics of mesquite and grass/soil matrix at two sites of high (19.5%) and low (5.7%) mesquite cover in the Santa Rita Experimental Range (SRER). MODIS results showed separability between grassland and mesquite based on phenology. Mesquite landscapes had longer green peak starting in April through February, while the grassland only peaked during the monsoon season (July through October). AVIRIS revealed spectral separability, but high variation in the data implicated high heterogeneity in the landscape. Nonetheless, the methodology for larger data was developed in this study and combines ground, air and satellite data.

  11. AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods

    NASA Technical Reports Server (NTRS)

    Crowley, J. K.; Clark, R. N.

    1992-01-01

    Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.

  12. Remote sensing of smoke, clouds, and fire using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yorman J.; Green, Robert O.

    1993-01-01

    Clouds remain the greatest element of uncertainty in predicting global climate change. During deforestation and biomass burning processes, a variety of atmospheric gases, including CO2 and SO2, and smoke particles are released into the atmosphere. The smoke particles can have important effects on the formation of clouds because of the increased concentration of cloud condensation nuclei. They can also affect cloud albedo through changes in cloud microphysical properties. Recently, great interest has arisen in understanding the interaction between smoke particles and clouds. We describe our studies of smoke, clouds, and fire using the high spatial and spectral resolution data acquired with the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

  13. AVIRIS scan drive design and performance

    NASA Technical Reports Server (NTRS)

    Miller, D. C.

    1987-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images the ground with an instantaneous field of view (IFOV) of 1 mrad. The IFOV is scanned 30 deg from left to right to provide the cross-track dimension of the image, while the aircraft's motion provides the along-track dimension. The scanning frequency is 12 Hz, with a scan efficiency of 70 percent. The scan mirror has an effective diameter of 5.7 in, and its positional accuracy is a small fraction of a milliradian of the nominal position-time profile. Described are the design and performance of the scan drive mechanism. Tradeoffs among various approaches are discussed, and the reasons given for the selection of the cam drive.

  14. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative sensitivity of each stress index; and (3) Comparative sensitivity of stress indices to realistic measurement uncertainties. We compare the stress indices calculated with several levels of spectral uncertainty (by shifting the wavelengths) and reflectance uncertainty (by systematically varying the reflectance retrieval code initialization).

  15. Artificial intelligence for geologic mapping with imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  16. Flora: A Proposed Hyperspectral Mission

    NASA Technical Reports Server (NTRS)

    Ungar, Stephen; Asner, Gregory; Green, Robert; Knox, Robert

    2006-01-01

    In early 2004, one of the authors (Stephen Ungar, NASA GSFC) presented a mission concept called "Spectrasat" at the AVIRIS Workshop in Pasadena, CA. This mission concept grew out of the lessons learned from the Earth Observing-One (EO-1) Hyperion Imaging Spectrometer and was structured to more effectively accomplish the types of studies conducted with Hyperion. The Spectrasat concept represented an evolution of the technologies and operation strategies employed on EO-I. The Spectrasat concept had been preceded by two community-based missions proposed by Susan Ustin, UC Davis and Robert Green, NASA JPL. As a result of community participation, starting at this AVIRIS Workshop, the Spectrasat proposal evolved into the Flora concept which now represents the combined visions of Gregory Asner (Carnegie Institute), Stephen Ungar, Robert Green and Robert Knox, NASA GSFC. Flora is a proposed imaging spectrometer mission, designed to address global carbon cycle science issues. This mission centers on measuring ecological disturbance for purposes of ascertaining changes in global carbon stocks and draws heavily on experience gained through AVIRIS airborne flights and Hyperion space born flights. The observing strategy exploits the improved ability of imaging spectrometers, as compared with multi-spectral observing systems, to identify vegetation functional groups, detect ecosystem response to disturbance and assess the related discovery. Flora will be placed in a sun synchronous orbit, with a 45 meter pixel size, a 90 km swath width and a 31 day repeat cycle. It covers the spectral range from 0.4 to 2.5 micrometers with a spectral sampling interval of 10 nm. These specifications meet the needs of the Flora science team under the leadership of Gregory Asner. Robert Green, has introduced a spectrometer design for Flora which is expected to have a SNR of 600: 1 in the VNIR and 450: 1 in the SWIR. The mission team at NASA GSFC is designing an Intelligent Payload Module (IPM) designed to effectively reduce the volume of data required to be transmitted down to the ground. This paper discusses mission science objectives, describes the mission concept and presents the current status of possible funding opportunities leading to realization of the mission.

  17. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in-land water bodies. Results presented are from the 10 April 2013 overflight of the Monterey Bay region and focus primarily on the first objective - sensitivity to atmospheric correction. On-going and future work will continue to evaluate if PHYDOTax can be applied to historical (SeaWiFS and MERIS), existing (MODIS, VIIRS, and HICO), and future (PACE, GEO-CAPE, and HyspIRI) satellite sensors. Demonstration of cross-platform continuity may aid in calibration and validation efforts of these sensors.

  18. AVIRIS spectra correlated with the chlorophyll concentration of a forest canopy

    NASA Technical Reports Server (NTRS)

    Kupiec, John; Smith, Geoffrey M.; Curran, Paul J.

    1993-01-01

    Imaging spectrometers have many potential applications in the environmental sciences. One of the more promising applications is that of estimating the biochemical concentrations of key foliar biochemicals in forest canopies. These estimates are based on spectroscopic theory developed in agriculture and could be used to provide the spatial inputs necessary for the modeling of forest ecosystem dynamics and productivity. Several foliar biochemicals are currently under investigation ranging from those with primary absorption features in visible to middle infrared wavelengths (e.g., water, chlorophyll) to those with secondary to tertiary absorption features in this part of the spectrum (e.g., nitrogen, lignin). The foliar chemical of interest in this paper is chlorophyll; this is a photoreceptor and catalyst for the conversion of sunlight into chemical energy and as such plays a vital role in the photochemical synthesis of carbohydrates in plants. The aim of the research reported here was to determine if the chlorophyll concentration of a forest canopy could be correlated with the reflectance spectra recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

  19. Comparision of Bathymetry and Bottom Characteristics From Hyperspectral Remote Sensing Data and Shipborne Acoustic Measurements

    NASA Astrophysics Data System (ADS)

    McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.

    2002-12-01

    There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types. Acoustic backscatter imagery corresponds well with the AVIRIS data in the middle to outer study area, implying a close correspondence between seafloor character and optical reflectance. AVIRIS data in the inner study area show poorer correspondence with the acoustic facies, indicating greater water column effects (turbidity). Acoustic backscatter as a proxy for bottom albedo, in conjunction with multibeam bathymetry data, will allow for more precise modeling of the optical signal in coastal environments.

  20. A New and Fast Method for Smoothing Spectral Imaging Data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Liu, Ming; Davis, Curtiss O.

    1998-01-01

    The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) acquires spectral imaging data covering the 0.4 - 2.5 micron wavelength range in 224 10-nm-wide channels from a NASA ER-2 aircraft at 20 km. More than half of the spectral region is affected by atmospheric gaseous absorption. Over the past decade, several techniques have been used to remove atmospheric effects from AVIRIS data for the derivation of surface reflectance spectra. An operational atmosphere removal algorithm (ATREM), which is based on theoretical modeling of atmospheric absorption and scattering effects, has been developed and updated for deriving surface reflectance spectra from AVIRIS data. Due to small errors in assumed wavelengths and errors in line parameters compiled on the HITRAN database, small spikes (particularly near the centers of the 0.94- and 1.14-micron water vapor bands) are present in this spectrum. Similar small spikes are systematically present in entire ATREM output cubes. These spikes have distracted geologists who are interested in studying surface mineral features. A method based on the "global" fitting of spectra with low order polynomials or other functions for removing these weak spikes has recently been developed by Boardman (this volume). In this paper, we describe another technique, which fits spectra "locally" based on cubic spline smoothing, for quick post processing of ATREM apparent reflectance spectra derived from AVIRIS data. Results from our analysis of AVIRIS data acquired over Cuprite mining district in Nevada in June of 1995 are given. Comparisons between our smoothed spectra and those derived with the empirical line method are presented.

  1. Temporal variation in spectral detection thresholds of substrate and vegetation in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Roberts, Dar A.; Smith, Milton O.; Adams, John B.

    1992-01-01

    The ability to map changes over large surface areas over time is one of the advantages in using remote sensing as a monitoring tool. Temporal changes in the surface may be gradual, making them difficult to detect in the short-term, and because they commonly occur at the subpixel scale, they may be difficult to detect in the long-term as well. Also, subtle changes may be real or merely an artifact of image noise. It is, therefore, necessary to understand the factors that limit the detection of surface materials in evaluating temporal data. The spectral detectability of vegetation and soil in the 1990 July and October Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of Jasper Ridge, CA was evaluated and compared.

  2. Imaging spectrometry - Technology and applications

    NASA Technical Reports Server (NTRS)

    Solomon, Jerry E.

    1989-01-01

    The development history and current status of NASA imaging-spectrometer (IS) technology are discussed in a review covering the period 1982-1988. Consideration is given to the Airborne IS first flown in 1982, the second-generation Airborne Visible and IR IS (AVIRIS), the High-Resolution IS being developed for the EOS polar platform, improved two-dimensional focal-plane arrays for the short-wave IR spectral region, and noncollinear acoustooptic tunable filters for use as spectral dispersing elements. Also examined are approaches to solving the data-processing problems posed by the high data volumes of state-of-the-art ISs (e.g., 160 MB per 600 x 600-pixel AVIRIS scene), including intelligent data editing, lossless and lossy data compression techniques, and direct extraction of scientifically meaningful geophysical and biophysical parameters.

  3. Synthetic Scene Generation of the Stennis V and V Target Range for the Calibration of Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Yong; Blonski, Slawomir; Ryan, Robert; Gasser, Jerry; Zanoni, Vicki

    1999-01-01

    The verification and validation (V&V) target range developed at Stennis Space Center is a useful test site for the calibration of remote sensing systems. In this paper, we present a simple algorithm for generating synthetic radiance scenes or digital models of this target range. The radiation propagation for the target in the solar reflective and thermal infrared spectral regions is modeled using the atmospheric radiative transfer code MODTRAN 4. The at-sensor, in-band radiance and spectral radiance for a given sensor at a given altitude is predicted. Software is developed to generate scenes with different spatial and spectral resolutions using the simulated at-sensor radiance values. The radiometric accuracy of the simulation is evaluated by comparing simulated with AVIRIS acquired radiance values. The results show that in general there is a good match between AVIRIS sensor measured and MODTRAN predicted radiance values for the target despite the fact that some anomalies exist. Synthetic scenes provide a cost-effective way for in-flight validation of the spatial and radiometric accuracy of the data. Other applications include mission planning, sensor simulation, and trade-off analysis in sensor design.

  4. Derivation of scaled surface reflectances from AVIRIS data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Heidebrecht, Kathleen B.; Goetz, Alexander F. H.

    1993-01-01

    A method for retrieving 'scaled surface reflectances' assuming horizontal surfaces having Lambertian reflectances from spectral data collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is presented here. In this method, the integrated water vapor amount on a pixel by pixel basis is derived from the 0.94 micron and 1.14 micron water vapor absorption features. The transmission spectra of H2O, CO2, O3, N2O, CO, CH4, and O2 in the 0.4-2.5 micron region are simulated. The scattering effect due to atmospheric molecules and aerosols is modeled with the 5S computer code. The AVIRIS radiances are divided by solar irradiances above the atmosphere to obtain the apparent reflectances. The scaled surface reflectances are derived from the apparent reflectances using the simulated atmospheric gaseous transmittances and the simulated molecular and aerosol scattering data. The scaled surface reflectances differ from the real surface reflectances by a multiplicative factor. In order to convert the scaled surface reflectances into real surface reflectances, the slopes and aspects of the surfaces must be known.

  5. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2003-01-01

    Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.

  6. Visible-Near Infrared Imaging Spectrometer Data of Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.

    2005-01-01

    In a continuing study to capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained new high resolution visible-near infrared images of several explosion craters at the Nevada Test Site. We used the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to obtain images in 224 spectral bands from 0.4-2.5 microns [1]. The main craters that were imaged were Sedan, Scooter, Schooner, Buggy, and Danny Boy [2]. The 390 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of the detonation of a 104 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a "simple" crater [2]. Sedan was formed in alluvium of mixed lithology [3] and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also imaged by AVIRIS. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m, Fig. 1) craters were also important targets for AVIRIS as they were excavated in hard welded tuff and basaltic andesite, respectively [3, 4]. This variation in targets will allow the study of ejecta patterns, compositional modifications due to the explosions, and the role of craters as subsurface probes.

  7. Improved Remote Sensing Retrieval of Land Surface Temperature in the Thermal Infrared (TIR) Using Visible/Short Wave Infrared (VSWIR) Imaging Spectrometer Estimated Water Vapor

    NASA Astrophysics Data System (ADS)

    Grigsby, S.; Hulley, G. C.; Roberts, D. A.; Scheele, C. J.; Ustin, S.; Alsina, M. M.

    2014-12-01

    Land surface temperature (LST) is an important parameter in many ecological studies, where processes such as evapotranspiration have impacts at temperature gradients less than 1 K. Current errors in standard MODIS and ASTER LST products are greater than 1 K, and for ASTER can be greater than 2 K in humid conditions due to incomplete atmospheric correction of atmospheric water vapor. Estimates of water vapor, either derived from visible-to-shortwave-infrared (VSWIR) remote sensing data or taken from weather simulation data such as NCEP, can be combined with coincident Thermal-Infrared (TIR) remote sensing data to yield improved accuracy in LST measurements. This study compares LST retrieval accuracies derived using the standard JPL MASTER Temperature Emissivity Separation (TES) algorithm, and the Water Vapor Scaling (WVS) atmospheric correction method proposed for the Hyperspectral Infrared Imager, or HyspIRI, mission with ground observations. The 2011 ER-2 Delano/Lost Hills flights acquired TIR data from the MODIS/ASTER Simulator (MASTER) and VSWIR data from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) instruments flown concurrently. The TES and WVS retrieval methods are run with and without high spatial resolution AVIRIS-derived water vapor maps to assess the improvement using VSWIR water vapor estimates. We find improvement using VSWIR derived water vapor maps in both cases, with the WVS method being most accurate overall. For closed canopy agricultural vegetation we observed canopy temperature retrieval RMSEs of 0.49 K and 0.70 K using the WVS method on MASTER data with and without AVIRIS derived water vapor, respectively.

  8. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

    2007-01-01

    Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.

  9. Environmental mapping of the World Trade Center area with imaging spectroscopy after the September 11, 2001 attack

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Hoefen, Todd M.; Green, Robert O.; Livo, Keith E.; Meeker, Gregory P.; Sutley, Stephen J.; Plumlee, Geoffrey S.; Pavri, Betina; Sarture, Charles M.; Boardman, Joe; Brownfield, Isabelle; Morath, Laurie C.

    2009-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was flown over the World Trade Center area on September 16, 18, 22, and 23, 2001. The data were used to map the WTC debris plume and its contents, including the spectral signatures of asbestiform minerals. Samples were collected and used as ground truth for the AVARIS mapping. A number of thermal hot spots were observed with temperatures greater than 700 °C. The extent and temperatures of the fires were mapped as a function of time. By September 23, most of the fires observed by AVIRIS had been eliminated or reduced in intensity. The mineral absorption features mapped by AVARIS only indicated the presence of serpentine mineralogy and not if the serpentine has asbestiform.

  10. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    NASA Astrophysics Data System (ADS)

    Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.

    2017-10-01

    At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  11. Sensing, Spectra and Scaling: What's in Store for Land Observations

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.

    2001-01-01

    Bill Pecora's 1960's vision of the future, using spacecraft-based sensors for mapping the environment and exploring for resources, is being implemented today. New technology has produced better sensors in space such as the Landsat Thematic Mapper (TM) and SPOT, and creative researchers are continuing to find new applications. However, with existing sensors, and those intended for launch in this century, the potential for extracting information from the land surface is far from being exploited. The most recent technology development is imaging spectrometry, the acquisition of images in hundreds of contiguous spectral bands, such that for any pixel a complete reflectance spectrum can be acquired. Experience with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has shown that, with proper attention paid to absolute calibration, it is possible to acquire apparent surface reflectance to 5% accuracy without any ground-based measurement. The data reduction incorporates in educated guess of the aerosol scattering, development of a precipitable water vapor map from the data and mapping of cirrus clouds in the 1.38 micrometer band. This is not possible with TM. The pixel size in images of the earth plays and important role in the type and quality of information that can be derived. Less understood is the coupling between spatial and spectral resolution in a sensor. Recent work has shown that in processing the data to derive the relative abundance of materials in a pixel, also known is unmixing, the pixel size is an important parameter. A variance in the relative abundance of materials among the pixels is necessary to be able to derive the endmembers or pure material constituent spectra. In most cases, the 1 km pixel size for the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is too large to meet the variance criterion. A pointable high spatial and spectral resolution imaging spectrometer in orbit will be necessary to make the major next step in our understanding of the solid earth surface and its changing face.

  12. A Multi-Scale Sampling Strategy for Detecting Physiologically Significant Signals in AVIRIS Imagery

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Lee, Lai-Fun; Qiu, Hong-Lie; Davis, Stephen; Roberts, Dar A.; Ustin, Susan L.

    1998-01-01

    Models of photosynthetic production at ecosystem and global scales require multiple input parameters specifying physical and physiological surface features. While certain physical parameters (e.g., absorbed photosynthetically active radiation) can be derived from current satellite sensors, other physiologically relevant measures (e.g., vegetation type, water status, carboxylation capacity, or photosynthetic light-use efficiency), are not generally directly available from current satellite sensors at the appropriate geographic scale. Consequently, many model parameters must be assumed or derived from independent sources, often at an inappropriate scale. An abundance of ecophysiological studies at the leaf and canopy scales suggests strong physiological control of vegetation-atmosphere CO2 and water vapor fluxes, particularly in evergreen vegetation subjected to diurnal or seasonal stresses. For example hot, dry conditions can lead to stomatal closure, and associated "downregulation" of photosynthetic biochemical processes, a phenomenon often manifested as a "midday photosynthetic depression". A recent study with the revised simple biosphere (SiB2) model demonstrated that photosynthetic downregulation can significantly impact global climate. However, at the global scale, the exact significance of downregulation remains unclear, largely because appropriate physiological measures are generally unavailable at this scale. Clearly, there is a need to develop reliable ways of extracting physiologically relevant information from remote sensing. Narrow-band spectrometers offer many opportunities for deriving physiological parameters needed for ecosystem and global scale photosynthetic models. Experimental studies on the ground at the leaf- to stand-scale have indicated that several narrow-band features can be used to detect plant physiological status. One physiological signal is caused by xanthophyll cycle pigment activity, and is often expressed as the Photochemical Reflectance Index (PRI). Because the xanthophyll cycle pigments are photoregulatory pigments closely linked to photosynthetic function, this index can be used to derive relative photosynthetic rates. An additional signal with physiological significance is the 970 nm water absorption band, which provides a measure of liquid water content. This feature has been quantified both using a simple 2-band ratio (900/970 nm, here referred to as the "Water Band Index" or WBI;), and using the "continuum removal" method. Current atmospheric correction methods for AVIRIS imagery also obtain quantitative expressions of surface liquid water absorption based on the 970 nm water band and may be comparable to ground-based estimates of water content using this feature. However, physiological interpretations of both the PRI and the WBI are best understood at the leaf and canopy scales, where complications of atmospheric interference and complex stand and landscape features can be minimized, and where experimental manipulations can be readily applied. Currently it is not known whether these physiological indices can be used to derive meaningful physiological information from AVIRIS imagery. In addition to the problem of atmospheric interference, another challenge is that any simple physiological index can be confounded by multiple factors unrelated to physiology, and this problem can become more severe at progressively larger spatial scales. For example, previous work has suggested that both the PRI and the WBI, are strongly correlated with other optical measures of canopy structure (e.g., the Normalized Difference Vegetation Index or green vegetation fraction), indicating a confounding effect of structure on physiological signals at the larger, landscape scale. Furthermore, the normal operating mode of most imaging spectrometers does not allow simultaneous, ground truthing at a level of detail needed for physiological sampling. Additionally, manipulative experiments of physiology are difficult to apply at a geographic scale suitable for comparison with remote imagery, which often works at spatial scales that are several orders of magnitude larger than those typically used for physiological studies. These limitations require the consideration of alternative approaches to validating physiological information derived from AVIRIS data. In this report, we present a multi-scale sampling approach to detecting physiologically significant signals in narrow-band spectra. This approach explores the multi-dimensional data space provided by narrow-band spectrometry, and combines AVIRIS imagery at a large scale, with ground spectral sampling at an intermediate scale, and detailed ecophysiological measurements at a fine scale, to examine seasonally and spatially changing relationships between multiple structural and physiological variables. Examples of this approach are provided by simultaneous sampling of the Normalized Difference Vegetation Index (NDVI), an index of fractional PAR interception and green vegetation cover, the Water Band Index (WBI, an index of liquid water absorption, and the Photochemical Reflectance Index (PRI, an index of xanthophyll cycle pigment activity and photosynthetic light-use efficiency. By directly linking changing optical properties sampled on the ground with measurable physiological states, we hope to develop a basis for interpreting similar signals in AVIRIS imagery.

  13. Using AVIRIS to assess hemlock abundance and early decline in the Catskills, New York

    Treesearch

    Jennifer Pontius; Richard Hallett; Mary Martin

    2005-01-01

    In order to aid land managers in monitoring and controlling the ongoing hemlock woolly adelgid outbreak, more accurate landscape scale tools are required to locate the hemlock resource, identify infestation and spot early decline. To this end, NASA's Airborne Visible Infra-red Imaging Spectrometer was flown over the infestation front in the Catskills region of New...

  14. Spectral and radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Chrien, Thomas G.; Miller, Edward A.; Reimer, John H.

    1987-01-01

    The laboratory spectral and radiometric calibration of the AVIRIS science data collected since 1987 is described. The instrumentation and procedures used in the calibration are discussed and the accuracy achieved in the laboratory as determined by measurement and calculation is compared with the requirements. Instrument performance factors affecting radiometry are described. The paper concludes with a discussion of future plans.

  15. Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Carder, Kendall L.; Chen, Robert F.; Peacock, Thomas G.

    2001-06-01

    Using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data as an example, we show in this study that the properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments in the water column. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom albedo image shows clear spatial patterns, with end-members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. Without bottom corrections, chlorophyll a retrievals were ˜50 mg m-3, while the retrievals after bottom corrections were tenfold less, approximating real values. These results suggest that the model and approach used work very well for the retrieval of subsurface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  16. Aircraft scanner data availability via the version 0 Information Management System

    NASA Technical Reports Server (NTRS)

    Mah, G. R.

    1995-01-01

    As part of the Earth Observing System Data and Information System (EOSDIS) development, NASA and other government agencies have developed an operational prototype of the Information Management System (IMS). The IMS provides access to the data archived at the Distributed Active Archive Centers (DAAC's) that allows users to search through metadata describing the (image) data. Criteria based on sensor name or type, date and time, and geographic location are used to search the archive. Graphical representations of coverage and browse images are available to further refine a user's selection. previously, the EROS Data Center (EDC) DAAC had identified the Advanced SOlid-state Array Spectrometer (ASAS), Airborne Visible and infrared Imaging Spectrometer (AVIRIS), NS-001, and Thermal Infrared Multispectral Scanner (TIMS) as precursor data sets similar to those the DAAC will handle in the Earth Observing System era. Currently, the EDC DAAC staff, in cooperation with NASA, has transcribed TIMS, NS-001, and Thematic Mapper Simulation (TMS) data from Ames Research Center and also TIMS data from Stennis Space Center. During the transcription process, the IMS metadata and browse images were created to populate the inventory at the EDC DAAC. These data sets are now available in the IMS and may be requested from the any of the DAAC's via the IMS.

  17. Analysis of potential debris flow source areas on Mount Shasta, California, by using airborne and satellite remote sensing data

    USGS Publications Warehouse

    Crowley, J.K.; Hubbard, B.E.; Mars, J.C.

    2003-01-01

    Remote sensing data from NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the first spaceborne imaging spectrometer, Hyperion, show hydrothermally altered rocks mainly composed of natroalunite, kaolinite, cristobalite, and gypsum on both the Mount Shasta and Shastina cones. Field observations indicate that much of the visible altered rock consists of talus material derived from fractured rock zones within and adjacent to dacitic domes and nearby lava flows. Digital elevation data were utilized to distinguish steeply sloping altered bedrock from more gently sloping talus materials. Volume modeling based on the imagery and digital elevation data indicate that Mount Shasta drainage systems contain moderate volumes of altered rock, a result that is consistent with Mount Shasta's Holocene record of mostly small to moderate debris flows. Similar modeling for selected areas at Mount Rainier and Mount Adams, Washington, indicates larger altered rock volumes consistent with the occurrence of much larger Holocene debris flows at those volcanoes. The availability of digital elevation and spectral data from spaceborne sensors, such as Hyperion and the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), greatly expands opportunities for studying potential debris flow source characteristics at stratovolcanoes around the world. ?? 2003 Elsevier Inc. All rights reserved.

  18. Using Imaging Spectroscopy to Map Changing Distributions of Dominant Species in Oil-Contaminated Salt Marshes of Louisiana

    NASA Astrophysics Data System (ADS)

    Beland, M. C.; Roberts, D. A.; Peterson, S.; Biggs, T. W.; Kokaly, R. F.; Piazza, S.; Roth, K. L.; Khanna, S.; Ustin, S.

    2016-12-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes. Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010-2012 for oiled and non-oiled shorelines. CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%). Marshes that were heavily contaminated with oil exhibited variable responses from 2010-2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non-oiled shorelines. Only Spartina alterniflora dominated marshes were extensively degraded, losing 15% (354,604 m2) cover in oiled shoreline zones, suggesting that Spartina alterniflora marshes may be more vulnerable to shoreline erosion following hydrocarbon stress, due to their landscape position.

  19. The Effects of Surface Properties and Albedo on Methane Retrievals with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

    NASA Astrophysics Data System (ADS)

    Ayasse, A.; Thorpe, A. K.; Roberts, D. A.

    2017-12-01

    Atmospheric methane has increased by a factor of 2.5 since the beginning of the industrial era in response to anthropogenic emissions (Ciais et al., 2013). Although it is less abundant than carbon dioxide it is 86 time more potent on a 20 year time scale (Myhre et al., 2013) and is therefore responsible for about 20% of the total global warming induced by anthropogenic greenhouse gasses (Kirschke et al., 2013). Given the importance of methane to global climate change, monitoring and measuring methane emissions using techniques such as remote sensing is of increasing interest. Recently the Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) has proven to be a valuable instrument for quantitative mapping of methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). In this study, we applied the Iterative Maximum a Posterior Differential Optical Spectroscopy (IMAP-DOAS) methane retrieval algorithm to a synthetic image with variable methane concentrations, albedo, and land cover. This allowed for characterizing retrieval performance, including potential sensitivity to variable land cover, low albedo surfaces, and surfaces known to cause spurious signals. We conclude that albedo had little influence on the IMAP-DOAS results except at very low radiance levels. Water (without sun glint) was found to be the most challenging surface for methane retrievals while hydrocarbons and some green vegetation also caused error. Understanding the effect of surface properties on methane retrievals is important given the increased use of AVIRIS-NG to map gas plumes over diverse locations and methane sources. This analysis could be expanded to include additional gas species like carbon dioxide and to further investigate gas sensitivity of proposed instruments for dedicated gas mapping from airborne and spaceborne platforms.

  20. Discriminating plant species across California's diverse ecosystems using airborne VSWIR and TIR imagery

    NASA Astrophysics Data System (ADS)

    Meerdink, S.; Roberts, D. A.; Roth, K. L.

    2015-12-01

    Accurate knowledge of the spatial distribution of plant species is required for many research and management agendas that track ecosystem health. Because of this, there is continuous development of research focused on remotely-sensed species classifications for many diverse ecosystems. While plant species have been mapped using airborne imaging spectroscopy, the geographic extent has been limited due to data availability and spectrally similar species continue to be difficult to separate. The proposed Hyperspectral Infrared Imager (HyspIRI) space-borne mission, which includes a visible near infrared/shortwave infrared (VSWIR) imaging spectrometer and thermal infrared (TIR) multi-spectral imager, would present an opportunity to improve species discrimination over a much broader scale. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to discriminate plant species; 2) the accuracy of species classifications within an ecosystem; and 3) the potential for discriminating among species across a range of ecosystems. Simulated HyspIRI imagery was acquired in spring/summer of 2013 spanning from Santa Barbara to Bakersfield, CA with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER) instruments. Three spectral libraries were created from these images: AVIRIS (224 bands from 0.4 - 2.5 µm), MASTER (8 bands from 7.5 - 12 µm), and AVIRIS + MASTER. We used canonical discriminant analysis (CDA) as a dimension reduction technique and then classified plant species using linear discriminant analysis (LDA). Our results show the inclusion of TIR spectra improved species discrimination, but only for plant species with emissivities departing from that of a gray body. Ecosystems with species that have high spectral contrast had higher classification accuracies. Mapping plant species across all ecosystems resulted in a classification with lower accuracies than a single ecosystem due to the complex nature of incorporating more plant species.

  1. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  2. An assessment of AVIRIS data for hydrothermal alteration mapping in the Goldfield Mining District, Nevada

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique; Abrams, Michael J.

    1988-01-01

    Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data were acquired over the Goldfield Mining District, Nevada, in September 1987. Goldfield is one of the group of large epithermal precious metal deposits in Tertiary volcanic rocks, associated with silicic volcanism and caldera formation. Hydrothermal alteration consists of silicification along fractures, advanced agrillic and argillic zones further away from veins and more widespread propylitic zones. An evaluation of AVIRIS data quality was performed. Faults in the data, related to engineering problems and a different behavior of the instrument while on-board the U2, were encountered. Consequently, a decision was made to use raw data and correct them only for dark current variations and detector read-out-delays. New software was written to that effect. Atmospheric correction was performed using the flat field correction technique. Analysis of the data was then performed to extract spectral information, mainly concentrating on the 2 to 2.45 micron window, as the alteration minerals of interest have their distinctive spectral reflectance features in this region. Principally kaolinite and alunite spectra were clearly obtained. Mapping of the different minerals and alteration zones was attempted using ratios and clustering techniques. Poor signal-to-noise performance of the instrument and the lack of appropriate software prevented the production of an alteration map of the area. Spectra extracted locally from the AVIRIS data were checked in the field by collecting representative samples of the outcrops.

  3. The effect of variations in relative spectral response on the retrieval of land surface parameters from multiple sources of remotely sensed imagery

    USGS Publications Warehouse

    Meyer, D.J.; Chander, G.

    2008-01-01

    Airborne Visible Infrared Imaging Spectrometer (AVIRIS) images , collected over Sioux Falls, South Dakota, were used to quantify the effect of spectral response on different surface materials and to develop spectral "figures-of-merit" for spectral responses covering similar, but not identical spectral bands. In this simulation, AVIRIS images were converted to radiance, then spectrally resampled to six wavelength bands commonly used for terrestrial observation. Preliminary results indicate that differences between the simulations can be attributed to variations in surface reflectance within spectral bands, and suggest influences due to water vapor absorption. Radiance simulated from the spectrally narrow Moderate Resolution Imaging Spectroradiometer (MODIS) Relative Spectral Responses (RSR) was generally higher than that using the broader Enhanced Thematic Mapper Plus (ETM+) RSRs over most targets encountered over the test area. This is consistent with many MODIS bands being biased toward shorter wavelengths compared to corresponding ETM+ bands when viewing targets whose radiance decreases with wavelength. In some cases the higher radiance values appeared to occur where the MODIS RSR is better situated over peak reflected wavelengths. Simulation differences between MODIS & ETM+ bands in the near-infrared indicated higher MODIS radiance values that suggest the influence of water vapor absorption at 820 nanometers. This result agreed with water vapor values retrieved from the AVIRIS images themselves at around 2.7 cm precipitable water, and measurements made at a nearby AERONET node at around 2.8cm during the AVIRIS overflight ?? 2007 IEEE.

  4. Oil detection in the coastal marshes of Louisiana using MESMA applied to band subsets of AVIRIS data

    USGS Publications Warehouse

    Peterson, Seth H.; Roberts, Dar A.; Beland, Michael; Kokaly, Raymond F.; Ustin, Susan L.

    2015-01-01

    We mapped oil presence in the marshes of Barataria Bay, Louisiana following the Deepwater Horizon oil spill using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data. Oil and non-photosynthetic vegetation (NPV) have very similar spectra, differing only in two narrow hydrocarbon absorption regions around 1700 and 2300 nm. Confusion between NPV and oil is expressed as an increase in oil fraction error with increasing NPV, as shown by Multiple Endmember Spectral Mixture Analysis (MESMA) applied to synthetic spectra generated with known endmember fractions. Significantly, the magnitude of error varied depending upon the type of NPV in the mixture. To reduce error, we used stable zone unmixing to identify a nine band subset that emphasized the hydrocarbon absorption regions, allowing for more accurate detection of oil presence using MESMA. When this band subset was applied to post-spill AVIRIS data acquired over Barataria Bay on several dates following the 2010 oil spill, accuracies ranged from 87.5% to 93.3%. Oil presence extended 10.5 m into the marsh for oiled shorelines, showing a reduced oil fraction with increasing distance from the shoreline.

  5. Mapping potentialy asbestos-bearing rocks using imaging spectroscopy

    USGS Publications Warehouse

    Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S.J.

    2009-01-01

    Rock and soil that may contain naturally occurring asbestos (NOA), a known human carcinogen, were mapped in the Sierra Nevada, California, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to determine if these materials could be uniquely identified with spectroscopy. Such information can be used to prepare or refine maps of areas that may contain minerals that can be asbestiform, such as serpentine and tremolite-actinolite, which were the focus of this study. Although thick vegetation can conceal underlying rock and soil, use of linear-mixture spectra calculated from spectra of dry grass and serpentine allowed detection of serpentine in some parts of the study area with up to ~80% dry-grass cover. Chaparral vegetation, which was dominantly, but not exclusively, found in areas underlain by serpentinized ultramafic rocks, was also mapped. Overall, field checking at 201 sites indicated highly accurate identification by AVIRIS of mineral (94%) and vegetation (89%) categories. Practical applications of AVIRIS to mapping areas that may contain NOA include locating roads that are surfaced with serpentine aggregate, identifying sites that may require enhanced dust control or other safety measures, and filling gaps in geologic mapping where field access is limited.

  6. Applying Tafkaa For Atmospheric Correction of Aviris Over Coral Ecosystems In The Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    Goodman, James A.; Montes, Marcos J.; Ustin, Susan L.

    2004-01-01

    Growing concern over the health of coastal ecosystems, particularly coral reefs, has produced increased interest in remote sensing as a tool for the management and monitoring of these valuable natural resources. Hyperspectral capabilities show promising results in this regard, but as yet remain somewhat hindered by the technical and physical issues concerning the intervening water layer. One such issue is the ability to atmospherically correct images over shallow aquatic areas, where complications arise due to varying effects from specular reflection, wind blown surface waves, and reflectance from the benthic substrate. Tafkaa, an atmospheric correction algorithm under development at the U.S. Naval Research Laboratory, addresses these variables and provides a viable approach to the atmospheric correction issue. Using imagery from the Advanced Visible InfraRed Imaging Spectrometer (AVIRIS) over two shallow coral ecosystems in the Hawai ian Islands, French Frigate Shoals and Kane ohe Bay, we first demonstrate how land-based atmospheric corrections can be limited in such an environment. We then discuss the input requirements and underlying algorithm concepts of Tafkaa and conclude with examples illustrating the improved performance of Tafkaa using the same AVIRIS images.

  7. Overview of the Joint NASA ISRO Imaging Spectroscopy Science Campaign in India

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Bhattacharya, B. K.; Eastwood, M. L.; Saxena, M.; Thompson, D. R.; Sadasivarao, B.

    2016-12-01

    In the period from December 2015 to March 2016 the Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was deployed to India for a joint NASA ISRO science campaign. This campaign was conceived to provide first of their kind high fidelity imaging spectroscopy measurements of a diverse set of Asian environments for science and applications research. During this campaign measurements were acquired for 57 high priority sites that have objectives spanning: snow/ice of the Himalaya; coastal habitats and water quality; mangrove forests; soils; dry and humid forests; hydrocarbon alteration; mineralogy; agriculture; urban materials; atmospheric properties; and calibration/validation. Measurements from the campaign have been processed to at-instrument spectral radiance and atmospherically corrected surface reflectance. New AVIRIS-NG algorithms for retrieval of vegetation canopy water and for estimation of the fractions of photosynthetic, non-photosynthetic vegetation have been tested and evaluated on these measurements. An inflight calibration validation experiment was performed on the 11thof December 2015 in Hyderabad to assess the spectral and radiometric calibration of AVIRIS-NG in the flight environment. We present an overview of the campaign, calibration and validation results, and initial science analysis of a subset of these unique and diverse data sets.

  8. Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.A.; Green, R.O.; Adams, J.B.

    1997-12-01

    Little research has focused on the use of imaging spectrometry for change detection. In this paper, the authors apply Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to the monitoring of seasonal changes in atmospheric water vapor, liquid water, and surface cover in the vicinity of the Jasper Ridge, CA, for three dates in 1992. Apparent surface reflectance was retrieved and water vapor and liquid water mapped by using a radiative-transfer-based inversion that accounts for spatially variable atmospheres. Spectral mixture analysis (SMA) was used to model reflectance data as mixtures of green vegetation (GV), nonphotosynthetic vegetation (NPV), soil, and shade. Temporal andmore » spatial patterns in endmember fractions and liquid water were compared to the normalized difference vegetation index (NDVI). The reflectance retrieval algorithm was tested by using a temporally invariant target.« less

  9. High spectral resolution remote sensing of canopy chemistry

    NASA Technical Reports Server (NTRS)

    Aber, John D.; Martin, Mary E.

    1995-01-01

    Near infrared laboratory spectra have been used for many years to determine nitrogen and lignin concentrations in plant materials. In recent years, similar high spectral resolution visible and infrared data have been available via airborne remote sensing instruments. Using data from NASA's Airborne visible/Infrared Imaging Spectrometer (AVIRIS) we attempt to identify spectral regions correlated with foliar chemistry at the canopy level in temperate forests.

  10. Using AVIRIS for in-flight calibration of the spectral shifts of SPOT-HRV and of AVHRR?

    NASA Technical Reports Server (NTRS)

    Willart-Soufflet, Veronique; Santer, Richard

    1993-01-01

    The response of a satellite sensor varies during its lifetime; internal calibration devices can be used to follow the sensor degradation or in-flight calibrations are conducted from estimates of the radiance at satellite level for well predictable situations. Changes in gain are evaluated assuming that the spectral response of the sensor is stable with time; i.e., that the filter response as well as the optics or the electronics are not modified since the prelaunch determinations. Nevertheless, there is some evidence that the SPOT interferometer filters are affected by outgassing effects during the launch. Tests in vacuum chambers indicated a narrowing of the filters with a shift of the upper side towards the blue of about 10 nm which is more over consistant with the loss of gain observed during the launch. Also, during the lifetime of SPOT, the relationship between the loss of sensitivity and the filter bandwidth may correspond to this effect. On the other hand, the inconsistancy of the NOAA7 calibration between two methods (desert and ocean) having a different spectral sensitivity may indicate a spectral problem with a shift of the central wavelength of -20 nm. The basic idea here is to take advantage of the good spectral definition of AVIRIS to monitor these potential spectral degradations with an experimental opportunity provided by a field campaign held in La Crau (S.E. of France) in June 1991 which associated ground-based measurements and AVIRIS, SPOT2, NOAA-11 overpasses over both the calibration site of La Crau and an agricultural area.

  11. Initial vegetation species and senescience/stress indicator mapping in the San Luis Valley, Colorado using imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; King, Trude V. V.; Ager, Cathy; Swayze, Gregg A.

    1995-01-01

    We analyzed AVIRIS data obtained over agricultural areas in the San Luis Valley of Colorado. The data were acquired on September 3, 1993. A combined method of radiative transfer modeling and ground calibration site reflectance was used to correct the flight data to surface reflectance. This method, called Radiative Transfer Ground Calibration, or RTGC, corrects for variable water vapor in the atmosphere and produces spectra free of artifacts with spectral channel to channel noise approaching the signal to noise of the raw data. The calibration site soil samples were obtained on the day of the overflight and measured on our laboratory spectrometer. The site was near the center of the AVIRIS scene and the spectra of the soil is spectrally bland, especially in the region of the chlorophyll absorption in the visible portion of the spectrum. The center of the scene is located at approximately 106 deg 03' longitude, 37 deg 23' latitude, and the scene covers about 92 square kilometers. This scene is one of 28 in the area for a general project to study the Summitville abandoned mine site, located in the mountains west of the San Luis Valley, and its effects on the surrounding environment.

  12. Approaches to vegetation mapping and ecophysiological hypothesis testing using combined information from TIMS, AVIRIS, and AIRSAR

    NASA Technical Reports Server (NTRS)

    Oren, R.; Vane, G.; Zimmermann, R.; Carrere, V.; Realmuto, V.; Zebker, Howard A.; Schoeneberger, P.; Schoeneberger, M.

    1991-01-01

    The Tropical Rainforest Ecology Experiment (TREE) had two primary objectives: (1) to design a method for mapping vegetation in tropical regions using remote sensing and determine whether the result improves on available vegetation maps; and (2) to test a specific hypothesis on plant/water relations. Both objectives were thought achievable with the combined information from the Thermal Infrared Multispectral Scanner (TIMS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Airborne Synthetic Aperture Radar (AIRSAR). Implicitly, two additional objectives were: (1) to ascertain that the range within each variable potentially measurable with the three instruments is large enough in the site, relative to the sensitivity of the instruments, so that differences between ecological groups may be detectable; and (2) to determine the ability of the three systems to quantify different variables and sensitivities. We found that the ranges in values of foliar nitrogen concentration, water availability, stand structure and species composition, and plant/water relations were large, even within the upland broadleaf vegetation type. The range was larger when other vegetation types were considered. Unfortunately, cloud cover and navigation errors compromised the utility of the TIMS and AVIRIS data. Nevertheless, the AIRSAR data alone appear to have improved on the available vegetation map for the study area. An example from an area converted to a farm is given to demonstrate how the combined information from AIRSAR, TIMS, and AVIRIS can uniquely identify distinct classes of land use. The example alludes to the potential utility of the three instruments for identifying vegetation at an ecological scale finer than vegetation types.

  13. Remote sensing for environmental site screening and watershed evaluation in Utah Mine lands - East Tintic mountains, Oquirrh mountains, and Tushar mountains

    USGS Publications Warehouse

    Rockwell, Barnaby W.; McDougal, Robert R.; Gent, Carol A.

    2005-01-01

    Imaging spectroscopy-a powerful remote-sensing tool for mapping subtle variations in the composition of minerals, vegetation, and man-made materials on the Earth's surface-was applied in support of environmental assessments and watershed evaluations in several mining districts in the State of Utah. Three areas were studied through the use of Landsat 7 ETM+ and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data: (1) the Tintic mining district in the East Tintic Mountains southwest of Provo, (2) the Camp Floyd mining district (including the Mercur mine) and the Stockton (or Rush Valley) mining district in the Oquirrh Mountains south of the Great Salt Lake, and (3) the Tushar Mountains and Antelope Range near Marysvale. The Landsat 7 ETM+ data were used for initial site screening and the planning of AVIRIS surveys. The AVIRIS data were analyzed to create spectrally defined maps of surface minerals with special emphasis on locating and characterizing rocks and soils with acid-producing potential (APP) and acid-neutralizing potential (ANP). These maps were used by the United States Environmental Protection Agency (USEPA) for three primary purposes: (1) to identify unmined and anthropogenic sources of acid generation in the form of iron sulfide and (or) ferric iron sulfate-bearing minerals such as jarosite and copiapite; (2) to seek evidence for downstream or downwind movement of minerals associated with acid generation, mine waste, and (or) tailings from mines, mill sites, and zones of unmined hydrothermally altered rocks; and (3) to identify carbonate and other acid-buffering minerals that neutralize acidic, potentially metal bearing, solutions and thus mitigate potential environmental effects of acid generation. Calibrated AVIRIS surface-reflectance data were spectrally analyzed to identify and map selected surface materials. Two maps were produced from each flightline of AVIRIS data: a map of iron-bearing minerals and water having absorption features in the spectral region from 0.35 ?m to 1.35 ?m and a map of minerals (including clays, sulfates, micas, and carbonates) having absorptions in the spectral region from 1.45 ?m to 2.51 ?m. Several methods were used to verify the AVIRIS mapping results, including field checking of selected locations with a portable spectrometer, visual inspection of the AVIRIS reflectance spectra, and X-ray diffraction (XRD) analysis of field samples. The maps of iron-bearing minerals derived from analysis of the visible (VIS) and near-infrared (NIR) regions of the electromagnetic spectrum were shown to be more consistently reliable in indicating the presence of jarosite than were the maps generated from analysis of the short-wave infrared (SWIR) region. When present in abundance, phyllosilicate minerals tend to dominate the SWIR and mask the spectral features of jarosite in that wavelength region. The crystal field absorptions of jarosite in the VIS and NIR spectral regions will commonly be present regardless of whether the Fe-OH absorption feature near 2.27 ?m can be detected. For this reason, the VIS and NIR were preferable to the SWIR for the remote spectroscopic identification of jarosite (and other iron-bearing minerals). Large exposures of unmined hydrothermally altered rocks occur throughout the three study areas. These rocks commonly contain sulfide or sulfate minerals that produce sulfuric acid upon subaerial oxidation. The acid may be introduced into local surface and ground water and thus lower the baseline (that is, the premining) pH for a watershed. The three study areas also have widespread exposures of rocks with acid-neutralizing potential. Lithologies containing carbonates and (or) other acid-buffering minerals-such as sedimentary limestones and dolomites and propylitically altered igneous rocks-were mapped with the AVIRIS data throughout the Oquirrh and East Tintic Mountains and locally in the Antelope Range and Tushar Mountains. Because elevated levels o

  14. Spatial patterns of vegetation biomass and soil organic carbon acquired from airborne lidar and hyperspectral imagery at Reynolds Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Will, R. M.; Li, A.; Glenn, N. F.; Benner, S. G.; Spaete, L.; Ilangakoon, N. T.

    2015-12-01

    Soil organic carbon distribution and the factors influencing this distribution are important for understanding carbon stores, vegetation dynamics, and the overall carbon cycle. Linking soil organic carbon (SOC) with aboveground vegetation biomass may provide a method to better understand SOC distribution in semiarid ecosystems. The Reynolds Creek Critical Zone Observatory (RC CZO) in Idaho, USA, is approximately 240 square kilometers and is situated in the semiarid Great Basin of the sagebrush-steppe ecosystem. Full waveform airborne lidar data and Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-ng) collected in 2014 across the RC CZO are used to map vegetation biomass and SOC and then explore the relationships between them. Vegetation biomass is estimated by identifying vegetation species, and quantifying distribution and structure with lidar and integrating the field-measured biomass. Spectral data from AVIRIS-ng are used to differentiate non-photosynthetic vegetation (NPV) and soil, which are commonly confused in semiarid ecosystems. The information from lidar and AVIRIS-ng are then used to predict SOC by partial least squares regression (PLSR). An uncertainty analysis is provided, demonstrating the applicability of these approaches to improving our understanding of the distribution and patterns of SOC across the landscape.

  15. Unmixing of spectral components affecting AVIRIS imagery of Tampa Bay

    NASA Astrophysics Data System (ADS)

    Carder, Kendall L.; Lee, Z. P.; Chen, Robert F.; Davis, Curtiss O.

    1993-09-01

    According to Kirk's as well as Morel and Gentili's Monte Carlo simulations, the popular simple expression, R approximately equals 0.33 bb/a, relating subsurface irradiance reflectance (R) to the ratio of the backscattering coefficient (bb) to absorption coefficient (a), is not valid for bb/a > 0.25. This means that it may no longer be valid for values of remote-sensing reflectance (above-surface ratio of water-leaving radiance to downwelling irradiance) where Rrs4/ > 0.01. Since there has been no simple Rrs expression developed for very turbid waters, we developed one based in part on Monte Carlo simulations and empirical adjustments to an Rrs model and applied it to rather turbid coastal waters near Tampa Bay to evaluate its utility for unmixing the optical components affecting the water- leaving radiance. With the high spectral (10 nm) and spatial (20 m2) resolution of Airborne Visible-InfraRed Imaging Spectrometer (AVIRIS) data, the water depth and bottom type were deduced using the model for shallow waters. This research demonstrates the necessity of further research to improve interpretations of scenes with highly variable turbid waters, and it emphasizes the utility of high spectral-resolution data as from AVIRIS for better understanding complicated coastal environments such as the west Florida shelf.

  16. Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    USGS Publications Warehouse

    Beland, Michael; Roberts, Dar A.; Peterson, Seth H.; Biggs, Trent W.; Kokaly, Raymond F.; Piazza, Sarai; Roth, Keely L.; Khanna, Shruti; Ustin, Susan L.

    2016-01-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28 m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non-oiled shorelines. Only S. alterniflora dominated marshes were extensively degraded, losing 15% (354,604 m2) cover in oiled shoreline zones, suggesting that S. alterniflora marshes may be more vulnerable to shoreline erosion following hydrocarbon stress, due to their landscape position.

  17. Accurate reconstruction of hyperspectral images from compressive sensing measurements

    NASA Astrophysics Data System (ADS)

    Greer, John B.; Flake, J. C.

    2013-05-01

    The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.

  18. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  19. ROI-Based On-Board Compression for Hyperspectral Remote Sensing Images on GPU.

    PubMed

    Giordano, Rossella; Guccione, Pietro

    2017-05-19

    In recent years, hyperspectral sensors for Earth remote sensing have become very popular. Such systems are able to provide the user with images having both spectral and spatial information. The current hyperspectral spaceborne sensors are able to capture large areas with increased spatial and spectral resolution. For this reason, the volume of acquired data needs to be reduced on board in order to avoid a low orbital duty cycle due to limited storage space. Recently, literature has focused the attention on efficient ways for on-board data compression. This topic is a challenging task due to the difficult environment (outer space) and due to the limited time, power and computing resources. Often, the hardware properties of Graphic Processing Units (GPU) have been adopted to reduce the processing time using parallel computing. The current work proposes a framework for on-board operation on a GPU, using NVIDIA's CUDA (Compute Unified Device Architecture) architecture. The algorithm aims at performing on-board compression using the target's related strategy. In detail, the main operations are: the automatic recognition of land cover types or detection of events in near real time in regions of interest (this is a user related choice) with an unsupervised classifier; the compression of specific regions with space-variant different bit rates including Principal Component Analysis (PCA), wavelet and arithmetic coding; and data volume management to the Ground Station. Experiments are provided using a real dataset taken from an AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) airborne sensor in a harbor area.

  20. Classification of Hyperspectral Data Based on Guided Filtering and Random Forest

    NASA Astrophysics Data System (ADS)

    Ma, H.; Feng, W.; Cao, X.; Wang, L.

    2017-09-01

    Hyperspectral images usually consist of more than one hundred spectral bands, which have potentials to provide rich spatial and spectral information. However, the application of hyperspectral data is still challengeable due to "the curse of dimensionality". In this context, many techniques, which aim to make full use of both the spatial and spectral information, are investigated. In order to preserve the geometrical information, meanwhile, with less spectral bands, we propose a novel method, which combines principal components analysis (PCA), guided image filtering and the random forest classifier (RF). In detail, PCA is firstly employed to reduce the dimension of spectral bands. Secondly, the guided image filtering technique is introduced to smooth land object, meanwhile preserving the edge of objects. Finally, the features are fed into RF classifier. To illustrate the effectiveness of the method, we carry out experiments over the popular Indian Pines data set, which is collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. By comparing the proposed method with the method of only using PCA or guided image filter, we find that effect of the proposed method is better.

  1. Environmental studies of the World Trade Center area after the September 11, 2001 attack

    USGS Publications Warehouse

    Clark, Roger N.; Green, Robert O.; Swayze, Gregg A.; Meeker, Greg; Sutley, Steve; Hoefen, Todd M.; Livo, K. Eric; Plumlee, Geoff; Pavri, Betina; Sarture, Chuck; Wilson, Steve; Hageman, Phil; Lamothe, Paul; Vance, J. Sam; Boardman, Joe; Brownfield, Isabelle; Gent, Carol; Morath, Laurie C.; Taggart, Joseph; Theodorakos, Peter M.; Adams, Monique

    2001-01-01

    This web site describes the results of an interdisciplinary environmental characterization of the World Trade Center (WTC) area after September 11, 2001.Information presented in this site was first made available to the World Trade Center emergency response teams on September 18, 2001 (Thermal hot spot information), and September 27, 2001 (maps and compositional results).The Airborne Visible / Infrared Imaging Spectrometer (AVIRIS), a hyperspectral remote sensing instrument, was flown by JPL/NASA over the World Trade Center (WTC) area on September 16, 18, 22, and 23, 2001 ( Link to the AVIRIS JPL data facility). A 2-person USGS crew collected samples of dusts and airfall debris from more than 35 localities within a 1-km radius of the World trade Center site on the evenings of September 17 and 18, 2001. Two samples were collected of indoor locations that were presumably not affected by rainfall (there was a rainstorm on September 14). Two samples of material coating a steel beam in the WTC debris were also collected. The USGS ground crew also carried out on-the-ground reflectance spectroscopy measurements during daylight hours to field calibrate AVIRIS remote sensing data. Radiance calibration and rectification of the AVIRIS data were done at JPL/NASA. Surface reflectance calibration, spectral mapping, and interpretation were done at the USGS Imaging Spectroscopy Lab in Denver. The dust/debris and beam-insulation samples were analyzed for a variety of mineralogical and chemical parameters using Reflectance Spectroscopy (RS), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), chemical analysis, and chemical leach test techniques in U.S. Geological Survey laboratories in Denver, Colorado.

  2. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data

    USGS Publications Warehouse

    Mars, J.C.; Crowley, J.K.

    2003-01-01

    Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.

  3. Characterizing Methane Emissions at Local Scales with a 20 Year Total Hydrocarbon Time Series, Imaging Spectrometry, and Web Facilitated Analysis

    NASA Astrophysics Data System (ADS)

    Bradley, Eliza Swan

    Methane is an important greenhouse gas for which uncertainty in local emission strengths necessitates improved source characterizations. Although CH4 plume mapping did not motivate the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) design and municipal air quality monitoring stations were not intended for studying marine geological seepage, these assets have capabilities that can make them viable for studying concentrated (high flux, highly heterogeneous) CH4 sources, such as the Coal Oil Point (COP) seep field (˜0.015 Tg CH4 yr-1) offshore Santa Barbara, California. Hourly total hydrocarbon (THC) data, spanning 1990 to 2008 from an air pollution station located near COP, were analyzed and showed geologic CH4 emissions as the dominant local source. A band ratio approach was developed and applied to high glint AVIRIS data over COP, resulting in local-scale mapping of natural atmospheric CH4 plumes. A Cluster-Tuned Matched Filter (CTMF) technique was applied to Gulf of Mexico AVIRIS data to detect CH4 venting from offshore platforms. Review of 744 platform-centered CTMF subsets was facilitated through a flexible PHP-based web portal. This dissertation demonstrates the value of investigating municipal air quality data and imaging spectrometry for gathering insight into concentrated methane source emissions and highlights how flexible web-based solutions can help facilitate remote sensing research.

  4. Atmospheric correction of short-wave hyperspectral imagery using a fast, full-scattering 1DVar retrieval scheme

    NASA Astrophysics Data System (ADS)

    Thelen, J.-C.; Havemann, S.; Taylor, J. P.

    2012-06-01

    Here, we present a new prototype algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as the 'Airborne Visible/Infrared Imager (AVIRIS) or Hyperion on board of the Earth Observatory 1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using two hyperspectral images taken by AVIRIS, a whiskbroom imaging spectrometer operated by the NASA Jet Propulsion Laboratory.

  5. Towards an improved LAI collection protocol via simulated field-based PAR sensing

    DOE PAGES

    Yao, Wei; Van Leeuwen, Martin; Romanczyk, Paul; ...

    2016-07-14

    In support of NASA’s next-generation spectrometer—the Hyperspectral Infrared Imager (HyspIRI)—we are working towards assessing sub-pixel vegetation structure from imaging spectroscopy data. Of particular interest is Leaf Area Index (LAI), which is an informative, yet notoriously challenging parameter to efficiently measure in situ. While photosynthetically-active radiation (PAR) sensors have been validated for measuring crop LAI, there is limited literature on the efficacy of PAR-based LAI measurement in the forest environment. This study (i) validates PAR-based LAI measurement in forest environments, and (ii) proposes a suitable collection protocol, which balances efficiency with measurement variation, e.g., due to sun flecks and various-sized canopymore » gaps. A synthetic PAR sensor model was developed in the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and used to validate LAI measurement based on first-principles and explicitly-known leaf geometry. Simulated collection parameters were adjusted to empirically identify optimal collection protocols. Furthermore, these collection protocols were then validated in the field by correlating PAR-based LAI measurement to the normalized difference vegetation index (NDVI) extracted from the “classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) data (R 2 was 0.61). The results indicate that our proposed collecting protocol is suitable for measuring the LAI of sparse forest (LAI < 3–5 ( m 2/m 2)).« less

  6. Low-Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2001-01-01

    Northeast Yellowstone National Park (YNP) has a diversity of forest, range, and wetland cover types. Several remote sensing studies have recently been done in this area, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project conducted by Yellowstone Ecosystems Studies (YES) on the use of hyperspectral imaging for assessing riparian and in-stream habitats. In 1999, YES and NASA's Commercial Remote Sensing Program Office began collaborative study of this area, assessing the potential of synergistic use of hyperspectral, synthetic aperture radar (SAR), and multiband thermal data for mapping forest, range, and wetland land cover. Since the beginning, a quality 'reference' land cover map has been desired as a tool for developing and validating other land cover maps produced during the project. This paper recounts an effort to produce such a reference land cover map using low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and unsupervised classification techniques. The main objective of this study is to assess ISODATA classification for mapping land cover in Northeast YNP using select bands of low-altitude AVIRIS data. A secondary, more long-term objective is to assess the potential for improving ISODATA-based classification of land cover through use of principal components analysis and minimum noise fraction (MNF) techniques. This paper will primarily report on work regarding the primary research objective. This study focuses on an AVIRIS cube acquired on July 23, 1999, by the confluence of Soda Butte Creek with the Lamar River. Range and wetland habitats dominate the image with forested habitats being a comparatively minor component of the scene. The scene generally tracks from southwest to northeast. Most of the scene is valley bottom with some lower side slopes occurring on the western portion. Elevations within the AVIRIS scene range from approximately 1998 to 2165 m above sea level, based on US Geological Survey (USGS) 30-m digital elevation model (DEM) data. Despain and the National Park Service (NPS) provide additional description of the study area.

  7. On the Challenge of Observing Pelagic Sargassum in Coastal Oceans: A Multi-sensor Assessment

    NASA Astrophysics Data System (ADS)

    Hu, C.; Feng, L.; Hardy, R.; Hochberg, E. J.

    2016-02-01

    Remote detection of pelagic Sargassum is often hindered by its spectral similarity to other floating materials and by the inadequate spatial resolution. Using measurements from multi-spectral satellite sensors (Moderate Resolution Imaging Spectroradiometer or MODIS), Landsat, WorldView-2 (or WV-2) as well as hyperspectral sensors (Hyperspectral Imager for the Coastal Ocean or HICO, Airborne Visible-InfraRed Imaging Spectrometer or AVIRIS) and airborne digital photos, we analyze and compare their ability (in terms of spectral and spatial resolutions) to detect Sargassum and to differentiate from other floating materials such as Trichodesmium, Syringodium, Ulva, garbage, and emulsified oil. Field measurements suggest that Sargassum has a distinctive reflectance curvature around 630 nm due to its chlorophyll c pigments, which provides a unique spectral signature when combined with the reflectance ratio between brown ( 650 nm) and green ( 555 nm) wavelengths. For a 10-nm resolution sensor on the hyperspectral HyspIRI mission currently being planned by NASA, a stepwise rule to examine several indexes established from 6 bands (centered at 555, 605, 625, 645, 685, 755 nm) is shown to be effective to unambiguously differentiate Sargassum from all other floating materials Numerical simulations using spectral endmembers and noise in the satellite-derived reflectance suggest that spectral discrimination is degraded when a pixel is mixed between Sargassum and water. A minimum of 20-30% Sargassum coverage within a pixel is required to retain such ability, while the partial coverage can be as low as 1-2% when detecting floating materials without spectral discrimination. With its expected signal-to-noise ratios (SNRs 200:1), the hyperspectral HyspIRI mission may provide a compromise between spatial resolution and spatial coverage to improve our capacity to detect, discriminate, and quantify Sargassum.

  8. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, March 4-8, 1996. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  9. Ocean PHILLS Hyperspectral Imager: Design, Characterization, and Calibration

    DTIC Science & Technology

    2002-02-25

    SPIE 3753, 2-11 (1999). 7. J. Bowles, M. Kappus , J. Antoniades, M. Baumback, M Czarnaski, C. O. Davis, and J. Grossmann, “Calibration of inexpensive...Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998). 9. R. G. Resmini, M. E. Kappus , W. S. Aldrich, J. C. Harsanyi, and M...and spatial information,” Appl. Opt. 39, 2210-2220 (2000). 19. R. A. Leathers, T. V. Downes, W. A. Snyder, J. H. Bowles, C. O. Davis, M. E. Kappus , M

  10. California Drought Effects on Sierra Trees Mapped by NASA

    NASA Image and Video Library

    2016-06-27

    California, reveals the devastating effect of California's ongoing drought on Sierra Nevada conifer forests. The map will be used to help the U.S. Forest Service assess and respond to the impacts of increased tree mortality caused by the drought, particularly where wildlands meet urban areas within the Sierra National Forest. After several years of extreme drought, the highly stressed conifers (trees or bushes that produce cones and are usually green year-round) of the Sierra Nevada are now more susceptible to bark beetles (Dendroctonus spp.). While bark beetles killing trees in the Sierra Nevada is a natural phenomenon, the scale of mortality in the last couple of years is far greater than previously observed. The U.S. Forest Service is using recent airborne spectroscopic measurements from NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument aboard NASA's ER-2 aircraft, together with new advanced algorithms, to quantify this impact over this large region of rugged terrain. The high-altitude ER-2 aircraft is based at NASA's Armstrong Flight Research Center, Edwards, California. The image was created by scientists at the USFS's Pacific Southwest Region Remote Sensing Lab, McClellan, California, by performing a time series analysis of AVIRIS images. Scientists evaluated baseline tree mortality on public lands in the summer of 2015 using a machine learning algorithm called "random forest." This algorithm classifies the AVIRIS measurements as dominated by either shrubs, healthy trees or newly dead conifer trees. To quantify how much the amount of dead vegetation increased during the fall of 2015, the Forest Service scientists conducted an advanced spectral mixture analysis. This analysis evaluates each spectrum to determine the fraction of green vegetation, dead vegetation and soil. The full spectral range of AVIRIS is important to separate the signatures of soil and dead vegetation. To produce this comprehensive Sierra National Forest tree mortality map, the result from the summer of 2015 was evaluated to look for increases of more than 10 percent in dead vegetation during the fall of 2015. AVIRIS measures spectra of the Earth system to conduct advanced science research. These western U.S. AVIRIS measurements were acquired as part of NASA's Hyperspectral Infrared Imager (HyspIRI) preparatory airborne campaign. HyspIRI was one of the space missions suggested to NASA by the National Academy of Sciences in its 2007 decadal survey for Earth Science. In the future, HyspIRI could provide spectral and thermal measurements of this type globally for ecosystem research and additional science objectives. http://photojournal.jpl.nasa.gov/catalog/PIA20717

  11. USGS Spectral Library Version 7

    USGS Publications Warehouse

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and bandpasses, and resampled to selected broadband multispectral sensors. The native file format of the library is the SPECtrum Processing Routines (SPECPR) data format. This report describes how to access freely available software to read the SPECPR format. To facilitate broader access to the library, we produced generic formats of the spectra and metadata in text files. The library is provided on digital media and online at https://speclab.cr.usgs.gov/spectral-lib.html. A long-term archive of these data are stored on the USGS ScienceBase data server (https://dx.doi.org/10.5066/F7RR1WDJ).

  12. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    NASA Technical Reports Server (NTRS)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  13. Finding Spectral Patterns in Bark Beetle Infestations in the Sierra National Forest Using Landsat and AVIRIS Imagery

    NASA Astrophysics Data System (ADS)

    Heck, M. D.; Roberts, D. A.; Miller, D. L.; Tane, Z.

    2016-12-01

    Under normal circumstances, the bark beetles of the Sierra Nevada conifer forests are vital to ecosystem health; by eliminating weak trees, they allow other plants to grow in the space left behind, provide homes for various animals, and enrich the soil. However, climate change is putting these ecosystems at risk: warmer winters allow bark beetles to be active and breed year-round, and the severe drought conditions currently present in California leave otherwise healthy trees unable to defend against attacks. In this study, we used Google Earth and Landsat-8 imagery of the Sierra National Forest to locate trees that had been damaged by bark beetles between the summers of 2015 and 2016. Additionally, we used an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image from summer of 2015 to look for a difference in the spectra of consistently healthy trees compared to spectra of trees which appeared healthy in 2015 but died in 2016. We found that healthy trees were consistently brighter across the spectrum than dying trees. Comparisons using t-tests were made between elevations, slopes, aspects, and spectral indices of a form (Band 1 - Band 2)/(Band 1 + Band 2) on our AVIRIS data. While we were unable to find any specific indices which indicate beetle kills, wavelengths in the ranges of 400-500 and 2200-2500 nanometers showed the most sensitivity when the brightness difference was scaled and removed.

  14. Assessing Heavy and Trace Metal Contamination in Surface Materials near the Ambaji and Zawar mines in Gujurat and Rajasthan, India using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) Data

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.

    2017-12-01

    An investigation has begun into effects on water quality in waters coming from a pair of mines, and their surrounding drainage basins, in western India. The study areas are the Ambaji and Zawar mines in the Indian states of, respectively, Gujurat and Rajasthan. The Ambaji mine is situated in Precambrian-aged metasediments and metavolcanics of the Delhi Supergroup. Sulfide mineralization at Ambaji is hosted by hydrothermally altered felsic metavolcanics rocks with ferric oxide and oxyhydroxide as well as copper carbonate surface indicator minerals. The Zawar zinc mine is part of the Precambrian Aravalli Supergroup and lies amidst surface exposures of dolomites and quartzites. Hyperspectral visible through short-wave infrared (VSWIR) data from the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was collected in February 2016 over these sites as part of a joint campaign between NASA and the Indian Space Research Organization (ISRO). The AVIRIS-NG data is being used to detect, map, and characterize surface mineralogy in the area. Data discovery is being carried out using a self-organizing map (SOM) methodology with mineral endmembers being mapped initially with a support vector machine (SVM) classifier and a planned more comprehensive mapping using the USGS Material Identification and Characterization Algorithm (MICA). Results of the mineral mapping will be field checked and rock, soil, and water samples will be collected and examined for heavy and trace metal contamination. Past studies have shown changes in the shape of the 2.2 mm Al-OH vibrational overtone feature as well as in blue-red spectral ratios that were directly correlated with the concentration of heavy and trace metals that had been adsorbed into the structure of the affected minerals. Early analysis of the Zawar area scenes indicates the presence of Al-OH clay minerals which might have been affected by the adsorption of trace metals. Scenes from the Ambaji area have more extensive surface exposures of carbonate minerals. Future work will focus more closely on detailed spectral feature mapping of absorption features that have been affected by heavy and trace metal adsorption.

  15. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.

    PubMed

    Khanna, Shruti; Santos, Maria J; Ustin, Susan L; Shapiro, Kristen; Haverkamp, Paul J; Lay, Mui

    2018-02-12

    Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m) provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m) the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened) data. Higher quality sensor optics and higher signal-to-noise ratio (SNR) may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with higher SNR performed better than either of the three satellite sensors. The ability to acquire imagery during certain times (midday, low tide, etc.) or a certain date (cloud-free, etc.) is also important in these tidal wetlands; WorldView2 imagery captured at high-tide detected a narrower band of shoreline affected by oil likely because some of the impacted wetland was below the tideline. These results suggest that while multispectral data may be sufficient for detecting the extent of oil-impacted wetlands, high spectral and spatial resolution, high-quality sensor characteristics, and the ability to control time of image acquisition may improve assessment and monitoring of vegetation stress and recovery post oil spills.

  16. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact

    PubMed Central

    Santos, Maria J.; Ustin, Susan L.; Haverkamp, Paul J.; Lay, Mui

    2018-01-01

    Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m) provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m) the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened) data. Higher quality sensor optics and higher signal-to-noise ratio (SNR) may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with higher SNR performed better than either of the three satellite sensors. The ability to acquire imagery during certain times (midday, low tide, etc.) or a certain date (cloud-free, etc.) is also important in these tidal wetlands; WorldView2 imagery captured at high-tide detected a narrower band of shoreline affected by oil likely because some of the impacted wetland was below the tideline. These results suggest that while multispectral data may be sufficient for detecting the extent of oil-impacted wetlands, high spectral and spatial resolution, high-quality sensor characteristics, and the ability to control time of image acquisition may improve assessment and monitoring of vegetation stress and recovery post oil spills. PMID:29439504

  17. Spectral Band Characterization for Hyperspectral Monitoring of Water Quality

    NASA Technical Reports Server (NTRS)

    Vermillion, Stephanie C.; Raqueno, Rolando; Simmons, Rulon

    2001-01-01

    A method for selecting the set of spectral characteristics that provides the smallest increase in prediction error is of interest to those using hyperspectral imaging (HSI) to monitor water quality. The spectral characteristics of interest to these applications are spectral bandwidth and location. Three water quality constituents of interest that are detectable via remote sensing are chlorophyll (CHL), total suspended solids (TSS), and colored dissolved organic matter (CDOM). Hyperspectral data provides a rich source of information regarding the content and composition of these materials, but often provides more data than an analyst can manage. This study addresses the spectral characteristics need for water quality monitoring for two reasons. First, determination of the greatest contribution of these spectral characteristics would greatly improve computational ease and efficiency. Second, understanding the spectral capabilities of different spectral resolutions and specific regions is an essential part of future system development and characterization. As new systems are developed and tested, water quality managers will be asked to determine sensor specifications that provide the most accurate and efficient water quality measurements. We address these issues using data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and a set of models to predict constituent concentrations.

  18. Analysis Of AVIRIS Data From LEO-15 Using Tafkaa Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Montes, Marcos J.; Gao, Bo-Cai; Davis, Curtiss O.; Moline, Mark

    2004-01-01

    We previously developed an algorithm named Tafkaa for atmospheric correction of remote sensing ocean color data from aircraft and satellite platforms. The algorithm allows quick atmospheric correction of hyperspectral data using lookup tables generated with a modified version of Ahmad & Fraser s vector radiative transfer code. During the past few years we have extended the capabilities of the code. Current modifications include the ability to account for within scene variation in solar geometry (important for very long scenes) and view geometries (important for wide fields of view). Additionally, versions of Tafkaa have been made for a variety of multi-spectral sensors, including SeaWiFS and MODIS. In this proceeding we present some initial results of atmospheric correction of AVIRIS data from the 2001 July Hyperspectral Coastal Ocean Dynamics Experiment (HyCODE) at LEO-15.

  19. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Spectrometer (AVIRIS) workshop, on October 25-26, whose summaries appear in Volume 1; The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27, whose summaries appear in Volume 2; and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29, whose summaries appear in this volume, Volume 3.

  20. Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest

    USGS Publications Warehouse

    Anderson, J.E.; Ducey, Mark J.; Fast, A.; Martin, M.E.; Lepine, L.; Smith, M.-L.; Lee, T.D.; Dubayah, R.O.; Hofton, M.A.; Hyde, P.; Peterson, Birgit; Blair, J.B.

    2011-01-01

    Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA's Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p < 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event.

  1. Informed Source Separation of Atmospheric and Surface Signal Contributions in Shortwave Hyperspectral Imagery using Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2015-12-01

    Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.

  2. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  3. Oil Spill Detection along the Gulf of Mexico Coastline based on Airborne Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Arslan, M. D.; Filippi, A. M.; Guneralp, I.

    2013-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico between April and July 2010 demonstrated the importance of synoptic oil-spill monitoring in coastal environments via remote-sensing methods. This study focuses on terrestrial oil-spill detection and thickness estimation based on hyperspectral images acquired along the coastline of the Gulf of Mexico. We use AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) imaging spectrometer data collected over Bay Jimmy and Wilkinson Bay within Barataria Bay, Louisiana, USA during September 2010. We also employ field-based observations of the degree of oil accumulation along the coastline, as well as in situ measurements from the literature. As part of our proposed spectroscopic approach, we operate on atmospherically- and geometrically-corrected hyperspectral AVIRIS data to extract image-derived endmembers via Minimum Noise Fraction transform, Pixel Purity Index-generation, and n-dimensional visualization. Extracted endmembers are then used as input to endmember-mapping algorithms to yield fractional-abundance images and crisp classification images. We also employ Multiple Endmember Spectral Mixture Analysis (MESMA) for oil detection and mapping in order to enable the number and types of endmembers to vary on a per-pixel basis, in contast to simple Spectral Mixture Analysis (SMA). MESMA thus better allows accounting for spectral variabiltiy of oil (e.g., due to varying oil thicknesses, states of degradation, and the presence of different oil types, etc.) and other materials, including soils and salt marsh vegetation of varying types, which may or may not be affected by the oil spill. A decision-tree approach is also utilized for comparison. Classification results do indicate that MESMA provides advantageous capabilities for mapping several oil-thickness classes for affected vegetation and soils along the Gulf of Mexico coastline, relative to the conventional approaches tested. Oil thickness-mapping results from MESMA and the decision tree demonstrate that such products can be accurately generated in complex coastal enviroments.

  4. Spectral variations in rocks and soils containing ferric iron hydroxide and(or) sulfate minerals as seen by AVIRIS and laboratory spectroscopy

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2004-01-01

    Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the Big Rock Candy Mountain area of the Marysvale volcanic field, west-central Utah, identified abundant rocks and soils bearing jarosite, goethite, and chlorite associated with volcanic rocks altered to propylitic grade during the Miocene (2321 Ma). Propylitically-altered rocks rich in pyrite associated with the relict feeder zones of convecting, shallow hydrothermal systems are currently undergoing supergene oxidation to natrojarosite, kaolinite, and gypsum. Goethite coatings are forming at the expense of jarosite where most pyrite has been consumed through oxidation in alluvium derived from pyrite-bearing zones. Spectral variations in the goethite-bearing rocks that resemble variations found in reference library samples of goethites of varying grain size were observed in the AVIRIS data. Rocks outside of the feeder zones have relatively low pyrite content and are characterized by chlorite, epidote, and calcite, with local copper-bearing quartz-calcite veins. Iron-bearing minerals in these rocks are weathering directly to goethite. Laboratory spectral analyses were applied to samples of iron-bearing rock outcrops and alluvium collected from the area to determine the accuracy of the AVIRIS-based mineral identification. The accuracy of the iron mineral identification results obtained by analysis of the AVIRIS data was confirmed. In general, the AVIRIS analysis results were accurate in identifying medium-grained goethite, coarse-grained goethite, medium- to coarse-grained goethite with trace jarosite, and mixtures of goethite and jarosite. However, rock fragments from alluvial areas identified as thin coatings of goethite with the AVIRIS data were found to consist mainly of medium- to coarse-grained goethite based on spectral characteristics in the visible and near-infrared. To determine if goethite abundance contributed to the spectral variations observed in goethite-bearing rocks with AVIRIS data, a laboratory experiment was performed in which spectra were acquired of a goethite-bearing rock while progressively decreasing the areal abundance of the rock with respect to a background of white, fine-grained quartz sand. This experiment found that, with decreasing material abundance, the crystal field absorption feature of goethite near 1.0 micron decreases in depth and narrows more from the long wavelength side of the feature than from the short wavelength side, as is the case in goethite reference spectra as grain size decreases from coarse to fine. In the Marysvale study area, goethite-bearing alluvium downgradient from source outcrops tends to be identified as finer-grained or thin coatings of goethite due to the minerals presence in lesser abundance. The goethite-bearing alluvium is a closer match to reference spectra of thin coatings of goethite even though the actual grain size of the contained goethite fragments is medium to coarse grained, the same on average as that from the source outcrops. Coarser-grained goethite most likely will be correctly identified in areas of greater goethite abundance proximal to jarosite-bearing source rock where the surface is relatively free of goethite-free soil components and vegetation that corrupt the goethite spectral response. When analysis of imaging spectroscopy data is performed using reference spectra of iron minerals of varying grain sizes and mixed compositions, the results are useful not only for purposes of mineral identification, but also for distinguishing goethite-bearing outcrop from alluvial surfaces with similar mineralogy, providing valuable information for geologic, geomorphologic, mineral exploration, and environmental assessment studies.

  5. AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert

    2001-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.

  6. Estimating Expressed Temperature and Fractional Area of Hot Lava at the Kilauea Vent with AVIRIS Spectral Measurements

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2001-01-01

    Imaging spectroscopy offers a framework based in physics and chemistry for scientific investigation of a wide range of phenomena of interest in the Earth environment. In the scientific discipline of volcanology knowledge of lava temperature and distribution at the surface provides insight into the volcano status and subsurface processes. A remote sensing strategy to measure surface lava temperatures and distribution would support volcanology research. Hot targets such as molten lava emit spectral radiance as a function of temperature. A figure shows a series of Planck functions calculated radiance spectra for hot targets at different temperatures. A maximum Lambertian solar reflected radiance spectrum is shown as well. While similar in form, each hot target spectrum has a unique spectral shape and is distinct from the solar reflected radiance spectrum. Based on this temperature-dependent signature, imaging spectroscopy provides an innovative approach for the remote-sensing-based measurement of lava temperature. A natural site for investigation of the measurement of lava temperature is the Big Island of Hawaii where molten lava from the Kilauea vent is present at the surface. In the past, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data sets have been used for the analysis of hot volcanic targets and hot burning fires. The research presented here builds upon and extends this earlier work. The year 2000 Hawaii AVIRIS data set has been analyzed to derive lava temperatures taking into account factors of fractional fill, solar reflected radiance, and atmospheric attenuation of the surface emitted radiance. The measurements, analyses, and current results for this research are presented here.

  7. Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor

    Treesearch

    Marie-Louise Smith; Mary E. Martin; Lucie Plourde; Scott V. Ollinger

    2003-01-01

    Field studies among diverse biomes demonstrate that mass-based nitrogen concentration at leaf and canopy scales is strongly related to carbon uptake and cycling. Combined field and airborne imaging spectrometry studies demonstrate the capacity for accurate empirical estimation of forest canopy N concentration and other biochemical constituents at scales from forest...

  8. The 1991 AVIRIS/POLDER experiment in Camargue, France

    NASA Technical Reports Server (NTRS)

    Baret, F.; Leprieur, C.; Jacquemoud, S.; Carrere, V.; Gu, X. F.; Steven, M.; Vanderbilt, V.; Hanocq, J. F.; Ustin, Susan L.; Rondeaux, G.

    1992-01-01

    Airborne campaigns during the eighties provided high spectral resolution data, collected with imaging instruments such as AIS, AVIRIS, FLI, CAESI, and ISM, in order to investigate the relationship with canopy biophysical characteristics. The statistical approaches used to analyze these data do not allow investigation of the causality and the applicability of the observed correlations. Further, statistical studies demonstrated the high degree of redundancy of the spectral information amongst many others. And for retrieving vegetation biophysical characteristics, few results demonstrate the real information gain attributable to the high spectral resolution capability as compared to the use of a few wide wavelength bands. With several new imaging spectrophotometers scheduled for launch during the next 10 years (MERIS, MODIS, HIRIS), progress in the description and understanding of the mechanisms that drive the spectral variation of canopy reflectance is required. Most of these new sensor systems will also have the capability to observe the target under differing view directions. The problem of the combination and the use of the synergy between both the spectral and the directional sources of canopy reflectance variations has to be addressed. Apart from the atmospheric effects, the spectral variation of the light reflected by canopies originates from the leaves, the soil or the other vegetation elements such as branches and fruits. At leaf level, both diffuse reflectance and transmittance may be simulated by simple models, although no accurate information exists on the absorption features of the biochemicals (except water) in the 900-2500nm wavelength range. Many models mimic the directional variability of canopy reflectance at a given wavelength. Combining a leaf spectral model with a canopy directional model provides a powerful tool to analyze this problem. Some of us have initiated such a study, but our approach and theory remain to be tested using canopy data with their complexity, associated experimental error, and atmospheric effects. The main objective of the 1990 POLDER/AVIRIS experiment in Camargue was to provide a consistent data set over various canopies in order to test the applicability of the theory. The experiment, part of the 1991 MAC Europe experiment, involved simultaneous data collection using two sensors: AVIRIS and POLDER which measures the bidirectional and polarization properties of the targets at 670 and 880nm wavebands.

  9. Mapping Pollution Plumes in Areas Impacted by Hurricane Katrina With Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Swayze, G. A.; Furlong, E. T.; Livo, K. E.

    2007-12-01

    New Orleans endured flooding on a massive scale subsequent to Hurricane Katrina in August of 2005. Contaminant plumes were noticeable in satellite images of the city in the days following flooding. Many of these plumes were caused by oil, gasoline, and diesel that leaked from inundated vehicles, gas stations, and refineries. News reports also suggested that the flood waters were contaminated with sewage from breached pipes. Effluent plumes such as these pose a potential health hazard to humans and wildlife in the aftermath of hurricanes and potentially from other catastrophic events (e.g., earthquakes, shipping accidents, chemical spills, and terrorist attacks). While the extent of effluent plumes can be gauged with synthetic aperture radar and broad- band visible-infrared images (Rykhus, 2005) (e.g., Radarsat and Landsat ETM+) the composition of the plumes could not be determined. These instruments lack the spectral resolution necessary to do chemical identification. Imaging spectroscopy may help solve this problem. Over 60 flight lines of NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected over New Orleans, the Mississippi Delta, and the Gulf Coast from one to two weeks after Katrina while the contaminated water was being pumped out of flooded areas. These data provide a unique opportunity to test if imaging spectrometer data can be used to identify the chemistry of these flood-related plumes. Many chemicals have unique spectral signatures in the ultraviolet to near-infrared range (0.2 - 2.5 microns) that can be used as fingerprints for their identification. We are particularly interested in detecting thin films of oil, gasoline, diesel, and raw sewage suspended on or in water. If these materials can be successfully differentiated in the lab then we will use spectral-shape matching algorithms to look for their spectral signatures in the AVIRIS data collected over New Orleans and other areas impacted by Katrina. If imaging spectroscopy can be used to identify plume composition on a regional scale than this information would help emergency personnel prioritize evacuations, help government agencies formulate cleanup strategies, and help ecologists assess the potential damage to wetlands and wildlife. This work could be the start of a new application of hyperspectral data for world-wide monitoring of spills from space-based imaging spectrometers. AVIRIS data used to test our method were corrected for solar flux, atmospheric absorptions, and scattering using the Atmospheric CORrection Now (ACORN) radiative transfer algorithm and residual artifacts were removed using ground spectra of a concrete runway at the Gulfport Airport in Mississippi. The resulting apparent reflectance data were mapped for spectral signatures of pollution plumes and results will be presented.

  10. Compositional and textural information from the dual inversion of visible, near and thermal infrared remotely sensed data

    NASA Technical Reports Server (NTRS)

    Brackett, Robert A.; Arvidson, Raymond E.

    1993-01-01

    A technique is presented that allows extraction of compositional and textural information from visible, near and thermal infrared remotely sensed data. Using a library of both emissivity and reflectance spectra, endmember abundances and endmember thermal inertias are extracted from AVIRIS (Airborne Visible and Infrared Imaging Spectrometer) and TIMS (Thermal Infrared Mapping Spectrometer) data over Lunar Crater Volcanic Field, Nevada, using a dual inversion. The inversion technique is motivated by upcoming Mars Observer data and the need for separation of composition and texture parameters from sub pixel mixtures of bedrock and dust. The model employed offers the opportunity to extract compositional and textural information for a variety of endmembers within a given pixel. Geologic inferences concerning grain size, abundance, and source of endmembers can be made directly from the inverted data. These parameters are of direct relevance to Mars exploration, both for Mars Observer and for follow-on missions.

  11. Surface reflectance retrieval from imaging spectrometer data using three atmospheric codes

    NASA Astrophysics Data System (ADS)

    Staenz, Karl; Williams, Daniel J.; Fedosejevs, Gunar; Teillet, Phil M.

    1994-12-01

    Surface reflectance retrieval from imaging spectrometer data has become important for quantitative information extraction in many application areas. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes play an important role for removal of the scattering and gaseous absorption effects of the atmosphere. The present study evaluates surface reflectances retrieved from airborne visible/infrared imaging spectrometer (AVIRIS) data using three radiative transfer codes: modified 5S (M5S), 6S, and MODTRAN2. Comparisons of the retrieved surface reflectance with ground-based reflectance were made for different target types such as asphalt, gravel, grass/soil mixture (soccer field), and water (Sooke Lake). The results indicate that the estimation of the atmospheric water vapor content is important for an accurate surface reflectance retrieval regardless of the radiative transfer code used. For the present atmospheric conditions, a difference of 0.1 in aerosol optical depth had little impact on the retrieved surface reflectance. The performance of MODTRAN2 is superior in the gas absorption regions compared to M5S and 6S.

  12. Remote sensing characterization of the Animas River watershed, southwestern Colorado, by AVIRIS imaging spectroscopy

    USGS Publications Warehouse

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.

    2005-01-01

    Visible-wavelength and near-infrared image cubes of the Animas River watershed in southwestern Colorado have been acquired by the Jet Propulsion Laboratory's Airborne Visible and InfraRed Imaging Spectrometer (AVIRIS) instrument and processed using the U.S. Geological Survey Tetracorder v3.6a2 implementation. The Tetracorder expert system utilizes a spectral reference library containing more than 400 laboratory and field spectra of end-member minerals, mineral mixtures, vegetation, manmade materials, atmospheric gases, and additional substances to generate maps of mineralogy, vegetation, snow, and other material distributions. Major iron-bearing, clay, mica, carbonate, sulfate, and other minerals were identified, among which are several minerals associated with acid rock drainage, including pyrite, jarosite, alunite, and goethite. Distributions of minerals such as calcite and chlorite indicate a relationship between acid-neutralizing assemblages and stream geochemistry within the watershed. Images denoting material distributions throughout the watershed have been orthorectified against digital terrain models to produce georeferenced image files suitable for inclusion in Geographic Information System databases. Results of this study are of use to land managers, stakeholders, and researchers interested in understanding a number of characteristics of the Animas River watershed.

  13. Carbon dioxide of Pu`u`O`o volcanic plume at Kilauea retrieved by AVIRIS hyperspectral data

    USGS Publications Warehouse

    Spinetti, C.; Carrere, V.; Buongiorno, M. Fabrizia; Sutton, A.J.; Elias, T.

    2008-01-01

    A remote sensing approach permits for the first time the derivation of a map of the carbon dioxide concentration in a volcanic plume. The airborne imaging remote sensing overcomes the typical difficulties associated with the ground measurements and permits rapid and large views of the volcanic processes together with the measurements of volatile components exolving from craters. Hyperspectral images in the infrared range (1900-2100??nm), where carbon dioxide absorption lines are present, have been used. These images were acquired during an airborne campaign by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Pu`u` O`o Vent situated at the Kilauea East Rift zone, Hawaii. Using a radiative transfer model to simulate the measured up-welling spectral radiance and by applying the newly developed mapping technique, the carbon dioxide concentration map of the Pu`u` O`o Vent plume were obtained. The carbon dioxide integrated flux rate were calculated and a mean value of 396 ?? 138??t d- 1 was obtained. This result is in agreement, within the measurements errors, with those of the ground measurements taken during the airborne campaign. ?? 2008 Elsevier Inc.

  14. Spectroscopic mapping of the white horse alunite deposit, Marysvale volcanic field, Utah: Evidence of a magmatic component

    USGS Publications Warehouse

    Rockwell, B.W.; Cunningham, C.G.; Breit, G.N.; Rye, R.O.

    2006-01-01

    Previous studies have demonstrated that the replacement alunite deposits just north of the town of Marysvale, Utah, USA, were formed primarily by low-temperature (100??-170?? C), steam-heated processes near the early Miocene paleoground surface, immediately above convecting hydrothermal plumes. Pyrite-bearing propylitically altered rocks occur mainly beneath the steam-heated alunite and represent the sulfidized feeder zone of the H2S-dominated hydrothermal fluids, the oxidation of which at higher levels led to the formation of the alunite. Maps of surface mineralogy at the White Horse deposit generated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used in conjunction with X-ray diffraction studies of field samples to test the accuracy and precision of AVIRIS-based mineral mapping of altered rocks and demonstrate the utility of spectroscopic mapping for ore deposit characterization. The mineral maps identified multiple core zones of alunite that grade laterally outward to kaolinite. Surrounding the core zones are dominantly propylitically altered rocks containing illite, montmorillonite, and chlorite, with minor pyrite, kaolinite, gypsum, and remnant potassium feldspar from the parent rhyodacitic ash-flow tuff. The AVIRIS mapping also identified fracture zones expressed by ridge-forming selvages of quartz + dickite + kaolinite that form a crude ring around the advanced argillic core zones. Laboratory analyses identified the aluminum phosphate-sulfate (APS) minerals woodhouseite and svanbergite in one sample from these dickite-bearing argillic selvages. Reflectance spectroscopy determined that the outer edges of the selvages contain more dickite than do the medial regions. The quartz + dickite ?? kaolinite ?? APS-mineral selvages demonstrate that fracture control of replacement processes is more prevalent away from the advanced argillic core zones. Although not exposed at the White Horse deposit, pyrophyllite ?? ordered illite was identified using AVIRIS in localized, superimposed conduits within propylitically altered rocks in nearby alteration systems of similar age and genesis that have been eroded to deeper levels. The fracture zones bearing pyrophyllite, illite, dickite, natroalunite, and/or APS minerals indicate a magmatic component in the dominantly steam-heated system. ?? 2006 Society of Economic Geologists, Inc.

  15. Measuring the Spectral Expression of Carbon Dioxide in the Solar Reflected Spectrum with AVIRIS

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2001-01-01

    Carbon dioxide is a low-concentration, but important, component of the Earth's atmosphere. This gas absorbs electromagnetic radiation (EMR) in several regions of the spectrum. Absorption of energy by carbon dioxide adds heat to the atmosphere. In the world today, the burning of fossil fuels and other anthropogenic processes adds carbon dioxide to the atmosphere. Other natural processes in the Earth's system both add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at selected sites around the globe show an increased carbon dioxide concentration in the atmosphere. A figure shows the measured carbon dioxide from Mauna Loa, Hawaii, from 1958 to 2000. Overall, the concentration has increased from 315 to 365 ppm at this site over this period. (There is also a yearly cycle to the concentration that is timed with and hypothesized to be related to the vegetation growing season in the Northern Hemisphere.) The overall expected effect of this increase of atmospheric carbon dioxide is trapping of heat in the atmosphere and global warming. While this overall relationship between carbon dioxide and global warming seems straightforward, many of the specific details relating to regional and local sources and sinks and gradients of carbon dioxide are not well understood. A remote sensing capability to measure carbon dioxide could provide important inputs for scientific research to better understand the distribution and change in atmospheric carbon dioxide at detailed spatial and temporal levels. In pursuit of this remote sensing of carbon dioxide objective, this paper analyzes the expression of carbon dioxide in the spectral range measured by the Airborne Visible/Infrared Imagery Spectrometer (AVIRIS). Based on these analyses, a spectral-fitting algorithm that uses AVIRIS measured spectra and MODTRAN radiative-transfer code modeled spectra to derive total column carbon dioxide abundance has been developed. This algorithm has been applied to an AVIRIS data set acquired over Pasadena, California, in 1999 and a data set acquired over the Pacific Ocean near Hawaii in 2000 with promising results. This is ongoing research; the current initial analyses, measurements, and results are reported in this paper.

  16. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California.

    PubMed

    Sousa, Daniel; Small, Christopher

    2018-02-14

    Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area - despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.

  17. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California

    PubMed Central

    Small, Christopher

    2018-01-01

    Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system. PMID:29443900

  18. Using Imaging Spectrometry to Approach Crop Classification from a Water Management Perspective

    NASA Astrophysics Data System (ADS)

    Shivers, S.; Roberts, D. A.

    2017-12-01

    We use hyperspectral remote sensing imagery to classify crops in the Central Valley of California at a level that would be of use to water managers. In California irrigated agriculture uses 80 percent of the state's water supply with differences in water application rate varying by as large as a factor of three, dependent on crop type. Therefore, accurate water resource accounting is dependent upon accurate crop mapping. While on-the-ground crop accounting at the county level requires significant labor and time inputs, remote sensing has the potential to map crops over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometry with its wide spectral range has the ability to detect small spectral differences at the field-level scale that may be indiscernible to multispectral sensors such as Landsat. In this study, crops in the Central Valley were classified into nine categories defined and used by the California Department of Water Resources as having similar water usages. We used the random forest classifier on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery from June 2013, 2014 and 2015 to analyze accuracy of multi-temporal images and to investigate the extent to which cropping patterns have changed over the course of the 2013-2015 drought. Initial results show accuracies of over 90% for all three years, indicating that hyperspectral imagery has the potential to identify crops by water use group at a single time step with a single sensor, allowing cropping patterns to be monitored in anticipation of water needs.

  19. Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.; Greenberg, J. A.

    2015-12-01

    The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 < R2 < 0.82) and correct classifications as per USDA soil texture classes at multiple spatial resolutions. The results further demonstrate that the attributes of the pdf for different soil constituents across the landscape and the within-pixel variance are well preserved across scales. Our analysis provides a methodological framework with a sufficient set of metrics for assessing the performance of scaling up analysis from point scale observational data and may be relevant for other similar remote sensing studies. [1] Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A., "On the Feasibility of Characterizing Soil Properties From AVIRIS Data," Geoscience and Remote Sensing, IEEE Transactions on, vol.53, no.9, pp.5133,5147, Sept. 2015. doi: 10.1109/TGRS.2015.2417547.

  20. Discriminating Canopy Structural Types from Optical Properties using AVIRIS Data in the Sierra National Forest in Central California

    NASA Astrophysics Data System (ADS)

    Huesca Martinez, M.; Garcia, M.; Roth, K. L.; Casas, A.; Ustin, S.

    2015-12-01

    There is a well-established need within the remote sensing community for improved estimation of canopy structure and understanding of its influence on the retrieval of leaf biochemical properties. The aim of this project was to evaluate the estimation of structural properties directly from hyperspectral data, with the broader goal that these might be used to constrain retrievals of canopy chemistry. We used NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to discriminate different canopy structural types, defined in terms of biomass, canopy height and vegetation complexity, and compared them to estimates of these properties measured by LiDAR data. We tested a large number of optical metrics, including single narrow band reflectance and 1st derivative, sub-pixel cover fractions, narrow-band indices, spectral absorption features, and Principal Component Analysis components. Canopy structural types were identified and classified from different forest types by integrating structural traits measured by optical metrics using the Random Forest (RF) classifier. The classification accuracy was above 70% in most of the vegetation scenarios. The best overall accuracy was achieved for hardwood forest (>80% accuracy) and the lowest accuracy was found in mixed forest (~70% accuracy). Furthermore, similarly high accuracy was found when the RF classifier was applied to a spatially independent dataset, showing significant portability for the method used. Results show that all spectral regions played a role in canopy structure assessment, thus the whole spectrum is required. Furthermore, optical metrics derived from AVIRIS proved to be a powerful technique for structural attribute mapping. This research illustrates the potential for using optical properties to distinguish several canopy structural types in different forest types, and these may be used to constrain quantitative measurements of absorbing properties in future research.

  1. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    NASA Astrophysics Data System (ADS)

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  2. Using Multi-Temporal Imaging Spectroscopy Data to Detect Drought and Bark Beetle Related Conifer Mortality across the Central Sierra Nevada, California, USA

    NASA Astrophysics Data System (ADS)

    Tane, Z.; Ramirez, C.; Roberts, D. A.; Koltunov, A.; Sweeney, S.

    2016-12-01

    There is considerable scientific and public interest in the ongoing drought and bark beetle driven conifer mortality in the Central and Southern Sierra Nevada, the scale of which has not been seen previously in California's recorded history. Just before and during this mortality event (2013-2016), Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) data were acquired seasonally over part of the affected area as part of the HyspIRI Preparatory Mission. In this study, we used 11 AVIRIS flight lines from 8 seasonal flights (from spring 2013 to summer 2015) to detect conifer mortality. In addition to the standard pre-processing completed by NASA's Jet Propulsion Lab, AVIRIS images were co-registered and georeferenced between time steps and images were resampled to the spatial resolution and signal-to-noise ratio expected from the proposed HyspIRI satellite. We used summer 2015 high-spatial resolution WorldView-2 and WorldView-3 images from across the study area to collect training data from five scenes, and independent validation data from five additional scenes. A cover class map developed with a machine-learning algorithm, separated pixels into green conifer, red-attack conifer, and non-conifer dominant cover, yielding a high accuracy (above 85% accuracy on the independent validation data) in the tree mortality final map. Discussion will include the effects of temporal information and input dimensionality on classification accuracy, comparison with multi-spectral classification accuracy, the ecological and forest management implications of this work, incorporating 2016 AVIRS images to detect 2016 mortality, and future work in understanding the spatial patterns underlying the mortality.

  3. Nutrient Stress Detection in Corn, Using Neural Networks and AVIRIS Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Davis, Bruce

    2001-01-01

    The US Department of Agriculture (USDA) Agricultural Research Service (ARS) Variable Rate (VRAT) Nitrogen Application site in Shelton, Nebraska, represents a well-documented, corn-growing quarter section. The USDA VRAT site is used to systematically study nutrient stress in corn by varying sub-plot application of fertilizer. The field has four replicates of five blocks that vary by nitrogen treatment from 0-kg/ha to 200-kg/ha in 50-kg/ha increments. The treatment blocks are set out in a randomized, complete block design. Typically, the VRAT is planted in a ridge till, monoculture corn and is watered by a central pivot irrigation system on a three-day period. Since water stress can increase spectral reflectance from corn leaves, it is important that the N-application plots be adequately watered so that only nutrient-related stress will predominate. A figure shows imagery of the USDA VRAT site with the fertilizer amounts for each block shown. Low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery was acquired over the Shelton, Nebraska, VRAT site on July 22, 1999. The overflight produced 3-meter pixels with 224 spectral bands. Ground personnel supported the mission with measurements at the time of the overflight. The image data was pre-processed at JPL before being sent out to an investigator. The data arrived radiometrically corrected, allowing ready application of an atmospheric correction procedure. The Atmosphere Removal Program (ATREM) was used to perform an atmospheric correction. The AVIRIS imagery after ATREM correction was output as relative reflectance. This relative reflectance file was scaled by an empirical line procedure to provide reflectances that matched closely those measured in the field.

  4. Hyperspectral Image Classification using a Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.

    2001-01-01

    The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.

  5. A method for quantitative mapping of thick oil spills using imaging spectroscopy

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Leifer, Ira; Livo, K. Eric; Kokaly, Raymond F.; Hoefen, Todd; Lundeen, Sarah; Eastwood, Michael; Green, Robert O.; Pearson, Neil; Sarture, Charles; McCubbin, Ian; Roberts, Dar; Bradley, Eliza; Steele, Denis; Ryan, Thomas; Dominguez, Roseanne; ,

    2010-01-01

    In response to the Deepwater Horizon oil spill in the Gulf of Mexico, a method of near-infrared imaging spectroscopic analysis was developed to map the locations of thick oil floating on water. Specifically, this method can be used to derive, in each image pixel, the oil-to-water ratio in oil emulsions, the sub-pixel areal fraction, and its thicknesses and volume within the limits of light penetration into the oil (up to a few millimeters). The method uses the shape of near-infrared (NIR) absorption features and the variations in the spectral continuum due to organic compounds found in oil to identify different oil chemistries, including its weathering state and thickness. The method is insensitive to complicating conditions such as moderate aerosol scattering and reflectance level changes from other conditions, including moderate sun glint. Data for this analysis were collected by the NASA Airborne Visual Infrared Imaging Spectrometer (AVIRIS) instrument, which was flown over the oil spill on May 17, 2010. Because of the large extent of the spill, AVIRIS flight lines could cover only a portion of the spill on this relatively calm, nearly cloud-free day. Derived lower limits for oil volumes within the top few millimeters of the ocean surface directly probed with the near-infrared light detected in the AVIRIS scenes were 19,000 (conservative assumptions) to 34,000 (aggressive assumptions) barrels of oil. AVIRIS covered about 30 percent of the core spill area, which consisted of emulsion plumes and oil sheens. Areas of oil sheen but lacking oil emulsion plumes outside of the core spill were not evaluated for oil volume in this study. If the core spill areas not covered by flight lines contained similar amounts of oil and oil-water emulsions, then extrapolation to the entire core spill area defined by a MODIS (Terra) image collected on the same day indicates a minimum of 66,000 to 120,000 barrels of oil was floating on the surface. These estimates are preliminary and subject to revision pending further analysis. Based on laboratory measurements, near-infrared (NIR) photons penetrate only a few millimeters into oil-water emulsions. As such, the oil volumes derived with this method are lower limits. Further, the detection is only of thick surface oil and does not include sheens, underwater oil, or oil that had already washed onto beaches and wetlands, oil that had been burned or evaporated as of May 17. Because NIR light penetration within emulsions is limited, and having made field observations that oil emulsions sometimes exceeded 20 millimeters in thickness, we estimate that the volume of oil, including oil thicker than can be probed in the AVIRIS imagery, is possibly as high as 150,000 barrels in the AVIRIS scenes. When this value is projected to the entire spill, it gives a volume of about 500,000 barrels for thick oil remaining on the sea surface as of May 17. AVIRIS data cannot be used to confirm this higher volume, and additional field work including more in-situ measurements of oil thickness would be required to confirm this higher oil volume. Both the directly detected minimum range of oil volume, and the higher possible volume projection for oil thicker than can be probed with NIR spectroscopy imply a significantly higher total volume of oil relative to that implied by the early NOAA (National Oceanic and Atmospheric Administration) estimate of 5,000 barrels per day reported on their Web site.

  6. Examination of the spectral features of vegetation in 1987 AVIRIS data

    NASA Technical Reports Server (NTRS)

    Elvidge, Christopher D.

    1988-01-01

    Equations for converting AVIRIS digital numbers to percent reflectance were developed using a set of three calibration targets. AVIRIS reflectance spectra from five plant communities exhibit distinct spectral differences.

  7. A linear spectral matching technique for retrieving equivalent water thickness and biochemical constituents of green vegetation

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1992-01-01

    Over the last decade, technological advances in airborne imaging spectrometers, having spectral resolution comparable with laboratory spectrometers, have made it possible to estimate biochemical constituents of vegetation canopies. Wessman estimated lignin concentration from data acquired with NASA's Airborne Imaging Spectrometer (AIS) over Blackhawk Island in Wisconsin. A stepwise linear regression technique was used to determine the single spectral channel or channels in the AIS data that best correlated with measured lignin contents using chemical methods. The regression technique does not take advantage of the spectral shape of the lignin reflectance feature as a diagnostic tool nor the increased discrimination among other leaf components with overlapping spectral features. A nonlinear least squares spectral matching technique was recently reported for deriving both the equivalent water thicknesses of surface vegetation and the amounts of water vapor in the atmosphere from contiguous spectra measured with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The same technique was applied to a laboratory reflectance spectrum of fresh, green leaves. The result demonstrates that the fresh leaf spectrum in the 1.0-2.5 microns region consists of spectral components of dry leaves and the spectral component of liquid water. A linear least squares spectral matching technique for retrieving equivalent water thickness and biochemical components of green vegetation is described.

  8. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  9. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  10. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  11. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1993-01-01

    This is volume 2 of a three volume set of publications that contain the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on October 25-26. The summaries for this workshop appear in Volume 1. The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27. The summaries for this workshop appear in Volume 2. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29. The summaries for this workshop appear in Volume 3.

  12. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  13. A layered approach to technology transfer of AVIRIS between Earth Search Sciences, Inc. and the Idaho National Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry

    1995-01-01

    Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.

  14. Mineral Mapping with Imaging Spectroscopy: The Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Vance, J. Sam; Livo, K. Eric; Green, Robert O.

    1998-01-01

    Mineral maps generated for the Ray Mine, Arizona were analyzed to determine if imaging spectroscopy can provide accurate information for environmental management of active and abandoned mine regions. The Ray Mine, owned by the ASARCO Corporation, covers an area of 5700 acres and is situated in Pinal County, Arizona about 70 miles north of Tucson near Hayden, Arizona. This open-pit mine has been a major source of copper since 1911, producing an estimated 4.5 million tons of copper since its inception. Until 1955 mining was accomplished by underground block caving and shrinkage stope methods. (excavation by working in stepped series usually employed in a vertical or steeply inclined orebody) In 1955, the mine was completely converted to open pit method mining with the bulk of the production from sulfide ore using recovery by concentrating and smelting. Beginning in 1969 a significant production contribution has been from the leaching and solvent extraction-electrowinnowing method of silicate and oxide ores. Published reserves in the deposit as of 1992 are 1.1 billion tons at 0.6 percent copper. The Environmental Protection Agency, in conjunction with ASARCO, and NASA/JPL obtained AVIRIS data over the mine in 1997 as part of the EPA Advanced Measurement Initiative (AMI) (Tom Mace, Principal Investigator). This AVIRIS data set is being used to compare and contrast the accuracy and environmental monitoring capabilities of remote sensing technologies: visible-near-IR imaging spectroscopy, multispectral visible and, near-IR sensors, thermal instruments, and radar platforms. The goal of this effort is to determine if these various technologies provide useful information for envirorunental management of active and abandoned mine sites in the arid western United States. This paper focuses on the analysis of AVIRIS data for assessing the impact of the Ray Mine on Mineral Creek. Mineral Creek flows to the Gila River. This paper discusses our preliminary AVIRIS mineral mapping and environmental findings.

  15. Multiyear Multiseasonal Changes in Leaf and Canopy Traits Measured by AVIRIS over Ecosystems with Different Functional Type Characteristics Through the Progressive California Drought 2013-2015

    NASA Astrophysics Data System (ADS)

    Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.

    2015-12-01

    Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.

  16. Mapping Environmental Contaminants at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    McCubbin, Ian; Lang, Harold

    2000-01-01

    Airborne Visible and InfraRed Imaging Spectrometer (AVIRIS) data was collected over Ray Mine as part of a demonstration project for the Environmental Protection Agency (EPA) through the Advanced Measurement Initiative (AMI). The overall goal of AMI is to accelerate adoption and application of advanced measurement technologies for cost effective environmental monitoring. The site was selected to demonstrate the benefit to EPA in using advanced remote sensing technologies for the detection of environmental contaminants due to the mineral extraction industry. The role of the Jet Propulsion Laboratory in this pilot study is to provide data as well as performing calibration, data analysis, and validation of the AVIRIS results. EPA is also interested in developing protocols that use commercial software to perform such work on other high priority EPA sites. Reflectance retrieval was performed using outputs generated by the MODTRAN radiative transfer model and field spectra collected for the purpose of calibration. We are presenting advanced applications of the ENVI software package using n-Dimensional Partial Unmixing to identify image-derived endmembers that best match target materials reference spectra from multiple spectral libraries. Upon identification of the image endmembers the Mixture Tuned Match Filter algorithm was applied to map the endmembers within each scene. Using this technique it was possible to map four different mineral classes that are associated with mine generated acid waste.

  17. Discussion of band selection and methodologies for the estimation of precipitable water vapour from AVIRIS data

    NASA Technical Reports Server (NTRS)

    Schanzer, Dena; Staenz, Karl

    1992-01-01

    An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set acquired over Canal Flats, B.C., on 14 Aug. 1990, was used for the purpose of developing methodologies for surface reflectance retrieval using the 5S atmospheric code. A scene of Rogers Dry Lake, California (23 Jul. 1990), acquired within three weeks of the Canal Flats scene, was used as a potential reference for radiometric calibration purposes and for comparison with other studies using primarily LOWTRAN7. Previous attempts at surface reflectance retrieval indicated that reflectance values in the gaseous absorption bands had the poorest accuracy. Modifications to 5S to use 1 nm step size, in order to make fuller use of the 20 cm(sup -1) resolution of the gaseous absorption data, resulted in some improvement in the accuracy of the retrieved surface reflectance. Estimates of precipitable water vapor using non-linear least squares regression and simple ratioing techniques such as the CIBR (Continuum Interpolated Band Ratio) technique or the narrow/wide technique, which relate ratios of combinations of bands to precipitable water vapor through calibration curves, were found to vary widely. The estimates depended on the bands used for the estimation; none provided entirely satisfactory surface reflectance curves.

  18. Description and validation of an automated methodology for mapping mineralogy, vegetation, and hydrothermal alteration type from ASTER satellite imagery with examples from the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2012-01-01

    The efficacy of airborne spectroscopic, or "hyperspectral," remote sensing for geoenvironmental watershed evaluations and deposit-scale mapping of exposed mineral deposits has been demonstrated. However, the acquisition, processing, and analysis of such airborne data at regional and national scales can be time and cost prohibitive. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried by the NASA Earth Observing System Terra satellite was designed for mineral mapping and the acquired data can be efficiently used to generate uniform mineral maps over very large areas. Multispectral remote sensing data acquired by the ASTER sensor were analyzed to identify and map minerals, mineral groups, hydrothermal alteration types, and vegetation groups in the western San Juan Mountains, Colorado, including the Silverton and Lake City calderas. This mapping was performed in support of multidisciplinary studies involving the predictive modeling of surface water geochemistry at watershed and regional scales. Detailed maps of minerals, vegetation groups, and water were produced from an ASTER scene using spectroscopic, expert system-based analysis techniques which have been previously described. New methodologies are presented for the modeling of hydrothermal alteration type based on the Boolean combination of the detailed mineral maps, and for the entirely automated mapping of alteration types, mineral groups, and green vegetation. Results of these methodologies are compared with the more detailed maps and with previously published mineral mapping results derived from analysis of high-resolution spectroscopic data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. Such comparisons are also presented for other mineralized and (or) altered areas including the Goldfield and Cuprite mining districts, Nevada and the central Marysvale volcanic field, Wah Wah Mountains, and San Francisco Mountains, Utah. The automated mineral group mapping products described in this study are ideal for application to mineral resource and mineral-environmental assessments at regional and national scales.

  19. Mineralogical Composition and Potential Dust Source of Playas in the Western U.S. and Australia as Remotely Identified Through Imaging Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Raming, L. W.; Farrand, W. H.; Bowen, B.

    2015-12-01

    Playas are significant dust sources and as a result are potentially hazardous to human health. The composition of the dust is a function of the mineralogical content of the playa and associated brines. Playas are found in arid climates globally, however they are challenging to map geologically as they are often hard to access, have subtle variations in mineralogy, and are topographically featureless. This study uses remote sensing in the form of imaging spectroscopy to map the mineralogical composition of five playas from different geologic settings: Railroad Valley Playa, Nevada, USA; Bonneville Salt Flats, Utah, USA; White Sands National Monument, New Mexico, USA; Lake Brown, Western Australia, Australia; and Lake Tyrrell, Victoria, Australia.Multiple spectrometers were used for this study; these include the multispectral sensor ASTER, and the hyperspectral sensors AVIRIS, HICO, and HyMap. All scenes were processed in ENVI and corrected to at surface reflectance using FLAASH, QUAC or Empirical Line methods. Minerals were identified through a standard end-member extraction approach and mapped using multi-range spectral feature fitting and other methods. Additionally, remote data are combined with in-situ field-based spectra and sample-based laboratory spectra.Initial results suggest various and differing mineralogy between playas. The most abundant mineralogy includes clay minerals such as illite and montmorillonite and evaporites such as gypsum. Additionally there has been identification of Fe absorption bands in the visible / near infrared at White Sands National Monument, and Lake Brown and Lake Tyrell, suggesting the presence of iron bearing minerals. Further research will provide a more comprehensive list of minerals identified by absorption features as related to specific sensors. Collectively, these analyses will be used characterize overall patterns in playa surface mineralogy and to evaluate the parameters that influence playa dust source composition.

  20. A Fast Smoothing Algorithm for Post-Processing of Surface Reflectance Spectra Retrieved from Airborne Imaging Spectrometer Data

    PubMed Central

    Gao, Bo-Cai; Liu, Ming

    2013-01-01

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022

  1. Sub-pixel localization of highways in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda

    1995-01-01

    Roads and highways show up clearly in many bands of AVIRIS images. A typical lane in the U.S. is 12 feet wide, and the total width of a four lane highway, including 18 feet of paved shoulders, is 19.8 m. Such a highway will cover only a portion of any 20x20 m AVIRIS pixel that it traverses. The other portion of these pixels wil be usually covered by vegetation. An interesting problem is to precisely determine the location of a highway within the AVIRIS pixels that it traverses. This information may be used for alignment and spatial calibration of AVIRIS images. Also, since the reflection properties of highway surfaces do not change with time, and they can be determined once and for all, such information can be of help in calculating and filtering out the atmospheric noise that contaminates AVIRIS measurements. The purpose of this report is to describe a method for sub-pixel localization of highways.

  2. Application of imaging spectrometer data to the Kings-Kaweah ophiolite melange

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Pieters, Carle M.

    1988-01-01

    The Kings-Kaweah ophiolite melange in east-central California is thought to be an obducted oceanic fracture zone and provides the rare opportunity to examine in detail the complex nature of this type of terrain. It is anticipated that the distribution and abundance of components in the melange can be used to determine the relative importance of geologic processes responsible for the formation of fracture zone crust. Laboratory reflectance spectra of field samples indicate that the melange components have distinct, diagnostic absorptions at visible to near-infrared wavelengths. The spatial and spectral resolution of AVIRIS is ideally suited for addressing important scientific questions concerning the Kings-Kaweah ophiolite melange and fracture zones in general.

  3. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  4. Remote sensing of smoke, clouds, and radiation using AVIRIS during SCAR experiments

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Remer, Lorraine; Kaufman, Yorman J.

    1995-01-01

    During the past two years, researchers from several institutes joined together to take part in two SCAR experiments. The SCAR-A (Sulfates, Clouds And Radiation - Atlantic) took place in the mid-Atlantic region of the United States in July, 1993. remote sensing data were acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), the MODIS Airborne Simulator (MAS), and a RC-10 mapping camera from an ER-2 aircraft at 20 km. In situ measurements of aerosol and cloud microphysical properties were made with a variety of instruments equipped on the University of Washington's C-131A research aircraft. Ground based measurements of aerosol optical depths and particle size distributions were made using a network of sunphotometers. The main purpose of SCAR-A experiment was to study the optical, physical and chemical properties of sulfate aerosols and their interaction with clouds and radiation. Sulfate particles are believed to affect the energy balance of the earth by directly reflecting solar radiation back to space and by increasing the cloud albedo. The SCAR-C (Smoke, Clouds And Radiation - California) took place on the west coast areas during September - October of 1994. Sets of aircraft and ground-based instruments, similar to those used during SCAR-A, were used during SCAR-C. Remote sensing of fires and smoke from AVIRIS and MAS imagers on the ER-2 aircraft was combined with a complete in situ characterization of the aerosol and trace gases from the C-131A aircraft of the University of Washington and the Cesna aircraft from the U.S. Forest Service. The comprehensive data base acquired during SCAR-A and SCAR-C will contribute to a better understanding of the role of clouds and aerosols in global change studies. The data will also be used to develop satellite remote sensing algorithms from MODIS on the Earth Observing System.

  5. Developing a Soil Moisture Index for California Grasslands from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Flamme, H. E.; Roberts, D. A.; Miller, D. L.

    2016-12-01

    Soil moisture is a key environmental factor controlling vegetation diversity and productivity, evaporation, transpiration, and rainfall runoff. Despite the contribution of soil moisture to ecological productivity, the hydrologic cycle, and erosion, it is currently not being monitored as accurately or as frequently as other environmental factors. Traditional soil moisture monitoring techniques rely on in situ measurements, which become costly when evaluating areas of unevenly distributed soil characteristics and varying topography. Alternatively, satellite remote sensing, such as passive microwave from SMAP, can provide soil moisture but only at very coarse spatial resolutions. Imagery from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) has the potential to allow better spatial and temporal monitoring of soil moisture. This study established a relationship between plant available water and hyperspectral reflectance via linear regressions of data from 2013-2015 for two grassland field sites: 1) near Santa Barbara, California, at Coal Oil Point Reserve (COPR) and 2) Airstrip station (AIRS) at UC Santa Barbara's Sedgwick Reserve near Santa Ynez, California. Volumetric soil moisture measurements at 10 cm and 20 cm depths were provided by meteorological stations situated in COPR and AIRS while reflectance data were extracted from AVIRIS. We found strong correlations between plant available water and bands centered at wavelengths 704 nm and 831 nm, which we used to create Hyperspectral Soil Moisture Index (HSMI): 0.38((ρ831-ρ704)/(ρ831+ρ704))-0.02. HSMI demonstrated a coefficient of determination (R2) of 0.71 for linear regressions of reflectance versus plant available water with a lag time of 28 days. We applied HSMI to the AIRS and COPR grasslands for 2011 AVIRIS scenes. Plant available water values predicted by HSMI were 0.039 higher at AIRS and 0.048 higher at COPR than the field measurements at the sites. Differences in grass species, soil composition, and climate between COPR and AIRS likely contributed to the errors in the soil moisture predicted by HSMI.

  6. Utilizing Landsat 8 to measure kelp physiological health in the Santa Barbara Channel

    NASA Astrophysics Data System (ADS)

    Taylor, N.; Bausell, J.; Bell, T. W.; Kudela, R. M.; Scuderi, L. A.

    2017-12-01

    Giant Kelp (Macrocystis pyrifera) is an important primary producer and ecosystem engineer along the west coast of North America. While satellite sensors can easily quantify canopy area of kelp, gauging the physiological health of these macroalgae has proven more difficult. Bell et al. (2015) devised an algorithm that effectively estimated the chlorophyll to carbon ratio (Chl:C)—a proxy for kelp health—using AVIRIS imagery. However while AVIRIS shows great potential in mapping kelp forest health, as an airborne sensor its availability is inconsistent over time, making it less ideal for continuous kelp forest monitoring. We therefore extend this method of determining Chl:C based on reflectance values to Landsat 8 satellite imagery. Landsat 8 Level 2 reflectance was confined to within one standard deviation of the best fit line to exclude outliers, and used to generate an equation for estimating Chl:C. The construction of a Landsat time series using this algorithm spanning 2013-2015 displays a predictable seasonal cycle of physiological health. These seasonal shifts in Chl:C suggest that kelp physiology is closely linked to environmental conditions and total biomass. Similarly, the lower Chl:C of Isla Vista observed in 2015 could be caused by environmental stressors associated with El Niño such as increased sea surface temperature, decreased nutrient availability, and disturbance. The added implementation of Landsat to estimate health greatly increases the potential for understanding long and short-term variability in photosynthetic ability and growth rates of kelp forests.

  7. Improved Atmospheric Correction for AVIRIS Spectra from Inland Waters

    NASA Technical Reports Server (NTRS)

    Gastil, Mary; Melack, John M.

    1998-01-01

    Remote sensing reflectance (Rrs) cannot be measured directly. Comparison of Rrs calculated from field measurements to Rrs calculated from AVIRIS spectra and the atmospheric radiative transfer model modtran provides a measure of the accuracy of our method. That and other comparisons are presented here as a validation of a method of retrieving Rrs from inland waters from AVIRIS radiance. The method of collecting field measurements for Rrs is described in Hamilton, 1993. Retrieval of Rrs from AVIRIS using modtran was developed from Carder, 1993. AVIRIS radiance is reduced by the path radiance modeled by modtran and divided by one-way transmission. Skylight, modeled by modtran, specularly reflected from the lake surface, is then subtracted from this radiance, leaving only that radiance which has come from under water. This water-leaving radiance is then normalized by the downwelling irradiance incident at the surface as modeled by modtran. Our improved retrieval of Rrs has allowed us to fit a single curve to a set of 134 pairs of AVIRIS Rrs and measured chlorophyll gathered on eight experiments at Mono Lake. Previously, spectra from different surveys varied more due to lingering atmospheric effects and/or radiometric calibration imprecision than they varied due to chlorophyll.

  8. Discrimination of poorly exposed lithologies in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Harsanyi, Joseph C.

    1993-01-01

    One of the advantages afforded by imaging spectrometers such as AVIRIS is the capability to detect target materials at a sub-pixel scale. This paper presents several examples of the identification of poorly exposed geologic materials - materials which are either subpixel in scale or which, while having some surface expression over several pixels, are partially covered by vegetation or other materials. Sabol et al. (1992) noted that a primary factor in the ability to distinguish sub-pixel targets is the spectral contrast between the target and its surroundings. In most cases, this contrast is best expressed as an absorption feature or features present in the target but absent in the surroundings. Under such circumstances, techniques such as band depth mapping (Clark et al., 1992) are feasible. However, the only difference between a target material and its surroundings is often expressed solely in the continuum. We define the 'continuum' as the reflectance or radiance spanning spectral space between spectral features. Differences in continuum slope and shape can only be determined by reduction techniques which considers the entire spectral range; i.e., techniques such as spectral mixture analysis (Adams et al., 1989) and recently developed techniques which utilize an orthogonal subspace projection operator (Harsanyi, 1993). Two of the three examples considered herein deal with cases where the target material differs from its surroundings only by such a subtle continuum change.

  9. A First: NASA Spots Single Methane Leak from Space

    NASA Image and Video Library

    2016-06-14

    Atmospheric methane is a potent greenhouse gas, but the percentage of it produced through human activities is still poorly understood. Future instruments on orbiting satellites can help address this issue by surveying human-produced methane emissions. Recent data from the Aliso Canyon event, a large accidental methane release near Porter Ranch, California, demonstrates this capability. The Hyperion imaging spectrometer onboard NASA's EO-1 satellite successfully detected this release event on three different overpasses during the winter of 2015-2016. This is the first time the methane plume from a single facility has been observed from space. The orbital observations were consistent with airborne measurements. This image pair shows a comparison of detected methane plumes over Aliso Canyon, California, acquired 11 days apart in Jan. 2016 by: (left) NASA's AVIRIS instrument on a NASA ER-2 aircraft at 4.1 miles (6.6 kilometers) altitude and (right) by the Hyperion instrument on NASA's Earth Observing-1 satellite in low-Earth orbit. The additional red streaks visible in the EO-1 Hyperion image result from measurement noise -- Hyperion was not specifically designed for methane sensing and is not as sensitive as AVIRIS-NG. Additionally, the EO-1 satellite's current orbit provided poor illumination conditions. Future instruments with much greater sensitivity on orbiting satellites can survey the biggest sources of human-produced methane around the world. http://photojournal.jpl.nasa.gov/catalog/PIA20716

  10. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam

    2017-12-01

    This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.

  11. Spectral analysis and filtering techniques in digital spatial data processing

    USGS Publications Warehouse

    Pan, Jeng-Jong

    1989-01-01

    A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author

  12. Hyperspectral remote sensing for monitoring species-specific drought impacts in southern California

    NASA Astrophysics Data System (ADS)

    Coates, Austin Reece

    A drought persisting since the winter of 2011-2012 has resulted in severe impacts on shrublands and forests in southern California, USA. Effects of drought on vegetation include leaf wilting, leaf abscission, and potential plant mortality. These impacts vary across plant species, depending on differences in species' adaptations to drought, rooting depth, and edaphic factors. During 2013 and 2014, Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data were acquired seasonally over the Santa Ynez Mountains and Santa Ynez Valley north of Santa Barbara, California. To determine the impacts of drought on individual plant species, spectral mixture analysis was used to model a relative green vegetation fraction (RGVF) for each image date in 2013 and 2014. A July 2011 AVIRIS image acquired during the last nondrought year was used to determine a reference green vegetation (GV) endmember for each pixel. For each image date in 2013 and 2014, a three-endmember model using the 2011 pixel spectrum as GV, a lab nonphotosynthetic vegetation (NPV) spectrum, and a photometric shade spectrum was applied. The resulting RGVF provided a change in green vegetation cover relative to 2011. Reference polygons collected for 14 plant species and land cover classes were used to extract the RGVF values from each date. The deeply rooted tree species and tree species found in mesic areas appeared to be the least affected by the drought, whereas the evergreen chaparral showed the most extreme signs of distress. Coastal sage scrub had large seasonal variability; however, each year, it returned to an RGVF value only slightly below the previous year. By binning all the RGVF values together, a general decreasing trend was observed from the spring of 2013 to the fall of 2014. This study intends to lay the groundwork for future research in the area of multitemporal, hyperspectral remote sensing. With proposed plans for a hyperspectral sensor in space (HyspIRI), this type of research will prove to be invaluable in the years to come. This study also intends to be used as a benchmark to show how specific species of plants are being affected by a prolonged drought. The research performed in this study will provide a reference point for analysis of future droughts.

  13. Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow

    NASA Astrophysics Data System (ADS)

    Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff

    2006-10-01

    From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.

  14. Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Carder, Kendall L.; Hawes, Steve K.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.

    1994-01-01

    Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/cu m and gelbstoff absorption at 440 nm from 0.02-0.4/m. Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.

  15. Importance of Calibration/Validation Traceability for Multi-Sensor Imaging Spectrometry Applications

    NASA Technical Reports Server (NTRS)

    Thome, K.

    2017-01-01

    Knowledge of calibration traceability is essential for ensuring the quality of data products relying on multiple sensors and especially true for imaging spectrometers. The current work discusses the expected impact that imaging spectrometers have in ensuring radiometric traceability for both multispectral and hyperspectral products. The Climate Absolute Radiance and Refractivity Observatory Pathfinder mission is used to show the role that high-accuracy imaging spectrometers can play in understanding test sites used for vicarious calibration of sensors. The associated Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer calibration demonstration system is used to illustrate recent advances in laboratory radiometric calibration approaches that will allow both the use of imaging spectrometers as calibration standards as well as to ensure the consistency of the multiple imaging spectrometers expected to be on orbit in the next decade.

  16. AVIRIS data calibration information: Oquirrh and East Tintic mountains, Utah

    USGS Publications Warehouse

    Rockwell, Barnaby W.; Clark, Roger N.; Livo, K. Eric; McDougal, Robert R.; Kokaly, Raymond F.

    2002-01-01

    The information contained herein pertains to the original reflectance calibration derived solely from the Saltair beach site on the shores of Great Salt Lake.  The reflectance data derived from this calibration becomes markedly affected by residual absorptions due to atmospheric water vapor and carbon dioxide within short horizontal and vertical distances from the calibration site due to the presence of what is believed to be a distinct microclimate by the lake.  Subsequent to the development of this web site, a new reflectance calibration was derived which mitigated these effects.  Reflectance spectra of bright areas of known composition in the East Tintic Mountains, far from Great Salt Lake, were sampled from the calibrated high altitude AVIRIS data cubes and edited, or "polished," to identify artifacts related to residual absorptions of atmospheric gases, particulates, and sensor noise.  The subtle artifacts identified in this way were incorporated into the multiplier spectra derived from the original calibration site, generating new multiplier spectra that were used to re-calibrate the ATREM- and path radiance-corrected cubes to reflectance.  This process generated a reflectance calibration customized for the Oquirrh/East Tintic Mountain region.

  17. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  18. Fourier transform spectrometry for fiber-optic sensor systems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Tuma, Margaret L.; Sotomayor, Jorge L.; Flatico, Joseph M.

    1993-01-01

    An integrated-optic Mach-Zehnder interferometer is used as a Fourier transform spectrometer to analyze the input and output spectra of a temperature-sensing thin-film etalon. This type of spectrometer has an advantage over conventional grating spectrometers because it is better suited for use with time-division-multiplexed sensor networks. In addition, this spectrometer has the potential for low cost due to its use of a component that could be manufactured in large quantities for the optical communications industry.

  19. A DBN based anomaly targets detector for HSI

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Wang, Shaojun; Yu, Jinxiang; Peng, Yu

    2017-10-01

    Due to the assumption that Hyperspectral image (HSI) should conform to Gaussian distribution, traditional Mahalanobis distance-based anomaly targets detectors perform poor because the assumption may not always hold. In order to solve those problems, a deep learning based detector, Deep Belief Network(DBN) anomaly detector(DBN-AD), was proposed to fit the unknown distribution of HSI by energy modeling, the reconstruction errors of this encode-decode processing are used for discriminating the anomaly targets. Experiments are implemented on real and synthesized HSI dataset which collection by Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS). Comparing to classic anomaly detector, the proposed method shows better performance, it performs about 0.17 higher in Area Under ROC Curve (AUC) than that of Reed-Xiaoli detector(RXD) and Kernel-RXD (K-RXD).

  20. Analysis of hyper-spectral AVIRIS image data over a mixed-conifer forest in Maine

    NASA Technical Reports Server (NTRS)

    Lawrence, William T.; Shimabukuro, Yosio E.; Gao, Bo-Cai

    1993-01-01

    An introduction to some of the potential uses of hyperspectral data for ecosystem analysis is presented. The examples given are derived from a digital dataset acquired over a sub-boreal forest in central Maine in 1990 by the NASA-JPL Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument gathers data from 400 to 2500 nm in 224 channels at bandwidths of approximately 10 nm. As a preview to the uses of the hyperspectral data, several products from this dataset were extracted. They range from the traditional false color composite made from simulated Thematic Mapper bands and the well known normalized difference vegetation index to much more exotic products such as fractions of vegetation, soil and shade based on linear spectral mixing models and estimates of the leaf water content at the landscape level derived using spectrum-matching techniques. Our research and that of many others indicates that the hyperspectral datasets carry much important information which is only beginning to be understood. This analysis gives an initial indication of the utility of hyperspectral data. Much work still remains to be done in algorithm development and in understanding the physics behind the complex information signal carried in the hyperspectral datasets. This work must be carried out to provide the fullest science support for high spectral resolution data to be acquired by many of the instruments to be launched as part of the Earth Observing System program in the mid-1990's.

  1. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), a new satellite-imaging system

    USGS Publications Warehouse

    Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.

    2003-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost. Landsat TM images have a similar spatial resolution to ASTER images, but TM has fewer bands, which limits its usefulness for making mineral determinations.

  2. A Multitemporal, Multisensor Approach to Mapping the Canadian Boreal Forest

    NASA Astrophysics Data System (ADS)

    Reith, Ernest

    The main anthropogenic source of CO2 emissions is the combustion of fossil fuels, while the clearing and burning of forests contribute significant amounts as well. Vegetation represents a major reservoir for terrestrial carbon stocks, and improving our ability to inventory vegetation will enhance our understanding of the impacts of land cover and climate change on carbon stocks and fluxes. These relationships may be an indication of a series of troubling biosphere-atmospheric feedback mechanisms that need to be better understood and modeled. Valuable land cover information can be provided to the global climate change modeling community using advanced remote sensing capabilities such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR). Individually and synergistically, data were successfully used to characterize the complex nature of the Canadian boreal forest land cover types. The multiple endmember spectral mixture analysis process was applied against seasonal AVIRIS data to produce species-level vegetated land cover maps of two study sites in the Canadian boreal forest: Old Black Spruce (OBS) and Old Jack Pine (OJP). The highest overall accuracy was assessed to be at least 66% accurate to the available reference map, providing evidence that high-quality, species-level land cover mapping of the Canadian boreal forest is achievable at accuracy levels greater than other previous research efforts in the region. Backscatter information from multichannel, polarimetric SAR utilizing a binary decision tree-based classification technique methodology was moderately successfully applied to AIRSAR to produce maps of the boreal land cover types at both sites, with overall accuracies at least 59%. A process, centered around noise whitening and principal component analysis features of the minimum noise fraction transform, was implemented to leverage synergies contained within spatially coregistered multitemporal and multisensor AVIRIS and AIRSAR data sets to successfully produce high-accuracy boreal forest land cover maps. Overall land cover map accuracies of 78% and 72% were assessed for OJP and OBS sites, respectively, for either seasonal or multitemporal data sets. High individual land cover accuracies appeared to be independent of site, season, or multisensor combination in the minimum-noise fraction-based approach.

  3. Mapping Changes in the Distribution of Aquatic Plant Species in the Sacramento-San Joaquin Delta from Airborne AVIRIS-ng Data

    NASA Astrophysics Data System (ADS)

    Ustin, S.; Khanna, S.; Bellvert, J.; Ustin, J. D.; Shapiro, K.

    2016-12-01

    Starting in the late 1980s major invasive aquatic pests began to expand their distributions in the Sacramento-San Joaquin Delta, California, USA, an area of 2,219 Km2 with 1,800 Km waterways. The most aggressive are the floating weed, Eichhornia crassipes (water hyacinth) and the submerged Egeria densa (Brazilian waterweed). The distribution of these species has reportedly expanded during the 2011-2015 drought. We mapped the distributions of invasive aquatic species using data from NASA's Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), which was flown over the Delta November 14, 15, 17, 24, 25, 2014 and September 17-21, 2015 by the Jet Propulsion Laboratory (JPL). AVIRIS-NG measures 432 bands across the visible and reflected solar infrared, in wavelengths between 346 nm to 2505 nm. Sixty-one flightlines were flown at a nominal spatial resolution of 2.5 m x 2.5 m each year. Field data, identifying locations of aquatic species (1,036 points in 2014 and 1,375 in 2015) were collected by boat between October 20-30, 2014 and September 9-17, 2015 and were used for training and validation. The Random Forest (RF) machine learning algorithm was used to classify the species locations each year. The resulting classification was highly consistent with the field data, and produced pixel-based overall accuracy from confusion matrices of 83.9% with kappa values > 0.8 (indicating excellent agreement) in 2014 and overall accuracy of 95.8 and kappa value > 0.9 in 2015. Species distributions were highly dynamic between years. Submerged macrophytes increased their extent and density in 2015 from 779.4 m2 in 2014 to 1170.6 m2. Floating macrophytes acreage decreased from 354.0 m2 in 2014 to 191.4 m2 in 2015. Water hyacinth cover decreased throughout the delta due to chemical control activities but much of the cleared area was replaced by water primrose or submerged species. Water primrose increased from 83.6 m2 in 2014 to 114.3 m2 in 2015.

  4. Evaluating the Synergistic Use of Low-Altitude AVIRIS and AIRSAR Data for Land Cover Mapping in Northeast Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Spruce, Joseph

    2001-01-01

    Current land cover maps are needed by Yellowstone National Park (YNP) managers to assist them in protecting and preserving native flora and fauna. Synergistic use of hyperspectral and radar imagery offers great promise for mapping habitat in terms of cover type composition and structure. In response, a study was conducted to assess the utility of combining low-altitude AVIRIS and AIRSAR data for mapping land cover in a portion of northeast YNP. Land cover maps were produced from individual AVIRIS and AIRSAR data sets, as well as from a hybrid data stack of selected AVIRIS and AIRSAR data bands. The three resulting classifications were compared to field survey data and aerial photography to assess apparent benefits of hyperspectral/SAR data fusion for land cover mapping. Preliminary results will be presented.

  5. Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.

    2014-12-01

    Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on the planned NASA HyspIRI mission.

  6. On the creation of high spatial resolution imaging spectroscopy data from multi-temporal low spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Yao, Wei; van Aardt, Jan; Messinger, David

    2017-05-01

    The Hyperspectral Infrared Imager (HyspIRI) mission aims to provide global imaging spectroscopy data to the benefit of especially ecosystem studies. The onboard spectrometer will collect radiance spectra from the visible to short wave infrared (VSWIR) regions (400-2500 nm). The mission calls for fine spectral resolution (10 nm band width) and as such will enable scientists to perform material characterization, species classification, and even sub-pixel mapping. However, the global coverage requirement results in a relatively low spatial resolution (GSD 30m), which restricts applications to objects of similar scales. We therefore have focused on the assessment of sub-pixel vegetation structure from spectroscopy data in past studies. In this study, we investigate the development or reconstruction of higher spatial resolution imaging spectroscopy data via fusion of multi-temporal data sets to address the drawbacks implicit in low spatial resolution imagery. The projected temporal resolution of the HyspIRI VSWIR instrument is 15 days, which implies that we have access to as many as six data sets for an area over the course of a growth season. Previous studies have shown that select vegetation structural parameters, e.g., leaf area index (LAI) and gross ecosystem production (GEP), are relatively constant in summer and winter for temperate forests; we therefore consider the data sets collected in summer to be from a similar, stable forest structure. The first step, prior to fusion, involves registration of the multi-temporal data. A data fusion algorithm then can be applied to the pre-processed data sets. The approach hinges on an algorithm that has been widely applied to fuse RGB images. Ideally, if we have four images of a scene which all meet the following requirements - i) they are captured with the same camera configurations; ii) the pixel size of each image is x; and iii) at least r2 images are aligned on a grid of x/r - then a high-resolution image, with a pixel size of x/r, can be reconstructed from the multi-temporal set. The algorithm was applied to data from NASA's classic Airborne Visible and Infrared Imaging Spectrometer (AVIRIS-C; GSD 18m), collected between 2013-2015 (summer and fall) over our study area (NEON's Southwest Pacific Domain; Fresno, CA) to generate higher spatial resolution imagery (GSD 9m). The reconstructed data set was validated via comparison to NEON's imaging spectrometer (NIS) data (GSD 1m). The results showed that algorithm worked well with the AVIRIS-C data and could be applied to the HyspIRI data.

  7. Mapping wetland species and the impact of oil from the Deep Horizon using the Airborne/Visible Imaging Spectrometer and Multiple Endmember Spectral Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Beland, M.; Kokaly, R. F.; Couvillion, B.; Ustin, S.; Peterson, S.

    2011-12-01

    Between April 20, 2010 and July 15, 2010 an estimated 4.4 million barrels of oil leaked from the Maconda well, making the Deep Horizon oil spill the largest in US history. In response to a need to determine the distribution of wetland plant species and quantify their condition prior to, during and after oil reached the shore, the Airborne/Visible Infrared Imaging Spectrometer (AVIRIS) was deployed multiple times in the gulf on high altitude and low altitude airborne platforms. Significant research questions included 1) What is the distribution of key wetland species in the impacted area?; 2) which areas were impacted by oil, when and to what extent?; 3) how much oil must be present to be detected in various cover types? and 4) which wetland species are more sensitive to oil? In an effort to answer some of these questions, we applied Multiple Endmember Spectral Mixture Analysis (MESMA) to AVIRIS data acquired prior to significant impacts in May, 2010 and after oil had reached wetlands in late summer and fall, 2010. Reference polygons for species dominants were located on the images and used to build a spectral library for all dominant wetland species and surface types. This spectral library was augmented by field spectra, acquired using a contact probe for senesced plants materials and beach sands. Spectra of heavily oiled surfaces were identified using the Hydrocarbon Index to identify potential oil endmembers and the Cellulose Absorption Index to discriminate oil from Non-photosynthetic Vegetation (NPV). Wetland species and cover fractions for Green Vegetation (GV), NPV, soils/beaches, oil and water were mapped using MESMA applied to images acquired in the Birds Foot Delta, Chandeleur Islands and Barataria Bay. Species maps, showing dominant species such as Phragmites australis, Spartina alternifolia and S. patens proved to be accurate. OIl was mapped along coastal areas of Barataria Bay, expressed as high oil fractions. However, significant confusion was also observed between oiled vegetation and senesced vegetation, either resulting from oil-induced mortality or natural senescence.

  8. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    NASA Astrophysics Data System (ADS)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.

  9. HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.

  10. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada

    NASA Technical Reports Server (NTRS)

    Swayze, Gregg; Clark, Roger N.; Kruse, Fred; Sutley, Steve; Gallagher, Andrea

    1992-01-01

    Mineral abundance maps of 18 minerals were made of the Cuprite Mining District using 1990 AVIRIS data and the Multiple Spectral Feature Mapping Algorithm (MSFMA) as discussed in Clark et al. This technique uses least-squares fitting between a scaled laboratory reference spectrum and ground calibrated AVIRIS data for each pixel. Multiple spectral features can be fitted for each mineral and an unlimited number of minerals can be mapped simultaneously. Quality of fit and depth from continuum numbers for each mineral are calculated for each pixel and the results displayed as a multicolor image.

  11. Preliminary study of Kelso Dunes using AVIRIS, TM, and AIRSAR

    NASA Technical Reports Server (NTRS)

    Xu, Pung; Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    Remote sensing of sand dunes helps in the understanding of aeolian process and provides important information about the regional geologic history, environmental change, and desertification. Remotely sensed data combined with field studies are valuable in studying dune morphology, regional aeolian dynamics, and aeolian depositional history. In particular, active and inactive sands of the Kelso Dunes have been studied using landsat TM and AIRSAR. In this report, we describe the use of AVIRIS data to study the Kelso dunes and to compare the AVIRIS information with that from TM and AIRSAR.

  12. Quantifying BRDF Effects in Comparing Landsat-7 and AVIRIS Near-Simultaneous Acquisitions for Studies of High Plains Vegetation Cover

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Heidebrecht, K. B.; Gutmann, E. D.; Warner, A. S.; Johnson, E. L.; Lestak, L. R.

    1999-01-01

    Approximately 100,000 sq. km of the High Plains of the central United States are covered by sand dunes and sand sheets deposited during the Holocene. Soil-dating evidence shows that there were at least four periods of dune reactivation during major droughts in the last 10,000 years. The dunes in this region are anchored by vegetation. We have undertaken a study of land-use change in the High Plains from 1985 to the present using Landsat 5 TM and Landsat 7 ETM+ images to map variation in vegetation cover during wet and dry years. Mapping vegetation cover of less than 20% is important in modeling potential surface reactivation since at this level the vegetation no longer sufficiently shields sandy surfaces from movement by wind. Landsat TM data have both the spatial resolution and temporal coverage to facilitate vegetation cover analysis for model development and verification. However, there is still the question of how accurate TM data are for the measurement of both growing and senescent vegetation in and and semi-arid regions. AVIRIS provides both high spectral resolution as well as high signal-to-noise ratio and can be used to test the accuracy of Landsat TM and ETM+ data. We have analyzed data from AVIRIS flown nearly concurrently with a Landsat 7 overpass. The comparison between an AVIRIS image swath of 11 km width subtending a 30 deg. angle and the same area covered by a 0.8 deg. angle from Landsat required accounting for the BRDF. A normalization technique using the ratio of the reflectances from registered AVIRIS and Landsat data proved superior to the techniques of column averaging on AVIRIS data alone published previously by Kennedy et al. This technique can be applied to aircraft data covering a wider swath angle than AVIRIS to develop BRDF responses for a wide variety of surfaces more efficiently than from ground measurements.

  13. Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations.

    PubMed

    Schalk, Robert; Geoerg, Daniel; Staubach, Jens; Raedle, Matthias; Methner, Frank-Juergen; Beuermann, Thomas

    2017-05-01

    A mid-infrared (MIR) sensor using the attenuated total reflection (ATR) technique has been developed for real-time monitoring in biotechnology. The MIR-ATR sensor consists of an IR emitter as light source, a zinc selenide ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The suitability of the sensor for practical application was tested during aerobic batch-fermentations of Saccharomyces cerevisiae by simultaneous monitoring of glucose and ethanol. The performance of the sensor was compared to a commercial Fourier transform mid-infrared (FT-MIR) spectrometer by on-line measurements in a bypass loop. Sensor and spectrometer were calibrated by multiple linear regression (MLR) in order to link the measured absorbance in the transmission ranges of the four optical sensor channels to the analyte concentrations. For reference analysis, high-performance liquid chromatography (HPLC) was applied. Process monitoring using the sensor yielded in standard errors of prediction (SEP) of 6.15 g/L and 1.36 g/L for glucose and ethanol. In the case of the FT-MIR spectrometer the corresponding SEP values were 4.34 g/L and 0.61 g/L, respectively. The advantages of optical multi-channel mid-infrared sensors in comparison to FT-MIR spectrometer setups are the compactness, easy process implementation and lower price. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. AVIRIS calibration using the cloud-shadow method

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Reinersman, P.; Chen, R. F.

    1993-01-01

    More than 90 percent of the signal at an ocean-viewing, satellite sensor is due to the atmosphere, so a 5 percent sensor-calibration error viewing a target that contributes but 10 percent of the signal received at the sensor may result in a target-reflectance error of more than 50 percent. Since prelaunch calibration accuracies of 5 percent are typical of space-sensor requirements, recalibration of the sensor using ground-base methods is required for low-signal target. Known target reflectance or water-leaving radiance spectra and atmospheric correction parameters are required. In this article we describe an atmospheric-correction method that uses cloud shadowed pixels in combination with pixels in a neighborhood region of similar optical properties to remove atmospheric effects from ocean scenes. These neighboring pixels can then be used as known reflectance targets for validation of the sensor calibration and atmospheric correction. The method uses the difference between water-leaving radiance values for these two regions. This allows nearly identical optical contributions to the two signals (e.g., path radiance and Fresnel-reflected skylight) to be removed, leaving mostly solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by incident solar irradiance reaching the sea surface provides the remote-sensing reflectance of the ocean at the location of the neighbor region.

  15. Comparative assessment of astigmatism-corrected Czerny-Turner imaging spectrometer using off-the-shelf optics

    NASA Astrophysics Data System (ADS)

    Yuan, Qun; Zhu, Dan; Chen, Yueyang; Guo, Zhenyan; Zuo, Chao; Gao, Zhishan

    2017-04-01

    We present the optical design of a Czerny-Turner imaging spectrometer for which astigmatism is corrected using off-the-shelf optics resulting in spectral resolution of 0.1 nm. The classic Czerny-Turner imaging spectrometer, consisting of a plane grating, two spherical mirrors, and a sensor with 10-μm pixels, was used as the benchmark. We comparatively assessed three configurations of the spectrometer that corrected astigmatism with divergent illumination of the grating, by adding a cylindrical lens, or by adding a cylindrical mirror. When configured with the added cylindrical lens, the imaging spectrometer with a point field of view (FOV) and a linear sensor achieved diffraction-limited performance over a broadband width of 400 nm centered at 800 nm, while the maximum allowable bandwidth was only 200 nm for the other two configurations. When configured with the added cylindrical mirror, the imaging spectrometer with a one-dimensional field of view (1D FOV) and an area sensor showed its superiority on imaging quality, spectral nonlinearity, as well as keystone over 100 nm bandwidth and 10 mm spatial extent along the entrance slit.

  16. On-Orbit Calibration of a Multi-Spectral Satellite Satellite Sensor Using a High Altitude Airborne Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, R. O.; Shimada, M.

    1996-01-01

    Earth-looking satellites must be calibrated in order to quantitatively measure and monitor components of land, water and atmosphere of the Earth system. The inevitable change in performance due to the stress of satellite launch requires that the calibration of a satellite sensor be established and validated on-orbit. A new approach to on-orbit satellite sensor calibration has been developed using the flight of a high altitude calibrated airborne imaging spectrometer below a multi-spectral satellite sensor.

  17. Thermostatic system of sensor in NIR spectrometer based on PID control

    NASA Astrophysics Data System (ADS)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  18. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  19. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARMmore » Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.« less

  20. MultiSpec—a tool for multispectral hyperspectral image data analysis

    NASA Astrophysics Data System (ADS)

    Biehl, Larry; Landgrebe, David

    2002-12-01

    MultiSpec is a multispectral image data analysis software application. It is intended to provide a fast, easy-to-use means for analysis of multispectral image data, such as that from the Landsat, SPOT, MODIS or IKONOS series of Earth observational satellites, hyperspectral data such as that from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion satellite system or the data that will be produced by the next generation of Earth observational sensors. The primary purpose for the system was to make new, otherwise complex analysis tools available to the general Earth science community. It has also found use in displaying and analyzing many other types of non-space related digital imagery, such as medical image data and in K-12 and university level educational activities. MultiSpec has been implemented for both the Apple Macintosh ® and Microsoft Windows ® operating systems (OS). The effort was first begun on the Macintosh OS in 1988. The GLOBE ( http://www.globe.gov) program supported the development of a subset of MultiSpec for the Windows OS in 1995. Since then most (but not all) of the features in the Macintosh OS version have been ported to the Windows OS version. Although copyrighted, MultiSpec with its documentation is distributed without charge. The Macintosh and Windows versions and documentation on its use are available from the World Wide Web at URL: http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec/ MultiSpec is copyrighted (1991-2001) by Purdue Research Foundation, West Lafayette, Indiana 47907.

  1. Initial estimates of the temperature and fractional areas of fires at the World Trade Center Disaster from AVIRIS

    NASA Technical Reports Server (NTRS)

    Green, R. O.; Clark, R. N.; Boardman, J.; Pavri, B.; Sarture, C.

    2003-01-01

    This paper reports the measurements, algorithms, analyses, and results of the fire temperature and fractional area determinations with AVIRIS calibrated spectra at the World Trade Center site in September 2001.

  2. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2002-01-01

    A chain of barrier islands provides protection against hurricanes and severe storms along the south and southeastern shores of the United States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4-meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5-meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Gorges. Classification accuracy is being addressed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.

  3. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2003-01-01

    A chain of barrier islands provides protection against hurricanes and severe storms along the southern and southeastern shores of the Unites States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4 meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5 meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Georges. Classification accuracy is being assessed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.

  4. Latest developments for low-power infrared laser-based trace gas sensors for sensor networks

    NASA Astrophysics Data System (ADS)

    So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard

    2011-09-01

    Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.

  5. First results from analysis of coordinated AVIRIS, TIMS, and ISM (French) data for the Ronda (Spain) and Beni Bousera (Morocco) peridotites

    NASA Technical Reports Server (NTRS)

    Mustard, J. F.; Hurtrez, S.; Pinet, P.; Sotin, C.

    1992-01-01

    Ultramafic rocks are relatively rare at the Earth's surface but constitute the vast majority of the Earth by volume. Exposures of ultramafic bodies are therefore crucial for deducing many important processes that occur in the Earth's mantle. An important science question regarding the spatial distribution, abundance, and composition of mafic minerals in ultramafic bodies that can be examined with advanced sensor data is the melting process. When a lherzolite melts, clinopyroxene (cpx) melts first and therefore variations in the modal amount of cpx remaining in the mantle are a reflection of the amount of fractional melting that has occurred. Fe goes preferentially into the melt during melting but a 20 percent batch melting (i.e. closed system) acquires less Fe relative to 20 percent fractional melting (i.e. open system). Since the strength and wavelength of diagnostic absorptions is a strong function of Fe content, it is possible to make maps of the variation in Fe:Mg ratios which can be related to the general melting process. Accurate ground-truth information about local mineralogy provides internal calibration and consistency checks. Investigations using imaging spectrometer are very complementary to field studies because advanced sensor data can provide a synoptic view of modal mineralogy and chemical composition whereas field studies focus on detailed characterization of local areas. Two excellent exposures of ultramafic lithologies are being investigated with visible to mid-infrared imaging spectrometer data: the Ronda peridotite near Ronda, Spain and the Beni Bousera ophiolitic fragment in northern Morocco. Although separated by the Alboran Sea, these bodies are thought to be related and represent fertile sub-continental mantle. The Ronda peridotite is predominantly spinel lherzolite but grades into harzburgite and shows considerable variation in major and trace element compositions. Mafic layering and dykes (i.e. olivine gabbro) are also observed. This indicates some sections of the peridotite have experienced greater degrees of partial melting. The Beni Bousera peridotite also contains mafic layers and dykes and grades into harzburgite representing similar fundamental shifts in the bulk chemistry of this ultramafic body probably related to an episode of partial melting. The specific mode of emplacement of these bodies is controversial and important for understanding the tectonic evolution of this region. Our investigations are not necessarily designed to help resolve this controversy. Rather, these exposures provide excellent and unusual examples of fertile mantle which have undergone variable degrees of partial melting.

  6. Ion mobility sensor system

    DOEpatents

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  7. Hyperspectral remote sensing of coral reefs: Deriving bathymetry, aquatic optical properties and a benthic spectral unmixing classification using AVIRIS data in the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Goodman, James Ansell

    My research focuses on the development and application of hyperspectral remote sensing as a valuable component in the assessment and management of coral ecosystems. Remote sensing provides an important quantitative ability to investigate the spatial dynamics of coral health and evaluate the impacts of local, regional and global change on this important natural resource. Furthermore, advances in detector capabilities and analysis methods, particularly with respect to hyperspectral remote sensing, are also increasing the accuracy and level of effectiveness of the resulting data products. Using imagery of Kaneohe Bay and French Frigate Shoals in the Hawaiian Islands, acquired in 2000 by NASA's Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), I developed, applied and evaluated algorithms for analyzing coral reefs using hyperspectral remote sensing data. Research included developing methods for acquiring in situ underwater reflectance, collecting spectral measurements of the dominant bottom components in Kaneohe Bay, applying atmospheric correction and sunglint removal algorithms, employing a semianalytical optimization model to derive bathymetry and aquatic optical properties, and developing a linear unmixing approach for deriving bottom composition. Additionally, algorithm development focused on using fundamental scientific principles to facilitate the portability of methods to diverse geographic locations and across variable environmental conditions. Assessments of this methodology compared favorably with available field measurements and habitat information, and the overall analysis demonstrated the capacity to derive information on water properties, bathymetry and habitat composition. Thus, results illustrated a successful approach for extracting environmental information and habitat composition from a coral reef environment using hyperspectral remote sensing.

  8. A GIS and statistical approach to identify variables that control water quality in hydrothermally altered and mineralized watersheds, Silverton, Colorado, USA

    USGS Publications Warehouse

    Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.

    2013-01-01

    Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.

  9. Silica in a Mars analog environment: Ka u Desert, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Seelos, K.D.; Arvidson, R. E.; Jolliff, B.L.; Chemtob, S.M.; Morris, R.V.; Ming, D. W.; Swayze, G.A.

    2010-01-01

    Airborne Visible/Near-Infrared Imaging Spectrometer (AVIRIS) data acquired over the Ka u Desert are atmospherically corrected to ground reflectance and used to identify the mineralogic components of relatively young basaltic materials, including 250-700 and 200-400 year old lava flows, 1971 and 1974 flows, ash deposits, and solfatara incrustations. To provide context, a geologic surface units map is constructed, verified with field observations, and supported by laboratory analyses. AVIRIS spectral endmembers are identified in the visible (0.4 to 1.2 ??m) and short wave infrared (2.0 to 2.5 ??m) wavelength ranges. Nearly all the spectral variability is controlled by the presence of ferrous and ferric iron in such minerals as pyroxene, olivine, hematite, goethite, and poorly crystalline iron oxides or glass. A broad, nearly ubiquitous absorption feature centered at 2.25 ??m is attributed to opaline (amorphous, hydrated) silica and is found to correlate spatially with mapped geologic surface units. Laboratory analyses show the silica to be consistently present as a deposited phase, including incrustations downwind from solfatara vents, cementing agent for ash duricrusts, and thin coatings on the youngest lava flow surfaces. A second, Ti-rich upper coating on young flows also influences spectral behavior. This study demonstrates that secondary silica is mobile in the Ka u Desert on a variety of time scales and spatial domains. The investigation from remote, field, and laboratory perspectives also mimics exploration of Mars using orbital and landed missions, with important implications for spectral characterization of coated basalts and formation of opaline silica in arid, acidic alteration environments. Copyright 2010 by the American Geophysical Union.

  10. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  11. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2002-01-01

    This paper presents a viewgraph presentation on low altitude AVIRIS data for mapping landform types on West Ship Island, Mississippi. The topics of discussion include: 1) Project background; 2) Mapping methods; 3) Examples of results; 4) Apparent trends; and 5) Final remarks.

  12. AVIRIS spectral trajectories for forested areas of the Gifford Pinchot National Forest

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Smith, Milton O.; Adams, John B.; Zukin, Janet H.; Tucker, Compton J.; Roberts, Dar A.; Gillespie, Alan R.

    1995-01-01

    A simple mixing model employing reference endmembers (green vegetation, non-photosynthetic vegetation, soil and shade), and using 180 AVIRIS bands, was used to establish an interpretive framework for a forested area in the Pacific Northwest. A regrowth trend, based on changes in the endmember proportions, was defined for conifers that extends from clearcuts to mature forest, and by implication to old growth. Deciduous species within replanted forest plots caused the fractions to be displaced from the main coniferous regrowth trend and to move toward the green vegetation fraction. The results indicate that the spectral information in AVIRIS can be inverted to estimate approximate stand age and relative proportion of deciduous species in the context of the area studied. Using AVIRIS we measured a 3 to 5 percent increase in woody material in old-growth forest, as distinct from other mature forest. This result is consistent with a predicted increase in NPV in old-growth forest, based on field observations. Previous application of the mixing analysis to a TM image of the same area separated old growth based solely on the shade fraction; however the approach required successful removal of shade introduced by topography. Our new results suggest that with the high spectral resolution and high signal-to-noise of AVIRIS images it may be possible to characterize and map old-growth forests in the Northwest using both the NPV fraction and shade.

  13. Coral Reef Remote Sensing Using Simulated VIIRS and LDCM Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.; Blonski, Slawomir; Moore, Roxzana

    2008-01-01

    The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems-the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM)- might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA s ICON/CREWS DST.

  14. Coral Reef Remote Sensing using Simulated VIIRS and LDCM Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM) might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA's ICON/CREWS DST.

  15. Miniaturized optical wavelength sensors

    NASA Astrophysics Data System (ADS)

    Kung, Helen Ling-Ning

    Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy. In the conclusion we compare these two new miniaturized spectrometer architectures to existing miniaturized spectrometers. We believe that the combination of miniaturized wavelength sensors and smart processing should facilitate the development real-time, adaptive and portable sensing systems.

  16. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.

    2016-07-01

    Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.

  17. Sensor modeling and demonstration of a multi-object spectrometer for performance-driven sensing

    NASA Astrophysics Data System (ADS)

    Kerekes, John P.; Presnar, Michael D.; Fourspring, Kenneth D.; Ninkov, Zoran; Pogorzala, David R.; Raisanen, Alan D.; Rice, Andrew C.; Vasquez, Juan R.; Patel, Jeffrey P.; MacIntyre, Robert T.; Brown, Scott D.

    2009-05-01

    A novel multi-object spectrometer (MOS) is being explored for use as an adaptive performance-driven sensor that tracks moving targets. Developed originally for astronomical applications, the instrument utilizes an array of micromirrors to reflect light to a panchromatic imaging array. When an object of interest is detected the individual micromirrors imaging the object are tilted to reflect the light to a spectrometer to collect a full spectrum. This paper will present example sensor performance from empirical data collected in laboratory experiments, as well as our approach in designing optical and radiometric models of the MOS channels and the micromirror array. Simulation of moving vehicles in a highfidelity, hyperspectral scene is used to generate a dynamic video input for the adaptive sensor. Performance-driven algorithms for feature-aided target tracking and modality selection exploit multiple electromagnetic observables to track moving vehicle targets.

  18. Simulation of APEX data: the SENSOR approach

    NASA Astrophysics Data System (ADS)

    Boerner, Anko; Schaepman, Michael E.; Schlaepfer, Daniel; Wiest, Lorenz; Reulke, Ralf

    1999-10-01

    The consistent simulation of airborne and spaceborne hyperspectral data is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observing conditions, the choice and test of algorithms for data processing, error estimations and the evaluation of the capabilities of the whole sensor system. The integration of three approaches is suggested for the data simulation of APEX (Airborne Prism Experiment): (1) a spectrally consistent approach (e.g. using AVIRIS data), (2) a geometrically consistent approach (e.g. using CASI data), and (3) an end-to- end simulation of the sensor system. In this paper, the last approach is discussed in detail. Such a technique should be used if there is no simple deterministic relation between input and output parameters. The simulation environment SENSOR (Software Environment for the Simulation of Optical Remote Sensing Systems) presented here includes a full model of the sensor system, the observed object and the atmosphere. The simulator consists of three parts. The first part describes the geometrical relations between object, sun, and sensor using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor-radiance using a pre-calculated multidimensional lookup-table for the atmospheric boundary conditions and bi- directional reflectances. Part three consists of an optical and an electronic sensor model for the generation of digital images. Application-specific algorithms for data processing must be considered additionally. The benefit of using an end- to-end simulation approach is demonstrated, an example of a simulated APEX data cube is given, and preliminary steps of evaluation of SENSOR are carried out.

  19. Hyperspectral Technology Transfer to the US Department of Interior: Summary of Results of the NASA/DOI Hyperspectral Technology Transfer Project

    NASA Technical Reports Server (NTRS)

    Root, Ralph; Wickland, Diane

    2001-01-01

    In 1997 the Office of Biological Informatics and Outreach (OBIO), Biological Resources Division, US Geological Survey and NASA, Office of Earth Science (OES), initiated a coordinated effort for applying Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data and analysis, as a technology transfer project, to critical DOI environmental issues in four study sites throughout the United States. This work was accomplished by four US Department of the Interior (DOI) study teams with support from NASA/OES principal investigators and the Office of Earth Science programs. The studies, including personnel, objectives, background, project plans, and milestones were documented in a project website at . This report summarizes the final outcomes of the project, detailing accomplishments, lessons learned, and benefits realized to NASA, the US Geological Survey, and the participating DOI bureaus.

  20. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  1. Lithologic discrimination and alteration mapping from AVIRIS Data, Socorro, New Mexico

    NASA Technical Reports Server (NTRS)

    Beratan, K. K.; Delillo, N.; Jacobson, A.; Blom, R.; Chapin, C. E.

    1993-01-01

    Geologic maps are, by their very nature, interpretive documents. In contrasts, images prepared from AVIRIS data can be used as uninterpreted, and thus unbiased, geologic maps. We are having significant success applying AVIRIS data in this non-quantitative manner to geologic problems. Much of our success has come from the power of the Linked Windows Interactive Data System. LinkWinds is a visual data analysis and exploration system under development at JPL which is designed to rapidly and interactively investigate large multivariate data sets. In this paper, we present information on the analysis technique, and preliminary results from research on potassium metasomatism, a distinctive and structurally significant type of alteration associated with crustal extension.

  2. REMOTE SENSING OF PAMLICO SOUND PLANKTON COMMUNITIES USING AVIRIS DATA

    EPA Science Inventory

    The U.S. EPA, in cooperation with NASA, NOAA and the University of North Carolina, has acquired AVIRIS hyperspectral data and high altitude (ER2) color infrared aerial photography (1: 65,000-scale) for the Pamlico Sound in North Carolina on May 15, 2002. The Pamlico Sound is a hi...

  3. Joint NASA/EPA AVIRIS Analysis in the Chesapeake Bay Region: Plans and Initial Results

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Stokely, Peter; Lobitz, Brad; Shelton, Gary

    1998-01-01

    NASA's Ames Research Center is performing an AVIRIS demonstration project in conjunction with the U. S. Environmental Protection Agency (Region 3). NASA and EPA scientists have jointly defined a Study Area in eastern Virginia to include portions of the Chesapeake Bay, southern Delmarva Peninsula, and the mouths of the York and James Rivers. Several environmental issues have been identified for study. These include, by priority: 1) water constituent analysis in the Chesapeake Bay, 2) mapping of submerged aquatic vegetation in the Bay, 3) detection of vegetation stress related to Superfund sites at the Yorktown Naval Weapons Station, and 4) wetland species analysis in the York River vicinity. In support of this project, three lines of AVIRIS data were collected during the Wallops Island deployment on 17 August 1997. The remote sensing payload included AVIRIS, MODIS Airborne Simulator and an RC-10 color infrared film camera. The AVIRIS data were delivered to Ames from the JPL AVIRIS Data Facility, on 29 September 1997. Quicklook images indicate nominal data acquisition, and at the current time an atmospheric correction is being applied. Water constituent analysis of the Bay is our highest priority based on EPA interest and available collateral data, both from the surface and from other remote sensing instruments. Constituents of interest include suspended sediments, chlorophyll-a and accessory pigments, Analysis steps will include: verification of data quality, location of study sites in imagery, incorporation of relevant field data from EPA and other Chesapeake Bay cooperators, processing of imagery to show phenomenon of interest, verification of results with cooperators. By 1st quarter CY98 we plan to circulate initial results to NASA and EPA management for review. In the longer term we will finalize documentation, prepare results for publication, and complete any needed technology transfer to EPA remote sensing personnel.

  4. In situ ozone data for evaluation of the laser absorption spectrometer ozone remote sensor: 1979 southeastern Virginia urban plume study summer field program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Mcdougal, D. S.; Mathis, J. J., Jr.

    1980-01-01

    Ozone data from the 1979 Southeastern Virginia Urban Study (SEV-UPS) field program are presented. The SEV-UPS was conducted for evaluation of an ozone remote sensor, the Laser Absorption Spectrometer. During the measurement program, remote-sensor evaluation was in two areas; (1) determination of the remote sensor's accuracy, repeatability, and operational characteristics, and (2) demonstration of the application of remotely sensed ozone data in air-quality studies. Data from six experiments designed to provide in situ ozone data for evaluation of the sensor in area 1, above, are presented. Experiments consisted of overflights of a test area with the remote sensor aircraft while in situ measurements with a second aircraft and selected surface stations provided correlative ozone data within the viewing area of the remote sensor.

  5. An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Quigley, K. W.; Roberts, D. A.; Miller, D.

    2017-12-01

    Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those temperatures.

  6. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data.

    PubMed

    Khanna, Shruti; Santos, Maria J; Ustin, Susan L; Koltunov, Alexander; Kokaly, Raymond F; Roberts, Dar A

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.

  7. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data

    USGS Publications Warehouse

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.

  8. Remotely Sensing Pollution: Detection and Monitoring of PCBs in the San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Hilton, A.; Kudela, R. M.; Bausell, J.

    2016-12-01

    While the EPA banned polychlorinated biphenyls (PCBs) in 1977, they continue to persist in San Francisco Bay (SF Bay), often at dangerously high concentrations due to their long half-life. However, in spite of their associated health and environmental risks, PCB monitoring within SF Bay is extremely limited, due in large part to the high costs, both in terms of labor and capital that are associated with it. In this study, a cost effective alternative to in-situ PCB sampling is presented by demonstrating the feasibility of PCB detection via remote sensing. This was done by first establishing relationships between in-situ measurements of sum of 40 PCB concentrations and total suspended sediment concentration (SSC) collected from 1998-2006 at 37 stations distributed throughout SF Bay. A correlation was discovered for all stations at (R2 =0.32), which improved markedly upon partitioning stations into north bay, (R2 =0.64), central bay (R2 =0.80) and south bay (R2 =0.52) regions. SSC was then compared from three USGS monitoring stations with temporally consistent Landsat 8 imagery. The resulting correlation between Landsat 8 (Rrs 654) and SSC measured at USGS stations (R2 =0.50) was validated using an Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) image. The end product is a two-step empirical algorithm that can derive PCB from Landsat 8 imagery within SF Bay. This algorithm can generate spatial PCB concentration maps for SF Bay, which can in turn be utilized to increase ability to forecast PCB concentration. The observation that correlation between AVIRIS (Rrs 657) and SSC was stronger than that of Landsat 8 suggests that the accuracy of this algorithm could be enhanced with improved atmospheric correction.

  9. The Role of Different Agricultural Plant Species in Air Pollution

    NASA Astrophysics Data System (ADS)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  10. Detection of Salt Marsh Vegetation Stress and Recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico Using AVIRIS Data

    PubMed Central

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill. PMID:24223872

  11. Food Quality and Phytoplankton Community Composition in San Francisco Bay using Imaging Spectroscopy Data from the California HyspIRI Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Peacock, M. B.; Golini, A. N.; Cloern, J. E.; Senn, D. B.; Guild, L. S.; Kudela, R. M.

    2016-12-01

    The San Francisco Bay (SFB) is the largest estuary on the west coast of the United States. It is an important transition zone between marine, freshwater, and inland terrestrial watersheds. The SFB is an important region for the cycling of nutrients and pollutants and it supports nurseries of ecologically and commercially important fisheries, including some threatened species. Phytoplankton community structure influences food web dynamics, and the taxonomy of the phytoplankton may be more important in determining primary "food quality" than environmental factors. As such, estimating food quality from phytoplankton community composition can be a robust tool to understand trophic transfer of energy. Recent work explores phytoplankton "food quality" in SFB through the use of microscopy and phytoplankton chemotaxonomy to evaluate how changes in phytoplankton composition may have influenced the recent trophic collapse of pelagic fishes in the northern part of the SFB. The objective of this study is to determine if the approach can also be applied to imaging spectroscopy data in order to quantify phytoplankton "food quality" from space. Imaging spectroscopy data of SFB from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was collected during the Hyperspectral Infrared (HyspIRI) Airborne Campaign in California (2013 - 2015) and used in this study. Estimates of ocean chlorophyll and phytoplankton community structure were determined using standard ocean chlorophyll algorithms and the PHYtoplankton Detection with Optics (PHYDOTax) algorithms. These were validated using in situ observations of phytoplankton composition using microscopic cell counts and phytoplankton chemotaxonomy from the US Geological Survey's ship surveys of the SFB. The findings from this study may inform the use of future high spectral resolution satellite sensors with the spatial resolution appropriate for coastal systems (e.g., HyspIRI) to assess "food quality" from space.

  12. Developing Methods for Fraction Cover Estimation Toward Global Mapping of Ecosystem Composition

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Thompson, D. R.; Dennison, P. E.; Green, R. O.; Kokaly, R. F.; Pavlick, R.; Schimel, D.; Stavros, E. N.

    2016-12-01

    Terrestrial vegetation seldom covers an entire pixel due to spatial mixing at many scales. Estimating the fractional contributions of photosynthetic green vegetation (GV), non-photosynthetic vegetation (NPV), and substrate (soil, rock, etc.) to mixed spectra can significantly improve quantitative remote measurement of terrestrial ecosystems. Traditional methods for estimating fractional vegetation cover rely on vegetation indices that are sensitive to variable substrate brightness, NPV and sun-sensor geometry. Spectral mixture analysis (SMA) is an alternate framework that provides estimates of fractional cover. However, simple SMA, in which the same set of endmembers is used for an entire image, fails to account for natural spectral variability within a cover class. Multiple Endmember Spectral Mixture Analysis (MESMA) is a variant of SMA that allows the number and types of pure spectra to vary on a per-pixel basis, thereby accounting for endmember variability and generating more accurate cover estimates, but at a higher computational cost. Routine generation and delivery of GV, NPV, and substrate (S) fractions using MESMA is currently in development for large, diverse datasets acquired by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). We present initial results, including our methodology for ensuring consistency and generalizability of fractional cover estimates across a wide range of regions, seasons, and biomes. We also assess uncertainty and provide a strategy for validation. GV, NPV, and S fractions are an important precursor for deriving consistent measurements of ecosystem parameters such as plant stress and mortality, functional trait assessment, disturbance susceptibility and recovery, and biomass and carbon stock assessment. Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.

  13. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berk, A.; Bernstein, L.S.; Acharya, P.K.

    1998-09-01

    Recent upgrades to the MODTRAN atmospheric radiation code improve the accuracy of its radiance predictions, especially in the presence of clouds and thick aerosols, and for multiple scattering in regions of strong molecular line absorption. The current public-released version of MODTRAN (MODTRAN3.7) features a generalized specification of cloud properties, while the current research version of MODTRAN (MODTRAN4) implements a correlated-k (CK) approach for more accurate calculation of multiple scattered radiance. Comparisons to cloud measurements demonstrate the viability of the CK approach. The impact of these upgrades on predictions for AVIRIS viewing scenarios is discussed for both clear and clouded skies;more » the CK approach provides refined predictions for AVIRIS nadir and near-nadir viewing.« less

  14. Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology

    NASA Astrophysics Data System (ADS)

    Konishi, Tsuyoshi; Yamasaki, Yu

    2018-02-01

    Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.

  15. First insights on the organic species from the high resolution mass spectrometer ROSINA DFMS on-board the Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Le Roy, L.; Altwegg, K.; Berthelier, J. J.; Calmonte, U.; Dhooghe, F.; Fiethe, B.; Fuselier, S.; Gombosi, T. I.; Rubin, M.; Tzou, C. Y.

    2014-12-01

    Starting in August 2014, the ROSINA experiment will characterize the composition and dynamics of 67P/Churyumov-Gerasimenko's coma. ROSINA consists of a suite of three instruments: a pressure sensor (COPS: COmetary Pressure Sensor) and two mass spectrometers: the Reflectron Time of Flight mass spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS). Here we will focus on the first results obtained by DFMS, the high-resolution mass spectrometer of ROSINA. DFMS is a traditional magnetic mass spectrometer that combines an electrostatic analyzer for energy analysis with a magnet for momentum analysis. To date, DFMS is the highest mass resolution mass spectrometer in space, with resolution (m/Δm = 3000 at 1% of the peak height at 28 amu/q). It will be able to resolve CO from N2 at m/z= 28 amu/q or 12CH and 13C at m/z= 13 amu/q. We will present the first results of DFMS: the detection of organic species and their implication for the origin of cometary material.

  16. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    NASA Technical Reports Server (NTRS)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  17. Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.

    PubMed

    Das, Bhargab; Chandra, Vikash

    2016-10-10

    We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.

  18. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    NASA Astrophysics Data System (ADS)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis

    2017-12-01

    We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.

  19. Dualband infrared imaging spectrometer: observations of the moon

    NASA Astrophysics Data System (ADS)

    LeVan, Paul D.; Beecken, Brian P.; Lindh, Cory

    2008-08-01

    We reported previously on full-disk observations of the sun through a layer of black polymer, used to protect the entrance aperture of a novel dualband spectrometer while transmitting discrete wavelength regions in the MWIR & LWIR1. More recently, the spectrometer was used to assess the accuracy of recovery of unknown blackbody temperatures2. Here, we briefly describe MWIR observations of the full Moon made in Jan 2008. As was the case for the solar observations, the Moon was allowed to drift across the spectrometer slit by Earth's rotation. A detailed sensor calibration performed prior to the observations accounts for sensor non-uniformities; the spectral images of the Moon therefore include atmospheric transmission features. Our plans are to repeat the observations at liquid helium temperatures, thereby allowing both MWIR & LWIR spectral coverage.

  20. Derivative Analysis of AVIRIS Hyperspectral Data for the Detection of Plant Stress

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Berglund, Judith

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test site at Shelton, Nebraska. The test field was set off in blocks that were differentially treated with nitrogen. Four replicates of 0-kg/ha to 200-kg/ha, in 50-kg/ha increments, were present. Low-altitude AVIRIS hyperspectral data were collected over the site in 224 spectral bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to evaluate published, derivative-based algorithms for the detection of plant stress, different derivative-based approaches were applied to the collected AVIRIS image cube. The results indicate that, given good quality hyperspectral imagery, derivative techniques compare favorably with simple, well known band ratio algorithms for detection of plant stress.

  1. Environmental monitors in the Midcourse Space Experiments (MSX)

    NASA Technical Reports Server (NTRS)

    Uy, O. M.

    1993-01-01

    The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .

  2. Spectral-Spatial Classification of Hyperspectral Images Using Hierarchical Optimization

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.

    2011-01-01

    A new spectral-spatial method for hyperspectral data classification is proposed. For a given hyperspectral image, probabilistic pixelwise classification is first applied. Then, hierarchical step-wise optimization algorithm is performed, by iteratively merging neighboring regions with the smallest Dissimilarity Criterion (DC) and recomputing class labels for new regions. The DC is computed by comparing region mean vectors, class labels and a number of pixels in the two regions under consideration. The algorithm is converged when all the pixels get involved in the region merging procedure. Experimental results are presented on two remote sensing hyperspectral images acquired by the AVIRIS and ROSIS sensors. The proposed approach improves classification accuracies and provides maps with more homogeneous regions, when compared to previously proposed classification techniques.

  3. Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects

    NASA Technical Reports Server (NTRS)

    Green Robert O.; Moreno, Jose F.

    1996-01-01

    AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially important over vegetated surfaces. All the data used in this study were acquired during the 1991 Multisensor Airborne Campaign (MAC-Europe), as part of the European Field Experiment on a Desertification-threatened Area (EFEDA), carried out in Spain in June-July 1991.

  4. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    DTIC Science & Technology

    2010-10-28

    interferometer with high space resolution, PIV method, FTIR spectrometer, optical spectrometer, pressure sensors with high time resolution, IR pyrometer and...of strong LP-vortex interaction. Intensive acoustic waves are created by CHFD in swirl flow in this regime. 38. Study of control of a longitudinal...quartz tube, 4- HF ball electrode, 5- Tesla’s transformer, 6- microwave interferometer, 7- video camera, 8-optical pyrometer , 9-pressure sensor, 10

  5. Miniaturized spectrometer for stand-off chemical detection

    NASA Astrophysics Data System (ADS)

    Henning, Patrick F.; Chadha, Suneet; Damren, Richard; Rowe, Rebecca C.; Stevenson, Chuck; Curtiss, Lawrence E.; DiGiuseppe, Thomas G.

    2002-02-01

    Advanced autonomous detection of both chemical warfare agents and toxic industrial chemicals has long been of major military concern and is becoming an increasingly realistic need. Foster-Miller has successfully designed and demonstrated a high spectral throughput monolithic wedge spectrometer capable of providing early, stand-off detection of chemical threats. Recent breakthrough innovations in IR source technologies, high D* multispectral array detectors, and IR waveguide materials has allowed for the development of a robust, miniature, monolithic infrared spectrometer. Foster-Miller recently demonstrated a high resolution spectrometer operating in the 8 to 12 micron region for chemical agent detection. Results will be presented demonstrating the feasibility of adapting the wedge spectrometer to operate as an upward looking ground sensor for stand-off chemical detection. Our miniaturized spectrometer forms the basis for deploying low cost, lightweight sensors which may be used for reconnaissance missions or delivered to remote locations for unattended operation. The ability of perform passive stand-off infrared chemical agent and chemical emissions detection with a low cost, compact device that can operate autonomously in remote environments has broad applications in both the military and commercial marketplace.

  6. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun

    Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less

  7. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    DOE PAGES

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...

    2017-12-07

    Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less

  8. Monitoring of Volcanogenic CO2-Induced Tree Kills with AVIRIS Image Data at Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    Hausback, Brian P.; Strong, Mel; Farrar, Chris; Pieri, David

    1998-01-01

    Elevated cold CO2 emissions from the flank of Mammoth Mountain volcano on the southwest rim of the Long Valley Caldera, eastern California, have been the cause of over 100 acres of dead trees in that area since 1990. The source of the CO2 gas is thought to be from one or more magmatic intrusion(s) beneath Mammoth Mountain and is probably related to a period of seismic unrest that began in 1989. The gas rises to the surface probably from depths of a few kilometers, along faults and fracture zones. The gas is at ambient temperature and diffuses from the soil rather than discharging from distinct vents. Typically, soil gas concentrations in tree-kill areas range from 10% to over 90% CO2 by volume, as compared to normal background of < 1% in healthy forest. The gas composition is predominantly CO2 mixed with air (sulfur gases are not elevated), and C and He isotopic ratios are consistent with a magmatic origin for the gas. The total CO2 emission has been estimated at 1200 tons/day, comparable to the emissions at Kilauea. Some of the dead trees are as old as 250 years, suggesting that similar anomalous gas discharge has not occurred over the previous few hundred years. The delta C-13/12 ratio in the Mammoth Mountain CO2 emission averages about -4.5 (PDB standard). This is consistent with a mantle source for the carbon. However, the large volume of the emission suggests that not all of the CO2 is necessarily being generated from the 1989 intrusion. The voluminous gas could be leaking from a vapor-rich zone, capped by an impermeable layer, that was supplied CO2 from degassing of many small magma bodies that intruded beneath the mountain over a period of decades or centuries. Earthquakes in 1989 could have fractured the capping layer and provided pathways for the escape Of CO2 to the surface. Alternatively, some of the CO2 could be derived from contact metamorphism of carbonate rocks intruded by magma. Carbonate-bearing Paleozoic roof pendents crop out in close proximity to Mammoth Mountain. It is possible that similar rocks could occur at depth beneath Mammoth Mountain, and could have contributed CO2 from thermal decomposition caused from recent intrusions. We hope to determine the C-13/12 ratio of a suite of samples to demonstrate if the carbonate rocks could be the source of at least part of the 1990-97 CO2 emission. To better understand the behavior of the CO2 gas, we have used hyperspectral imagery data of Mammoth Mountain acquired from the Airborne Visual/Infrared Imaging Spectrometer (AVIRIS) to map out areas of dead trees. The areas of tree kill have increased in size from about 50 acres in 1994 to about 100 acres in 1997. Tree kill is the major surface manifestation of the carbon dioxide flux at Mammoth Mountain, is widely dispersed, and has been cursorily mapped by regular field mapping techniques in the area. Initial investigations using airborne digital imagery from the Thematic Mapper Simulator (NS001) and AVIRIS instruments have shown extremely encouraging results for complete delineation of the vegetation anomalies. The most successful maps (when compared with ground truth) were developed using AVIRIS data with spectral angle mapper and matched filter algorithms with a data set that was reduced to maximum variance via the minimum noise fraction transformation. The result of this work is a series of maps that show the tree kill areas occurring in an halo-pattern surrounding the base of Mammoth Mountain. We are applying these same techniques to earlier AVIRIS images of Mammoth Mountain to examine the progression of the tree kill areas over time. Temporal maps of the tree kill areas may assist in constructing a picture of the structure beneath Mammoth Mountain.

  9. The 4-Corners methane hotspot: Mapping CH4 plumes at 60km through 1m resolution using space- and airborne spectrometers

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; Thorpe, A. K.; Hook, S. J.; Green, R. O.; Thompson, D. R.; Kort, E. A.; Hulley, G. C.; Vance, N.; Bue, B. D.; Aubrey, A. D.

    2015-12-01

    The SCIAMACHY instrument onboard the European research satellite ENVISAT detected a large methane hotspot in the 4-Corners area, specifically in New Mexico and Colorado. Total methane emissions in this region were estimated to be on the order of 0.5Tg/yr, presumably related to coal-bed methane exploration. Here, we report on NASA efforts to augment the TOPDOWN campaign intended to enable regional methane source inversions and identify source types in this area. The Jet Propulsion Laboratory was funded to fly two airborne imaging spectrometers, viz. AVIRIS-NG and HyTES. In April 2015, we used both instruments to continuously map about 2000km2 in the 4-Corners area at 1-5m spatial resolution, with special focus on the most enhanced areas as observed from space. During our weeklong campaign, we detected more than 50 isolated and strongly enhanced methane plumes, ranging from coal mine venting shafts and gas processing facilities through individual well-pads, pipeline leaks and outcrop. Results could be immediately shared with ground-based teams and TOPDOWN aircraft so that ground-validation and identification was feasible for a number of sources. We will provide a general overview of the JPL-led mapping campaign efforts and show individual results, derive source strength estimates and discuss how the results fit in with space borne estimates.

  10. Remotely-Sensed Geology from Lander-Based to Orbital Perspectives: Results for FIDO Rover Field Tests

    NASA Technical Reports Server (NTRS)

    Jolliff, B.; Moersch, J.; Knoll, A.; Morris, R.; Arvidson, R.; Gilmore, M.; Greeley, R.; Herkenhoff, K.; McSween, H.; Squyres, S.

    2000-01-01

    Tests of the FIDO (Field Integration Design and Operations) rover and Athena-like operational scenarios were conducted May 7-16, 2000. A group located at the Jet Propulsion Lab, Pasadena, CA, formed the Core Operations Team (COT) that designed experiments and command sequences while another team tracked, maintained, and secured the rover in the field. The COT had no knowledge of the specific field location, thus the tests were done "blind." In addition to FIDO rover instrumentation, the COT had access to LANDSAT 7, TIMS, and AVIRIS regional coverage and color descent images. Using data from the FIDO instruments, primarily a color microscopic imager (CMI), infrared point spectrometer (IPS; 1.5-2.4 microns), and a three-color stereo panoramic camera (Pancam), the COT correlated lithologic features (mineralogy, rock types) from the simulated landing site to a regional scale. The May test results provide an example of how to relate site geology from landed rover investigations to the regional geology using remote sensing. The capability to relate mineralogic signatures using the point IR spectrometer to remotely sensed, multispectral or hyperspectral data proved to be key to integration of the in-situ and remote data. This exercise demonstrated the potential synergy between lander-based and orbital data, and highlighted the need to investigate a landing site in detail and at multiple scales.

  11. Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors

    NASA Astrophysics Data System (ADS)

    Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.

    2018-05-01

    Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5  ×  10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.

  12. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  13. Classification of high dimensional multispectral image data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1993-01-01

    A method for classifying high dimensional remote sensing data is described. The technique uses a radiometric adjustment to allow a human operator to identify and label training pixels by visually comparing the remotely sensed spectra to laboratory reflectance spectra. Training pixels for material without obvious spectral features are identified by traditional means. Features which are effective for discriminating between the classes are then derived from the original radiance data and used to classify the scene. This technique is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data taken over Cuprite, Nevada in 1992, and the results are compared to an existing geologic map. This technique performed well even with noisy data and the fact that some of the materials in the scene lack absorption features. No adjustment for the atmosphere or other scene variables was made to the data classified. While the experimental results compare favorably with an existing geologic map, the primary purpose of this research was to demonstrate the classification method, as compared to the geology of the Cuprite scene.

  14. Intelligent MEMS spectral sensor for NIR applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kantojärvi, Uula; Antila, Jarkko E.; Mäkynen, Jussi; Suhonen, Janne

    2017-05-01

    Near Infrared (NIR) spectrometers have been widely used in many material inspection applications, but mainly in central laboratories. The role of miniaturization, robustness of spectrometer and portability are really crucial when field inspection tools should be developed. We present an advanced spectral sensor based on a tunable Microelectromechanical (MEMS) Fabry-Perot Interferometer which will meet these requirements. We describe the wireless device design, operation principle and easy-to-use algorithms to adapt the sensor to number of applications. Multiple devices can be operated simultaneously and seamlessly through cloud connectivity. We also present some practical NIR applications carried out with truly portable NIR device.

  15. A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer

    PubMed Central

    Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie

    2014-01-01

    Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727

  16. Hyperspectral Features of Oil-Polluted Sea Ice and the Response to the Contamination Area Fraction

    PubMed Central

    Li, Ying; Liu, Chengyu; Xie, Feng

    2018-01-01

    Researchers have studied oil spills in open waters using remote sensors, but few have focused on extracting reflectance features of oil pollution on sea ice. An experiment was conducted on natural sea ice in Bohai Bay, China, to obtain the spectral reflectance of oil-contaminated sea ice. The spectral absorption index (SAI), spectral peak height (SPH), and wavelet detail coefficient (DWT d5) were calculated using stepwise multiple linear regression. The reflectances of some false targets were measured and analysed. The simulated false targets were sediment, iron ore fines, coal dust, and the melt pool. The measured reflectances were resampled using five common sensors (GF-2, Landsat8-OLI, Sentinel3-OLCI, MODIS, and AVIRIS). Some significant spectral features could discriminate between oil-polluted and clean sea ice. The indices correlated well with the oil area fractions. All of the adjusted R2 values exceeded 0.9. The SPH model1, based on spectral features at 507–670 and 1627–1746 nm, displayed the best fitting. The resampled data indicated that these multi-spectral and hyper-spectral sensors could be used to detect crude oil on the sea ice if the effect of noise and spatial resolution are neglected. The spectral features and their identified changes may provide reference on sensor design and band selection. PMID:29342945

  17. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.

  18. Equations for solar tracking.

    PubMed

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.

  19. Equations for Solar Tracking

    PubMed Central

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research. PMID:22666019

  20. Aerosol Optical Depth Retrieval With AVIRIS Data: A Test of Tafkaa

    DTIC Science & Technology

    2002-09-01

    the spatial resolution . Clearly there is a need for a method of AOD retrieval that can cover more of the globe in a...imagers lack sufficient spectral resolution for some scientific applications. The future of remote sensing is in the ability to collect and interpret...AVIRIS is by using a data cube with two axes for the spatial dimensions and the third axis representing the 224 channels that make up the spectral

  1. Relationships of soil, grass, and bedrock over the Kaweah Serpentinite Melange through spectral mixture analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    1993-01-01

    A linear mixing model is used to model the spectral variability of an AVIRIS scene from the western foothills of the Sierra Nevada and calibrate these radiance data to reflectance. Five spectral endmembers from the AVIRIS data, plus an ideal 'shade' endmember were required to model the continuum reflectance of each pixel in the image. Three of the endmembers were interpreted to model the surface constituents green vegetation, dry grass, and illumination. Comparison of the fraction images to the bedrock geology maps indicates that substrate composition must be a factor contributing to the spectral properties of these endmembers. Detailed examination of the reflectance spectra of the three soil endmembers reveals that differences in the amount of ferric and ferrous iron and/or organic constituents in the soils is largely responsible for the differences in spectral properties of these endmembers.

  2. SNM-DAT: Simulation of a heterogeneous network for nuclear border security

    NASA Astrophysics Data System (ADS)

    Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D. M.; Priedhorsky, W.; Raby, E. Y.

    2007-08-01

    We approach the problem of detecting Special Nuclear Material (SNM) smuggling across open borders by modeling a heterogeneous sensor network using an agent-based simulation. Our simulation SNM Data Analysis Tool (SNM-DAT) combines fixed seismic, metal, and radiation detectors with a mobile gamma spectrometer. Decision making within the simulation determines threat levels by combined signatures. The spectrometer is a limited-availability asset, and is only deployed for substantial threats. "Crossers" can be benign or carrying shielded SNM. Signatures and sensors are physics based, allowing us to model realistic sensor networks. The heterogeneous network provides great gains in detection efficiency compared to a radiation-only system. We can improve the simulation through better sensor and terrain models, additional signatures, and crossers that mimic actual trans-border traffic. We expect further gains in our ability to design sensor networks as we learn the emergent properties of heterogeneous detection, and potential adversary responses.

  3. Thin-film spectroscopic sensor

    DOEpatents

    Burgess, Jr., Lloyd W.; Goldman, Don S.

    1992-01-01

    There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.

  4. MIR-ATR sensor for process monitoring

    NASA Astrophysics Data System (ADS)

    Geörg, Daniel; Schalk, Robert; Methner, Frank-Jürgen; Beuermann, Thomas

    2015-06-01

    A mid-infrared attenuated total reflectance (MIR-ATR) sensor has been developed for chemical reaction monitoring. The optical setup of the compact and low-priced sensor consists of an IR emitter as light source, a zinc selenide (ZnSe) ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The practical applicability was tested during esterification of ethanol and formic acid to ethyl formate and water as a model reaction with subsequent distillation. For reference analysis, a Fourier transform mid-infrared (FT-MIR) spectrometer with diamond ATR module was applied. On-line measurements using the MIR-ATR sensor and the FT-MIR spectrometer were performed in a bypass loop. The sensor was calibrated by multiple linear regression in order to link the measured absorbance in the four optical channels to the analyte concentrations. The analytical potential of the MIR-ATR sensor was demonstrated by simultaneous real-time monitoring of all four chemical substances involved in the esterification and distillation process. The temporal courses of the sensor signals are in accordance with the concentration values achieved by the commercial FT-MIR spectrometer. The standard error of prediction for ethanol, formic acid, ethyl formate, and water were 0.38 mol L  -  1, 0.48 mol L  -  1, 0.38 mol L  -  1, and 1.12 mol L  -  1, respectively. A procedure based on MIR spectra is presented to simulate the response characteristics of the sensor if the transmission ranges of the filters are varied. Using this tool analyte specific bandpass filters for a particular chemical reaction can be identified. By exchanging the optical filters, the sensor can be adapted to a wide range of processes in the chemical, pharmaceutical, and beverage industries.

  5. Mobile phone based mini-spectrometer for rapid screening of skin cancer

    NASA Astrophysics Data System (ADS)

    Das, Anshuman; Swedish, Tristan; Wahi, Akshat; Moufarrej, Mira; Noland, Marie; Gurry, Thomas; Aranda-Michel, Edgar; Aksel, Deniz; Wagh, Sneha; Sadashivaiah, Vijay; Zhang, Xu; Raskar, Ramesh

    2015-06-01

    We demonstrate a highly sensitive mobile phone based spectrometer that has potential to detect cancerous skin lesions in a rapid, non-invasive manner. Earlier reports of low cost spectrometers utilize the camera of the mobile phone to image the field after moving through a diffraction grating. These approaches are inherently limited by the closed nature of mobile phone image sensors and built in optical elements. The system presented uses a novel integrated grating and sensor that is compact, accurate and calibrated. Resolutions of about 10 nm can be achieved. Additionally, UV and visible LED excitation sources are built into the device. Data collection and analysis is simplified using the wireless interfaces and logical control on the smart phone. Furthermore, by utilizing an external sensor, the mobile phone camera can be used in conjunction with spectral measurements. We are exploring ways to use this device to measure endogenous fluorescence of skin in order to distinguish cancerous from non-cancerous lesions with a mobile phone based dermatoscope.

  6. Low-cost 3D printed 1  nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy.

    PubMed

    Wilkes, Thomas C; McGonigle, Andrew J S; Willmott, Jon R; Pering, Tom D; Cook, Joseph M

    2017-11-01

    We report on the development of a low-cost spectrometer, based on off-the-shelf optical components, a 3D printed housing, and a modified Raspberry Pi camera module. With a bandwidth and spectral resolution of ≈60  nm and 1 nm, respectively, this device was designed for ultraviolet (UV) remote sensing of atmospheric sulphur dioxide (SO 2 ), ≈310  nm. To the best of our knowledge, this is the first report of both a UV spectrometer and a nanometer resolution spectrometer based on smartphone sensor technology. The device performance was assessed and validated by measuring column amounts of SO 2 within quartz cells with a differential optical absorption spectroscopy processing routine. This system could easily be reconfigured to cover other UV-visible-near-infrared spectral regions, as well as alternate spectral ranges and/or linewidths. Hence, our intention is also to highlight how this framework could be applied to build bespoke, low-cost, spectrometers for a range of scientific applications.

  7. System and Method for an Integrated Satellite Platform

    NASA Technical Reports Server (NTRS)

    Starin, Scott R. (Inventor); Sheikh, Salman I. (Inventor); Hesse, Michael (Inventor); Clagett, Charles E. (Inventor); Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Paschalidis, Nikolaos (Inventor); Ericsson, Aprille J. (Inventor); Johnson, Michael A. (Inventor)

    2018-01-01

    A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.

  8. Characterizing the Perfonnance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.

    2013-01-01

    A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a planetary rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. We eventually intend to prove charge spectra can be used o determine differences in planetary regolith properties. We tested the effects of residual surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. We proved the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal.

  9. Automating spectral unmixing of AVIRIS data using convex geometry concepts

    NASA Technical Reports Server (NTRS)

    Boardman, Joseph W.

    1993-01-01

    Spectral mixture analysis, or unmixing, has proven to be a useful tool in the semi-quantitative interpretation of AVIRIS data. Using a linear mixing model and a set of hypothesized endmember spectra, unmixing seeks to estimate the fractional abundance patterns of the various materials occurring within the imaged area. However, the validity and accuracy of the unmixing rest heavily on the 'user-supplied' set of endmember spectra. Current methods for emdmember determination are the weak link in the unmixing chain.

  10. Improved Atmospheric Correction Over the Indian Subcontinent Using Fast Radiative Transfer and Optimal Estimation

    NASA Astrophysics Data System (ADS)

    Natraj, V.; Thompson, D. R.; Mathur, A. K.; Babu, K. N.; Kindel, B. C.; Massie, S. T.; Green, R. O.; Bhattacharya, B. K.

    2017-12-01

    Remote Visible / ShortWave InfraRed (VSWIR) spectroscopy, typified by the Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG), is a powerful tool to map the composition, health, and biodiversity of Earth's terrestrial and aquatic ecosystems. These studies must first estimate surface reflectance, removing the atmospheric effects of absorption and scattering by water vapor and aerosols. Since atmospheric state varies spatiotemporally, and is insufficiently constrained by climatological models, it is important to estimate it directly from the VSWIR data. However, water vapor and aerosol estimation is a significant ongoing challenge for existing atmospheric correction models. Conventional VSWIR atmospheric correction methods evolved from multi-band approaches and do not fully utilize the rich spectroscopic data available. We use spectrally resolved (line-by-line) radiative transfer calculations, coupled with optimal estimation theory, to demonstrate improved accuracy of surface retrievals. These spectroscopic techniques are already pervasive in atmospheric remote sounding disciplines but have not yet been applied to imaging spectroscopy. Our analysis employs a variety of scenes from the recent AVIRIS-NG India campaign, which spans various climes, elevation changes, a wide range of biomes and diverse aerosol scenarios. A key aspect of our approach is joint estimation of surface and aerosol parameters, which allows assessment of aerosol distortion effects using spectral shapes across the entire measured interval from 380-2500 nm. We expect that this method would outperform band ratio approaches, and enable evaluation of subtle aerosol parameters where in situ reference data is not available, or for extreme aerosol loadings, as is observed in the India scenarios. The results are validated using existing in-situ reference spectra, reflectance measurements from assigned partners in India, and objective spectral quality metrics for scenes without any ground reference data. We also quantify the true information content of VSWIR spectroscopy for improving retrieval efficiency. We anticipate that our work will significantly improve the state of the art for VSWIR atmospheric correction, reducing regional biases in global ecosystem studies. 2017. All rights reserved.

  11. A cryogenic scan mechanism for use in Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Blumenstock, Kenneth A.

    1995-01-01

    This paper describes the requirements, design, assembly and testing of the linear Scan Mechanism (SM) of the Composite Infrared Spectrometer (CIRS) Instrument. The mechanism consists of an over constrained flexible structure, an innovative moving magnet actuator, passive eddy current dampers, a Differential Eddy Current (DEC) sensor, Optical Limit Sensors (OLS), and a launch lock. Although all the components of the mechanism are discussed, the flexible structure and the magnetic components are the primary focus. Several problems encountered and solutions implemented during the development of the scan mechanism are also described.

  12. Preliminary evaluation of the airborne imaging spectrometer for vegetation analysis

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.

    1984-01-01

    The primary goal of the project was to provide ground truth and manual interpretation of data from an experimental flight of the Airborne Infrared Spectrometer (AIS) for a naturally vegetated test site. Two field visits were made; one trip to note snow conditions and temporally related vegetation states at the time of the sensor overpass, and a second trip following acquisition of prints of the AIS images for field interpretation. Unfortunately, the ability to interpret the imagery was limited by the quality of the imagery due to the experimental nature of the sensor.

  13. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  14. Miniaturized photoacoustic spectrometer

    DOEpatents

    Okandan, Murat; Robinson, Alex; Nielson, Gregory N.; Resnick, Paul J.

    2016-08-09

    A low-power miniaturized photoacoustic sensor uses an optical microphone made by semiconductor fabrication techniques, and optionally allows for all-optical communication to and from the sensor. This allows integration of the photoacoustic sensor into systems with special requirements, such as those that would be reactive in an electrical discharge condition. The photoacoustic sensor can also be operated in various other modes with wide application flexibility.

  15. Preparing to Install APXS Sensor Head

    NASA Image and Video Library

    2009-10-13

    Grad student Nicholas Boyd left and Principal Investigator Ralf Gellert, both of the University of Guelph, Ontario, Canada, prepare for the installation of the Alpha Particle X-ray Spectrometer sensor head during testing at NASA JPL.

  16. Accurately Calculating the Solar Orientation of the TIANGONG-2 Ultraviolet Forward Spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, S.

    2018-04-01

    The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit), and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  17. Comparison of three methods for materials identification and mapping with imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg; Boardman, Joe; Kruse, Fred

    1993-01-01

    We are comparing three methods of mapping analysis tools for imaging spectroscopy data. The purpose of this comparison is to understand the advantages and disadvantages of each algorithm so others would be better able to choose the best algorithm or combinations of algorithms for a particular problem. The three algorithms are: (1) the spectralfeature modified least squares mapping algorithm of Clark et al (1990, 1991): programs mbandmap and tricorder; (2) the Spectral Angle Mapper Algorithm(Boardman, 1993) found in the CU CSES SIPS package; and (3) the Expert System of Kruse et al. (1993). The comparison uses a ground-calibrated 1990 AVIRIS scene of 400 by 410 pixels over Cuprite, Nevada. Along with the test data set is a spectral library of 38 minerals. Each algorithm is tested with the same AVIRIS data set and spectral library. Field work has confirmed the presence of many of these minerals in the AVIRIS scene (Swayze et al. 1992).

  18. FIDO prototype Mars rover field trials, Black Rock Summit, Nevada, as test of the ability of robotic mobility systems to conduct field science

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Niebur, C. S.; Larsen, K. W.; SeelosIV, F. P.; Snider, N. O.; Jolliff, B. L.

    2002-08-01

    The Field Integration Design and Operations (FIDO) prototype Mars rover was deployed and operated remotely for 2 weeks in May 2000 in the Black Rock Summit area of Nevada. The blind science operation trials were designed to evaluate the extent to which FIDO-class rovers can be used to conduct traverse science and collect samples. FIDO-based instruments included stereo cameras for navigation and imaging, an infrared point spectrometer, a color microscopic imager for characterization of rocks and soils, and a rock drill for core acquisition. Body-mounted ``belly'' cameras aided drill deployment, and front and rear hazard cameras enabled terrain hazard avoidance. Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, a high spatial resolution IKONOS orbital image, and a suite of descent images were used to provide regional- and local-scale terrain and rock type information, from which hypotheses were developed for testing during operations. The rover visited three sites, traversed 30 m, and acquired 1.3 gigabytes of data. The relatively small traverse distance resulted from a geologically rich site in which materials identified on a regional scale from remote-sensing data could be identified on a local scale using rover-based data. Results demonstrate the synergy of mapping terrain from orbit and during descent using imaging and spectroscopy, followed by a rover mission to test inferences and to make discoveries that can be accomplished only with surface mobility systems.

  19. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  20. Characterizing the Performance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, M. R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.

    2013-01-01

    A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a Martian rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. This charge spectrum can be used to determine differences in Martian regolith properties. In this study, we analyzed the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal. In addition, we tested the need for neutralizing the surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. Future work includes an electronics redesign to reduce noise and a Martian pressure static elimination tool that can be used to neutralize the charge on the sensor cover insulators after each wheel revolution.

  1. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated double sampler; a digitally controlled variable gain amplifier and a 16-bit A/D converter which can help improve the data quality. And the acquired digital signals are transmitted into the computer via USB 2.0 data port. Our spectrometer with SHINERS technology can acquire the Raman spectrum signals efficiently in long time integration and weak signal environment, and the size of our system is well controlled for portable application.

  2. Simple alignment procedure for a VNIR imaging spectrometer with a Shack-Hartmann wavefront sensor and a field identifier

    NASA Astrophysics Data System (ADS)

    Lee, Jun Ho; Hwang, Sunglyoung; Jeong, Dohwan; Hong, Jinsuk; Kim, Youngsoo; Kim, Yeonsoo; Kim, Hyunsook

    2017-09-01

    We report an innovative simple alignment method for a VNIR spectrometer in the wavelength region of 400-900 nm; this device is later combined with fore-optics (a telescope) to form a f/2.5 hyperspectral imaging spectrometer with a field of view of +/-7.68°. The detector at the final image plane is a 640×480 charge-coupled device with a 24 μm pixel size. We first assembled the fore-optics and the spectrometer separately and then combined them via a slit co-located on the image plane of the fore-optics and the object plane of the spectrometer. The spectrometer was assembled in three steps. In the initial step, the optics was simply assembled with an optical axis guiding He-Ne laser. In the second step, we located a pin-hole on the slit plane and a Shack-Hartmann sensor on the detector plane. The wavefront errors over the full field were scanned simply by moving the point source along the slit direction while the Shack-Hartmann sensor was constantly conjugated to the pin-hole position by a motorized stage. Optimal alignment was then performed based on the reverse sensitivity method. In the final stage, the pin-hole and the Shack-Hartmann sensor were exchanged with an equispaced 10 pin-hole slit called a field identifier and a detector. The light source was also changed from the laser (single wavelength source) to a krypton lamp (discrete multi-wavelength source). We were then easily able to calculate the distortion and keystone on the detector plane without any scanning or moving optical components; rather, we merely calculated the spectral centroids of the 10 pin-holes on the detector. We then tuned the clocking angles of the convex grating and the detector to minimize the distortion and keystone. The final assembly was tested and found to have an RMS WFE < 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm.

  3. The selectable hyperspectral airborne remote sensing kit (SHARK) as an enabler for precision agriculture

    NASA Astrophysics Data System (ADS)

    Holasek, Rick; Nakanishi, Keith; Ziph-Schatzberg, Leah; Santman, Jeff; Woodman, Patrick; Zacaroli, Richard; Wiggins, Richard

    2017-04-01

    Hyperspectral imaging (HSI) has been used for over two decades in laboratory research, academic, environmental and defense applications. In more recent time, HSI has started to be adopted for commercial applications in machine vision, conservation, resource exploration, and precision agriculture, to name just a few of the economically viable uses for the technology. Corning Incorporated (Corning) has been developing and manufacturing HSI sensors, sensor systems, and sensor optical engines, as well as HSI sensor components such as gratings and slits for over a decade and a half. This depth of experience and technological breadth has allowed Corning to design and develop unique HSI spectrometers with an unprecedented combination of high performance, low cost and low Size, Weight, and Power (SWaP). These sensors and sensor systems are offered with wavelength coverage ranges from the visible to the Long Wave Infrared (LWIR). The extremely low SWaP of Corning's HSI sensors and sensor systems enables their deployment using limited payload platforms such as small unmanned aerial vehicles (UAVs). This paper discusses use of the Corning patented monolithic design Offner spectrometer, the microHSI™, to build a highly compact 400-1000 nm HSI sensor in combination with a small Inertial Navigation System (INS) and micro-computer to make a complete turn-key airborne remote sensing payload. This Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) has industry leading SWaP (1.5 lbs) at a disruptively low price due, in large part, to Corning's ability to manufacture the monolithic spectrometer out of polymers (i.e. plastic) and therefore reduce manufacturing costs considerably. The other factor in lowering costs is Corning's well established in house manufacturing capability in optical components and sensors that further enable cost-effective fabrication. The competitive SWaP and low cost of the microHSI™ sensor is approaching, and in some cases less than the price point of Multi Spectral Imaging (MSI) sensors. Specific designs of the Corning microHSI™ SHARK visNIR turn-key system are presented along with salient performance characteristics. Initial focus market areas include precision agriculture and historic and recent microHSI™ SHARK prototype test results are presented.

  4. The retarding ion mass spectrometer on dynamics Explorer-A. [measuring thermal plasma distribution

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.; Fields, S. A.; Baugher, C. R.; Hoffman, J. H.; Hanson, W. B.; Wright, W. W.; Hammack, H. D.; Carignan, G. R.; Nagy, A. F.

    1981-01-01

    An instrument designed to measure the details of the thermal plasma distribution combines the ion temperature-determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram directions. The retarding ion mass spectrometer, its operational modes and calibration are described as well as the data reduction plan, and the anticipated results.

  5. Rapid Field-Usable Cyanide Sensor Development for Blood and Saliva

    DTIC Science & Technology

    2013-12-01

    fluorescent readings were measured using an Ocean Optics USB2000+ Spectrometer. The spiked plasma gave a signal of approximately 18% of an aqueous...fluorescent readings were measured using an Ocean Optics USB2000+ Spectrometer. The optimization data can be seen in Figure 1.1.1-3. For aqueous...measured using an Ocean Optics USB2000+ Spectrometer. The identification of interferents is important to assess the possibility of false positives for

  6. Comparison of Hyperspectral and Multispectral Satellites for Discriminating Land Cover in Northern California

    NASA Astrophysics Data System (ADS)

    Clark, M. L.; Kilham, N. E.

    2015-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (VSWIR) of the spectrum have shown impressive capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a VSWIR hyperspectral and thermal satellite being considered for development by NASA. The goal of this study was to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping relative to multispectral satellites. We mapped FAO Land Cover Classification System (LCCS) classes over 22,500 km2 in the San Francisco Bay Area, California using 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery simulated from data acquired by NASA's AVIRIS airborne sensor. Random Forests (RF) and Multiple-Endmember Spectral Mixture Analysis (MESMA) classifiers were applied to the simulated images and accuracies were compared to those from real Landsat 8 images. The RF classifier was superior to MESMA, and multi-temporal data yielded higher accuracy than summer-only data. With RF, hyperspectral data had overall accuracy of 72.2% and 85.1% with full 20-class and reduced 12-class schemes, respectively. Multispectral imagery had lower accuracy. For example, simulated and real Landsat data had 7.5% and 4.6% lower accuracy than HyspIRI data with 12 classes, respectively. In summary, our results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different natural vegetation types, such as spectrally-mixed woodlands and forests.

  7. Modeling and Prediction of Wildfire Hazard in Southern California, Integration of Models with Imaging Spectrometry

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Church, Richard; Ustin, Susan L.; Brass, James A. (Technical Monitor)

    2001-01-01

    Large urban wildfires throughout southern California have caused billions of dollars of damage and significant loss of life over the last few decades. Rapid urban growth along the wildland interface, high fuel loads and a potential increase in the frequency of large fires due to climatic change suggest that the problem will worsen in the future. Improved fire spread prediction and reduced uncertainty in assessing fire hazard would be significant, both economically and socially. Current problems in the modeling of fire spread include the role of plant community differences, spatial heterogeneity in fuels and spatio-temporal changes in fuels. In this research, we evaluated the potential of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data for providing improved maps of wildfire fuel properties. Analysis concentrated in two areas of Southern California, the Santa Monica Mountains and Santa Barbara Front Range. Wildfire fuel information can be divided into four basic categories: fuel type, fuel load (live green and woody biomass), fuel moisture and fuel condition (live vs senesced fuels). To map fuel type, AVIRIS data were used to map vegetation species using Multiple Endmember Spectral Mixture Analysis (MESMA) and Binary Decision Trees. Green live biomass and canopy moisture were mapped using AVIRIS through analysis of the 980 nm liquid water absorption feature and compared to alternate measures of moisture and field measurements. Woody biomass was mapped using L and P band cross polarimetric data acquired in 1998 and 1999. Fuel condition was mapped using spectral mixture analysis to map green vegetation (green leaves), nonphotosynthetic vegetation (NPV; stems, wood and litter), shade and soil. Summaries describing the potential of hyperspectral and SAR data for fuel mapping are provided by Roberts et al. and Dennison et al. To utilize remotely sensed data to assess fire hazard, fuel-type maps were translated into standard fuel models accessible to the FARSITE fire spread simulator. The FARSITE model and BEHAVE are considered industry standards for fire behavior analysis. Anderson level fuels map, generated using a binary decision tree classifier are available for multiple dates in the Santa Monica Mountains and at least one date for Santa Barbara. Fuel maps that will fill in the areas between Santa Barbara and the Santa Monica Mountains study sites are in progress, as part of a NASA Regional Earth Science Application Center, the Southern California Wildfire Hazard Center. Species-level maps, were supplied to fire managing agencies (Los Angeles County Fire, California Department of Forestry). Research results were published extensively in the refereed and non-refereed literature. Educational outreach included funding of several graduate students, undergraduate intern training and an article featured in the California Alliance for Minorities Program (CAMP) Quarterly Journal.

  8. Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Eastwood, Michael; Boardman, Joseph; Richardson, Brandon S.; Rodriguez, Jose I.; Urquiza, Eugenio; Franklin, Brian D.; Gao, Bo-Cai

    2012-01-01

    We report the characteristics of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed for the challenges of coastal ocean research. PRISM has high signal to noise ratio and uniformity, as well as low polarization sensitivity. Acquisition of high quality data has been demonstrated with the first engineering flight.

  9. [Development of Micro-Spectrometer with a Function of Timely Temperature Compensation].

    PubMed

    Bao, Jian-guang; Liu, Zheng-kun; Chen, Huo-yao; Lin, Ji-ping; Fu, Shao-jun

    2015-05-01

    Temperature drift will be brought to Micro-Spectrometer used for demodulating the Varied Line-Space(VLS) grating position sensor on aircraft due to high-low temperature shock. We successfully made a Micro-Spectrometer, for the VLS grating position sensor on aircraft, which still have stable output under temperature shock enviro nment. In order to present a real time temperature compensation scheme, the effects temperature change has on Micro-Spectrometer are analyzed and the traditional cross Czerny-Turner (C-T)optical structure is optimized. Both optical structures are analyzed by optics design software ZEMAX and proved that comparedwithtraditional cross C-T optical structure, the newone can accomplish not only smaller spectrum drift but also spectrum drift with better linearity. Based on the new optical structure. The scheme of using reference wavelength to accomplish real time temperature compensation was proposed and a Micro-fiber Spectrometer was successfully manufactured, whith is with Volume of 80 mm X 70 mmX 70 mm, integration time of 8 ~1 000 ms and FullWidthHalfMaximum(FWHM) of 2 nm. Experiments show that the new spectrometer meets the design requirement. Under high temperature in the range of nearly 60 °C, the standard error of wavelength of this new spectrometer is smaller than 0. 1 nm, and the maximum error of wavelength is 0. 14 nm, which is much smaller than required 0. 3 nm. Innovations of this paper are the schemeof real time temperature compensation, the new cross C-T optical structure and a Micro-fiber Spectrometer based on it.

  10. Nutrient Stress Detection in Corn Using Neural Networks and AVIRIS Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Lee

    2001-01-01

    AVIRIS image cube data has been processed for the detection of nutrient stress in corn by both known, ratio-type algorithms and by trained neural networks. The USDA Shelton, NE, ARS Variable Rate Nitrogen Application (VRAT) experimental farm was the site used in the study. Upon application of ANOVA and Dunnett multiple comparsion tests on the outcome of both the neural network processing and the ratio-type algorithm results, it was found that the neural network methodology provides a better overall capability to separate nutrient stressed crops from in-field controls.

  11. On-line carbon balance of yeast fermentations using miniaturized optical sensors.

    PubMed

    Beuermann, Thomas; Egly, Dominik; Geoerg, Daniel; Klug, Kerris Isolde; Storhas, Winfried; Methner, Frank-Juergen

    2012-03-01

    Monitoring of microbiological processes using optical sensors and spectrometers has gained in importance over the past few years due to its advantage in enabling non-invasive on-line analysis. Near-infrared (NIR) and mid-infrared (MIR) spectrometer set-ups in combination with multivariate calibrations have already been successfully employed for the simultaneous determination of different metabolites in microbiological processes. Photometric sensors, in addition to their low price compared to spectrometer set-ups, have the advantage of being compact and are easy to calibrate and operate. In this work, the detection of ethanol and CO(2) in the exhaust gas during aerobic yeast fermentation was performed by two photometric gas analyzers, and dry yeast biomass was monitored using a fiber optic backscatter set-up. The optical sensors could be easily fitted to the bioreactor and exhibited high robustness during measuring. The ethanol content of the fermentation broth was monitored on-line by measuring the ethanol concentration in the fermentation exhaust and applying a conversion factor. The vapor/liquid equilibrium and the associated conversion factor strongly depend on the process parameter temperature but not on aeration and stirring rate. Dry yeast biomass was determined in-line by a backscattering signal applying a linear calibration. An on-line balance with a recovery rate of 95-97% for carbon was achieved with the use of three optical sensors (two infrared gas analyzers and one fiber optic backscatter set-up). Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Cost effective spectral sensor solutions for hand held and field applications

    NASA Astrophysics Data System (ADS)

    Reetz, Edgar; Correns, Martin; Notni, Gunther

    2015-05-01

    Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.

  13. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  14. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  15. Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques

    NASA Technical Reports Server (NTRS)

    Yuhas, Roberta H.; Boardman, Joseph W.; Goetz, Alexander F. H.

    1993-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive growing seasons (26 September 1989, 22 March 1990, and 7 August 1990) over an area of the High Plains east of Greeley, Colorado (40 deg 20 min N and 104 deg 16 min W). A repeat visit to assess vegetation at its peak growth was flown on 6 June 1993. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling and morphological relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, this area and regions similarly situated could be the first to experience the effects caused by global climate change. During the past 10,000 years there were at least four periods of extensive sand activity due to climate change, followed by periods of landscape stability, as shown in the stratigraphic record of this area.

  16. The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness

    NASA Technical Reports Server (NTRS)

    Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.

    1992-01-01

    High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.

  17. Using imaging spectroscopy to map acidic mine waste

    USGS Publications Warehouse

    Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; Roth, S.

    2000-01-01

    The process of pyrite oxidation at the surface of mine waste may produce acidic water that is gradually neutralized as it drains away from the waste, depositing different Fe-bearing secondary minerals in roughly concentric zones that emanate from mine-waste piles. These Fe-bearing minerals are indicators of the geochemical conditions under which they form. Airborne and orbital imaging spectrometers can be used to map these mineral zones because each of these Fe-bearing secondary minerals is spectrally unique. In this way, imaging spectroscopy can be used to rapidly screen entire mining districts for potential sources of surface acid drainage and to detect acid producing minerals in mine waste or unmined rock outcrops. Spectral data from the AVIRIS instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, CO. Laboratory leach tests of surface samples show that leachate pH is most acidic and metals most mobile in samples from the inner jarosite zone and that leachate pH is near-neutral and metals least mobile in samples from the outer goethite zone.

  18. Clutter characterization within segmented hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve T.; Hoffberg, Michael; North, Patrick

    2007-10-01

    Use of a Mean Class Propagation Model (MCPM) has been shown to be an effective approach in the expedient propagation of hyperspectral data scenes through the atmosphere. In this approach, real scene data are spatially subdivided into regions of common spectral properties. Each sub-region which we call a class possesses two important attributes (1) the mean spectral radiance and (2) the spectral covariance. The use of this attributes can significantly improve throughput performance of computing systems over conventional pixel-based methods. However, this approach assumes that background clutter can be approximated as having multivariate Gaussian distributions. Under such conditions, covariance propagations can be effectively performed from ground through the atmosphere. This paper explores this basic assumption using real-scene Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and examines how the partitioning of the scene into smaller and smaller segments influences local clutter characterization. It also presents a clutter characterization metric that helps explain the migration of the magnitude of statistical clutter from parent class to child sub-classes populations. It is shown that such a metric can be directly related to an approximate invariant between the parent class and its child classes.

  19. Design and experiment of spectrometer based on scanning micro-grating integrating with angle sensor

    NASA Astrophysics Data System (ADS)

    Biao, Luo; Wen, Zhi-yu

    2014-01-01

    A compact, low cost, high speed, non-destructive testing NIR (near infrared) spectrometer optical system based on MOEMS grating device is developed. The MOEMS grating works as the prismatic element and wavelength scanning element in our optical system. The MOEMS grating enables the design of compact grating spectrometers capable of acquiring full spectra using a single detector element. This MOEMS grating is driven by electromagnetic force and integrated with angle sensor which used to monitored deflection angle while the grating working. Comparing with the traditional spectral system, there is a new structure with a single detector and worked at high frequency. With the characteristics of MOEMS grating, the structure of the spectrometer system is proposed. After calculating the parameters of the optical path, ZEMAX optical software is used to simulate the system. According the ZEMAX output file of the 3D model, the prototype is designed by SolidWorks rapidly, fabricated. Designed for a wavelength range between 800 nm and 1500 nm, the spectrometer optical system features a spectral resolution of 16 nm with the volume of 97 mm × 81.7 mm × 81 mm. For the purpose of reduce modulated effect of sinusoidal rotation, spectral intensity of the different wavelength should be compensated by software method in the further. The system satisfies the demand of NIR micro-spectrometer with a single detector.

  20. Wedge imaging spectrometer: application to drug and pollution law enforcement

    NASA Astrophysics Data System (ADS)

    Elerding, George T.; Thunen, John G.; Woody, Loren M.

    1991-08-01

    The Wedge Imaging Spectrometer (WIS) represents a novel implementation of an imaging spectrometer sensor that is compact and rugged and, therefore, suitable for use in drug interdiction and pollution monitoring activities. With performance characteristics equal to comparable conventional imaging spectrometers, it would be capable of detecting and identifying primary and secondary indicators of drug activities and pollution events. In the design, a linear wedge filter is mated to an area array of detectors to achieve two-dimensional sampling of the combined spatial/spectral information passed by the filter. As a result, the need for complex and delicate fore optics is avoided, and the size and weight of the instrument are approximately 50% that of comparable sensors. Spectral bandwidths can be controlled to provide relatively narrow individual bandwidths over a broad spectrum, including all visible and infrared wavelengths. This sensor concept has been under development at the Hughes Aircraft Co. Santa Barbara Research Center (SBRC), and hardware exists in the form of a brassboard prototype. This prototype provides 64 spectral bands over the visible and near infrared region (0.4 to 1.0 micrometers ). Implementation issues have been examined, and plans have been formulated for packaging the sensor into a test-bed aircraft for demonstration of capabilities. Two specific areas of utility to the drug interdiction problem are isolated: (1) detection and classification of narcotic crop growth areas and (2) identification of coca processing sites, cued by the results of broad-area survey and collateral information. Vegetation stress and change-detection processing may also be useful in detecting active from dormant airfields. For pollution monitoring, a WIS sensor could provide data with fine spectral and spatial resolution over suspect areas. On-board or ground processing of the data would isolate the presence of polluting effluents, effects on vegetation caused by airborne or other pollutants, or anomalous ground conditions indicative of buried or dumped toxic materials.

  1. Using endmembers in AVIRIS images to estimate changes in vegetative biomass

    NASA Technical Reports Server (NTRS)

    Smith, Milton O.; Adams, John B.; Ustin, Susan L.; Roberts, Dar A.

    1992-01-01

    Field techniques for estimating vegetative biomass are labor intensive, and rarely are used to monitor changes in biomass over time. Remote-sensing offers an attractive alternative to field measurements; however, because there is no simple correspondence between encoded radiance in multispectral images and biomass, it is not possible to measure vegetative biomass directly from AVIRIS images. Ways to estimate vegetative biomass by identifying community types and then applying biomass scalars derived from field measurements are investigated. Field measurements of community-scale vegetative biomass can be made, at least for local areas, but it is not always possible to identify vegetation communities unambiguously using remote measurements and conventional image-processing techniques. Furthermore, even when communities are well characterized in a single image, it typically is difficult to assess the extent and nature of changes in a time series of images, owing to uncertainties introduced by variations in illumination geometry, atmospheric attenuation, and instrumental responses. Our objective is to develop an improved method based on spectral mixture analysis to characterize and identify vegetative communities, that can be applied to multi-temporal AVIRIS and other types of images. In previous studies, multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA were analyzed and vegetation communities were defined in terms of fractions of reference (laboratory and field) endmember spectra. An advantage of converting an image to fractions of reference endmembers is that, although fractions in a given pixel may vary from image to image in a time series, the endmembers themselves typically are constant, thus providing a consistent frame of reference.

  2. Evaluation of the photochemical reflectance index in AVIRIS imagery

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Roberts, Dar A.; Green, Robert O.

    1995-01-01

    In this paper, we evaluate the potential for extracting the 'photochemical reflectance index' (PRI; previously called the 'physiological reflectance index') from AVIRIS data. This index, which is derived from narrow-band reflectance at 531 and 570 nm, has proven to be a useful indicator of photosynthetic function at the leaf and canopy scales. At the leaf level, PRI varies with photosynthetic capacity, radiation-use efficiency, and vegetation type (unpublished data). This finding is consistent with the hypothesis that vegetation types exhibiting chronically reduced photosynthesis during periods of stress (e.g. drought-tolerant evergreens) invest proportionally more in photoprotective processes than vegetation with high photosynthetic capacity (e.g. crops or deciduous perennials). Vertical transects in tropical and boreal forest canopies have indicated declines in PRI associated with downregulation of photosynthesis at the canopy tops under sunny, dry midday conditions (unpublished data). This reduced PRI in upper canopy levels provides a further basis for examining this signal with the 'view from above' afforded by aircraft overflights. Although many factors could confound interpretation of a subtle physiological signal at the landscape scale, we conducted a preliminary examination of PRI extracted from existing, AVIRIS imagery of Stanford University's Jasper Ridge Biological Preserve obtained on the June 2nd, 1992, overflight. The goal was to use the hyperspectral capabilities of AVIRIS to evaluate the potential of this index for obtaining useful physiological data at the landscape scale. The expectation based on leaf- and canopy-level studies was that regions containing vegetation of reduced photosynthetic capacity (e.g. chaparral or evergreen woodland) would exhibit lower PRI values than regions of high capacity (e.g. deciduous woodland).

  3. NASA AVIRIS Map shows Spectral Signature of 2013 Rim Fire

    NASA Image and Video Library

    2015-04-09

    At left, a NASA AVIRIS map shows the spectral signature of the 2013 Rim fire in and near Yosemite National Park, California, the third largest in the state's history, burning more than 250,000 acres. Almost two years later, forest restoration efforts are still ongoing. Charred wood has a strong signal in the wavelengths shown here in red, so areas that are predominantly red in the image were heavily burned. The wavelengths of green, visible light (the color of vegetation) appear on this map as blue. There are no solid blue patches on the map because no large areas of green, living foliage survived the fire. Purple, a mixture of red and blue, indicates an area where charred wood and living plants are mingled. This image provides far more information about the state of the post-fire vegetation than the view on the right, which is what an observer flying overhead would see. AVIRIS is a unique NASA science instrument that measures the complete solar reflected portion of the electromagnetic spectrum with unmatched spectral range, calibration accuracy and signal-to-noise ratio. AVIRIS spectra are measured from 370 to 2,500 nanometers at 9.8-nanometer intervals. Images are acquired with 20-, 6- or 4-meter (66-, 20, or 13-feet) spatial resolution with a 34 degree swath. Up to 100 million spectra are measured in image format on each flight. The spectral image measurements are provided in orthorectified (geometrically corrected) format for direct use by scientists. http://photojournal.jpl.nasa.gov/catalog/PIA19361

  4. Electron-proton spectrometer design summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The electron-proton spectrometer (EPS) will be placed aboard the Skylab in order to provide data from which electron and proton radiation dose can be determined. The EPS has five sensors, each consisting of a shielded silicon detector. These provide four integral electron channels and five integral proton channels from which can be deduced four differential proton increments.

  5. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    PubMed Central

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions. PMID:23983449

  6. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  7. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    PubMed

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  8. Regularization destriping of remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle

    2017-07-01

    We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  9. Indian Ocean METOC Imager

    DTIC Science & Technology

    2002-09-30

    onr.navy.mil Mr. Wallace Harrison, GIFTS Program Manager NASA EO-3, New Millenium Program, Langley Research Center phone: 757-864-6680 fax: 757-864...Observing 3 Geostationary Imaging Fourier Transform Spectrometer ( GIFTS ) sensor development to provide this advanced capability. The IOMI program will...share costs for the GIFTS sensor development, the spacecraft bus, provide lifetime enhancements to the GIFTS sensor, and 1 Report Documentation Page

  10. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  11. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    PubMed

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  12. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    PubMed Central

    Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-01-01

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929

  13. PROGRAM ASPECT - FOR REMOTE SENSING OF AIRBORNE PLUMES

    EPA Science Inventory

    The SAFEGUARD program is a multi-sensor program for the detection and imaging of chemical plumes and vapors. The system is composed of an airborne sensor suite including an infrared line scanner and a high-speed fourier transform infrared spectrometer. Both systems are integrat...

  14. AVIRIS spectra of California wetlands

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  15. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  16. Characterizing the Performance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Calle, C. I.; Clements, J. S.

    2013-01-01

    Insulators need to be discharged after each wheel revolution. Sensor responses repeatable within one standard deviation in the noise of the signal. Insulators may not need to be cleaned after each revolution. Parent Technology- Mars Environmental Compatibility Assessment/Electrometer Electrostatic sensors with dissimilar cover insulators Protruding insulators tribocharge against regolith simulant Developed for use on the scoop for the 2001 Mars Odyssey lander Wheel Electrostatic Spectrometer Embedded electrostatic sensors in prototype Martian rover wheel If successful, this technology will enable constant electrostatic testing on Mars Air ionizing fan used to neutralize the surface charge on cover insulators . WES rolled on JSClA lunar simulant Control experiment -Static elimination not conducted between trials -Capacitor discharged after each experiment Charge neutralization experiment -Static elimination conducted between trials -Capacitor discharged after each experiment. Air ionizing fan used on insulators after each wheel revolution Capacitor discharged after each trial Care was taken to roll WES with same speed/pressure Error bars represent one standard deviation in the noise of e ach sensor

  17. Spectral identification of minerals using imaging spectrometry data: Evaluating the effects of signal to noise and spectral resolution using the tricorder algorithm

    NASA Technical Reports Server (NTRS)

    Swayze, Gregg A.; Clark, Roger N.

    1995-01-01

    The rapid development of sophisticated imaging spectrometers and resulting flood of imaging spectrometry data has prompted a rapid parallel development of spectral-information extraction technology. Even though these extraction techniques have evolved along different lines (band-shape fitting, endmember unmixing, near-infrared analysis, neural-network fitting, and expert systems to name a few), all are limited by the spectrometer's signal to noise (S/N) and spectral resolution in producing useful information. This study grew from a need to quantitatively determine what effects these parameters have on our ability to differentiate between mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE, MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-resolution ranges. The study evaluates the performance of the Tricorder algorithm, in differentiating between mineral spectra in the 0.4-2.5 micrometer spectral region. The strength of the Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder algorithm is unparalleled among spectral-extraction techniques and that the results from this study, although dealing with minerals, will have direct applications to spectral identification in other disciplines.

  18. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA JPL Publ. 96-4, vol. 1, pp. 105-113. Lockwood, Ronald B., Thomas W. Cooley, Richard M. Nadile, James A. Gardner, Peter S. Armstrong, Abraham M. Payton, Thom M. Davis, Stanley D. Straight, Thomas G. Chrien, Edward L. Gussin, and David Makowski (2006). Advanced Responsive Tactically-Effective Military Imaging Spectrometer (ARTEMIS) Design, in Proceedings of the 2006 IEEE International Geoscience and Remote Sensing Symposium, 31 July-4 August 2006, Denver, Colorado. Ramsey, Michael S., and Luke P. Flynn (2004). Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA’s Earth Observing System, Jour. of Volcanology and Geothermal Research, vol. 135, pp. 1-11. Young, Joseph (2009). EO-1 Weekly status report for September 24-30, 2009, Earth Science Mission Operations (ESMO) Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771.

  19. Evolution of Cometary Activity at 67P/Churyumov-Gerasimenko as seen by ROSINA/Rosetta

    NASA Astrophysics Data System (ADS)

    Jäckel, A.; Altwegg, K.; Balsiger, H.; Calmonte, U.; Gasc, S.; Le Roy, L.; Rubin, M.; Tzou, C. Y.; Wurz, P.; Bieler, A.; Berthelier, J.-J.; Fiethe, B.; Hässig, M.; deKeyser, J.; Mall, U.; Rème, H.

    2015-10-01

    Since nine months the European Space Agency's spacecraft Rosetta, with the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard, is in the comet escort phase. ROSINA is a suite of three instruments, consisting of the COmetary Pressure Sensor (COPS), the Double Focusing Mass Spectrometer (DFMS), and the Reflectron-type Time-Of-Flight (RTOF) mass spectrometer [1]. The two mass spectrometers measure in situ the neutral and ionized volatile material in the coma of comet 67P/Churyumov- Gerasimenko (67P/C-G). With COPS we are able to derive the total gas density, bulk velocities and temperatures of the coma.

  20. Operations and Maintenance Manual, Atmospheric Contaminant Sensor, Revision B.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The sensor is a mass spectrometer system which continuously monitors the atmospheric constituents of hydrogen, water vapor, nitrogen, oxygen, and carbon dioxide, and monitors the Freons on a demand sampling basis. The manual provides a system description, operational procedures, and maintenance and troubleshooting instructions. Circuit diagrams…

  1. The DMSP Space Weather Sensors Data Archive Listing (1982-2013) and File Formats Descriptions

    DTIC Science & Technology

    2014-08-01

    environment sensors including the auroral particle spectrometer (SSJ), the fluxgate magnetometer (SSM), the topside thermal plasma monitor (SSIES... Fluxgate Magnetometer (SSM) for the Defense Meteorological Satellite Program (DMSP) Block 5D-2, Flight 7, Instrument Papers, AFGL-TR-84-0225; ADA155229...Flux) SSM The fluxgate magnetometer . (Special Sensor, Magnetometer ) SSULI The ultraviolet limb imager SSUSI The ultraviolet spectrographic imager

  2. Calibration, Sensor Model Improvements and Uncertainty Budget of the Airborne Imaging Spectrometer APEX

    NASA Astrophysics Data System (ADS)

    Hueni, A.

    2015-12-01

    ESA's Airborne Imaging Spectrometer APEX (Airborne Prism Experiment) was developed under the PRODEX (PROgramme de Développement d'EXpériences scientifiques) program by a Swiss-Belgian consortium and entered its operational phase at the end of 2010 (Schaepman et al., 2015). Work on the sensor model has been carried out extensively within the framework of European Metrology Research Program as part of the Metrology for Earth Observation and Climate (MetEOC and MetEOC2). The focus has been to improve laboratory calibration procedures in order to reduce uncertainties, to establish a laboratory uncertainty budget and to upgrade the sensor model to compensate for sensor specific biases. The updated sensor model relies largely on data collected during dedicated characterisation experiments in the APEX calibration home base but includes airborne data as well where the simulation of environmental conditions in the given laboratory setup was not feasible. The additions to the model deal with artefacts caused by environmental changes and electronic features, namely the impact of ambient air pressure changes on the radiometry in combination with dichroic coatings, influences of external air temperatures and consequently instrument baffle temperatures on the radiometry, and electronic anomalies causing radiometric errors in the four shortwave infrared detector readout blocks. Many of these resolved issues might be expected to be present in other imaging spectrometers to some degree or in some variation. Consequently, the work clearly shows the difficulties of extending a laboratory-based uncertainty to data collected under in-flight conditions. The results are hence not only of interest to the calibration scientist but also to the spectroscopy end user, in particular when commercial sensor systems are used for data collection and relevant sensor characteristic information tends to be sparse. Schaepman, et al, 2015. Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX). RSE, 158, 207-219.

  3. Fiber-optic temperature sensor using a spectrum-modulating semiconductor etalon

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Beheim, Glenn; Anthan, Donald J.

    1987-01-01

    Described is a fiber-optic temperature sensor that uses a spectrum modulating SiC etalon. The spectral output of this type of sensor may be analyzed to obtain a temperature measurement which is largely independent of the transmission properties of the sensor's fiber-optic link. A highly precise laboratory spectrometer is described in detail, and this instrument is used to study the properties of this type of sensor. Also described are a number of different spectrum analyzers that are more suitable for use in a practical thermometer.

  4. Operations and maintenance manual, atmospheric contaminant sensor, revision B

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sensor is a mass spectrometer system which continuously monitors the atmospheric constituents of hydrogen, water vapor, nitrogen, oxygen, and carbon dioxide, and monitors the Freons on a demand sampling basis. The manual provides a system description, operational procedures, and maintenance and troubleshooting instructions. Circuit diagrams are included.

  5. Miniaturized Environmental Monitoring Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensormore » would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.« less

  6. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    NASA Astrophysics Data System (ADS)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  7. Skylab S191 visible-infrared spectrometer. [in Earth Resources Experiment Package

    NASA Technical Reports Server (NTRS)

    Barnett, T. L.; Juday, R. D.

    1977-01-01

    The paper describes the S191 visible-infrared spectrometer of the Skylab Earth Resources Experiment Package - a manually pointed two-channel instrument operating in the reflective (0.4-2.5 micron) and thermal emissive (6-15 micron) regions. A sensor description is provided and attention is given to data quality in the short wavelength and thermal infrared regions.

  8. A retarding ion mass spectrometer for the Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Wright, W.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  9. Understanding Variability in the AVIRIS-Derived Parameters from Vegetation Cover

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.

    2000-01-01

    This project was carried out in two phases, the first was an investigation of the possible sources of variability in the canopy leaf chemistry parameters derived from AVERJS data on a year-to-year basis, and the second was a follow-on effort to improve the atmospheric correction program ATREM as well as to provide support to the community on the use of ATREM. This final report embodies a general review of the results obtained over the life of the contract as well as detailed interim reports and copies of the six papers published in AVIRIS Workshop Proceedings over the last 3 years.

  10. Parallel design of JPEG-LS encoder on graphics processing units

    NASA Astrophysics Data System (ADS)

    Duan, Hao; Fang, Yong; Huang, Bormin

    2012-01-01

    With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.

  11. Construction of a Chemical Sensor/Instrumentation Package Using Fiber Optic and Miniaturization Technology

    NASA Technical Reports Server (NTRS)

    Newton, R. L.

    1999-01-01

    The objective of this research was to construct a chemical sensor/instrumentation package that was smaller in weight and volume than conventional instrumentation. This reduction in weight and volume is needed to assist in further reducing the cost of launching payloads into space. To accomplish this, fiber optic sensors, miniaturized spectrometers, and wireless modems were employed. The system was evaluated using iodine as a calibration analyte.

  12. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  13. Localization and Quantification of Trace-gas Fugitive Emissions Using a Portable Optical Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Eric; Teng, Chu; van Kessel, Theodore

    We present a portable optical spectrometer for fugitive emissions monitoring of methane (CH4). The sensor operation is based on tunable diode laser absorption spectroscopy (TDLAS), using a 5 cm open path design, and targets the 2ν3 R(4) CH4 transition at 6057.1 cm-1 (1651 nm) to avoid cross-talk with common interfering atmospheric constituents. Sensitivity analysis indicates a normalized precision of 2.0 ppmv∙Hz-1/2, corresponding to a noise-equivalent absorption (NEA) of 4.4×10-6 Hz-1/2 and minimum detectible absorption (MDA) coefficient of αmin = 8.8×10-7 cm-1∙Hz-1/2. Our TDLAS sensor is deployed at the Methane Emissions Technology Evaluation Center (METEC) at Colorado State University (CSU) formore » initial demonstration of single-sensor based source localization and quantification of CH4 fugitive emissions. The TDLAS sensor is concurrently deployed with a customized chemi-resistive metal-oxide (MOX) sensor for accuracy benchmarking, demonstrating good visual correlation of the concentration time-series. Initial angle-of-arrival (AOA) results will be shown, and development towards source magnitude estimation will be described.« less

  14. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  15. Satellite and airborne oil spill remote sensing: State of the art and application to the BP DeepWater Horizon oil spill

    USGS Publications Warehouse

    Leifer, I.; Clark, R.; Jones, C.; Holt, B.; Svejkovsky, J.; Swayze, G.

    2011-01-01

    The vast, persistent, and unconstrained oil release from the DeepWater Horizon (DWH) challenged the spill response, which required accurate quantitative oil assessment at synoptic and operational scales. Experienced observers are the mainstay of oil spill response. Key limitations are weather, scene illumination geometry, and few trained observers, leading to potential observer bias. Aiding the response was extensive passive and active satellite and airborne remote sensing, including intelligent system augmentation, reviewed herein. Oil slick appearance strongly depends on many factors like emulsion composition and scene geometry, yielding false positives and great thickness uncertainty. Oil thicknesses and the oil to water ratios for thick slicks were derived quantitatively with a new spectral library approach based on the shape and depth of spectral features related to C-H vibration bands. The approach used near infrared, imaging spectroscopy data from the AVIRIS (Airborne Visual/InfraRed Imaging Spectrometer) instrument on the NASA ER-2 stratospheric airplane. Extrapolation to the total slick used MODIS satellite visual-spectrum broadband data, which observes sunglint reflection from surface slicks; i.e., indicates the presence of oil and/or surfactant slicks. Oil slick emissivity is less than seawater's allowing MODIS thermal infrared (TIR) nighttime identification; however, water temperature variations can cause false positives. Some strong emissivity features near 6.7 and 9.7 ??m could be analyzed as for the AVIRIS short wave infrared features, but require high spectral resolution data. TIR spectral trends can allow fresh/weathered oil discrimination. Satellite Synthetic Aperture Radar (SSAR) provided synoptic data under all-sky conditions by observing oil dampening of capillary waves; however, SSAR typically cannot discriminate thick from thin oil slicks. Airborne UAVSAR's significantly greater signal-to-noise ratio and fine spatial resolution allowed successful mapping of oil slick thickness-related patterns. Laser induced fluorescence (LIF) can quantify oil thicknesses by Raman scattering line distortions, but saturates for >20-??m thick oil and depends on oil optical characteristics and sea state. Combined with laser bathymetry LIF can provide submerged oil remote sensing.

  16. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill

    USGS Publications Warehouse

    Leifer, Ira; Lehr, William J.; Simecek-Beatty, Debra; Bradley, Eliza; Clark, Roger N.; Dennison, Philip E.; Hu, Yongxiang; Matheson, Scott; Jones, Cathleen E; Holt, Benjamin; Reif, Molly; Roberts, Dar A.; Svejkovsky, Jan; Swayze, Gregg A.; Wozencraft, Jennifer M.

    2012-01-01

    The vast and persistent Deepwater Horizon (DWH) spill challenged response capabilities, which required accurate, quantitative oil assessment at synoptic and operational scales. Although experienced observers are a spill response's mainstay, few trained observers and confounding factors including weather, oil emulsification, and scene illumination geometry present challenges. DWH spill and impact monitoring was aided by extensive airborne and spaceborne passive and active remote sensing.Oil slick thickness and oil-to-water emulsion ratios are key spill response parameters for containment/cleanup and were derived quantitatively for thick (> 0.1 mm) slicks from AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data using a spectral library approach based on the shape and depth of near infrared spectral absorption features. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite, visible-spectrum broadband data of surface-slick modulation of sunglint reflection allowed extrapolation to the total slick. A multispectral expert system used a neural network approach to provide Rapid Response thickness class maps.Airborne and satellite synthetic aperture radar (SAR) provides synoptic data under all-sky conditions; however, SAR generally cannot discriminate thick (> 100 μm) oil slicks from thin sheens (to 0.1 μm). The UAVSAR's (Uninhabited Aerial Vehicle SAR) significantly greater signal-to-noise ratio and finer spatial resolution allowed successful pattern discrimination related to a combination of oil slick thickness, fractional surface coverage, and emulsification.In situ burning and smoke plumes were studied with AVIRIS and corroborated spaceborne CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations of combustion aerosols. CALIPSO and bathymetry lidar data documented shallow subsurface oil, although ancillary data were required for confirmation.Airborne hyperspectral, thermal infrared data have nighttime and overcast collection advantages and were collected as well as MODIS thermal data. However, interpretation challenges and a lack of Rapid Response Products prevented significant use. Rapid Response Products were key to response utilization—data needs are time critical; thus, a high technological readiness level is critical to operational use of remote sensing products. DWH's experience demonstrated that development and operationalization of new spill response remote sensing tools must precede the next major oil spill.

  17. A Near-Infrared Spectrometer Based on Novel Grating Light Modulators

    PubMed Central

    Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin

    2009-01-01

    A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification. PMID:22574065

  18. A near-infrared spectrometer based on novel grating light modulators.

    PubMed

    Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin

    2009-01-01

    A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification.

  19. Spectral Characterization of Suspected Acid Deposition Damage in Red Spruce (picea Rubens) Stands from Vermont

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.

    1985-01-01

    In an attempt to demonstrate the utility of remote sensing systems to monitor sites of suspected acid rain deposition damage, intensive field activities, coupled with aircraft overflights, were centered on red spruce stands in Vermont during August and September of 1984. Remote sensing data were acquired using the Airborne Imaging Spectrometer, Thematic Mapper Simulator, Barnes Model 12 to 1000 Modular Multiband Radiometer and Spectron Engineering Spectrometer (the former two flown on the NASA C-130; the latter two on A Bell UH-1B Iroquois Helicopter). Field spectral data were acquired during the week of the August overflights using a high spectral resolution spectrometer and two broad-band radiometers. Preliminary analyses of these data indicate a number of spectral differences in vegetation between high and low damage sites. Some of these differences are subtle, and are observable only with high spectral resolution sensors; others are less subtle and are observable using broad-band sensors.

  20. Snapshot Imaging Spectrometry in the Visible and Long Wave Infrared

    NASA Astrophysics Data System (ADS)

    Maione, Bryan David

    Imaging spectrometry is an optical technique in which the spectral content of an object is measured at each location in space. The main advantage of this modality is that it enables characterization beyond what is possible with a conventional camera, since spectral information is generally related to the chemical composition of the object. Due to this, imaging spectrometers are often capable of detecting targets that are either morphologically inconsistent, or even under resolved. A specific class of imaging spectrometer, known as a snapshot system, seeks to measure all spatial and spectral information simultaneously, thereby rectifying artifacts associated with scanning designs, and enabling the measurement of temporally dynamic scenes. Snapshot designs are the focus of this dissertation. Three designs for snapshot imaging spectrometers are developed, each providing novel contributions to the field of imaging spectrometry. In chapter 2, the first spatially heterodyned snapshot imaging spectrometer is modeled and experimentally validated. Spatial heterodyning is a technique commonly implemented in non-imaging Fourier transform spectrometry. For Fourier transform imaging spectrometers, spatial heterodyning improves the spectral resolution trade space. Additionally, in this chapter a unique neural network based spectral calibration is developed and determined to be an improvement beyond Fourier and linear operator based techniques. Leveraging spatial heterodyning as developed in chapter 2, in chapter 3, a high spectral resolution snapshot Fourier transform imaging spectrometer, based on a Savart plate interferometer, is developed and experimentally validated. The sensor presented in this chapter is the highest spectral resolution sensor in its class. High spectral resolution enables the sensor to discriminate narrowly spaced spectral lines. The capabilities of neural networks in imaging spectrometry are further explored in this chapter. Neural networks are used to perform single target detection on raw instrument data, thereby eliminating the need for an explicit spectral calibration step. As an extension of the results in chapter 2, neural networks are once again demonstrated to be an improvement when compared to linear operator based detection. In chapter 4 a non-interferometric design is developed for the long wave infrared (wavelengths spanning 8-12 microns). The imaging spectrometer developed in this chapter is a multi-aperture filtered microbolometer. Since the detector is uncooled, the presented design is ultra-compact and low power. Additionally, cost effective polymer absorption filters are used in lieu of interference filters. Since, each measurement of the system is spectrally multiplexed, an SNR advantage is realized. A theoretical model for the filtered design is developed, and the performance of the sensor for detecting liquid contaminants is investigated. Similar to past chapters, neural networks are used and achieve false detection rates of less than 1%. Lastly, this dissertation is concluded with a discussion on future work and potential impact of these devices.

  1. Cometary Plasma Probed by Rosetta

    NASA Astrophysics Data System (ADS)

    Galand, Marina; Vigren, Erik; Raghuram, Susarla; Schwartz, Steve; Eriksson, Anders; Edberg, Niklas; Lebreton, Jean-Pierre; Henri, Pierre; Burch, Jim; Fuselier, Stephen; Haessig, Myrtha; Mandt, Kathy; Altwegg, Kathrin; Tzou, Chia-You

    2015-04-01

    In Fall 2014, comet 67P/Churyumov-Gerasimenko, the main target of the Rosetta mission, was at 3 AU from the Sun. Its outgassing rate was only of the order of 5×1025 s-1 based on Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) / Cometary Pressure Sensor (COPS). Despite such a thin coma, a plasma of cometary origin has been detected by Rosetta Plasma Consortium (RPC) sensors and ROSINA/ Double Focusing Mass Spectrometer (DFMS). Close to the comet they have revealed the presence of a cometary ionosphere, with a hot electron population, consistent with the deposition of Extreme UltraViolet (EUV) solar radiation. We will present a comparison between RPC sensors and an energy deposition model in terms of suprathermal electron intensities [RPC/ Ion and Electron Sensor (IES)] and electron temperature and density [RPC/ LAngmuir Probe (LAP) and RPC/ Mutual Impedance Probe (MIP)]. We will also compare ion composition among the main species, between our ionospheric model and ROSINA/DFMS. We will discuss effects of the space environment on the cometary plasma. Finally, we will highlight any evolution in the cometary plasma as the comet is getting closer to perihelion.

  2. The Portable Remote Imaging Spectrometer (PRISM) Coastal Ocean Sensor

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; VanGorp, Byron E.; Green, Robert O.; Eastwppd, Michael; Wilson, Daniel W.; Richardson, Brandon; Dierssen, Heidi

    2012-01-01

    PRISM is an airborne pushbroom imaging spectrometer intended to address the needs of airborne coastal ocean science research. Its critical characteristics are high throughput and signal-to-noise ratio, high uniformity of response to reduce spectral artifacts, and low polarization sensitivity. We give a brief overview of the instrument and results from laboratory calibration measurements regarding the spatial, spectral, radiometric and polarization characteristics.

  3. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  4. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production

    PubMed Central

    Domingues Franceschini, Marston Héracles; Bartholomeus, Harm; van Apeldoorn, Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-01-01

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm−2), leaf area index (RMSE = 0.67 m2·m−2), canopy chlorophyll (RMSE = 0.24 g·m−2) and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm−2, 0.85 m2·m−2, 0.28 g·m−2 and 6.8%, respectively), for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical sensors, and their integration, have great potential for monitoring this specific organic cropping system. PMID:28629159

  5. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production.

    PubMed

    Domingues Franceschini, Marston Héracles; Bartholomeus, Harm; van Apeldoorn, Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-06-18

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm -2 ), leaf area index (RMSE = 0.67 m²·m -2 ), canopy chlorophyll (RMSE = 0.24 g·m -2 ) and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm -2 , 0.85 m²·m -2 , 0.28 g·m -2 and 6.8%, respectively), for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CI g provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical sensors, and their integration, have great potential for monitoring this specific organic cropping system.

  6. Surface emissivity and temperature retrieval for a hyperspectral sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrievesmore » emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.« less

  7. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm

    NASA Technical Reports Server (NTRS)

    Yuhas, Roberta H.; Goetz, Alexander F. H.; Boardman, Joe W.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive seasons of the year (26 Sep. 1989, 22 Mar. 1990, and 7 Aug. 1990) over an area of the High Plains east of Greeley, Colorado. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, climate models indicate that the High Plains could be one of the first areas to experience changes in climate caused by either global warming or cooling. During the past 10,000 years there were at least three periods of extensive sand activity, followed by periods of landscape stability, as shown in the stratigraphic record of this area. Therefore, if the past is an indication of the future, the monitoring of this landscape and its sensitive ecosystem is important for early detection of regional and global climate change.

  8. [Study of automatic marine oil spills detection using imaging spectroscopy].

    PubMed

    Liu, De-Lian; Han, Liang; Zhang, Jian-Qi

    2013-11-01

    To reduce artificial auxiliary works in oil spills detection process, an automatic oil spill detection method based on adaptive matched filter is presented. Firstly, the characteristics of reflectance spectral signature of C-H bond in oil spill are analyzed. And an oil spill spectral signature extraction model is designed by using the spectral feature of C-H bond. It is then used to obtain the reference spectral signature for the following oil spill detection step. Secondly, the characteristics of reflectance spectral signature of sea water, clouds, and oil spill are compared. The bands which have large difference in reflectance spectral signatures of the sea water, clouds, and oil spill are selected. By using these bands, the sea water pixels are segmented. And the background parameters are then calculated. Finally, the classical adaptive matched filter from target detection algorithms is improved and introduced for oil spill detection. The proposed method is applied to the real airborne visible infrared imaging spectrometer (AVIRIS) hyperspectral image captured during the deepwater horizon oil spill in the Gulf of Mexico for oil spill detection. The results show that the proposed method has, high efficiency, does not need artificial auxiliary work, and can be used for automatic detection of marine oil spill.

  9. Low Altitude AVIRIS Data for Mapping Land Cover in Yellowstone National Park: Use of Isodata Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joe

    2001-01-01

    Yellowstone National Park (YNP) contains a diversity of land cover. YNP managers need site-specific land cover maps, which may be produced more effectively using high-resolution hyperspectral imagery. ISODATA clustering techniques have aided operational multispectral image classification and may benefit certain hyperspectral data applications if optimally applied. In response, a study was performed for an area in northeast YNP using 11 select bands of low-altitude AVIRIS data calibrated to ground reflectance. These data were subjected to ISODATA clustering and Maximum Likelihood Classification techniques to produce a moderately detailed land cover map. The latter has good apparent overall agreement with field surveys and aerial photo interpretation.

  10. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too.

  11. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of acidic drainage that were identified remotely.

  12. Infrared Multispectral Sensor Program, Phase 2. Field Measurements, Analysis and Modeling. Volume 1. Fourier Transform Spectrometer Sensor Characterization.

    DTIC Science & Technology

    1994-05-01

    TskY=250K) ... 5-27 6-1. Treeline Correlation With 10.1 Microns ...................... 6-2 6-2. Mean Contrast: CARC Panel vs. Treeline ...6-3 6-3. CARC Panel and Treeline .............................. 6-5 6-4. Signal-to-Clutter Ratio for CARC Panel vs. Treeline ............. 6-6 6...5. Low Emissivity Panel and Treeline ......................... 6-7 xii TABLES 4-1: Sensor Characterization Test Summary ....................... 4-2 4

  13. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  14. Preliminary results seen with Rosetta/ROSINA: early cometary activity of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gasc, Sebastien; Altwegg, Kathrin; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu; Wurz, Peter; Fiethe, Björn; Korth, Axel; Rème, Henri

    2014-11-01

    On 1 August 2014, the ROSETTA spacecraft approached the comet 67P/Churyumov-Gerasimenko (67P/CG) close enough to start its detailed characterisation. In this phase, the distance between Rosetta and 67P/CG is below 1’000 km, at a heliocentric distance of less than 3.6 AU. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) [1] measures the composition of 67P/CG’s atmosphere and ionosphere, and additionally derives the bulk velocity of gas. ROSINA consists of the COmetary Pressure Sensor (COPS) and two mass spectrometers for the analysis of neutral gas and cometary ions in the coma of the comet: the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time Of Flight mass spectrometer (RTOF). Since beginning of August, the ROSINA sensors are continuously monitoring the density and chemical composition of the coma of 67P/CG. The goal of this work is not only to determine the abundance of major species like CO2, CO, and H2O, but also to analyse the development of the composition as a function of the heliocentric distance. We will present the first mass spectra of RTOF as well as the total density and the molecular composition measurements obtained at 67P/CG.

  15. Classification of the LCVF AVIRIS test site with a Kohonen artificial neural network

    NASA Technical Reports Server (NTRS)

    Merenyi, Erzsebet; Singer, Robert B.; Farrand, William H.

    1993-01-01

    We present a classification of an AVIRIS spectral image of the Lunar Crater Volcanic Field (LCVF). Geologic mapping from such data is made possible by distinctive mineral signatures: absorption features and the shape of the spectral continuum. The subtle spectral shape differences between some of the geological units in this scene along with the high dimensionality of the spectral presents a challenging pattern recognition task. We found an artificial neural network powerful in separating 13 geological units based on the full spectral resolution. The LCVF, in northern Nye County, Nevada, was the primary focus of the NASA-sponsored Geologic Remote Sensing Field Experiment in the summer of 1989. It consists of over 100 square miles of Quaternary basaltic pyroclastic and flow deposits. These deposits lie atop ignimbrites and silicic lava flows of Tertiary age and in turn are overlain by Quaternary alluvial and playa deposits. This AVIRIS image was collected on September 29, 1989 at 11:44 at 11:44 PDT. The 256-by-256 pixel subsection in this study contains oxidized basaltic cinder deposits, the southern half of the Lunar Lake playa, and outcrops of the Rhyollite of Big Sand Spring Valley. Vegetation in LCVF is sparse, but locally abundant within washes and near springs.

  16. Relationships of soil, grass, and bedrock over the Kaweah serpentine melange through spectral mixture analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    1991-01-01

    A linear mixing model is used to model the spectral variability of an AVIRIS scene from the western foothills of the Sierra Nevada and calibrate these radiance data to reflectance. Five spectral endmembers from the AVIRIS data, plus an ideal 'shade' endmember were required to model the continuum reflectance of each pixel in the image. Three of the endmembers were interpreted to model the surface constituents green vegetation, dry grass, and illumination. These are the main transient surface constituents that are expected to change with shifts in land use or climatic influences and viewing conditions ('shade' only). The spectral distinction between the other three endmembers is very small, yet the spatial distributions are coherent and interpretable. These distributions cross anthropogenic and vegetation boundaries and are best interpreted as different soil types. Comparison of the fraction images to the bedrock geology maps indicates that substrate composition must be a factor contributing to the spectral properties of these endmembers. Detailed examination of the reflectance spectra of the three soil endmembers reveals that differences in the amount of ferric and ferrous iron and/or organic constituents in the soils is largely responsible for the differences in spectral properties of these endmembers.

  17. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has been applied to map the distributions of minerals in soils and rocks; however, its application to characterize vegetation cover has been less widespread than SFA. Using IS data and the USGS Processing Routines in IDL for Spectroscopic Measurements (PRISM; http://pubs.usgs.gov/of/2011/1155/), this talk will examine requirements for and limitations in applying SFA and SFC to characterize vegetation. A time series of Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data collected in the marshes of Louisiana following the Deepwater Horizon oil spill will be used to examine the impact of varying leaf water content on the shapes of the SWIR 1700, 2100, and 2300 nm features and the implications of these changes on vegetation identification and biochemical estimation. The USGS collection of HyMap data over Afghanistan, the largest terrestrial coverage of IS data to date, will be used to demonstrate the characterization of vegetation in arid and semi-arid regions, in which chlorophyll absorption is often weak and soil and rock mineral absorption features overlap vegetation features. Hyperion data, overlapping the HyMap data, will be presented to illustrate the complications that arise when signal-to-noise is low. The benefits of and challenges to applying a spectroscopic remote sensing approach to imaging spectrometer data will be discussed.

  18. Data Processing for the Space-Based Desis Hyperspectral Sensor

    NASA Astrophysics Data System (ADS)

    Carmona, E.; Avbelj, J.; Alonso, K.; Bachmann, M.; Cerra, D.; Eckardt, A.; Gerasch, B.; Graham, L.; Günther, B.; Heiden, U.; Kerr, G.; Knodt, U.; Krutz, D.; Krawcyk, H.; Makarau, A.; Miller, R.; Müller, R.; Perkins, R.; Walter, I.

    2017-05-01

    The German Aerospace Center (DLR) and Teledyne Brown Engineering (TBE) have established a collaboration to develop and operate a new space-based hyperspectral sensor, the DLR Earth Sensing Imaging Spectrometer (DESIS). DESIS will provide spacebased hyperspectral data in the VNIR with high spectral resolution and near-global coverage. While TBE provides the platform and infrastructure for operation of the DESIS instrument on the International Space Station, DLR is responsible for providing the instrument and the processing software. The DESIS instrument is equipped with novel characteristics for an imaging spectrometer such high spectral resolution (2.55 nm), a mirror pointing unit or a CMOS sensor operated in rolling shutter mode. We present here an overview of the DESIS instrument and its processing chain, emphasizing the effect of the novel characteristics of DESIS in the data processing and final data products. Furthermore, we analyse in more detail the effect of the rolling shutter on the DESIS data and possible mitigation/correction strategies.

  19. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullom, Joel

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced tomore » the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.« less

  20. Microspectrometers: an industry and instrumentation overview

    NASA Astrophysics Data System (ADS)

    Neece, Gregory A.

    2008-08-01

    Microspectrometers, miniature spectrometers, portable spectrometers, or Fiber Optic Spectrometers are some of the names typically given to the class small spectrometers that are derived from simple, fixed optics, and low cost detector arrays. The author will use these terms interchangeably. This class of instrument has been available for over 18 years, gaining industry acceptance with each year. From a very basic optical platform to sophisticated instrumentation for scientific investigation and process control, this class of instrument has evolved substantially since its introduction to the market. For instance it is now possible to cover the range from 200 - 2,500 nm utilizing only two channels of spectrometers with either synchronous or asynchronous channel control. On board processing and memory have enabled the instruments to become fully automated, stand alone sensors communicating with their environment via analog, digital, USB2 and even wireless protocols. New detectors have entered the market enabling solutions "tuned" to the demands of specific applications.

  1. In Situ Space Gas Dynamic Measurements by the ROSINA Comet Pressure Sensor COPS Onboard Rosetta Spacecraft

    NASA Astrophysics Data System (ADS)

    Tzou, Chia-Yu; Altwegg, Kathrin; Fiethe, Björn; Gasc, Sébastien; Rubin, Martin

    2015-04-01

    Rosetta is part of the cornerstone missions executed by the European Space Agency. It is the first space mission to orbit and also land on a comet. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The COmet Pressure Sensor (COPS) includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux. The combination of these two gauges makes COPS capable to derive the gas dynamics (velocity and temperature) at the location of the spacecraft. Over several months Rosetta has been carrying out a close study of comet 67P/Churyumov-Gerasimenko. In early August 2014 COPS detected the faint and expanding atmosphere of the comet while it was still outside of 3.5 AU from the Sun. We will present ROSINA COPS observations of the evolution and gas dynamics of the cometary coma following these first observations until spring 2015. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.

  2. Multi-mode Observations of Cloud-to-Ground Lightning Strokes

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Smith, B. J.; Clemenson, M. D.; Zollweg, J. D.

    2015-12-01

    We present hyper-temporal and hyper-spectral data collected using a suite of three Phantom high-speed cameras configured to observe cloud-to-ground lightning strokes. The first camera functioned as a contextual imager to show the location and structure of the strokes. The other two cameras were operated as slit-less spectrometers, with resolutions of 0.2 to 1.0 nm. The imaging camera was operated at a readout rate of 48,000 frames per second and provided an image-based trigger mechanism for the spectrometers. Each spectrometer operated at a readout rate of 400,000 frames per second. The sensors were deployed on the southern edge of Albuquerque, New Mexico and collected data over a 4 week period during the thunderstorm season in the summer of 2015. Strikes observed by the sensor suite were correlated to specific strikes recorded by the National Lightning Data Network (NLDN) and thereby geo-located. Sensor calibration factors, distance to each strike, and calculated values of atmospheric transmission were used to estimate absolute radiometric intensities for the spectral-temporal data. The data that we present show the intensity and time evolution of broadband and line emission features for both leader and return strokes. We highlight several key features and overall statistics of the observations. A companion poster describes a lightning model that is being developed at Sandia National Laboratories.

  3. A summary of the test procedures and operational details of an ocean dumping pollution monitoring experiment conducted 7 October 1976

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Wallace, J. W.; Gurganus, E. A.

    1977-01-01

    A remote sensor experiment was conducted at a sewage sludge dump site off the Delaware/Maryland coast. Two aircraft serving as remote sensor platforms flew over the dump site during a sludge dump. One aircraft carried a multispectral scanner and the other aircraft carried a rapid scanning spectrometer. Data from sea-truth stations were collected concurrent with overpasses of the aircraft. All sensors were operational and produced good digital data.

  4. Onboard data processing and compression for a four-sensor suite: the SERENA experiment.

    NASA Astrophysics Data System (ADS)

    Mura, A.; Orsini, S.; Di Lellis, A.; Lazzarotto, F.; Barabash, S.; Livi, S.; Torkar, K.; Milillo, A.; De Angelis, E.

    2013-09-01

    SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). SERENA instrument includes four units: ELENA (Emitted Low Energy Neutral Atoms), a neutral particle analyzer/imager to detect ion sputtering and backscattering from Mercury's surface; STROFIO (Start from a Rotating FIeld mass spectrometer), a mass spectrometer to identify atomic masses released from the surface; MIPA (Miniature Ion Precipitation Analyzer) and PICAM (Planetary Ion Camera), two ion spectrometers to monitor the precipitating solar wind and measure the plasma environment around Mercury. The System Control Unit architecture is such that all four sensors are connected to a high resolution FPGA, which dialogs with a dedicated high-performance data processing unit. The unpredictability of the data rate, due to the peculiarities of these investigations, leads to several possible scenarios for the data compression and handling. In this study we first discuss about the predicted data volume that comes from the optimized operation strategy, and then we report on the instrument data processing and compression.

  5. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  6. The ion population between 1300 km and 230000 km in the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Altwegg, K.; Balsiger, H.; Geiss, J.; Goldstein, R.; Ip, W. -H.; Meier, A.; Neugebauer, M.; Rosenbauer, H.; Shelley, E.

    1993-01-01

    During the encounter of the spacecraft Giotto with Comet Halley the two sensors of the ion mass spectrometer (IMS), high energy range spectrometer (HERS) and high intensity spectrometer (HIS), measured the mass and the three-dimensional velocity distributions of cometary ions. HIS looked mainly at the cold, slow part of the distribution close to the nucleus, HERS at the more energetic pick-up ions further out. After a thorough recalibration of the HIS flight spare unit and an extensive data analysis we present here continuous ion density-, composition-, velocity-, and temperature profiles for the water group ion (mass range 16-19 amu/e) along Giotto's inbound trajectory from 230,000 to 1300 km from the comet nucleus. The two sensors are in very good agreement in the region where their measurements overlap thus giving an excellent data base for the discussion of theoretical comet models. The most prominent feature where models and observations disagree is the so called pile up region between 8000 and 15,000 km from the nucleus.

  7. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  8. [A digital micromirror device-based Hadamard transform near infrared spectrometer].

    PubMed

    Liu, Jia; Chen, Fen-Fei; Liao, Cheng-Sheng; Xu, Qian; Zeng, Li-Bo; Wu, Qiong-Shui

    2011-10-01

    A Hadamard transform near infrared spectrometer based on a digital micromirror device was constructed. The optical signal was collected by optical fiber, a grating was used for light diffraction, a digital micromirror device (DMD) was applied instead of traditional mechanical Hadamard masks for optical modulation, and an InGaAs near infrared detector was used as the optic sensor. The original spectrum was recovered by fast Hadamard transform algrithms. The advantages of the spectrometer, such as high resolution, signal-noise-ratio, stability, sensitivity and response speed were proved by experiments, which indicated that it is very suitable for oil and food-safety applications.

  9. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  10. Remote sensing of land degradation: experiences from Latin America and the Caribbean.

    PubMed

    Metternicht, G; Zinck, J A; Blanco, P D; del Valle, H F

    2010-01-01

    Land degradation caused by deforestation, overgrazing, and inappropriate irrigation practices affects about 16% of Latin America and the Caribbean (LAC). This paper addresses issues related to the application of remote sensing technologies for the identification and mapping of land degradation features, with special attention to the LAC region. The contribution of remote sensing to mapping land degradation is analyzed from the compilation of a large set of research papers published between the 1980s and 2009, dealing with water and wind erosion, salinization, and changes of vegetation cover. The analysis undertaken found that Landsat series (MSS, TM, ETM+) are the most commonly used data source (49% of the papers report their use), followed by aerial photographs (39%), and microwave sensing (ERS, JERS-1, Radarsat) (27%). About 43% of the works analyzed use multi-scale, multi-sensor, multi-spectral approaches for mapping degraded areas, with a combination of visual interpretation and advanced image processing techniques. The use of more expensive hyperspectral and/or very high spatial resolution sensors like AVIRIS, Hyperion, SPOT-5, and IKONOS tends to be limited to small surface areas. The key issue of indicators that can directly or indirectly help recognize land degradation features in the visible, infrared, and microwave regions of the electromagnetic spectrum are discussed. Factors considered when selecting indicators for establishing land degradation baselines include, among others, the mapping scale, the spectral characteristics of the sensors, and the time of image acquisition. The validation methods used to assess the accuracy of maps produced with satellite data are discussed as well.

  11. Spectral Variability of Oil Slicks under Different Observing Conditions: Examples from Satellite and Airborne Measurement

    NASA Astrophysics Data System (ADS)

    Sun, S.; Hu, C.

    2017-12-01

    Optical remote sensing is one of the most commonly used techniques in detecting oil in the surface ocean. This is because that oil has different optical properties from the surrounding oil-free water and oil can also modulate surface waves, thus providing a spatial contrast to facilitate delineating the oil-water boundary. Estimating oil volume or thickness from the delineated oil footprint, on the other hand, is much more difficult and currently represents a major challenge in remote sensing of oil spills. Several studies have attempted to associate reflectance spectra (magnitude and spectral shape) with oil thickness from experiments under controlled conditions, where such established relationships were used to quantify oil thickness. However, it is unclear whether or how these experiment derived relationships could be used in the real environment. Here, oil pixel spectra were extracted from several satellite sensors including Landsat, MERIS, MODIS and MISR together with airborne sensor AVIRIS that captured during the Deepwater Horizon oil spill in 2010. Same day imagery of these sensors were co-registered to compare spectra difference of oil under different observing conditions. Combining those resulted spectra with laboratory-measured oil spectra in previous study, oil's diverse spectral magnitudes and shapes were presented. Besides oil thickness, we concluded several other potential factors that may contribute significantly to the spectral response of oil slicks in the marine environment, which include sun glint strength, oil emulsification state, optical properties of oil covered water and remote sensing imagery's spatial resolution as well. And future perspectives for more accurate estimation of oil thickness are proposed.

  12. Design of a fiber-optic interrogator module for telecommunication satellites

    NASA Astrophysics Data System (ADS)

    Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus

    2017-11-01

    In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.

  13. Laboratory Gas Dynamic Measurements of the Comet Pressure Sensor COPS on the Rosetta Spacecraft

    NASA Astrophysics Data System (ADS)

    Tzou, Chia-Yu; Altwegg, Kathrin; Gasc, Sébastien; Rubin, Martin

    2014-05-01

    Rosetta is part of the cornerstone missions executed by the European Space Agency (ESA). It is the first space mission to orbit and also land on a comet. By the end of July 2014 Rosetta will be able to carry out a close study of comet 67P/Churyumov-Gerasimenko. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The Comet Pressure Sensor (COPS) is not only a pressure sensor but also plays the role of a safety instrument for Rosetta by providing high-density alerts to the other payload instruments. It includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux to obtain the bulk velocity of the neutral gas. The combination of these two gauges makes COPS capable to derive the gas dynamics in the coma. We recently performed laboratory gas dynamic measurements with the identical flight-spare instrument of COPS. Using the Calibration System for The Mass Spectrometer Instrument ROSINA (CASYMIR) we produce neutral gas beams to model cometary gas jets with velocities from thermal to 2 km/s. For COPS calibration we measure gas beams with different incident angles to derive the velocity and the temperature of the gas using different mixtures expected at the comet. We demonstrate that COPS will be ready for the prime mission and it will be fascinating to compare COPS measurements with numerous observation results and computer models starting in summer 2014 to gain new insights into the gas dynamics around a comet. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.

  14. Work on power-plant (air) plumes involving remote sensing of SO2

    NASA Technical Reports Server (NTRS)

    White, C. L., Jr.

    1978-01-01

    Acquisition of air quality and concurrent meteorological data was used for dispersion model development and plant siting needs of the Maryland power plants. One of the major instruments in these studies was the Barringer correlation spectrometer, a remote sensor, using atmospherically scattered sunlight that was used to measure the total amount of SO2 in a cross section of the plume. Correlation spectrometer and its role in this measurement program are described.

  15. The Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration.

    PubMed

    Oppelt, Natascha; Mauser, Wolfram

    2007-09-14

    The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectralimager designed for environmental monitoring purposes. The sensor, which wasconstructed entirely from commercially available components, has been successfullydeployed during several experiments between 1999 and 2007. We describe the instrumentdesign and present the results of laboratory characterization and calibration of the system'ssecond generation, AVIS-2, which is currently being operated. The processing of the datais described and examples of remote sensing reflectance data are presented.

  16. Design of An Improved Miniature Ion Neutral Mass Spectrometer for NASA Applications

    NASA Technical Reports Server (NTRS)

    Swaminathan, Viji K.; Alig, Roger C.

    1997-01-01

    The ion optics of NASA's Ion Neutral Mass Spectrometer (INMS) sensor was simulated with three dimensional models of the open source, the quadrupole deflector, the exit lens system and the quadrupole mass analyzer to design more compact models with lower weight. Comparison of calculated transmission with experimental results shows good agreement. Transmission analyses with varying geometrical parameters and voltages throw light on possible ways of reducing the size of the sensor. Trajectories of ions of mass 1-99 amu were simulated to analyze and optimize transmission. Analysis of open source transmission with varying angle of attack shows that the angular acceptance can be considerably increased by programming the voltages on the ion trap/ collimator. Analysis of transmission sensitivity to voltages and misalignments of the quadrupole deflector rods indicate that increased transmission is possible with a geometrically asymmetrical deflector and a deflector can be designed with much lower sensitivities of transmission. Bringing the disks closer together can decrease the size of the quadrupole deflector and also increase transmission. The exit lens system can be redesigned to be smaller by eliminating at least one electrode entirely without loss of transmission. Ceramic materials were investigated to find suitable candidates for use in the construction of lighter weight mass spectrometer. A high-sensitivity, high-resolution portable gas chromatograph mass spectrometer with a mass range of 2-700 amu has been built and will be commercialized in Phase 3.

  17. Statistical analysis of dust signals observed by ROSINA/COPS onboard of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin

    2016-10-01

    ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.

  18. Extraction of ozone and chlorophyll-A distribution from AVIRIS data

    NASA Technical Reports Server (NTRS)

    Schaepman, M.; Itten, K. I.; Schlaepfer, D.; Kurer, U.; Veraguth, S.; Keller, J.

    1995-01-01

    The potential of airborne imaging spectrometry for assessing and monitoring natural resources is studied. Therefore, an AVIRIS scene of the NASA's MacEurope 1991 campaign - acquired in Central Switzerland - is used. The test site consists of an urban area, the Lake Zug with its surrounding fields, the Rigi mountain in the center of the test site, and the Lake of Four Cantons. The region is covered by the AVIRIS flight #910705, run 6 and 7 of the NASA ER-2 aircraft resulting in an average nominal pixel size of about 18 m. Simultaneous to the ER-2 overflight spectroradiometric measurements have been taken in various locations. Preselected reference targets were measured in the field with a GER Mark V spectroradiometer, and radiance measurements were taken to the lake using a Li-Cor LI 1800UW specroradiometer below and above the water surface. A comprehensive meteorological data set was obtained by joining the POLLUMET experiment which carried out measurements to investigate the summer smog in Switzerland on the same day. The quality assessment for the actual data set can be found in detail in Meyer et al. A parametric approach calculating the location of the airplane was used to simulate the observation geometry. This parametric preprocessing procedure, which takes care of effects of flight line and attitude variations as well as the pixel-by-pixel topographic corrections is described in Meyer.

  19. The Alpha-Proton-X-ray Spectrometer deployment mechanism: an anthropomorphic approach to sensor placement on Martian rocks and soil

    NASA Astrophysics Data System (ADS)

    Blomquist, Richard S.

    1995-05-01

    On July 4,1997, the Mars Pathfinder spacecraft lands on Mars and starts conducting technological and scientific experiments. One experiment, the Alpha-Proton-X-ray Spectrometer, uses a sensor head placed against rocks and soil to determine their composition. To guarantee proper placement, a deployment mechanism mounted on the Mars Rover aligns the sensor head to within 20 deg of the rock and soil surfaces. In carrying out its task, the mechanism mimics the action of a human hand and arm. Consisting of a flexible wrist, a parallel link arm, a brush dc motor actuator, and a revolutionary non-pyrotechnic fail-safe release device, the mechanism correctly positions the sensor head on rocks as high as 0.29 m and on targets whose surfaces are tilted as much as 45 deg from the nominal orientation of the sensor head face. The mechanism weighs less than 0.5 kg, can withstand 100 g's, and requires less than 2.8 N x m of actuation torque. The fail-safe coupler utilizes Cerrobend, a metal alloy that melts at 60 C, to fuse the actuator and the rest of the mechanism together. A film heater wrapped around the coupler melts the metal, and Negator springs drive the mechanism into its stowed position. The fail-safe actuates using 6.75 Watts for 5 minutes in the event of an actuator failure.

  20. The Alpha-Proton-X-ray Spectrometer deployment mechanism: An anthropomorphic approach to sensor placement on Martian rocks and soil

    NASA Technical Reports Server (NTRS)

    Blomquist, Richard S.

    1995-01-01

    On July 4,1997, the Mars Pathfinder spacecraft lands on Mars and starts conducting technological and scientific experiments. One experiment, the Alpha-Proton-X-ray Spectrometer, uses a sensor head placed against rocks and soil to determine their composition. To guarantee proper placement, a deployment mechanism mounted on the Mars Rover aligns the sensor head to within 20 deg of the rock and soil surfaces. In carrying out its task, the mechanism mimics the action of a human hand and arm. Consisting of a flexible wrist, a parallel link arm, a brush dc motor actuator, and a revolutionary non-pyrotechnic fail-safe release device, the mechanism correctly positions the sensor head on rocks as high as 0.29 m and on targets whose surfaces are tilted as much as 45 deg from the nominal orientation of the sensor head face. The mechanism weighs less than 0.5 kg, can withstand 100 g's, and requires less than 2.8 N x m of actuation torque. The fail-safe coupler utilizes Cerrobend, a metal alloy that melts at 60 C, to fuse the actuator and the rest of the mechanism together. A film heater wrapped around the coupler melts the metal, and Negator springs drive the mechanism into its stowed position. The fail-safe actuates using 6.75 Watts for 5 minutes in the event of an actuator failure.

  1. A graphene-based Fabry-Pérot spectrometer in mid-infrared region

    PubMed Central

    Wang, Xiaosai; Chen, Chen; Pan, Liang; Wang, Jicheng

    2016-01-01

    Mid-infrared spectroscopy is of great importance in many areas and its integration with thin-film technology can economically enrich the functionalities of many existing devices. In this paper we propose a graphene-based ultra-compact spectrometer (several micrometers in size) that is compatible with complementary metal-oxide-semiconductor (CMOS) processing. The proposed structure uses a monolayer graphene as a mid-infrared surface waveguide, whose optical response is spatially modulated using electric fields to form a Fabry-Pérot cavity. By varying the voltage acting on the cavity, we can control the transmitted wavelength of the spectrometer at room temperature. This design has potential applications in the graphene-silicon-based optoelectronic devices as it offers new possibilities for developing new ultra-compact spectrometers and low-cost hyperspectral imaging sensors in mid-infrared region. PMID:27573080

  2. U.S. Instruments Aboard Rosetta

    NASA Image and Video Library

    2014-01-24

    Three of NASA contributions to the ESA Rosetta mission are pictured here: an ultraviolet spectrometer called Alice top, the Ion and Electron Sensor IES bottom left, and the Microwave Instrument for Rosetta Orbiter MIRO bottom right.

  3. A Bonner Sphere Spectrometer based on a large 6LiI(Eu) scintillator: Calibration in reference monoenergetic fields

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Pola, A.; Costa, M.; Monti, V.; Thomas, D. J.

    2018-07-01

    A Bonner Sphere spectrometer employing a large, 11 mm diameter × 3 mm thickness, 6LiI(Eu) scintillator (LL-BSS), was assembled. The purpose was to produce a BSS similar in sensitivity to those based on 3He sensors, but using alternative sensors. With respect to the traditional BSS based on the 4 mm (diameter) × 4 mm (height) 6LiI(Eu), this new BSS is a factor of 3 more sensitive. LL-BSS response matrix, determined with MCNPX, was experimentally evaluated with monoenergetic reference neutron fields of 144 keV, 565 keV and 1.2 MeV available at NPL (Teddington, UK). The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty lower than ±2%.

  4. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  5. End-to-end test of the electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Cash, B. L.

    1972-01-01

    A series of end-to-end tests were performed to demonstrate the proper functioning of the complete Electron-Proton Spectrometer (EPS). The purpose of the tests was to provide experimental verification of the design and to provide a complete functional performance check of the instrument from the excitation of the sensors to and including the data processor and equipment test set. Each of the channels of the EPS was exposed to a calibrated beam of energetic particles, and counts were accumulated for a predetermined period of time for each of several energies. The counts were related to the known flux of particles to give a monodirectional response function for each channel. The measured response function of the test unit was compared to the response function determined for the calibration sensors from the data taken from the calibration program.

  6. Gas-cell measurements for evaluating longwave-infrared passive-sensor performance

    NASA Astrophysics Data System (ADS)

    Cummings, Alan S.; Combs, Roger J.; Thomas, Mark J.; Curry, Timothy; Kroutil, Robert T.

    2006-10-01

    A longwave-infrared (LWIR) passive-spectrometer performance was evaluated with a short-pathlength gas cell. This cell was accurately positioned between the sensor and a NIST-traceable blackbody radiance source. Cell contents were varied over the Beer's Law absorbance range from the limit of detection to saturation for the gas analytes of sulfur hexafluoride and hexafluoroethane. The spectral impact of saturation on infrared absorbance was demonstrated for the passive sensor configuration. The gas-cell contents for all concentration-pathlength products was monitored with an active traditional-laboratory Fourier Transform Infrared (FTIR) spectrometer and was verified by comparison with the established PNNL/DOE vapor-phase infrared (IR) spectral database. For the passive FTIR measurements, the blackbody source employed a range of background temperatures from 5 °C to 50 °C. The passive measurements without the presence of a gas cell permitted a determination of the noise equivalent spectral noise (NESR) for each set of passive gas-cell measurements. In addition, the no-cell condition allowed the evaluation of the effect of gas cell window materials of low density poly(ethylene), potassium chloride, potassium bromide, and zinc selenide. The components of gas cell, different window materials, temperature differentials, and absorbances of target-analyte gases supplied the means of evaluating the LWIR performance of a passive FTIR spectrometer. The various LWIR-passive measurements were found to simulate those often encountered in open-air scenarios important to both industrial and environmental monitoring applications.

  7. The network of photodetectors and diode lasers of the CMS Link alignment system

    NASA Astrophysics Data System (ADS)

    Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Brochero, J.; Calderón, A.; Fernández, M. G.; Gómez, G.; González-Sánchez, F. J.; Martínez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Árbol, P.; Scodellaro, L.; Sobrón, M.; Vila, I.; Virto, A. L.; Fernández, J.; Raics, P.; Szabó, Zs.; Trócsnyi, Z.; Ujvári, B.; Zilizi, Gy.; Béni, N.; Christian, G.; Imrek, J.; Molnar, J.; Novak, D.; Pálinkás, J.; Székely, G.; Szillási, Z.; Bencze, G. L.; Vestergombi, G.; Benettoni, M.; Gasparini, F.; Montecassiano, F.; Rampazzo, M.; Zago, M.; Benvenuti, A.; Reithler, H.; Jiang, C.

    2018-07-01

    The central feature of the CMS Link alignment system is a network of Amorphous Silicon Position Detectors distributed throughout the muon spectrometer that are connected by multiple laser lines. The data collected during the years from 2008 to 2015 is presented confirming an outstanding performance of the photo sensors during more than seven years of operation. Details of the photo sensor readout of the laser signals are presented. The mechanical motions of the CMS detector are monitored using these photosensors and good agreement with distance sensors is obtained.

  8. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  9. High-temperature fiber-optic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  10. Ocean color imagery: Coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1975-01-01

    Investigations into the feasibility of sensing ocean color from high altitude for determination of chlorophyll and sediment distributions were carried out using sensors on NASA aircraft, coordinated with surface measurements carried out by oceanographic vessels. Spectrometer measurements in 1971 and 1972 led to development of an imaging sensor now flying on a NASA U-2 and the Coastal Zone Color Scanner to fly on Nimbus G in 1978. Results of the U-2 effort show the imaging sensor to be of great value in sensing pollutants in the ocean.

  11. A Spread-Spectrum SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Chaudhuri, S.; Cho, H.-M.; Dawson, C.; Kuenstner, S.; Li, D.; Titus, C. J.; Young, B. A.

    2018-06-01

    The transition-edge sensor (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon-arrival rates.

  12. Ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Inventor); Clay, D. R.; Goldstein, B. E.; Goldstein, R.

    1984-01-01

    An ion mass spectrometer is described which detects and indicates the characteristics of ions received over a wide angle, and which indicates the mass to charge ratio, the energy, and the direction of each detected ion. The spectrometer includes a magnetic analyzer having a sector magnet that passes ions received over a wide angle, and an electrostatic analyzer positioned to receive ions passing through the magnetic analyzer. The electrostatic analyzer includes a two dimensional ion sensor at one wall of the analyzer chamber, that senses not only the lengthwise position of the detected ion to indicate its mass to charge ratio, but also detects the ion position along the width of the chamber to indicate the direction in which the ion was traveling.

  13. Laser Spiderweb Sensor Used with Portable Handheld Devices

    NASA Technical Reports Server (NTRS)

    Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)

    2017-01-01

    A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.

  14. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  15. Assessment of a combined gas chromatography mass spectrometer sensor (GC-MSS) system for detecting biologically relevant volatile compounds (VCs).

    PubMed

    Gould, Oliver; Wieczorek, Tomas; de Lacy Costello, Ben P J; Persad, Raj; Ratcliffe, Norman

    2017-09-26

    There have been a number of studies in which metal oxide sensors (MOS) have replaced conventional analytical detectors in gas chromatography systems. However, despite the use of these instruments in a range of applications including breath research the sensor responses (i.e. resistance changes w.r.t. concentration of VCs) remain largely unreported. This paper addresses that issue by comparing the response of a metal oxide sensor directly with a mass spectrometer (MS), whereby both detectors are interfaced to the same GC column using an s-swafer. It was demonstrated that the sensitivity of an in-house fabricated ZnO/ SnO2 thick film MOS was superior to a modern MS for the detection of a wide range of volatile compounds (VCs) of different functionalities and masses. Better techniques for detection and quantification of these VCs is valuable, as many of these compounds are commonly reported throughout the scientific literature. This is also the first published report of a combined GC-MS sensor system. These 2 different detector technologies when combined, should enhance discriminatory abilities to aid disease diagnoses using volatiles from e.g. breath, and bodily fluids. 29 chemical standards have been tested using solid phase micro-extraction; 25 of these compounds are found on human breath. In all but 2 instances the sensor exhibited the same or superior limit of detection compared to the MS. 12 stool samples from healthy participants were analysed, the sensor detected, on average 1.6 peaks more per sample than the MS. Similarly analysing the headspace of E. coli broth cultures the sensor detected 6.9 more peaks per sample versus the MS. This greater sensitivity is primarily a function of the superior limits of detection of the metal oxide sensor. This shows that systems based on the combination of chromatography systems with solid state sensors shows promise for a range of applications. © 2017 IOP Publishing Ltd.

  16. Assessment of a combined gas chromatography mass spectrometer sensor system for detecting biologically relevant volatile compounds.

    PubMed

    Gould, Oliver; Wieczorek, Tom; de Lacy Costello, Ben; Persad, Raj; Ratcliffe, Norman

    2017-12-06

    There have been a number of studies in which metal oxide sensors (MOS) have replaced conventional analytical detectors in gas chromatography systems. However, despite the use of these instruments in a range of applications including breath research the sensor responses (i.e. resistance changes w.r.t. concentration of VCs) remain largely unreported. This paper addresses that issue by comparing the response of a metal oxide sensor directly with a mass spectrometer (MS), whereby both detectors are interfaced to the same GC column using an s-swafer. It was demonstrated that the sensitivity of an in-house fabricated ZnO/SnO 2 thick film MOS was superior to a modern MS for the detection of a wide range of volatile compounds (VCs) of different functionalities and masses. Better techniques for detection and quantification of these VCs is valuable, as many of these compounds are commonly reported throughout the scientific literature. This is also the first published report of a combined GC-MS sensor system. These two different detector technologies when combined, should enhance discriminatory abilities to aid disease diagnoses using volatiles from e.g. breath, and bodily fluids. Twenty-nine chemical standards have been tested using solid phase micro-extraction; 25 of these compounds are found on human breath. In all but two instances the sensor exhibited the same or superior limit of detection compared to the MS. Twelve stool samples from healthy participants were analysed; the sensor detected, on average 1.6 peaks more per sample than the MS. Similarly, analysing the headspace of E. coli broth cultures the sensor detected 6.9 more peaks per sample versus the MS. This greater sensitivity is primarily a function of the superior limits of detection of the metal oxide sensor. This shows that systems based on the combination of chromatography systems with solid state sensors shows promise for a range of applications.

  17. Digest of NASA earth observation sensors

    NASA Technical Reports Server (NTRS)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  18. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    NASA Technical Reports Server (NTRS)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  19. Vicarious Calibration of EO-1 Hyperion

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurt; Lawrence, Ong

    2012-01-01

    The Hyperion imaging spectrometer on the Earth Observing-1 satellite is the first high-spatial resolution imaging spectrometer to routinely acquire science-grade data from orbit. Data gathered with this instrument needs to be quantitative and accurate in order to derive meaningful information about ecosystem properties and processes. Also, comprehensive and long-term ecological studies require these data to be comparable over time, between coexisting sensors and between generations of follow-on sensors. One method to assess the radiometric calibration is the reflectance-based approach, a common technique used for several other earth science sensors covering similar spectral regions. This work presents results of radiometric calibration of Hyperion based on the reflectance-based approach of vicarious calibration implemented by University of Arizona during 2001 2005. These results show repeatability to the 2% level and accuracy on the 3 5% level for spectral regions not affected by strong atmospheric absorption. Knowledge of the stability of the Hyperion calibration from moon observations allows for an average absolute calibration based on the reflectance-based results to be determined and applicable for the lifetime of Hyperion.

  20. Pollution Detection Devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Barringer Research, Inc.'s COSPEC IVB (correlation spectrometer) can sense from a considerable distance emissions from a volcanic eruption. Remote sensor is capable of measuring sulfur dioxide and nitrogen dioxide in the atmosphere. An associated product, GASPEC, a compression of Non-dispersive Gas Filter Spectrometer, is an infrared/ultraviolet gas analyzer which can be used as either a ground based detector or in aircraft/spacecraft applications. Extremely sensitive, it is useful in air pollution investigations for detecting a variety of trace elements, vapors, which exist in the atmosphere in small amounts.

Top