Woods, Lucy A; Dolezal, Olan; Ren, Bin; Ryan, John H; Peat, Thomas S; Poulsen, Sally-Ann
2016-03-10
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Comprehensive Urine Drug Screen by Gas Chromatography/Mass Spectrometry (GC/MS).
Ramoo, Bheemraj; Funke, Melissa; Frazee, Clint; Garg, Uttam
2016-01-01
Drug screening is an essential component of clinical toxicology laboratory service. Some laboratories use only automated chemistry analyzers for limited screening of drugs of abuse and few other drugs. Other laboratories use a combination of various techniques such as immunoassays, colorimetric tests, and mass spectrometry to provide more detailed comprehensive drug screening. Mass spectrometry, gas or liquid, can screen for hundreds of drugs and is often considered the gold standard for comprehensive drug screening. We describe an efficient and rapid gas chromatography/mass spectrometry (GC/MS) method for comprehensive drug screening in urine which utilizes a liquid-liquid extraction, sample concentration, and analysis by GC/MS.
Daniel, Yvonne A; Henthorn, Joan
2016-12-01
To determine (i) if electrospray mass spectrometry-mass spectrometry with the SpOtOn Diagnostics Ltd reagent kit for sickle cell screening could be integrated into the English newborn screening programme, under routine screening conditions, and provide mass spectrometry-mass spectrometry results which match existing methods, and (ii) if common action values could be set for all manufacturers in the study, for all assessed haemoglobins, to indicate which samples require further investigation. Anonymised residual blood spots were analysed using the SpOtOn reagent kit as per manufacturer's instructions, in parallel with existing techniques at four laboratories. Mass spectrometry-mass spectrometry instrumentation at Laboratories A and B was AB Sciex (Warrington, UK) AP4000, and at Laboratories C and D, Waters Micromass (Manchester, UK), Xevo TQMS and Premier, respectively. There were 23,898 results accepted from the four laboratories. Excellent specificity at 100% sensitivity was observed for haemoglobin S, haemoglobin C, haemoglobin E and haemoglobin O Arab . A common action value was not possible for Hb C, but action values were set by manufacturer. The two haemoglobin D Punjab cases at Laboratory D were not detected using the common action value. Conversely, false-positive results with haemoglobin D Punjab were a problem at the remaining three laboratories. This multicentre study demonstrates that it is possible to implement mass spectrometry-mass spectrometry into an established screening programme while maintaining consistency with existing methods for haemoglobinopathy screening. However, one of the instruments investigated cannot be recommended for use with this application. © The Author(s) 2016.
In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...
Peters, R J B; Oosterink, J E; Stolker, A A M; Georgakopoulos, C; Nielen, M W F
2010-04-01
A unification of doping-control screening procedures of prohibited small molecule substances--including stimulants, narcotics, steroids, beta2-agonists and diuretics--is highly urgent in order to free resources for new classes such as banned proteins. Conceptually this may be achieved by the use of a combination of one gas chromatography-time-of-flight mass spectrometry method and one liquid chromatography-time-of-flight mass spectrometry method. In this work a quantitative screening method using high-resolution liquid chromatography in combination with accurate-mass time-of-flight mass spectrometry was developed and validated for determination of glucocorticosteroids, beta2-agonists, thiazide diuretics, and narcotics and stimulants in urine. To enable the simultaneous isolation of all the compounds of interest and the necessary purification of the resulting extracts, a generic extraction and hydrolysis procedure was combined with a solid-phase extraction modified for these groups of compounds. All 56 compounds are determined using positive electrospray ionisation with the exception of the thiazide diuretics for which the best sensitivity was obtained by using negative electrospray ionisation. The results show that, with the exception of clenhexyl, procaterol, and reproterol, all compounds can be detected below the respective minimum required performance level and the results for linearity, repeatability, within-lab reproducibility, and accuracy show that the method can be used for quantitative screening. If qualitative screening is sufficient the instrumental analysis may be limited to positive ionisation, because all analytes including the thiazides can be detected at the respective minimum required levels in the positive mode. The results show that the application of accurate-mass time-of-flight mass spectrometry in combination with generic extraction and purification procedures is suitable for unification and expansion of the window of screening methods of doping laboratories. Moreover, the full-scan accurate-mass data sets obtained still allow retrospective examination for emerging doping agents, without re-analyzing the samples.
Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L
2010-02-15
Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.
Zhang, Baile; Gao, Lihong; Xie, Yingshuang; Zhou, Wei; Chen, Xiaofeng; Lei, Chunni; Zhang, Huan
2017-07-08
A direct analysis in real time tandem mass spectrometry (DART-MS/MS) method was established for quickly screening five illegally added alkaloids of poppy shell from the hot pot condiment, beef noodle soup and seasoning. The samples were extracted and purified by acetonitrile, and then injected under the conditions of ionization temperature of 300℃, grid electrode voltage of 150 V and sampling rate of 0.8 mm/s using DART in the positive ion mode. The determination was conducted by tandem mass spectrometry in positive ESI mode under multiple reaction monitoring (MRM) mode. The method is simple and rapid, and can meet the requirement of rapid screening and analysis of large quantities of samples.
Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin
2015-11-01
The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamiya, Mari; Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama; Sakurai, Masaaki
A high-throughput RapidFire mass spectrometry assay is described for elongation of very long-chain fatty acids family 6 (Elovl6). Elovl6 is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 may be a new therapeutic target for fat metabolism disorders such as obesity, type 2 diabetes, and nonalcoholic steatohepatitis. To identify new Elovl6 inhibitors, we developed a high-throughput fluorescence screening assay in 1536-well format. However, a number of false positives caused by fluorescent interference have been identified. To pick up the real active compounds among the primary hits from the fluorescence assay, we developed amore » RapidFire mass spectrometry assay and a conventional radioisotope assay. These assays have the advantage of detecting the main products directly without using fluorescent-labeled substrates. As a result, 276 compounds (30%) of the primary hits (921 compounds) in a fluorescence ultra-high-throughput screening method were identified as common active compounds in these two assays. It is concluded that both methods are very effective to eliminate false positives. Compared with the radioisotope method using an expensive {sup 14}C-labeled substrate, the RapidFire mass spectrometry method using unlabeled substrates is a high-accuracy, high-throughput method. In addition, some of the hit compounds selected from the screening inhibited cellular fatty acid elongation in HEK293 cells expressing Elovl6 transiently. This result suggests that these compounds may be promising lead candidates for therapeutic drugs. Ultra-high-throughput fluorescence screening followed by a RapidFire mass spectrometry assay was a suitable strategy for lead discovery against Elovl6. - Highlights: • A novel assay for elongation of very-long-chain fatty acids 6 (Elovl6) is proposed. • RapidFire mass spectrometry (RF-MS) assay is useful to select real screening hits. • RF-MS assay is proved to be beneficial because of its high-throughput and accuracy. • A combination of fluorescent and RF-MS assays is effective for Elovl6 inhibitors.« less
Rello, Luis; Aramendía, Maite; Belarra, Miguel A; Resano, Martín
2015-01-01
DBS have become a clinical specimen especially adequate for establishing home-based collection protocols. In this work, high-resolution continuum source graphite furnace atomic absorption spectrometry is evaluated for the direct monitoring of Pb in DBS, both as a quantitative tool and a screening method. The development of the screening model is based on the establishment of the unreliability region around the threshold limits, 100 or 50 μg l(-1). More than 500 samples were analyzed to validate the model. The screening method demonstrated high sensitivity (the rate of true positives detected was always higher than 95%), an excellent LOD (1 µg l(-1)) and high throughput (10 min per sample).
Nie, Honggang; Li, Xianjiang; Hua, Zhendong; Pan, Wei; Bai, Yanping; Fu, Xiaofang
2016-08-01
With the amounts and types of new psychoactive substances (NPSs) increasing rapidly in recent years, an excellent high-throughput method for the analysis of these compounds is urgently needed. In this article, a rapid screening method and a quantitative analysis method for 11 NPSs are described and compared, respectively. A simple direct analysis in real time mass spectrometry (DART-MS) method was developed for the analysis of 11 NPSs including three categories of these substances present on the global market such as four cathinones, one phenylethylamine, and six synthetic cannabinoids. In order to analyze these compounds quantitatively with better accuracy and sensitivity, another rapid analytical method with a low limit of detection (LOD) was also developed using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (LC/QTOFMS). The 11 NPSs could be determined within 0.5 min by DART-MS. Furthermore, they could also be separated and determined within 5 min by the LC/QTOFMS method. The two methods both showed good linearity with correlation coefficients (r(2) ) higher than 0.99. The LODs for all these target NPSs by DART-MS and LC/QTOFMS ranged from 5 to 40 ng mL(-1) and 0.1 to 1 ng mL(-1) , respectively. Confiscated samples, named as "music vanilla" and "bath salt", and 11 spiked samples were firstly screened by DART-MS and then determined by LC/QTOFMS. The identification of NPSs in confiscated materials was successfully achieved, and the proposed analytical methodology could offer rapid screening and accurate analysis results. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Screening Methods for Metal-Containing Nanoparticles in Water
Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...
Mass spectrometric screening of ligands with lower off-rate from a clicked-based pooled library.
Arai, Satoshi; Hirosawa, Shota; Oguchi, Yusuke; Suzuki, Madoka; Murata, Atsushi; Ishiwata, Shin'ichi; Takeoka, Shinji
2012-08-13
This paper describes a convenient screening method using ion trap electrospray ionization mass spectrometry to classify ligands to a target molecule in terms of kinetic parameters. We demonstrate this method in the screening of ligands to a hexahistidine tag from a pooled library synthesized by click chemistry. The ion trap mass spectrometry analysis revealed that higher stabilities of ligand-target complexes in the gas phase were related to lower dissociation rate constants, i.e., off-rates in solution. Finally, we prepared a fluorescent probe utilizing the ligand with lowest off-rate and succeeded in performing single molecule observations of hexahistidine-tagged myosin V walking on actin filaments.
Salter, Robert; Holmes, Steven; Legg, David; Coble, Joel; George, Bruce
2012-02-01
Pork tissue samples that tested positive and negative by the Charm II tetracycline test screening method in the slaughter plant laboratory were tested with the modified AOAC International liquid chromatography tandem mass spectrometry (LC-MS-MS) method 995.09 to determine the predictive value of the screening method at detecting total tetracyclines at 10 μg/kg of tissue, in compliance with Russian import regulations. There were 218 presumptive-positive tetracycline samples of 4,195 randomly tested hogs. Of these screening test positive samples, 83% (182) were positive, >10 μg/kg by LC-MS-MS; 12.8% (28) were false violative, greater than limit of detection (LOD) but <10 μg/kg; and 4.2% (8) were not detected at the LC-MS-MS LOD. The 36 false-violative and not-detected samples represent 1% of the total samples screened. Twenty-seven of 30 randomly selected tetracycline screening negative samples tested below the LC-MS-MS LOD, and 3 samples tested <3 μg/kg chlortetracycline. Results indicate that the Charm II tetracycline test is effective at predicting hogs containing >10 μg/kg total tetracyclines in compliance with Russian import regulations.
Detection of designer drugs in human hair by ion mobility spectrometry (IMS).
Keller, T; Miki, A; Regenscheit, P; Dirnhofer, R; Schneider, A; Tsuchihashi, H
1998-06-08
Since its inception in the early 1970s under the name plasma chromatography, ion mobility spectrometry (IMS) has undergone great changes. It is now utilized more and more in forensic science laboratories where it is used to detect explosives and environmental pollutants [1-4] as well as its use in detecting drugs of abuse [5-8]. Although IMS is known for nearly 30 years now [9], relatively few cases of the application of ion mobility spectrometry to the analysis of human hair have been reported [10-12]. The authors report a new and quick method to rapidly screen and determine MDMA ('ecstasy', 'Adam') and MDEA ('Eve') in human hair. The proposed method using trihexylamine as internal standard resulted in a rapid procedure useful in screening human hair specimens for designer drugs.
Recent applications of gas chromatography with high-resolution mass spectrometry.
Špánik, Ivan; Machyňáková, Andrea
2018-01-01
Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Haomin; Guo, Yinan; Meng, Lingwen; Sun, Hui; Yang, Yinping; Gao, Ying; Sun, Jiaming
2018-01-01
Background: At present, approximately 17–25 million people in the world suffer from Alzheimer's disease (AD). The most efficacious and acceptable therapeutic drug clinically are the acetylcholinesterase inhibitors (AChEIs). Yinhuang oral liquid is a Chinese medicine preparation which contains AChEIs according to the literatures. However, no strategy has been presented for rapid screening and identification of AChEIs from Yinhuang oral liquid. Objective: To develop a method for rapid screening and identification of AChEIs from Yinhuang oral liquid using ultrafiltration–liquid chromatography–electrospray ionization tandem mass spectrometry (UF-LC-ESI-MS/MS). Materials and Methods: In this study, UF incubation conditions such as enzyme concentration, incubation time, and incubation temperature were optimized so as to get better screening results. The AChEIs from Yinhuang oral liquid were identified by high-performance liquid chromatography-ESI-MS and the improved Ellman method was used for the AChE inhibitory activity test in vitro. Results: The results showed that Yinhuang oral liquid can inhibit the activity of AChE. We screened and identified seven compounds with potential AChE inhibitory activity from Yinhuang oral liquid, which provided experimental basis for the treatment and prevention of AD. Conclusion: The current technique was used to directly screen the active ingredients with acetylcholinesterase inhibition from complex traditional Chinese medicine, which was simple, rapid, accurate, and suitable for high-throughput screening of AChEI from complex systems. SUMMARY A UF-LC-ESI-MS/MS method for rapid screening and identification of AChEIs from Yinhuang oral liquid was developedSeven compounds were screened and identified with potential AChE inhibitory activity from Yinhuang oral liquidIt provided experimental basis of Yinhuang oral liquid for the treating and preventing AD. Abbreviations used: (AD): Alzheimer's disease; (UF-LC-ESI-MS/MS): ultrafiltration–liquid chromatography–electrospray ionization tandem mass spectrometry; (AChEIs): acetylcholinesterase inhibitors. PMID:29720840
Screening assessment methods have been developed for semi- and non-volatile persistent organic pollutants (POPs) for human blood and solid environmental media. The specific methodology is developed for measuring the presence of "native" compounds, specifically, a var...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagnik, Gargey B.
The main goal of the presented research is development of nanoparticle based matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). This dissertation includes the application of previously developed data acquisition methods, development of novel sample preparation methods, application and comparison of novel nanoparticle matrices, and comparison of two nanoparticle matrix application methods for MALDI-MS and MALDI-MS imaging.
Xu, Xiaoma; van de Craats, Anick M; de Bruyn, Peter C A M
2004-11-01
A highly sensitive screening method based on high performance liquid chromatography atmospheric pressure ionization mass spectrometry (HPLC-API-MS) has been developed for the analysis of 21 nitroaromatic, nitramine and nitrate ester explosives, which include the explosives most commonly encountered in forensic science. Two atmospheric pressure ionization (API) methods, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), and various experimental conditions have been applied to allow for the detection of all 21 explosive compounds. The limit of detection (LOD) in the full-scan mode has been found to be 0.012-1.2 ng on column for the screening of most explosives investigated. For nitrobenzene, an LOD of 10 ng was found with the APCI method in the negative mode. Although the detection of nitrobenzene, 2-, 3-, and 4-nitrotoluene is hindered by the difficult ionization of these compounds, we have found that by forming an adduct with glycine, LOD values in the range of 3-16 ng on column can be achieved. Compared with previous screening methods with thermospray ionization, the API method has distinct advantages, including simplicity and stability of the method applied, an extended screening range and a low detection limit for the explosives studied.
Ombrone, Daniela; Malvagia, Sabrina; Funghini, Silvia; Giocaliere, Elisa; Della Bona, Maria Luisa; Forni, Giulia; De Luca, Alessio; Villanelli, Fabio; Casetta, Bruno; Guerrini, Renzo; la Marca, Giancarlo
2013-01-01
In recent years, new treatments have become available to treat some lysosomal storage disorders (LSDs) and many studies suggest that there is a benefit with starting therapy early. Newborn screening should detect diseases early enough for prompt treatment. Some countries include additional conditions, such as some LSDs, into their newborn screening panels. Mucopolysaccharidosis Type I (MPS I) is an autosomal recessive disorder caused by the deficiency of α-L-iduronidase (IDUA) activity. Currently, enzyme replacement therapy (ERT) or bone marrow transplantation is available and this has raised a growing interest for the development of a newborn screening test. In 2009, we reported a new fast and simplified tandem mass spectrometry-based method for quantifying five enzyme activities on dried blood spots. Here, we describe the inclusion of IDUA activity determination for the simultaneous detection of six lysosomal storage diseases. We have defined reference normal ranges by testing 680 healthy newborns and 240 adults. The assay was checked through three confirmed MPS I patients whose IDUA activity was below the normal range. Reproducibility of the assays has been established by assessing the intra-day and inter-day assay imprecisions. This quick assay has been devised to be implemented in newborn screening by liquid chromatography tandem mass spectrometry.
Stolker, Alida A. M.; Peters, Ruud J. B.; Zuiderent, Richard; DiBussolo, Joseph M.
2010-01-01
There is an increasing interest in screening methods for quick and sensitive analysis of various classes of veterinary drugs with limited sample pre-treatment. Turbulent flow chromatography in combination with tandem mass spectrometry has been applied for the first time as an efficient screening method in routine analysis of milk samples. Eight veterinary drugs, belonging to seven different classes were selected for this study. After developing and optimising the method, parameters such as linearity, repeatability, matrix effects and carry-over were studied. The screening method was then tested in the routine analysis of 12 raw milk samples. Even without internal standards, the linearity of the method was found to be good in the concentration range of 50 to 500 µg/L. Regarding repeatability, RSDs below 12% were obtained for all analytes, with only a few exceptions. The limits of detection were between 0.1 and 5.2 µg/L, far below the maximum residue levels for milk set by the EU regulations. While matrix effects—ion suppression or enhancement—are obtained for all the analytes the method has proved to be useful for screening purposes because of its sensitivity, linearity and repeatability. Furthermore, when performing the routine analysis of the raw milk samples, no false positive or negative results were obtained. PMID:20379812
Grapp, Marcel; Kaufmann, Christoph; Streit, Frank; Binder, Lutz
2018-06-01
Comprehensive screening procedures for psychoactive agents in body fluids are an essential task in clinical and forensic toxicology. With the continuous emergence and adaption of new psychoactive substances (NPS) keeping a screening method up to date is challenging. To meet these demands, hyphenated high-resolution mass spectrometry has gained interest as extensive and expandable screening approach. Here we present a comprehensive method for systematic toxicological analysis of serum by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS) with data independent acquisition. The potential of this method was demonstrated by analysis of 247 authentic serum- and 12 post-mortem femoral blood samples. Thus 950 compounds, comprising 185 different drugs and metabolites could be identified. For the detected substances, including pharmaceutical substances, illicit drugs as well as NPS, serum concentrations were confirmed ranging from traces to toxic values indicating the capability for forensic toxicological requirements. Positive identification of drugs was achieved by accurate mass measurement (±5ppm for [M+H] + ; ±10ppm for [M-H] - ), retention time (±0.35min), isotopic pattern match (less than 10 m/z RMS [ppm]), isotope match intensity (less than 20% RMS) and the presence of at least two fragment ions. The LC-QTOF-MS procedure was shown to be superior to serum screening by GC-MS, since 240% (335 versus 141) more drugs were identified in serum samples compared to GC-MS. Copyright © 2018 Elsevier B.V. All rights reserved.
Lian, Ru; Wu, Zhongping; Lv, Xiaobao; Rao, Yulan; Li, Haiyang; Li, Jinghua; Wang, Rong; Ni, Chunfang; Zhang, Yurong
2017-10-01
Increasing in cases involving drugs of abuse leads to heavy burden for law enforcement agencies, exacerbating demand for rapid screening technique. In this study, atmospheric pressure ionization technologies including direct analysis in real time (DART) ion source coupled to a time-of-flight mass spectrometer (DART-TOF-MS)as well asdopant-assisted positive photoionization ion mobility spectrometry (DAPP-IMS) without radioactivity were utilized together as the powerful analytical tool for the rapid screening and identification of 53 abused drugs.The limits of detection (LOD) were 0.05-2μg/mL when using DART-TOF-MS and 0.02-2μg when using DAPP-IMS which could satisfy the actual requirement in forensic science laboratory. The advantages of this method included fast response, high-throughput potential, high specificity, and minimal sample preparation. A screening library of reduced mobility (K 0 ), accurate mass of informative precursor ion ([M+H] + ) and fragment ions was established respectively by employing a bench-top DAPP-IMS and TOF-MS in-source collision induced dissociation (CID) mode. Then the standardized screening procedure was developed with criteria for the confirmation of positive result. A total of 50 seized drug samples provided by local forensic laboratory we reanalyzed to testify the utility of the method. This study suggests that a method combing DART-TOF-MS and DAPP-IMS is promising for the rapid screening and identification of abused drugs with minimal sample preparation and absence of chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, H; Wu, Y; Zhao, Y; Sun, W; Ding, L; Guo, B; Chen, B
2012-08-01
Desorption corona beam ionisation (DCBI), the relatively novel ambient mass spectrometry (MS) technique, was utilised to screen for illicit additives in weight-loss food. The five usually abused chemicals - fenfluramine, N-di-desmethyl sibutramine, N-mono-desmethyl sibutramine, sibutramine and phenolphthalein - were detected with the proposed DCBI-MS method. Fast single-sample and high-throughput analysis was demonstrated. Semi-quantification was accomplished based on peak areas in the ion chromatograms. Four illicit additives were identified and semi-quantified in commercial samples. As there was no tedious sample pre-treatment compared with conventional HPLC methods, high-throughput analysis was achieved with DCBI. The results proved that DCBI-MS is a powerful tool for the rapid screening of illicit additives in weight-loss dietary supplements.
Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting
NASA Astrophysics Data System (ADS)
Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.
1997-05-01
Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.
Badoud, F; Grata, E; Perrenoud, L; Saugy, M; Rudaz, S; Veuthey, J-L
2010-06-18
For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Screening for trace explosives by AccuTOF™-DART®: an in-depth validation study.
Sisco, Edward; Dake, Jeffrey; Bridge, Candice
2013-10-10
Ambient ionization mass spectrometry is finding increasing utility as a rapid analysis technique in a number of fields. In forensic science specifically, analysis of many types of samples, including drugs, explosives, inks, bank dye, and lotions, has been shown to be possible using these techniques [1]. This paper focuses on one type of ambient ionization mass spectrometry, Direct Analysis in Real Time Mass Spectrometry (DART-MS or DART), and its viability as a screening tool for trace explosives analysis. In order to assess viability, a validation study was completed which focused on the analysis of trace amounts of nitro and peroxide based explosives. Topics which were studied, and are discussed, include method optimization, reproducibility, sensitivity, development of a search library, discrimination of mixtures, and blind sampling. Advantages and disadvantages of this technique over other similar screening techniques are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Saleh, Aljona; Stephanson, Niclas Nikolai; Granelli, Ingrid; Villén, Tomas; Beck, Olof
2012-11-15
In this study a rapid liquid chromatography-time-of-flight mass spectrometry method was developed, validated and applied in order to evaluate the potential of this technique for routine urine drug testing. Approximately 800 authentic patient samples were analyzed for amphetamines (amphetamine and methamphetamine), opiates (morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine and codeine-6-glucuronide) and buprenorphines (buprenorphine and buprenorphine-glucuronide) using immunochemical screening assays and mass spectrometry confirmation methods for comparison. The chromatographic application utilized a rapid gradient with high flow and a reversed phase column with 1.8 μm particles. Total analysis time was 4 min. The mass spectrometer operated with an electrospray interface in positive mode with a resolution power of >10,000 at m/z 956. The applied reporting limits were 100 ng/mL for amphetamines and opiates, and 5 ng/mL for buprenorphines, with lower limits of quantification were 2.8-41 ng/mL. Calibration curves showed a linear response with coefficients of correlation of 0.97-0.99. The intra- and interday imprecision in quantification at the reporting limits were <10% for all analytes but for buprenorphines <20%. Method validation data met performance criteria for a qualitative and quantitative method. The liquid chromatography-time-of-flight mass spectrometry method was found to be more selective than the immunochemical method by producing lower rates of false positives (0% for amphetamines and opiates; 3.2% for buprenorphines) and negatives (1.8% for amphetamines; 0.6% for opiates; 0% for buprenorphines). The overall agreement between the two screening methods was between 94.2 and 97.4%. Comparison of data with the confirmation (LC-MS) results for all individual 9 analytes showed that most deviating results were produced in samples with low levels of analytes. False negatives were mainly related to failure of detected peak to meet mass accuracy criteria (±20 mDa). False positives was related to presence of interfering peaks meeting mass accuracy and retention time criteria and occurred mainly at low levels. It is concluded that liquid chromatography-time-of-flight mass spectrometry has potential both as a complement and as replacement of immunochemical screening assays. Copyright © 2012 Elsevier B.V. All rights reserved.
Zou, Nan; Chen, Ronghua; Qin, Yuhong; Song, Shuangyu; Tang, Xinglin; Pan, Canping
2016-09-01
Analytical methods based on multiplug filtration cleanup coupled with pulse glow discharge-ion mobility spectrometry and liquid chromatography tandem mass spectrometry were developed for the analysis of tricaine mesylate residue in fish and fish-raising water samples. A silica fiber holder and an appropriate new interface were designed to make the direct introduction of the fiber into the pulse glow discharge-ion mobility spectrometry introduction mechanism. The multiplug filtration cleanup method with adsorption mixtures was optimized for the determination of tricaine mesylate in fish samples. Good linear relationships were obtained by the two methods. For fish samples, limits of detection were 6 and 0.6 μg/kg by ion mobility spectrometry and liquid chromatography with tandem mass spectrometry, respectively. The matrix effect of the established liquid chromatography tandem mass spectrometry method was negligible for fish samples but that of the ion mobility spectrometry method was not. The two methods were compared. The ion mobility spectrometry system could be used a rapid screening tool on site with the advantage of rapidity, simplicity, and portability, and the liquid chromatography tandem mass spectrometry system could be used for validation in laboratory conditions with the advantage of lower limit of detection, stability, and precision. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PROTEOMICS IN ECOTOXICOLOGY: PROTEIN EXPRESSION PROFILING TO SCREEN CHEMICALS FOR ENDOCRINE ACTIVITY
Abstract for poster.
Current endocrine testing methods are animal intensive and lack the throughput necessary to screen large numbers of environmental chemicals for adverse effects. In this study, Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry...
A New Method for Determining Permethrin Level on Military Uniform Fabrics
2017-06-01
new desorption- gas chromatography–mass spectrometry based screening tool for permethrin content in military fabrics was developed. The method allows...SUBJECT TERMS permethrin, Army Combat Uniform, ACU, camouflage, desorption- gas chromatography-mass spectrometry, D-GC-MS 16. SECURITY CLASSIFICATION OF...and the permethrin contained in the specimens is extracted with solvent with a recovery rate of at least 95%. Samples are analyzed using a gas
There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe r...
Purves, Randy W; Khazaei, Hamid; Vandenberg, Albert
2018-08-01
Although faba bean provides environmental and health benefits, vicine and convicine (v-c) limit its use as a source of vegetable protein. Crop improvement efforts to minimize v-c concentration require low-cost, rapid screening methods to distinguish between high and low v-c genotypes to accelerate development of new cultivars and to detect out-crossing events. To assist crop breeders, we developed a unique and rapid screening method that uses a 60 s instrumental analysis step to accurately distinguish between high and low v-c genotypes. The method involves flow injection analysis (FIA) coupled with tandem mass spectrometry (i.e., selective reaction monitoring, SRM). Using seeds with known v-c levels as calibrants, measured v-c levels were comparable with liquid chromatography (LC)-SRM results and the method was used to screen 370 faba bean genotypes. Widespread use of FIA-SRM will accelerate breeding of low v-c faba bean, thereby alleviating concerns about anti-nutritional effects of v-c in this crop. Copyright © 2018 Elsevier Ltd. All rights reserved.
Amarasinghe, Kande; Chu, Pak-Sin; Evans, Eric; Reimschuessel, Renate; Hasbrouck, Nicholas; Jayasuriya, Hiranthi
2012-05-23
This paper describes the development of a fast method to screen and confirm methyltestosterone 17-O-glucuronide (MT-glu) in tilapia bile. The method consists of solid-phase extraction (SPE) followed by high-performance liquid chromatography-mass spectrometry. The system used was an Agilent 6530 Q-TOF with an Agilent Jet stream electrospray ionization interface. The glucuronide detected in the bile was characterized as MT-glu by comparison with a chemically synthesized standard. MT-glu was detected in bile for up to 7 days after dosing. Semiquantification was done with matrix-matched calibration curves, because MT-glu showed signal suppression due to matrix effects. This method provides a suitable tool to monitor the illegal use of methyltestosterone in tilapia culture.
Chen, Yisheng; Schwack, Wolfgang
2014-08-22
The world-wide usage and partly abuse of veterinary antibiotics resulted in a pressing need to control residues in animal-derived foods. Large-scale screening for residues of antibiotics is typically performed by microbial agar diffusion tests. This work employing high-performance thin-layer chromatography (HPTLC) combined with bioautography and electrospray ionization mass spectrometry introduces a rapid and efficient method for a multi-class screening of antibiotic residues. The viability of the bioluminescent bacterium Aliivibrio fischeri to the studied antibiotics (16 species of 5 groups) was optimized on amino plates, enabling detection sensitivity down to the strictest maximum residue limits. The HPTLC method was developed not to separate the individual antibiotics, but for cleanup of sample extracts. The studied antibiotics either remained at the start zones (tetracyclines, aminoglycosides, fluoroquinolones, and macrolides) or migrated into the front (amphenicols), while interfering co-extracted matrix compounds were dispersed at hRf 20-80. Only after a few hours, the multi-sample plate image clearly revealed the presence or absence of antibiotic residues. Moreover, molecular information as to the suspected findings was rapidly achieved by HPTLC-mass spectrometry. Showing remarkable sensitivity and matrix-tolerance, the established method was successfully applied to milk and kidney samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Ojanperä, Ilkka; Kolmonen, Marjo; Pelander, Anna
2012-05-01
Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.
Zhang, Li; Luo, Xin; Niu, Zengyuan; Ye, Xiwen; Tang, Zhixu; Yao, Peng
2015-03-20
A new analytical method was established and validated for the analysis of 19 substances of very high concern (SVHCs) in textiles, including phthalic acid esters (PAEs), organotins (OTs), perfluorochemicals (PFCs) and flame retardants (FRs). After ultrasonic extraction in methanol, the textile samples were analyzed by high performance liquid chromatography-hybrid linear ion trap Orbitrap high resolution mass spectrometry (HPLC-LTQ/Orbitrap). The values of LOQ were in the range of 2-200mg/kg. Recoveries at two levels (at the LOQ and at half the limit of regulation) ranged from 68% to 120%, and the repeatability was lower than 13%. This method was successfully applied to the screening of SVHCs in commercial textile samples and is useful for the fast screening of various SVHCs. Copyright © 2015 Elsevier B.V. All rights reserved.
Alternative Approaches for Screening Contaminated Sediments and Soils for PCDD/PCDF
Generating analytical data for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) using the traditional high resolution mass spectrometry (HRMS) analysis method, EPA Method 1613B, is time-consuming and expensive. Consequently, alternative methods to ...
Melo, Carlos Fernando Odir Rodrigues; Navarro, Luiz Claudio; de Oliveira, Diogo Noin; Guerreiro, Tatiane Melina; Lima, Estela de Oliveira; Delafiori, Jeany; Dabaja, Mohamed Ziad; Ribeiro, Marta da Silva; de Menezes, Maico; Rodrigues, Rafael Gustavo Martins; Morishita, Karen Noda; Esteves, Cibele Zanardi; de Amorim, Aline Lopes Lucas; Aoyagui, Caroline Tiemi; Parise, Pierina Lorencini; Milanez, Guilherme Paier; do Nascimento, Gabriela Mansano; Ribas Freitas, André Ricardo; Angerami, Rodrigo; Costa, Fábio Trindade Maranhão; Arns, Clarice Weis; Resende, Mariangela Ribeiro; Amaral, Eliana; Junior, Renato Passini; Ribeiro-do-Valle, Carolina C; Milanez, Helaine; Moretti, Maria Luiza; Proenca-Modena, Jose Luiz; Avila, Sandra; Rocha, Anderson; Catharino, Rodrigo Ramos
2018-01-01
Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is currently the method of choice to detect ZIKV in biological samples. This approach, nonetheless, demands a considerable amount of time and resources such as kits and reagents that, in endemic areas, may result in a substantial financial burden over affected individuals and health services veering away from RT-PCR analysis. This study presents a powerful combination of high-resolution mass spectrometry and a machine-learning prediction model for data analysis to assess the existence of ZIKV infection across a series of patients that bear similar symptomatic conditions, but not necessarily are infected with the disease. By using mass spectrometric data that are inputted with the developed decision-making algorithm, we were able to provide a set of features that work as a "fingerprint" for this specific pathophysiological condition, even after the acute phase of infection. Since both mass spectrometry and machine learning approaches are well-established and have largely utilized tools within their respective fields, this combination of methods emerges as a distinct alternative for clinical applications, providing a diagnostic screening-faster and more accurate-with improved cost-effectiveness when compared to existing technologies.
Meyer, M.T.; Bumgarner, J.E.; Varns, J.L.; Daughtridge, J.V.; Thurman, E.M.; Hostetler, K.A.
2000-01-01
Approximately one-half of the 50 000000 lb of antibiotics produced in the USA are used in agriculture. Because of the intensive use of antibiotics in the management of confined livestock operations, the potential exists for the transport of these compounds and their metabolites into our nation's water resources. A commercially available radioimmunoassay method, developed as a screen for tetracycline antibiotics in serum, urine, milk, and tissue, was adapted to analyze water samples at a detection level of approximately 1.0 ppb and a semiquantitative analytical range of 1-20 ppb. Liquid waste samples were obtained from 13 hog lagoons in three states and 52 surface- and ground-water samples were obtained primarily from areas associated with intensive swine and poultry production in seven states. These samples were screened for the tetracycline antibiotics by using the modified radioimmunoassay screening method. The radioimmunoassay tests yielded positive results for tetracycline antibiotics in samples from all 13 of the hog lagoons. Dilutions of 10-100-fold of the hog lagoon samples indicated that tetracycline antibiotic concentrations ranged from approximately 5 to several hundred parts per billion in liquid hog lagoon waste. Of the 52 surface- and ground-water samples collected all but two tested negative and these two samples contained tetracycline antibiotic concentrations less than 1 ppb. A new liquid chromatography/mass spectrometry method was used to confirm the radioimmunoassay results in 9 samples and also to identify the tetracycline antibiotics to which the radioimmunoassay test was responding. The new liquid chromatography/mass spectrometry method with online solid-phase extraction and a detection level of 0.5 ??g/l confirmed the presence of chlorotetracycline in the hog lagoon samples and in one of the surface-water samples. The concentrations calculated from the radioimmunoassay were a factor of 1-5 times less than those calculated by the liquid chromatography/mass spectrometry concentrations for chlorotetracycline. Copyright (C) 2000 Elsevier Science B.V.
USDA-ARS?s Scientific Manuscript database
A method has been developed for screening glyceollins and their metabolites based upon precursor ion scanning. Under higher-energy collision conditions, employing a triple quadrupole mass spectrometer in the negative ion mode, deprotonated glyceollin precursors yield a diagnostic radical product ion...
USDA-ARS?s Scientific Manuscript database
A selective ultra-high performance liquid chromatography-didode array detector-quadrapole time of flight-mass spectrometry (UHPLC-DAD-QToF-MS) method has been developed to screen grapefruit seeds, and other citrus seed samples for limonoid aglycones, limonoid acids, limonoid glucosides and flavonoid...
Laser desorption mass spectrometry for molecular diagnosis
NASA Astrophysics Data System (ADS)
Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Allman, S. L.; Tang, K.; Matteson, K. J.; Chang, L. Y.; Chung, C. N.; Martin, Steve; Haff, Lawrence
1996-04-01
Laser desorption mass spectrometry has been used for molecular diagnosis of cystic fibrosis. Both 3-base deletion and single-base point mutation have been successfully detected by clinical samples. This new detection method can possibly speed up the diagnosis by one order of magnitude in the future. It may become a new biotechnology technique for population screening of genetic disease.
Li, Zhaoyong; Wang, Fengmei; Niu, Zengyuan; Luo, Xin; Zhang, Gang; Chen, Junhui
2014-05-01
A method of ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UPLC-LTQ/Orbitrap MS) was established to screen and confirm 24 hormones in cosmetics. Various cosmetic samples were extracted with methanol. The extract was loaded onto a Waters ACQUITY UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 microm) using a gradient elution of acetonitrile/water containing 0.1% (v/v) formic acid for the separation. The accurate mass of quasi-molecular ion was acquired by full scanning of electrostatic field orbitrap. The rapid screening was carried out by the accurate mass of quasi-molecular ion. The confirmation analysis for targeted compounds was performed with the retention time and qualitative fragments obtained by data dependent scan mode. Under the optimal conditions, the 24 hormones were routinely detected with mass accuracy error below 3 x 10(-6) (3 ppm), and good linearities were obtained in their respective linear ranges with correlation coefficients higher than 0.99. The LODs (S/N = 3) of the 24 compounds were < or = 10 microg/kg, which can meet the requirements for the actual screening of cosmetic samples. The developed method was applied to screen the hormones in 50 cosmetic samples. The results demonstrate that the method is a useful tool for the rapid screening and identification of the hormones in cosmetics.
Dresen, S; Ferreirós, N; Gnann, H; Zimmermann, R; Weinmann, W
2010-04-01
The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a "scheduled" survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization-MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography-mass spectrometry, and liquid chromatography-diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).
Inagaki, Shinsuke; Noda, Takumi; Min, Jun Zhe; Toyo'oka, Toshimasa
2007-12-28
An exhaustive analysis of metabolites in hair samples has been performed for the first time using ultra performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry (UPLC-ESI-TOF-MS). The hair samples were collected from spontaneously hypertensive model rats (SHR/Izm), stroke-prone SHR (SHRSP/Izm) and Wistar Kyoto (WKY/Izm) rats, and were analyzed by UPLC-ESI-TOF-MS; a multivariate statistical analysis method, such as the principal component analysis (PCA), was then used for screening the biomarkers. From the samples derived from the group of SHRSP/Izm at weeks 10, 18, 26 and 34, we successfully detected a potential biomarker of stroke, which existed at much higher concentrations as compared with that in the other groups. However, a significant difference could not be found at weeks less than 7 before the rats were subjected to stroke and hypertension. In addition, the present method was applicable to screening not only the disease markers, but also the markers related to aging. The method utilizing hair samples is expected to be quite useful for screening biomarkers of many other diseases, and not limited to stroke and hypertension.
High-resolution mass spectrometry (HRMS) is used for suspect screening (SSA) and non-targeted analysis (NTA) in an attempt to characterize xenobiotic chemicals in various samples broadly and efficiently. These important techniques aid characterization of the exposome, the totalit...
Raterink, Robert-Jan; Witkam, Yoeri; Vreeken, Rob J; Ramautar, Rawi; Hankemeier, Thomas
2014-10-21
In the field of bioanalysis, there is an increasing demand for miniaturized, automated, robust sample pretreatment procedures that can be easily connected to direct-infusion mass spectrometry (DI-MS) in order to allow the high-throughput screening of drugs and/or their metabolites in complex body fluids like plasma. Liquid-Liquid extraction (LLE) is a common sample pretreatment technique often used for complex aqueous samples in bioanalysis. Despite significant developments that have been made in automated and miniaturized LLE procedures, fully automated LLE techniques allowing high-throughput bioanalytical studies on small-volume samples using direct infusion mass spectrometry, have not been matured yet. Here, we introduce a new fully automated micro-LLE technique based on gas-pressure assisted mixing followed by passive phase separation, coupled online to nanoelectrospray-DI-MS. Our method was characterized by varying the gas flow and its duration through the solvent mixture. For evaluation of the analytical performance, four drugs were spiked to human plasma, resulting in highly acceptable precision (RSD down to 9%) and linearity (R(2) ranging from 0.990 to 0.998). We demonstrate that our new method does not only allow the reliable extraction of analytes from small sample volumes of a few microliters in an automated and high-throughput manner, but also performs comparable or better than conventional offline LLE, in which the handling of small volumes remains challenging. Finally, we demonstrate the applicability of our method for drug screening on dried blood spots showing excellent linearity (R(2) of 0.998) and precision (RSD of 9%). In conclusion, we present the proof of principe of a new high-throughput screening platform for bioanalysis based on a new automated microLLE method, coupled online to a commercially available nano-ESI-DI-MS.
Recent developments and new applications of tandem mass spectrometry in newborn screening.
Rinaldo, Piero; Tortorelli, Silvia; Matern, Dietrich
2004-08-01
To summarize recent developments in the field of newborn screening related to the use of tandem mass spectrometry as an analytic platform. Novel inborn errors of metabolism with informative amino acid and/or acylcarnitine profiles have been characterized, increasing the complexity of the differential diagnosis of abnormal results. In addition, methods have been developed for the analysis in dried blood spots of steroids and lysosomal enzymes. Previously unrecognized genotype/phenotype correlations have been found among cohorts of patients whose conditions were diagnosed by screening rather than clinically. Several government entities and professional organizations have issued position statements on newborn screening, and worldwide outcome studies continue to underscore the clinical and financial benefits of expanded newborn screening. Although it is done inconsistently, newborn screening in the United States is undergoing a rapid expansion driven by the introduction of tandem mass spectrometry in at least 34 state programs. This technology is also used to detect disease markers beyond acylcarnitines and amino acids, as both primary and second-tier tests. In addition to analytic improvements, there is a trend toward the development of joint programs not limited to contiguous geographic areas, often based upon public-private partnerships. This review will summarize several new developments in the field that have occurred since early 2003 and will mention others likely to occur in the near future.
A Disposable Microfluidic Device with a Screen Printed Electrode for Mimicking Phase II Metabolism
Vasiliadou, Rafaela; Nasr Esfahani, Mohammad Mehdi; Brown, Nathan J.; Welham, Kevin J.
2016-01-01
Human metabolism is investigated using several in vitro methods. However, the current methodologies are often expensive, tedious and complicated. Over the last decade, the combination of electrochemistry (EC) with mass spectrometry (MS) has a simpler and a cheaper alternative to mimic the human metabolism. This paper describes the development of a disposable microfluidic device with a screen-printed electrode (SPE) for monitoring phase II GSH reactions. The proposed chip has the potential to be used as a primary screening tool, thus complementing the current in vitro methods. PMID:27598162
A mass spectrometer based explosives trace detector
NASA Astrophysics Data System (ADS)
Vilkov, Andrey; Jorabchi, Kaveh; Hanold, Karl; Syage, Jack A.
2011-05-01
In this paper we describe the application of mass spectrometry (MS) to the detection of trace explosives. We begin by reviewing the issue of explosives trace detection (ETD) and describe the method of mass spectrometry (MS) as an alternative to existing technologies. Effective security screening devices must be accurate (high detection and low false positive rate), fast and cost effective (upfront and operating costs). Ion mobility spectrometry (IMS) is the most commonly deployed method for ETD devices. Its advantages are compact size and relatively low price. For applications requiring a handheld detector, IMS is an excellent choice. For applications that are more stationary (e.g., checkpoint and alternatives to IMS are available. MS is recognized for its superior performance with regard to sensitivity and specificity, which translate to lower false negative and false positive rates. In almost all applications outside of security where accurate chemical analysis is needed, MS is usually the method of choice and is often referred to as the gold standard for chemical analysis. There are many review articles and proceedings that describe detection technologies for explosives. 1,2,3,4 Here we compare MS and IMS and identify the strengths and weaknesses of each method. - Mass spectrometry (MS): MS offers high levels of sensitivity and specificity compared to other technologies for chemical detection. Its traditional disadvantages have been high cost and complexity. Over the last few years, however, the economics have greatly improved and MS is now capable of routine and automated operation. Here we compare MS and IMS and identify the strengths and weaknesses of each method. - Ion mobility spectrometry (IMS): 5 MS-ETD Screening System IMS is similar in concept to MS except that the ions are dispersed by gas-phase viscosity and not by molecular weight. The main advantage of IMS is that it does not use a vacuum system, which greatly reduces the size, cost, and complexity relative to MS. However, the trade-off is that the measurement accuracy is considerably less than MS. This is especially true for complex samples or when screening for a large number of target compounds simultaneously.
High impact technologies for natural products screening.
Koehn, Frank E
2008-01-01
Natural products have historically been a rich source of lead molecules in drug discovery. However, natural products have been de-emphasized as high throughput screening resources in the recent past, in part because of difficulties in obtaining high quality natural products screening libraries, or in applying modern screening assays to these libraries. In addition, natural products programs based on screening of extract libraries, bioassay-guided isolation, structure elucidation and subsequent production scale-up are challenged to meet the rapid cycle times that are characteristic of the modern HTS approach. Fortunately, new technologies in mass spectrometry, NMR and other spectroscopic techniques can greatly facilitate the first components of the process - namely the efficient creation of high-quality natural products libraries, bimolecular target or cell-based screening, and early hit characterization. The success of any high throughput screening campaign is dependent on the quality of the chemical library. The construction and maintenance of a high quality natural products library, whether based on microbial, plant, marine or other sources is a costly endeavor. The library itself may be composed of samples that are themselves mixtures - such as crude extracts, semi-pure mixtures or single purified natural products. Each of these library designs carries with it distinctive advantages and disadvantages. Crude extract libraries have lower resource requirements for sample preparation, but high requirements for identification of the bioactive constituents. Pre-fractionated libraries can be an effective strategy to alleviate interferences encountered with crude libraries, and may shorten the time needed to identify the active principle. Purified natural product libraries require substantial resources for preparation, but offer the advantage that the hit detection process is reduced to that of synthetic single component libraries. Whether the natural products library consists of crude or partially fractionated mixtures, the library contents should be profiled to identify the known components present - a process known as dereplication. The use of mass spectrometry and HPLC-mass spectrometry together with spectral databases is a powerful tool in the chemometric profiling of bio-sources for natural product production. High throughput, high sensitivity flow NMR is an emerging tool in this area as well. Whether by cell based or biomolecular target based assays, screening of natural product extract libraries continues to furnish novel lead molecules for further drug development, despite challenges in the analysis and prioritization of natural products hits. Spectroscopic techniques are now being used to directly screen natural product and synthetic libraries. Mass spectrometry in the form of methods such as ESI-ICRFTMS, and FACS-MS as well as NMR methods such as SAR by NMR and STD-NMR have been utilized to effectively screen molecular libraries. Overall, emerging advances in mass spectrometry, NMR and other technologies are making it possible to overcome the challenges encountered in screening natural products libraries in today's drug discovery environment. As we apply these technologies and develop them even further, we can look forward to increased impact of natural products in the HTS based drug discovery.
Geyer, Pierre M; Hulme, Matthew C; Irving, Joseph P B; Thompson, Paul D; Ashton, Ryan N; Lee, Robert J; Johnson, Lucy; Marron, Jack; Banks, Craig E; Sutcliffe, Oliver B
2016-11-01
The prevalence of new psychoactive substances (NPSs) in forensic casework has increased prominently in recent years. This has given rise to significant legal and analytical challenges in the identification of these substances. The requirement for validated, robust and rapid testing methodologies for these compounds is obvious. This study details the analysis of 13 synthesised diphenidine derivatives encountered in casework using presumptive testing, thin layer chromatography and gas chromatography-mass spectrometry (GC-MS). Specifically, the validated GC-MS method provides, for the first time, both a general screening method and quantification of the active components for seized solid samples, both in their pure form and in the presence of common adulterants. Graphical Abstract Chemical synthesis and forensic analysis of 13 diphenidine-derived new psychoactive substance(s).
Chau, Hong Thi Cam; Kadokami, Kiwao; Ifuku, Tomomi; Yoshida, Yusuke
2017-12-01
A comprehensive screening method for 311 organic compounds with a wide range of physicochemical properties (log Pow -2.2-8.53) in water samples was developed by combining solid-phase extraction with liquid chromatography-high-resolution time-of-flight mass spectrometry. Method optimization using 128 pesticides revealed that tandem extraction with styrene-divinylbenzene polymer and activated carbon solid-phase extraction cartridges at pH 7.0 was optimal. The developed screening method was able to extract 190 model compounds with average recovery of 80.8% and average relative standard deviations (RSD) of 13.5% from spiked reagent water at 0.20 μg L -1 , and 87.1% recovery and 10.8% RSD at 0.05 μg L -1 . Spike-recovery testing (0.20 μg L -1 ) using real sewage treatment plant effluents resulted in an average recovery and average RSD of 190 model compounds of 77.4 and 13.1%, respectively. The method was applied to the influent and effluent of five sewage treatment plants in Kitakyushu, Japan, with 29 out of 311 analytes being observed at least once. The results showed that this method can screen for a large number of chemicals with a wide range of physicochemical properties quickly and at low operational cost, something that is difficult to achieve using conventional analytical methods. This method will find utility in target screening of hazardous chemicals with a high risk in environmental waters, and for confirming the safety of water after environmental incidents.
Han, Shengli; Huang, Jing; Cui, Ronghua; Zhang, Tao
2015-02-01
Carthamus tinctorius, used in traditional Chinese medicine, has many pharmacological effects, such as anticoagulant effects, antioxidant effects, antiaging effects, regulation of gene expression, and antitumor effects. However, there is no report on the antiallergic effects of the components in C. tinctorius. In the present study, we investigated the antiallergic components of C. tinctorius and its mechanism of action. A rat basophilic leukemia 2H3/cell membrane chromatography coupled online with high-performance liquid chromatography and tandem mass spectrometry method was developed to screen antiallergic components from C. tinctorius. The screening results showed that Hydroxysafflor yellow A, from C. tinctorius, was the targeted component that retained on the rat basophilic leukemia 2H3/cell membrane chromatography column. We measured the amount of β-hexosaminidase and histamine released in mast cells and the key markers of degranulation. The release assays showed that Hydroxysafflor yellow A could attenuate the immunoglobulin E induced release of allergic cytokines without affecting cell viability from 1.0 to 50.0 μM. In conclusion, the established rat basophilic leukemia 2H3 cell membrane chromatography coupled with online high-performance liquid chromatography and tandem mass spectrometry method successfully screened and identified Hydroxysafflor yellow A from C. tinctorius as a potential antiallergic component. Pharmacological analysis elucidated that Hydroxysafflor yellow A is an effective natural component for inhibiting immunoglobulin E-antigen-mediated degranulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Guilin; Huang, Bill X; Guo, Mingquan
2018-05-21
Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.
Solliec, Morgan; Roy-Lachapelle, Audrey; Sauvé, Sébastien
2015-12-30
Swine manure can contain a wide range of veterinary antibiotics, which could enter the environment via manure spreading on agricultural fields. A suspect and non-target screening method was applied to swine manure samples to attempt to identify veterinary antibiotics and pharmaceutical compounds for a future targeted analysis method. A combination of suspect and non-target screening method was developed to identify various veterinary antibiotic families using liquid chromatography coupled with high-resolution mass spectrometry (LC/HRMS). The sample preparation was based on the physicochemical parameters of antibiotics for the wide scope extraction of polar compounds prior to LC/HRMS analysis. The amount of data produced was processed by applying restrictive thresholds and filters to significantly reduce the number of compounds found and eliminate matrix components. The suspect and non-target screening was applied on swine manure samples and revealed the presence of seven common veterinary antibiotics and some of their relative metabolites, including tetracyclines, β-lactams, sulfonamides and lincosamides. However, one steroid and one analgesic were also identified. The occurrence of the identified compounds was validated by comparing their retention times, isotopic abundance patterns and fragmentation patterns with certified standards. This identification method could be very useful as an initial step to screen for and identify emerging contaminants such as veterinary antibiotics and pharmaceuticals in environmental and biological matrices prior to quantification. Copyright © 2015 John Wiley & Sons, Ltd.
Moore, Katherine N; Garvin, Demetra; Thomas, Brian F; Grabenauer, Megan
2017-09-01
Synthetic cannabinoids are sprayed onto plant material and smoked for their marijuana-like effects. Clandestine manufacturers modify synthetic cannabinoid structures by creating closely related analogs. Forensic laboratories are tasked with detection of these analog compounds, but targeted analytical methods are often thwarted by the structural modifications. Here, direct analysis in real time coupled to accurate mass time-of-flight mass spectrometry (DART-TOF-MS) in combination with liquid chromatography quadruple time-of-flight mass spectrometry (LC-QTOF-MS) are presented as a screening and nontargeted confirmation method, respectively. Methanol extracts of herbal material were run using both methods. Spectral data from four different herbal products were evaluated by comparing fragmentation pattern, accurate mass and retention time to available reference standards. JWH-018, JWH-019, AM2201, JWH-122, 5F-AKB48, AKB48-N-(4-pentenyl) analog, UR144, and XLR11 were identified in the products. Results demonstrate that DART-TOF-MS affords a useful approach for rapid screening of herbal products for the presence and identification of synthetic cannabinoids. © 2017 American Academy of Forensic Sciences.
Biomass Characterization | Bioenergy | NREL
analytical methods for biomass characterization available for downloading. View the Biomass Compositional Methods Molecular Beam Mass Spectrometry Photo of a man in front of multiple computer screens that present Characterization of Biomass We develop new methods and tools to understand the chemical composition of raw biomass
An adaptation of Office of Solid Waste and Emergency Response' Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846) method 8261 to analyze milk for an expanded list of volatile organic compounds is presented. The milk matriz exhibits a strong affinity for o...
Yu, Chaowen; Huang, Shuodan; Wang, Ming; Zhang, Juan; Liu, Hao; Yuan, Zhaojian; Wang, Xingbin; He, Xiaoyan; Wang, Jie; Zou, Lin
2017-02-10
Traditional methods for thalassemia screening are time-consuming and easily affected by cell hemolysis or hemoglobin degradation in stored blood samples. Tandem mass spectrometry (MS/MS) proved to be an effective technology for sickle cell disorders (SCD) screening. Here, we developed a novel MS/MS method for β-thalassemia screening from dried blood spots (DBS). Stable isotopic-labeled peptides were used as internal standards for quantification and calculation of the α:β-globin ratios. We used the α:β-globin ratio cutoffs to differentiate between normal individuals and patients with thalassemia. About 781 patients and 300 normal individuals were analyzed. The α:β-globin ratios showed significant difference between normal and β-thalassemia patients (P<0.01), particularly when the disease was homozygous or double heterozygous with another α- or β-thalassemia mutation. In the parallel study, all cases screened for suspected thalassemia from six hundred DBS samples by using this MS/MS method were successfully confirmed by genotyping. The intra-assay and inter-assay CVs of the ratios ranged from 2.4% to 3.9% and 4.7% to 7.1%, and there was no significant sample carryover or matrix effect for this MS/MS method. Combined with SCD screening, this MS/MS method could be used as a first-line screening assay for both structural and expression abnormalities of human hemoglobin. Traditional methods for thalassemia screening were depending on the structural integrity of tetramers and could be affected by hemolysis and degradation of whole blood samples, especially when stored. We used proteospecific peptides produced by the tryptic digestion of each globin to evaluate the production ratio between α- and β-globin chains, which turned out to be quite stable even when stored for more than two months. Though most of the peptides were specific to α-globin or β-globin, we only chose four most informative peptides and its stable isotopic-labeled peptides as internal standards for analysis, which could obtain a high accuracy. Currently, we are the first to address the application of MS/MS for thalassemia screening, when combined with SCD screening, this MS/MS method could be used as a first-line screening assay for both structural and expression abnormalities of human hemoglobin. Copyright © 2016. Published by Elsevier B.V.
Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A
2011-05-15
Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Miao; Wang, Sicen; He, Langchong
2015-01-01
Natural products (NPs) are important sources of lead compounds in modern drug discovery. To facilitate the screening of volatile active compounds in NPs, we have developed a new biochromatography method that uses rat vascular smooth muscle cells (VSMC), which are rich in L-type calcium channels (LCC), to prepare the stationary phase. This integrated method, which couples cell membrane chromatography (CMC) with gas chromatography-mass spectrometry (GC-MS) via microextraction by packed sorbent (MEPS) technology, has been termed VSMC/CMC-MEPS-GC-MS. Methodological validation confirmed its specificity, reliability and convenience. Screening results for Radix Angelicae Dahuricae and Fructus Cnidii obtained using VSMC/CMC-MEPS-GC-MS were consistent with those obtained using VSMC/CMC-offline-GC-MS. MEPS connection plays as simplified solid-phase extraction and replaces the uncontrollable evaporation operation in reported offline connections, so our new method is supposed to be more efficient and reliable than the offline ones, especially for compounds that are volatile, thermally unstable or difficult to purify. In application, senkyunolide A and ligustilide were preliminary identified as the volatile active components in Rhizoma Chuanxiong. We have thus confirmed the suitability of VSMC/CMC-MEPS-GC-MS for volatile active compounds screening in NP. Copyright © 2014 Elsevier B.V. All rights reserved.
A set of three complementary analytical methods were developed specifically for exhaled breath as collected in evacuated stainless steel canisters using gas chromatography - mass spectrometry detection. The first is a screening method to quantify the carbon dioxide component (gen...
Peters, Frank T
2011-01-01
Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) has become increasingly important in clinical and forensic toxicology as well as doping control and is now a robust and reliable technique for routine analysis in these fields. In recent years, methods for LC-MS(/MS)-based systematic toxicological analysis using triple quadrupole or ion trap instruments have been considerably improved and a new screening approach based on high-resolution MS analysis using benchtop time-of-flight MS instruments has been developed. Moreover, many applications for so-called multi-target screening and/or quantification of drugs, poisons, and or their metabolites in various biomatrices have been published. The present paper will provide an overview and discuss these recent developments focusing on the literature published after 2006. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Pasin, Daniel; Cawley, Adam; Bidny, Sergei; Fu, Shanlin
2017-10-01
The proliferation of new psychoactive substances (NPS) in recent years has resulted in the development of numerous analytical methods for the detection and identification of known and unknown NPS derivatives. High-resolution mass spectrometry (HRMS) has been identified as the method of choice for broad screening of NPS in a wide range of analytical contexts because of its ability to measure accurate masses using data-independent acquisition (DIA) techniques. Additionally, it has shown promise for non-targeted screening strategies that have been developed in order to detect and identify novel analogues without the need for certified reference materials (CRMs) or comprehensive mass spectral libraries. This paper reviews the applications of HRMS for the analysis of NPS in forensic drug chemistry and analytical toxicology. It provides an overview of the sample preparation procedures in addition to data acquisition, instrumental analysis, and data processing techniques. Furthermore, it gives an overview of the current state of non-targeted screening strategies with discussion on future directions and perspectives of this technique. Graphical Abstract Missing the bullseye - a graphical respresentation of non-targeted screening. Image courtesy of Christian Alonzo.
Auray-Blais, Christiane; Lavoie, Pamela; Boutin, Michel; Abaoui, Mona
2017-04-06
Fabry disease is a complex, panethnic lysosomal storage disorder. It is characterized by the accumulation of glycosphingolipids in tissues, organs, the vascular endothelium, and biological fluids. The reported incidence in different populations is quite variable, ranging from 1:1400 to 1:117,000. Its complexity lies in the marked genotypic and phenotypic heterogeneity. Despite the fact that it is an X-linked disease, more than 600 mutations affect both males and females. In fact, some females may be affected as severely as males. The purpose of this protocol is to focus on the high-risk screening of patients who might have Fabry disease using a simple, rapid, non-invasive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for urinary globotriaosylceramide (Gb 3 ) analysis. Urine filter paper samples are easily collected at home by patients and sent by regular mail. This method has been successfully used for high-risk screening of patients with ophthalmologic manifestations and in an on-going study for high-risk screening of Fabry disease in patients with chronic kidney diseases. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
USDA-ARS?s Scientific Manuscript database
Although quantitative analytical methods must be empirically validated prior to their actual use in a variety of applications, including regulatory monitoring of chemical adulterants in foods, validation of qualitative method performance for the analytes and matrices of interest is frequently ignore...
NASA Astrophysics Data System (ADS)
Hvastkovs, Eli, G.; Schenkman, John B.; Rusling, James, F.
2012-07-01
New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.
Goon, Arnab; Khan, Zareen; Oulkar, Dasharath; Shinde, Raviraj; Gaikwad, Suresh; Banerjee, Kaushik
2018-01-12
A novel screening and quantitation method is reported for non-target multiresidue analysis of pesticides using ultra-HPLC-quadrupole-Orbitrap mass spectrometry in spice matrices, including black pepper, cardamom, chili, coriander, cumin, and turmeric. The method involved sequential full-scan (resolution = 70,000), and variable data independent acquisition (vDIA) with nine consecutive fragmentation events (resolution = 17,500). Samples were extracted by the QuEChERS method. The introduction of an SPE-based clean-up step through hydrophilic-lipophilic-balance (HLB) cartridges proved advantageous in minimizing the false negatives. For coriander, cumin, chili, and cardamom, the screening detection limit was largely at 2 ng/g, while it was 5 ng/g for black pepper, and turmeric. When the method was quantitatively validated for 199 pesticides, the limit of quantification (LOQ) was mostly at 10 ng/g (excluding black pepper, and turmeric with LOQ = 20 ng/g) with recoveries within 70-120%, and precision-RSDs <20%. Furthermore, the method allowed the identification of suspected non-target analytes through retrospective search of the accurate mass of the compound-specific precursor and product ions. Compared to LC-MS/MS, the quantitative performance of this Orbitrap-MS method had agreements in residue values between 78-100%. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Wei; Huang, Guangming
2015-11-15
Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.
Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel
2012-01-01
The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils ("lampante," "virgin," and "extra virgin" olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert's panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.
Huang, Xiu; Liu, Qian; Gao, Wei; Wang, Yawei; Nie, Zhou; Yao, Shouzhuo; Jiang, Guibin
2018-03-01
As an important class of emerging chemical contaminants, short-chain chlorinated paraffins (SCCPs) are considered as one of the most challenging groups of compounds to analyze. In this paper, we report a new method for fast screening of SCCPs based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with graphene as a matrix and 2,5,6,9-tetrachlorodecane as an internal standard. We found that the use of graphene as MALDI matrix generated high peak intensities for SCCPs while producing few background noises. The ion fragmentation mechanisms of SCCPs in MALDI are discussed in detail. Under the optimized conditions, much lower detection limits of SCCP congeners (0.1-5ng/mL) than those reported previously were obtained. Other distinct advantages such as short analysis time and simplified sample preparation procedures are also demonstrated. The method was successfully applied in fast screening of SCCPs in indoor dust samples and monitoring of human exposure levels to SCCPs, and the results were verified by gas chromatography coupled to negative chemical ionization quadrupole time-of-flight high-resolution mass spectrometry. This work not only offers a new promising tool for SCCP studies, but also further demonstrates the promise of graphene as a new generation of MALDI matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
Hurtaud-Pessel, D; Jagadeshwar-Reddy, T; Verdon, E
2011-10-01
A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was developed for screening meat for a wide range of antibiotics used in veterinary medicine. Full-scan mode under high resolution mass spectral conditions using an LTQ-Orbitrap mass spectrometer with resolving power 60,000 full width at half maximum (FWHM) was applied for analysis of the samples. Samples were prepared using two extraction protocols prior to LC-HRMS analysis. The scope of the method focuses on screening the following main families of antibacterial veterinary drugs: penicillins, cephalosporins, sulfonamides, macrolides, tetracyclines, aminoglucosides and quinolones. Compounds were successfully identified in spiked samples from their accurate mass and LC retention times from the acquired full-scan chromatogram. Automated data processing using ToxId software allowed rapid treatment of the data. Analyses of muscle tissues from real samples collected from antibiotic-treated animals was carried out using the above methodology and antibiotic residues were identified unambiguously. Further analysis of the data for real samples allowed the identification of the targeted antibiotic residues but also non-targeted compounds, such as some of their metabolites.
Drug screening in medical examiner casework by high-resolution mass spectrometry (UPLC-MSE-TOF).
Rosano, Thomas G; Wood, Michelle; Ihenetu, Kenneth; Swift, Thomas A
2013-10-01
Postmortem drug findings yield important analytical evidence in medical examiner casework, and chromatography coupled with nominal mass spectrometry (MS) serves as the predominant general unknown screening approach. We report screening by ultra performance liquid chromatography (UPLC) coupled with hybrid quadrupole time-of-flight mass spectrometer (MS(E)-TOF), with comparison to previously validated nominal mass UPLC-MS and UPLC-MS-MS methods. UPLC-MS(E)-TOF screening for over 950 toxicologically relevant drugs and metabolites was performed in a full-spectrum (m/z 50-1,000) mode using an MS(E) acquisition of both molecular and fragment ion data at low (6 eV) and ramped (10-40 eV) collision energies. Mass error averaged 1.27 ppm for a large panel of reference drugs and metabolites. The limit of detection by UPLC-MS(E)-TOF ranges from 0.5 to 100 ng/mL and compares closely with UPLC-MS-MS. The influence of column recovery and matrix effect on the limit of detection was demonstrated with ion suppression by matrix components correlating closely with early and late eluting reference analytes. Drug and metabolite findings by UPLC-MS(E)-TOF were compared with UPLC-MS and UPLC-MS-MS analyses of postmortem blood in 300 medical examiner cases. Positive findings by all methods totaled 1,528, with a detection rate of 57% by UPLC-MS, 72% by UPLC-MS-MS and 80% by combined UPLC-MS and UPLC-MS-MS screening. Compared with nominal mass screening methods, UPLC-MS(E)-TOF screening resulted in a 99% detection rate and, in addition, offered the potential for the detection of nontargeted analytes via high-resolution acquisition of molecular and fragment ion data.
Code of Federal Regulations, 2012 CFR
2012-04-01
... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...
Code of Federal Regulations, 2014 CFR
2014-04-01
... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...
Miao, Meng; Zhao, Gaosheng; Xu, Li; Dong, Junguo; Cheng, Ping
2018-03-01
A direct analytical method based on spray-inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g -1 . Compared with other online and off-line methods, the spray-inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits. Copyright © 2017 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pip...
Zulfiqar, Adnan; Morgan, Geraint; Turner, Nicholas W
2014-10-07
A method capable of screening for multiple steroids in urine has been developed, using a series of twelve structurally similar, and commercially relevant compounds as target analytes. A molecularly imprinted solid phase extraction clean-up step was used to make the sample suitable for injection onto a GC×GC-MS setup. Significant improvements compared to a commercially available C-18 material were observed. Each individual steroid was able to be separated and identified, using both the retention profile and diagnostic fragmentation ion monitoring abilities of the comprehensive chromatographic-mass spectrometry method. Effective LODs of between 11.7 and 27.0 pg were calculated for individual steroids, effectively equivalent to concentration levels of between 0.234 and 0.540 ng mL(-1) in urine, while the application of multiple screen was demonstrated using a 10 ng mL(-1) mixed sample. The nature of this study also removes the need for sample derivitisation which speeds up the screening process.
Yun, Huan; Liu, Xin; Cui, Jie; Yang, Jing; Liu, Ying
2017-08-08
A method for screening of acidity regulators in dairy based on ion chromatography-high resolution mass spectrometry technology (IC-HRMS) was set up. The dairy samples were extracted by KOH (pH 7-8) and Oasis MAX SPE column, and separated by a Dionex IonPac AS11-HC column (250 mm×4 mm). All the acidity regulators were detected by Orbitrap full scan mode. Taking six organic acids as an example, the calibration curves showed good linearities in the range of 0.05-5.00 mg/L, and the correlation coefficients ( r ) were higher than 0.99. By detecting the spiked samples, the recoveries were in the range of 74.3%-115.5% with the relative standard deviations (RSDs) between 0.64% and 4.81%. Malic acid, citric acid, lactic acid, succinic acid and adipic acid could be detected by IC-HRMS in the commercial dairy samples. The results indicate that the method is simple, rapid and suitable for the qualitative screening of acidity regulators in dairy products.
Jia, Wei; Shi, Lin; Chu, Xiaogang; Chang, James; Chen, Ying; Zhang, Feng
2018-10-01
An analytical method for the non-target screening of macrolides and metabolites in bass (Lateolabrax) was developed using an automated on-line extraction procedure followed by ultrahigh-performance liquid chromatography coupled to electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC Q-Orbitrap). The estimated performance characteristics were satisfied, complying with the requirements of the guidelines specified in European Commission Decision 2002/657/EC. The decision limit ranged from 0.12 μg kg -1 to 3.61 μg kg -1 , and detection capability ranged between 0.20 μg kg -1 and 6.02 μg kg -1 . Precision in terms of relative standard deviation (RSD) was under 14% for all compounds, and the extraction recoveries ranged from 81% to 107%. Finally, the method was applied to ten different commercially important bass species and confirmed the presence of ten macrolides and metabolites. Five non-target compounds of robenidine, lincomycin hydrochloride, thiacloprid, fenbendazole, and thiabendazole were elucidated in the untargeted screening. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tang, Hubert Po-On; Ho, Clare; Lai, Shirley Sau-Ling
2006-01-01
A rapid qualitative method using on-line column-switching liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and validated for screening 13 target veterinary drugs: four macrolides - erythromycin A, josamycin (leucomycin A3), kitasamycin (leucomycin A5), and tylosin A; six (fluoro)quinolones - ciprofloxacin, danofloxacin, enrofloxacin, flumequine, oxolinic acid, and sarafloxacin; and lincomycin, virginiamycin M1, and trimethoprim in different animal muscles. Clindamycin, norfloxacin, nalidixic acid, oleandomycin, ormetoprim, and roxithromycin were used as the internal standards. After simple deproteination and analyte extraction of muscle samples using acetonitrile, the supernatant was subjected to on-line cleanup and direct analysis by LC/MS/MS. On-line cleanup with an extraction cartridge packed with hydrophilic-hydrophobic polymer sorbent followed by fast LC using a short C18 column resulted in a total analysis cycle of 6 min for 19 drugs. This screening method considerably reduced the time and the cost for the quantitative and confirmatory analyses. The application of a control point approach was also introduced and explained. Copyright (c) 2006 John Wiley & Sons, Ltd.
Kang, Kyungsu; Peng, Lei; Jung, Yu-Jin; Kim, Joo Yeon; Lee, Eun Ha; Lee, Hee Ju; Kim, Sang Min; Sung, Sang Hyun; Pan, Cheol-Ho; Choi, Yongsoo
2018-02-01
To develop a high-throughput screening system to measure the conversion of testosterone to dihydrotestosterone (DHT) in cultured human prostate cancer cells using turbulent flow chromatography liquid chromatography-triple quadrupole mass spectrometry (TFC-LC-TQMS). After optimizing the cell reaction system, this method demonstrated a screening capability of 103 samples, including 78 single compounds and 25 extracts, in less than 12 h without manual sample preparation. Consequently, fucoxanthin, phenethyl caffeate, and Curcuma longa L. extract were validated as bioactive chemicals that inhibited DHT production in cultured DU145 cells. In addition, naringenin boosted DHT production in DU145 cells. The method can facilitate the discovery of bioactive chemicals that modulate the DHT production, and four phytochemicals are potential candidates of nutraceuticals to adjust DHT levels in male hormonal dysfunction.
Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš
2012-10-30
There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (<4 ppm) and structurally characterized using tandem mass spectra. Our method is the first step toward the development of a novel high-throughput extraction and identification tool for antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.
Sun, Meng; Ren, Jing; Du, Hui; Zhang, Yanmin; Zhang, Jie; Wang, Sicen; He, Langchong
2010-10-15
We have developed an online analytical method that combines A431 cell membrane chromatography (A431/CMC) with high performance liquid chromatography and mass spectrometry (LC/MS) for identifying active components from Radix Caulophylli acting on human EGFR. Retention fractions on A431/CMC model were captured onto an enrichment column and the components were directly analyzed by combining a 10-port column switcher with an LC/MS system for separation and preliminary identification. Using Sorafenib tosylate as a positive control, taspine and caulophine from Radix Caulophylli were identified as the active molecules which could act on the EGFR. This A431/CMC-online-LC/MS method can be applied for screening active components acting on EGFR from traditional Chinese medicines exemplified by Radix Caulophylli and will be of great utility in drug discovery using natural medicinal herbs as a source of novel compounds. Copyright © 2010 Elsevier B.V. All rights reserved.
Synthesis and screening of one-bead-one-compound cyclic peptide libraries.
Qian, Ziqing; Upadhyaya, Punit; Pei, Dehua
2015-01-01
Cyclic peptides have been a rich source of biologically active molecules. Herein we present a method for the combinatorial synthesis and screening of large one-bead-one-compound (OBOC) libraries of cyclic peptides against biological targets such as proteins. Up to ten million different cyclic peptides are rapidly synthesized on TentaGel microbeads by the split-and-pool synthesis method and subjected to a multistage screening protocol which includes magnetic sorting, on-bead enzyme-linked and fluorescence-based assays, and in-solution binding analysis of cyclic peptides selectively released from single beads by fluorescence anisotropy. Finally, the most active hit(s) is identified by the partial Edman degradation-mass spectrometry (PED-MS) method. This method allows a single researcher to synthesize and screen up to ten million cyclic peptides and identify the most active ligand(s) in ~1 month, without the time-consuming and expensive hit resynthesis or the use of any special equipment.
Chen, Xin; Qin, Shanshan; Chen, Shuai; Li, Jinlong; Li, Lixin; Wang, Zhongling; Wang, Quan; Lin, Jianping; Yang, Cheng; Shui, Wenqing
2015-01-01
In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques. PMID:25666181
Data-Independent Mass Spectrometry Approach for Screening and Identification of DNA Adducts.
Guo, Jingshu; Villalta, Peter W; Turesky, Robert J
2017-11-07
Long-term exposures to environmental toxicants and endogenous electrophiles are causative factors for human diseases including cancer. DNA adducts reflect the internal exposure to genotoxicants and can serve as biomarkers for risk assessment. Liquid chromatography-multistage mass spectrometry (LC-MS n ) is the most common method for biomonitoring DNA adducts, generally targeting single exposures and measuring up to several adducts. However, the data often provide limited evidence for a role of a chemical in the etiology of cancer. An "untargeted" method is required that captures global exposures to chemicals, by simultaneously detecting their DNA adducts in the genome; some of which may induce cancer-causing mutations. We established a wide selected ion monitoring tandem mass spectrometry (wide-SIM/MS 2 ) screening method utilizing ultraperformance-LC nanoelectrospray ionization Orbitrap MS n with online trapping to enrich bulky, nonpolar adducts. Wide-SIM scan events are followed by MS 2 scans to screen for modified nucleosides by coeluting peaks containing precursor and fragment ions differing by -116.0473 Da, attributed to the neutral loss of deoxyribose. Wide-SIM/MS 2 was shown to be superior in sensitivity, specificity, and breadth of adduct coverage to other tested adductomic methods with detection possible at adduct levels as low as 4 per 10 9 nucleotides. Wide-SIM/MS 2 data can be analyzed in a "targeted" fashion by generation of extracted ion chromatograms or in an "untargeted" fashion where a chromatographic peak-picking algorithm can be used to detect putative DNA adducts. Wide-SIM/MS 2 successfully detected DNA adducts, derived from chemicals in the diet and traditional medicines and from lipid peroxidation products, in human prostate and renal specimens.
Melo, Carlos Fernando Odir Rodrigues; Navarro, Luiz Claudio; de Oliveira, Diogo Noin; Guerreiro, Tatiane Melina; Lima, Estela de Oliveira; Delafiori, Jeany; Dabaja, Mohamed Ziad; Ribeiro, Marta da Silva; de Menezes, Maico; Rodrigues, Rafael Gustavo Martins; Morishita, Karen Noda; Esteves, Cibele Zanardi; de Amorim, Aline Lopes Lucas; Aoyagui, Caroline Tiemi; Parise, Pierina Lorencini; Milanez, Guilherme Paier; do Nascimento, Gabriela Mansano; Ribas Freitas, André Ricardo; Angerami, Rodrigo; Costa, Fábio Trindade Maranhão; Arns, Clarice Weis; Resende, Mariangela Ribeiro; Amaral, Eliana; Junior, Renato Passini; Ribeiro-do-Valle, Carolina C.; Milanez, Helaine; Moretti, Maria Luiza; Proenca-Modena, Jose Luiz; Avila, Sandra; Rocha, Anderson; Catharino, Rodrigo Ramos
2018-01-01
Recent Zika outbreaks in South America, accompanied by unexpectedly severe clinical complications have brought much interest in fast and reliable screening methods for ZIKV (Zika virus) identification. Reverse-transcriptase polymerase chain reaction (RT-PCR) is currently the method of choice to detect ZIKV in biological samples. This approach, nonetheless, demands a considerable amount of time and resources such as kits and reagents that, in endemic areas, may result in a substantial financial burden over affected individuals and health services veering away from RT-PCR analysis. This study presents a powerful combination of high-resolution mass spectrometry and a machine-learning prediction model for data analysis to assess the existence of ZIKV infection across a series of patients that bear similar symptomatic conditions, but not necessarily are infected with the disease. By using mass spectrometric data that are inputted with the developed decision-making algorithm, we were able to provide a set of features that work as a “fingerprint” for this specific pathophysiological condition, even after the acute phase of infection. Since both mass spectrometry and machine learning approaches are well-established and have largely utilized tools within their respective fields, this combination of methods emerges as a distinct alternative for clinical applications, providing a diagnostic screening—faster and more accurate—with improved cost-effectiveness when compared to existing technologies. PMID:29696139
Tanizawa, Haruna; Shima, Mikie; Ikehara, Chieko; Kobata, Masakazu; Sato, Motoaki
2005-10-01
A simple and rapid method was developed for the screening of 82 pesticides/metabolites in a wide variety of crops, using solid-phase extraction and liquid chromatography with tandem mass spectrometry (LC/MS/MS). After extraction with methanol, the filtered extracts were made up to 100 mL and a 2 mL aliquot was subjected to solid-phase extraction. Co-extractives were removed with a C18 mini-column, while pesticides were retained on 3 kinds of mini-columns (HLB, SAX, activated carbon), and then eluted with acetonitrile. Analysis was performed by LC/MS/MS, and MS acquisition parameters were established in positive and negative ESI modes. The utility of the method was demonstrated by the analysis of 6 crops (carrot, cabbage, onion, spinach, lemon, brown rice) and one mixed vegetable juice. Of 82 compounds tested, 75 in carrot and 62 in lemon were obtained with recoveries ranging from 70-120%. For all samples tested, 75 compounds could be obtained with recoveries of over 50%, and the detection limits of most compounds were lower than 0.01 microg/g. This method provides acceptable performance for analysis of these 75 compounds. Further, by using aliquots of the extracts with small-scale mini-columns, purified samples could be obtained. This proposed method with small matrix effects, is effective and suitable for screening of multiple residual pesticides by using LC/MS/MS.
Fu, Yanqing; Zhou, Zhihui; Kong, Hongwei; Lu, Xin; Zhao, Xinjie; Chen, Yihui; Chen, Jia; Wu, Zeming; Xu, Zhiliang; Zhao, Chunxia; Xu, Guowang
2016-09-06
Identification of illegal additives in complex matrixes is important in the food safety field. In this study a nontargeted screening strategy was developed to find illegal additives based on ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). First, an analytical method for possible illegal additives in complex matrixes was established including fast sample pretreatment, accurate UHPLC separation, and HRMS detection. Second, efficient data processing and differential analysis workflow were suggested and applied to find potential risk compounds. Third, structure elucidation of risk compounds was performed by (1) searching online databases [Metlin and the Human Metabolome Database (HMDB)] and an in-house database which was established at the above-defined conditions of UHPLC-HRMS analysis and contains information on retention time, mass spectra (MS), and tandem mass spectra (MS/MS) of 475 illegal additives, (2) analyzing fragment ions, and (3) referring to fragmentation rules. Fish was taken as an example to show the usefulness of the nontargeted screening strategy, and six additives were found in suspected fish samples. Quantitative analysis was further carried out to determine the contents of these compounds. The satisfactory application of this strategy in fish samples means that it can also be used in the screening of illegal additives in other kinds of food samples.
Mass spectrometry-driven drug discovery for development of herbal medicine.
Zhang, Aihua; Sun, Hui; Wang, Xijun
2018-05-01
Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.
Remane, Daniela; Wissenbach, Dirk K; Peters, Frank T
2016-09-01
Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) is a well-established and widely used technique in clinical and forensic toxicology as well as doping control especially for quantitative analysis. In recent years, many applications for so-called multi-target screening and/or quantification of drugs, poisons, and or their metabolites in biological matrices have been developed. Such methods have proven particularly useful for analysis of so-called new psychoactive substances that have appeared on recreational drug markets throughout the world. Moreover, the evolvement of high resolution MS techniques and the development of data-independent detection modes have opened new possibilities for applications of LC-(MS/MS) in systematic toxicological screening analysis in the so called general unknown setting. The present paper will provide an overview and discuss these recent developments focusing on the literature published after 2010. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Ford, Loretta T; Berg, Jonathan D
2017-03-01
Introduction Legal highs also known as novel psychoactive substances mimic the effects of classic drugs of abuse. Challenges to developing screening services for novel psychoactive substances include identifying which novel psychoactive substances are available to target. Using new techniques such as exact mass time of flight can help identify common novel psychoactive substances to target for screening patient samples by routine methods such as tandem mass spectrometry. We demonstrate this strategy working in our own clinical toxicology laboratory after qualitative analysis of 98 suspect materials for novel psychoactive substances by ultra-performance liquid chromatography with time of flight mass spectrometry. Results From July 2014 to July 2015 we received 98 requests to test a range of different suspect materials for novel psychoactive substances including herbs, tobacco, liquids, pills and powders. Overall, 87% of the suspect materials tested positive for novel psychoactive substances, and 15% for controlled drugs. Three common novel psychoactive substances were present in 74% of the suspect materials: methiopropamine, a methamphetamine analogue; ethylphenidate, a cocaine mimic; and the third generation synthetic cannabinoid 5F-AKB-48. For the 55 branded products we tested only 24% of the stated contents matched exactly the compounds we detected. Conclusion Testing suspect materials using ultra-performance liquid chromatography with time of flight mass spectrometry has identified three common novel psychoactive substances in use in the UK, simplifying the development of a relevant novel psychoactive substances screening service to our population. By incorporating this into our routine liquid chromatography tandem mass spectrometry drugs of abuse screen, then offers a clinically relevant novel psychoactive substances service to our users. This strategy ensures our clinical toxicology service continues to remain effective to meet the challenges of the changing drug use in the UK.
Zhang, Minmin; Zhao, Hengqiang; Zhao, Zhiguo; Yan, Huijiao; Lv, Ruimin; Cui, Li; Yuan, Jinpeng; Wang, Daijie; Geng, Yanling; Liu, Daicheng; Wang, Xiao
2016-06-01
We put forward an efficient strategy based on bioassay guidance for the rapid screening, identification, and purification of the neuraminidase inhibitors from traditional Chinese medicines, and apply to the discovery of anti-influenza components from Lithospermiun erythrorhizon Sieb.et Zucc. Ultrafiltration with high-performance liquid chromatography and electrospray ionization time-of-flight mass spectrometry was employed for the rapid screening and preliminarily identification of anti-influenza components from Zicao. Semipreparative high-performance liquid chromatography was used for the rapid separation and purification of the target compounds. NMR spectroscopy, mass spectrometry, and UV spectroscopy were used for further structural identification, and the activity of the compounds was verified by in vitro assay. Five compounds were found to have neuraminidase inhibitory activity by this method. Subsequently, the five compounds were separated by semipreparative high-performance liquid chromatography with the purity over 98% for all of them by high-performance liquid chromatography test. Combined with the NMR spectroscopy, mass spectrometry, and UV spectroscopy data, they were identified as alkannin, acetylalkannin, isobutyrylalkannin, β,β-dimethylacryloylalkannin and isovalerylalkannin. The in vitro assay showed that all five compounds had good neuraminidase inhibitory activities. These results suggested that the method is highly efficient, and it can provide platform and methodology supports for the rapid discovery of anti-influenza active ingredients from complex Chinese herbal medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hvastkovs, Eli G.; Schenkman, John B.; Rusling, James F.
2012-01-01
New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography–mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates. PMID:22482786
Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Mowei; Wu, Si; Stenoien, David L.
Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.
Lehotay, Steven J; Mastovska, Katerina; Lightfield, Alan R; Nuñez, Alberto; Dutko, Terry; Ng, Chilton; Bluhm, Louis
2013-10-25
A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pipette extraction, and analysis by a 3 min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The drug analytes include neomycin, streptomycin, dihydrosptreptomycin, and spectinomycin, which have residue tolerances in bovine in the US, and kanamicin, gentamicin, apramycin, amikacin, and hygromycin, which do not have US tolerances established in bovine tissues. Tobramycin was used as an internal standard. An additional drug, paromomycin also was validated in the method, but it was dropped during implementation due to conversion of neomycin into paromomycin. Proposed fragmentation patterns for the monitored ions of each analyte were elucidated with the aid of high resolution MS using a quadrupole-time-of-flight instrument. Recoveries from spiking experiments at regulatory levels of concern showed that all analytes averaged 70-120% recoveries in all tissues, except hygromycin averaged 61% recovery. Lowest calibrated levels were as low as 0.005 μg/g in matrix extracts, which approximately corresponded to the limit of detection for screening purposes. Drug identifications at levels <0.05 μg/g were made in spiked and/or real samples for all analytes and tissues tested. Analyses of 60 samples from 20 slaughtered cattle previously screened positive for aminoglycosides showed that this method worked well in practice. The UHPLC-MS/MS method has several advantages compared to the previous microbial inhibition screening assay, especially for distinguishing individual drugs from a mixture and improving identification of gentamicin in tissue samples. Published by Elsevier B.V.
Zhang, Tao; Ding, Yuanyuan; An, Hongli; Feng, Liuxin; Wang, Sicen
2015-07-14
Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry was developed. Tyrosine 367 Cysteine-HEK293 cells were used as cell membrane stationary phase. Specificity and reproducibility of the cell membrane chromatography was evaluated using 1-tert-butyl-3-{2-[4-(diethylamino)butylamino]-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl}urea, Nimodipine and dexamethasone acetate. Then, anti-tumor components acting on Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 were screened and identified from extracts of Ligusticum wallichii. Components from the extract were retained on the cell membrane chromatographic column. The retained fraction was directly eluted into high-performance liquid chromatography with mass spectrometry system for separation and identification. Finally, Levistolide A was identified as an active component from Ligusticum wallichii extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan colorimetric assay revealed that Levistolide A inhibits proliferation of overexpressing the mutated receptor cells with dose-dependent manner. Phosphorylation of fibroblast growth factor receptor 4 was also decrease under Levistolide A treatment. Flex dock simulation verified that Levistolide A could bind with the tyrosine kinase domain of fibroblast growth factor receptor 4. Therefore, Levistolide A screened by the cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry can arrest cell growth. In conclusion, the two-dimensional high-performance liquid chromatography method can screen and identify potential anti-tumor ingredients which specifically act on the tyrosine kinase domain of the mutated fibroblast growth factor receptor 4. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Kleinertz, S.; Eckhardt, K.-U.; Theisen, S.; Palm, H. W.; Leinweber, P.
2016-07-01
The present study represents the first molecular-chemical screening by pyrolysis-field ionization mass spectrometry applied on fish parasites. A total of 71 fishes from Balinese fish markets, 36 Auxis rochei (Risso, 1810) and 35 A. thazard (Lacepède, 1800), were studied for their acanthocephalan parasites. This is the first record of Rhadinorhynchus zhukovi in Balinese waters, Indonesia, and we describe for the first time A. rochei and A. thazard as R. zhukovi hosts. Using this method, small scale variations within the chemical compounds of acanthocephalans could be detected. Using this methodology it will be possible to generate additional, pollutant specific information from aquatic habitats in future with the potential of a new bioindicator application for parasite/host origin and/or environmental pollution.
Ma, Huilian; Jin, Jing; Li, Yun; Chen, Jiping
2017-10-08
A method of comprehensive screening of the target and non-target volatile organic compounds (VOCs) in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed. In this paper, two types of solid phase adsorption column were compared, and the Tenex SS TD Tube was selected. The analytes were enriched into the adsorption tube by constant flow sampling, and detected by TD-GC-MS in full scan mode. Target compounds were quantified by internal standard method, and the quantities of non-target compounds were calculated by response coefficient of toluene. The method detection limits (MDLs) for the 24 VOCs were 1.06 to 5.44 ng, and MDLs could also be expressed as 0.004 to 0.018 mg/m 3 assuming that the sampling volume was 300 mL. The average recoveries were in the range of 78.4% to 89.4% with the relative standard deviations (RSDs) of 3.9% to 14.4% ( n =7). The established analytical method was applied for the comprehensive screening of VOCs in a waste incineration power plant in Dalian city. Twenty-nine VOCs were identified. In these compounds, only five VOCs were the target compounds set in advance, which accounted for 26.7% of the total VOCs identified. Therefore, this study further proved the importance of screening non-target compounds in the analysis of VOCs in industrial exhaust gas, and has certain reference significance for the complete determination of VOCs distribution.
NASA Astrophysics Data System (ADS)
Akleyev, Alexander; Pashkov, Igor; Kisselyov, Mikhail; Noskin, Leonid A.
1999-12-01
The issue of stochastic effects of radiation exposure (mostly leukemia and cancer), and early detection of malignant tumors, as a key aspect of the problem, is of crucial importance to the population chronically exposed due to the activities of the Mayak Production Association in the Urals region, Russia). Given the large number of exposed population, screening is considered to be the most expedient method to organize medical observation of exposed persons. As was shown by the results of medical examinations conducted for 1 391 residents of the Techa riverside villages, laser correlation spectrometry (LCS) of blood plasma has proved to be a highly effective screening method for early (pre-clinical) detection of malignant neoplasms and pre-cancerous conditions. It was established that LC- spectra of blood plasma in persons with cancer and pre- cancer can easily be differentiated from non-cancer conditions. Of particular diagnostic significance is the high-frequency range of the spectrum. The development of a diagnostic algorithm has allowed to carry out a computer- based classification of blood plasma LC spectra as a component of exposed population health monitoring system.
Wang, Shu-Ping; Liu, Lei; Wang, Ling-Ling; Jiang, Peng; Zhang, Ji-Quan; Zhang, Wei-Dong; Liu, Run-Hui
2010-06-15
Based on the serum pharmacochemistry technique and high-performance liquid chromatography/diode-array detection (HPLC/DAD) coupled with electrospray tandem mass spectrometry (HPLC/ESI-MS/MS), a method for screening and analysis of the multiple absorbed bioactive components and metabolites of Jitai tablets (JTT) in orally dosed rat plasma was developed. Plasma was treated by methanol precipitation prior to liquid chromatography, and the separation was carried out on a Symmetry C(18) column, with a linear gradient (0.1% formic acid/water/acetonitrile). Mass spectra were acquired in negative and positive ion modes, respectively. As a result, 26 bioactive components originated from JTT and 5 metabolites were tentatively identified in orally dosed rat plasma by comparing their retention times and MS spectra with those of authentic standards and literature data. It is concluded that an effective and reliable analytical method was set up for screening the bioactive components of Chinese herbal medicine, which provided a meaningful basis for further pharmacology and active mechanism research of JTT. Copyright (c) 2010 John Wiley & Sons, Ltd.
May the Best Molecule Win: Competition ESI Mass Spectrometry
Laughlin, Sarah; Wilson, W. David
2015-01-01
Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262
Timm, Collin M; Lloyd, Evan P; Egan, Amanda; Mariner, Ray; Karig, David
2018-01-01
Bacterially produced volatile organic compounds (VOCs) can modify growth patterns of eukaryotic hosts and competing/cohabiting microbes. These compounds have been implicated in skin disorders and attraction of biting pests. Current methods to detect and characterize VOCs from microbial cultures can be laborious and low-throughput, making it difficult to understand the behavior of microbial populations. In this work we present an efficient method employing gas chromatography/mass spectrometry with autosampling to characterize VOC profiles from solid-phase bacterial cultures. We compare this method to complementary plate-based assays and measure the effects of growth media and incubation temperature on the VOC profiles from a well-studied Pseudomonas aeruginosa PAO1 system. We observe that P. aeruginosa produces longer chain VOCs, such as 2-undecanone and 2-undecanol in higher amounts at 37°C than 30°C. We demonstrate the throughput of this method by studying VOC profiles from a representative collection of skin bacterial isolates under three parallel growth conditions. We observe differential production of various aldehydes and ketones depending on bacterial strain. This generalizable method will support screening of bacterial populations in a variety of research areas.
Timm, Collin M.; Lloyd, Evan P.; Egan, Amanda; Mariner, Ray; Karig, David
2018-01-01
Bacterially produced volatile organic compounds (VOCs) can modify growth patterns of eukaryotic hosts and competing/cohabiting microbes. These compounds have been implicated in skin disorders and attraction of biting pests. Current methods to detect and characterize VOCs from microbial cultures can be laborious and low-throughput, making it difficult to understand the behavior of microbial populations. In this work we present an efficient method employing gas chromatography/mass spectrometry with autosampling to characterize VOC profiles from solid-phase bacterial cultures. We compare this method to complementary plate-based assays and measure the effects of growth media and incubation temperature on the VOC profiles from a well-studied Pseudomonas aeruginosa PAO1 system. We observe that P. aeruginosa produces longer chain VOCs, such as 2-undecanone and 2-undecanol in higher amounts at 37°C than 30°C. We demonstrate the throughput of this method by studying VOC profiles from a representative collection of skin bacterial isolates under three parallel growth conditions. We observe differential production of various aldehydes and ketones depending on bacterial strain. This generalizable method will support screening of bacterial populations in a variety of research areas. PMID:29662472
The inclusion of ADA-SCID in expanded newborn screening by tandem mass spectrometry.
la Marca, Giancarlo; Giocaliere, Elisa; Malvagia, Sabrina; Funghini, Silvia; Ombrone, Daniela; Della Bona, Maria Luisa; Canessa, Clementina; Lippi, Francesca; Romano, Francesca; Guerrini, Renzo; Resti, Massimo; Azzari, Chiara
2014-01-01
Severe combined immunodeficiency due to adenosine-deaminase defect (ADA-SCID) is usually deadly in childhood because of severe recurrent infections. When clinical diagnosis is done, permanent damages due to infections or metabolite accumulation are often present. Gene therapy, bone marrow transplantation or enzyme replacement therapy may be effective if started early. The aim of this study was to set-up a robust method suitable for screening with a minimized preparation process and with inexpensive running costs, for diagnosing ADA-SCID by tandem mass spectrometry. ADA-SCID satisfies all the criteria for inclusion in a newborn screening program. We describe a protocol revised to incorporate adenosine and 2-deoxyadenosine testing into an expanded newborn screening program. We assessed the effectiveness of this approach testing dried blood spots from 4 genetically confirmed early-onset and 5 delayed-onset ADA-SCID patients. Reference values were established on 50,000 healthy newborns (deoxyadenosine <0.09μmol/L, adenosine <1.61μmol/L). We also developed a second tier test to distinguish true positives from false positives and improve the positive predictive value of an initial abnormal result. In the first 18 months, the pilot project has identified a newborn with a genetically confirmed defect in adenosine deaminase (ADA) gene. The results show that the method having great simplicity, low cost and low process preparations can be fully applicable to a mass screening program. Copyright © 2013 Elsevier B.V. All rights reserved.
Urine Multi-drug Screening with GC-MS or LC-MS-MS Using SALLE-hybrid PPT/SPE.
Lee, Junhui; Park, Jiwon; Go, Ahra; Moon, Heesung; Kim, Sujin; Jung, Sohee; Jeong, Wonjoon; Chung, Heesun
2018-05-14
To intoxicated patients in the emergency room, toxicological analysis can be considerably helpful for identifying the involved toxicants. In order to develop a urine multi-drug screening (UmDS) method, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS-MS) were used to determine targeted and unknown toxicants in urine. A GC-MS method in scan mode was validated for selectivity, limit of detection (LOD) and recovery. An LC-MS-MS multiple reaction monitoring (MRM) method was validated for lower LOD, recovery and matrix effect. The results of the screening analysis were compared with patient medical records to check the reliability of the screen. Urine samples collected from an emergency room were extracted through a combination of salting-out assisted liquid-liquid extraction (SALLE) and hybrid protein precipitation/solid phase extraction (hybrid PPT/SPE) plates and examined by GC-MS and LC-MS-MS. GC-MS analysis was performed as unknown drug screen and LC-MS-MS analysis was conducted as targeted drug screen. After analysis by GC-MS, a library search was conducted using an in-house library established with the automated mass spectral deconvolution and identification system (AMDISTM). LC-MS-MS used Cliquid®2.0 software for data processing and acquisition in MRM mode. An UmDS method by GC-MS and LC-MS-MS was developed by using a SALLE-hybrid PPT/SPE and in-house library. The results of UmDS by GC-MS and LC-MS-MS showed that toxicants could be identified from 185 emergency room patient samples containing unknown toxicants. Zolpidem, acetaminophen and citalopram were the most frequently encountered drugs in emergency room patients. The UmDS analysis developed in this study can be used effectively to detect toxic substances in a short time. Hence, it could be utilized in clinical and forensic toxicology practices.
This presentation, Suspect Screening of Environmental Organic Acids in Human Serum Using High-resolution Mass Spectrometry (HRMS), was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome held on May 11, 2016.
Wang, Guoying; Niu, XiuLi; Shi, Gaofeng; Chen, Xuefu; Yao, Ruixing; Chen, Fuwen
2014-12-01
A novel screening method was developed for the detection and identification of radical scavenging natural antioxidants based on a free radical reaction combined with liquid chromatography with tandem mass spectrometry. Functionalized graphene quantum dots were prepared for loading free radicals in the complex screening system. The detection was performed with and without a preliminary exposure of the samples to specific free radicals on the functionalized graphene quantum dots, which can facilitate charge transfer between free radicals and antioxidants. The difference in chromatographic peak areas was used to identify potential antioxidants. This is a novel approach to simultaneously evaluate the antioxidant power of a component versus a free radical, and to identify it in a vegetal matrix. The structures of the antioxidants in the samples were identified using tandem mass spectrometry and comparison with standards. Fourteen compounds were found to possess potential antioxidant activity, and their free radical scavenging capacities were investigated. The order of scavenging capacity of 14 compounds was compared according to their free radical scavenging rate. 4',5,6,7-Tetrahydroxyflavone (radical scavenging rate: 0.05253 mL mg(-1) s(-1) ) showed the strongest capability for scavenging free radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sundström, Mira; Pelander, Anna; Angerer, Verena; Hutter, Melanie; Kneisel, Stefan; Ojanperä, Ilkka
2013-10-01
The continuing emergence of designer drugs imposes high demands on the scope and sensitivity of toxicological drug screening procedures. An ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method was developed for screening and simultaneous confirmation of both designer drugs and other drugs of abuse in urine samples in a single run. The method covered selected synthetic cannabinoids and cathinones, amphetamines, natural cannabinoids, opioids, cocaine and other important drugs of abuse, together with their main urinary metabolites. The database consisted of 277 compounds with molecular formula and exact monoisotopic mass; retention time was included for 192 compounds, and primary and secondary qualifier ion exact mass for 191 and 95 compounds, respectively. Following a solid-phase extraction, separation was performed by UHPLC and mass analysis by HR-TOFMS. MS, and broad-band collision-induced dissociation data were acquired at m/z range 50-700. Compound identification was based on a reverse database search with acceptance criteria for retention time, precursor ion mass accuracy, isotopic pattern and abundance of qualifier ions. Mass resolving power in spiked urine samples was on average FWHM 23,500 and mass accuracy 0.3 mDa. The mean and median cut-off concentrations determined for 75 compounds were 4.2 and 1 ng/mL, respectively. The range of cut-off concentrations for synthetic cannabinoids was 0.2-60 ng/mL and for cathinones 0.7-15 ng/mL. The method proved to combine high sensitivity and a wide scope in a manner not previously reported in drugs of abuse screening. The method's feasibility was demonstrated with 50 authentic urine samples.
Detection of new emerging type-A trichothecenes by untargeted mass spectrometry.
González-Jartín, Jesús M; Alfonso, Amparo; Sainz, María J; Vieytes, Mercedes R; Botana, Luis M
2018-02-01
Mycotoxins occur naturally as agricultural contaminants all over the world. The toxic effects of some of their metabolites are known and their presence regulated in food and feed. This paper describes two methods for the detection of toxins of type-A trichothecenes group, and their modified forms, using mass spectrometry. Ultra-performance liquid chromatography coupled to mass spectrometry-ion trap-time of flight (UPLC-MS-IT-TOF) was employed to characterize the fragmentation pathways of 10 type-A trichothecenes, and characteristic ions were tentatively identified in scan mode through their accurate masses. Unknown signals were detected in a F. sporotrichioides extract, which afterwards were identified as seven modified forms of neosolaniol (NEO) and T-2 toxin. Then, UPLC coupled to tandem mass spectrometry (MS/MS) was employed to develop a precursor ion scanning method that can be used as a screening tool to detect any modified type-A trichothecenes. Copyright © 2017 Elsevier B.V. All rights reserved.
dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut
2009-11-11
A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.
EASI-IMS an expedite and secure technique to screen for 25I-NBOH in blotter papers.
de Morais, Damila Rodrigues; Barbosa, Ingrid Lopes; Cunha, Kelly Francisco; Tripodi, Guilherme Lucas; Angolini, Célio Fernando Figueiredo; Franco, Marcos Fernando; de Aquino, Elvis Medeiros; Eberlin, Marcos Nogueira; Costa, Jose Luiz
2017-10-01
The increasing number of new psychoactive substances (NPS) and their quick worldwide spreading, often only slightly modified in the form of new derivatives and analogues, have brought the need for fast, wide-ranging, and unequivocal identification methods in clinical and forensic investigations. Because it usually provides secure results, gas chromatography coupled to mass spectrometry (GC-MS) has been routinely employed as the standard technique for the detection of NPS in blotter papers. For 25I-NBOH (N-(2-hydroxybenzyl)-2-(4-iodo-2,5-dimethoxyphenyl)ethan-1-aminium), however, GC-MS analysis of an blotter paper extract leads to incorrect results. In this work, we investigated whether easy ambient sonic-spray mass spectrometry imaging (EASI-IMS), and ambient ionization MS method can be applied directly to the surface of the sample requiring therefore no extraction or sample preparations, would serve as an efficient, sensitive, and secure alternative for 25I-NBOH screening. Copyright © 2017 John Wiley & Sons, Ltd.
Gergov, M; Ojanperä, I; Vuori, E
2003-09-25
A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method is presented for the qualitative screening for 238 drugs in blood samples, which is considerably more than in previous methods. After a two-step liquid-liquid extraction and C(18) chromatography, the compounds were introduced into a triple quadrupole mass spectrometer equipped with a turbo ion spray ion source operating in the positive ionization mode. Identification was based on the compound's absolute retention time, protonated molecular ion, and one representative fragment ion obtained by multiple reaction monitoring (MRM) at an individually selected collision energy of 20, 35, or 50 eV. The limit of detection (LOD) for the majority of the compounds (80%) was < or = 0.05 mg/l, ranging from 0.002 mg/l (e.g., antihistamines) to 5 mg/l (acidic compounds), and for malathion it was 10 mg/l. The LOD values were sufficiently low to allow the majority of compounds to be detected at therapeutic concentrations in the blood.
Schiebel, Johannes; Radeva, Nedyalka; Köster, Helene; Metz, Alexander; Krotzky, Timo; Kuhnert, Maren; Diederich, Wibke E; Heine, Andreas; Neumann, Lars; Atmanene, Cedric; Roecklin, Dominique; Vivat-Hannah, Valérie; Renaud, Jean-Paul; Meinecke, Robert; Schlinck, Nina; Sitte, Astrid; Popp, Franziska; Zeeb, Markus; Klebe, Gerhard
2015-09-01
Fragment-based lead discovery is gaining momentum in drug development. Typically, a hierarchical cascade of several screening techniques is consulted to identify fragment hits which are then analyzed by crystallography. Because crystal structures with bound fragments are essential for the subsequent hit-to-lead-to-drug optimization, the screening process should distinguish reliably between binders and non-binders. We therefore investigated whether different screening methods would reveal similar collections of putative binders. First we used a biochemical assay to identify fragments that bind to endothiapepsin, a surrogate for disease-relevant aspartic proteases. In a comprehensive screening approach, we then evaluated our 361-entry library by using a reporter-displacement assay, saturation-transfer difference NMR, native mass spectrometry, thermophoresis, and a thermal shift assay. While the combined results of these screening methods retrieve 10 of the 11 crystal structures originally predicted by the biochemical assay, the mutual overlap of individual hit lists is surprisingly low, highlighting that each technique operates on different biophysical principles and conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahrens, Brian D; Kucherova, Yulia; Butch, Anthony W
2016-01-01
Sports drug testing laboratories are required to detect several classes of compounds that are prohibited at all times, which include anabolic agents, peptide hormones, growth factors, beta-2 agonists, hormones and metabolic modulators, and diuretics/masking agents. Other classes of compounds such as stimulants, narcotics, cannabinoids, and glucocorticoids are also prohibited, but only when an athlete is in competition. A single class of compounds can contain a large number of prohibited substances and all of the compounds should be detected by the testing procedure. Since there are almost 70 stimulants on the prohibited list it can be a challenge to develop a single screening method that will optimally detect all the compounds. We describe a combined liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) testing method for detection of all the stimulants and narcotics on the World Anti-Doping Agency prohibited list. Urine for LC-MS/MS testing does not require sample pretreatment and is a direct dilute and shoot method. Urine samples for the GC-MS method require a liquid-liquid extraction followed by derivatization with trifluoroacetic anhydride.
Diagnosis, treatment and outcome of glutaric aciduria type I in Zhejiang Province, China
Yang, Lili; Yin, Huaiming; Yang, Rongwang; Huang, Xinwen
2011-01-01
Summary Background Glutaric aciduria type I (GA I; MIM 231670) is a rare autosomal recessive disorder resulting from glutaryl-CoA dehydrogenase deficiency. This article reports our experience in the diagnosis, treatment and outcome of GA I patients in Zhejiang Province, China. Material/Methods A total of 129,415 newborns (accounting for approximately one-tenth of the annual births in Zhejiang Province) and 9640 high-risk infants were screened for inborn errors of metabolism in the Neonatal Screening Center of Zhejiang Province during a 3-year period. Tandem mass spectrometry and gas chromatography-mass spectrometry were used for diagnosis of the patients. Dietary modification, carnitine supplementation and aggressive treatment of intercurrent illnesses were adapted for GA I patients. Results Three infants were diagnosed with GA I by high-risk screening (detection rate: 1/3,213) and 2 were diagnosed by newborn screening (incidence: 1/64,708). Four patients (3 by high-risk screening and 1 by neonatal screening) undergoing MRI examination showed remarkable changes on T2-weighted image. Four patients accepted timely treatment, and in the patient diagnosed by neonatal screening, treatment was delayed until hypotonia appeared 3 months later. Neuropsychological assessment showed mental and motor retardation in 3 patients after treatment, including the patient diagnosed by neonatal screening. Conclusions Individualized timely treatment and close monitoring of GA I patients needs to be optimized in China. Appropriate communication with parents may help to achieve successful management of GA I patients. PMID:21709643
Adamowicz, Piotr; Tokarczyk, Bogdan
2016-07-01
In recent years, many new psychoactive substances (NPS) from several drug classes have appeared on the drug market. These substances, also known as 'legal highs', belong to different chemical classes. Despite the increasing number of NPS, there are few comprehensive screening methods for their detection in biological specimens. In this context, the purpose of this study was to develop a fast and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening procedure for NPS in blood. The elaborated method allows the simultaneous screening of 143 compounds from different groups (number of compounds): cathinones (36), phenethylamines (26), tryptamines (18), piperazines (9), piperidines (2), synthetic cannabinoids (34), arylalkylamines (7), arylcyclohexylamines (3), aminoindanes (2), and other drugs (6). Blood samples (0.2 mL) were precipitated with acetonitrile (0.6 mL). The separation was achieved with gradient mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water in 14 min. Detection of all compounds was based on multiple reaction monitoring (MRM) transitions. The total number of transitions monitored in dynamic mode was 432. The whole procedure was rapid and simple. The limits of detection (LODs) estimated for 104 compounds were in the range 0.01-3.09 ng/mL. The extraction recoveries determined for 32 compounds were from 1.8 to 133%. The procedure was successfully applied to the analysis of forensic blood samples in routine casework. The developed method should have wide applicability for rapid screening of new drugs of abuse in forensic or clinical samples. The procedure can be easily expanded for more substances. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Aranda, G; Careaga, M; Hanzu, F A; Patrascioiu, I; Ríos, P; Mora, M; Morales-Romero, B; Jiménez, W; Halperin, I; Casals, G
2016-10-01
Urinary free cortisol (UFC) determination by highly specific methods as mass spectrometry instead of commercially available antibody-based immunoassays is increasingly recommended. However, clinical comparisons of both analytical approaches in the screening of Cushing's syndrome (CS) are not available. The aim of this study was to evaluate the diagnostic value of mass spectrometry versus immunoassay measurements of 24 h-UFC in the screening of CS. Cross-sectional study of 33 histologically confirmed CS patients: 25 Cushing's disease, 5 adrenal CS and 3 ectopic CS; 92 non-CS patients; and 35 healthy controls. UFC by immunoassay (UFCxIA) and mass spectrometry (UFCxMS), urinary free cortisone (UFCo) and UFC:UFCo ratio were measured, together with creatinine-corrected values. Sensitivity, specificity, AUC and Landis and Koch concordance index were determined. AUC for UFCxIA and UFCxMS were 0.77 (CI 0.68-0.87) and 0.77 (CI 0.67-0.87) respectively, with a kappa coefficient 0.60 and strong Landis and Koch concordance index. The best calculated cutoff values were 359 nmol/24 h for UFCxIA (78 % sensitivity, 62 % specificity) and 258.1 nmol/24 h for UCFxMS (53 % sensitivity, 86 % specificity). The upper limit of UFCxIA and UCFxMS reference ranges were 344.7 and 169.5 nmol/24 h respectively. Sensitivity and specificity for CS diagnosis at these cutpoints were 84 and 56 % for UFCxIA and 81 and 54 % for UFCxMS. According to our data, both methods present a very similar diagnostic value. However, results suggest that lower cutoff points for mass spectrometry may be necessary in order to improve clinical sensitivity.
Real-time detection method and system for identifying individual aerosol particles
Gard, Eric E [San Francisco, CA; Coffee, Keith R [Patterson, CA; Frank, Matthias [Oakland, CA; Tobias, Herbert J [Kensington, CA; Fergenson, David P [Alamo, CA; Madden, Norm [Livermore, CA; Riot, Vincent J [Berkeley, CA; Steele, Paul T [Livermore, CA; Woods, Bruce W [Livermore, CA
2007-08-21
An improved method and system of identifying individual aerosol particles in real time. Sample aerosol particles are collimated, tracked, and screened to determine which ones qualify for mass spectrometric analysis based on predetermined qualification or selection criteria. Screening techniques include one or more of determining particle size, shape, symmetry, and fluorescence. Only qualifying particles passing all screening criteria are subject to desorption/ionization and single particle mass spectrometry to produce corresponding test spectra, which is used to determine the identities of each of the qualifying aerosol particles by comparing the test spectra against predetermined spectra for known particle types. In this manner, activation cycling of a particle ablation laser of a single particle mass spectrometer is reduced.
Simonsen, H; Jensen, U G
1999-12-01
Quantitative analysis of amino acids (AA) and acylcarnitines using tandem mass spectrometry is an emerging technology used to screen neonatal dried blood spot samples for disorders in the metabolism of AA, organic acids and fatty acids. This paper provides a brief review of some of the technically oriented issues which emerged at the 4th meeting of the International Society for Neonatal Screening in Stockholm, 1999. The information covers sample preparation, instrumentation, data acquistion modes, internal standards, interpretation, confounding factors and practical screening experience.
Polycyclic aromatic hydrocarbons (PAHs) are frequently encountered in the environment and may pose health concerns due to their carcinogenicity. A commercial enzyme-linked immunosorbent assay (ELISA), was evaluated as a screening method for monitoring PAHs at contaminated site...
USDA-ARS?s Scientific Manuscript database
• Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...
Suspect screening (SSA) and non-targeted analysis (NTA) methods using high-resolution mass spectrometry (HRMS) offer new approaches to efficiently generate exposure data for chemicals in a variety of environmental and biological media. These techniques aid characterization of the...
[MALDI-TOF mass spectrometry in the investigation of large high-molecular biological compounds].
Porubl'ova, L V; Rebriiev, A V; Hromovyĭ, T Iu; Minia, I I; Obolens'ka, M Iu
2009-01-01
MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry has become, in the recent years, a tool of choice for analyses of biological polymers. The wide mass range, high accuracy, informativity and sensitivity make it a superior method for analysis of all kinds of high-molecular biological compounds including proteins, nucleic acids and lipids. MALDI-TOF-MS is particularly suitable for the identification of proteins by mass fingerprint or microsequencing. Therefore it has become an important technique of proteomics. Furthermore, the method allows making a detailed analysis of post-translational protein modifications, protein-protein and protein-nucleic acid interactions. Recently, the method was also successfully applied to nucleic acid sequencing as well as screening for mutations.
Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S
2014-08-01
Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and aminoethylchlorides using a C18 Hilic column. Critical isomeric compounds can be confirmed by LC-MS/MS experiments, after detecting the N-oxides from the neutral loss scanning method.
Jin, Yu; Xiao, Yuan-sheng; Zhang, Fei-fang; Xue, Xing-ya; Xu, Qing; Liang, Xin-miao
2008-02-13
The traditional Chinese medicine (TCM) is a complex system, which always consists of numerous compounds with significant difference in the content and physical and chemical properties. In this paper, a screening method based on target molecular weights was developed to characterize the flavonoid glycosides in the flower of Carthamus tinctorius L. The screening tables of aglycone and glycan were designed, respectively, in order to select and combine freely. The multiple reaction monitoring (MRM) scan mode with higher sensitivity and selectivity was adopted in the screening, which benefit the characterization for the minor components. Seventy-seven flavonoid glycosides were screened out finally, and their structures were characterized by tandem mass spectrometric method in both positive and negative ion modes. The glycosylation mode, aglycone, sequence and/or the interglycosidic linkages of the glycan portion and glycosylation position were elucidated by the fragmentation rule in the MS. Numerous compounds screened out with this method showed the structure variety in secondary plant metabolites, and the purposeful screening systemically and subsequent structure characterization offered more information about the chemical constitutions of TCM.
NASA Astrophysics Data System (ADS)
Rush, Michael D.; Walker, Elisabeth M.; Prehna, Gerd; Burton, Tristesse; van Breemen, Richard B.
2017-03-01
To overcome limiting factors in mass spectrometry-based screening methods such as automation while still facilitating the screening of complex mixtures such as botanical extracts, magnetic microbead affinity selection screening (MagMASS) was developed. The screening process involves immobilization of a target protein on a magnetic microbead using a variety of possible chemistries, incubation with mixtures of molecules containing possible ligands, a washing step that removes non-bound compounds while a magnetic field retains the beads in the microtiter well, and an organic solvent release step followed by LC-MS analysis. Using retinoid X receptor-α (RXRα) as an example, which is a nuclear receptor and target for anti-inflammation therapy as well as cancer treatment and prevention, a MagMASS assay was developed and compared with an existing screening assay, pulsed ultrafiltration (PUF)-MS. Optimization of MagMASS involved evaluation of multiple protein constructs and several magnetic bead immobilization chemistries. The full-length RXRα construct immobilized with amylose beads provided optimum results. Additional enhancements of MagMASS were the application of 96-well plates to enable automation, use of UHPLC instead of HPLC for faster MS analyses, and application of metabolomics software for faster, automated data analysis. Performance of MagMASS was demonstrated using mixtures of synthetic compounds and known ligands spiked into botanical extracts.
Wang, Jing; Zheng, Meizhu; Chen, Lina; Liu, Zhiqiang; Zhang, Yuchi; Liu, Chun-Ming; Liu, Shu
2016-11-01
Hydroxyl radicals are the most reactive free radical of human body, a strong contributor to tissue damage. In this study, liquid chromatography coupled to electrospray ionization mass spectrometry was applied to screen and identify hydroxyl radical scavengers from the total flavonoids of Ginkgo biloba leaves, and high-performance counter current chromatography was used to separate and isolate the active compounds. Furthermore, molecular devices were used to determine hydroxyl radical scavenging activities of the obtained hydroxyl radical scavengers and other flavonoids from G. biloba leaves. As a result, six compounds were screened as hydroxyl radical scavengers, but only three flavonoids, namely, rutin, cosmos glycosides and apigenin-7-O-Glu-4'-O-Rha, were isolated successfully from total flavonoids by high-performance counter current chromatography. The purities of the three obtained compounds were over 90%, respectively, as determined by liquid chromatography. Molecular devices with 96-well microplates evaluation indicated that the 50% scavenging concentration values of screened compounds were lower than that of other flavonoids, they performed greater hydroxyl radical scavenging activity, and the evaluation effects were consistent with the liquid chromatography with mass spectrometry screening results. Therefore, chromatography combined with molecular devices is a feasible and an efficient method for systematic screening, identification, isolation, and evaluation of bioactive components in mixture of botanical medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yufeng; Xiao, Shun; Sun, Lijuan; Ge, Zhiwei; Fang, Fengkai; Zhang, Wen; Wang, Yi; Cheng, Yiyu
2013-05-13
A high throughput method was developed for rapid screening and identification of bioactive compounds from traditional Chinese medicine, marine products and other natural products. The system, integrated with five-channel chromatographic separation and dual UV-MS detection, is compatible with in vitro 96-well microplate based bioassays. The stability and applicability of the proposed method was validated by testing radical scavenging capability of a mixture of seven known compounds (rutin, dihydroquercetin, salvianolic acid A, salvianolic acid B, glycyrrhizic acid, rubescensin A and tangeretin). Moreover, the proposed method was successfully applied to the crude extracts of traditional Chinese medicine and a marine sponge from which 12 bioactive compounds were screened and characterized based on their anti-oxidative or anti-tumor activities. In particular, two diterpenoid derivatives, agelasine B and (-)-agelasine D, were identified for the first time as anti-tumor compounds from the sponge Agelas mauritiana, showing a considerable activity toward MCF-7 cells (IC50 values of 7.84±0.65 and 10.48±0.84 μM, respectively). Our findings suggested that the integrated system of 5-channel parallel chromatography coupled with on-line mass spectrometry and microplate based assays can be a versatile and high efficient approach for the discovery of active compounds from natural products. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Xi; Cheng, Lei; Qu, Shichao; Huang, Daliang; Liu, Jiacheng; Cui, Han; Jia, Yanbo; Ji, Mingshan
2015-10-01
A method for rapid screening and confirmation of 205 pesticide residues in rice was developed by combining QuEChERS and high performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry (LC-Q-TRAP/MS). The rice samples were extracted with acetonitrile, and then cleaned up with primary secondary amine (PSA), anhydrous magnesium sulfate (MgSO4) and C18 adsorbent. Finally, the samples were detected by LC-Q-TRAP/MS in multiple reaction monitoring with information-dependent acquisition of enhanced product ion (MRM-IDA-EPI) mode followed with database searching. A total of 205 pesticide residues were confirmed by retention times, ion pairs and the database searching using EPI library, and quantified by external standard method. All the pesticides showed good linearities with linear correlation coefficients all above 0.995. The limits of quantification (LOQs) for the 205 pesticides were 0.5-10.0 μg/kg. The average recoveries of the 205 pesticides ranged from 62.4% to 127.1% with the relative standard deviations (RSDs) of 1.0% - 20.0% at spiked levels of 10 μg/kg and 50 μg/kg, and only 20 min were needed for the analysis of an actual rice sample. In brief, the method is fast, accurate and highly sensitive, and is suitable for the screening and confirmation of pesticide residues in rice.
NASA Astrophysics Data System (ADS)
Godoi, Quienly; Santos, Dario, Jr.; Nunes, Lidiane C.; Leme, Flávio O.; Rufini, Iolanda A.; Agnelli, José A. M.; Trevizan, Lilian C.; Krug, Francisco J.
2009-06-01
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of São Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time, integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated.
Bade, Richard; Rousis, Nikolaos I; Bijlsma, Lubertus; Gracia-Lor, Emma; Castiglioni, Sara; Sancho, Juan V; Hernandez, Felix
2015-12-01
The existence of pharmaceuticals and illicit drugs (PIDs) in environmental waters has led many analytical chemists to develop screening methods for monitoring purposes. Water samples can contain a huge number of possible contaminants, commonly at low concentrations, which makes their detection and identification problematic. Liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) has proven itself effective in the screening of environmental contaminants. The present work investigates the use of the most popular HRMS instruments, quadrupole time-of-flight and linear trap quadrupole-Orbitrap, from two different laboratories. A suspect screening for PIDs was carried out on wastewater (influent and effluent) and surface water samples from Castellón, Eastern Spain, and Cremona, Northern Italy, incorporating a database of 107 PIDs (including 220 fragment ions). A comparison between the findings of both instruments and of the samples was made which highlights the advantages and drawbacks of the strategies applied in each case. In total, 28 compounds were detected and/or identified by either/both instruments with irbesartan, valsartan, benzoylecgonine and caffeine being the most commonly found compounds across all samples.
NASA Astrophysics Data System (ADS)
Lechner, M.; Colvin, H. P.; Ginzel, C.; Lirk, P.; Rieder, J.; Tilg, H.
2005-05-01
Background: The diagnosis of many gastro-intestinal diseases is difficult and can often be confirmed only by using invasive diagnostic means. In contrast, the headspace screening of fluid obtained from the gut during colonoscopy and the analysis of exhaled air may be a novel approach for the diagnosis of these diseases.Materials and methods: The screening was performed by using proton transfer reaction-mass spectrometry (PTR-MS) which allows rapid and sensitive measurement. Fluid samples obtained from the gut during colonoscopy were collected from 76 and breath samples from 70 subjects. Mass spectra of healthy controls were created. Afterwards these spectra were compared with those of patients suffering from inflammatory bowel diseases (IBD; Crohn's disease and ulcerative colitis; n = 10) and irritable bowel syndrome (IBS; n = 7).Results: Significant differences in the mass spectra could be observed both in the headspace of the fluid and in the exhaled air comparing patients with healthy controls.Conclusions: This study is the first describing headspace screening of fluid obtained from the gut during colonoscopy, possibly presenting a novel diagnostic tool in the differential diagnosis of gastro-intestinal diseases.
Suspect screening (SSA) and non-targeted analysis (NTA) methods using high-resolution mass spectrometry (HRMS) offer new approaches to efficiently generate exposure data for chemicals in a variety of environmental and biological media. These techniques aid characterization of the...
Martins, Magda Targa; Melo, Jéssica; Barreto, Fabiano; Hoff, Rodrigo Barcellos; Jank, Louise; Bittencourt, Michele Soares; Arsand, Juliana Bazzan; Schapoval, Elfrides Eva Scherman
2014-11-01
In routine laboratory work, screening methods for multiclass analysis can process a large number of samples in a short time. The main challenge is to develop a methodology to detect as many different classes of residues as possible, combined with speed and low cost. An efficient technique for the analysis of multiclass antibacterial residues (fluoroquinolones, tetracyclines, sulfonamides and trimethoprim) was developed based on simple, environment-friendly extraction for bovine milk, cattle and poultry liver. Acidified ethanol was used as an extracting solvent for milk samples. Liver samples were treated using EDTA-washed sand for cell disruption, methanol:water and acidified acetonitrile as extracting solvent. A total of 24 antibacterial residues were detected and confirmed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), at levels between 10, 25 and 50% of the maximum residue limit (MRL). For liver samples a metabolite (sulfaquinoxaline-OH) was also monitored. A validation procedure was conducted for screening purposes in accordance with European Union requirements (2002/657/EC). The detection capability (CCβ) false compliant rate was less than 5% at the lowest level for each residue. Specificity and ruggedness were also discussed. Incurred and routine samples were analyzed and the method was successfully applied. The results proved that this method can be an important tool in routine analysis, since it is very fast and reliable. Copyright © 2014. Published by Elsevier B.V.
Shin, Jeong-Sook; Peng, Lei; Kang, Kyungsu; Choi, Yongsoo
2016-09-09
Direct analysis of prostaglandin-E2 (PGE2) and -D2 (PGD2) produced from a RAW264.7 cell-based reaction was performed by liquid chromatography high-resolution mass spectrometry (LC-HRMS), which was online coupled with turbulent flow chromatography (TFC). The capability of this method to accurately measure PG levels in cell reaction medium containing cytokines or proteins as a reaction byproduct was cross-validated by two conventional methods. Two methods, including an LC-HRMS method after liquid-liquid extraction (LLE) of the sample and a commercial PGE2 enzyme-linked immunosorbent assay (ELISA), showed PGE2 and/or PGD2 levels almost similar to those obtained by TFC LC-HRMS over the reaction time after LPS stimulation. After the cross-validation, significant analytical throughputs, allowing simultaneous screening and potency evaluation of 80 natural products including 60 phytochemicals and 20 natural product extracts for the inhibition of the PGD2 produced in the cell-based inflammatory reaction, were achieved using the TFC LC-HRMS method developed. Among the 60 phytochemicals screened, licochalcone A and formononetin inhibited PGD2 production the most with IC50 values of 126 and 151nM, respectively. For a reference activity, indomethacin and diclofenac were used, measuring IC50 values of 0.64 and 0.21nM, respectively. This method also found a butanol extract of Akebia quinata Decne (AQ) stem as a promising natural product for PGD2 inhibition. Direct and accurate analysis of PGs in the inflammatory cell reaction using the TFC LC-HRMS method developed enables the high-throughput screening and potency evaluation of as many as 320 samples in less than 48h without changing a TFC column. Copyright © 2016 Elsevier B.V. All rights reserved.
Petreas, Myrto; Gill, Ranjit; Takaku-Pugh, Sayaka; Lytle, Eric; Parry, Emily; Wang, Miaomiao; Quinn, John; Park, June-Soo
2016-06-01
In response to concerns regarding the widespread use of flame retardants, the California Legislature passed a law (SB1019) requiring labels on furniture products to indicate whether they do or do not contain flame retardants. To support the enforcement of the new law, our laboratory developed a step-wise, screening approach to test for brominated (BFR) and phosphorus-based flame retardants (OPFRs) in several types of furniture components (foam, fabric, batting, plumage, etc.). We used X-Ray Fluorescence (XRF) to screen for the presence of Br (and other elements) and Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) to identify and measure the concentration of P (and other elements). The same samples were also extracted by dichloromethane using sonication and analyzed by a single injection into a Gas Chromatograph - Tandem Mass Spectrometer to obtain concentrations of specific BFRs and OPFRs. Our approach showed excellent screening potential for Br and Sb by XRF and for P by ICP-OES, with both tests having predictive values of a negative equal to 1. To explore and screen for flame retardants in products not included in our current list of target chemicals, we used Liquid Chromatography/Time-of-Flight Mass Spectrometry operated with electrospray ionization, to identify additional flame retardants to be incorporated in quantitative methods. We are making all our methodologies public to facilitate simple and low cost methods that can help manufacturers and suppliers have their products tested and correctly labeled, ultimately benefitting the consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gaudin, Valérie
2017-09-01
Screening methods are used as a first-line approach to detect the presence of antibiotic residues in food of animal origin. The validation process guarantees that the method is fit-for-purpose, suited to regulatory requirements, and provides evidence of its performance. This article is focused on intra-laboratory validation. The first step in validation is characterisation of performance, and the second step is the validation itself with regard to pre-established criteria. The validation approaches can be absolute (a single method) or relative (comparison of methods), overall (combination of several characteristics in one) or criterion-by-criterion. Various approaches to validation, in the form of regulations, guidelines or standards, are presented and discussed to draw conclusions on their potential application for different residue screening methods, and to determine whether or not they reach the same conclusions. The approach by comparison of methods is not suitable for screening methods for antibiotic residues. The overall approaches, such as probability of detection (POD) and accuracy profile, are increasingly used in other fields of application. They may be of interest for screening methods for antibiotic residues. Finally, the criterion-by-criterion approach (Decision 2002/657/EC and of European guideline for the validation of screening methods), usually applied to the screening methods for antibiotic residues, introduced a major characteristic and an improvement in the validation, i.e. the detection capability (CCβ). In conclusion, screening methods are constantly evolving, thanks to the development of new biosensors or liquid chromatography coupled to tandem-mass spectrometry (LC-MS/MS) methods. There have been clear changes in validation approaches these last 20 years. Continued progress is required and perspectives for future development of guidelines, regulations and standards for validation are presented here.
Worrall, T A; Schmeckpeper, B J; Corvera, J S; Cotter, R J
2000-11-01
The primer oligomer base extension (PROBE) reaction, combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, is used to characterize HLA-DR2 polymorphism. Alleles are distinguished rapidly and accurately by measuring the mass of primer extension products at every known variable region of HLA-DR2 alleles. Since differentiation of alleles by PROBE relies on measuring differences in extension product mass rather than differences in hybridization properties, mistyped alleles resulting from nonspecific hybridization are absent. The method shows considerable potential for high-throughput screening of HLA-DR polymorphism in a chip-based format, including rapid tissue typing of unrelated volunteer donors.
Cao, Yan; Wang, Shaozhan; Li, Yinghua; Chen, Xiaofei; Chen, Langdong; Wang, Dongyao; Zhu, Zhenyu; Yuan, Yongfang; Lv, Diya
2018-03-09
Cell membrane chromatography (CMC) has been successfully applied to screen bioactive compounds from Chinese herbs for many years, and some offline and online two-dimensional (2D) CMC-high performance liquid chromatography (HPLC) hyphenated systems have been established to perform screening assays. However, the requirement of sample preparation steps for the second-dimensional analysis in offline systems and the need for an interface device and technical expertise in the online system limit their extensive use. In the present study, an offline 2D CMC-HPLC analysis combined with the XCMS (various forms of chromatography coupled to mass spectrometry) Online statistical tool for data processing was established. First, our previously reported online 2D screening system was used to analyze three Chinese herbs that were reported to have potential anti-inflammatory effects, and two binding components were identified. By contrast, the proposed offline 2D screening method with XCMS Online analysis was applied, and three more ingredients were discovered in addition to the two compounds revealed by the online system. Then, cross-validation of the three compounds was performed, and they were confirmed to be included in the online data as well, but were not identified there because of their low concentrations and lack of credible statistical approaches. Last, pharmacological experiments showed that these five ingredients could inhibit IL-6 release and IL-6 gene expression on LPS-induced RAW cells in a dose-dependent manner. Compared with previous 2D CMC screening systems, this newly developed offline 2D method needs no sample preparation steps for the second-dimensional analysis, and it is sensitive, efficient, and convenient. It will be applicable in identifying active components from Chinese herbs and practical in discovery of lead compounds derived from herbs. Copyright © 2018 Elsevier B.V. All rights reserved.
Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L; Alsayrafi, Mohammed; Georgakopoulos, Costas
2017-09-15
This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World Antidoping Agency (WADA) enlists AAS as prohibited doping agents in sports, and our method has been developed to comply with the qualitative specifications of WADA to be applied for the detection of sports antidoping prohibited substances, mainly for AAS. The method also comprises of the quantitative analysis of the WADA's Athlete Biological Passport (ABP) endogenous steroidal parameters. The applied preparation of urine samples includes enzymatic hydrolysis for the cleavage of the Phase II glucuronide conjugates, generic liquid-liquid extraction and trimethylsilyl (TMS) derivatization steps. Tandem mass spectrometry (MS/MS) acquisition was applied on few selected ions to enhance the specificity and sensitivity of GC/TOF signal of few compounds. The full scan high resolution acquisition of analytical signal, for known and unknown TMS derivatives of AAS provides the antidoping system with a new analytical tool for the detection designer drugs and novel metabolites, which prolongs the AAS detection, after electronic data files' reprocessing. The current method is complementary to the respective liquid chromatography coupled to mass spectrometry (LC/MS) methodology widely used to detect prohibited molecules in sport, which cannot be efficiently ionized with atmospheric pressure ionization interface. Copyright © 2017 Elsevier B.V. All rights reserved.
Xiao, Shun; Yu, Runru; Ai, Ni; Fan, Xiaohui
2015-02-01
Lipase inhibitors generate hypolipidemic effect that is helpful to control or treat some obesity diseases by inactivating catalytic activity of human pancreatic lipase, a key enzyme involved in triglyceride hydrolysis in vivo. Many traditional Chinese medicine (TCM) formulae have been effectively used to treat obesity and other fat related diseases for centuries and modern biological experiments demonstrate therapeutic effect of these formulae can be linked to their lipid-lowering capability in blood. These observations suggest that these hypolipidemic decoctions (HDs) could be a promising resource of natural-origin lipase inhibitors. This work described a rapid approach for screening lipase inhibitors from four widely used HDs, including Wu-Ling-San (WLS), Ze-Xie decoction (ZX), Xiao-Xian-Xiong decoction (XXX) and Xiao-Chai-Hu decoction (XCH), by ultrafiltration combing with high performance liquid chromatography-mass spectrometry (HPLC-MS). Our results showed sixteen natural-origin lipase inhibitors were discovered and identified by high resolution and multistage mass spectrometry. Inhibitory activities of two compounds were confirmed by a functional assay of lipase, which validated the reliability of our approach. Molecular docking simulation was then performed to investigate potential mechanism of action for these compounds. Together we present an efficient method for rapid screening lipase inhibitors from complex natural products, which can be easily accommodated to other important enzymatic system with therapeutic values. Copyright © 2014 Elsevier B.V. All rights reserved.
Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry.
Zhou, Mowei; Wu, Si; Stenoien, David L; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Paša-Tolić, Ljiljana
2017-01-01
Top-down mass spectrometry is a valuable tool for understanding gene expression through characterization of combinatorial histone post-translational modifications (i.e., histone code). In this protocol, we describe a top-down workflow that employs liquid chromatography (LC) coupled to mass spectrometry (MS), for fast global profiling of changes in histone proteoforms, and apply LCMS top-down approach for comparative analysis of a wild-type and a mutant fungal species. The proteoforms exhibiting differential abundances can be subjected to further targeted studies by other MS or orthogonal (e.g., biochemical) assays. This method can be generally adapted for screening of changes in histone modifications between samples such as wild type vs. mutant or healthy vs. diseased.
Screening for Natural Chemoprevention Agents that Modify Human Keap1
Hu, Chenqi; Nikolic, Dejan; Eggler, Aimee L.; Mesecar, Andrew D.; van Breemen, Richard B.
2012-01-01
Upregulation of cytoprotective enzymes by therapeutic agents to prevent damage by reactive oxygen species and xenobiotic electrophiles is a strategy for cancer chemoprevention. The Kelch-like ECH-associated protein 1 (Keap1) and its binding partner, transcription factor NF-E2-related factor-2 (Nrf2), are chemoprevention targets because of their role in regulating the antioxidant response element (ARE) in response to oxidative stress and exposure to electrophiles. Modification of the sensor protein Keap1 by electrophiles such as the isothiocyanate sulforaphane can direct Nrf2 accumulation in the nucleus and subsequent ARE activation. Since our previous matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS)-based screening method to discover natural products that modify Keap1 does not detect covalent modification of Keap1 by some highly reversible agents such as sulforaphane, a more sensitive screening assay was developed. In this new assay, electrophiles that have reversibly modified Keap1 can be released, trapped and detected as β-mercaptoethanol adducts by mass spectrometry. Isoliquiritigenin and sulforaphane, known ARE activators that target Keap1, were used to validate the assay. To determine the ability of the assay to identify electrophiles in complex matrixes that modify Keap1, sulforaphane was spiked into a cocoa extract, and LC-MS/MS using high resolution mass spectrometry with accurate mass measurement was used to identify β-mercaptoethanol adducts of sulforaphane that had been released from Keap1. This screening assay permits identification of potential chemoprevention agents in complex natural product mixtures that reversibly modify Keap1 but cannot be detected using MALDI-TOF MS. PMID:22074792
Heller, David N; Nochetto, Cristina B; Rummel, Nathan G; Thomas, Michael H
2006-07-26
A method was developed for detection of a variety of polar drug residues in eggs via liquid chromatography/tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI). A total of twenty-nine target analytes from four drug classes-sulfonamides, tetracyclines, fluoroquinolones, and beta-lactams-were extracted from eggs using a hydrophilic-lipophilic balance polymer solid-phase extraction (SPE) cartridge. The extraction technique was developed for use at a target concentration of 100 ng/mL (ppb), and it was applied to eggs containing incurred residues from dosed laying hens. The ESI source was tuned using a single, generic set of tuning parameters, and analytes were separated with a phenyl-bonded silica cartridge column using an LC gradient. In a related study, residues of beta-lactam drugs were not found by LC/MS/MS in eggs from hens dosed orally with beta-lactam drugs. LC/MS/MS performance was evaluated on two generations of ion trap mass spectrometers, and key operational parameters were identified for each instrument. The ion trap acquisition methods could be set up for screening (a single product ion) or confirmation (multiple product ions). The lower limit of detection for screening purposes was 10-50 ppb (sulfonamides), 10-20 ppb (fluoroquinolones), and 10-50 ppb (tetracyclines), depending on the drug, instrument, and acquisition method. Development of this method demonstrates the feasibility of generic SPE, LC, and MS conditions for multiclass LC/MS residue screening.
Wang, Chunyan; Zhu, Hongbin; Zhang, Wenyan; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying
2013-02-01
The quantitative analysis of amino acids (AAs) in single dry blood spot (DBS) samples is an important issue for metabolic diseases as a second-tier test in newborn screening. An analytical method for quantifying underivatized AAs in DBS was developed by using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The sample preparation in this method is simple and ion-pairing agent is not used in the mobile phase that could avoid ion suppression, which happens in mass spectrometry and avoids damage to the column. Through chromatographic separation, some isomeric compounds could be identified and quantified, which cannot be solved through only appropriate multiple reactions monitoring transitions by MS/MS. The concentrations of the different AAs were determined using non-deuterated internal standard. All calibration curves showed excellent linearity within test ranges. For most of the amino acids the accuracy of extraction recovery was between 85.3 and 115 %, and the precision of relative standard deviation was <7.0 %. The 35 AAs could be identified in DBS specimens by the developed LC-MS/MS method in 17-19 min, and eventually 24 AAs in DBS were quantified. The results of the present study prove that this method as a second-tier test in newborn screening for metabolic diseases could be performed by the quantification of free AAs in DBS using the LC-MS/MS method. The assay has advantages of high sensitive, specific, and inexpensive merits because non-deuterated internal standard and acetic acid instead of ion-pairing agent in mobile phase are used in this protocol.
Determining organic pollutants in automotive industry sludge.
Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin
2012-12-01
In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.
Wang, Li-jun; Lu, Xin-xin; Wu, Wei; Sui, Wen-jun; Zhang, Gui
2014-01-01
In order to evaluate a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MAIDI-TOF MS) assay in screening vancomycin-resistant Enterococcus faecium, a total of 150 E. faecium clinical strains were studied, including 60 vancomycin-resistant E. faecium (VREF) isolates and 90 vancomycin-susceptible (VSEF) strains. Vancomycin resistance genes were detected by sequencing. E. faecium were identified by MALDI-TOF MS. A genetic algorithm model with ClinProTools software was generated using spectra of 30 VREF isolates and 30 VSEF isolates. Using this model, 90 test isolates were discriminated between VREF and VSEF. The results showed that all sixty VREF isolates carried the vanA gene. The performance of VREF detection by the genetic algorithm model of MALDI-TOF MS compared to the sequencing method was sensitivity = 80%, specificity = 90%, false positive rate =10%, false negative rate =10%, positive predictive value = 80%, negative predictive value= 90%. MALDI-TOF MS can be used as a screening test for discrimination between vanA-positive E. faecium and vanA-negative E. faecium.
Kong, Cong; Wang, Yang; Huang, Yuanfei; Yu, Huijuan
2018-05-11
A quick screening method of more than 200 pharmaceutical and other residues in aquatic foods based on ultrahigh-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UHPLC-Q/Orbitrap MS) was established. In this method, after the addition of 200 μL of 1 M EDTA-Na 2 , 2 g of each sample homogenate was extracted successively with 10 mL of acetonitrile and 10 mL of ethyl acetate. The extracts were combined, dried under nitrogen flow, and redissolved in 0.1% formic acid in acetonitrile/water (4:6, v/v) for analysis. The prepared samples were analyzed by UHPLC- Q/Orbitrap MS system in Full MS/ddMS 2 (full-scan data-dependent MS/MS) mode. Compound identification was performed through comparison of the sample data with the database for standard chemicals, including the retention time, precursor ion, product ions, and isotope pattern for all 206 compounds. Five different aquatic food matrices (carp, shrimp, crab, eel, and mussel) spiked with the analytes at 1, 10, and 50 ng/g were evaluated to assess recoveries, precision, matrix effects, stability, and detection limits using the method. UHPLC analyses required 25 min, and 178-200 analytes met identification criteria at 50 ng/g depending on the matrix. Furthermore, practical application of this method for real samples displayed strong screening capability. Graphical abstract A quick screening method of >200 pharmaceutical and other residues in aquatic foods based on ultrahighperformance liquid chromatography-quadrupole-Orbitrap mass spectrometer was established. Fivedifferent aquatic food matrices, including carp, shrimp, crab, eel and mussel, were studied to evaluatescreen limit at 1, 10 and 50 μg·kg-1 level. Results suggest the high reliability, high time-efficiency and goodsimplicity of the method.
Challenges for Detecting Valproic Acid in a Nontargeted Urine Drug Screening Method.
Pope, Jeffrey D; Black, Marion J; Drummer, Olaf H; Schneider, Hans G
2017-08-01
Valproic acid (VPA) is a widely prescribed medicine, and acute toxicity is possible. As such, it should be included in any nontargeted urine drug screening method. In many published liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) methods, VPA is usually measured using a pseudo-multiple reaction monitoring (MRM) transition. We investigate a simple ultra-high-performance liquid chromatography-quadrupole time-of-flight (QTof) approach to detect the presence of VPA with more confidence. Three commercially sourced VPA metabolites were characterized and added to a nontargeted high-resolution MS urine drug screening method. All analyses were performed on a Waters Xevo G2-XS LC-QTof in negative electrospray ionization mode. The mass detector was operated in MS mode, and data were processed with UNIFI software. Sixty-eight patient urine samples, which were previously identified by a well-established gas chromatography-MS method as containing VPA, were analyzed on the Waters Xevo G2-XS LC-QTof, to validate this approach. VPA metabolite standards were characterized, and their detection data were added to the broad drug screening library. VPA metabolites were readily detectable in the urine of patients taking VPA. The inclusion of characterized VPA metabolites provides a simple and reliable method enabling the detection of VPA in nontargeted urine drug screening.
Hondrogiannis, Ellen M; Ehrlinger, Erin; Poplaski, Alyssa; Lisle, Meredith
2013-11-27
A total of 11 elements found in 25 vanilla samples from Uganda, Madagascar, Indonesia, and Papua New Guinea were measured by laser ablation-inductively coupled plasma-time-of-flight-mass spectrometry (LA-ICP-TOF-MS) for the purpose of collecting data that could be used to discriminate among the origins. Pellets were prepared of the samples, and elemental concentrations were obtained on the basis of external calibration curves created using five National Institute of Standards and Technology (NIST) standards and one Chinese standard with (13)C internal standardization. These curves were validated using NIST 1573a (tomato leaves) as a check standard. Discriminant analysis was used to successfully classify the vanilla samples by their origin. Our method illustrates the feasibility of using LA-ICP-TOF-MS with an external calibration curve for high-throughput screening of spice screening analysis.
2013-01-01
Background Glutaric aciduria type I (GA-I) is a rare metabolic disorder caused by inherited deficiency of glutaryl-CoA dehydrogenase. Despite high prognostic relevance of early diagnosis and start of metabolic treatment as well as an additional cost saving potential later in life, only a limited number of countries recommend newborn screening for GA-I. So far only limited data is available enabling health care decision makers to evaluate whether investing into GA-I screening represents value for money. The aim of our study was therefore to assess the cost-effectiveness of newborn screening for GA-I by tandem mass spectrometry (MS/MS) compared to a scenario where GA-I is not included in the MS/MS screening panel. Methods We assessed the cost-effectiveness of newborn screening for GA-I against the alternative of not including GA-I in MS/MS screening. A Markov model was developed simulating the clinical course of screened and unscreened newborns within different time horizons of 20 and 70 years. Monte Carlo simulation based probabilistic sensitivity analysis was used to determine the probability of GA-I screening representing a cost-effective therapeutic strategy. Results Within a 20 year time horizon, GA-I screening averts approximately 3.7 DALYs (95% CI 2.9 – 4.5) and about one life year is gained (95% CI 0.7 – 1.4) per 100,000 neonates screened initially . Moreover, the screening programme saves a total of around 30,682 Euro (95% CI 14,343 to 49,176 Euro) per 100,000 screened neonates over a 20 year time horizon. Conclusion Within the limitations of the present study, extending pre-existing MS/MS newborn screening programmes by GA-I represents a highly cost-effective diagnostic strategy when assessed under conditions comparable to the German health care system. PMID:24135440
Chen, Jiaqing; Zhang, Pei; Lv, Mengying; Guo, Huimin; Huang, Yin; Zhang, Zunjian; Xu, Fengguo
2017-05-16
Data reduction techniques in gas chromatography-mass spectrometry-based untargeted metabolomics has made the following workflow of data analysis more lucid. However, the normalization process still perplexes researchers, and its effects are always ignored. In order to reveal the influences of normalization method, five representative normalization methods (mass spectrometry total useful signal, median, probabilistic quotient normalization, remove unwanted variation-random, and systematic ratio normalization) were compared in three real data sets with different types. First, data reduction techniques were used to refine the original data. Then, quality control samples and relative log abundance plots were utilized to evaluate the unwanted variations and the efficiencies of normalization process. Furthermore, the potential biomarkers which were screened out by the Mann-Whitney U test, receiver operating characteristic curve analysis, random forest, and feature selection algorithm Boruta in different normalized data sets were compared. The results indicated the determination of the normalization method was difficult because the commonly accepted rules were easy to fulfill but different normalization methods had unforeseen influences on both the kind and number of potential biomarkers. Lastly, an integrated strategy for normalization method selection was recommended.
Zhang, Hui; Zhang, Xiaojing; Jiang, Huijie; Xu, Cong; Tong, Shengqiang; Yan, Jizhong
2018-02-01
Shenqi Jiangtang Granule, a well-known traditional Chinese herbal preparation, has been widely used for the treatment of type II diabetes mellitus. In this work, an ultrafiltration liquid chromatography with quadrupole time-of-flight mass spectrometry method was proposed for the rapid identification of bioactive ingredients from Shenqi Jiangtang Granule using α-glucosidase as an example. First, the chemical profile of this preparation was clarified, including 37 saponins, 17 flavonoids, 37 lignans, and seven other compounds. After incubation with α-glucosidase in vitro, the methanol extract with an IC 50 value of 0.19 mg/mL exhibited significant inhibitory activity. Then, 18 specific binding peaks were screened, and 15 peaks were identified. Among these, ten compounds were reported to have potential α-glucosidase inhibitory activity for the first time. Subsequently, the inhibitory activities of these active compounds were evaluated by ultraviolet spectrophotometry with p-nitrophenyl α-d-glucopyranoside as a substrate. As a result, gomisin J and gomisin D exhibited stronger α-glucosidase inhibitory activities than other active compounds with IC 50 values of 77.69 and 133.85 μM, respectively. The results demonstrated that the integrated ultrafiltration liquid chromatography with mass spectrometry method was an effective and powerful tool for the discovery of active ingredients in Shenqi Jiangtang Granule. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Concentration of Nicotine and Glycols in 27 Electronic Cigarette Formulations
Peace, Michelle R.; Baird, Tyson R.; Smith, Nathaniel; Wolf, Carl E.; Poklis, Justin L.; Poklis, Alphonse
2016-01-01
Personal battery-powered vaporizers or electronic cigarettes were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. Electronic cigarettes and their e-cigarette liquid formulations are virtually unregulated. These formulations are typically composed of propylene glycol and/or glycerin, flavoring components and an active drug, such as nicotine. Twenty-seven e-cigarette liquid formulations that contain nicotine between 6 and 22 mg/L were acquired within the USA and analyzed by various methods to determine their contents. They were screened by Direct Analysis in Real Time™ Mass Spectrometry (DART-MS). Nicotine was confirmed and quantitated by high-performance liquid chromatography–tandem mass spectrometry, and the glycol composition was confirmed and quantitated by gas chromatography–mass spectrometry. The DART-MS screening method was able to consistently identify the exact mass peaks resulting from the protonated molecular ion of nicotine, glycol and a number of flavor additives within 5 mmu. Nicotine concentrations were determined to range from 45 to 131% of the stated label concentration, with 18 of the 27 have >10% variance. Glycol composition was generally accurate to the product description, with only one exception where the propylene glycol to glycerin percentage ratio was stated as 50:50 and the determined concentration of propylene glycol to glycerin was 81:19 (% v/v). No unlabeled glycols were detected in these formulations. PMID:27165804
Making the Case for Objective Performance Metrics in Newborn Screening by Tandem Mass Spectrometry
ERIC Educational Resources Information Center
Rinaldo, Piero; Zafari, Saba; Tortorelli, Silvia; Matern, Dietrich
2006-01-01
The expansion of newborn screening programs to include multiplex testing by tandem mass spectrometry requires understanding and close monitoring of performance metrics. This is not done consistently because of lack of defined targets, and interlaboratory comparison is almost nonexistent. Between July 2004 and April 2006 (N = 176,185 cases), the…
Zhang, Xinglei; Liu, Yan; Zhang, Jinghua; Hu, Zhong; Hu, Bin; Ding, Liying; Jia, Li; Chen, Huanwen
2011-09-15
High throughput analysis of sunscreen agents present in cream cosmetic has been demonstrated, typically 2 samples per minute, using neutral desorption extractive electrospray ionization mass spectrometry (ND-EESI-MS) without sample pretreatment. For the targeted compounds such as 4-Aminobenzoic acid and oxybenzone, ND-EESI-MS method provided linear signal responses in the range of 1-100 ppb. Limits of detection (LOD) of the method were estimated at sub-ppb levels for the analytes tested. Reasonable relative standard deviation (RSD=8.4-16.0%) was obtained as a result of 10 independent measurements for commercial cosmetics samples spiked with each individual sunscreen agents at 1-10 ppb. Acceptable recoveries were achieved in the range of 87-116% for direct analysis of commercial cream cosmetic samples. The experimental data demonstrate that ND-EESI-MS is a useful tool for high throughput screening of sunscreen agents in highly viscous cream cosmetic products, with the capability to obtain quantitative information of the analytes. Copyright © 2011 Elsevier B.V. All rights reserved.
Queiroz, R H; Lanchote, V L; Bonato, P S; Tozato, E; de Carvalho, D; Gomes, M A; Cerdeira, A L
1999-06-01
A simple, rapid and quantitative bioassay method was compared to a gas chromatography/mass spectrometry (GC/MS) procedure for the analysis of ametryn in surface and groundwater. This method was based on the activity of ametryn in inhibiting the growth of the primary root and shoot of germinating letuce, Lactuca sativa L. seed. The procedure was sensitive to 0.01 microgram/l and was applicable from this concentration up to 0.6 microgram/l. Initial surface sterilization of the seed, selection of pregerminated seed of certain root lengths and special equipment are not necessary. So, we concluded that the sensitivity of the bioassay method is compatible with the chromatographic method (GC-MS). However, the study of the correlation between methods suggests that the bioassay should be used only as a screening technique for the evaluation of ametryn residues in water.
Haemoglobinopathy diagnosis: algorithms, lessons and pitfalls.
Bain, Barbara J
2011-09-01
Diagnosis of haemoglobinopathies, including thalassaemias, can result from either a clinical suspicion of a disorder of globin chain synthesis or from follow-up of an abnormality detected during screening. Screening may be carried out as part of a well defined screening programme or be an ad hoc or opportunistic test. Screening may be preoperative, neonatal, antenatal, preconceptual, premarriage or targeted at specific groups perceived to be at risk. Screening in the setting of haemoglobinopathies may be directed at optimising management of a disorder by early diagnosis, permitting informed reproductive choice or preventing a serious disorder by offering termination of pregnancy. Diagnostic methods and algorithms will differ according to the setting. As the primary test, high performance liquid chromatography is increasingly used and haemoglobin electrophoresis less so with isoelectric focussing being largely confined to screening programmes and referral centres, particularly in newborns. Capillary electrophoresis is being increasingly used. All these methods permit only a presumptive diagnosis with definitive diagnosis requiring either DNA analysis or protein analysis, for example by tandem mass spectrometry. Copyright © 2011 Elsevier Ltd. All rights reserved.
High-resolution mass spectrometry in toxicology: current status and future perspectives.
Maurer, H H; Meyer, Markus R
2016-09-01
This paper reviews high-resolution mass spectrometry (HRMS) approaches using time-of-flight or Orbitrap techniques for research and application in various toxicology fields, particularly in clinical toxicology and forensic toxicology published since 2013 and referenced in PubMed. In the introduction, an overview on applications of HRMS in various toxicology fields is given with reference to current review articles. Papers concerning HRMS in metabolism, screening, and quantification of pharmaceuticals, drugs of abuse, and toxins in human body samples are critically reviewed. Finally, a discussion on advantages as well as limitations and future perspectives of these methods is included.
Ford, Loretta T; Berg, Jonathan D
2016-11-01
Background Synthetic cannabinoids (NOIDS) are novel psychotropic drugs (NPS) currently freely sold in the United Kingdom as 'research chemicals'. Detection of NOIDS use is not available in current routine methods. Here we describe a marker which helps determine which patients have used these substances. Methods In a test case, ultra-performance liquid chromatography mass spectrometry (UPLC-Tof) was used to screen the legal high Herbal Haze II, the contents of hand-rolled cigarettes and five patient samples for NOIDS and their metabolites. Results Analysis of legal high Herbal Haze II and cigarettes identified the third generation adamantyl-type NOIDS N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), 5F-AKB-48 and N-adamantyl-1-fluoropentylindole-3-carboxamide (STS-135). Out of 18 potential metabolites, 1-adamantylamine (C 10 H 17 N) was detected in all five urine samples. This adamantyl-type NOID marker was incorporated into our routine LC-MS/MS urine screen. Out of 14,436 random urine samples screened over eight months, 296 (2.05%) tested positive for the adamantyl-type NOID marker. Conclusion We have discovered a urine marker for identifying patients smoking legal high products containing the third generation adamantyl-type NOIDS such as AKB-48 and its fluoropentyl analogue 5F-AKB-48, which are among the most popular NOIDS currently available in legal high products sold in UK. This marker can be incorporated into routine LC-MS/MS drug screening alongside classic drugs of abuse. Positive detection rates for this new legal high marker are greater than for established classic drugs that are routinely screened such as amphetamine. This work highlights the need for a flexible toxicology screening service capable of adapting to changes in drug use such as the growing popularity of legal highs/NPS.
Kaserzon, Sarit L; Heffernan, Amy L; Thompson, Kristie; Mueller, Jochen F; Gomez Ramos, Maria Jose
2017-09-01
Access to clean, safe drinking water poses a serious challenge to regulators, and requires analytical strategies capable of rapid screening and identification of potentially hazardous chemicals, specifically in situations when threats to water quality or security require rapid investigations and potential response. This study describes a fast and efficient chemical hazard screening strategy for characterising trace levels of polar organic contaminants in water matrices, based on liquid chromatography high resolution mass spectrometry with post-acquisition 'case-control' data processing. This method allowed for a rapid response time of less than 24 h for the screening of target, suspect and non-target unknown chemicals via direct injection analysis, and a second, more sensitive analysis option requiring sample pre-concentration. The method was validated by fortifying samples with a range of pesticides, pharmaceuticals and personal care products (n = 46); with >90% of target compounds positively screened in samples at 1 ng mL -1 , and 46% at 0.1 ng mL -1 when analysed via direct injection. To simulate a contamination event samples were fortified with compounds not present in the commercial library (designated 'non-target compounds'; fipronil and fenitrothion), tentatively identified at 0.2 and 1 ng mL -1 , respectively; and a compound not included in any known commercial library or public database (designated 'unknown' compounds; 8Cl - perfluorooctanesulfonic acid), at 0.8 ng mL -1 . The method was applied to two 'real-case' scenarios: (1) the assessment of drinking water safety during a high-profile event in Brisbane, Australia; and (2) to screen treated, re-circulated drinking water and pre-treated (raw) water. The validated workflow was effective for rapid prioritisation and screening of suspect and non-target potential hazards at trace levels, and could be applied to a wide range of matrices and investigations where comparison of organic contaminants between an affected and control site and or timeframe is warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Xiu, Xiaoli; Zhang, Li; Wang, Xin; Chen, Jing
2015-10-01
A rapid screening method based on high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry (HPLC-LTQ/Orbitrap MS) for 22 disperse dyes in ecological textiles has been established. The target compounds were extracted by pyridine/water (1:1, v/v) by shaking extraction in 90 degrees C water bath. The extracts were then separated by a CAPCELL PAK C18 column (100 mm x 2.0 mm, 5 μm) using gradient elution with acetonitrile-5 mmol/L ammonium acetate containing 0.01% (v/v) formic acid as mobile phases, and finally analyzed by HPLC-LTQ/Orbitrap in positive and negative ESI modes. The retention time and accurate mass of parent ion were used for fast screening of 22 disperse dyes, while the confirmatory analysis was obtained by fragments generated by collision-induced dissociation (CID) MS/MS. Target analysis exhibited high mass accuracy (< 5 x 10(-6)). Each target showed a good linearity in its own concentration range and the correlation coefficient was higher than 0.99. The LOQs were 0.125-2.5 mg/kg. Except for Disperse Yellow 49, the average recoveries of most disperse dyes at three spiked levels were 65%-120%, and the relative standard deviations (n = 6) were less than 15%. The method was applied for screening 40 different kinds of textiles, and Disperse Orange 37/76 was detected in one of them. With high selectivity and strong anti-jamming ability, this method is simple, rapid, accurate, and it can be used for the inspection of disperse dyes in textiles.
Elmiger, Marco P; Poetzsch, Michael; Steuer, Andrea E; Kraemer, Thomas
2018-03-06
High resolution mass spectrometry and modern data independent acquisition (DIA) methods enable the creation of general unknown screening (GUS) procedures. However, even when DIA is used, its potential is far from being exploited, because often, the untargeted acquisition is followed by a targeted search. Applying an actual GUS (including untargeted screening) produces an immense amount of data that must be dealt with. An optimization of the parameters regulating the feature detection and hit generation algorithms of the data processing software could significantly reduce the amount of unnecessary data and thereby the workload. Design of experiment (DoE) approaches allow a simultaneous optimization of multiple parameters. In a first step, parameters are evaluated (crucial or noncrucial). Second, crucial parameters are optimized. The aim in this study was to reduce the number of hits, without missing analytes. The obtained parameter settings from the optimization were compared to the standard settings by analyzing a test set of blood samples spiked with 22 relevant analytes as well as 62 authentic forensic cases. The optimization lead to a marked reduction of workload (12.3 to 1.1% and 3.8 to 1.1% hits for the test set and the authentic cases, respectively) while simultaneously increasing the identification rate (68.2 to 86.4% and 68.8 to 88.1%, respectively). This proof of concept study emphasizes the great potential of DoE approaches to master the data overload resulting from modern data independent acquisition methods used for general unknown screening procedures by optimizing software parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela; Laskin, Julia
In recent years, mass spectroscopy imaging (MSI) has emerged as a foundational technique in metabolomics and drug screening providing deeper understanding of complex mechanistic pathways within biochemical systems and biological organisms. We have been invited to contribute a chapter to a new Springer series volume, entitled “Mass Spectrometry Imaging of Small Molecules”. The volume is planned for the highly successful lab protocol series Methods in Molecular Biology, published by Humana Press, USA. The volume is aimed to equip readers with step-by-step mass spectrometric imaging protocols and bring rapidly maturing methods of MS imaging to life science researchers. The chapter willmore » provide a detailed protocol of ambient MSI by use of nanospray desorption electrospray ionization.« less
Giovannetti, Rita; Alibabaei, Leila; Zannotti, Marco; Ferraro, Stefano; Petetta, Laura
2013-01-01
The composition of sedimentary pigments in the Antarctic lake at Edmonson Point has been investigated and compared with the aim to provide a useful analytical method for pigments separation and identification, providing reference data for future assessment of possible changes in environmental conditions. Reversed phase high performance liquid chromatography (HPLC) with electrospray-mass spectrometry (ESI-MS) detection and diode array detection (DAD) has been used to identify light screening and light harvesting pigments. The results are discussed in terms of local environmental conditions.
Guitot, Karine; Scarabelli, Silvia; Drujon, Thierry; Bolbach, Gérard; Amoura, Mehdi; Burlina, Fabienne; Jeltsch, Albert; Sagan, Sandrine; Guianvarc'h, Dominique
2014-07-01
Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.
Inostroza, Pedro A; Wicht, Anna-Jorina; Huber, Thomas; Nagy, Claudia; Brack, Werner; Krauss, Martin
2016-07-01
While environmental risk assessment is typically based on toxicant concentrations in water and/or sediment, awareness is increasing that internal concentrations or body burdens are the key to understand adverse effects in organisms. In order to link environmental micropollutants as causes of observed effects, there is an increasing demand for methods to analyse these chemicals in organisms. Here, a multi-target screening method based on pulverised liquid extraction (PuLE) and a modified QuEChERS approach with an additional hexane phase was developed. It is capable to extract and quantify organic micropollutants of diverse chemical classes in freshwater invertebrates. The method was tested on gammarids from the Danube River (within the Joint Danube Survey 3) and target compounds were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, a non-target screening using high resolution-tandem mass spectrometry (LC-HRMS/MS) was conducted. A total of 17 pollutants were detected and/or quantified in gammarids at low concentrations. Pesticide concentrations ranged from 0.1 to 6.52 ng g(-1) (wet weight), those of wastewater-derived pollutants from 0.1 to 2.83 ng g(-1) (wet weight). The presence of wastewater-derived pollutants was prominent at all spots sampled. Using non-target screening, we could successfully identify several chlorinated compounds. These results demonstrate for the first time the presence of pesticides and wastewater-derived pollutants in invertebrates of the Danube River. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Meixian; Dong, Jing; Lin, Zongtao; Niu, Yanyan; Zhang, Xiaotian; Jiang, Haixiu; Guo, Ning; Li, Wei; Wang, Hong; Chen, Shizhong
2016-06-10
Transferrin (Transferrin, TRF, TF) has drawn increasing attention in cancer therapy due to its potential applications in drug delivery. TF receptor, highly expressed in tumor cells, recognizes and transports Fe(3+)-TF into cells to release iron into cytoplasm. Thus, discovering TF-binding compounds has become an active research area and is of great importance for target therapy. In this study, an on-line analysis method was established for screening TF-binding compounds from the flowers of Bauhinia blakeana Dunn using a high-performance liquid chromatography-diode-array detector-multi-stage mass spectrometry-transferrin-fluorescence detector (HPLC-DAD-MS(n)-TF-FLD) method. As a result, 33 of 80 identified or tentatively characterized compounds in the sample were TF-binding active. Twenty-five flavonol glycosides and eight phenolic acids were identified as TF-binders. Twelve of these active compounds together with six standard compounds were used to study the dose-response effects and structure-activity relationships of flavonoids and phenolic acids. The method was validated by vitexin with a good linearity in the range of concentrations used in the study. The limit of detection for vitexin was 0.1596 nmol. Our study indicated that the established method is simple, rapid and sensitive for screening TF-binding active compounds in the extract of Bauhinia blakeana Dunn, and therefore is important for discovering potential anti-cancer ingredients from complex samples for TF related drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Jian; Leung, Daniel
2012-08-01
This paper discusses the analytical challenges to develop a generic extraction procedure to analyze or screen multi-class veterinary drugs in milk and honey using ultra-high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC QqTOF MS). The veterinary drugs in this study included aminoglycosides, endectocides, fluoroquinolones, ionophores, β-lactams or penicillins, macrolides, NSAIDs, phenicols, sulfonamides and tetracyclines. Veterinary drugs were extracted using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) method, which entailed the use of acetonitrile containing 1% acetic acid, sodium acetate, ethylenediaminetetra acetic acid disodium (EDTA) and magnesium sulfate, and no clean-up was performed. Chromatographic separation was achieved on a reversed-phase Acquity UPLC BEH C(18) , 100 × 2.1 mm, 1.7 µm column with 0.1% formic acid and 10 mM ammonium formate in water, and acetonitrile as mobile phases. Due to poor chromatographic retention, aminoglycosides were first dropped from the list, and because of poor extractability, β-lactams and tetracyclines were also excluded from the method. The method was able to quantify 31 or screen up to 54 drugs (unbound) in honey, and to quantify 34 or screen up to 59 drugs in milk. UHPLC QqTOF data were acquired in TOF MS full-scan mode that allowed both quantification and confirmation of veterinary drugs and identification of their degradation products in samples. The method could achieve detection limits as low as 1 µg/kg with analytical range from 1 to 100 µg/kg. The developed method was intended to be used for screening of as many analytes as possible in one single analysis, or unequivocal confirmation of positive findings and degradation product identification based on accurate mass measurement and isotopic patterns. © Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of Agriculture.
Prchalová, Jana; Kovařík, František; Ševčík, Rudolf; Čížková, Helena; Rajchl, Aleš
2014-09-01
Direct analysis in real time (DART) is a novel technique with great potential for rapid screening analysis. The DART ionization method coupled with high-resolution time-of-flight mass spectrometry (TOF-MS) has been used for characterization of mustard seeds and table mustard. The possibility to use DART to analyse glucosinolates was confirmed on determination of sinalbin (4-hydroxybenzyl glucosinolate). The DART-TOF-MS method was optimized and validated. A set of samples of mustard seeds and mustard products was analyzed. High-performance liquid chromatography and DART-TOF-MS were used to determine glucosinolates in mustard seeds and compared. The correlation equation between these methods was DART = 0.797*HPLC + 6.987, R(2) = 0.972. The DART technique seems to be a suitable method for evaluation of the quality of mustard seeds and mustard products. Copyright © 2014 John Wiley & Sons, Ltd.
Screening for toxic phorbol esters in jerky pet treat products using LC-MS.
Nishshanka, Upul; Jayasuriya, Hiranthi; Chattopadhaya, Chaitali; Kijak, Philip J; Chu, Pak-Sin; Reimschuessel, Renate; Tkachenko, Andriy; Ceric, Olgica; De Alwis, Hemakanthi G
2016-05-01
Since 2007, the U.S. FDA's Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats. Jerky used in pet treats contains glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Because some biodiesel is produced using oil from Jatropha curcas, a plant that contains toxic compounds including phorbol esters, CVM developed a liquid chromatography-mass spectrometry (LC-MS) screening method to evaluate investigational jerky samples for the presence of these toxins. Results indicated that the samples analyzed with the new method did not contain Jatropha toxins at or above the lowest concentration tested. Published by Elsevier B.V.
Wang, He-Xing; Wang, Bin; Zhou, Ying; Jiang, Qing-Wu
2014-12-01
A rapid and sensitive method for the screening and selective quantification of antibiotics in urine by two-dimensional ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was developed. This method allowed the injection of 200 μL urine extract. The 200-μL injection volume used in this method increased the absolute sensitivity for target antibiotics in solvent by an average 13.3 times, with a range from 8.4 to 28.5 times, compared with the 10-μL conventional injection volume. A 96-well solid phase extraction procedure was established to eliminate the contamination on the chromatographic column resulting from the large-volume injection and increase the throughput of sample preparation. Fourteen target antibiotics from six common categories (β-lactams, quinolones, tetracyclines, macrolides, sulfonamides, and chloramphenicols) were selected as model compounds, and a database containing an additional 74 antibiotics was compiled for posttarget screening. The limit of detection of the target antibiotics, defined as a signal-to-noise ratio of 3, ranged from 0.04 to 1.99 ng/mL. The mean interday recoveries ranged between 79.6 and 121.3 %, with a relative standard deviation from 2.9 to 18.3 % at three spiking levels of 20 ng/mL, 50 ng/mL, and 100 ng/mL. This method was successfully applied in 60 real urine samples from schoolchildren aged 8-11 years, and four target antibiotics (azithromycin, sulfadiazine, trimethoprim, and oxytetracycline) and two posttarget antibiotics (sulfadimidine and cefaclor) were found in the urine samples. This method can be used as a large-scale biomonitoring tool for exposure of the human population to antibiotics.
Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V
2015-09-01
There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.
Schneider, M J; Donoghue, D J
2004-05-01
Regulatory monitoring for most antibiotic residues in edible poultry tissues is often accomplished with accurate, although expensive and technically demanding, chemical analytical techniques. The purpose of this study is to determine if a simple, inexpensive bioassay could detect fluoroquinolone (FQ) residues in chicken muscle above the FDA established tolerance (300 ppb) comparable to a liquid chromatography-fluorescencemass spectrometry(n) method. To produce incurred enrofloxacin (ENRO) tissues (where ENRO is incorporated into complex tissue matrices) for the method comparison, 40-d-old broilers (mixed sex) were orally dosed through drinking water for 3 d at the FDA-approved dose of ENRO (50 ppm). At the end of each day of the 3-d dosing period and for 3 d postdosing, birds were sacrificed and breast and thigh muscle collected and analyzed. Both methods were able to detect ENRO at and below the tolerance level in the muscle, with limits of detection of 26 ppb (bioassay), 0.1 ppb for ENRO, and 0.5 ppb for the ENRO metabolite, ciprofloxacin (liquid chromatography-fluorescence-mass spectrometry(n)). All samples that had violative levels of antibiotic were detected by the bioassay. These results support the use of this bioassay as a screening method for examining large numbers of samples for regulatory monitoring. Positive samples should then be examined by a more extensive method, such as liquid chromatography-fluorescence-mass spectrometry(n), to provide confirmation of the analyte.
NASA Astrophysics Data System (ADS)
Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.
2013-08-01
Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.
Chen, Guilin; Guo, Mingquan
2017-01-01
Topoisomerase I (Topo I) catalyzes topological interconversion of duplex DNA during DNA replication and transcription, and has been deemed as important antineoplastic targets. In this study, the fraction R.d-60 from ethyl acetate extracts of Rhamnus davurica showed higher inhibitory rates against SGC-7901 and HT-29 compared with the R.d-30 fraction in vitro. However, the specific active components of R.d-60 fraction remain elusive. To this end, a method based on bio-affinity ultrafiltration and high performance liquid chromatography/electrospray mass spectrometry (HPLC- ESI-MS/MS) was developed to rapidly screen and identify the Topo I inhibitors in this fraction. The enrichment factors (EFs) were calculated to evaluate the binding affinities between the bioactive constituents and Topo I. As a result, eight ligands were identified and six of which with higher EFs showed more potential antitumor activity. Furthermore, antiproliferative assays in vitro (IC50 values) with two representative candidates (apigenin, quercetin) against SGC-7901, HT-29 and Hep G2 cells were conducted and further validated. Finally, the structure-activity relationships revealed that flavones contain a C2-C3 double bond of C ring exhibited higher bio-affinities to Topo I than those without it. This integrated method combining Topo I ultrafiltration with HPLC-MS/MS proved to be very efficient in rapid screening and identification of potential Topo I inhibitors from the complex extracts of medicinal plants, and could be further explored as a valuable high-throughput screening platform in the early drug discovery stage. PMID:28919906
Moschet, Christoph; Piazzoli, Alessandro; Singer, Heinz; Hollender, Juliane
2013-11-05
In this study, the efficiency of a suspect screening strategy using liquid chromatography-high resolution mass spectrometry (LC-HRMS) without the prior purchase of reference standards was systematically optimized and evaluated for assessing the exposure of rarely investigated pesticides and their transformation products (TPs) in 76 surface water samples. Water-soluble and readily ionizable (electrospray ionization) substances, 185 in total, were selected from a list of all insecticides and fungicides registered in Switzerland and their major TPs. Initially, a solid phase extraction-LC-HRMS method was established using 45 known, persistent, and high sales volume pesticides. Seventy percent of these target substances had limit of quantitation (LOQ) < 5 ng L(-1). This compound set was then used to develop and optimize a HRMS suspect screening method using only the exact mass as a priori information. Thresholds for blank subtraction, peak area, peak shape, signal-to-noise, and isotopic pattern were applied to automatically filter the initially picked peaks. The success rate was 70%; false negatives mainly resulted from low intense peaks. The optimized approach was applied to the remaining 140 substances. Nineteen additional substances were detected in environmental samples, two TPs for the first time in the environment. Sixteen substances were confirmed with reference standards purchased subsequently, while three TP standards could be obtained from industry or other laboratories. Overall, this screening approach was fast and very successful and can easily be expanded to other micropollutant classes for which reference standards are not readily accessible such as TPs of household chemicals.
Yuan, Jinbin; Chen, Yang; Liang, Jian; Wang, Chong-Zhi; Liu, Xiaofei; Yan, Zhihong; Tang, Yi; Li, Jiankang; Yuan, Chun-Su
2016-12-01
Ginseng is one of the most widely used natural medicines in the world. Recent studies have suggested Panax ginseng has a wide range of beneficial effects on aging, central nervous system disorders, and neurodegenerative diseases. However, knowledge about the specific bioactive components of ginseng is still limited. This work aimed to screen for the bioactive components in Panax ginseng that act against neurodegenerative diseases, using the target cell-based bioactivity screening method. Firstly, component analysis of Panax ginseng extracts was performed by UPLC-QTOF-MS, and a total of 54 compounds in white ginseng were characterized and identified according to the retention behaviors, accurate MW, MS characteristics, parent nucleus, aglycones, side chains, and literature data. Then target cell-based bioactivity screening method was developed to predict the candidate compounds in ginseng with SH-SY5Y cells. Four ginsenosides, Rg 2 , Rh 1 , Ro, and Rd, were observed to be active. The target cell-based bioactivity screening method coupled with UPLC-QTOF-MS technique has suitable sensitivity and it can be used as a screening tool for low content bioactive constituents in natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping
2015-07-16
Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils. Copyright © 2015 Elsevier B.V. All rights reserved.
Stravs, Michael A; Mechelke, Jonas; Ferguson, P Lee; Singer, Heinz; Hollender, Juliane
2016-03-01
Online solid-phase extraction was combined with nano-liquid chromatography coupled to high-resolution mass spectrometry (HRMS) for the analysis of micropollutants in environmental samples from small volumes. The method was validated in surface water, Microcystis aeruginosa cell lysate, and spent Microcystis growth medium. For 41 analytes, quantification limits of 0.1-28 ng/L (surface water) and 0.1-32 ng/L (growth medium) were obtained from only 88 μL of sample. In cell lysate, quantification limits ranged from 0.1-143 ng/L or 0.33-476 ng/g dry weight from a sample of 88 μL, or 26 μg dry weight, respectively. The method matches the sensitivity of established online and offline solid-phase extraction-liquid chromatography-mass spectrometry methods but requires only a fraction of the sample used by those techniques, and is among the first applications of nano-LC-MS for environmental analysis. The method was applied to the determination of bioconcentration in Microcystis aeruginosa in a laboratory experiment, and the benefit of coupling to HRMS was demonstrated in a transformation product screening.
Wang, Xiaochen; Hua, Zhendong; Yang, Zhaoguang; Li, Haipu; Liu, Huwei; Qiu, Bo; Nie, Honggang
2018-06-15
Owing to the widespread abuse of new psychoactive substances (NPSs), developing a rapid, easily operable method to detect NPSs in oral fluid is of high priority. Their ease of collection and non-invasive nature make oral fluid samples suitable for on-site tests and forensic cases. Herein we report a rapid and sensitive method to screen and quantitate 11 new NPSs in oral fluid. Low-temperature plasma-probe mass spectrometry (LTP-MS) was applied and, to improve the signal intensity, thermally assisted desorption was employed. Tandem mass spectrometry was performed to exclude false positive signals and to decrease noise at the m/z values of interest. Linearity was studied using matrix-matched calibration curves; all the analytes exhibited good linearity with R 2 varying from 0.9907 to 0.9981. The estimated limits of detection (LODs) were in the range of 3.0-15.2 ng/mL, which are comparable to those of immunoassay; relative standard deviations (RSDs) are no greater than 23% at the studied concentration levels. The proposed LTP-MS-based method was promising in forensic and on-site applications to curb the abuse of NPSs. Copyright © 2018 John Wiley & Sons, Ltd.
Barcenas, Mariana; Suhr, Teryn R; Scott, C Ronald; Turecek, Frantisek; Gelb, Michael H
2014-06-10
Treatments are being developed for metachromatic leukodystrophy (MLD), suggesting the need for eventual newborn screening. Previous studies have shown that sulfatide molecular species are increased in the urine of MLD patients compared to samples from non-MLD individuals, but there is no data using dried blood spots (DBS), the most common sample available for newborn screening laboratories. We used ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) to quantify sulfatides in DBS and dried urine spots from 14 MLD patients and 50 non-MLD individuals. Several sulfatide molecular species were increased in dried urine samples from all MLD samples compared to non-MLD samples. Sulfatides, especially low molecular species, were increased in DBS from MLD patients, but the sulfatide levels were relatively low. There was good separation in sulfatide levels between MLD and non-MLD samples when dried urine spots were used, but not with DBS, because DBS from non-MLD individuals have measurable levels of sulfatides. Sulfatide accumulation studies in urine, but not in DBS, emerges as the method of choice if newborn screening is to be proposed for MLD. Copyright © 2013 Elsevier B.V. All rights reserved.
Gómez-Ramos, M M; García-Valcárcel, A I; Tadeo, J L; Fernández-Alba, A R; Hernando, M D
2016-03-01
This study reports an analytical approach intended to be used for investigation of non-targeted environmental contaminants and to characterize the organic pollution pattern of bee wax comb samples. The method comprises a generic extraction followed by detection with gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF-MS), operated in electron impact ionization (EI) mode. The screening approach for the investigation of non-targeted contaminants consisted of initial peak detection by deconvolution and matching the first-stage mass spectra EI-MS(1) with a nominal mass spectral library. To gain further confidence in the structural characterization of the contaminants under investigation, the molecular formula of representative ions (molecular ion when present in the EI spectrum) and, for at least other two fragment ions, was provided for those with an accurate mass scoring (mass error < 5 ppm). This methodology was applied for screening environmental contaminants in 50 samples of bee wax comb. This approach has allowed the tentative identification of some GC-amenable contaminants belonging to different chemical groups, among them, phthalates and polycyclic aromatic hydrocarbons (PAHs), along with residues of veterinary treatments used in apiculture.
Jiang, Zhi-Bo; Ren, Wei-Cong; Shi, Yuan-Yuan; Li, Xing-Xing; Lei, Xuan; Fan, Jia-Hui; Zhang, Cong; Gu, Ren-Jie; Wang, Li-Fei; Xie, Yun-Ying; Hong, Bin
2018-05-18
Sansanmycins (SS), one of several known uridyl peptide antibiotics (UPAs) possessing a unique chemical scaffold, showed a good inhibitory effect on the highly refractory pathogens Pseudomonas aeruginosa and Mycobacterium tuberculosis, especially on the multi-drug resistant M. tuberculosis. This study employed high performance liquid chromatography-mass spectrometry detector (HPLC-MSD) ion trap and LTQ orbitrap tandem mass spectrometry (MS/MS) to explore sansanmycin analogues manually and automatically by re-analysis of the Streptomyces sp. SS fermentation broth. The structure-based manual screening method, based on analysis of the fragmentation pathway of known UPAs and on comparisons of the MS/MS spectra with that of sansanmycin A (SS-A), resulted in identifying twenty sansanmycin analogues, including twelve new structures (1-12). Furthermore, to deeply explore sansanmycin analogues, we utilized a GNPS based molecular networking workflow to re-analyze the HPLC-MS/MS data automatically. As a result, eight more new sansanmycins (13-20) were discovered. Compound 1 was discovered to lose two amino acids of residue 1 (AA 1 ) and (2S, 3S)-N 3 -methyl-2,3-diamino butyric acid (DABA) from the N-terminus, and compounds 6, 11 and 12 were found to contain a 2',3'-dehydrated 4',5'-enamine-3'-deoxyuridyl moiety, which have not been reported before. Interestingly, three trace components with novel 5,6-dihydro-5'-aminouridyl group (16-18) were detected for the first time in the sansanmycin-producing strain. Their structures were primarily determined by detail analysis of the data from MS/MS. Compounds 8 and 10 were further confirmed by nuclear magnetic resonance (NMR) data, which proved the efficiency and accuracy of the method of HPLC-MS/MS for exploration of novel UPAs. Comparing to manual screening, the networking method can provide systematic visualization results. Manual screening and networking method may complement with each other to facilitate the mining of novel UPAs. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, E-Hu; Qi, Lian-Wen; Li, Bin; Peng, Yong-Bo; Li, Ping; Li, Chang-Yin; Cao, Jun
2009-01-01
A fast high-performance liquid chromatography (HPLC) method coupled with diode-array detection (DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) has been developed for rapid separation and sensitive identification of major constituents in Radix Paeoniae Rubra (RPR). The total analysis time on a short column packed with 1.8-microm porous particles was about 20 min without a loss in resolution, six times faster than the performance of a conventional column analysis (115 min). The MS fragmentation behavior and structural characterization of major compounds in RPR were investigated here for the first time. The targets were rapidly screened from RPR matrix using a narrow mass window of 0.01 Da to restructure extracted ion chromatograms. Accurate mass measurements (less than 5 ppm error) for both the deprotonated molecule and characteristic fragment ions represent reliable identification criteria for these compounds in complex matrices with similar if not even better performance compared with tandem mass spectrometry. A total of 26 components were screened and identified in RPR including 11 monoterpene glycosides, 11 galloyl glucoses and 4 other phenolic compounds. From the point of time savings, resolving power, accurate mass measurement capability and full spectral sensitivity, the established fast HPLC/DAD/TOFMS method turns out to be a highly useful technique to identify constituents in complex herbal medicines. (c) 2008 John Wiley & Sons, Ltd.
Concentration of Nicotine and Glycols in 27 Electronic Cigarette Formulations.
Peace, Michelle R; Baird, Tyson R; Smith, Nathaniel; Wolf, Carl E; Poklis, Justin L; Poklis, Alphonse
2016-07-01
Personal battery-powered vaporizers or electronic cigarettes were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. Electronic cigarettes and their e-cigarette liquid formulations are virtually unregulated. These formulations are typically composed of propylene glycol and/or glycerin, flavoring components and an active drug, such as nicotine. Twenty-seven e-cigarette liquid formulations that contain nicotine between 6 and 22 mg/L were acquired within the USA and analyzed by various methods to determine their contents. They were screened by Direct Analysis in Real Time™ Mass Spectrometry (DART-MS). Nicotine was confirmed and quantitated by high-performance liquid chromatography-tandem mass spectrometry, and the glycol composition was confirmed and quantitated by gas chromatography-mass spectrometry. The DART-MS screening method was able to consistently identify the exact mass peaks resulting from the protonated molecular ion of nicotine, glycol and a number of flavor additives within 5 mmu. Nicotine concentrations were determined to range from 45 to 131% of the stated label concentration, with 18 of the 27 have >10% variance. Glycol composition was generally accurate to the product description, with only one exception where the propylene glycol to glycerin percentage ratio was stated as 50:50 and the determined concentration of propylene glycol to glycerin was 81:19 (% v/v). No unlabeled glycols were detected in these formulations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kylander, M E; Weiss, D J; Jeffries, T E; Kober, B; Dolgopolova, A; Garcia-Sanchez, R; Coles, B J
2007-01-16
An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were <1.1% and <0.3%, respectively, on both (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios. LA-Q-ICP-MS internal precisions on (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios were lower with values for the different sample sets <14.3% while external precisions were <2.9%. The level of external precision acquired in this study is high enough to distinguish between most modern Pb sources. LA-MC-ICP-MS measurements differed from thermal ionisation mass spectrometry (TIMS) values by 1% or less while the accuracy obtained using LA-Q-ICP-MS compared to solution MC-ICP-MS was 3.1% or better using a run bracketing (RB) mass bias correction method. Sample heterogeneity and detector switching when measuring (208)Pb by Q-ICP-MS are identified as sources of reduced analytical performance.
A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish.
Guidi, Letícia Rocha; Santos, Flávio Alves; Ribeiro, Ana Cláudia S R; Fernandes, Christian; Silva, Luiza H M; Gloria, Maria Beatriz A
2017-01-15
The objective of this study was to develop and validate a fast, sensitive and simple liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the screening of six classes of antibiotics (aminoglycosides, beta-lactams, macrolides, quinolones, sulfonamides and tetracyclines) in fish. Samples were extracted with trichloroacetic acid. LC separation was achieved on a Zorbax Eclipse XDB C18 column and gradient elution using 0.1% heptafluorobutyric acid in water and acetonitrile as mobile phase. Analysis was carried out in multiple reaction monitoring mode via electrospray interface operated in the positive ionization mode, with sulfaphenazole as internal standard. The method was suitable for routine screening purposes of 40 antibiotics, according to EC Guidelines for the Validation of Screening Methods for Residues of Veterinary Medicines, taking into consideration threshold value, cut-off factor, detection capability, limit of detection, sensitivity and specificity. Real fish samples (n=193) from aquaculture were analyzed and 15% were positive for enrofloxacin (quinolone), one of them at a higher concentration than the level of interest (50µgkg -1 ), suggesting possible contamination or illegal use of that antibiotic. Copyright © 2016 Elsevier B.V. All rights reserved.
Screening of nerve agent degradation products by MALDI-TOFMS.
Shu, You-Ren; Su, An-Kai; Liu, Ju-Tsung; Lin, Cheng-Huang
2006-07-01
A novel method for the rapid screening of degradation products derived from nerve agents by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is described. Five standard products were selected as model compounds, including isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PMPA), ethyl methylphosphonic acid (EMPA), isobutyl methylphosphonic acid (i-BuMPA), and cyclohexyl methylphosphonic acid (CHMPA), which are degradation products of Sarin (GB), Soman (GD), VX, Russian VX (RVX), and GF, respectively. For comparison, CHCA (alpha-cyano-4-hydroxycinnamic acid) and DCCA (7-(diethylamino)coumarin-3-carboxylic acid) were used as the MALDI-matrix when the third harmonic generation (355 nm) of a Nd:YAG laser and a hydrogen Raman laser (multifrequency laser) were used, respectively. The method permitted the five nerve agent degradation products to be screened rapidly and successfully, suggesting that it has the potential for use as a routine monitoring tool.
Auray-Blais, Christiane; Maranda, Bruno; Lavoie, Pamela
2014-09-25
Creatine synthesis and transport disorders, Triple H syndrome and ornithine transcarbamylase deficiency are treatable inborn errors of metabolism. Early screening of patients was found to be beneficial. Mass spectrometry analysis of specific urinary biomarkers might lead to early detection and treatment in the neonatal period. We developed a high-throughput mass spectrometry methodology applicable to newborn screening using dried urine on filter paper for these aforementioned diseases. A high-throughput methodology was devised for the simultaneous analysis of creatine, guanidineacetic acid, orotic acid, uracil, creatinine and respective internal standards, using both positive and negative electrospray ionization modes, depending on the compound. The precision and accuracy varied by <15%. Stability during storage at different temperatures was confirmed for three weeks. The limits of detection and quantification for each biomarker varied from 0.3 to 6.3 μmol/l and from 1.0 to 20.9 μmol/l, respectively. Analyses of urine specimens from affected patients revealed abnormal results. Targeted biomarkers in urine were detected in the first weeks of life. This rapid, simple and robust liquid chromatography/tandem mass spectrometry methodology is an efficient tool applicable to urine screening for inherited disorders by biochemical laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.
Duvivier, Wilco F; van Beek, Teris A; Pennings, Ed J M; Nielen, Michel W F
2014-04-15
Forensic hair analysis methods are laborious, time-consuming and provide only a rough retrospective estimate of the time of drug intake. Recently, hair imaging methods using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported, but these methods require the application of MALDI matrix and are performed under vacuum. Direct analysis of entire locks of hair without any sample pretreatment and with improved spatial resolution would thus address a need. Hair samples were attached to stainless steel mesh screens and scanned in the X-direction using direct analysis in real time (DART) ambient ionization orbitrap MS. The DART gas temperature and the accuracy of the probed hair zone were optimized using Δ-9-tetrahydrocannabinol (THC) as a model compound. Since external contamination is a major issue in forensic hair analysis, sub-samples were measured before and after dichloromethane decontamination. The relative intensity of the THC signal in spiked blank hair versus that of quinine as the internal standard showed good reproducibility (26% RSD) and linearity of the method (R(2) = 0.991). With the DART hair scan THC could be detected in hair samples from different chronic cannabis users. The presence of THC was confirmed by quantitative liquid chromatography/tandem mass spectrometry. Zones with different THC content could be clearly distinguished, indicating that the method might be used for retrospective timeline assessments. Detection of THC in decontaminated drug user hair showed that the DART hair scan not only probes THC on the surface of hair, but penetrates deeply enough to measure incorporated THC. A new approach in forensic hair analysis has been developed by probing complete locks of hair using DART-MS. Longitudinal scanning enables detection of incorporated compounds and can be used as pre-screening for THC without sample preparation. The method could also be adjusted for the analysis of other drugs of abuse. Copyright © 2014 John Wiley & Sons, Ltd.
Dioxins in beef samples from Mexico using a low resolution GC/MS screening method.
Naccha, Lidia; Alanis, Guadalupe; Torres, Anabel; Abad, Esteban; Ábalos, Manuela; Rivera, Josep; Heyer, Lorenzo; Morales, Alberto; Waksman, Noemí
2010-01-01
Dioxins in beef were quantified by high resolution gas chromatography coupled to low-resolution mass spectrometry (GC/LRMS). The analyses were performed according to the minimum requirements described in the USEPA 1613 method with some minor modifications. Levels found in the samples were in the range 1.02-8.04 pg WHO-TEQ PCDDs/PCDFs g(-1) fat. For comparison purposes, the maximum level allowed by the European Union is 3 pg WHO-TEQ PCDDs/PCDFs g(-1) fat, and some of these samples surpassed the above-mentioned limit and can be considered as contaminated food. The results confirm that a preliminary screening of dioxins in beef can be performed by GC/LRMS. As far as we know, this is the first report of dioxins in beef in Mexico. After the appropriated tests, the applied methodology could be considered as an alternative screening method for the analysis of PCDD/Fs in other food products.
Chen, Shuo; Chang, Quanying; Yin, Kai; He, Qunying; Deng, Yongxiu; Chen, Bo; Liu, Chengbin; Wang, Ying; Wang, Liping
2017-06-14
In this study, a paper spray ionization mass spectrometric (PS-MS) method was developed for the rapid in situ screening and simultaneous quantitative analysis of bisphenol A and its analogues, i.e., bisphenol S, bisphenol F, and bisphenol AF, in food packaging products. At the optimal PS-MS conditions, the calibration curves of bisphenols in the range of 1-100 μg/mL were linear. The correlation coefficients were higher than 0.998, and the LODs of the target compounds were 0.1-0.3 μg/mL. After a simple treatment by dichloromethane on the surface, the samples were analyzed by PS-MS in situ for rapid screening without a traditional sample pretreatment procedure, such as powdering, extraction, and enrichment steps. The analytical time of the PS-MS method was less than 1 min. In comparison with conventional HPLC-MS/MS, it was demonstrated that PS-MS was a more effective high-throughput screening and quantitative analysis method.
Pathology consultation on urine compliance testing and drug abuse screening.
Ward, Michael B; Hackenmueller, Sarah A; Strathmann, Frederick G
2014-11-01
Compliance testing in pain management requires a distinct approach compared with classic clinical toxicology testing. Differences in the patient populations and clinical expectations require modifications to established reporting cutoffs, assay performance expectations, and critical review of how best to apply the available testing methods. Although other approaches to testing are emerging, immunoassay screening followed by mass spectrometry confirmation remains the most common testing workflow for pain management compliance and drug abuse testing. A case-based approach was used to illustrate the complexities inherent to and uniqueness of pain management compliance testing for both clinicians and laboratories. A basic understanding of the inherent strengths and weaknesses of immunoassays and mass spectrometry provides the clinician a better understanding of how best to approach pain management compliance testing. Pain management compliance testing is a textbook example of an emerging field requiring open communication between physician and performing laboratory to fully optimize patient care. Copyright© by the American Society for Clinical Pathology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargesheimer, E.E.
Methane chemical ionization (CI)-selected ion monitoring (SIM) mass spectrometry was used to identify and conclusively distinguish 19 organochlorine pesticides from polychlorinated biphenyls (PCBs) at parts-per-trillion to parts-per-billion levels in environmental water sample extracts with minimal sample cleanup. Two CI-SIM screens were developed. One set of ions scanned specifically for the presence of 4 classes of pesticides; diphenylmethane derivatives, bridged polycyclic chlorinated benzenes, and acetanilide pesticides. The second set of ions responded exclusively to PCBs with biphenyl moieties containing from 1 to 8 chlorine atoms. Eight commercial Aroclor mixtures were analyzed and distinguished from the pesticides groups. The detection limit formore » pesticides and PCBs by CI-SIM screening was 0.005 and 0.1 ppB, respectively. CI-SIM can be used as an alternative method for the analysis of biological or environmental samples containing interferences that complicate the detection of PCBs and chlorinated pesticides. 8 references, 6 figures, 6 tables.« less
Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids.
Fleischer, Heidi; Thurow, Kerstin
2013-03-01
A rapid determination of the enantiomeric excess of proteinogenic amino acids is of great importance in various fields of chemical and biologic research and industries. Owing to their different biologic effects, enantiomers are interesting research subjects in drug development for the design of new and more efficient pharmaceuticals. Usually, the enantiomeric composition of amino acids is determined by conventional analytical methods such as liquid or gas chromatography or capillary electrophoresis. These analytical techniques do not fulfill the requirements of high-throughput screening due to their relative long analysis times. The method presented allows a fast analysis of chiral amino acids without previous time consuming chromatographic separation. The analytical measurements base on parallel kinetic resolution with pseudoenantiomeric mass tagged auxiliaries and were carried out by mass spectrometry with electrospray ionization. All 19 chiral proteinogenic amino acids were tested and Pro, Ser, Trp, His, and Glu were selected as model substrates for verification measurements. The enantiomeric excesses of amino acids with non-polar and aliphatic side chains as well as Trp and Phe (aromatic side chains) were determined with maximum deviations of the expected value less than or equal to 10ee%. Ser, Cys, His, Glu, and Asp were determined with deviations lower or equal to 14ee% and the enantiomeric excess of Tyr were calculated with 17ee% deviation. The total screening process is fully automated from the sample pretreatment to the data processing. The method presented enables fast measurement times about 1.38 min per sample and is applicable in the scope of high-throughput screenings.
Lee, Yi-Hsuan; Lin, Ying-Chi; Feng, Chia-Hsien; Tseng, Wei-Lung; Lu, Chi-Yu
2017-01-01
4-Hydroxybenzoate is a phenolic derivative of alkyl benzoates and is a widely used preservative in cosmetic and pharmaceutical products. The presence of 4-hydroxybenzoates in the human body may result from the use of pharmaceutical and personal care products. These compounds are also known to exhibit estrogenic and genotoxic activities. The potential adverse effects of these compounds include endocrine disruption, oxidative and DNA damage, contact dermatitis, and allergic reactions. This study used two mass spectrometry methods that are applicable when using a derivatization-enhanced detection strategy (DEDS) to screen 4-hydroxybenzoates and their metabolites. Chemical derivatization was used to enhance the detection of these compounds. To evaluate the metabolic process triggered by UV radiation, human keratinocyte HaCaT cells treated with these 4-hydroxybenzoates were further exposed to UVA, UVB and UVC radiation. Metabolites transformed by human keratinocytes in the chemical derivatization procedure were identified by a nano ultra-performance liquid chromatographic system (nanoUPLC) coupled with LTQ Orbitrap. The experiments confirmed the feasibility of this method for identifying 4-hydroxybenzoate metabolites and for high-throughput screening of 4-hydroxybenzoate in commercial products (50 samples) by the DEDS. PMID:28057923
Kim, Borahm; Lee, Mi Na; Park, Hyung Doo; Kim, Jong Won; Chang, Yun Sil; Park, Won Soon; Lee, Soo Youn
2015-11-01
Conventional screening for congenital adrenal hyperplasia (CAH) using immunoassays generates a large number of false-positive results. A more specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been introduced to minimize unnecessary follow-ups. However, because of limited data on its use in the Korean population, LC-MS/MS has not yet been incorporated into newborn screening programs in this region. The present study aims to develop and validate an LC-MS/MS method for the simultaneous determination of seven steroids in dried blood spots (DBS) for CAH screening, and to define age-specific reference intervals in the Korean population. We developed and validated an LC-MS/MS method to determine the reference intervals of cortisol, 17-hydroxyprogesterone, 11-deoxycortisol, 21-deoxycortisol, androstenedione, corticosterone, and 11-deoxycorticosterone simultaneously in 453 DBS samples. The samples were from Korean subjects stratified by age group (78 full-term neonates, 76 premature neonates, 89 children, and 100 adults). The accuracy, precision, matrix effects, and extraction recovery were satisfactory for all the steroids at three concentrations; values of intra- and inter-day precision coefficients of variance, bias, and recovery were 0.7-7.7%, -1.5-9.8%, and 49.3-97.5%, respectively. The linearity range was 1-100 ng/mL for cortisol and 0.5-50 ng/mL for other steroids (R²>0.99). The reference intervals were in agreement with the previous reports. This LC-MS/MS method and the reference intervals validated in the Korean population can be successfully applied to analyze seven steroids in DBS for the diagnosis of CAH.
Janzen, Nils; Sander, Stefanie; Terhardt, Michael; Steuerwald, Ulrike; Peter, Michael; Das, Anibh M; Sander, Johannes
2011-12-11
Newborn screening for congenital adrenal hyperplasia (CAH) is usually done by quantifying 17α-hydroxyprogesterone using immunoassay. However, this test produces high rates of false positive results caused by cross reacting steroids. Therefore we have developed a selective and specific method with a short run time (1.25 min) for quantification of 17α-hydroxyprogesterone, 21-deoxycortisol, 11-deoxycortisol, 11-deoxycorticosterone and cortisol from dried blood spots. The extraction procedure is very simple and steroid separation is ensured on a BEH C18 column and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Analysis was done in positive ionization mode (ESI+) and recorded in multiple reaction monitoring mode (MRM). The method gave linear results for all steroids over a range of 5-200 (cortisol: 12.5-500)nmol/L with coefficients of regression >0.992. Absolute recovery was >64.1%. Across the analytical range the inter-assay coefficient of variation (CV) was <3%. Newborn blood samples of patients with confirmed 21-CAH and 11-CAH could clearly be distinguished from samples of unaffected newborns falsely positive on immunoassay. The method is not influenced by cross reactions as found on immunoassay. Analysis of dried blood spots shows that this method is sensitive and fast enough to allow rapid analysis and can therefore improve the newborn screening program. Copyright © 2011 Elsevier Inc. All rights reserved.
Bern, A.M.; Lowers, H.A.; Meeker, G.P.; Rosati, J.A.
2009-01-01
The collapse of the World Trade Center Towers on September 11, 2001, sent dust and debris across much of Manhattan and in the surrounding areas. Indoor and outdoor dust samples were collected and characterized by U.S. Geological Survey (USGS) scientists using scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS). From this characterization, the U.S. Environmental Protection Agency and USGS developed a particulate screening method to determine the presence of residual World Trade Center dust in the indoor environment using slag wool as a primary "signature". The method describes a procedure that includes splitting, ashing, and sieving of collected dust. From one split, a 10 mg/mL dust/ isopropanol suspension was prepared and 10-30 ??L aliquots of the suspension placed on an SEM substrate. Analyses were performed using SEM/EDS manual point counting for slag wool fibers. Poisson regression was used to identify some of the sources of uncertainty, which are directly related to the small number of fibers present on each sample stub. Preliminary results indicate that the procedure is promising for screening urban background dust for the presence of WTC dust. Consistent sample preparation of reference materials and samples must be performed by each laboratory wishing to use this method to obtain meaningful and accurate results. ?? 2009 American Chemical Society.
Lee, Ji Hyun; Park, Han Na; Choi, Ji Yeon; Kim, Nam Sook; Park, Hyung-Joon; Park, Seong Soo; Baek, Sun Young
2017-12-01
Adulterated products are continuously detected in society and cause problems. In this study, we developed and validated a method for determining synthetic sedative-hypnotics and sleep inducers, including barbital, benzodiazepam, zolpidem, and first-generation antihistamines, in adulterated products using Quadrupole-Orbitrap mass spectrometry and ultrahigh performance liquid chromatography with tandem mass spectrometry. In Quadrupole-Orbitrap mass spectrometry analysis, target compounds were confirmed using a combination of retention time, mass tolerance, mass accuracy, and fragment ions. For quantification, several validation parameters were employed using ultrahigh performance liquid chromatography with tandem mass spectrometry. The limit of detection and limit of quantitation was 0.05-53 and 0.17-177 ng/mL, respectively. The correlation coefficient for linearity was more than 0.995. The intra- and interassay accuracies were 86-110 and 84-111%, respectively. Their precision values were evaluated as within 4.0 (intraday) and 10.7% (interday). Mean recoveries of target compounds in adulterated products ranged from 85 to 116%. The relative standard deviation of stability was less than 10.7% at 4°C for 48 h. The 144 adulterated products obtained over 3 years (2014-2016) from online and in-person vendors were tested using established methods. After rapidly screening with Quadrupole-Orbitrap mass spectrometry, the detected samples were quantified using ultrahigh performance liquid chromatography with tandem mass spectrometry. Two of them were adulterated with phenobarbital. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shimada, Tsutomu; Kelly, Joan; LaMarr, William A; van Vlies, Naomi; Yasuda, Eriko; Mason, Robert W.; Mackenzie, William; Kubaski, Francyne; Giugliani, Roberto; Chinen, Yasutsugu; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E.; Fukao, Toshiyuki; Orii, Tadao; Tomatsu, Shunji
2014-01-01
Mucopolysaccharidoses (MPS) are caused by deficiency of one of a group of specific lysosomal enzymes, resulting in excessive accumulation of glycosaminoglycans (GAGs). We previously developed GAG assay methods using liquid chromatography tandem mass spectrometry (LC-MS/MS); however, it takes 4–5 min per sample for analysis. For the large numbers of samples in a screening program, a more rapid process is desirable. The automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) integrates a solid phase extraction robot to concentrate and desalt samples prior to direction into the MS/MS without chromatographic separation; thereby allowing each sample to be processed within ten seconds (enabling screening of more than one million samples per year). The aim of this study was to develop a higher throughput system to assay heparan sulfate (HS) using HT-MS/MS, and to compare its reproducibility, sensitivity and specificity with conventional LC-MS/MS. HS levels were measured in blood (plasma and serum) from control subjects and patients with MPS II, III, or IV and in dried blood spots (DBS) from newborn controls and patients with MPS I, II, or III. Results obtained from HT-MS/MS showed 1) that there was a strong correlation of levels of disaccharides derived from HS in blood, between those calculated using conventional LC-MS/MS and HT-MS/MS, 2) that levels of HS in blood were significantly elevated in patients with MPS II and III, but not in MPS IVA, 3) that the level of HS in patients with a severe form of MPS II was higher than that in an attenuated form, 4) that reduction of blood HS level was observed in MPS II patients treated with enzyme replacement therapy or hematopoietic stem cell transplantation, and 5) that levels of HS in newborn DBS were elevated in patients with MPS I, II or III, compared to control newborns. In conclusion, HT-MS/MS provides much higher throughput than LC-MS/MS-based methods with similar sensitivity and specificity in an HS assay, indicating that HT-MS/MS may be feasible for diagnosis, monitoring, and newborn screening of MPS. PMID:25092413
Hughes, I
1998-09-24
The direct analysis of selected components from combinatorial libraries by sensitive methods such as mass spectrometry is potentially more efficient than deconvolution and tagging strategies since additional steps of resynthesis or introduction of molecular tags are avoided. A substituent selection procedure is described that eliminates the mass degeneracy commonly observed in libraries prepared by "split-and-mix" methods, without recourse to high-resolution mass measurements. A set of simple rules guides the choice of substituents such that all components of the library have unique nominal masses. Additional rules extend the scope by ensuring that characteristic isotopic mass patterns distinguish isobaric components. The method is applicable to libraries having from two to four varying substituent groups and can encode from a few hundred to several thousand components. No restrictions are imposed on the manner in which the "self-coded" library is synthesized or screened.
Manickum, Thavrin; John, Wilson
2015-07-01
The availability of national test centers to offer a routine service for analysis and quantitation of some selected steroid hormones [natural estrogens (17-β-estradiol, E2; estrone, E1; estriol, E3), synthetic estrogen (17-α-ethinylestradiol, EE2), androgen (testosterone), and progestogen (progesterone)] in wastewater matrix was investigated; corresponding internationally used chemical- and immuno-analytical test methods were reviewed. The enzyme-linked immunosorbent assay (ELISA) (immuno-analytical technique) was also assessed for its suitability as a routine test method to quantitate the levels of these hormones at a sewage/wastewater treatment plant (WTP) (Darvill, Pietermaritzburg, South Africa), over a 2-year period. The method performance and other relevant characteristics of the immuno-analytical ELISA method were compared to the conventional chemical-analytical methodology, like gas/liquid chromatography-mass spectrometry (GC/LC-MS), and GC-LC/tandem mass spectrometry (MSMS), for quantitation of the steroid hormones in wastewater and environmental waters. The national immuno-analytical ELISA technique was found to be sensitive (LOQ 5 ng/L, LOD 0.2-5 ng/L), accurate (mean recovery 96%), precise (RSD 7-10%), and cost-effective for screening and quantitation of these steroid hormones in wastewater and environmental water matrix. A survey of the most current international literature indicates a fairly equal use of the LC-MS/MS, GC-MS/MS (chemical-analytical), and ELISA (immuno-analytical) test methods for screening and quantitation of the target steroid hormones in both water and wastewater matrix. Internationally, the observed sensitivity, based on LOQ (ng/L), for the steroid estrogens E1, E2, EE2, is, in decreasing order: LC-MSMS (0.08-9.54) > GC-MS (1) > ELISA (5) (chemical-analytical > immuno-analytical). At the national level, the routine, unoptimized chemical-analytical LC-MSMS method was found to lack the required sensitivity for meeting environmental requirements for steroid hormone quantitation. Further optimization of the sensitivity of the chemical-analytical LC-tandem mass spectrometry methods, especially for wastewater screening, in South Africa is required. Risk assessment studies showed that it was not practical to propose standards or allowable limits for the steroid estrogens E1, E2, EE2, and E3; the use of predicted-no-effect concentration values of the steroid estrogens appears to be appropriate for use in their risk assessment in relation to aquatic organisms. For raw water sources, drinking water, raw and treated wastewater, the use of bioassays, with trigger values, is a useful screening tool option to decide whether further examination of specific endocrine activity may be warranted, or whether concentrations of such activity are of low priority, with respect to health concerns in the human population. The achievement of improved quantitation limits for immuno-analytical methods, like ELISA, used for compound quantitation, and standardization of the method for measuring E2 equivalents (EEQs) used for biological activity (endocrine: e.g., estrogenic) are some areas for future EDC research.
Wu, Wenying; Chen, Yu; Wang, Binjie; Sun, Xiaoyang; Guo, Ping; Chen, Xiaohui
2017-08-01
Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography-mass spectrometry in combination with retention indices and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography-mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Hall, Adam B.; Fornace, Albert J.; Vouros, Paul
2016-10-01
Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure.
Munaretto, Juliana S; May, Marília M; Saibt, Nathália; Zanella, Renato
2016-07-22
This study proposed a strategy to identify and quantify 182 organic contaminants from different chemical classes, as for instance pesticides, veterinary drug and personal care products, in fish fillet using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF/MS). For this purpose, two different scan methods (full scan and all ions MS/MS) were evaluated to assess the best option for screening analysis in spiked fish fillet samples. In general, full scan acquisition was found to be more reliable (84%) in the automatic identification and quantification when compared to all ions MS/MS with 72% of the compounds detected. Additionally, a qualitative automatic search showed a mass accuracy error below 5ppm for 77% of the compounds in full scan mode compared to only 52% in all ions MS/MS scan. However, all ions MS/MS provides fragmentation information of the target compounds. Undoubtedly, structural information of a wide number of compounds can be obtained using high resolution mass spectrometry (HRMS), but it is necessary thoroughly assess it, in order to choose the best scan mode. Copyright © 2016 Elsevier B.V. All rights reserved.
Oberacher, Herbert; Schubert, Birthe; Libiseller, Kathrin; Schweissgut, Anna
2013-04-03
Systematic toxicological analysis (STA) is aimed at detecting and identifying all substances of toxicological relevance (i.e. drugs, drugs of abuse, poisons and/or their metabolites) in biological material. Particularly, gas chromatography-mass spectrometry (GC/MS) represents a competent and commonly applied screening and confirmation tool. Herein, we present an untargeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) assay aimed to complement existing GC/MS screening for the detection and identification of drugs in blood, plasma and urine samples. Solid-phase extraction was accomplished on mixed-mode cartridges. LC was based on gradient elution in a miniaturized C18 column. High resolution electrospray ionization-MS/MS in positive ion mode with data-dependent acquisition control was used to generate tandem mass spectral information that enabled compound identification via automated library search in the "Wiley Registry of Tandem Mass Spectral Data, MSforID". Fitness of the developed LC/MS/MS method for application in STA in terms of selectivity, detection capability and reliability of identification (sensitivity/specificity) was demonstrated with blank samples, certified reference materials, proficiency test samples, and authentic casework samples. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Edwards, Rebecca L.; Griffiths, Paul; Bunch, Josephine; Cooper, Helen J.
2012-11-01
We have previously shown that liquid microjunction surface sampling of dried blood spots coupled with high resolution top-down mass spectrometry may be used for screening of common hemoglobin variants HbS, HbC, and HbD. In order to test the robustness of the approach, we have applied the approach to unknown hemoglobin variants. Six neonatal dried blood spot samples that had been identified as variants, but which could not be diagnosed by current screening methods, were analyzed by direct surface sampling top-down mass spectrometry. Both collision-induced dissociation and electron transfer dissociation mass spectrometry were employed. Four of the samples were identified as β-chain variants: two were heterozygous Hb D-Iran, one was heterozygous Hb Headington, and one was heterozygous Hb J-Baltimore. The fifth sample was identified as the α-chain variant heterozygous Hb Phnom Penh. Analysis of the sixth sample suggested that it did not in fact contain a variant. Adoption of the approach in the clinic would require speed in both data collection and interpretation. To address that issue, we have compared manual data analysis with freely available data analysis software (ProsightPTM). The results demonstrate the power of top-down proteomics for hemoglobin variant analysis in newborn samples.
Courant, Frédérique; Pinel, Gaud; Bichon, Emmanuelle; Monteau, Fabrice; Antignac, Jean-Philippe; Le Bizec, Bruno
2009-08-01
Beta-agonist compounds can be misused in food-producing animals for growth promoting purposes. Efficient methods based on mass spectrometry detection have been developed to ensure the control of such veterinary drug residues. Nevertheless, the use of "cocktails" composed of mixtures of low amounts of several substances as well as the synthesis of new compounds of unknown structure prevent efficient prevention. To circumvent those problems, new analytical tools able to detect such abuse are today mandatory. In this context, metabolomics may represent a new emerging strategy for investigating the global physiological effects associated to a family of substances and therefore, to suspect the administration of beta-agonists (either "cocktails" or unknown compounds). As a first demonstration of feasibility, an untargeted metabolomic approach based on liquid chromatography coupled to high resolution mass spectrometry measurements was developed and made it possible to highlight metabolic modifications in urine consecutively to a clenbuterol administration. By the means of chemometrics, those metabolic differences were used to build predictive models able to suspect clenbuterol administration in calves. This new approach may be considered of valuable interest to overcome current limitations in the control of growth promoters' abuse, with promising perspectives in terms of screening.
Rapid screening of pharmaceutical drugs using thermal desorption - SALDI mass spectrometry
NASA Astrophysics Data System (ADS)
Grechnikov, A. A.; Kubasov, A. E.; Georgieva, V. B.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Alimpiev, S. S.
2012-12-01
A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.
Mardal, Marie; Kinyua, Juliet; Ramin, Pedram; Miserez, Bram; Van Nuijs, Alexander L N; Covaci, Adrian; Meyer, Markus R
2017-01-01
Monitoring population drug use through wastewater-based epidemiology (WBE) is a useful method to quantitatively follow trends and estimate total drug consumption in communities. Concentrations of drug biomarkers might be low in wastewater due to dilution; and therefore analysis of pooled urine (PU) is useful to detect consumed drugs and identify targets of illicit drugs use. The aims of the study were (1) to screen PU and urinated soil (US) samples collected at festivals for illicit drug excretion products using hyphenated techniques; (2) to develop and validate a hydrophilic interaction liquid chromatography - mass spectrometry / mass spectrometry (HILIC-MS/MS) method of quantifying urinary targets of identified drugs in wastewater; and (3) to conduct a 24 h stability study, using PU and US to better reflect the chemical environment for targets in wastewater. Cocaine (COC) and ecstasy-like compounds were the most frequently detected illicit drugs; an analytical method was developed to quantify their excretion products. Hydroxymethoxymethamphetamine (HMMA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), HMMA sulfate (HMMA-S), benzoylecgonine (BE), and cocaethylene (CE) had 85-102% of initial concentration after 8 h of incubation, whereas COC and ecgonine methyl ester (EME) had 74 and 67% after 8 h, respectively. HMMA showed a net increase during 24 h of incubation (107% ± 27, n = 8), possibly due to the cleavage of HMMA conjugates, and biotransformation of MDMA. The results suggest HMMA as analytical target for MDMA consumption in WBE, due to its stability in wastewater and its excretion as the main phase I metabolite of MDMA. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ristimaa, Johanna; Gergov, Merja; Pelander, Anna; Halmesmäki, Erja; Ojanperä, Ilkka
2010-09-01
Analysis of the major drugs of abuse in meconium has been established in clinical practice for detecting fetal exposure to illicit drugs, particularly for the ready availability of the sample and ease of collection from diapers, compared with neonatal hair and urine. Very little is known about the occurrence and detection possibilities of therapeutic and licit drugs in meconium. Meconium specimens (n = 209) were collected in delivery hospitals, from infants of mothers who were suspected to be drug abusers. A targeted analysis method by liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was developed for abused drugs: amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, morphine, codeine, 6-monoacetylmorphine, oxycodone, methadone, tramadol, buprenorphine, and norbuprenorphine. A separate LC-MS/MS method was developed for 11-nor-∆(9)-tetrahydrocannabinol-9-carboxylic acid. A screening method based on LC coupled to time-of-flight MS was applied to a broad spectrum of drugs. As a result, a total of 77 different compounds were found. The main drug findings in meconium were as follows: local anesthetics 82.5% (n = 172), nicotine or its metabolites 61.5% (n = 129), opioids 48.5% (n = 101), stimulants 21.0% (n = 44), hypnotics and sedatives 19.0% (n = 40), antidepressants 18.0% (n = 38), antipsychotics 5.5% (n = 11), and cannabis 3.0% (n = 5). By revealing drugs and metabolites beyond the ordinary scope, the present procedure helps the pediatrician in cases where maternal denial is strong but the infant seems to suffer from typical drug-withdrawal symptoms. Intrapartum drug administration cannot be differentiated from gestational drug use by meconium analysis, which affects the interpretation of oxycodone, tramadol, fentanyl, pethidine, and ephedrine findings.
Gu, Dan; Turesky, Robert J.; Tao, Yeqing; Langouët, Sophie A.; Nauwelaërs, Gwendoline C.; Yuan, Jian-Min; Yee, Douglas; Yu, Mimi C.
2012-01-01
Some epidemiological investigations have revealed that frequent consumption of well-done cooked meats and tobacco smoking are risk factors for breast cancer in women. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic aromatic amine that is formed in well-done cooked meat, and 4-aminobiphenyl (4-ABP) is an aromatic amine that arises in tobacco smoke and occurs as a contaminant in the atmosphere. Both compounds are rodent mammary carcinogens, and putative DNA adducts of PhIP and 4-ABP have been frequently detected, by immunohistochemistry (IHC) or 32P-post-labeling methods, in mammary tissue of USA women. Because of these findings, PhIP and 4-ABP have been implicated as causal agents of human breast cancer. However, the biomarker data are controversial: both IHC and 32P-post-labeling are non-selective screening methods and fail to provide confirmatory spectral data. Consequently, the identities of the lesions are equivocal. We employed a specific and sensitive liquid chromatography/mass spectrometry (MS) method, to screen tumor-adjacent normal mammary tissue for DNA adducts of PhIP and 4-ABP. Only 1 of 70 biopsy samples obtained from Minneapolis, Minnesota breast cancer patients contained a PhIP-DNA adduct. The level was three adducts per 109 nucleotides, a level that is 100-fold lower than the mean level of PhIP adducts reported by IHC or 32P-post-labeling methods. The occurrence of 4-ABP-DNA adducts was nil in those same breast tissues. Our findings, derived from a specific mass spectrometry method, signify that PhIP and 4-ABP are not major DNA-damaging agents in mammary tissue of USA women and raise questions about the roles of these chemicals in breast cancer. PMID:22072616
Li, Tingting; Cao, Jingjing; Li, Zhen; Wang, Xian; He, Pingli
2016-02-01
Broad screening and identification of β-agonists in feed, serum, urine, muscle and liver samples was achieved in a quick and highly sensitive manner using ultra high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) combined with a spectra library search. Solid-phase extraction technology was employed for sample purification and enrichment. After extraction and purification, the samples were analyzed using a Q-Orbitrap high-resolution mass spectrometer under full-scan and data-dependent MS/MS mode. The acquired mass spectra were compared with an in-house library (compound library and MS/MS mass spectral library) built with TraceFinder Software which contained the M/Z of the precursor ion, chemical formula, retention time, character fragment ions and the entire MS/MS spectra of 32 β-agonist standards. Screening was achieved by comparing 5 key mass spectral results and positive matches were marked. Using the developed method, the identification results from 10 spiked samples and 238 actual samples indicated that only 2% of acquired mass spectra produced false identities. The method validation results showed that the limit of detection ranged from 0.021-3.854 μg kg(-1)and 0.015-1.198 ng mL(-1) for solid and liquid samples, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vonaparti, A; Lyris, E; Angelis, Y S; Panderi, I; Koupparis, M; Tsantili-Kakoulidou, A; Peters, R J B; Nielen, M W F; Georgakopoulos, C
2010-06-15
Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, beta(2)-agonists, beta-blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single-step liquid-liquid extraction of hydrolyzed urine and the use of a rapid-resolution liquid chromatography/high-resolution time-of-flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4-methyl-2-hexanamine, which resulted in re-reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives. Copyright (c) 2010 John Wiley & Sons, Ltd.
Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping
2016-03-01
An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Dominicis, Emiliano; Commissati, Italo; Suman, Michele
2012-09-01
In the food industry, it is frequently necessary to check the quality of an ingredient to decide whether to use it in production and/or to have an idea of the final possible contamination of the finished product. The current need to quickly separate and identify relevant contaminants within different classes, often with legal residue limits on the order of 1-100 µg kg(-1), has led to the need for more effective analytical methods. With thousands of organic compounds present in complex food matrices, the development of new analytical solutions leaned towards simplified extraction/clean-up procedures and chromatography coupled with mass spectrometry. Efforts must also be made regarding the instrumental phase to overcome sensitivity/selectivity limits and interferences. For this purpose, high-resolution full scan analysis in mass spectrometry is an interesting alternative to the traditional tandem mass approach. A fast method for extracting and purifying bakery matrices was therefore developed and combined with the exploitation of ultra-high-pressure liquid chromatography (UHPLC) coupled to a Orbitrap Exactive™ high-resolution mass spectrometer (HRMS). Extracts of blank, naturally contaminated and fortified minicakes, prepared through a combined use of industrial and pilot plant production lines, were analyzed at different concentration levels (1-100 µg kg(-1)) of various contaminants: a limit of detection at 10 µg kg(-1) was possible for most of the analytes within all the categories analyzed, including pesticides, aflatoxins, trichothecene toxins and veterinary drugs. The application of accurate mass targeted screening described in this article demonstrates that current single-stage HRMS analytical instrumentation is well equipped to meet the challenges posed by chemical contaminants in the screening of both bakery raw materials and finished products. Copyright © 2012 John Wiley & Sons, Ltd.
Sanchis, Yovana; Coscollà, Clara; Roca, Marta; Yusà, Vicent
2015-06-01
An analytical strategy including both the quantitative target analysis of 8 regulated primary aromatic amines (PAAs), as well as a comprehensive post-run target screening of 77 migrating substances, was developed for nylon utensils, using liquid chromatography-orbitrap-high resolution mass spectrometry (LC-HRMS) operating in full scan mode. The accurate mass data were acquired with a resolving power of 50,000 FWHM (scan speed, 2 Hz), and by alternating two acquisition events, ESI+ with and without fragmentation. The target method was validated after statistical optimization of the main ionization and fragmentation parameters. The quantitative method presented appropriate performance to be used in official monitoring with recoveries ranging from 78% to 112%, precision in terms of Relative Standard Deviation (RSD) was less than 15%, and the limits of quantification were between 2 and 2.5 µg kg(-1). For post-target screening, a customized theoretical database was built for food contact material migrants, including bisphenols, phthalates, and other amines. For identification purposes, accurate exact mass (<5 ppm) and some diagnostic ions including fragments were used. The strategy was applied to 10 real samples collected from different retailers in the Valencian Region (Spain) during 2014. Six out of eight target PAAs were detected in at least one sample in the target analysis. The most frequently detected compounds were 4,4'-methylenedianiline and aniline, with concentrations ranging from 2.4 to 19,715 µg kg(-1) and 2.5 to 283 µg kg(-1), respectively. Two phthalates were identified and confirmed in the post-run target screening analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Jian; Chow, Willis; Chang, James; Wong, Jon W
2017-01-18
A semiautomated qualitative method for target screening of 448 pesticide residues in fruits and vegetables was developed and validated using ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap). The Q-Orbitrap Full MS/dd-MS 2 (data dependent acquisition) was used to acquire product-ion spectra of individual pesticides to build a compound database or an MS library, while its Full MS/DIA (data independent acquisition) was utilized for sample data acquisition from fruit and vegetable matrices fortified with pesticides at 10 and 100 μg/kg for target screening purpose. Accurate mass, retention time and response threshold were three key parameters in a compound database that were used to detect incurred pesticide residues in samples. The concepts and practical aspects of in-spectrum mass correction or solvent background lock-mass correction, retention time alignment and response threshold adjustment are discussed while building a functional and working compound database for target screening. The validated target screening method is capable of screening at least 94% and 99% of 448 pesticides at 10 and 100 μg/kg, respectively, in fruits and vegetables without having to evaluate every compound manually during data processing, which significantly reduced the workload in routine practice.
Ma, Qiang; Bai, Hua; Li, Wentao; Wang, Chao; Li, Xinshi; Cooks, R Graham; Ouyang, Zheng
2016-03-17
Significantly simplified work flows were developed for rapid analysis of various types of cosmetic and foodstuff samples by employing a miniature mass spectrometry system and ambient ionization methods. A desktop Mini 12 ion trap mass spectrometer was coupled with paper spray ionization, extraction spray ionization and slug-flow microextraction for direct analysis of Sudan Reds, parabens, antibiotics, steroids, bisphenol and plasticizer from raw samples with complex matrices. Limits of detection as low as 5 μg/kg were obtained for target analytes. On-line derivatization was also implemented for analysis of steroid in cosmetics. The developed methods provide potential analytical possibility for outside-the-lab screening of cosmetics and foodstuff products for the presence of illegal substances. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In the USA, the US Department of Agriculture’s Food Safety Inspection Service (FSIS) conducts the National Residue Program designed to monitor veterinary drug and other chemical residues in beef and other slaughtered food animals. Currently, FSIS uses a 7-plate bioassay in the laboratory to screen f...
MASS SPECTROMETRY PROTEOMICS METHOD AS A RAPID SCREENING TOOL FOR BACTERIAL CONTAMINATION OF FOOD
2017-06-01
1460 Rabih Jabbour RESEARCH AND TECHNOLOGY DIRECTORATE Havas, Karyn A. U.S. DEPARTMENT OF AGRICULTURE ANIMAL PLANT HEALTH INSPECTION SERVICES...coli O157:H7 (U.S. Department of Agriculture [USDA] strain 43895), Salmonella enterica serotype Newport (USDA strain 15480), Listeria monocytogenes...agar Sp specificity TSB trypticase soy broth USDA U.S. Department of Agriculture Xcorr correlation score DISTRIBUTION LIST The
Development of a Smart Diagnostics Platform for Early-Stage Screening of Breast Cancer
2007-04-01
Kawaguchi, H.; Fujimoto, K. A Novel Preparation of Nonsymmetrical Microspheres Using the Langmuir Blodgett Technique. Langmuir 2000, 16, 7882–7886. 64...performance liquid chromatography, gas chromatography, mass spectrometry, and enzyme-linked immunosorbent assay. All of these methods require...important criterion for selection of suitable signal transduction systems. A 10 manuscript describing the stability has been published in Langmuir in 2007
Mass spectrometry as a quantitative tool in plant metabolomics
Jorge, Tiago F.; Mata, Ana T.
2016-01-01
Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644967
Mercimek-Mahmutoglu, Saadet; Muehl, Adolf; Salomons, Gajja S; Neophytou, Birgit; Moeslinger, Dorothea; Struys, Eduard; Bodamer, Olaf A; Jakobs, Cornelis; Stockler-Ipsiroglu, Sylvia
2009-04-01
High urinary creatine to creatinine ratio (U-CrCrtR) is a potential diagnostic marker of X-linked creatine transporter (SLC6A8) deficiency. We developed a tandem mass-spectrometry method to simultaneously determine urinary creatine and creatinine in 975 individuals (0-18 years). U-CrCrtR increased up to 8 years and decreased thereafter. U-CrCrtR was 2.29 and 2.12 (99th percentile: 1.87) in two males with subsequently confirmed SLC6A8 mutations. The frequency of SLC6A8 deficiency was 2.3% in 157 males at risk.
Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F
2012-08-15
This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes. Copyright © 2012 Elsevier B.V. All rights reserved.
Abdallah, H; Arnaudguilhem, C; Jaber, F; Lobinski, R
2014-08-15
A new high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method was developed for a simultaneous multi-residue analysis of 22 sulfonamides (SAs) and their metabolites in edible animal (pig, beef, sheep and chicken) tissues. Sample preparation was optimized on the basis of the "QuEChERS" protocol. The analytes were identified using their LC retention times and accurate mass; the identification was further confirmed by multi-stage high mass accuracy (<5ppm) mass spectrometry. The performance of the method was evaluated according to the EU guidelines for the validation of screening methods for the analysis of veterinary drugs residues. Acceptable values were obtained for: linearity (R(2)<0.99), limit of detection (LOD, 3-26μg/kg), limit of quantification (LOQ, 11-88μg/kg), accuracy (recovery 88-112%), intra- and inter-day precision 1-14 and 1-17%, respectively, decision limit (CCα) and detection capability (CCβ) around the maximum residue limits (MRL) of SAs (100μg/kg). The method was validated by analysis of a reference material FAPAS-02188 "Pig kidney" with ǀ Z-scoreǀ<0.63. The method was applied to various matrices (kidney, liver, muscle) originated from pig, beef, sheep, and chicken) allowing the simultaneous quantification of target sulfonamides at concentration levels above the MRL/2 and the identification of untargeted compounds such as N(4)-acetyl metabolites using multi-stage high mass accuracy mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.
Agius, Ronald; Nadulski, Thomas
2014-06-01
Amphetamines, cannabinoids, cocaine, opiates, methadone, and benzodiazepines in authentic hair samples with drug concentrations around the medical and psychological assessment (MPA) guidelines cut-offs were screened by LUCIO-direct ELISA kits. Following confirmation of all positive and a significant number of negatively screened samples with gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods accredited for forensic purposes. Receiver operating characteristics (ROC) were plotted and the area under the curve (AUC) and overall misclassification rate (OMR) were calculated and compared to those obtained for the same drug classes in urine. While fulfilling the validation criteria of the German forensic guidelines, for almost all screening tests in hair and urine the AUC were greater than 0.8, indicating good to excellent performance. Moreover the AUC calculated for the detection of drugs in hair did not differ significantly to the AUC calculated for the detection of the same drug classes in urine, thus showing a comparable screening performance to the well accepted, previously published application of the same ELISAs for the detection of drugs at unconventionally low cut-offs in urine. For the first time, the validation of the immunoassay tests for the complete 6-drug panel MPA profile in hair and urine using a large population of authentic hair and urine samples with drug concentrations around MPA cut-offs, lower than conventional clinical or workplace drug testing guidelines cut-offs as well as those suggested by the Society of hair testing (SoHT) is presented. Copyright © 2014 John Wiley & Sons, Ltd.
Use of the Analysis of the Volatile Faecal Metabolome in Screening for Colorectal Cancer
2015-01-01
Diagnosis of colorectal cancer is an invasive and expensive colonoscopy, which is usually carried out after a positive screening test. Unfortunately, existing screening tests lack specificity and sensitivity, hence many unnecessary colonoscopies are performed. Here we report on a potential new screening test for colorectal cancer based on the analysis of volatile organic compounds (VOCs) in the headspace of faecal samples. Faecal samples were obtained from subjects who had a positive faecal occult blood sample (FOBT). Subjects subsequently had colonoscopies performed to classify them into low risk (non-cancer) and high risk (colorectal cancer) groups. Volatile organic compounds were analysed by selected ion flow tube mass spectrometry (SIFT-MS) and then data were analysed using both univariate and multivariate statistical methods. Ions most likely from hydrogen sulphide, dimethyl sulphide and dimethyl disulphide are statistically significantly higher in samples from high risk rather than low risk subjects. Results using multivariate methods show that the test gives a correct classification of 75% with 78% specificity and 72% sensitivity on FOBT positive samples, offering a potentially effective alternative to FOBT. PMID:26086914
Rapid Screening of Ergot Alkaloids in Sclerotia by MALDI-TOF Mass Spectrometry.
Sivagnanam, Kumaran; Komatsu, Emy; Patrick, Susan; Rampitsch, Christoph; Perreault, Hélène; Gräfenhan, Tom
2016-07-01
Ergot is a common disease of wheat and other cereal grains that is predominantly caused by Claviceps purpurea in the field, often affecting crop yield in addition to the environment. Infected grain can be contaminated with dark sclerotia, which contain fungal metabolites such as ergot alkaloids. The occurrence of ergot alkaloids in cereal grain is a major health concern for humans and livestock. Effective and rapid screening of these mycotoxins is crucial for producers, processors, and consumers of cereal-based food and feed grain. Established methods of ergot alkaloid screening based on LC-MS or GC-MS require laborious processes. A novel method using matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) MS was developed to identify four ergot alkaloids. Using dihydroxybenzoic acid as the matrix, ergosine, ergocornine, ergocryptine, and ergocristine were readily detected in individual sclerotia of C. purpurea. The accuracy of the identified ergot alkaloids was further confirmed by tandem MS analysis. MALDI-TOF MS is suitable for high-throughput screening of ergot alkaloids because it permits rapid and accurate identification, simple sample preparation, and no derivatization or chromatographic separation.
NASA Astrophysics Data System (ADS)
Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.
2012-07-01
We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.
Cost and Efficacy Assessment of an Alternative Medication Compliance Urine Drug Testing Strategy.
Doyle, Kelly; Strathmann, Frederick G
2017-02-01
This study investigates the frequency at which quantitative results provide additional clinical benefit compared to qualitative results alone. A comparison between alternative urine drug screens and conventional screens including the assessment of cost-to-payer differences, accuracy of prescription compliance or polypharmacy/substance abuse was also included. In a reference laboratory evaluation of urine specimens from across the United States, 213 urine specimens with provided prescription medication information (302 prescriptions) were analyzed by two testing algorithms: 1) conventional immunoassay screen with subsequent reflexive testing of positive results by quantitative mass spectrometry; and 2) a combined immunoassay/qualitative mass-spectrometry screen that substantially reduced the need for subsequent testing. The qualitative screen was superior to immunoassay with reflex to mass spectrometry in confirming compliance per prescription (226/302 vs 205/302), and identifying non-prescription abuse (97 vs 71). Pharmaceutical impurities and inconsistent drug metabolite patterns were detected in only 3.8% of specimens, suggesting that quantitative results have limited benefit. The percentage difference between the conventional testing algorithm and the alternative screen was projected to be 55%, and a 2-year evaluation of test utilization as a measure of test order volume follows an exponential trend for alternative screen test orders over conventional immunoassay screens that require subsequent confirmation testing. Alternative, qualitative urine drug screens provide a less expensive, faster, and more comprehensive evaluation of patient medication compliance and drug abuse. The vast majority of results were interpretable with qualitative results alone indicating a reduced need to automatically reflex to quantitation or provide quantitation for the majority of patients. This strategy highlights a successful approach using an alternative strategy for both the laboratory and physician to align clinical needs while being mindful of costs.
Hastedt, Martin; Krumbiegel, Franziska; Gapert, René; Tsokos, Michael; Hartwig, Sven
2013-09-01
Alcohol consumption during pregnancy is a widespread problem and can cause severe fetal damage. As the diagnosis of fetal alcohol syndrome is difficult, the implementation of a reliable marker for alcohol consumption during pregnancy into meconium drug screening programs would be invaluable. A previously published gas chromatography mass spectrometry method for the detection of fatty acid ethyl esters (FAEEs) as alcohol markers in meconium was optimized and newly validated for a sample size of 50 mg. This method was applied to 122 cases from a drug-using population. The meconium samples were also tested for common drugs of abuse. In 73 % of the cases, one or more drugs were found. Twenty percent of the samples tested positive for FAEEs at levels indicating significant alcohol exposure. Consequently, alcohol was found to be the third most frequently abused substance within the study group. This re-validated method provides an increase in testing sensitivity, is reliable and easily applicable as part of a drug screening program. It can be used as a non-invasive tool to detect high alcohol consumption in the last trimester of pregnancy. The introduction of FAEEs testing in meconium screening was found to be of particular use in a drug-using population.
Weidolf, L O; Chichila, T M; Henion, J D
1988-12-09
Methods for screening by thin-layer chromatography, quantification by high-performance liquid chromatography with ultraviolet detection and confirmation by gas chromatography-mass spectrometry of boldenone sulfate in equine urine after administration of boldenone undecylenate (Equipoise) are presented. Sample work-up was done with C18 liquid-solid extraction followed by solvolytic cleavage of the sulfate ester. Confirmatory evidence of boldenone sulfate in equine urine was obtained from 2 h to 42 days following a therapeutic intramuscular dose of Equipoise. The use of 19-nortestosterone sulfate as the internal standard for quantification of boldenone sulfate is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnquist, Isaac J.; Hoppe, Eric W.
A highly sensitive, novel and quick assay method utilizing inductively coupled plasma mass spectrometry was developed for the determination of K in NaI powders and NaI(Tl) scintillator crystals for use in ultralow background applications. The determination of K (viz. 40K), as well as Th and U and their daughters, is important in ultralow background detector materials to ensure incorporation of materials of sufficiently high radiopurity. Through the use of improved instrumentation, cool plasma operating conditions, and meticulously clean sample preparations, detection limits of 11 fg natK∙g-1 (or 341 pBq 40K∙kg-1) was attained for K in pure water. Detection limits inmore » the sample matrix (i.e., NaI) were 0.529 ng natK∙g NaI-1 (or 16.4 Bq 40K∙kg NaI -1). A number of different precursor NaI powder samples and NaI(Tl) scintillator crystals were assayed for their K content. Determinations ranged from 0.757 – 31.4 ng natK∙g NaI-1. This method allows for the screening of materials to unprecedented levels in a fraction of the time compared to gamma counting techniques, providing a useful method for a more effective screening tool of K in ultralow background detector materials.« less
Céspedes, Nora; Valencia, Angela; Echeverry, Carlos Alberto; Arce-Plata, Maria Isabel; Colón, Cristóbal; Castiñeiras, Daisy E; Hurtado, Paula Margarita; Cocho, Jose Angel; Herrera, Sócrates; Arévalo-Herrera, Myriam
2017-09-30
Inborn errors of metabolism (IEM) represent an important public health problem due to current diagnosis and treatment limitations, poor life quality of affected patients, and consequent untimely child death. In contrast to classical methods, tandem mass spectrometry (MS/MS) has allowed simultaneous evaluation of multiple metabolites associated with IEM offering higher sensitivity, low false positive rates and high throughput. Determine concentration levels for amino acids and acylcarnitines in blood of newborns from Colombia, to establish reference values for further use in diagnosis of IEM. Implementation of a method to determine amino acids, acylcarnitines and succinylacetone in newborn dried blood spots using MS/MS, and its application in a cross-sectional study conducted in 891 healthy neonates from Cali and Quibdo cities is described. fifty-seven analytes that allow the diagnosis of more than 40 different pathologies were tested. The method showed to be linear, precise and accurate. Healthy neonates 1-18 days of age were included, 523 from Cali and 368 from Quibdo; 52% male and 48% female. Age-related differences on the concentration levels of amino acids and acylcarnitines were observed whereas no significant differences by gender were found. The study has contributed to reveal the usual concentration levels of amino acids, acylcarnitines and succinylacetone that could be used as reference for the establishment of a newborn metabolic screening program in Colombia.
Mans, Daniel J; Gucinski, Ashley C; Dunn, Jamie D; Gryniewicz-Ruzicka, Connie M; Mecker-Pogue, Laura C; Kao, Jeff L-F; Ge, Xia
2013-09-01
A novel analogue of sibutramine, 11-desisobutyl-11-benzylsibutramine, has been discovered. During routine ion mobility spectrometry (IMS) screening of a weight loss supplement collected at an US FDA import operation facility an unknown peak was observed. Further analysis of the supplement by liquid chromatography-mass spectrometry (LC-MS) and high resolution mass spectrometry revealed an unknown peak with a relative retention time of 1.04 with respect to sibutramine and a predicted formula of C20H24NCl. In order to elucidate the analogue's structure, it was isolated from the supplement and characterized by tandem mass spectrometry and nuclear magnetic resonance (NMR), which revealed the analogue possessed a benzyl moiety at the 11 position in place of the isobutyl group associated with sibutramine. Copyright © 2013. Published by Elsevier B.V.
Du, Bowen; Lofton, Jonathan M; Peter, Katherine T; Gipe, Alexander D; James, C Andrew; McIntyre, Jenifer K; Scholz, Nathaniel L; Baker, Joel E; Kolodziej, Edward P
2017-09-20
Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log K ow vs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban stormwater runoff and exposed biota.
Direct sampling of chemical weapons in water by photoionization mass spectrometry.
Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D
2006-05-01
The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.
Jia, Wei; Ling, Yun; Lin, Yuanhui; Chang, James; Chu, Xiaogang
2014-04-04
A new method combining QuEChERS with ultrahigh-performance liquid chromatography and electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap) was developed for the highly accurate and sensitive screening of 43 antioxidants, preservatives and synthetic sweeteners in dairy products. Response surface methodology was employed to optimize a quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation method for the determination of 42 different analytes in dairy products for the first time. After optimization, the maximum predicted recovery was 99.33% rate for aspartame under the optimized conditions of 10 mL acetionitrile, 1.52 g sodium acetate, 410 mg PSA and 404 mgC18. For the matrices studied, the recovery rates of the other 42 compounds ranged from 89.4% to 108.2%, with coefficient of variation <6.4%. UHPLC/ESI Q-Orbitrap Mass full scan mode acquired full MS data was used to identify and quantify additives, and data-dependent scan mode obtained fragment ion spectra for confirmation. The mass accuracy typically obtained is routinely better than 1.5ppm, and only need to calibrate once a week. The 43 compounds behave dynamic in the range 0.001-1000 μg kg(-1) concentration, with correlation coefficient >0.999. The limits of detection for the analytes are in the range 0.0001-3.6 μg kg(-1). This method has been successfully applied on screening of antioxidants, preservatives and synthetic sweeteners in commercial dairy product samples, and it is very useful for fast screening of different food additives. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Weiyang; Nkosi, Thobile A N; Combrinck, Sandra; Viljoen, Alvaro M; Cartwright-Jones, Catherine
2016-09-05
Henna (Lawsonia inermis) is applied to stain keratin, present in hair, skin and fingernails, a red-orange or rust colour. Producers of temporary tattoos mix the aromatic amine compound, para-phenylenediamine (PPD) into natural henna to create 'black henna' that rapidly stains the skin black. However, PPD may cause severe delayed hypersensitivity reactions following skin contact. This study proposes a rapid direct-analysis method to detect and identify PPD using an atmospheric solids analysis probe (ASAP) coupled to a Q-ToF mass spectrometer (MS). Since laborious, multistep methods of analysis to determine PPD are undesirable, due to the instability of the compound in solution, a screening method involving no sample preparation steps was developed. Experiments were carried out to optimise the corona current, sample cone voltage, source temperature, and desolvation gas temperature to determine ideal ASAP-Q-ToF-MS analysing conditions. Eleven of the 109 henna samples, originating from various countries, tested positive for PPD when henna products were screened using ASAP-MS, without any form of sample preparation other than grinding. Ultra-performance liquid chromatography electrospray ionisation-mass spectrometry (UPLC-Q-ToF-MS) was subsequently used to confirm the results from ASAP and to determine the concentrations of PPD in henna products. The allergen was detected in the same eleven samples, with concentrations ranging from 0.05-4.21% (w/w). It can be concluded that the sensitivity of the ASAP-MS technique is sufficient (limit of detection=0.025% w/w) to allow screening of henna samples for the presence of PPD. This relatively new technique can be applied to commercial products without extraction, sample treatment or chromatographic separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Budjás, D; Gangapshev, A M; Gasparro, J; Hampel, W; Heisel, M; Heusser, G; Hult, M; Klimenko, A A; Kuzminov, V V; Laubenstein, M; Maneschg, W; Simgen, H; Smolnikov, A A; Tomei, C; Vasiliev, S I
2009-05-01
In present and future experiments in the field of rare events physics a background index of 10(-3) counts/(keV kg a) or better in the region of interest is envisaged. A thorough material screening is mandatory in order to achieve this goal. The results of a systematic study of radioactive trace impurities in selected materials using ultra low-level gamma-ray spectrometry in the framework of the GERDA experiment are reported.
Boison, Joe O; Asea, Philip A; Matus, Johanna L
2012-08-01
A new and sensitive multi-residue method (MRM) with detection by LC-MS/MS was developed and validated for the screening, determination, and confirmation of residues of 7 nitroimidazoles and 3 of their metabolites in turkey muscle tissues at concentrations ≥ 0.05 ng/g. The compounds were extracted into a solvent with an alkali salt. Sample clean-up and concentration was then done by solid-phase extraction (SPE) and the compounds were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The characteristic parameters including repeatability, selectivity, ruggedness, stability, level of quantification, and level of confirmation for the new method were determined. Method validation was achieved by independent verification of the parameters measured during method characterization. The seven nitroimidazoles included are metronidazole (MTZ), ronidazole (RNZ), dimetridazole (DMZ), tinidazole (TNZ), ornidazole (ONZ), ipronidazole (IPR), and carnidazole (CNZ). It was discovered during the single laboratory validation of the method that five of the seven nitroimidazoles (i.e. metronidazole, dimetridazole, tinidazole, ornidazole and ipronidazole) and the 3 metabolites (1-(2-hydroxyethyl)-2-hydroxymethyl-5-nitroimidazole (MTZ-OH), 2-hydroxymethyl-1-methyl-5-nitroimidazole (HMMNI, the common metabolite of ronidazole and dimetridazole), and 1-methyl-2-(2'-hydroxyisopropyl)-5-nitroimidazole (IPR-OH) included in this study could be detected, confirmed, and quantified accurately whereas RNZ and CNZ could only be detected and confirmed but not accurately quantified. © Her Majesty the Queen in Right of Canada as Represented by the Minister of Agriculture and Agri-food Canada 2012.
A new screening method for flunitrazepam in vodka and tequila by fluorescence spectroscopy.
Leesakul, Nararak; Pongampai, Sirintip; Kanatharana, Proespichaya; Sudkeaw, Pravit; Tantirungrotechai, Yuthana; Buranachai, Chittanon
2013-01-01
A new screening method for flunitrazepam in colourless alcoholic beverages based on a spectroscopic technique is proposed. Absorption and steady-state fluorescence of flunitrazepam and its protonated form with various acids were investigated. The redshift of the wavelength of maximum absorption was distinctively observed in protonated flunitrazepam. An emissive fluorescence at 472 nm was detected in colourless spirits (vodka and tequila) at room temperature. 2-M perchloric acid was the most appropriated proton source. By using electron ionization mass spectrometry and time-dependent density functional theory calculations, the possible structure of protonated flunitrazepam was identified to be 2-nitro-N-methylacridone, an acridone derivative as opposed to 2-methylamino-5-nitro-2'-fluorobenzophenone, a benzophenone derivative. Copyright © 2012 John Wiley & Sons, Ltd.
Gottardo, Rossella; Fanigliulo, Ameriga; Sorio, Daniela; Liotta, Eloisa; Bortolotti, Federica; Tagliaro, Franco
2012-03-10
Capillary electrophoresis coupled to time-of-flight mass spectrometry was used in the present work for the determination of therapeutic and abused drugs and their metabolites in the hair of subjects undergoing addiction treatments, in order to monitor their compliance to therapy. For this purpose a rapid, qualitative drug screening method was adopted based on capillary electrophoresis hyphenated with time-of-flight mass spectrometry, which had earlier been developed and validated for the forensic-toxicological analysis of hair, limitedly to illicit/abused drugs [1]. Sampling of hair was carried out in order to refer to a time window of about two months from the date of sampling (i.e. 2cm ca. from cortex). A single extraction procedure was applied, allowing the determination in the hair matrix of "drugs of abuse" referred to the past abuses, and therapeutic drugs prescribed in the detoxification program as well as their metabolites. Analyte identification was based on accurate mass measurements and comparison of isotope patterns, providing the most likely matching between accurate mass value and elemental formula. Small molecules (<500Da) of forensic and toxicological interest could be identified unambiguously using mass spectrometric conditions tailored to meet a mass accuracy ≤5ppm. In the present study, the proposed approach proved suitable for the rapid broad spectrum screening of hair samples, although needing further confirmation of results by using fragmentation mass spectrometry. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Patel, Dhavalkumar Narendrabhai; Li, Lin; Kee, Chee-Leong; Ge, Xiaowei; Low, Min-Yong; Koh, Hwee-Ling
2014-01-01
The popularity of phosphodiesterase type 5 (PDE-5) enzyme inhibitors for the treatment of erectile dysfunction has led to the increase in prevalence of illicit sexual performance enhancement products. PDE-5 inhibitors, namely sildenafil, tadalafil and vardenafil, and their unapproved designer analogues are being increasingly used as adulterants in the herbal products and health supplements marketed for sexual performance enhancement. To date, more than 50 unapproved analogues of prescription PDE-5 inhibitors were found as adulterants in the literature. To avoid detection of such adulteration by standard screening protocols, the perpetrators of such illegal products are investing time and resources to synthesize exotic analogues and devise novel means for adulteration. A comprehensive review of conventional and advance analytical techniques to detect and characterize the adulterants is presented. The rapid identification and structural elucidation of unknown analogues as adulterants is greatly enhanced by the wide myriad of analytical techniques employed, including high performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, vibrational spectroscopy, liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FT-ICR-MS), liquid chromatograph-hybrid triple quadrupole linear ion trap mass spectrometer with information dependent acquisition, ultra high performance liquid chromatography-time of flight-mass spectrometry (UHPLC-TOF-MS), ion mobility spectroscopy (IMS) and immunoassay methods. The many challenges in detecting and characterizing such adulterants, and the need for concerted effort to curb adulteration in order to safe guard public safety and interest are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Berisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas
2014-08-30
An ideal method for bioanalytical applications would deliver spatially resolved quantitative information in real time and without sample preparation. In reality these requirements can typically not be met by a single analytical technique. Therefore, we combine different mass spectrometry approaches: chromatographic separation, ambient ionization and imaging techniques, in order to obtain comprehensive information about metabolites in complex biological samples. Samples were analyzed by laser desorption followed by electrospray ionization (LD-ESI) as an ambient ionization technique, by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging for spatial distribution analysis and by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) for quantitation and validation of compound identification. All MS data were acquired with high mass resolution and accurate mass (using orbital trapping and ion cyclotron resonance mass spectrometers). Grape berries were analyzed and evaluated in detail, whereas wheat seeds and mouse brain tissue were analyzed in proof-of-concept experiments. In situ measurements by LD-ESI without any sample preparation allowed for fast screening of plant metabolites on the grape surface. MALDI imaging of grape cross sections at 20 µm pixel size revealed the detailed distribution of metabolites which were in accordance with their biological function. HPLC/ESI-MS was used to quantify 13 anthocyanin species as well as to separate and identify isomeric compounds. A total of 41 metabolites (amino acids, carbohydrates, anthocyanins) were identified with all three approaches. Mass accuracy for all MS measurements was better than 2 ppm (root mean square error). The combined approach provides fast screening capabilities, spatial distribution information and the possibility to quantify metabolites. Accurate mass measurements proved to be critical in order to reliably combine data from different MS techniques. Initial results on the mycotoxin deoxynivalenol (DON) in wheat seed and phospholipids in mouse brain as a model for mammalian tissue indicate a broad applicability of the presented workflow. Copyright © 2014 John Wiley & Sons, Ltd.
Céspedes, Nora; Valencia, Angela; Echeverry, Carlos Alberto; Arce-Plata, Maria Isabel; Colón, Cristóbal; Castiñeiras, Daisy E; Hurtado, Paula Margarita; Cocho, Jose Angel; Herrera, Sócrates
2017-01-01
Abstract Introduction: Inborn errors of metabolism (IEM) represent an important public health problem due to current diagnosis and treatment limitations, poor life quality of affected patients, and consequent untimely child death. In contrast to classical methods, tandem mass spectrometry (MS/MS) has allowed simultaneous evaluation of multiple metabolites associated with IEM offering higher sensitivity, low false positive rates and high throughput. Aims: Determine concentration levels for amino acids and acylcarnitines in blood of newborns from Colombia, to establish reference values for further use in diagnosis of IEM. Methods: Implementation of a method to determine amino acids, acylcarnitines and succinylacetone in newborn dried blood spots using MS/MS, and its application in a cross-sectional study conducted in 891 healthy neonates from Cali and Quibdo cities is described. Results: fifty-seven analytes that allow the diagnosis of more than 40 different pathologies were tested. The method showed to be linear, precise and accurate. Healthy neonates 1-18 days of age were included, 523 from Cali and 368 from Quibdo; 52% male and 48% female. Age-related differences on the concentration levels of amino acids and acylcarnitines were observed whereas no significant differences by gender were found. Conclusion: The study has contributed to reveal the usual concentration levels of amino acids, acylcarnitines and succinylacetone that could be used as reference for the establishment of a newborn metabolic screening program in Colombia. PMID:29213153
Thongnoppakhun, Wanna; Jiemsup, Surasak; Yongkiettrakul, Suganya; Kanjanakorn, Chompunut; Limwongse, Chanin; Wilairat, Prapon; Vanasant, Anusorn; Rungroj, Nanyawan; Yenchitsomanus, Pa-Thai
2009-07-01
A number of common mutations in the hemoglobin beta (HBB) gene cause beta-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous beta-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers.
Kalariya, Pradipbhai D; Kumar Talluri, Murali V N; Gaitonde, Vinay D; Devrukhakar, Prashant S; Srinivas, Ragampeta
2014-08-01
The present work describes the systematic development of a robust, precise, and rapid reversed-phase liquid chromatography method for the simultaneous determination of eprosartan mesylate and its six impurities using quality-by-design principles. The method was developed in two phases, screening and optimization. During the screening phase, the most suitable stationary phase, organic modifier, and pH were identified. The optimization was performed for secondary influential parameters--column temperature, gradient time, and flow rate using eight experiments--to examine multifactorial effects of parameters on the critical resolution and generated design space representing the robust region. A verification experiment was performed within the working design space and the model was found to be accurate. This study also describes other operating features of the column packed with superficially porous particles that allow very fast separations at pressures available in most liquid chromatography instruments. Successful chromatographic separation was achieved in less than 7 min using a fused-core C18 (100 mm × 2.1 mm, 2.6 μm) column with linear gradient elution of 10 mM ammonium formate (pH 3.0) and acetonitrile as the mobile phase. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance with the International Conference on Harmonization Q2 (R1) guidelines. The impurities were identified by liquid chromatography with mass spectrometry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asea, Philip E; MacNeil, James D; Boison, Joe O
2006-01-01
A method was developed and validated to screen for residues of the thyreostatic drugs, tapazole (TAP), mercaptobenzimidazole (MBI), thiouracil (TU), methylthiouracil (MTU), propylthiouracil (PrTU), and phenylthiouracil (PhTU) in bovine, equine, ovine, and porcine thyroid and muscle tissues at concentrations > or = 5 ng/g using 2-methoxy-mercaptobenzimidazole (MeMBI) and dimethylthiouracil (DMTU) as internal standards. In this method, the drugs were solvent extracted from thyroid and muscle tissue and cleaned up on an amino-propyl solid-phase extraction (SPE) cartridge. The unretained fraction containing TAP and MBI and the internal standard, MeMBI, was collected as Fraction 1. The retained fraction containing TU, MTU, PrTU, PhTU, and the internal standard, DMTU, was eluted with 3% acetic acid-isopropanol as Fraction 2. Fraction 1 was further cleaned up on an alumina B SPE cartridge and analyzed by gradient elution on a C18 high-performance liquid chromatography (HPLC) column with ultraviolet detection at wavelengths of 255 and 300 nm. Fraction 2 was taken to dryness, derivatized with 4-chloro-7-nitrobenzo-2-furazan at pH 8, and analyzed by gradient elution on a C18 LC column with mass spectrometry (MS) detection. Any "presumptive positive" test results were submitted for further analysis by LC/MS/MS. The validated method was applied to the analysis of over 300 thyroid tissue samples.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Newborn screening test system for amino acids... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a) Identification. A newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Newborn screening test system for amino acids... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a) Identification. A newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...
Lai, Chang-Jiang-Sheng; Tan, Ting; Zeng, Su-Ling; Qi, Lian-Wen; Liu, Xin-Guang; Dong, Xin; Li, Ping; Liu, E-Hu
2015-05-10
The aim of this study was to develop a convenient method without pretreatments for nontarget discovery of interested compounds. The segment and exposure strategy, coupled with two mass spectrometer data acquisition methods was firstly proposed for screening the saponins in extract of Panax notoginseng (Sanqi) via high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (HPLC-QTOF/MS). By gradually removing certain major or moderate interference compounds, the developed segment and exposure strategy could significantly improve the detection efficiency for trace compounds. Moreover, the newly developed five-point screening approach based on a modified mass defect filter strategy and the visual isotopic ion technique was verified to be efficient and reliable in picking out the interested precursor ions. In total, 234 ginsenosides including 67 potential new ones were characterized or tentatively identified from the extract of Sanqi. Particularly, some unusual compounds containing the branched glycosyl group or new substituted acyl groups were firstly reported. The proposed integrated strategy held a strong promise for analyses of the complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.
Chua, Hoe-Chee; Lee, Hoi-Sim; Sng, Mui-Tiang
2006-01-13
Analysing nitrogen mustards and their degradation products in decontamination emulsions posed a significant challenge due to the different phases present in such matrices. Extensive sample preparation may be required to isolate target analytes. Furthermore, numerous reaction products are formed in the decontamination emulsion. A fast and effective qualitative screening procedure was developed for these compounds, using liquid chromatography-mass spectrometry (LC-MS). This eliminated the need for additional sample handling and derivatisation that are required for gas chromatographic-mass spectrometric (GC-MS) analysis. A liquid chromatograph with mixed mode column and isocratic elution gave good chromatography. The feasibility of applying this technique for detecting these compounds in spiked water and decontamination emulsion was demonstrated. Detailed characterisation of the degradation products in these two matrices was carried out. The results demonstrated that N-methyldiethanolamine (MDEA), N-ethyldiethanolamine (EDEA) and triethanolamine (TEA) are not the major degradation products of their respective nitrogen mustards. Degradation profiles of nitrogen mustards in water were also established. In verification analysis, it is important not only to develop methods for the identification of the actual chemical agents; the methods must also encompass degradation products of the chemical agents as well so as to exclude false negatives. This study demonstrated the increasingly pivotal role that LC-MS play in verification analysis.
Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang
2014-03-01
Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meyer, Markus R; Maurer, Hans H
2016-07-13
The field of new psychoactive substances (NPS) is highly dynamic and the situation changes from year to year. Therefore, the current review provides a timely update about the latest developments to help analysts keep the pace with NPS distribution. It covers PubMed-listed studies published between January 2014 and January 2016 dealing with the application of liquid chromatography (LC) coupled low- and high-resolution mass spectrometry (MS) for broad screenings for NPS in clinical (CT) and forensic (FT) toxicology. Latest developments and applications are highlighted and selected papers critically discussed. Comprehensive tables summarizing all discussed articles complete the overview. Finally, an outlook on the future of LC coupled MS in CT and FT is provided and readers will learn why low-resolution mass spectrometry might remain the standard for the next couple of years at least for easy-to-use quantitative screening procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
Real-time and online screening method for materials emitting volatile organic compounds
NASA Astrophysics Data System (ADS)
Kim, Changhyuk; Sul, Yong Tae; Pui, David Y. H.
2016-09-01
In the semiconductor industry, volatile organic compounds (VOCs) in the cleanroom air work as airborne molecular contamination, which reduce the production yield of semiconductor chips by forming nanoparticles and haze on silicon wafers and photomasks under ultraviolet irradiation during photolithography processes. Even though VOCs in outdoor air are removed by gas filters, VOCs can be emitted from many kinds of materials used in cleanrooms, such as organic solvents and construction materials (e.g., adhesives, flame retardants and sealants), threatening the production of semiconductors. Therefore, finding new replacements that emit lower VOCs is now essential in the semiconductor industry. In this study, we developed a real-time and online method to screen materials for developing the replacements by converting VOCs into nanoparticles under soft X-ray irradiation. This screening method was applied to measure VOCs emitted from different kinds of organic solvents and adhesives. Our results showed good repeatability and high sensitivity for VOCs, which come from aromatic compounds, some alcohols and all tested adhesives (Super glue and cleanroom-use adhesives). In addition, the overall trend of measured VOCs from cleanroom-use adhesives was well matched with those measured by a commercial thermal desorption-gas chromatography-mass spectrometry, which is a widely used off-line method for analyzing VOCs. Based on the results, this screening method can help accelerate the developing process for reducing VOCs in cleanrooms.
Jobelius, Carsten; Frimmel, Fritz H; Zwiener, Christian
2014-05-01
The anaerobic microbial degradation of aromatic and heterocyclic compounds is a prevalent process in contaminated groundwater systems. The introduction of functional groups into the contaminant molecules often results in aromatic and heterocyclic and succinic acids. These metabolites can be used as indicators for prevailing degradation processes. Therefore, there is a strong interest in developing analytical methods for screening and identification of these metabolites. In this study, neutral loss scans (NLS) by liquid chromatography-electrospray ionization/tandem mass spectrometry with losses of CO2 (NL ∆m/z = 44) and C2H4(CO2)2 (NL ∆m/z = 116) were applied for the first time successfully to screen selectively for acidic and succinic metabolites of aromatic and heterocyclic contaminants in two fulvic acid fractions from a contaminated site and a downstream region of a tar oil-polluted groundwater. Identification of these preselected signals was performed by high-resolution mass spectrometry with a liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry instrument. High-resolution mass and mass fragmentation data were then compared with a list of known metabolites from a literature search or matched with chemical databases supported with in silico fragmentation. Based on authentic analytical standards, several compounds from NLS were identified (e.g., 4-hydroxy-3-methylbenzoic acid, benzylsuccinic acid, naphthyl-2-methylsuccinic acid, 2-carboxyindane, and 2-carboxybenzothiophene) and tentatively identified (e.g., benzofuranmethylsuccinic acid and dihydrocarboxybenzothiophene) as aromatic, phenolic, heterocyclic, and succinic acids. The acidic metabolites were found exclusively in the contaminated region of the aquifer which indicates active biodegradation processes and no relevant occurrence of acidic metabolites in the downstream region.
Vichi, Stefania; Cortés-Francisco, Nuria; Romero, Agustí; Caixach, Josep
2015-03-01
In the present paper, an electrospray ionization (ESI)-Orbitrap method is proposed for the direct chemical profiling of epicuticular wax (EW) from Olea europaea fruit. It constitutes a rapid and efficient tool suitable for a wide-ranging screening of a large number of samples. In a few minutes, the method provides a comprehensive characterization of total EW extracts, based on the molecular formula of their components. Accurate mass measurements are obtained by ultrahigh resolution mass spectrometry, and compositional restrictions are set on the basis of the information available from previous studies of olive EW. By alternating positive and negative ESI modes within the same analysis, complementary results are obtained and a wide range of chemical species is covered. This provides a detailed compositional overview that otherwise would only be available by applying multiple analytical techniques. Copyright © 2015 John Wiley & Sons, Ltd.
Yamjala, Karthik; Nainar, Meyyanathan Subramania; Ramisetti, Nageswara Rao
2016-06-01
The present study deals with the separation and identification of the photodegradation products formed when a commercial soft drink containing Carmoisine (E122) dye was exposed to natural sunlight. An ultra high performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method was developed and validated to identify the unknown species of E122. During the study, it was observed that the dye decolourizes rapidly in beverage when compared to model standard solutions. The sunlight irradiation of beverage containing E122 resulted in four photodegradation products as identified by nontarget screening using high-resolution tandem mass spectrometry. Accurate mass measurements were used to identify the elemental composition, and to elucidate the structures of degradation products a software tool was employed. The degradation products (P1-P4) were formed from the interactions of the dye with other ingredients present in the beverage. The toxicity of the degradation products was evaluated on five bacterial strains (TA98, TA100, TA1535, TA1537, and WP2 uvrA pKM101) through an in vitro bacterial reverse mutation assay. The photodegradation products showed strong mutagenic potential in strain TA 100 (without S9) as detected by the Ames assay. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rossi, Claudia; Calton, Lisa; Brown, Heather A; Gillingwater, Scott; Wallace, A Michael; Petrucci, Francesca; Ciavardelli, Domenico; Urbani, Andrea; Sacchetta, Paolo; Morris, Michael
2011-04-01
The specificity of screening for congenital adrenal hyperplasia by direct measurement of 17-hydroxyprogesterone in filter paper dried blood spot samples by immunoassay is low and has a high false-positive rate. In order to reduce the false-positive rate of this test, we developed a rapid, robust, specific confirmatory procedure in which cortisol, 4-androstene-3,17-dione and 17-hydroxyprogesterone were measured simultaneously by ultra-performance liquid chromatography-tandem mass spectrometry. After extraction, samples were analysed by ultra-performance liquid chromatography-tandem mass spectrometry and 17-hydroxyprogesterone was quantified accurately. Other steroids were determined using stable deuterated internal standards. In total, 25 patient blood spot samples and 92 control samples were analysed. The assay was linear for 17-hydroxyprogesterone, with a coefficient of determination >0.997 and imprecision ≤ 6.5%. An upper limit of normal for 17-hydroxyprogester-one of 4.45 nmol/L was established by analysing a cohort of samples from unaffected newborns. In addition, a cut-off of 3.5 for the peak areas ratio (17-hydroxyprogesterone+4-androstene-3,17-dione)/cortisol, allows confirmation of the affected steroidogenic enzyme. A high throughput method for the detection of steroids related to congenital adrenal hyperplasia has been developed, allowing the false-positive rate associated with screening for 17-hydroxyprogesterone by immunoassay to be determined.
Domínguez-Romero, Juan C; García-Reyes, Juan F; Lara-Ortega, Felipe J; Molina-Díaz, Antonio
2015-03-01
In this article, a screening method for the determination of 200 sport drugs in human urine has been developed using liquid-chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS). The chromatographic separation of the targeted doping agents was carried out by fast liquid chromatography using a C18 column (4.6×50 mm) with 1.8 μm particle size. Accurate mass measurements of the selected ion (typically [M+H](+) and [M-H](-)) along with retention time matching was used for the screening and detection of the targeted species. The proposed methodology comprised also a simple sample treatment stage based on solid-phase extraction (SPE) with polymeric cartridges. The SPE method displayed satisfactory recoveries rates (between 70 and 120%) for the majority of the compounds at both concentration levels tested (2.5 and 25 μg L(-1)). The overall performance of the method was satisfactory with all 200 compounds fulfilling WADA minimum required performance levels (MRPLs), with limits of quantitation lower than 1 μg L(-1) for 80% of the compounds, and showing an appropriate linearity (r(2)>0.99) in most cases. Additionally, the ability of "in-source" collision induced dissociation (CID) for confirmatory purposes was examined using as criterion the presence of two high-resolution ions with relevant abundances for unambiguous confirmation. This stringent criterion was fulfilled for 75% of the species using in-source CID fragmentation. The use of an improved approach based on CID performed on a dedicated collision cell without precursor ion selection (using a Q-TOF) provided at least two ions in all cases with the exception of 2-aminoheptane. Finally, based on the use of diagnostic fragment ions, a workflow for the comprehensive screening and identification of non-targeted compounds (viz. compounds with no primary standards or retention time information available, such as metabolites) has been also examined using rat urine samples. The proposed screening method has proved to be effective for the analysis of targeted compounds, and also for the identification of metabolites, expanding easily the search for doping agents not only limited to specific banned parent compounds but also to derivate compounds with similar structure as well as metabolites. Copyright © 2014 Elsevier B.V. All rights reserved.
Screening of polar components of petroleum products by electrospray ionization mass spectrometry
Rostad, Colleen E.
2005-01-01
The polar components of fuels may enable differentiation between fuel types or commercial fuel sources. Screening for these components in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Various commercial fuels from several sources were analyzed by flow injection analysis/electrospray ionization/mass spectrometry without extensive sample preparation, separation, or chromatography. This technique enabled screening for unique polar components at very low concentrations in commercial hydrocarbon products. This analysis was then applied to hydrocarbon samples collected from the subsurface with a different extent of biodegradation or weathering. Although the alkane and isoprenoid portion had begun to biodegrade or weather, the polar components had changed little over time. Because these polar compounds are unique in different fuels, this screening technique can provide source information on hydrocarbons released into the environment.
Regueiro, Jorge; Giri, Anupam; Wenzl, Thomas
2016-06-21
Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples.
Salazar, Carolina; Armenta, Jenny M; Shulaev, Vladimir
2012-07-06
In spite of the large arsenal of methodologies developed for amino acid assessment in complex matrices, their implementation in metabolomics studies involving wide-ranging mutant screening is hampered by their lack of high-throughput, sensitivity, reproducibility, and/or wide dynamic range. In response to the challenge of developing amino acid analysis methods that satisfy the criteria required for metabolomic studies, improved reverse-phase high-performance liquid chromatography-mass spectrometry (RPHPLC-MS) methods have been recently reported for large-scale screening of metabolic phenotypes. However, these methods focus on the direct analysis of underivatized amino acids and, therefore, problems associated with insufficient retention and resolution are observed due to the hydrophilic nature of amino acids. It is well known that derivatization methods render amino acids more amenable for reverse phase chromatographic analysis by introducing highly-hydrophobic tags in their carboxylic acid or amino functional group. Therefore, an analytical platform that combines the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) pre-column derivatization method with ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) is presented in this article. For numerous reasons typical amino acid derivatization methods would be inadequate for large scale metabolic projects. However, AQC derivatization is a simple, rapid and reproducible way of obtaining stable amino acid adducts amenable for UPLC-ESI-MS/MS and the applicability of the method for high-throughput metabolomic analysis in Arabidopsis thaliana is demonstrated in this study. Overall, the major advantages offered by this amino acid analysis method include high-throughput, enhanced sensitivity and selectivity; characteristics that showcase its utility for the rapid screening of the preselected plant metabolites without compromising the quality of the metabolic data. The presented method enabled thirty-eight metabolites (proteinogenic amino acids and related compounds) to be analyzed within 10 min with detection limits down to 1.02 × 10-11 M (i.e., atomole level on column), which represents an improved sensitivity of 1 to 5 orders of magnitude compared to existing methods. Our UPLC-ESI-MS/MS method is one of the seven analytical platforms used by the Arabidopsis Metabolomics Consortium. The amino acid dataset obtained by analysis of Arabidopsis T-DNA mutant stocks with our platform is captured and open to the public in the web portal PlantMetabolomics.org. The analytical platform herein described could find important applications in other studies where the rapid, high-throughput and sensitive assessment of low abundance amino acids in complex biosamples is necessary.
Salazar, Carolina; Armenta, Jenny M.; Shulaev, Vladimir
2012-01-01
In spite of the large arsenal of methodologies developed for amino acid assessment in complex matrices, their implementation in metabolomics studies involving wide-ranging mutant screening is hampered by their lack of high-throughput, sensitivity, reproducibility, and/or wide dynamic range. In response to the challenge of developing amino acid analysis methods that satisfy the criteria required for metabolomic studies, improved reverse-phase high-performance liquid chromatography-mass spectrometry (RPHPLC-MS) methods have been recently reported for large-scale screening of metabolic phenotypes. However, these methods focus on the direct analysis of underivatized amino acids and, therefore, problems associated with insufficient retention and resolution are observed due to the hydrophilic nature of amino acids. It is well known that derivatization methods render amino acids more amenable for reverse phase chromatographic analysis by introducing highly-hydrophobic tags in their carboxylic acid or amino functional group. Therefore, an analytical platform that combines the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) pre-column derivatization method with ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) is presented in this article. For numerous reasons typical amino acid derivatization methods would be inadequate for large scale metabolic projects. However, AQC derivatization is a simple, rapid and reproducible way of obtaining stable amino acid adducts amenable for UPLC-ESI-MS/MS and the applicability of the method for high-throughput metabolomic analysis in Arabidopsis thaliana is demonstrated in this study. Overall, the major advantages offered by this amino acid analysis method include high-throughput, enhanced sensitivity and selectivity; characteristics that showcase its utility for the rapid screening of the preselected plant metabolites without compromising the quality of the metabolic data. The presented method enabled thirty-eight metabolites (proteinogenic amino acids and related compounds) to be analyzed within 10 min with detection limits down to 1.02 × 10−11 M (i.e., atomole level on column), which represents an improved sensitivity of 1 to 5 orders of magnitude compared to existing methods. Our UPLC-ESI-MS/MS method is one of the seven analytical platforms used by the Arabidopsis Metabolomics Consortium. The amino acid dataset obtained by analysis of Arabidopsis T-DNA mutant stocks with our platform is captured and open to the public in the web portal PlantMetabolomics.org. The analytical platform herein described could find important applications in other studies where the rapid, high-throughput and sensitive assessment of low abundance amino acids in complex biosamples is necessary. PMID:24957640
Wong, J K Y; Choi, T L S; Kwok, K Y; Lei, E N Y; Wan, T S M
2018-06-01
Equine hair is becoming an increasingly popular biological matrix for doping control of horse sports; one of the reasons for this is the significantly longer detection window hair can offer. Hair analysis opens up the opportunity for longitudinal monitoring of drug exposure which would otherwise not be possible with the more traditional and common biological matrices, such as urine and blood. As such, there is a need for more multi-target screening methods covering a broad range of prohibited substances in equine hair at the required sensitivities for equine doping control. This paper describes a sensitive ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS) method for the detection of 121 drugs and/or their metabolites in equine hair covering ten classes of prohibited substances with estimated limits of detection between 0.1 and 10 pg/mg. To our knowledge, this is the first report of a screening method in equine hair which can cover such a broad range and well over one hundred prohibited substances in a single analytical run. This method has been validated for its specificity, precision and extraction recovery. Applicability of this method has been demonstrated by: (i) the successful identification of clenbuterol, 2-(1-hydroxyethyl) promazine sulfoxide, acepromazine and tetrahydrozoline in genuine equine mane samples; as well as (ii) the detection of drugs from artificially incurred mane hair samples which have been prepared by soaking blank hair samples in solutions of drug targets. Copyright © 2018 Elsevier B.V. All rights reserved.
Badoud, F; Grata, E; Perrenoud, L; Avois, L; Saugy, M; Rudaz, S; Veuthey, J-L
2009-05-15
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.
Quantification of total hexose on dry blood spot by tandem mass spectrometry.
Gong, Zhenhua; Tian, Guoli; Huang, Qiwei; Wang, Yanmin; Ge, Qingwei
2012-12-01
Because hypoglycemia and hyperglycemia are harmful and not always associated with overt clinical signs, it is necessary to have methods available to screen for glucose levels to detect hypoglycemia and diabetes as early as possible. A new method for such screening and the clinical determination of blood total hexose on a dry blood spot (DBS) using tandem mass spectrometry (MS/MS) was developed. The serum glucose controls and blood were prepared as DBS and then extracted into a methanol solution containing isotope-labeled internal standards. The methanolic extraction was subjected to HPLC, followed by MS/MS in positive ion mode. Multiple-reaction monitoring of m/z 203.1→23 was used to detect hexose, and m/z 209.0→23 was used for 13C6-D-glucose. The recoveries of blood glucose by MS/MS were 90%-102% with an R(2) value of 0.999 after linear regression (p<0.001). The controls were within an acceptable range, and the coefficients of variation were less than 10%. The blood total hexose in neonates aged 3-7 days (6.41±1.46 mmol/L) was lower than that in neonates aged 8-30 days (6.66±1.38 mmol/L), and it was lower in neonates than in children aged 1-72 months (7.19±1.87 mmol/L). Quantification of total hexose on a dry blood spot by MS/MS is accurate, reliable and feasible for screening and clinical tests. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian
2015-10-01
The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market. Copyright © 2015 Elsevier Inc. All rights reserved.
Survey of South African fruit juices using a fast screening HILIC-MS method.
Stander, Marietjie A; Kühn, Wernich; Hiten, Nicholas F
2013-01-01
Adulteration of fruit juices--by the addition of sugar or other less expensive fruit juices as well as preservatives, artificial sweeteners and colours--was tested for by using a developed screening method. The method employs hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) using electrospray ionisation in the negative mode and ultraviolet light detection. Different fruit juices can be differentiated by the content of marker compounds like sorbitol, certain phenolic molecules and their saccharide profile. This method was used to test 46 fruit juice samples from the retail market as well as 12 control samples. The study focused on the main types of fruit juices consumed on the South African market including apple, orange, grape and blends of these juices with other fruits like mango, pear and guava. Overall, the 46 samples tested mostly agreed with label claims. One grape juice sample was adulterated, probably with apple juice. Natamycin above the legal limits was found in two samples. In addition, two samples contained natamycin and one sample benzoate without it being indicated on the label. The method is well suited as a quick screening method for fruit juice adulteration and if used routinely would reduce fruit juice adulteration without the cost of the current array of tests needed for authenticity testing.
Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Wang, Rong; Zhang, Yurong; Guo, Yinlong
2012-01-01
A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds.
Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.
Kirpekar, F; Douthwaite, S; Roepstorff, P
2000-02-01
We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here.
Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.
Kirpekar, F; Douthwaite, S; Roepstorff, P
2000-01-01
We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here. PMID:10688367
Li, Yong; Ruan, Qiang; Li, Yanli; Ye, Guozhu; Lu, Xin; Lin, Xiaohui; Xu, Guowang
2012-09-14
Non-targeted metabolic profiling is the most widely used method for metabolomics. In this paper, a novel approach was established to transform a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ion monitoring (RTL-GC/MS-SIM). To achieve this transformation, an algorithm based on the automated mass spectral deconvolution and identification system (AMDIS), GC/MS raw data and a bi-Gaussian chromatographic peak model was developed. The established GC/MS-SIM method was compared with GC/MS-full scan (the total ion current and extracted ion current, TIC and EIC) methods, it was found that for a typical tobacco leaf extract, 93% components had their relative standard deviations (RSDs) of relative peak areas less than 20% by the SIM method, while 88% by the EIC method and 81% by the TIC method. 47.3% components had their linear correlation coefficient higher than 0.99, compared with 5.0% by the EIC and 6.2% by TIC methods. Multivariate analysis showed the pooled quality control samples clustered more tightly using the developed method than using GC/MS-full scan methods, indicating a better data quality. With the analysis of the variance of the tobacco samples from three different planting regions, 167 differential components (p<0.05) were screened out using the RTL-GC/MS-SIM method, but 151 and 131 by the EIC and TIC methods, respectively. The results show that the developed method not only has a higher sensitivity, better linearity and data quality, but also does not need complicated peak alignment among different samples. It is especially suitable for the screening of differential components in the metabolic profiling investigation. Copyright © 2012 Elsevier B.V. All rights reserved.
Zehender, Hartmut; Mayr, Lorenz M
2007-10-01
In recent years, mass spectrometry has gained widespread use as an assay and screening technology in drug discovery because it enables sensitive, label-free detection of low-molecular weight modulators of biomolecules as well as sensitive and accurate detection of high-molecular weight modifications of biomolecules. Electrospray and matrix-assisted laser desorption ionization are the most widely used ionization techniques to identify chemical compounds interfering with enzymatic function, receptor-ligand binding or molecules modulating a protein-protein interaction of interest. Mass spectrometry based techniques are no longer restricted to screening in biochemical assay systems but have now become also applicable to imaging of biomolecules and chemical compounds in cell-based assay systems and even in highly complex tissue sections.
Wang, Chunyan; Zhang, Wenyan; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying
2012-05-01
The analysis by electrospray-ionization tandem mass spectrometry of amino acids with butyl esterification and isotopically labeled internal standard is routine in newborn screening laboratories worldwide. In the present study, we established a direct analysis method of higher accuracy that uses a non-deuterated internal standard. The automatic sampler and the pump of an LC apparatus were used to inject sample and mobile phase to MS, but no LC column was needed. The dry blood spot (DBS) material was prepared at levels of low, medium and high concentration; the running time was 1 min. In parallel to the new procedure, we applied the established method to analyze nine amino acids on DBS of healthy newborns and phenylketonuria newborns. The newly proposed method of product ion confirmation scan along with multiple reaction monitoring resulted in a very accurate identification of each amino acid. Our innovative protocol had high sensitivity and specificity in the analysis of cases of suspected metabolic diseases.
Rapid screening of radioactivity in food for emergency response.
Bari, A; Khan, A J; Semkow, T M; Syed, U-F; Roselan, A; Haines, D K; Roth, G; West, L; Arndt, M
2011-06-01
This paper describes the development of methods for the rapid screening of gross alpha (GA) and gross beta (GB) radioactivity in liquid foods, specifically, Tang drink mix, apple juice, and milk, as well as screening of GA, GB, and gamma radioactivity from surface deposition on apples. Detailed procedures were developed for spiking of matrices with (241)Am (alpha radioactivity), (90)Sr/(90)Y (beta radioactivity), and (60)Co, (137)Cs, and (241)Am (gamma radioactivity). Matrix stability studies were performed for 43 days after spiking. The method for liquid foods is based upon rapid digestion, evaporation, and flaming, followed by gas proportional (GP) counting. For the apple matrix, surface radioactivity was acid-leached, followed by GP counting and/or gamma spectrometry. The average leaching recoveries from four different apple brands were between 63% and 96%, and have been interpreted on the basis of ion transport through the apple cuticle. The minimum detectable concentrations (MDCs) were calculated from either the background or method-blank (MB) measurements. They were found to satisfy the required U.S. FDA's Derived Intervention Levels (DILs) in all but one case. The newly developed methods can perform radioactivity screening in foods within a few hours and have the potential to capacity with further automation. They are especially applicable to emergency response following accidental or intentional contamination of food with radioactivity. Published by Elsevier Ltd.
[Clinical application of mass spectrometry in the pediatric field: current topics].
Yamaguchi, Seiji
2013-09-01
Mass spectrometry, including tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC/MS), is becoming prominent in the diagnosis of metabolic disorders in the pediatric field. It enables biochemical diagnosis of metabolic disorders from the metabolic profiles obtained by MS/MS and/or GC/MS. In neonatal mass screening for inherited metabolic disease (IMD) using MS/MS, amino acids and acylcarnitines on dried blood spots are analyzed. The target diseases include amino acidemia, urea cycle disorder, organic acidemia, and fatty acid oxidation disorder. In the MS/MS screening, organic acid analysis using GC/MS is required for differential and/or definite diagnosis of the IMDs. GC/MS data processing, however, is difficult, and metabolic diagnosis often requires the necessary skills and expertize. We developed an automated system of GC/MS data processing and autodiagnosis, and the biochemical diagnosis using GC/MS became markedly easier and user-friendly. Mass spectrometric techniques will expand from research laboratories to clinical laboratories in the near future.
Lehotay, Steven J; Lightfield, Alan R; Geis-Asteggiante, Lucía; Schneider, Marilyn J; Dutko, Terry; Ng, Chilton; Bluhm, Louis; Mastovska, Katerina
2012-08-01
In the USA, the US Department of Agriculture's Food Safety and Inspection Service (FSIS) conducts the National Residue Program designed to monitor veterinary drug and other chemical residues in beef and other slaughtered food animals. Currently, FSIS uses a 7-plate bioassay in the laboratory to screen for antimicrobial drugs in bovine kidneys from those animals tested positive by inspectors in the slaughter establishments. The microbial inhibition bioassay has several limitations in terms of monitoring scope, sensitivity, selectivity, and analysis time. Ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS) has many advantages over the bioassay for this application, and this study was designed to develop, evaluate, and validate a fast UHPLC-MS/MS method for antibiotics and other high-priority veterinary drugs in bovine kidney. Five existing multi-class, multi-residue methods from the literature were tested and compared, and each performed similarly. Experiments with incurred samples demonstrated that a 5-min shake of 2 g homogenized kidney with 10 ml of 4/1 (v/v) acetonitrile/water followed by simultaneous clean-up of the initial extract with 0.5 g C18 and 10 ml hexane gave a fast, simple, and effective sample preparation method for the <10 min UHPLC-MS/MS analysis. An extensive 5-day validation process demonstrated that the final method could be used to acceptably screen for 54 of the 62 drugs tested, and 50 of those met qualitative MS identification criteria. Quantification was not needed in the application, but the method gave ≥ 70% recoveries and ≤ 25% reproducibilities for 30 of the drugs. Published 2012. This article is a U.S. Government work and is in the public domain of the USA.
Walorczyk, Stanisław; Drożdżyński, Dariusz; Kowalska, Jolanta; Remlein-Starosta, Dorota; Ziółkowski, Andrzej; Przewoźniak, Monika; Gnusowski, Bogusław
2013-08-15
A sensitive, accurate and reliable multiresidue method based on the application of gas chromatography-tandem quadrupole mass spectrometry (GC-QqQ-MS/MS) has been established for screening, identification and quantification of a large number of pesticide residues in produce. The method was accredited in compliance with PN-EN ISO/IEC 17025:2005 standard and it was operated under flexible scope as PB-11 method. The flexible scope of accreditation allowed for minor modifications and extension of the analytical scope while using the same analytical technique. During the years 2007-2010, the method was used for the purpose of verification of organic crop production by multiresidue analysis for the presence of pesticides. A total of 528 samples of differing matrices such as fruits, vegetables, cereals, plant leaves and other green parts were analysed, of which 4.4% samples contained pesticide residues above the threshold value of 0.01 mg/kg. A total of 20 different pesticide residues were determined in the samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fragment screening of cyclin G-associated kinase by weak affinity chromatography.
Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten
2012-11-01
Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.
Mass spectrometry-based metabolomics: applications to biomarker and metabolic pathway research.
Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun
2016-01-01
Mass spectrometry-based metabolomics has become increasingly popular in molecular medicine. High-definition mass spectrometry (MS), coupled with pattern recognition methods, have been carried out to obtain comprehensive metabolite profiling and metabolic pathway of large biological datasets. This sets the scene for a new and powerful diagnostic approach. Analysis of the key metabolites in body fluids has become an important part of improving disease diagnosis. With technological advances in analytical techniques, the ability to measure low-molecular-weight metabolites in bio-samples provides a powerful platform for identifying metabolites that are uniquely correlated with a specific human disease. MS-based metabolomics can lead to enhanced understanding of disease mechanisms and to new diagnostic markers and has a strong potential to contribute to improving early diagnosis of diseases. This review will highlight the importance and benefit with certain characteristic examples of MS-metabolomics for identifying metabolic pathways and metabolites that accurately screen for potential diagnostic biomarkers of diseases. Copyright © 2015 John Wiley & Sons, Ltd.
Xu, Yi-Fan; Lu, Wenyun; Rabinowitz, Joshua D.
2015-01-15
Liquid chromatography–mass spectrometry (LC-MS) technology allows for rapid quantitation of cellular metabolites, with metabolites identified by mass spectrometry and chromatographic retention time. Recently, with the development of rapid scanning high-resolution high accuracy mass spectrometers and the desire for high throughput screening, minimal or no chromatographic separation has become increasingly popular. Furthermore, when analyzing complex cellular extracts, however, the lack of chromatographic separation could potentially result in misannotation of structurally related metabolites. Here, we show that, even using electrospray ionization, a soft ionization method, in-source fragmentation generates unwanted byproducts of identical mass to common metabolites. For example, nucleotide-triphosphates generate nucleotide-diphosphates, andmore » hexose-phosphates generate triose-phosphates. We also evaluated yeast intracellular metabolite extracts and found more than 20 cases of in-source fragments that mimic common metabolites. Finally and accordingly, chromatographic separation is required for accurate quantitation of many common cellular metabolites.« less
A rapid screen for four corticosteroids in equine synovial fluid.
Agrawal, Karan; Ebel, Joseph G; Bischoff, Karyn
2014-06-01
Most antidoping method development in the equine industry has been for plasma and urine, though there has been recent interest in the analysis of synovial fluid for evidence of doping by intra-articular corticosteroid injection. Published methods for corticosteroid analysis in synovial fluid are primarily singleplex methods, do not screen for all corticosteroids of interest and are not adequately sensitive. The purpose of this study is to develop a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) screening method for the detection of four of the most common intra-articularly administered corticosteroids--betamethasone, methylprednisolone, methylprednisolone acetate and triamcinolone acetonide. Sample preparation consisted of protein precipitation followed by a basified liquid-liquid extraction. LC-MS-MS experiments consisted of a six-min isocratic separation using a Phenomenex Polar-RP stationary phase and a mobile phase consisting of 35% acetonitrile, 5 mM ammonium acetate and 0.1% formic acid in nanopure water. The detection system used was a triple quadrupole mass analyzer with thermospray ionization, and compounds were identified using selective reaction monitoring. The method was validated to the ISO/IEC 17025 standard, and real synovial fluid samples were analyzed to demonstrate the application of the method in an antidoping context. The method was highly selective for the four corticosteroids with limits of detection of 1-3 ng/mL. The extraction efficiency was 50-101%, and the matrix effects were 14-31%. These results indicate that the method is a rapid and sensitive screen for the four corticosteroids in equine synovial fluid, fit for purpose for equine antidoping assays.
Guo, Tianyang; Fang, Pingping; Jiang, Juanjuan; Zhang, Feng; Yong, Wei; Liu, Jiahui; Dong, Yiyang
2016-11-04
A rapid method to screen and quantify multi-class analytic targets in red wine has been developed by direct analysis in real time (DART) coupled with triple quadruple tandem mass spectrometry (QqQ-MS). A modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) procedure was used for increasing analytical speed and reducing matrix effect, and the multiple reaction monitoring (MRM) in DART-MS/MS ensured accurate analysis. One bottle of wine containing 50 pesticides and 12 adulterants, i.e., preservatives, antioxidant, sweeteners, and azo dyes, could be totally determined less than 12min. This method exhibited proper linearity (R 2 ≥0.99) in the range of 1-1000ng/mL for pesticides and 10-5000ng/mL for adulterants. The limits of detection (LODs) were obtained in a 0.5-50ng/mL range for pesticides and 5-50ng/mL range for adulterants, and the limits of quantification (LOQs) were in a 1-100ng/mL range for pesticides and 10-250ng/mL range for adulterants. Three spiked levels for each analyte in wine were evaluated, and the recoveries were in a scope of 75-120%. The results demonstrated DART-MS/MS was a rapid and simple method, and could be applied to rapid analyze residual pesticides and illegal adulterants in a large quantities of red wine. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Dongmei; Yu, Jie; Tao, Yanfei; Pan, Yuanhu; Xie, Shuyu; Huang, Lingli; Peng, Dapeng; Wang, Xu; Wang, Yulian; Liu, Zhenli; Yuan, Zonghui
2016-04-01
A method for the analysis of 120 drugs in animal derived food was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These analytes belong to 12 families of veterinary anti-microbial agents (quinolones, macrolides, β-lactams, nitroimidazoles, sulfonamides, lincomycines, chloramphenicols, quinoxalines, tetracyclines, polypeptides, and antibacterial synergists) as well as other compounds not assigned to a particular drug family. The animal derived food samples include muscle and liver of swine, bovine, sheep, and chicken, as well as hen eggs and dairy milk. The sample preparation included ultrasound-assisted extraction (UAE) with acetonitrile-water and a final clean-up with auto solid-phase extraction (SPE) on HLB cartridges. The detection and quantification of 120 anti-microbial agents was performed using LC-MS/MS in positive and negative ion mode. The chromatographic separation was performed on a C18 column using acetonitrile and 0.1% formic acid as the mobile phase. The limit of detection (LOD) and limit of quantification (LOQ) of all drugs in food-producing animals were 0.5-3.0μg/kg and 1.5-10.0μg/kg, respectively. The developed method was successfully utilized to monitor real samples, which demonstrated that it is a simple, fast, and robust method, and could be used as a regulatory to screen for the presence of residues from veterinary anti-microbial drugs in animal-derived foods. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of coal-related model compounds using a tandem mass spectrometry.
Li, Guo-Sheng; Dong, Xueming; Fan, Xing; You, Chun-Yan; Wu, Ge; Zhao, Yun-Peng; Lu, Yao; Wei, Xian-Yong; Ma, Feng-Yun
2018-05-08
Gas chromotography/mass spectrometry (GC/MS) is a routine and basic instrumental method for the analysis of complex coal conversion products in chemical industry. To further enhance practical potentials of GC/MS in chemical industry, a tandem MS method for the selection of ion pair applied in monitoring coal conversions was established by using GC/quadrupole time-of-flight MS (GC/Q-TOF MS). The corresponding fragmentation pathways were explored and suitable ion pairs were screened. Fourteen coal-related model compounds (CRMCs) were analyzed using a GC/Q-TOF MS with different collision induced dissociation (CID) energies (5-20 eV). The fragmentation pathways can offer a better understanding of chemical bond breaking, hydrogen transfer, rearrangement reactions and elimination of neutral fragments for CRMCs during the CID process. The precursor ions of aromatic hydrocarbons without alkyl chain were hard to fragment with a CID energy of 20 eV. But aromatic hydrocarbons with branched chains were prone to fragment via the loss of alkyl chains and further fragmented through ring-open reactions. Compared to C alk -C ar bond, C ar -C ar bond was hard to fragment duo to its high bond dissociation energy. The existence of heteroatoms facilitated fragmentation that was conducive to screening ion pair. The CID technique of GC/Q-TOF MS will contribute to the studies on the organic composition of coals and building monitoring methods for coal conversions via fragmentation and ion pair selection. This article is protected by copyright. All rights reserved.
Otero-Fernández, Mara; Cocho, José Ángel; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2013-06-19
A micro-analytical method based on spotting urine samples (20μL) onto blood/urine spot collection cards followed by air-drying and extraction (dried urine spot, DUS) was developed and validated for the screening/confirmation assay of morphine, 6-methylacetylmorphine (6-MAM), codeine, cocaine and benzoylecgonine (BZE). Acetonitrile (3 mL) was found to be a useful solvent for target extraction from DUSs under an orbital-horizontal stirring at 180 rpm for 10 min. Determinations were performed by direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) under positive electrospray ionization conditions, and by using multiple reaction monitoring (MRM) with one precursor ion/product ion transition for the identification and quantification (deuterated analogs of each target as internal standards) of each analyte. The limits of detection of the method were 0.26, 0.94, 1.5, 1.1, and 2.0 ng mL(-1), for cocaine, BZE, codeine, morphine and 6-MAM, respectively; whereas, relative standard deviations of intra- and inter-day precision were lower than 8 and 11%, respectively, and intra- and inter-day analytical recoveries ranged from 94±4 to 105±3%. The small volume of urine required (20 μL), combined with the simplicity of the analytical technique makes it a useful procedure for screening/quantifying drugs of abuse. The method was successfully applied to the analysis of urine from polydrug abusers. Copyright © 2013 Elsevier B.V. All rights reserved.
Hong, Xinying; Kumar, Arun Babu; Ronald Scott, C; Gelb, Michael H
2018-03-29
All States screen for biotinidase deficiency and galactosemia, and X-linked adrenoleukodystrophy (X-ALD) has recently been added to the Recommended Uniform Screening Panel (RUSP).We sought to consolidate these tests by combining them into a single multiplex tandem mass spectrometry assay as well as to improve the current protocol for newborn screening of galactosemia.A 3 mm punch of a dried blood spot (DBS) was extracted with organic solvent for analysis of the C26:0-lysophosphatidylcholine biomarker for X-ALD.An additional punch was used to assay galactose-1-phosphate uridyltransferase (GALT) and biotinidase.All assays were combined for a single injection for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (2.3 min per sample).The GALT LC-MS/MS assay does not give a false positive for galactosemia if glucose-6-phosphate dehydrogenase is deficient.The multiplex assay shows acceptable reproducibility and provides for rapid analysis of X-ALD, biotinidase deficiency, and galactosemia.The throughput and ease of sample preparation are acceptable for newborn screening laboratories.We also show that the LC-MS/MS assay is expandable to include several other diseases including Pompe and Hurler diseases (enzymatic activities and biomarkers).Because of consolidation of assays, less manpower is needed compared to running individual assays on separate platforms.The flexibility of the LC-MS/MS platform allows each newborn screening laboratory to analyze the set of diseases offered in their panel. Copyright © 2018 Elsevier Inc. All rights reserved.
2015-01-01
Tandem mass spectrometry for the multiplex and quantitative analysis of enzyme activities in dried blood spots on newborn screening cards has emerged as a powerful technique for early assessment of lysosomal storage diseases. Here we report the design and process-scale synthesis of substrates for the enzymes α-l-iduronidase, iduronate-2-sulfatase, and N-acetylgalactosamine-4-sulfatase that are used for newborn screening of mucopolysaccharidosis types I, II, and VI. The products contain a bisamide unit that is hypothesized to readily protonate in the gas phase, which improves detection sensitivity by tandem mass spectrometry. The products contain a benzoyl group, which provides a useful site for inexpensive deuteration, thus facilitating the preparation of internal standards for the accurate quantification of enzymatic products. Finally, the reagents are designed with ease of synthesis in mind, thus permitting scale-up preparation to support worldwide newborn screening of lysosomal storage diseases. The new reagents provide the most sensitive assay for the three lysosomal enzymes reported to date as shown by their performance in reactions using dried blood spots as the enzyme source. Also, the ratio of assay signal to that measured in the absence of blood (background) is superior to all previously reported mucopolysaccharidosis types I, II, and VI assays. PMID:24694010
Field applications of ion-mobility spectrometry
NASA Astrophysics Data System (ADS)
Brown, Patricia A.
1997-02-01
Ion mobility spectrometry (IMS) is an excellent tool for detection of controlled substances under field conditions. Plasmagrams and tables showing the results of field applications will be discussed. Residues of drugs, such as cocaine and heroin, can be left anywhere including vehicles, boats, and houses. In houses, the carpets, walls, and floors are good locations for residues to adhere. Individual clothing can also be contaminated with drug residue. Vehicles that are suspected of having previously smuggled illegal substances can be vacuumed and screened. Tablets that look similar and respond the same when screened with the Marquis reagent can be differentiated by IMS. With Southern California being the 'methamphetamine capital of the world' and the resurgence of phencyclidine, IMS has proven extremely valuable in the screening of abandoned clandestine laboratory sites and vehicles in which the clandestine laboratories; chemicals and glassware were transported. IMS is very responsive to ephedrine/pseudophedrine, a precursor of methamphetamine and 1-piperidinocyclohexanecarbonitrile, an intermediate of phencyclidine. Once residues are detected, vacuum samples, and/or methanol wipes are collected and analyzed at the DEA Laboratory for confirmation of the suspected substance using GC-IRD or Mass Spectrometry.
Sun, Jing; Cao, Ling; Feng, Youlong; Tan, Li
2014-11-01
The compounds with similar structure often have similar pharmacological activities. So it is a trend for illegal addition that new derivatives of effective drugs are synthesized to avoid the statutory test. This bring challenges to crack down on illegal addition behavior, however, modified derivatives usually have similar product ions, which allow for precursor ion scanning. In this work, precursor ion scanning mode of a triple quadrupole mass spectrometer was first applied to screen illegally added drugs in complex matrix such as Chinese traditional patent medicines and healthy foods. Phosphodiesterase-5 inhibitors were used as experimental examples. Through the analysis of the structure and mass spectrum characteristics of the compounds, phosphodiesterase-5 inhibitors were classified, and their common product ions were screened by full scan of product ions of typical compounds. Then high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with precursor ion scanning mode was established based on the optimization of MS parameters. The effect of mass parameters and the choice of fragment ions were also studied. The method was applied to determine actual samples and further refined. The results demonstrated that this method can meet the need of rapid screening of unknown derivatives of phosphodiesterase-5 inhibitors in complex matrix, and prevent unknown derivatives undetected. This method shows advantages in sensitivity, specificity and efficiency, and is worth to be further investigated.
Bade, Richard; Bijlsma, Lubertus; Miller, Thomas H; Barron, Leon P; Sancho, Juan Vicente; Hernández, Felix
2015-12-15
The recent development of broad-scope high resolution mass spectrometry (HRMS) screening methods has resulted in a much improved capability for new compound identification in environmental samples. However, positive identifications at the ng/L concentration level rely on analytical reference standards for chromatographic retention time (tR) and mass spectral comparisons. Chromatographic tR prediction can play a role in increasing confidence in suspect screening efforts for new compounds in the environment, especially when standards are not available, but reliable methods are lacking. The current work focuses on the development of artificial neural networks (ANNs) for tR prediction in gradient reversed-phase liquid chromatography and applied along with HRMS data to suspect screening of wastewater and environmental surface water samples. Based on a compound tR dataset of >500 compounds, an optimized 4-layer back-propagation multi-layer perceptron model enabled predictions for 85% of all compounds to within 2min of their measured tR for training (n=344) and verification (n=100) datasets. To evaluate the ANN ability for generalization to new data, the model was further tested using 100 randomly selected compounds and revealed 95% prediction accuracy within the 2-minute elution interval. Given the increasing concern on the presence of drug metabolites and other transformation products (TPs) in the aquatic environment, the model was applied along with HRMS data for preliminary identification of pharmaceutically-related compounds in real samples. Examples of compounds where reference standards were subsequently acquired and later confirmed are also presented. To our knowledge, this work presents for the first time, the successful application of an accurate retention time predictor and HRMS data-mining using the largest number of compounds to preliminarily identify new or emerging contaminants in wastewater and surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.
Kinyua, Juliet; Negreira, Noelia; Ibáñez, María; Bijlsma, Lubertus; Hernández, Félix; Covaci, Adrian; van Nuijs, Alexander L N
2015-11-01
Identification of new psychoactive substances (NPS) is challenging. Developing targeted methods for their analysis can be difficult and costly due to their impermanence on the drug scene. Accurate-mass mass spectrometry (AMMS) using a quadrupole time-of-flight (QTOF) analyzer can be useful for wide-scope screening since it provides sensitive, full-spectrum MS data. Our article presents a qualitative screening workflow based on data-independent acquisition mode (all-ions MS/MS) on liquid chromatography (LC) coupled to QTOFMS for the detection and identification of NPS in biological matrices. The workflow combines and structures fundamentals of target and suspect screening data processing techniques in a structured algorithm. This allows the detection and tentative identification of NPS and their metabolites. We have applied the workflow to two actual case studies involving drug intoxications where we detected and confirmed the parent compounds ketamine, 25B-NBOMe, 25C-NBOMe, and several predicted phase I and II metabolites not previously reported in urine and serum samples. The screening workflow demonstrates the added value for the detection and identification of NPS in biological matrices.
Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger
2015-06-01
A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.
Wang, Xiu-Li; Zhu, Ying; Fang, Qun
2014-01-07
In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.
Masson, Glenn R.; Maslen, Sarah L.
2017-01-01
Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics. PMID:28381646
There is a growing need for rapid chemical screening and prioritization to inform regulatory decision-making on thousands of chemicals in the environment. We have previously used high-resolution mass spectrometry to examine household vacuum dust samples using liquid chromatograph...
Yang, Qian; Manicke, Nicholas E.; Wang, He; Petucci, Christopher; Cooks, R. Graham
2013-01-01
A simple protocol for rapid quantitation of acylcarnitines in serum and whole blood has been developed using paper spray mass spectrometry. Dried serum and whole blood containing a mixture of ten acylcarnitines at various concentrations were analyzed as spots from paper directly without any sample pretreatment, separation, or derivatization. The composition of the spray solvent was found to be a critical factor: for serum samples, spray solvent of methanol/water/formic acid (80:20:0.1) gave the best signal intensity while for blood samples which contain more matrix components, acetonitrile/water (90:10) was a much more suitable spray solvent. For the paper type and size used, 0.5 μL of sample provided an optimal signal for both serum and whole blood samples. For quantitative profiling, the limits of quantitation obtained from both serum and blood were much lower than the clinically validated cutoff values for diagnosis of fatty acid oxidation disorders in newborn screening. Linearity (R2>0.95) and reproducibility (RSD ~10 %) were achieved in the concentration ranges from 100 nM to 5 μM for the C2 acylcarnitine, and for other acylcarnitines, these values were from 10 to 500 nM. Acylcarnitine profiles offer an effective demonstration of the fact that paper spray mass spectrometry is an appropriate, simple, rapid method with high sensitivity and high reproducibility applicable to newborn screening tests. PMID:22760507
Integrated quantification and identification of aldehydes and ketones in biological samples.
Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer
2014-05-20
The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by adding chemical information to MS data. Our strategy is based on rapid autosampler-in-needle-derivatization with p-toluenesulfonylhydrazine (TSH). The resulting TSH-hydrazones are separated by ultrahigh-performance liquid chromatography (UHPLC) and detected by electrospray ionization-quadrupole-time-of-flight (ESI-QqTOF) mass spectrometry using a SWATH (Sequential Window Acquisition of all Theoretical Fragment-Ion Spectra) data-independent high-resolution mass spectrometry (HR-MS) approach. Derivatization makes small, poorly ionizable or retained analytes amenable to reversed phase chromatography and electrospray ionization in both polarities. Negatively charged TSH-hydrazone ions furthermore show a simple and predictable fragmentation pattern upon collision induced dissociation, which enables the chemo-selective screening for unknown aldehydes and ketones via a signature fragment ion (m/z 155.0172). By means of SWATH, targeted and nontargeted application scenarios of the suggested derivatization route are enabled in the frame of a single UHPLC-ESI-QqTOF-HR-MS workflow. The method's ability to simultaneously quantify and identify molecules containing aldehyde and ketone groups is demonstrated using 61 target analytes from various compound classes and a (13)C labeled yeast matrix. The identification of unknowns in biological samples is detailed using the example of indole-3-acetaldehyde.
Stals, M; Verhoeven, S; Bruggeman, M; Pellens, V; Schroeyers, W; Schreurs, S
2014-01-01
The Euratom BSS requires that in the near future (2015) the building materials for application in dwellings or buildings such as offices or workshops are screened for NORM nuclides. The screening tool is the activity concentration index (ACI). Therefore it is expected that a large number of building materials will be screened for NORM and thus require ACI determination. Nowadays, the proposed standard for determination of building material ACI is a laboratory analyses technique with high purity germanium spectrometry and 21 days equilibrium delay. In this paper, the B-NORM method for determination of building material ACI is assessed as a faster method that can be performed on-site, alternative to the aforementioned standard method. The B-NORM method utilizes a LaBr3(Ce) scintillation probe to obtain the spectral data. Commercially available software was applied to comprehensively take into account the factors determining the counting efficiency. The ACI was determined by interpreting the gamma spectrum from (226)Ra and its progeny; (232)Th progeny and (40)K. In order to assess the accuracy of the B-NORM method, a large selection of samples was analyzed by a certified laboratory and the results were compared with the B-NORM results. The results obtained with the B-NORM method were in good correlation with the results obtained by the certified laboratory, indicating that the B-NORM method is an appropriate screening method to assess building material ACI. The B-NORM method was applied to analyze more than 120 building materials on the Belgian market. No building materials that exceed the proposed reference level of 1 mSv/year were encountered. Copyright © 2013 Elsevier Ltd. All rights reserved.
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.
Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato
2017-02-01
Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.
Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinzon, NM; Aukema, KG; Gralnick, JA
A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone productionmore » as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high-throughput evaluation of bacterial and algal hydrophobic molecule production via Nile red fluorescence from lipids and esters was extended in this study to include hydrocarbons and ketones. This work demonstrated accurate, high-throughput detection of high-level bacterial long-chain ketone and hydrocarbon production by screening for increased fluorescence of the hydrophobic dye Nile red.« less
Barbara, Joanna E; Castro-Perez, Jose M
2011-10-30
Electrophilic reactive metabolite screening by liquid chromatography/mass spectrometry (LC/MS) is commonly performed during drug discovery and early-stage drug development. Accurate mass spectrometry has excellent utility in this application, but sophisticated data processing strategies are essential to extract useful information. Herein, a unified approach to glutathione (GSH) trapped reactive metabolite screening with high-resolution LC/TOF MS(E) analysis and drug-conjugate-specific in silico data processing was applied to rapid analysis of test compounds without the need for stable- or radio-isotope-labeled trapping agents. Accurate mass defect filtering (MDF) with a C-heteroatom dealkylation algorithm dynamic with mass range was compared to linear MDF and shown to minimize false positive results. MS(E) data-filtering, time-alignment and data mining post-acquisition enabled detection of 53 GSH conjugates overall formed from 5 drugs. Automated comparison of sample and control data in conjunction with the mass defect filter enabled detection of several conjugates that were not evident with mass defect filtering alone. High- and low-energy MS(E) data were time-aligned to generate in silico product ion spectra which were successfully applied to structural elucidation of detected GSH conjugates. Pseudo neutral loss and precursor ion chromatograms derived post-acquisition demonstrated 50.9% potential coverage, at best, of the detected conjugates by any individual precursor or neutral loss scan type. In contrast with commonly applied neutral loss and precursor-based techniques, the unified method has the advantage of applicability across different classes of GSH conjugates. The unified method was also successfully applied to cyanide trapping analysis and has potential for application to alternate trapping agents. Copyright © 2011 John Wiley & Sons, Ltd.
Screening for the synthetic cannabinoid JWH-018 and its major metabolites in human doping controls.
Möller, Ines; Wintermeyer, Annette; Bender, Katja; Jübner, Martin; Thomas, Andreas; Krug, Oliver; Schänzer, Wilhelm; Thevis, Mario
2011-09-01
Referred to as 'spice', several new drugs, advertised as herbal blends, have appeared on the market in the last few years, in which the synthetic cannabinoids JWH-018 and a C(8) homologue of CP 47,497 were identified as major active ingredients. Due to their reported cannabis-like effects, many European countries have banned these substances. The World Anti-Doping Agency has also explicitly prohibited synthetic cannabinoids in elite sport in-competition. Since urine specimens have been the preferred doping control samples, the elucidation of the metabolic pathways of these substances is of particular importance to implement them in sports drug testing programmes. In a recent report, an in vitro phase-I metabolism study of JWH-018 was presented yielding mainly hydroxylated and N-dealkylated metabolites. Due to these findings, a urine sample of a healthy man declaring to have smoked a 'spice' product was screened for potential phase-I and -II metabolites by high-resolution/high-accuracy mass spectrometry in the present report. The majority of the phase-I metabolites observed in earlier in vitro studies of JWH-018 were detected in this urine specimen and furthermore most of their respective monoglucuronides. As no intact JWH-018 was detectable, the monohydroxylated metabolite being the most abundant one was chosen as a target analyte for sports drug testing purposes; a detection method was subsequently developed and validated in accordance to conventional screening protocols based on enzymatic hydrolysis, liquid-liquid extraction, and liquid chromatography/electrospray tandem mass spectrometry analysis. The method was applied to approximately 7500 urine doping control samples yielding two JWH-018 findings and demonstrated its capability for a sensitive and selective identification of JWH-018 and its metabolites in human urine. Copyright © 2010 John Wiley & Sons, Ltd.
Wide-range screening of psychoactive substances by FIA-HRMS: identification strategies.
Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa
2015-06-01
Recreational drugs (illicit drugs, human and veterinary medicines, legal highs, etc.) often contain lacing agents and adulterants which are not related to the main active ingredient. Serious side effects and even the death of the consumer have been related to the consumption of mixtures of psychoactive substances and/or adulterants, so it is important to know the actual composition of recreational drugs. In this work, a method based on flow injection analysis (FIA) coupled with high-resolution mass spectrometry (HRMS) is proposed for the fast identification of psychoactive substances in recreational drugs and legal highs. The FIA and HRMS working conditions were optimized in order to detect a wide range of psychoactive compounds. As most of the psychoactive substances are acid-base compounds, methanol-0.1 % aqueous formic acid (1:1 v/v) as a carrier solvent and electrospray in both positive ion mode and negative ion mode were used. Two data acquisition modes, full scan at high mass resolution (HRMS) and data-dependent tandem mass spectrometry (ddMS/HRMS) with a quadrupole-Orbitrap mass analyzer were used, resulting in sufficient selectivity for identification of the components of the samples. A custom-made database containing over 450 substances, including psychoactive compounds and common adulterants, was built to perform a high-throughput target and suspect screening. Moreover, online accurate mass databases and mass fragmenter software were used to identify unknowns. Some examples, selected among the analyzed samples of recreational drugs and legal highs using the FIA-HRMS(ddMS/HRMS) method developed, are discussed to illustrate the screening strategy used in this study. The results showed that many of the analyzed samples were adulterated, and in some cases the sample composition did not match that of the supposed marketed substance.
The current revolution in newborn screening: new technology, old controversies.
Tarini, Beth A
2007-08-01
Newborn screening has provided a model of a successful public health screening program for the past 40 years. However, the history of newborn screening is not without controversy. Many of these controversies have been rekindled with the introduction of tandem mass spectrometry, a technology that has greatly increased our ability to detect potential disease in asymptomatic newborns. This review highlights the challenges raised by this and future technological advances as we strive to maintain the success of newborn screening in the 21st century.
[Blood sampling using "dried blood spot": a clinical biology revolution underway?].
Hirtz, Christophe; Lehmann, Sylvain
2015-01-01
Blood testing using the dried blood spot (DBS) is used since the 1960s in clinical analysis, mainly within the framework of the neonatal screening (Guthrie test). Since then numerous analytes such as nucleic acids, small molecules or lipids, were successfully measured on the DBS. While this pre-analytical method represents an interesting alternative to classic blood sampling, its use in routine is still limited. We review here the different clinical applications of the blood sampling on DBS and estimate its future place, supported by the new methods of analysis as the LC-MS mass spectrometry.
Mass spectrometry in clinical chemistry: the case of newborn screening.
la Marca, Giancarlo
2014-12-01
Newborn screening (NBS) program is a complex and organized system consisting of family and personnel education, biochemical tests, confirmatory biochemical and genetic tests, diagnosis, therapy, and patient follow up. The program identifies treatable metabolic disorders possibly when asymptomatic by using dried blood spot (DBS). During the last 20 years tandem mass spectrometry (TMS) has become the leading technology in NBS programs demonstrating to be versatile, sensitive and specific. There is consistent evidence of benefits from NBS for many disorders detected by TMS as well as for congenital hypothyroidism, cystic fibrosis, congenital adrenal hyperplasia by immune-enzymatic methods. Real time PCR tests have more recently been proposed for the detection of some severe combined immunodeficiences (SCID) along with the use of TMS for ADA and PNP SCID; a first evaluation of their cost-benefit ratio is still ongoing. Avoiding false negative results by using specific biomarkers and reducing the false positive rate by using second tier tests, is fundamental for a successful NBS program. The fully integration of NBS and diagnostic laboratories with clinical service is crucial to have the best effectiveness in a comprehensive NBS system. Copyright © 2014 Elsevier B.V. All rights reserved.
Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P
2015-02-01
Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.
Smith, Shani; Gieseker, Charles; Reimschuessel, Renate; Decker, Christie-Sue; Carson, Mary C
2009-11-13
LC-ion trap mass spectrometry was used to screen and confirm 38 compounds from a variety of drug classes in four species of fish: trout, salmon, catfish, and tilapia. Samples were extracted with acetonitrile and hexane. The acetonitrile phase was evaporated, redissolved in water and acetonitrile, and analyzed by gradient chromatography on a phenyl column. MS(2) or MS(3) spectra were monitored for each compound. Qualitative method performance was evaluated by the analysis over several days of replicate samples of control fish, fish fortified with a drug mixture at 1 ppm, 0.1 ppm and 0.01 ppm, and fish dosed with a representative from each drug class. Half of the 38 drugs were confirmed at 0.01 ppm, the lowest fortification level. This included all of the quinolones and fluoroquinolones, the macrolides, malachite green, and most of the imidazoles. Florfenicol amine, metronidazole, sulfonamides, tetracyclines, and most of the betalactams were confirmed at 0.1 ppm. Ivermectin and penicillin G were only detectable in the 1 ppm fortified samples. With the exception of amoxicillin, emamectin, metronidazole, and tylosin, residue presence was confirmed in all the dosed fish.
Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien
2016-01-01
The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Streit, Elisabeth; Schwab, Christina; Sulyok, Michael; Naehrer, Karin; Krska, Rudolf; Schatzmayr, Gerd
2013-01-01
The development of liquid chromatography-mass spectrometry (LC-MS)/mass spectrometry (MS) methods for the simultaneous detection and quantification of a broad spectrum of mycotoxins has facilitated the screening of a larger number of samples for contamination with a wide array of less well-known “emerging” mycotoxins and other metabolites. In this study, 83 samples of feed and feed raw materials were analysed. All of them were found to contain seven to 69 metabolites. The total number of detected metabolites amounts to 139. Fusarium mycotoxins were most common, but a number of Alternaria toxins also occurred very often. Furthermore, two so-called masked mycotoxins (i.e., mycotoxin conjugates), namely deoxynivalenol-3-glucoside (75% positives) and zearalenone-4-sulfate (49% positives), were frequently detected. Although the observed median concentrations of the individual analytes were generally in the low μg/kg range, evaluating the toxicological potential of a given sample is difficult. Toxicity data on less well-known mycotoxins and other detected metabolites are notoriously scarce, as an overview on the available information on the most commonly detected metabolites shows. Besides, the possible synergistic effects of co-occurring substances have to be considered. PMID:23529186
Lu, Yanzhen; Wu, Nan; Fang, Yingtong; Shaheen, Nusrat; Wei, Yun
2017-10-27
Many natural products are rich in antioxidants which play an important role in preventing or postponing a variety of diseases, such as cardiovascular and inflammatory disease, diabetes as well as breast cancer. In this paper, an automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography (DPPH-HPLC) method was established for antioxidants screening with nine standards including organic acids (4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, and benzoic acid), alkaloids (coptisine and berberine), and flavonoids (quercitrin, astragalin, and quercetin). The optimal concentration of DPPH was determined, and six potential antioxidants including 4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, quercitrin, astragalin, and quercetin, and three non-antioxidants including benzoic acid, coptisine, and berberine, were successfully screened out and validated by conventional DPPH radical scavenging activity assay. The established method has been applied to the crude samples of Saccharum officinarum rinds, Coptis chinensis powders, and Malus pumila leaves, consecutively. Two potential antioxidant compounds from Saccharum officinarum rinds and five potential antioxidant compounds from Malus pumila eaves were rapidly screened out. Then these seven potential antioxidants were purified and identified as p-coumaric acid, ferulic acid, phloridzin, isoquercitrin, quercetin-3-xyloside, quercetin-3-arabinoside, and quercetin-3-rhamnoside using countercurrent chromatography combined with mass spectrometry and their antioxidant activities were further evaluated by conventional DPPH radical scavenging assay. The activity result was in accordance with that of the established method. This established method is cheap and automatic, and could be used as an efficient tool for high-throughput antioxidant screening from various complex natural products. Copyright © 2017 Elsevier B.V. All rights reserved.
A rational approach to heavy-atom derivative screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, M. Gordon; Radaev, Sergei; Sun, Peter D., E-mail: psun@nih.gov
2010-04-01
In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom-derivative screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searches requiring large numbers of well diffracting crystals. In addition, the phasingmore » power of heavy-atom derivatives is often compromised by lack of isomorphism or even loss of diffraction. In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom derivative-screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. The method includes three basic steps: (i) the selection of likely reactive compounds for a given protein and specific crystallization conditions based on pre-defined heavy-atom compound reactivity profiles, (ii) screening of the chosen heavy-atom compounds for their ability to form protein adducts using mass spectrometry and (iii) derivatization of crystals with selected heavy-metal compounds using the quick-soak method to maximize diffraction quality and minimize non-isomorphism. Overall, this system streamlines the process of heavy-atom compound identification and minimizes the problem of non-isomorphism in phasing.« less
Odoardi, Sara; Fisichella, Marco; Romolo, Francesco Saverio; Strano-Rossi, Sabina
2015-09-01
The increasing number of new psychoactive substances (NPS) present in the illicit market render their identification in biological fluids/tissues of great concern for clinical and forensic toxicology. Analytical methods able to detect the huge number of substances that can be used are sought, considering also that many NPS are not detected by the standard immunoassays generally used for routine drug screening. The aim of this work was to develop a method for the screening of different classes of NPS (a total of 78 analytes including cathinones, synthetic cannabinoids, phenethylamines, piperazines, ketamine and analogues, benzofurans, tryptamines) from blood samples. The simultaneous extraction of analytes was performed by Dispersive Liquid/Liquid Microextraction DLLME, a very rapid, cheap and efficient extraction technique that employs microliters amounts of organic solvents. Analyses were performed by a target Ultrahigh Performance Liquid Chromatography tandem Mass Spectrometry (UHPLC-MS/MS) method in multiple reaction monitoring (MRM). The method allowed the detection of the studied analytes with limits of detection (LODs) ranging from 0.2 to 2ng/mL. The proposed DLLME method can be used as an alternative to classical liquid/liquid or solid-phase extraction techniques due to its rapidity, necessity to use only microliters amounts of organic solvents, cheapness, and to its ability to extract simultaneously a huge number of analytes also from different chemical classes. The method was then applied to 60 authentic real samples from forensic cases, demonstrating its suitability for the screening of a wide number of NPS. Copyright © 2015 Elsevier B.V. All rights reserved.
A PROTEOMIC (SELDI-TOF-MS) APPROACH TO ESTROGEN AGONIST SCREENING
A small fish model and surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI) were used to investigate plasma protein expression as a means to screen chemicals for estrogenic activity. Adult male sheepshead minnows (Cyprinodon variegatus) were place...
Decker, Stephen R.; Sykes, Robert W.; Turner, Geoffrey B.; Lupoi, Jason S.; Doepkke, Crissa; Tucker, Melvin P.; Schuster, Logan A.; Mazza, Kimberly; Himmel, Michael E.; Davis, Mark F.; Gjersing, Erica
2015-01-01
The conversion of lignocellulosic biomass to fuels, chemicals, and other commodities has been explored as one possible pathway toward reductions in the use of non-renewable energy sources. In order to identify which plants, out of a diverse pool, have the desired chemical traits for downstream applications, attributes, such as cellulose and lignin content, or monomeric sugar release following an enzymatic saccharification, must be compared. The experimental and data analysis protocols of the standard methods of analysis can be time-consuming, thereby limiting the number of samples that can be measured. High-throughput (HTP) methods alleviate the shortcomings of the standard methods, and permit the rapid screening of available samples to isolate those possessing the desired traits. This study illustrates the HTP sugar release and pyrolysis-molecular beam mass spectrometry pipelines employed at the National Renewable Energy Lab. These pipelines have enabled the efficient assessment of thousands of plants while decreasing experimental time and costs through reductions in labor and consumables. PMID:26437006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, Stephen R.; Sykes, Robert W.; Turner, Geoffrey B.
The conversion of lignocellulosic biomass to fuels, chemicals, and other commodities has been explored as one possible pathway toward reductions in the use of non-renewable energy sources. In order to identify which plants, out of a diverse pool, have the desired chemical traits for downstream applications, attributes, such as cellulose and lignin content, or monomeric sugar release following an enzymatic saccharification, must be compared. The experimental and data analysis protocols of the standard methods of analysis can be time-consuming, thereby limiting the number of samples that can be measured. High-throughput (HTP) methods alleviate the shortcomings of the standard methods, andmore » permit the rapid screening of available samples to isolate those possessing the desired traits. This study illustrates the HTP sugar release and pyrolysis-molecular beam mass spectrometry pipelines employed at the National Renewable Energy Lab. These pipelines have enabled the efficient assessment of thousands of plants while decreasing experimental time and costs through reductions in labor and consumables.« less
Assessing rare earth elements in quartz rich geological samples.
Santoro, A; Thoss, V; Ribeiro Guevara, S; Urgast, D; Raab, A; Mastrolitti, S; Feldmann, J
2016-01-01
Sodium peroxide (Na2O2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being (157)Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g(-1), as well as measurement repeatability below 15%. Overall, the Na2O2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bidny, Sergei; Gago, Kim; Chung, Phuong; Albertyn, Desdemona; Pasin, Daniel
2017-04-01
An analytical method using ultra performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) was developed and validated for the targeted toxicological screening and quantification of commonly used pharmaceuticals and drugs of abuse in postmortem blood using 100 µL sample. It screens for more than 185 drugs and metabolites and quantifies more than 90 drugs. The selected compounds include classes of pharmaceuticals and drugs of abuse such as: antidepressants, antipsychotics, analgesics (including narcotic analgesics), anti-inflammatory drugs, benzodiazepines, beta-blockers, amphetamines, new psychoactive substances (NPS), cocaine and metabolites. Compounds were extracted into acetonitrile using a salting-out assisted liquid-liquid extraction (SALLE) procedure. The extracts were analyzed using a Waters ACQUITY UPLC coupled with a XEVO QTOF mass spectrometer. Separation of the analytes was achieved by gradient elution using Waters ACQUITY HSS C18 column (2.1 mm x 150 mm, 1.8 μm). The mass spectrometer was operated in both positive and negative electrospray ionization modes. The high-resolution mass spectrometry (HRMS) data was acquired using a patented Waters MSE acquisition mode which collected low and high energy spectra alternatively during the same acquisition. Positive identification of target analytes was based on accurate mass measurements of the molecular ion, product ion, peak area ratio and retention times. Calibration curves were linear over the concentration range 0.05-2 mg/L for basic and neutral analytes and 0.1-6 mg/L for acidic analytes with the correlation coefficients (r2) > 0.96 for most analytes. The limits of detection (LOD) were between 0.001-0.05 mg/L for all analytes. Good recoveries were achieved ranging from 80% to 100% for most analytes using the SALLE method. The method was validated for sensitivity, selectivity, accuracy, precision, stability, carryover and matrix effects. The developed method was tested on a number of authentic forensic samples producing consistent results that correlated with results obtained from other validated methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Antelo-Domínguez, Ángel; Cocho, José Ángel; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2013-12-15
A sample pre-treatment method based on blood spot collection filter cards was optimized as a means of using small volume samples for the screening and confirmation of cocaine and opiates abuse. Dried blood spots (DBSs) were prepared by dispersing 20 µL of whole blood specimens previously mixed with the internal standards (deuterated analogs of each target), and subjecting the whole DBS to extraction with 5 mL of methanol under orbital-horizontal shaking (180 rpm) for 10 min. Determinations were based on direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) by injecting the re-dissolved methanol extract with the delivery solution (acetonitrile-water-formic acid, 80:19.875:0.125) at a flow rate of 60 µL min(-1), and using multiple reaction monitoring (MRM) mode with the m/z (precursor ion)→m/z (product ion) transitions for acquisition. Matrix effect has been found to be statistically significant (Multiple Range Test) when assessing cocaine, BZE, codeine and morphine, and the use of the standard addition method (dispersion of whole blood previously mixed with standards onto the filter papers) was needed for accurate determinations. The developed DBS-ESI-MS/MS procedure offered good intra-day and inter-day precisions (lower than 10% and 12%, respectively), as well as good intra-day and inter-day accuracies (inter-day absolute recoveries, expressed as the mean analytical recovery over three target concentration levels, of 103%, 100%, 101%, 98% and 100% for cocaine, BZE, codeine, morphine and 6-MAM, respectively). The high sensitivity inherent to MS/MS determinations combined with the minimal dilution of sample allowed low limits of quantification for all targets, and the developed method results therefore adequate for cocaine and opiates screening and confirmation purposes. The procedure was finally applied to DBSs prepared from whole blood from polydrug abusers, and results were compared with those obtained after a conventional sample pretreatment method based on solid phase extraction for plasma specimens and gas chromatography-mass spectrometry. © 2013 Elsevier B.V. All rights reserved.
Tear fluid proteomics multimarkers for diabetic retinopathy screening
2013-01-01
Background The aim of the project was to develop a novel method for diabetic retinopathy screening based on the examination of tear fluid biomarker changes. In order to evaluate the usability of protein biomarkers for pre-screening purposes several different approaches were used, including machine learning algorithms. Methods All persons involved in the study had diabetes. Diabetic retinopathy (DR) was diagnosed by capturing 7-field fundus images, evaluated by two independent ophthalmologists. 165 eyes were examined (from 119 patients), 55 were diagnosed healthy and 110 images showed signs of DR. Tear samples were taken from all eyes and state-of-the-art nano-HPLC coupled ESI-MS/MS mass spectrometry protein identification was performed on all samples. Applicability of protein biomarkers was evaluated by six different optimally parameterized machine learning algorithms: Support Vector Machine, Recursive Partitioning, Random Forest, Naive Bayes, Logistic Regression, K-Nearest Neighbor. Results Out of the six investigated machine learning algorithms the result of Recursive Partitioning proved to be the most accurate. The performance of the system realizing the above algorithm reached 74% sensitivity and 48% specificity. Conclusions Protein biomarkers selected and classified with machine learning algorithms alone are at present not recommended for screening purposes because of low specificity and sensitivity values. This tool can be potentially used to improve the results of image processing methods as a complementary tool in automatic or semiautomatic systems. PMID:23919537
Yao, Feng; Yi, Bin; Shen, Caihong; Tao, Fei; Liu, Yumin; Lin, Zhixin; Xu, Ping
2015-01-01
Luzhoulaojiao liquor is a type of Chinese liquor that dates back hundreds of years, but whose precise chemical composition remains unknown. This paper describes the screening of the liquor and the identification of its compounds using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOF-MS). Samples were prepared by both liquid-liquid extraction and solid-phase microextraction, which facilitated the detection of thousands of compounds in the liquor, thus demonstrating the superior performance of the proposed method over those reported in previous studies. A total of 320 compounds were common to all 18 types of Luzhoulaojiao liquor studied here, and 13 abundant and potentially bioactive compounds were further quantified. The results indicated that the high-performance method presented here is well suited for the detection and identification of compounds in liquors. This study also contributes to enriching our knowledge of the contents of Chinese liquors. PMID:25857434
Mess, Aylin; Enthaler, Bernd; Fischer, Markus; Rapp, Claudius; Pruns, Julia K; Vietzke, Jens-Peter
2013-01-15
Identification of endogenous skin surface compounds is an intriguing challenge in comparative skin investigations. Notably, this short communication is focused on the analysis of small molecules, e.g. natural moisturizing factor (NMF) components and lipids, using a novel sampling method with DIP-it samplers for non-invasive examination of the human skin surface. As a result, extraction of analytes directly from the skin surface by use of various solvents can be replaced with the mentioned procedure. Screening of measureable compounds is achieved by direct analysis in real time mass spectrometry (DART-MS) without further sample preparation. Results are supplemented by dissolving analytes from the DIP-it samplers by use of different solvents, and subsequent matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements. An interesting comparison of the mentioned MS techniques for determination of skin surface compounds in the mass range of 50-1000 Da is presented. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yao, Feng; Yi, Bin; Shen, Caihong; Tao, Fei; Liu, Yumin; Lin, Zhixin; Xu, Ping
2015-04-01
Luzhoulaojiao liquor is a type of Chinese liquor that dates back hundreds of years, but whose precise chemical composition remains unknown. This paper describes the screening of the liquor and the identification of its compounds using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOF-MS). Samples were prepared by both liquid-liquid extraction and solid-phase microextraction, which facilitated the detection of thousands of compounds in the liquor, thus demonstrating the superior performance of the proposed method over those reported in previous studies. A total of 320 compounds were common to all 18 types of Luzhoulaojiao liquor studied here, and 13 abundant and potentially bioactive compounds were further quantified. The results indicated that the high-performance method presented here is well suited for the detection and identification of compounds in liquors. This study also contributes to enriching our knowledge of the contents of Chinese liquors.
Freitas, Andreia; Barbosa, Jorge; Ramos, Fernando
2015-01-22
A multiresidue quantitative screening method covering 39 antibiotics from 7 different families by ultra-high-pressure-liquid-chromatography-tandem mass spectrometry (UHPLC-MS/MS) is described. Sulfonamides, trimethoprim, tetracyclines, macrolides, quinolones, penicillins and chloramphenicol are simultaneously detected in liver tissue. A simple sample treatment method consisting of extraction with a mixture of acetonitrile and ethylenediaminetetraacetic acid (EDTA) followed by solid-phase extraction (SPE) with a hydrophilic-lipophilic balanced (HLB) cartridge was developed. The methodology was validated, in accordance with Decision 2002/657/EC, by evaluating the following required parameters: decision limit (CCα), detection capability (CCβ), specificity, repeatability and reproducibility. The precision, in terms of the relative standard deviation, was under 22% for all of the compounds, and the recoveries were between 80% and 110%. The CCα and CCβ were determined according to the maximum residue limit (MRL) or the minimum required performance limit (MRPL), when established. Copyright © 2014 Elsevier B.V. All rights reserved.
Gerona, Roy R; Schwartz, Jackie M; Pan, Janet; Friesen, Matthew M; Lin, Thomas; Woodruff, Tracey J
2018-03-01
The use and advantages of high-resolution mass spectrometry (MS) as a discovery tool for environmental chemical monitoring has been demonstrated for environmental samples but not for biological samples. We developed a method using liquid chromatography-quadrupole time-of-flight MS (LC-QTOF/MS) for discovery of previously unmeasured environmental chemicals in human serum. Using non-targeted data acquisition (full scan MS analysis) we were able to screen for environmental organic acids (EOAs) in 20 serum samples from second trimester pregnant women. We define EOAs as environmental organic compounds with at least one dissociable proton which are utilized in commerce. EOAs include environmental phenols, phthalate metabolites, perfluorinated compounds, phenolic metabolites of polybrominated diphenyl ethers and polychlorinated biphenyls, and acidic pesticides and/or predicted acidic pesticide metabolites. Our validated method used solid phase extraction, reversed-phase chromatography in a C18 column with gradient elution, electrospray ionization in negative polarity and automated tandem MS (MS/MS) data acquisition to maximize true positive rates. We identified "suspect EOAs" using Agilent MassHunter Qualitative Analysis software, to match chemical formulas generated from each sample run with molecular formulas in our unique database of 693 EOAs assembled from multiple environmental literature sources. We found potential matches for 282 (41%) of the EOAs in our database. Sixty-five of these suspect EOAs were detected in at least 75% of the samples; only 19 of these compounds are currently biomonitored in National Health and Nutrition Examination Survey. We confirmed two of three suspect EOAs by LC-QTOF/MS using a targeted method developed through LC-MS/MS, reporting the first confirmation of benzophenone-1 and bisphenol S in pregnant women's sera. Our suspect screening workflow provides an approach to comprehensively scan environmental chemical exposures in humans. This can provide a better source of exposure information to help improve exposure and risk evaluation of industrial chemicals.
Cacho, J I; Nicolás, J; Viñas, P; Campillo, N; Hernández-Córdoba, M
2016-12-02
A solventless analytical method is proposed for analyzing the compounds responsible for cork taint in cork stoppers. Direct sample introduction (DSI) is evaluated as a sample introduction system for the gas chromatography-mass spectrometry (GC-MS) determination of four haloanisoles (HAs) in cork samples. Several parameters affecting the DSI step, including desorption temperature and time, gas flow rate and other focusing parameters, were optimized using univariate and multivariate approaches. The proposed method shows high sensitivity and minimises sample handling, with detection limits of 1.6-2.6ngg -1 , depending on the compound. The suitability of the optimized procedure as a screening method was evaluated by obtaining decision limits (CCα) and detection capabilities (CCβ) for each analyte, which were found to be in 6.9-11.8 and 8.7-14.8ngg -1 , respectively, depending on the compound. Twenty-four cork samples were analysed, and 2,4,6-trichloroanisole was found in four of them at levels between 12.6 and 53ngg -1 . Copyright © 2016 Elsevier B.V. All rights reserved.
Salgado-Petinal, Carmen; Lamas, J Pablo; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael
2005-07-01
In this paper a solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)-venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline-in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL(-1) urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.
Attya, Mohamed; Benabdelkamel, Hicham; Perri, Enzo; Russo, Anna; Sindona, Giovanni
2010-12-01
The quality of olive oils is sensorially tested by accurate and well established methods. It enables the classification of the pressed oils into the classes of extra virgin oil, virgin oil and lampant oil. Nonetheless, it would be convenient to have analytical methods for screening oils or supporting sensorial analysis using a reliable independent approach based on exploitation of mass spectrometric methodologies. A number of methods have been proposed to evaluate deficiencies of extra virgin olive oils resulting from inappropriate technological treatments, such as high or low temperature deodoration, and home cooking processes. The quality and nutraceutical value of extra virgin olive oil (EVOO) can be related to the antioxidant property of its phenolic compounds. Olive oil is a source of at least 30 phenolic compounds, such as oleuropein, oleocanthal, hydroxytyrosol, and tyrosol, all acting as strong antioxidants, radical scavengers and NSAI-like drugs. We now report the efficacy of MRM tandem mass spectrometry, assisted by the isotope dilution assay, in the evaluation of the thermal stability of selected active principles of extra virgin olive oil.
Analysis of volatile compounds by open-air ionization mass spectrometry.
Meher, Anil Kumar; Chen, Yu-Chie
2017-05-08
This study demonstrates a simple method for rapid and in situ identification of volatile and endogenous compounds in culinary spice samples through mass spectrometry (MS). This method only requires a holder for solid spice sample (2-3 mm) that is placed close to a mass spectrometer inlet, which is applied with a high voltage. Volatile species responsible for the aroma of the spice samples can be readily detected by the mass spectrometer. Sample pretreatment is not required prior to MS analysis, and no solvent was used during MS analysis. The high voltage applied to the inlet of the mass spectrometer induces the ionization of volatile compounds released from the solid spice samples. Furthermore, moisture in the air also contributes to the ionization of volatile compounds. Dried spices including cinnamon and cloves are used as the model sample to demonstrate this straightforward MS analysis, which can be completed within few seconds. Furthermore, we also demonstrate the suitability of the current method for rapid screening of cinnamon quality through detection of the presence of a hepatotoxic agent, i.e. coumarin. Copyright © 2017 Elsevier B.V. All rights reserved.
Sampling and analyte enrichment strategies for ambient mass spectrometry.
Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei
2018-01-01
Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.
Abstract: There is a growing need for rapid chemical screening and prioritization to inform regulatory decision-making on thousands of chemicals in the environment. We have previously used high-resolution mass spectrometry to examine household vacuum dust samples using liquid chr...
Dereplication of plant phenolics using a mass-spectrometry database independent method.
Borges, Ricardo M; Taujale, Rahil; de Souza, Juliana Santana; de Andrade Bezerra, Thaís; Silva, Eder Lana E; Herzog, Ronny; Ponce, Francesca V; Wolfender, Jean-Luc; Edison, Arthur S
2018-05-29
Dereplication, an approach to sidestep the efforts involved in the isolation of known compounds, is generally accepted as being the first stage of novel discoveries in natural product research. It is based on metabolite profiling analysis of complex natural extracts. To present the application of LipidXplorer for automatic targeted dereplication of phenolics in plant crude extracts based on direct infusion high-resolution tandem mass spectrometry data. LipidXplorer uses a user-defined molecular fragmentation query language (MFQL) to search for specific characteristic fragmentation patterns in large data sets and highlight the corresponding metabolites. To this end, MFQL files were written to dereplicate common phenolics occurring in plant extracts. Complementary MFQL files were used for validation purposes. New MFQL files with molecular formula restrictions for common classes of phenolic natural products were generated for the metabolite profiling of different representative crude plant extracts. This method was evaluated against an open-source software for mass-spectrometry data processing (MZMine®) and against manual annotation based on published data. The targeted LipidXplorer method implemented using common phenolic fragmentation patterns, was found to be able to annotate more phenolics than MZMine® that is based on automated queries on the available databases. Additionally, screening for ascarosides, natural products with unrelated structures to plant phenolics collected from the nematode Caenorhabditis elegans, demonstrated the specificity of this method by cross-testing both groups of chemicals in both plants and nematodes. Copyright © 2018 John Wiley & Sons, Ltd.
Wang, Ming-Chih; Lai, Yih-Cherng; Chang, Chia-Lin
2008-05-01
Dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill are well known because of their hepatoprotective activity, antioxidant activity, and anticancer effect. For the isolation of the dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill two extraction methods were used: modified-ultrasonic extraction and supercritical fluid extraction. A specific and fast analytical method for structure identification is established for quality control because structure elucidation could be accomplished by means of liquid chromatography-mass spectrometry (LC-MS) technologies. The separation and identification of the compounds were completed by: (i) a water-acetonitrile gradient system using a C18 reversed-phase column; (ii) UV detection at 225 nm; (iii) MS/MS experiments with electrospray ionization interface (ESI) ion trap mass spectrometry in the positive mode. Normalized collision energy was used to obtain fragment ions of structural relevance in the LC-MS/MS. These results provided a reliable LC-MS/MS method for the determination of the dibenzo[a,c]cyclooctadiene lignans from Schisandra chinensis Baill. Finally, we also detected 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging effects (%) of the modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). The antioxidant activities of the modified-ultrasonic and supercritical fluid extracts were lower than that of trolox.
Bang, Hae In; Jang, Mi Ae; Lee, Yong Wha
2017-11-01
The demand for rapid and broad clinical toxicology screens is on the rise. Recently, a new rapid toxicology screening test, the Triage TOX Drug Screen (Alere Inc., USA), which can simultaneously detect 11 drugs of abuse and therapeutic drugs with an instrument-read cartridge, was developed. In the present study, we evaluated the efficacy of this new on-site immunoassay using 105 urine specimens; the results were compared with those obtained by using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-TMS). Precision was evaluated according to the CLSI EP12-A2 for analyte concentrations near the cutoff, including C₅₀ and±30% of C₅₀, for each drug using standard materials. The C₅₀ specimens yielded 35-65% positive results and the±30% concentration range of all evaluated drugs encompassed the C₅-C₉₅ interval. The overall percent agreement of the Triage TOX Drug Screen was 92.4-100% compared with UPLC-TMS; however, the Triage TOX Drug Screen results showed some discordant cases including acetaminophen, amphetamine, benzodiazepine, opiates, and tricyclic antidepressants. The overall performance of the Triage TOX Drug Screen assay was comparable to that of UPLC-TMS for screening of drug intoxication in hospitals. This assay could constitute a useful screening method for drugs of abuse and therapeutic drugs in urine. © The Korean Society for Laboratory Medicine.
Dorrestein, Pieter C; Blackhall, Jonathan; Straight, Paul D; Fischbach, Michael A; Garneau-Tsodikova, Sylvie; Edwards, Daniel J; McLaughlin, Shaun; Lin, Myat; Gerwick, William H; Kolter, Roberto; Walsh, Christopher T; Kelleher, Neil L
2006-02-14
For screening a pool of potential substrates that load carrier domains found in nonribosomal peptide synthetases, large molecule mass spectrometry is shown to be a new, unbiased assay. Combining the high resolving power of Fourier transform mass spectrometry with the ability of adenylation domains to select their own substrates, the mass change that takes place upon formation of a covalent intermediate thus identifies the substrate. This assay has an advantage over traditional radiochemical assays in that many substrates, the substrate pool, can be screened simultaneously. Using proteins on the nikkomycin, clorobiocin, coumermycin A1, yersiniabactin, pyochelin, and enterobactin biosynthetic pathways as proof of principle, preferred substrates are readily identified from substrate pools. Furthermore, this assay can be used to provide insight into the timing of tailoring events of biosynthetic pathways as demonstrated using the bromination reaction found on the jamaicamide biosynthetic pathway. Finally, this assay can provide insight into the role and function of orphan gene clusters for which the encoded natural product is unknown. This is demonstrated by identifying the substrates for two NRPS modules from the pksN and pksJ genes that are found on an orphan NRPS/PKS hybrid cluster from Bacillus subtilis. This new assay format is especially timely for activity screening in an era when new types of thiotemplate assembly lines that defy classification are being discovered at an accelerating rate.
Application of Protein Expression Profiling to Screen Chemicals for Androgenic Activity.
Protein expression changes can be used for detection of biomarkers that can be applied diagnostically to screen chemicals for endocrine modifying activity. In this study, Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) coupled with a s...
Rivera, Zahira Herrera; Oosterink, Efraim; Rietveld, Luuk; Schoutsen, Frans; Stolker, Linda
2011-08-26
The influence of natural organic matter on the screening of pharmaceuticals in water was determined by using high resolution liquid chromatography (HRLC) combined with full scan mass spectrometry (MS) techniques like time of flight (ToF) or Orbitrap MS. Water samples containing different amount of natural organic matter (NOM) and residues of a set of 11 pharmaceuticals were analyzed by using Exactive Orbitrap™ LC-MS. The samples were screened for residues of pharmaceuticals belonging to different classes like benzimidazoles, macrolides, penicillins, quinolones, sulfonamides, tetracyclines, tranquillizers, non-steroidal anti-inflammatory drugs (NSAIDs), anti-epileptics and lipid regulators. The method characteristics were established over a concentration range of 0.1-500 μg L(-1). The 11 pharmaceuticals were added to two effluent and two influent water samples. The NOM concentration within the samples ranged from 2 to 8 mg L(-1) of dissolved organic carbon. The HRLC-Exactive Orbitrap™ LC-MS system was set at a resolution of 50,000 (FWHM) and this selection was found sufficient for the detection of the list of pharmaceuticals. With this resolution setting, accurate mass measurements with errors below 2 ppm were found, despite of the NOM concentration of the different types of water samples. The linearities were acceptable with correlation coefficients greater than 0.95 for 30 of the 51 measured linearities. The limit of detection varies between 0.1 μg L(-1)and 100 μg L(-1). It was demonstrated that sensitivity could be affected by matrix constituents in both directions of signal reduction or enhancement. Finally it was concluded that with direct shoot method used (no sample pretreatment) all compounds, were detected but LODs depend on matrix-analyte-concentration combination. No direct relation was observed between NOM concentration and method characteristics. For accurate quantification the use of internal standards and/or sample clean-up is necessary. The direct shoot method is only applicable for qualitative screening purposes. The use of full scan MS makes it possible to search for unknown contaminants. With the use of adequate software and a database containing more than 50,000 entries a tool is available to search for unknowns. Copyright © 2011 Elsevier B.V. All rights reserved.
[EXPRESS IDENTIFICATION OF POSITIVE BLOOD CULTURES USING DIRECT MALDI-TOF MASS SPECTROMETRY].
Popov, D A; Ovseenko, S T; Vostrikova, T Yu
2015-01-01
To evaluate the effectiveness of direct identification of pathogens of bacteremia by direct matrix assisted laser desorption ionization time-flight mass spectrometry (mALDI-TOF) compared to routine method. A prospective study included 211 positive blood cultures obtained from 116 patients (106 adults and 10 children, aged from 2 weeks to 77 years old in the ICU after open heart surgery. Incubation was carried out under aerobic vials with a sorbent for antibiotics Analyzer BacT/ALERT 3D 120 (bioMerieux, France) in parallel with the primary sieving blood cultures on solid nutrient media with subsequent identification of pure cultures using MALDI-TOF mass spectrometry analyzer Vitek MS, bioMerieux, France routine method), after appropriate sample preparation we carried out a direct (without screening) MALDI-TOF mass spectrometric study of monocomponental blood cultures (n = 201). using a routine method in 211 positive blood cultures we identified 23 types of microorganisms (Staphylococcus (n = 87), Enterobacteria- ceae (n = 71), Enterococci (n = 20), non-fermentative Gram-negative bacteria (n = 18), others (n = 5). The average time of incubation of samples to obtain a signal of a blood culture growth was 16.2 ± 7.4 h (from 3.75 to 51 hours.) During the first 12 hours of incubation, growth was obtained in 32.4% of the samples, and on the first day in 92.2%. In the direct mass spectrometric analysis mnonocomponental blood cultures (n = 201) is well defined up to 153 species of the sample (76.1%), while the share of successful identification of Gram-negative bacteria was higher than that of Gram-positive (85.4 and 69, 1%, respectively p = 0.01). The high degree of consistency in the results of standard and direct method of identifying blood cultures using MALDI-TOF mass spectrometry (κ = 0.96, p < 0.001; the samples included in the calculation for which both option given result). Duration of the direct mass spectrometric analysis, including sample preparation, was no longer than 1 hour: The method of direct MALDI-TOF mass spectrometry allows to significantly speed up the identification of blood cultures that may contribute as much as possible early appointment effective regimes of starting antibiotic therapy.
Pomes, M.L.; Thurman, E.M.; Aga, D.S.; Goolsby, D.A.
1998-01-01
Triazine and chloroacetanilide concentrations in rainfall samples collected from a 23-state region of the United States were analyzed with microtiter-plate enzyme-linked immunosorbent assay (ELISA). Thirty-six percent of rainfall samples (2072 out of 5691) were confirmed using gas chromatography/mass spectrometry (GC/MS) to evaluate the operating performance of ELISA as a screening test. Comparison of ELISA to GC/MS results showed that the two ELISA methods accurately reported GC/MS results (m = 1), but with more variability evident with the triazine than with the chloroacetanilide ELISA. Bayes's rule, a standardized method to report the results of screening tests, indicated that the two ELISA methods yielded comparable predictive values (80%), but the triazine ELISA yielded a false- positive rate of 11.8% and the chloroacetanilide ELISA yielded a false- negative rate of 23.1%. The false-positive rate for the triazine ELISA may arise from cross reactivity with an unknown triazine or metabolite. The false-negative rate of the chloroacetanilide ELISA probably resulted from a combination of low sensitivity at the reporting limit of 0.15 ??g/L and a distribution characterized by 75% of the samples at or below the reporting limit of 0.15 ??g/L.Triazine and chloroacetanilide concentrations in rainfall samples collected from a 23-state region of the United States were analyzed with microtiter-plate enzyme-linked immunosorbent assay (ELISA). Thirty-six percent of rainfall samples (2072 out of 5691) were confirmed using gas chromatography/mass spectrometry (GC/MS) to evaluate the operating performance of ELISA as a screening test. Comparison of ELISA to GC/MS results showed that the two ELISA methods accurately reported GC/MS results (m = 1), but with more variability evident with the triazine than with the chloroacetanilide ELISA. Bayes's rule, a standardized method to report the results of screening tests, indicated that the two ELISA methods yielded comparable predictive values (80%), but the triazine ELISA yielded a false-positive rate of 11.8% and the chloroacetanilide ELISA yielded a false-negative rate of 23.1%. The false-positive rate for the triazine ELISA may arise from cross reactivity with an unknown triazine or metabolite. The false-negative rate of the chloroacetanilide ELISA probably resulted from a combination of low sensitivity at the reporting limit of 0.15 ??g/L and a distribution characterized by 75% of the samples at or below the reporting limit of 0.15 ??g/L.
Ren, Dabing; Ran, Lu; Yang, Chong; Xu, Meilin; Yi, Lunzhao
2018-05-18
Ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) has been used as a powerful tool to profile chemicals in traditional Chinese medicines. However, identification of potentially bioactive compounds is still a challenging work because of the large amount of information contained in the raw UPLC-HRMS data. Especially the ubiquitous matrix interference makes it more difficult to characterize the minor components. Therefore, rapid recognition and efficient extraction of the corresponding parent ions is critically important for identifying the attractive compounds in complex samples. Herein, we propose an integrated filtering strategy to remove un-related or interference MS 1 ions from the raw UPLC-HRMS data, which helps to retain the MS features of the target components and expose the compounds of interest as effective as possible. The proposed strategy is based on the use of a combination of different filtering methods, including nitrogen rule, mass defect, and neutral loss/diagnostic fragment ions filtering. The strategy was validated by rapid screening and identification of 16 methoxylated flavonoids and 55 chlorogenic acids analogues from the raw UPLC-HRMS dataset of Folium Artemisiae Argyi. Particularly, successful detection of several minor components indicated that the integrated strategy has obvious advantages over individual filtering methods, and it can be used as a promising method for screening and identifying compounds from complex samples, such as herbal medicines. Copyright © 2018 Elsevier B.V. All rights reserved.
Palma, Angelina S.; Liu, Yan; Zhang, Hongtao; Zhang, Yibing; McCleary, Barry V.; Yu, Guangli; Huang, Qilin; Guidolin, Leticia S.; Ciocchini, Andres E.; Torosantucci, Antonella; Wang, Denong; Carvalho, Ana Luísa; Fontes, Carlos M. G. A.; Mulloy, Barbara; Childs, Robert A.; Feizi, Ten; Chai, Wengang
2015-01-01
Glucans are polymers of d-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes, including immunomodulation, anticancer activities, pathogen virulence, and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure–function studies and their exploitation. We describe construction of a “glucome” microarray, the first sequence-defined glycome-scale microarray, using a “designer” approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear “homo” and “hetero” and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signaling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides. PMID:25670804
Nielen, Michel W F; Bovee, Toine F H; van Engelen, Marcel C; Rutgers, Paula; Hamers, Astrid R M; van Rhijn, J Hans A; Hoogenboom, L Ron A P
2006-01-15
New anabolic steroids show up occasionally in sports doping and in veterinary control. The discovery of these designer steroids is facilitated by findings of illicit preparations, thus allowing bioactivity testing, structure elucidation using NMR and mass spectrometry, and final incorporation in urine testing. However, as long as these preparations remain undiscovered, new designer steroids are not screened for in routine sports doping or veterinary control urine tests since the established GC/MS and LC/MS/MS methods are set up for the monitoring of a few selected ions or MS/MS transitions of known substances only. In this study, the feasibility of androgen bioactivity testing and mass spectrometric identification is being investigated for trace analysis of designer steroids in urine. Following enzymatic deconjugation and a generic solid-phase extraction, the samples are analyzed by gradient LC with effluent splitting toward two identical 96-well fraction collectors. One well plate is used for androgen bioactivity detection using a novel robust yeast reporter gene bioassay yielding a biogram featuring a 20-s time resolution. The bioactive wells direct the identification efforts to the corresponding well numbers in the duplicate plate. These are subjected to high-resolution LC using a short column packed with 1.7-microm C18 material and coupled with electrospray quadrupole time-of-flight mass spectrometry (LC/QTOFMS) with accurate mass measurement. Element compositions are calculated and used to interrogate electronic substance databases. The feasibility of this approach for doping control is demonstrated via the screening of human urine samples spiked with the designer anabolic steroid tetrahydrogestrinone. Application of the proposed methodology, complementary to the established targeted urine screening for known anabolics, will increase the chance of finding unknown emerging designer steroids, rather then being solely dependent on findings of the illicit preparations themselves.
Expanded newborn screening by mass spectrometry: New tests, future perspectives.
Ombrone, Daniela; Giocaliere, Elisa; Forni, Giulia; Malvagia, Sabrina; la Marca, Giancarlo
2016-01-01
Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs. © 2015 Wiley Periodicals, Inc.
Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang
2014-01-01
New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960
New challenges and innovation in forensic toxicology: focus on the "New Psychoactive Substances".
Favretto, Donata; Pascali, Jennifer P; Tagliaro, Franco
2013-04-26
In the recent years, new molecules have appeared in the illicit market, claimed to contain "non-illegal" compounds, although exhibiting important psychoactive effects; this heterogeneous and rapidly evolving class of compounds are commonly known as "New Psychoactive Substances" or, less properly, "Smart Drugs" and are easily distributed through the e-commerce or in the so-called "Smart Shops". They include, among other, synthetic cannabinoids, cathinones and tryptamine analogs of psylocin. Whereas cases of intoxication and death have been reported, the phenomenon appears to be largely underestimated and is a matter of concern for Public Health. One of the major points of concern depends on the substantial ineffectiveness of the current methods of toxicological screening of biological samples to identify the new compounds entering the market. These limitations emphasize an urgent need to increase the screening capabilities of the toxicology laboratories, and to develop rapid, versatile yet specific assays able to identify new molecules. The most recent advances in mass spectrometry technology, introducing instruments capable of detecting hundreds of compounds at nanomolar concentrations, are expected to give a fundamental contribution to broaden the diagnostic spectrum of the toxicological screening to include not only all these continuously changing molecules but also their metabolites. In the present paper a critical overview of the opportunities, strengths and limitations of some of the newest analytical approaches is provided, with a particular attention to liquid phase separation techniques coupled to high accuracy, high resolution mass spectrometry. Copyright © 2012 Elsevier B.V. All rights reserved.
Pfeil, Johannes; Listl, Stefan; Hoffmann, Georg F; Kölker, Stefan; Lindner, Martin; Burgard, Peter
2013-10-17
Glutaric aciduria type I (GA-I) is a rare metabolic disorder caused by inherited deficiency of glutaryl-CoA dehydrogenase. Despite high prognostic relevance of early diagnosis and start of metabolic treatment as well as an additional cost saving potential later in life, only a limited number of countries recommend newborn screening for GA-I. So far only limited data is available enabling health care decision makers to evaluate whether investing into GA-I screening represents value for money. The aim of our study was therefore to assess the cost-effectiveness of newborn screening for GA-I by tandem mass spectrometry (MS/MS) compared to a scenario where GA-I is not included in the MS/MS screening panel. We assessed the cost-effectiveness of newborn screening for GA-I against the alternative of not including GA-I in MS/MS screening. A Markov model was developed simulating the clinical course of screened and unscreened newborns within different time horizons of 20 and 70 years. Monte Carlo simulation based probabilistic sensitivity analysis was used to determine the probability of GA-I screening representing a cost-effective therapeutic strategy. Within a 20 year time horizon, GA-I screening averts approximately 3.7 DALYs (95% CI 2.9 - 4.5) and about one life year is gained (95% CI 0.7 - 1.4) per 100,000 neonates screened initially . Moreover, the screening programme saves a total of around 30,682 Euro (95% CI 14,343 to 49,176 Euro) per 100,000 screened neonates over a 20 year time horizon. Within the limitations of the present study, extending pre-existing MS/MS newborn screening programmes by GA-I represents a highly cost-effective diagnostic strategy when assessed under conditions comparable to the German health care system.
Screening of carnitine and biotin deficiencies on tandem mass spectrometry.
Hagiwara, Shin-Ichiro; Kubota, Mitsuru; Nambu, Ryusuke; Kagimoto, Seiichi
2017-04-01
It is important to assess pediatric patients for nutritional deficiency when they are receiving specific interventions, such as enteral feeding. We focused on measurement of C0 and 3-hydroxyisovalerylcarnitine (C5-OH) with tandem mass spectrometry (MS/MS), which is performed as part of the newborn mass screening. The purpose of this study was to investigate the usefulness of MS/MS for screening carnitine and biotin deficiencies. Forty-two children (24 boys, 18 girls) were enrolled between December 2013 and December 2015. Blood tests, including measurement of serum free carnitine via the enzyme cycling method, and acylcarnitine analysis on MS/MS of dried blood spot (DBS), were performed for the evaluation of nutrition status. Median patient age was 2 years (range, 2 months-14 years). Mean serum free carnitine was 41.8 ± 19.2 μmol/L. In six of the 42 patients, serum free carnitine was <20 μmol/L (range, 4.0-18.7 μmol/L). C0 and C5-OH measured on MS/MS of DBS were 33.8 ± 20.2 nmol/mL and 0.48 ± 0.22 nmol/mL, respectively. There was a strong positive correlation (r = 0.89, P < 0.001) between serum free carnitine and C0 measured on the same day. In one patient on hydrolyzed formula, C5-OH was >1.00 nmol/L. Therapy-resistant eczema was improved by treatment with additional biotin and a non-hydrolyzed formula. C0 and C5-OH, measured on MS/MS of DBS, were useful for screening carnitine and biotin deficiencies. © 2016 Japan Pediatric Society.
Chen, Y C; Shiea, J; Sunner, J
2000-01-01
A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.
OpenMSI Arrayed Analysis Tools v2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOWEN, BENJAMIN; RUEBEL, OLIVER; DE ROND, TRISTAN
2017-02-07
Mass spectrometry imaging (MSI) enables high-resolution spatial mapping of biomolecules in samples and is a valuable tool for the analysis of tissues from plants and animals, microbial interactions, high-throughput screening, drug metabolism, and a host of other applications. This is accomplished by desorbing molecules from the surface on spatially defined locations, using a laser or ion beam. These ions are analyzed by a mass spectrometry and collected into a MSI 'image', a dataset containing unique mass spectra from the sampled spatial locations. MSI is used in a diverse and increasing number of biological applications. The OpenMSI Arrayed Analysis Tool (OMAAT)more » is a new software method that addresses the challenges of analyzing spatially defined samples in large MSI datasets, by providing support for automatic sample position optimization and ion selection.« less
Turnipseed, Sherri B; Storey, Joseph M; Lohne, Jack J; Andersen, Wendy C; Burger, Robert; Johnson, Aaron S; Madson, Mark R
2017-08-30
A screening method for veterinary drug residues in fish, shrimp, and eel using LC with a high-resolution MS instrument has been developed and validated. The method was optimized for over 70 test compounds representing a variety of veterinary drug classes. Tissues were extracted by vortex mixing with acetonitrile acidified with 2% acetic acid and 0.2% p-toluenesulfonic acid. A centrifuged portion of the extract was passed through a novel solid phase extraction cartridge designed to remove interfering matrix components from tissue extracts. The eluent was then evaporated and reconstituted for analysis. Data were collected with a quadrupole-Orbitrap high-resolution mass spectrometer using both nontargeted and targeted acquisition methods. Residues were detected on the basis of the exact mass of the precursor and a product ion along with isotope pattern and retention time matching. Semiquantitative data analysis compared MS 1 signal to a one-point extracted matrix standard at a target testing level. The test compounds were detected and identified in salmon, tilapia, catfish, shrimp, and eel extracts fortified at the target testing levels. Fish dosed with selected analytes and aquaculture samples previously found to contain residues were also analyzed. The screening method can be expanded to monitor for an additional >260 veterinary drugs on the basis of exact mass measurements and retention times.
Bommana, Rupesh; Mozziconacci, Olivier; John Wang, Y; Schöneich, Christian
2017-07-01
The loss of potency of protein therapeutics can be linked to the oxidation of specific amino acid residues leading to a great variety of oxidative modifications. The comprehensive identification of these oxidative modifications requires high-resolution mass spectrometry analysis, which requires time and expensive resources. Here, we propose a fluorogenic derivatization method of oxidized Tyr and Phe yielding benzoxazole derivatives, as an orthogonal technique for the rapid screening of protein oxidation. Four model proteins, IgG1, human growth hormone (hGH), insulin and bovine serum albumin (BSA) were exposed to oxidation via peroxyl radicals and metal-catalyzed reactions and efficiently screened by fluorogenic derivatization of Tyr and Phe oxidation products. Complementary LC-MS analysis was done to identify the extent of methionine oxidation in oxidized proteins. The Fluorogenic derivatization technique can easily be adapted to a 96-well plate, in which several protein formulations can be screened in short time. Representatively for hGH, we show that the formation of benzoxazole parallels the oxidation of Met to methionine sulfoxide which enables estimation of Met oxidation by just recording the fluorescence. Our rapid fluorescence based screening allows for the fast comparison of the stability of multiple formulations.
[Model project for updating neonatal screening in Bavaria: concept and initial results].
Liebl, B; Fingerhut, R; Röschinger, W; Muntau, A; Knerr, I; Olgemöller, B; Zapf, A; Roscher, A A
2000-04-01
The newborn screening programme in Bavaria was confronted with several problems. Number of disorders and process quality no longer complied with screening guidelines. Mixed financing, distributed between the state (PKU, galactosaemia) and health insurances (hypothyroidism) had promoted an increasing dissipation of the system. Notified participation rates had dropped to < 80%. Increasing need for a second screening due to early discharge was an additional challenge. To overcome these problems, and considering the availability of improved screening methodology (tandem mass spectrometry) the programme was reorganised. The project, which started on Jan 1, 1999, is based on a cooperation model between laboratory (logistics, analysis), universities (treatment, scientific evaluation), and public health services (coordination, tracking). Time of blood sampling was predated to the third day of life. Screening was extended to biotinidase deficiency, congenital adrenal hyperplasia (CAH) and by introduction of tandem mass spectrometry for screening of many other disorders (besides PKU). Insurances now finance complete laboratory analysis which was transferred to the private sector. To enable all newborn to participate, the names of screened children are matched against birth lists by public health services on a regional basis. Recalls and conspicuous results are consistently followed up until disorders are either excluded or confirmed. Two clinical hotlines were established in the children's hospitals of the universities in Munich (Southern Bavaria) and in Erlangen (Northern Bavaria). Written consent is required for participation in the programme. Participation in the new programme could be continually increased; coverage is > 95% since April. In several cases screening was made up for not tested children by contacting their parents. Omitted screening was mostly due to misunderstandings regarding testing responsibility or lost samples. Altogether 52 cases of disorder were found in the 87,000 newborn screened until August 1999. Hence, the detection rate of children affected by inborn errors of metabolism was about twice as high than before changes. Among the newly screened diseases CAH was detected most often (11 cases). In 22 cases diagnosis was based on the use of tandem mass spectrometry. Among these (besides PKU, 9 cases) MCAD deficiency (6 cases) was detected most frequently. Whereas recall rates of most disorders were < 0.1%, screening for CAH still revealed a high recall rate, particularly in premature births. Second screening due to early discharge (< 48 h) was required in 1.3%. About 20% of pending recalls required contacting birth hospitals, doctors, midwives or parents. So far all affected children could be brought to treatment in time.
Samsonek, J; Puype, F
2013-01-01
In order to screen for the presence of a recycled polymer waste stream from waste electric and electronic equipment (WEEE), a market survey was conducted on black plastic food-contact articles (FCA). An analytical method was applied combining X-ray fluorescence spectrometry (XRF) with thermal desorption gas chromatography coupled with mass spectrometry (thermal desorption GC-MS). Firstly, XRF spectrometry was applied to distinguish bromine-positive samples. Secondly, bromine-positive samples were submitted for identification by thermal desorption GC-MS. Generally, the bromine-positive samples contained mainly technical decabromodiphenyl ether (decaBDE). Newer types of BFRs such as tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bis(2,3-dibromopropyl), ether (TBBPA-BDBPE) and decabromodiphenylethane (DBDPE), replacing the polybrominated diphenyleters (PBDEs) and polybrominated diphenyls (PBBs), were also identified. In none of the tested samples were PBBs or hexabromocyclododecane (HBCD) found. Polymer identification was carried out using Fourier-transformed infrared spectroscopy measurement (FTIR) on all samples. The results indicate that polypropylene-polyethylene copolymers (PP-PE) and mainly styrene-based food-contact materials, such as acrylonitrile-butadiene-styrene (ABS) have the highest risk of containing BFRs.
USDA-ARS?s Scientific Manuscript database
Glyceollin-related metabolites produced in rats following oral glyceollin administration were screened and identified by precursor and product ion scanning using liquid chromatography, coupled on-line with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), to identify all glyceollin me...
High sensitive and throughput screening of Aflatoxin using MALDI-TOF-TOF-PSD-MS/MS
USDA-ARS?s Scientific Manuscript database
We have achieved sensitive and efficient detection of aflatoxin B1(AFB1) through matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry (MALDI-TOF-TOF) and post-source decay (PSD) tandem mass spectrometry (MS/MS) using an acetic acid – a-cyano-4-hydroxycinnamic a...
Applications of Biophysics in High-Throughput Screening Hit Validation.
Genick, Christine Clougherty; Barlier, Danielle; Monna, Dominique; Brunner, Reto; Bé, Céline; Scheufler, Clemens; Ottl, Johannes
2014-06-01
For approximately a decade, biophysical methods have been used to validate positive hits selected from high-throughput screening (HTS) campaigns with the goal to verify binding interactions using label-free assays. By applying label-free readouts, screen artifacts created by compound interference and fluorescence are discovered, enabling further characterization of the hits for their target specificity and selectivity. The use of several biophysical methods to extract this type of high-content information is required to prevent the promotion of false positives to the next level of hit validation and to select the best candidates for further chemical optimization. The typical technologies applied in this arena include dynamic light scattering, turbidometry, resonance waveguide, surface plasmon resonance, differential scanning fluorimetry, mass spectrometry, and others. Each technology can provide different types of information to enable the characterization of the binding interaction. Thus, these technologies can be incorporated in a hit-validation strategy not only according to the profile of chemical matter that is desired by the medicinal chemists, but also in a manner that is in agreement with the target protein's amenability to the screening format. Here, we present the results of screening strategies using biophysics with the objective to evaluate the approaches, discuss the advantages and challenges, and summarize the benefits in reference to lead discovery. In summary, the biophysics screens presented here demonstrated various hit rates from a list of ~2000 preselected, IC50-validated hits from HTS (an IC50 is the inhibitor concentration at which 50% inhibition of activity is observed). There are several lessons learned from these biophysical screens, which will be discussed in this article. © 2014 Society for Laboratory Automation and Screening.
Quantification of plasma myo-inositol using gas chromatography-mass spectrometry.
Guo, Jin; Shi, Yingfei; Xu, Chengbao; Zhong, Rugang; Zhang, Feng; Zhang, Ting; Niu, Bo; Wang, Jianhua
2016-09-01
Myo-inositol (MI) deficiency is associated with an increased risk for neural tube defects (NTDs), mental disorders and metabolic diseases. We developed a gas chromatography-mass spectrometry (GC-MS) method to detect MI in human plasma, which was accurate, relatively efficient and convenient for clinical application. An external standard method was used for determination of plasma MI. Samples were analyzed by GC-MS after derivatization. The stable-isotope labeled internal standard approach was used to validate the method's accuracy. Alpha fetal protein (AFP) was detected by chemiluminescence immunoassay. The method was validated by determining the linearity, sensitivity and recovery rate. There was a good agreement between the internal standard approach and the present method. The NTD-affected pregnancies showed lower plasma MI (P=0.024) and higher AFP levels (P=0.001) than control. Maternal MI level showed a better discrimination in spina bifida subgroup, while AFP level showed a better discrimination in anencephaly subgroup after stratification analysis. We developed a sensitive and reliable method for the detection of clinical plasma MI, which might be a marker for NTDs screening, and established fundamental knowledge for clinical diagnosis and prevention for the diseases related to disturbed MI metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.
Deng, Chunhui; Li, Ning; Zhang, Xiangmin
2004-01-01
The purpose of this study was to develop a simple, rapid and sensitive analytical method for determination of amino acids in neonatal blood samples. The developed method involves the employment of derivatization and a solid-phase microextraction (SPME) technique together with gas chromatography/mass spectrometry (GC/MS). Amino acids in blood samples were derivatized by a mixture of isobutyl chloroformate, methanol and pyridine, and the N(O,S)-alkoxycarbonyl alkyl esters thus formed were headspace extracted by a SPME fiber. Finally, the extracted analytes on the fiber were desorbed and detected by GC/MS in electron impact (EI) mode. L-Valine, L-leucine, L-isoleucine, L-phenylanaline and L-tyrosine in blood samples were quantitatively analyzed by measurement of the corresponding N(O,S)-alkoxycarbonyl alkyl esters using an external standard method. SPME conditions were optimized, and the method was validated. The method was applied to diagnosis of neonatal phenylkenuria (PKU) and maple syrup urine disease (MSUD) by the analyses of five amino acids in blood samples. The results showed that the proposed method is a potentially powerful tool for simultaneous screening for neonatal PKU and MSUD. Copyright (c) 2004 John Wiley & Sons, Ltd.
Wang, Weizhi; Li, Menglin; Wei, Zewen; Wang, Zihua; Bu, Xiangli; Lai, Wenjia; Yang, Shu; Gong, He; Zheng, Hui; Wang, Yuqiao; Liu, Ying; Li, Qin; Fang, Qiaojun; Hu, Zhiyuan
2014-04-15
Peptide probes and drugs have widespread applications in disease diagnostics and therapy. The demand for peptides ligands with high affinity and high specificity toward various targets has surged in the biomedical field in recent years. The traditional peptide screening procedure involves selection, sequencing, and characterization steps, and each step is manual and tedious. Herein, we developed a bimodal imprint microarray system to embrace the whole peptide screening process. Silver-sputtered silicon chip fabricated with microwell array can trap and pattern the candidate peptide beads in a one-well-one-bead manner. Peptides on beads were photocleaved in situ. A portion of the peptide in each well was transferred to a gold-coated chip to print the peptide array for high-throughput affinity analyses by surface plasmon resonance imaging (SPRi), and the peptide left in the silver-sputtered chip was ready for in situ single bead sequencing by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the bimodal imprint chip system, affinity peptides toward AHA were efficiently screened out from the 7 × 10(4) peptide library. The method provides a solution for high efficiency peptide screening.
Ghosh, Chiranjit; Maity, Abhijit; Banik, Gourab D; Som, Suman; Chakraborty, Arpita; Selvan, Chitra; Ghosh, Shibendu; Ghosh, Barnali; Chowdhury, Subhankar; Pradhan, Manik
2014-09-01
We report, for the first time, the clinical feasibility of a novel residual gas analyzer mass spectrometry (RGA-MS) method for accurate evaluation of the (13)C-glucose breath test ((13)C-GBT) in the diagnosis of pre-diabetes (PD) and type 2 diabetes mellitus (T2D). In T2D or PD, glucose uptake is impaired and results in blunted isotope enriched (13)CO2 production in exhaled breath samples. Using the Receiver operating characteristics (ROC) curve analysis, an optimal diagnostic cut-off point of the (13)CO2/(12)CO2 isotope ratios expressed as the delta-over-baseline (DOB) value, was determined to be δDOB(13)C‰ = 28.81‰ for screening individuals with non-diabetes controls (NDC) and pre-diabetes (PD), corresponding to a sensitivity of 100% and specificity of 94.4%. We also determined another optimal diagnostic cut-off point of δDOB(13)C‰ = 19.88‰ between individuals with PD and T2D, which exhibited 100% sensitivity and 95.5% specificity. Our RGA-MS methodology for the (13)C-GBT also manifested a typical diagnostic positive and negative predictive value of 96% and 100%, respectively. The diagnostic accuracy, precision and validity of the results were also confirmed by high-resolution optical cavity enhanced integrated cavity output spectroscopy (ICOS) measurements. The δDOB(13)C‰ values measured with RGA-MS method, correlated favourably (R(2) = 0.979) with those determined by the laser based ICOS method. Moreover, we observed that the effects of endogenous CO2 production related to basal metabolic rates in individuals were statistically insignificant (p = 0.37 and 0.73) on the diagnostic accuracy. Our findings suggest that the RGA-MS is a valid and sufficiently robust method for the (13)C-GBT which may serve as an alternative non-invasive point-of-care diagnostic tool for routine clinical practices as well as for large-scale diabetes screening purposes in real-time.
Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...
2016-08-30
Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.
Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less
Computational diagnosis of canine lymphoma
NASA Astrophysics Data System (ADS)
Mirkes, E. M.; Alexandrakis, I.; Slater, K.; Tuli, R.; Gorban, A. N.
2014-03-01
One out of four dogs will develop cancer in their lifetime and 20% of those will be lymphoma cases. PetScreen developed a lymphoma blood test using serum samples collected from several veterinary practices. The samples were fractionated and analysed by mass spectrometry. Two protein peaks, with the highest diagnostic power, were selected and further identified as acute phase proteins, C-Reactive Protein and Haptoglobin. Data mining methods were then applied to the collected data for the development of an online computer-assisted veterinary diagnostic tool. The generated software can be used as a diagnostic, monitoring and screening tool. Initially, the diagnosis of lymphoma was formulated as a classification problem and then later refined as a lymphoma risk estimation. Three methods, decision trees, kNN and probability density evaluation, were used for classification and risk estimation and several preprocessing approaches were implemented to create the diagnostic system. For the differential diagnosis the best solution gave a sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provided the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). Furthermore, the development and application of new techniques for the generation of risk maps allowed their user-friendly visualization.
Wang, Lu; Liu, Yufeng; Luo, You; Huang, Kuiying; Wu, Zhenqiang
2018-02-14
Guava leaves tea (GLT) has a potential antihyperglycemic effect. Nevertheless, it is unclear which compound plays a key role in reducing blood sugar. In this study, GLT extract (IC 50 = 19.37 ± 0.21 μg/mL) exhibited a stronger inhibitory potency against α-glucosidase than did acarbose (positive control) at IC 50 = 178.52 ± 1.37 μg/mL. To rapidly identify the specific α-glucosidase inhibitor components from GLT, an approach based on bioaffinity ultrafiltration combined with high performance liquid chromatography coupled to electrospray ionization-time-of-flight-mass spectrometry (BAUF-HPLC-ESI-TOF/MS) was developed. Under the optimal bioaffinity ultrafiltration conditions, 11 corresponding potential α-glucosidase inhibitors with high affinity degrees (ADs) were screened and identified from the GLT extract. Quercetin (IC 50 = 4.51 ± 0.71 μg/mL) and procyanidin B3 (IC 50 = 28.67 ± 5.81 μg/mL) were determined to be primarily responsible for the antihyperglycemic effect, which further verified the established screening method. Moreover, structure-activity relationships were discussed. In conclusion, the BAUF-HPLC-ESI-TOF/MS method could be applied to determine the potential α-glucosidase inhibitors from complex natural products quickly.
Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P.; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T.; Mozayani, Ashraf
2013-01-01
Liquid chromatography time-of-flight mass spectrometry (LC–TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic “Spice/K2” cannabinoids and cathinone “bath salt” designer drugs. The extract was applied to LC–TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC–TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework. PMID:23118149
Guale, Fessessework; Shahreza, Shahriar; Walterscheid, Jeffrey P; Chen, Hsin-Hung; Arndt, Crystal; Kelly, Anna T; Mozayani, Ashraf
2013-01-01
Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis provides an expansive technique for identifying many known and unknown analytes. This study developed a screening method that utilizes automated solid-phase extraction to purify a wide array of analytes involving stimulants, benzodiazepines, opiates, muscle relaxants, hypnotics, antihistamines, antidepressants and newer synthetic "Spice/K2" cannabinoids and cathinone "bath salt" designer drugs. The extract was applied to LC-TOF-MS analysis, implementing a 13 min chromatography gradient with mobile phases of ammonium formate and methanol using positive mode electrospray. Several common drugs and metabolites can share the same mass and chemical formula among unrelated compounds, but they are structurally different. In this method, the LC-TOF-MS was able to resolve many isobaric compounds by accurate mass correlation within 15 ppm mass units and a narrow retention time interval of less than 10 s of separation. Drug recovery yields varied among spiked compounds, but resulted in overall robust area counts to deliver an average match score of 86 when compared to the retention time and mass of authentic standards. In summary, this method represents a rapid, enhanced screen for blood and urine specimens in postmortem, driving under the influence, and drug facilitated sexual assault forensic toxicology casework.
Yang, Ya-Jun; Li, Jian-Yong; Liu, Xi-Wang; Zhang, Ji-Yu; Liu, Yu-Rong; Li, Bing
2013-01-01
To develop a non-biological method for screening active components against influenza virus from traditional Chinese medicine (TCM) extraction, a liquid chromatography (LC) column prepared with oseltamivir molecularly imprinted polymer (OSMIP) was employed with LC-mass spectrometry (LC-MS). From chloroform extracts of compound TCM liquid preparation, we observed an affinitive component m/z 249, which was identified to be matrine following analysis of phytochemical literatures, OSMIP-LC column on-line of control compounds and MS/MS off-line. The results showed that matrine had similar bioactivities with OS against avian influenza virus H9N2 in vitro for both alleviating cytopathic effect and hemagglutination inhibition and that the stereostructures of these two compounds are similar while their two-dimensional structures were different. In addition, our results suggested that the bioactivities of those affinitive compounds were correlated with their chromatographic behaviors, in which less difference of the chromatographic behaviors might have more similar bioactivities. This indicates that matrine is a potential candidate drug to prevent or cure influenza for human or animal. In conclusion, the present study showed that molecularly imprinted polymers can be used as a non-biological method for screening active components against influenza virus from TCM. PMID:24386385
LC-MS based screening and targeted profiling methods for complex plant: coffee a case study.
da Rosa, Jeane Santos; Freitas-Silva, Otniel; Pacheco, Sidney; de Oliveira Godoy, Ronoel Luiz; de Rezende, Claudia Moraes
2012-11-01
In the recent years the way of thinking about human health necessarily passes by human food. Recent discoveries are not only concerned about valuable biomolecules but also contaminants. Thus, the screening of substances in animal and vegetable matrices by analytical techniques is focused on the presence and absence of target substance. In both cases, the majority of these substances are present as traces or in very low levels. Contaminants could be naturally present in the food, inserted on it or even developed on it as a consequence of food processing or cooking. Pesticides, mycotoxins, dioxins, acrylamide, Sudan red, melamine and now 4(5)-methylimidazole can be, at present, be listed as some of the world big problems related to food contaminants and adulterants. With the development of liquid chromatography coupled to mass spectrometry (LC-MS-MS), in the last few decades, analysis of some food contaminants in trace levels trace become less laborious, more accurate and precise. The multiple approach of those techniques make possible to obtain many results in one single run. On the other hand, European Union (2002/657/EC) established regulations for analytical methods regarding mass spectrometry as detection tool, showing the importance of this technique in food quality control. The EU criteria uses identification points (IPs) that could be achieved basically with four product ions (including molecular ion) or reduced with the use of high resolution equipments. This kind of mass spectrometers made the IPs criteria more accessible, as the exact mass information is a differential tool. In view of this the aim of this review is to present the actual scenario for mass spectrometry analysis in a complex vegetable food matrix such as roasted coffee, with emphasis on needs and challenges regarding the LC-MS technique in order to meet and contribute to food safety standards in this complex matrix.
Eom, Taeyong; Cho, Hyun-Deok; Kim, Junghyun; Park, Mihee; An, Jinyoung; Kim, Moosung; Kim, Sheen-Hee; Han, Sang Beom
2017-11-01
A simple and rapid method for the simultaneous determination of 11 mycotoxins - aflatoxins B 1 , B 2 , G 1 and G 2 ; fumonisins B 1 , B 2 and B 3 ; ochratoxin A; zearalenone; deoxynivalenol; and T-2 toxin - in edible oils was established using liquid chromatography tandem mass spectrometry (LC-MS/MS). In this study, QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe), QuEChERS with dispersive liquid-liquid microextraction, and solvent extraction were examined for sample preparation. Among these methods, solvent extraction with a mixture of formic acid/acetonitrile (5/95, v/v) successfully extracted all target mycotoxins. Subsequently, a defatting process using n-hexane was employed to remove the fats present in the edible oil samples. Mass spectrometry was carried out using electrospray ionisation in polarity switching mode with multiple reaction monitoring. The developed LC-MS/MS method was validated by assessing the specificity, linearity, recovery, limit of quantification (LOQ), accuracy and precision with reference to Commission Regulation (EC) 401/2006. Mycotoxin recoveries of 51.6-82.8% were achieved in addition to LOQs ranging from 0.025 ng/g to 1 ng/g. The edible oils proved to be relatively uncomplicated matrices and the developed method was applied to 9 edible oil samples, including soybean oil, corn oil and rice bran oil, to evaluate potential mycotoxin contamination. The levels of detection were significantly lower than the international regulatory standards. Therefore, we expect that our developed method, based on simple, two-step sample preparation process, will be suitable for the large-scale screening of mycotoxin contamination in edible oils.
Al-Dirbashi, Osama Y; Kölker, Stefan; Ng, Dione; Fisher, Lawrence; Rupar, Tony; Lepage, Nathalie; Rashed, Mohamed S; Santa, Tomofumi; Goodman, Stephen I; Geraghty, Michael T; Zschocke, Johannes; Christensen, Ernst; Hoffmann, Georg F; Chakraborty, Pranesh
2011-02-01
Accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3HGA) in body fluids is the biochemical hallmark of type 1 glutaric aciduria (GA1), a disorder characterized by acute striatal degeneration and a subsequent dystonia. To date, methods for quantification of 3HGA are mainly based on stable isotope dilution gas chromatography mass spectrometry (GC-MS) and require extensive sample preparation. Here we describe a simple liquid chromatography tandem MS (LC-MS/MS) method to quantify this important metabolite in dried urine spots (DUS). This method is based on derivatization with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DAABD-AE). Derivatization was adopted to improve the chromatographic and mass spectrometric properties of the studied analytes. Derivatization was performed directly on a 3.2-mm disc of DUS as a sample without extraction. Sample mixture was heated at 60°C for 45 min, and 5 μl of the reaction solution was analyzed by LC-MS/MS. Reference ranges obtained were in excellent agreement with the literature. The method was applied retrospectively for the analysis of DUS samples from established low- and high-excreter GA1 patients as well as controls (n = 100). Comparison of results obtained versus those obtained by GC-MS was satisfactory (n = 14). In populations with a high risk of GA1, this approach will be useful as a primary screening method for high- or low-excreter variants. In these populations, however, DUS analysis should not be implemented before completing a parallel comparative study with the standard screening method (i.e., molecular testing). In addition, follow-up DUS GA and 3HGA testing of babies with elevated dried blood spot C5DC acylcarnitines will be useful as a first-tier diagnostic test, thus reducing the number of cases requiring enzymatic and molecular analyses to establish or refute the diagnosis of GA1.
Farkas, Daniel H; Miltgen, Nicholas E; Stoerker, Jay; van den Boom, Dirk; Highsmith, W Edward; Cagasan, Lesley; McCullough, Ron; Mueller, Reinhold; Tang, Lin; Tynan, John; Tate, Courtney; Bombard, Allan
2010-09-01
We designed a laboratory developed test (LDT) by using an open platform for mutation/polymorphism detection. Using a 108-member (mutation plus variant) cystic fibrosis carrier screening panel as a model, we completed the last phase of LDT validation by using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Panel customization was accomplished via specific amplification primer and extension probe design. Amplified genomic DNA was subjected to allele specific, single base extension endpoint analysis by mass spectrometry for inspection of the cystic fibrosis transmembrane regulator gene (NM_000492.3). The panel of mutations and variants was tested against 386 blinded samples supplied by "authority" laboratories highly experienced in cystic fibrosis transmembrane regulator genotyping; >98% concordance was observed. All discrepant and discordant results were resolved satisfactorily. Taken together, these results describe the concluding portion of the LDT validation process and the use of mass spectrometry to detect a large number of complex reactions within a single run as well as its suitability as a platform appropriate for interrogation of scores to hundreds of targets.
Suzuki, Makoto; Nishiumi, Shin; Kobayashi, Takashi; Sakai, Arata; Iwata, Yosuke; Uchikata, Takato; Izumi, Yoshihiro; Azuma, Takeshi; Bamba, Takeshi; Yoshida, Masaru
2017-05-30
The analytical stability and throughput of biomarker assays based on dried serum spots (DSS) are strongly dependent on the extraction process and determination method. In the present study, an on-line system based on supercritical fluid extraction-supercritical fluid chromatography coupled with tandem mass spectrometry (SFE-SFC/MS/MS) was established for analyzing the levels of disease biomarkers in DSS. The chromatographic conditions were investigated using the ODS-EP, diol, and SIL-100A columns. Then, we optimized the SFE-SFC/MS/MS method using the diol column, focusing on candidate biomarkers of oral, colorectal, and pancreatic cancer that were identified using liquid chromatography (LC)/MS/MS. By using this system, four hydrophilic metabolites and 17 hydrophobic metabolites were simultaneously detected within 15 min. In an experiment involving clinical samples, PC 16:0-18:2/16:1-18:1 exhibited 93.8% sensitivity and 64.3% specificity, whereas PC 17:1-18:1/17:0-18:2 showed 81.3% sensitivity and 92.9% specificity for detecting oral cancer. In addition, assessments of the creatine levels demonstrated 92.3% sensitivity and 78.6% specificity for detecting colorectal cancer. The results of this study indicate that our method has great potential for clinical diagnosis and would be suitable for large-scale screening. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro
2015-03-01
A rapid and simple method using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry after in situ solid-phase extraction (SPE) was developed for the speciation and evaluation of the concentration of inorganic arsenic (As) in drinking water. The method involves the simultaneous collection of As(III) and As(V) using 13 mm ϕ SPE miniature disks. The removal of Pb(2+) from the sample water was first conducted to avoid the overlapping PbLα and AsKα spectra on the XRF spectrum. To this end, a 50 mL aqueous sample (pH 5-9) was passed through an iminodiacetate chelating disk. The filtrate was adjusted to pH 2-3 with HCl, and then ammonium pyrrolidine dithiocarbamate solution was added. The solution was passed through a hydrophilic polytetrafluoroethylene filter placed on a Zr and Ca loaded cation-exchange disk at a flow rate of 12.5 mL min(-1) to separate As(III)-pyrrolidine dithiocarbamate complex and As(V). Each SPE disk was affixed to an acrylic plate using adhesive cellophane tape, and then examined by WDXRF spectrometry. The detection limits of As(III) and As(V) were 0.8 and 0.6 μg L(-1), respectively. The proposed method was successfully applied to screening for As speciation and concentration evaluation in spring water and well water. Copyright © 2014 Elsevier B.V. All rights reserved.
Soulard, Patricia; McLaughlin, Meg; Stevens, Jessica; Connolly, Brendan; Coli, Rocco; Wang, Leyu; Moore, Jennifer; Kuo, Ming-Shang T; LaMarr, William A; Ozbal, Can C; Bhat, B Ganesh
2008-10-03
Several recent reports suggest that stearoyl-CoA desaturase 1 (SCD1), the rate-limiting enzyme in monounsaturated fatty acid synthesis, plays an important role in regulating lipid homeostasis and lipid oxidation in metabolically active tissues. As several manifestations of type 2 diabetes and related metabolic disorders are associated with alterations in intracellular lipid partitioning, pharmacological manipulation of SCD1 activity might be of benefit in the treatment of these disease states. In an effort to identify small molecule inhibitors of SCD1, we have developed a mass spectrometry based high-throughput screening (HTS) assay using deuterium labeled stearoyl-CoA substrate and induced rat liver microsomes. The methodology developed allows the use of a nonradioactive substrate which avoids interference by the endogenous SCD1 substrate and/or product that exist in the non-purified enzyme source. Throughput of the assay was up to twenty 384-well assay plates per day. The assay was linear with protein concentration and time, and was saturable for stearoyl-CoA substrate (K(m)=10.5 microM). The assay was highly reproducible with an average Z' value=0.6. Conjugated linoleic acid and sterculic acid, known inhibitors of SCD1, exhibited IC(50) values of 0.88 and 0.12 microM, respectively. High-throughput mass spectrometry screening of over 1.7 million compounds in compressed format demonstrated that the enzyme target is druggable. A total of 2515 hits were identified (0.1% hit rate), and 346 were confirmed active (>40% inhibition of total SCD activity at 20 microM--14% conformation rate). Of the confirmed hits 172 had IC(50) values of <10 microM, including 111 <1 microM and 48 <100 nM. A large number of potent drug-like (MW<450) hits representing six different chemical series were identified. The application of mass spectrometry to high-throughput screening permitted the development of a high-quality screening protocol for an otherwise intractable target, SCD1. Further medicinal chemistry and characterization of SCD inhibitors should lead to the development of reagents to treat metabolic disorders.
Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Guo, Yinlong
2011-11-14
A simple and practical approach to improve the sensitivity of acetylcholinesterase (AChE)-inhibited method has been developed for monitoring organophosphorous (OP) pesticide residues. In this work, matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) was used to detect AChE activity. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS facilitates rapid and high-throughput screening of OP pesticides. Here we describe a new method to obtain low detection limits via employing external reagents. Among candidate compounds, n-octylphosphonic acid (n-Octyl-PA) displays assistant effect to enhance AChE inhibition by OP pesticides. In presence of n-Octyl-PA, the percentages of AChE inhibition still kept correlation with OP pesticide concentrations. The detection limits were improved significantly even by 10(2)-10(3) folds in comparison with conventional enzyme-inhibited methods. Different detection limits of OP pesticides with different toxicities were as low as 0.005 μg L(-1) for high toxic pesticides and 0.05 μg L(-1) for low toxic pesticides. Besides, the reliability of results from this method to analyze cowpea samples had been demonstrated by liquid-chromatography tandem mass spectrometry (LC-MS/MS). The application of this commercial available assistant agent shows great promise to detect OP compounds in complicated biological matrix and broadens the mind for high sensitivity detection of OP pesticide residues in agricultural products. Copyright © 2011 Elsevier B.V. All rights reserved.
Screening of immunomodulatory components in Yu-ping-feng-san using splenocyte binding and HPLC.
Hong, Min; Wang, Xin-zhi; Wang, Liang; Hua, Yong-qing; Wen, Hong-mei; Duan, Jin-ao
2011-01-05
Yu-ping-feng-san (YPFS) is a widely used immunomodulatory herbal medication used in traditional Chinese medicine, but the active molecules remain obscure. To screen for bioactive components we combined splenocyte binding with high performance liquid chromatography (SB-HPLC). After enrichment by splenocyte binding, two YPFS components (C1 and C2) were analyzed by HPLC. Compound C2 was identified as linoleic acid (LA) based on UV absorption and mass spectrometry. Silica gel chromatography was used to purify compound C1 from Radix Saposhnikoviae, a major constituent of YPFS. This allowed identification of the molecule as panaxynol (PAN) based on EI-MS and NMR spectrometry. Bioassay in vitro demonstrated that PAN significantly inhibited splenocyte proliferation induced by concanavalin A (ConA) in a concentration-dependent manner, whereas LA had no significant effect on splenocyte proliferation. In vivo, PAN was found to attenuate allergic contact dermatitis in a mouse model of delayed-type hypersensitivity (DTH), a pharmacological activity not previously reported for this molecule. It is suggested that PAN contributes to the anti-DTH effects of YPFS. SB-HPLC provides a rapid and efficient method for the identification of potential immunomodulatory components in traditional Chinese medicines. Copyright © 2010 Elsevier B.V. All rights reserved.
Thielmann, Yvonne; Koepke, Juergen; Michel, Hartmut
2012-06-01
Structure determination of membrane proteins and membrane protein complexes is still a very challenging field. To facilitate the work on membrane proteins the Core Centre follows a strategy that comprises four labs of protein analytics and crystal handling, covering mass spectrometry, calorimetry, crystallization and X-ray diffraction. This general workflow is presented and a capacity of 20% of the operating time of all systems is provided to the European structural biology community within the ESFRI Instruct program. A description of the crystallization service offered at the Core Centre is given with detailed information on screening strategy, screens used and changes to adapt high throughput for membrane proteins. Our aim is to constantly develop the Core Centre towards the usage of more efficient methods. This strategy might also include the ability to automate all steps from crystallization trials to crystal screening; here we look ahead how this aim might be realized at the Core Centre.
Shen, Qing; Lu, Yanbin; Dai, Zhiyuan; Cheung, Hon-Yeung
2015-01-01
A precursor ion scan (PIS) technique based strategy was developed for rapid screening and semi-determination of caffeoylquinic acid derivatives (CADs) in artichoke (Cynara scolymus L.) using ultra-performance liquid chromatography (UPLC) coupled with tandem mass spectrometry. 1,5-Dicaffeoylquinic acid and 5-caffeoylquinic acid were used for studying the fragmentation behaviour of two classes of CADs, setting m/z 191 as a diagnostic moiety. When it was applied to artichoke sample, ten CADs were detected and elucidated in a single PIS run. Furthermore, method validation was implemented including: specificity (no interference), linearity (≥0.9993), limit of detection (LOD<0.12 ng mL(-1)) and limit of quantification (LOQ<0.25 ng mL(-1)), precision (RSD≤3.6), recovery (91.4-95.9%) and stability (at least 12 h). This approach was proven to be a powerful, selective and sensitive tool for rapid screening and semi-determination of untargeted components in natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identification of a New Zinc Binding Chemotype by Fragment Screening.
Chrysanthopoulos, Panagiotis K; Mujumdar, Prashant; Woods, Lucy A; Dolezal, Olan; Ren, Bin; Peat, Thomas S; Poulsen, Sally-Ann
2017-09-14
The discovery of a new zinc binding chemotype from screening a nonbiased fragment library is reported. Using the orthogonal fragment screening methods of native state mass spectrometry and surface plasmon resonance a 3-unsubstituted 2,4-oxazolidinedione fragment was found to have low micromolar binding affinity to the zinc metalloenzyme carbonic anhydrase II (CA II). This affinity approached that of fragment sized primary benzenesulfonamides, the classical zinc binding group found in most CA II inhibitors. Protein X-ray crystallography established that 3-unsubstituted 2,4-oxazolidinediones bound to CA II via an interaction of the acidic ring nitrogen with the CA II active site zinc, as well as two hydrogen bonds between the oxazolidinedione ring oxygen and the CA II protein backbone. Furthermore, 3-unsubstituted 2,4-oxazolidinediones appear to be a viable starting point for the development of an alternative class of CA inhibitor, wherein the medicinal chemistry pedigree of primary sulfonamides has dominated for several decades.
Martínez-Ceron, María C; Giudicessi, Silvana L; Marani, Mariela M; Albericio, Fernando; Cascone, Osvaldo; Erra-Balsells, Rosa; Camperi, Silvia A
2010-05-15
Optimization of bead analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after the screening of one-bead-one-peptide combinatorial libraries was achieved, involving the fine-tuning of the whole process. Guanidine was replaced by acetonitrile (MeCN)/acetic acid (AcOH)/water (H(2)O), improving matrix crystallization. Peptide-bead cleavage with NH(4)OH was cheaper and safer than, yet as efficient as, NH(3)/tetrahydrofuran (THF). Peptide elution in microtubes instead of placing the beads in the sample plate yielded more sample aliquots. Successive dry layers deposit sample preparation was better than the dried droplet method. Among the matrices analyzed, alpha-cyano-4-hydroxycinnamic acid resulted in the best peptide ion yield. Cluster formation was minimized by the addition of additives to the matrix. Copyright 2010 Elsevier Inc. All rights reserved.
Gianazza, Erica; Tremoli, Elena; Banfi, Cristina
2014-12-01
Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.
Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries.
Vinogradov, Alexander A; Gates, Zachary P; Zhang, Chi; Quartararo, Anthony J; Halloran, Kathryn H; Pentelute, Bradley L
2017-11-13
A methodology to achieve high-throughput de novo sequencing of synthetic peptide mixtures is reported. The approach leverages shotgun nanoliquid chromatography coupled with tandem mass spectrometry-based de novo sequencing of library mixtures (up to 2000 peptides) as well as automated data analysis protocols to filter away incorrect assignments, noise, and synthetic side-products. For increasing the confidence in the sequencing results, mass spectrometry-friendly library designs were developed that enabled unambiguous decoding of up to 600 peptide sequences per hour while maintaining greater than 85% sequence identification rates in most cases. The reliability of the reported decoding strategy was additionally confirmed by matching fragmentation spectra for select authentic peptides identified from library sequencing samples. The methods reported here are directly applicable to screening techniques that yield mixtures of active compounds, including particle sorting of one-bead one-compound libraries and affinity enrichment of synthetic library mixtures performed in solution.
Pathiratne, A; Hemachandra, C K; Pathiratne, K A S
2010-05-01
Bile fluorescence patterns in Nile tilapia, a potential fish for biomonitoring tropical water pollution were assessed following exposure to selected polycyclic aromatic hydrocarbons (PAHs): naphthalene, phenanthrene, pyrene and chrysene. Non-normalized fixed wavelength fluorescence signals in the fish exposed to these PAHs reflected dose and/or time response relationships of their metabolism. Normalizing signals to biliverdin introduced deviations to these response patterns. The optimal wavelength pairs (excitation/emission) for synchronous fluorescence scanning measurements of bile metabolites of naphthalene, phenanthrene, pyrene and chrysene were identified as 284/326, 252/357, 340/382 and 273/382 respectively. This study supports the use of bile fluorescence in Nile tilapia by fixed wavelength fluorescence and synchronous fluorescence spectrometry with non-normalized data as a simple method for screening bioavailability of these PAHs.
Qiu, Xiao Hui; Yang, Yi Ming; Zhu, Da Yuan; Xu, Wen
2012-01-01
A rapid and effective method was developed for separation and identification of diester-diterpenoid alkaloids (DDA) in the roots of Aconitum carmichaeli by ultra-high-pressure liquid chromatography coupled with high resolution LTQ-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MSn). According to accurate mass measurement and the characteristic neutral loss filtering strategy, a total of 42 diester-diterpenoid alkaloids (DDA) were rapidly detected and characterized or tentatively identified. Meanwhile, the proposed fragmentation pathways and the major diagnostic fragment ions of aconitine, mesaconitine and hypaconitine were investigated to trace DDA derivatives in crude plant extracts. 23 potential new compounds were successfully screened and characterized in Aconitum carmichaeli, including 16 short chain fatty acyls DDA, 4 N-dealkyl DDA and several isomers of aconitine, mesaconitine and hypaconitine. PMID:23285005
Hollender, Juliane; Bourgin, Marc; Fenner, Kathrin B; Longrée, Philipp; Mcardell, Christa S; Moschet, Christoph; Ruff, Matthias; Schymanski, Emma L; Singer, Heinz P
2014-11-01
To characterize a broad range of organic contaminants and their transformation products (TPs) as well as their loads, input pathways and fate in the water cycle, the Department of Environmental Chemistry (Uchem) at Eawag applies and develops high-performance liquid chromatography (LC) methods combined with high-resolution tandem mass spectrometry (HRMS/MS). In this article, the background and state-of-the-art of LC-HRMS/MS for detection of i) known targets, ii) suspected compounds like TPs, and iii) unknown emerging compounds are introduced briefly. Examples for each approach are taken from recent research projects conducted within the department. These include the detection of trace organic contaminants and their TPs in wastewater, pesticides and their TPs in surface water, identification of new TPs in laboratory degradation studies and ozonation experiments and finally the screening for unknown compounds in the catchment of the river Rhine.
Forsberg, Erica M; Green, James R A; Brennan, John D
2011-07-01
A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.
Grant, Richard John; Roberts, Karen; Pointon, Carly; Hodgson, Clare; Womersley, Lynsey; Jones, Darren Craig; Tang, Eric
2009-06-01
Compound handling is a fundamental and critical step in compound screening throughout the drug discovery process. Although most compound-handling processes within compound management facilities use 100% DMSO solvent, conventional methods of manual or robotic liquid-handling systems in screening workflows often perform dilutions in aqueous solutions to maintain solvent tolerance of the biological assay. However, the use of aqueous media in these applications can lead to suboptimal data quality due to compound carryover or precipitation during the dilution steps. In cell-based assays, this effect is worsened by the unpredictable physical characteristics of compounds and the low DMSO tolerance within the assay. In some cases, the conventional approaches using manual or automated liquid handling resulted in variable IC(50) dose responses. This study examines the cause of this variability and evaluates the accuracy of screening data in these case studies. A number of liquid-handling options have been explored to address the issues and establish a generic compound-handling workflow to support cell-based screening across our screening functions. The authors discuss the validation of the Labcyte Echo reformatter as an effective noncontact solution for generic compound-handling applications against diverse compound classes using triple-quad liquid chromatography/mass spectrometry. The successful validation and implementation challenges of this technology for direct dosing onto cells in cell-based screening is discussed.
Wang, Shuang; Qi, Pengcheng; Zhou, Na; Zhao, Minmin; Ding, Weijing; Li, Song; Liu, Minyan; Wang, Qiao; Jin, Shumin
2016-10-01
Traditional Chinese Medicines (TCMs) have gained increasing popularity in modern society. However, the profiles of TCMs in vivo are still unclear owing to their complexity and low level in vivo. In this study, UPLC-Triple-TOF techniques were employed for data acquiring, and a novel pre-classification strategy was developed to rapidly and systematically screen and identify the absorbed constituents and metabolites of TCMs in vivo using Radix glehniae as the research object. In this strategy, pre-classification for absorbed constituents was first performed according to the similarity of their structures. Then representative constituents were elected from every class and analyzed separately to screen non-target absorbed constituents and metabolites in biosamples. This pre-classification strategy is basing on target (known) constituents to screen non-target (unknown) constituents from the massive data acquired by mass spectrometry. Finally, the screened candidate compounds were interpreted and identified based on a predicted metabolic pathway, well - studied fragmentation rules, a predicted metabolic pathway, polarity and retention time of the compounds, and some related literature. With this method, a total of 111 absorbed constituents and metabolites of Radix glehniae in rats' urine, plasma, and bile samples were screened and identified or tentatively characterized successfully. This strategy provides an idea for the screening and identification of the metabolites of other TCMs.
Tölgyesi, Ádám; Barta, Enikő; Simon, Andrea; McDonald, Thomas J; Sharma, Virender K
2017-10-25
Veterinary drugs containing synthetic anabolic steroid and nitroimidazole active agents are not allowed for their applications in livestock of the European Union (EU). This paper presents analyses of twelve selected steroids and six nitroimidazole antibiotics at low levels (1.56μg/L-4.95μg/L and 0.17μg/kg-2.14μg/kg, respectively) in body fluids and egg incurred samples. Analyses involved clean-up procedures, high performance liquid chromatography (HPLC) separation, and tandem mass spectrometric screening and confirmatory methods. Target steroids and nitroimidazoles in samples were cleaned by two independent supported liquid extraction and solid phase extraction procedures. Separation of the selected compounds was conducted on Kinetex XB C-18 HPLC column using gradient elution. The screening methods utilised supported liquid extraction that enabled fast and cost effective clean-up. The confirmatory methods were improved by extending the number of matrices and compounds, and by introducing an isotope dilution mass spectrometry for nitroimidazoles. The new methods were validated according to the recommendation of the European Union Reference Laboratories and the performance characteristics evaluated met fully the criteria. The methods were applied to incurred samples in the proficiency tests. The obtained results of Z-scores demonstrated the applicability of developed protocols of the methods to real samples. The confirmatory methods were applied to the national monitoring program and natural contamination of prednisolone could be detected in urine at low concentration in few samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Nakabayashi, Ryo; Sawada, Yuji; Yamada, Yutaka; Suzuki, Makoto; Hirai, Masami Yokota; Sakurai, Tetsuya; Saito, Kazuki
2013-02-05
Phytochemicals containing heteroatoms (N, O, S, and halogens) often have biological activities that are beneficial to humans. Although targeted profiling methods for such phytochemicals are expected to contribute to rapid chemical assignments, thus making phytochemical genomics and crop breeding much more efficient, there are few profiling methods for the metabolites. Here, as an ultrahigh performance approach, we propose a practical profiling method for S-containing metabolites (S-omics) using onions (Allium cepa) as a representative species and (12)C- and (13)C-based mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses by liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FTICR-MS). Use of the ultrahigh quality data from FTICR-MS enabled simplifying the previous methods to determine specific elemental compositions. MS analysis with a resolution of >250,000 full width at half-maximum and a mass accuracy of <1 ppm can distinguish S-containing monoisotopic ions from other ions on the basis of the natural abundance of (32)S and (34)S and the mass differences among the S isotopes. Comprehensive peak picking using the theoretical mass difference (1.99579 Da) between (32)S-containing monoisotopic ions and their (34)S-substituted counterparts led to the assignment of 67 S-containing monoisotopic ions from the (12)C-based MS spectra, which contained 4693 chromatographic ions. The unambiguous elemental composition of 22 ions was identified through comparative analysis of the (12)C- and (13)C-based MS spectra. Finally, of these, six ions were found to be derived from S-alk(en)ylcysteine sulfoxides and glutathione derivatives. This S-atom-driven approach afforded an efficient chemical assignment of S-containing metabolites, suggesting its potential application for screening not only S but also other heteroatom-containing metabolites in MS-based metabolomics.
Dal Bosco, Chiara; Panero, Stefania; Navarra, Maria Assunta; Tomai, Pierpaolo; Curini, Roberta; Gentili, Alessandra
2018-05-30
Adulteration of Mozzarella di Bufala Campana with cow milk is a common fraud because of the high price and limited seasonal availability of water buffalo milk. To identify such adulteration, this work proposes a novel approach based on the use of species-specific, low-molecular-weight biomarkers (LMWBs). Liquid chromatography-tandem mass spectrometry screening analyses identified β-carotene, lutein, and β-cryptoxanthin as LMWBs of cow milk, while ergocalciferol was found only in water buffalo milk. Adulterated mozzarellas were prepared in the laboratory and analyzed for the four biomarkers. Combined quantification of β-carotene and ergocalciferol enabled the detection of cow milk with a sensitivity threshold of 5% (w/w). The method was further tested by analyzing a certificated water buffalo mozzarella and several commercial products. This approach is alternative to conventional proteomic and genomic methods and is advantageous for routine operations as a result of its simplicity, speed, and low cost.
Rapid Identification of Synthetic Cannabinoids in Herbal Incenses with DART-MS and NMR.
Marino, Michael A; Voyer, Brandy; Cody, Robert B; Dane, A John; Veltri, Mercurio; Huang, Ling
2016-01-01
The usage of herbal incenses containing synthetic cannabinoids has caused an increase in medical incidents and triggered legislations to ban these products throughout the world. Law enforcement agencies are experiencing sample backlogs due to the variety of the products and the addition of new and still-legal compounds. In our study, proton nuclear magnetic resonance (NMR) spectroscopy was employed to promptly screen the synthetic cannabinoids after their rapid, direct detection on the herbs and in the powders by direct analysis in real time mass spectrometry (DART-MS). A simple sample preparation protocol was employed on 50 mg of herbal sample matrices for quick NMR detection. Ten synthetic cannabinoids were discovered in fifteen herbal incenses. The combined DART-MS and NMR methods can be used to quickly screen synthetic cannabinoids in powder and herbal samples, serving as a complementary approach to conventional GC-MS or LC-MS methods. © 2015 American Academy of Forensic Sciences.
High-throughput technology for novel SO2 oxidation catalysts
Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F
2011-01-01
We review the state of the art and explain the need for better SO2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO2 to SO3. High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. PMID:27877427
Zhuo, Rongjie; Liu, Hao; Liu, Ningning; Wang, Yi
2016-11-11
Identification of active compounds from natural products is a critical and challenging task in drug discovery pipelines. Besides commonly used bio-guided screening approaches, affinity selection strategy coupled with liquid chromatography or mass spectrometry, known as ligand fishing, has been gaining increasing interest from researchers. In this review, we summarized this emerging strategy and categorized those methods as off-line or on-line mode according to their features. The separation principles of ligand fishing were introduced based on distinct analytical techniques, including biochromatography, capillary electrophoresis, ultrafiltration, equilibrium dialysis, microdialysis, and magnetic beads. The applications of ligand fishing approaches in the discovery of lead compounds were reviewed. Most of ligand fishing methods display specificity, high efficiency, and require less sample pretreatment, which makes them especially suitable for screening active compounds from complex mixtures of natural products. We also summarized the applications of ligand fishing in the modernization of Traditional Chinese Medicine (TCM), and propose some perspectives of this remarkable technique.
In Vitro Androgen Bioassays as a Detection Method for Designer Androgens
Cooper, Elliot R.; McGrath, Kristine C. Y.; Heather, Alison K.
2013-01-01
Androgens are the class of sex steroids responsible for male sexual characteristics, including increased muscle mass and decreased fat mass. Illicit use of androgen doping can be an attractive option for those looking to enhance sporting performance and/or physical appearance. The use of in vitro bioassays to detect androgens, especially designer or proandrogens, is becoming increasingly important in combating androgen doping associated with nutritional supplements. The nutritional sports supplement market has grown rapidly throughout the past decade. Many of these supplements contain androgens, designer androgens or proandrogens. Many designer or proandrogens cannot be detected by the standard highly-sensitive screening methods such as gas chromatography-mass spectrometry because their chemical structure is unknown. However, in vitro androgen bioassays can detect designer and proandrogens as these assays are not reliant on knowing the chemical structure but instead are based on androgen receptor activation. For these reasons, it may be advantageous to use routine androgen bioassay screening of nutraceutical samples to help curb the increasing problem of androgen doping. PMID:23389345
Wang, Dongyao; Lv, Diya; Chen, Xiaofei; Liu, Yue; Ding, Xuan; Jia, Dan; Chen, Langdong; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng
2015-12-01
Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well-developed biological chromatographic technique. In this study, we have developed combined SMMC-7721/CMC and HepG2/CMC with high-performance liquid chromatography and time-of-flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R(2) = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Strano-Rossi, Sabina; Molaioni, Francesco; Rossi, Francesca; Botrè, Francesco
2005-01-01
This paper describes a rapid gas chromatographic/mass spectrometric (GC/MS) screening method for the detection of drugs of abuse and/or their metabolites in urine. Synthetic stimulants, opiates, cocaine metabolites, cannabinoids--and specifically the acid metabolite of tetrahydrocannabinol (THC-COOH)--can be simultaneously extracted by a single liquid/liquid separation step, at alkaline pH, and assayed as trimethylsilyl derivatives by GC/MS in SIM (selected ion monitoring) mode. All the analytes show a good linearity (R2 > 0.99 for most of the considered substances) in the range 25-1000 ng/mL, with a good reproducibility of both the retention times (CV% <0.7) and the relative abundances of the characteristic diagnostic ions (CV% <13). The limit of detection (LOD) of the method is 25 ng/mL of target compound in human urine for most of the substances investigated, 3 ng/mL for THC-COOH, and 10 ng/mL for norbuprenorphine. Validation of the method allows its application to different fields of forensic analytical toxicology, including antidoping analysis.
Comprehensive screening and quantification of veterinary drugs in milk using UPLC–ToF-MS
Rutgers, P.; Oosterink, E.; Lasaroms, J. J. P.; Peters, R. J. B.; van Rhijn, J. A.; Nielen, M. W. F.
2008-01-01
Ultra-performance liquid chromatography combined with time-of-flight mass spectrometry (UPLC–ToF-MS) has been used for screening and quantification of more than 100 veterinary drugs in milk. The veterinary drugs represent different classes including benzimidazoles, macrolides, penicillins, quinolones, sulphonamides, pyrimidines, tetracylines, nitroimidazoles, tranquillizers, ionophores, amphenicols and non-steroidal anti-inflammatory agents (NSAIDs). After protein precipitation, centrifugation and solid-phase extraction (SPE), the extracts were analysed by UPLC–ToF-MS. From the acquired full scan data the drug-specific ions were extracted for construction of the chromatograms and evaluation of the results. The analytical method was validated according to the EU guidelines (2002/657/EC) for a quantitative screening method. At the concentration level of interest (MRL level) the results for repeatability (%RSD < 20% for 86% of the compounds), reproducibility (%RSD < 40% for 96% of the compounds) and the accuracy (80–120% for 88% of the compounds) were satisfactory. Evaluation of the CCβ values and the linearity results demonstrates that the developed method shows adequate sensitivity and linearity to provide quantitative results. Furthermore, the method is accurate enough to differentiate between suspected and negative samples or drug concentrations below or above the MRL. A set of 100 samples of raw milk were screened for residues. No suspected (positive) results were obtained except for the included blind reference sample containing sulphamethazine (88 μg/l) that tested positive for this compound. UPLC–ToF-MS combines high resolution for both LC and MS with high mass accuracy which is very powerful for the multi-compound analysis of veterinary drugs. The technique seems to be powerful enough for the analysis of not only veterinary drugs but also organic contaminants like pesticides, mycotoxins and plant toxins in one single method. PMID:18491081
Hu, Xin; Zhao, Huading; Shi, Shuyun; Li, Hui; Zhou, Xiaoling; Jiao, Feipeng; Jiang, Xinyu; Peng, Dongming; Chen, Xiaoqin
2015-08-10
The complexity of natural products always leads to the co-elution of interfering compounds with bioactive compounds, which then has a detrimental effect on structural elucidation. Here, a new method, based on selective solid phase extraction combined with 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) spiking and high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS), is described for sensitive screening, selective extraction and identification of polyphenolic antioxidants in Polygonatum odoratum. First, 25 polyphenolic antioxidants (1-25) were screened by DPPH spiking with HPLC. Second, polydopamine coated Fe3O4 microspheres (Fe3O4@PDA) were prepared to selectively extract target antioxidants with extraction efficiency from 55% to 100% when the amount of Fe3O4@PDA, extraction time, desorption solvent and time were 10mg, 20 min, acetonitrile, and 5 min. Third, 25 antioxidants (10 cinnamides and 15 homoisoflavanones) were identified by HPLC-DAD-QTOF-MS/MS. Furthermore, the DPPH scavenging activities of purified compounds (IC50, 1.6-32.8 μg/mL) validated the method. Among the identified antioxidants, four of them (12, 13, 18 and 19) were new compounds, four of them (2, 4, 8 and 14) were first obtained from family Liliaceae, five of them (1, 3, 5, 7 and 9) were first reported in genus Polygonatum, while one compound (24) was first identified in this species. The results indicated that the proposed method was an efficient and sensitive approach to explore polyphenolic antioxidants from complex natural products. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Chunmei; Wang, Donghong; Li, Na; Luo, Qian; Xu, Xiong; Wang, Zijian
2016-11-01
Improvements in extraction and detection technologies have increased our abilities to identify new disinfection by-products (DBPs) over the last 40 years. However, most previous studies combined DBP identification and measurement efforts with toxicology to address concerns on a few expected DBPs, making it difficult to better define the health risk from the individual DBPs. In this study, a nontargeted screening method involving comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) combined with OECD QSAR Toolbox Ver. 3.2 was developed for identifying and prioritizing of volatile and semi-volatile DBPs in drinking water. The method was successfully applied to analyze DBPs formed during chlorination, chloramination or ozonation of the raw water. Over 500 compounds were tentatively identified in each sample, showing the superior performance of this analytical technique. A total of 170 volatile and semi-volatile DBPs representing fourteen chemical classes were then identified, according to the criteria that the DBP was presented in the duplicate treated samples. The genotoxicity and carcinogenicity of the DBPs were evaluated using Toolbox, and 58 DBPs were found to be actual or potential genotoxicants. The accuracy of the compound identification was determined by comparing 47 identified compounds with commercially available standards. About 90% (41 of the 47) of the compounds that were automatically identified using the library were correct. The results show that GC×GC-qMS coupled with a quantitative structure-activity relationship model is a powerful and fast nontargeted screening technique for compounds. The method and results provide us a new idea for identification and prioritization of DBPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Peilong; Wang, Xiao; Zhang, Wei; Su, Xiaoou
2014-02-01
A novel and efficient determination method for multi-class compounds including β-agonists, sedatives, nitro-imidazoles and aflatoxins in porcine formula feed based on a fast "one-pot" extraction/multifunction impurity adsorption (MFIA) clean-up procedure has been developed. 23 target analytes belonging to four different class compounds could be determined simultaneously in a single run. Conditions for "one-pot" extraction were studied in detail. Under the optimized conditions, the multi-class compounds in porcine formula feed samples were extracted and purified with methanol contained ammonia and absorbents by one step. The compounds in extracts were purified by using multi types of absorbent based on MFIA in one pot. The multi-walled carbon nanotubes were employed to improved clean-up efficiency. Shield BEH C18 column was used to separate 23 target analytes, followed by tandem mass spectrometry (MS/MS) detection using an electro-spray ionization source in positive mode. Recovery studies were done at three fortification levels. Overall average recoveries of target compounds in porcine formula feed at each levels were >51.6% based on matrix fortified calibration with coefficients of variation from 2.7% to 13.2% (n=6). The limit of determination (LOD) of these compounds in porcine formula feed sample matrix was <5.0 μg/kg. This method was successfully applied in screening and confirmation of target drugs in >30 porcine formula feed samples. It was demonstrated that the integration of the MFIA protocol with the MS/MS instrument could serve as a valuable strategy for rapid screening and reliable confirmatory analysis of multi-class compounds in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Kwok, Wai Him; Choi, Timmy L S; Kwok, Karen Y; Chan, George H M; Wong, Jenny K Y; Wan, Terence S M
2016-06-17
The high sensitivity of ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) allows the identification of many prohibited substances without pre-concentration, leading to the development of simple and fast 'dilute-and-shoot' methods for doping control for human and equine sports. While the detection of polar drugs in plasma and urine is difficult using liquid-liquid or solid-phase extraction as these substances are poorly extracted, the 'dilute-and-shoot' approach is plausible. This paper describes a 'dilute-and-shoot' UHPLC-HRMS screening method to detect 46 polar drugs in equine urine and plasma, including some angiotensin-converting enzyme (ACE) inhibitors, sympathomimetics, anti-epileptics, hemostatics, the new doping agent 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), as well as two threshold substances, namely dimethyl sulfoxide and theobromine. For plasma, the sample (200μL) was protein precipitated using trichloroacetic acid, and the resulting supernatant was diluted using Buffer A with an overall dilution factor of 3. For urine, the sample (20μL) was simply diluted 50-fold with Buffer A. The diluted plasma or urine sample was then analysed using a UHPLC-HRMS system in full-scan ESI mode. The assay was validated for qualitative identification purpose. This straightforward and reliable approach carried out in combination with other screening procedures has increased the efficiency of doping control analysis in the laboratory. Moreover, since the UHPLC-HRMS data were acquired in full-scan mode, the method could theoretically accommodate an unlimited number of existing and new doping agents, and would allow a retrospectively search for drugs that have not been targeted at the time of analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Ortelli, Didier; Edder, Patrick; Cognard, Emmanuelle; Jan, Philippe
2008-06-09
Cyanobacteria, commonly called "blue-green algae", may accumulate in surface water supplies as "blooms" and may concentrate on the surface as blue-green "scums". Some species of cyanobacteria produce toxins and are of relevance to water supplies and to microalgae dietary supplements. To ensure the safety of drinking water and blue-green algae products, analyses are the only way to determine the presence or absence of toxins. This paper shows the use of ultra performance liquid chromatography (UPLC) coupled to orthogonal acceleration time of flight (TOF) mass spectrometry for the detection and quantitation of microcystins. The method presented is very sensitive, simple, fast, robust and did not require fastidious clean-up step. Limits of detection of 0.1 microg L(-1) in water and 0.1-0.2 microg g(-1) in microalgae samples were achieved. Method performances were satisfactory and appropriate for monitoring of water and dietary supplements. The method was applied in routine to samples taken from Swiss market or buy on internet website. Among 19 samples, six showed the presence of microcystins LR and LA at harmful levels.
Avula, Bharathi; Sagi, Satyanarayanaraju; Wang, Yan-Hong; Wang, Mei; Gafner, Stefan; Manthey, John A; Khan, Ikhlas A
2016-07-01
A selective UHPLC-DAD-QToF-MS method was developed to screen grapefruit seeds, and the seeds of other Citrus species for limonoid aglycones, acids, glucosides, and flavonoids. These classes of compounds were identified in positive and negative ion modes over a mass-to-charge range from 100-1500. Accurate mass values, elution times, and fragmentation patterns obtained by QToF-mass spectrometry were used to identify or tentatively characterize the compounds detected in the sample of this study. Limonin was the major limonoid in most of the seeds of Citrus species, followed by nomilin. This analytical method was successfully applied for the analysis of commercial extracts and dietary supplements claiming to contain grapefruit seed extract, or extracts made from the seed and other fruit parts such as the peel or pulp. Many commercial products contained large numbers of flavonoids, indicating the use of peel, pulp, or seed coat. This method also permitted detection of synthetic preservatives such as benzethonium chloride, methylparaben, and triclosan in commercial grapefruit seed extract products. Out of the 17 commercial products analyzed, two contained the synthetic antimicrobial agent benzethonium chloride. Georg Thieme Verlag KG Stuttgart · New York.
Yang, Ruiyue; Dong, Jun; Guo, Hanbang; Li, Hongxia; Wang, Shu; Zhao, Haijian; Zhou, Weiyan; Yu, Songlin; Wang, Mo; Chen, Wenxiang
2013-01-01
Serum branched-chain and aromatic amino acids (BCAAs and AAAs) have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk.
van Munster, Jolanda M; Thomas, Baptiste; Riese, Michel; Davis, Adrienne L; Gray, Christopher J; Archer, David B; Flitsch, Sabine L
2017-02-21
Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry.
El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek
2014-10-01
The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T
2016-03-01
Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.
Hashimoto, Shunji; Zushi, Yasuyuki; Fushimi, Akihiro; Takazawa, Yoshikatsu; Tanabe, Kiyoshi; Shibata, Yasuyuki
2013-03-22
We developed a method that selectively extracts a subset from comprehensive 2D gas chromatography (GC×GC) and high-resolution time-of-flight mass spectrometry (HRTOFMS) data to detect and identify trace levels of organohalogens. The data were obtained by measuring several environmental and biological samples, namely fly ash, soil, sediment, the atmosphere, and human urine. For global analysis, some samples were measured without purification. By using our novel software, the mass spectra of organochlorines or organobromines were then extracted into a data subset under high mass accuracy conditions that were approximately equivalent to a mass resolution of 6000 for some samples. Mass defect filtering as pre-screening for the data extraction was very effective in removing the mass spectra of hydrocarbons. Those results showed that data obtained with HRTOFMS are valuable for global analysis of organohalogens, and probably of other compounds if specific data extraction methods can be devised. Copyright © 2013 Elsevier B.V. All rights reserved.
Biomarkers identified by urinary metabonomics for noninvasive diagnosis of nutritional rickets.
Wang, Maoqing; Yang, Xue; Ren, Lihong; Li, Songtao; He, Xuan; Wu, Xiaoyan; Liu, Tingting; Lin, Liqun; Li, Ying; Sun, Changhao
2014-09-05
Nutritional rickets is a worldwide public health problem; however, the current diagnostic methods retain shortcomings for accurate diagnosis of nutritional rickets. To identify urinary biomarkers associated with nutritional rickets and establish a noninvasive diagnosis method, urinary metabonomics analysis by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis were employed to investigate the metabolic alterations associated with nutritional rickets in 200 children with or without nutritional rickets. The pathophysiological changes and pathogenesis of nutritional rickets were illustrated by the identified biomarkers. By urinary metabolic profiling, 31 biomarkers of nutritional rickets were identified and five candidate biomarkers for clinical diagnosis were screened and identified by quantitative analysis and receiver operating curve analysis. Urinary levels of five candidate biomarkers were measured using mass spectrometry or commercial kits. In the validation step, the combination of phosphate and sebacic acid was able to give a noninvasive and accurate diagnostic with high sensitivity (94.0%) and specificity (71.2%). Furthermore, on the basis of the pathway analysis of biomarkers, our urinary metabonomics analysis gives new insight into the pathogenesis and pathophysiology of nutritional rickets.
Shin, Yongho; Lee, Jonghwa; Lee, Jiho; Lee, Junghak; Kim, Eunhye; Liu, Kwang-Hyeon; Lee, Hye Suk; Kim, Jeong-Han
2018-04-04
A screening method for simultaneous analysis of 379 pesticides in human serum was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Electrospray ionization with positive/negative switching mode of LC-MS/MS was adopted, and scheduled multiple reaction monitoring for each target compound was established. The limit of quantitation was 10 ng/mL for 94.5% of the total pesticides, and the correlation coefficients of calibration were ≥0.990 for 93.9% of the pesticides. For the sample preparation, scaled-down QuEChERS were used. Serum (100 μL) was extracted with acetonitrile (400 μL), partitioned with magnesium sulfate (40 mg) and sodium chloride (10 mg), and the upper layer was used for analysis without further cleanup steps. For the accuracy and precision tests, most of the pesticides showed excellent results in intra- and interday conditions. In the recovery tests at 10, 50, and 250 ng/mL, 85.8-91.8% of all target compounds satisfied the recovery range of 70-120% (relative standard deviation ≤20%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Cong-Min; Zhu, Ying; Jin, Di-Qiong
Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, butmore » also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.« less
Remily-Wood, Elizabeth R.; Liu, Richard Z.; Xiang, Yun; Chen, Yi; Thomas, C. Eric; Rajyaguru, Neal; Kaufman, Laura M.; Ochoa, Joana E.; Hazlehurst, Lori; Pinilla-Ibarz, Javier; Lancet, Jeffrey; Zhang, Guolin; Haura, Eric; Shibata, David; Yeatman, Timothy; Smalley, Keiran S.M.; Dalton, William S.; Huang, Emina; Scott, Ed; Bloom, Gregory C.; Eschrich, Steven A.; Koomen, John M.
2012-01-01
Purpose The Quantitative Assay Database (QuAD), http://proteome.moffitt.org/QUAD/, facilitates widespread implementation of quantitative mass spectrometry in cancer biology and clinical research through sharing of methods and reagents for monitoring protein expression and modification. Experimental Design Liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) assays are developed using SDS-PAGE fractionated lysates from cancer cell lines. Pathway maps created using GeneGO Metacore provide the biological relationships between proteins and illustrate concepts for multiplexed analysis; each protein can be selected to examine assay development at the protein and peptide level. Results The coupling of SDS-PAGE and LC-MRM screening has been used to detect 876 peptides from 218 cancer-related proteins in model systems including colon, lung, melanoma, leukemias, and myeloma, which has led to the development of 95 quantitative assays including stable-isotope labeled peptide standards. Methods are published online and peptide standards are made available to the research community. Protein expression measurements for heat shock proteins, including a comparison with ELISA and monitoring response to the HSP90 inhibitor, 17-DMAG, are used to illustrate the components of the QuAD and its potential utility. Conclusions and Clinical Relevance This resource enables quantitative assessment of protein components of signaling pathways and biological processes and holds promise for systematic investigation of treatment responses in cancer. PMID:21656910
Strittmatter, Nicole; Düring, Rolf-Alexander; Takáts, Zoltán
2012-09-07
An analysis method for aqueous samples by the direct combination of C18/SCX mixed mode thin-film microextraction (TFME) and desorption electrospray ionization mass spectrometry (DESI-MS) was developed. Both techniques make analytical workflow simpler and faster, hence the combination of the two techniques enables considerably shorter analysis time compared to the traditional liquid chromatography mass spectrometry (LC-MS) approach. The method was characterized using carbamazepine and triclosan as typical examples for pharmaceuticals and personal care product (PPCP) components which draw increasing attention as wastewater-derived environmental contaminants. Both model compounds were successfully detected in real wastewater samples and their concentrations determined using external calibration with isotope labeled standards. Effects of temperature, agitation, sample volume, and exposure time were investigated in the case of spiked aqueous samples. Results were compared to those of parallel HPLC-MS determinations and good agreement was found through a three orders of magnitude wide concentration range. Serious matrix effects were observed in treated wastewater, but lower limits of detection were still found to be in the low ng L(-1) range. Using an Orbitrap mass spectrometer, the technique was found to be ideal for screening purposes and led to the detection of various different PPCP components in wastewater treatment plant effluents, including beta-blockers, nonsteroidal anti-inflammatory drugs, and UV filters.
Wang, Zhe; Wu, Caisheng; Wang, Gangli; Zhang, Qingsheng; Zhang, Jinlan
2015-03-01
The detection, confirmation, and quantification of multiple illegal adulterants in health foods and herbal medicines by using a single analytical method are a challenge. This paper reports on a new strategy to meet this challenge by employing high-performance liquid chromatography coupled with high-resolution mass spectrometry and a mass spectral tree similarity filter technique. This analytical method can rapidly collect high-resolution, high-accuracy, optionally multistage mass data for compounds in samples. After a preliminary screening by retention time and high-resolution mass spectral data, known illegal adulterants can be detected. The mass spectral tree similarity filter technique has been applied to rapidly confirm these adulterants and simultaneously discover unknown ones. By using full-scan mass spectra as stem and data-dependent subsequent stage mass spectra to form branches, mass spectrometry data from detected compounds are converted into mass spectral trees. The known or unknown illegal adulterants in the samples are confirmed or discovered based on the similarity between their mass spectral trees and those of the references in a library, and they are finally quantified against standard curves. This new strategy has been tested by using 50 samples, and the illegal adulterants were rapidly and effectively detected, confirmed and quantified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lai, Chi-Kong; Poon, Wing-Tat; Chan, Yan-Wo
2006-09-01
Poisoning from aconite occurs worldwide as a result of misuse of the potent plant. Laboratory investigation into suspected intoxication cases is challenging because the content of toxic aconitum alkaloids varies depending on the plant source, market processing, dosing protocol, hydrolytic degradation, and metabolic transformation. Using a triple-quadrupole tandem mass spectrometer, a group screening method was developed based on the mass-fragmentographic scheme of common aconitum alkaloids. The precursor-ion scans of m/z 105 and 135 permitted selective profiling of 14-O-benzoyl-norditerpenoids and the 14-O-anisoyl-norditerpenoids, respectively. Gradient reversed-phase liquid chromatography minimized coelution of isobaric compounds. The screening protocol was applied to a clinical investigation of suspected herbal poisoning. In total, 15 urine samples were thus screened positive for aconitum alkaloid over 5 years. The diagnoses of aconite poisoning in 11 patients were firmly established based on the known prescription history and the positive urine finding. In four patients, without aconitum herbs being listed in the herbal prescriptions, contamination of the herbal remedies by aconite was suspected to be the hidden cause of their acute poisoning. Yunaconitne, a highly toxic aconitum alkaloid, was thus identified in human urine for the first time. The group screening method of aconitum alkaloids in urine is an important diagnostic aid for acute poisoning by aconites of an unclear origin.
Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.
Harvey, Virginia L; Egerton, Victoria M; Chamberlain, Andrew T; Manning, Phillip L; Buckley, Michael
2016-01-01
Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14)C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14)C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4)C analysis.
Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone
Harvey, Virginia L.; Egerton, Victoria M.; Chamberlain, Andrew T.; Manning, Phillip L.; Buckley, Michael
2016-01-01
Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six 14C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated 14C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 14C analysis. PMID:26938469
Angelides, Kimon; Matsunami, Risë K.; Engler, David A.
2015-01-01
Background: We evaluated the accuracy, precision, and linearity of the In Touch® blood glucose monitoring system (BGMS), a new color touch screen and cellular-enabled blood glucose meter, using a new rapid, highly precise and accurate 13C6 isotope-dilution liquid chromatography-mass spectrometry method (IDLC-MS). Methods: Blood glucose measurements from the In Touch® BGMS were referenced to a validated UPLC-MRM standard reference measurement procedure previously shown to be highly accurate and precise. Readings from the In Touch® BGMS were taken over the blood glucose range of 24-640 mg/dL using 12 concentrations of blood glucose. Ten In Touch® BGMS and 3 lots of test strips were used with 10 replicates at each concentration. A lay user study was also performed to assess the ease of use. Results: At blood glucose concentrations <75 mg/dL 100% of the measurements are within ±8 mg/dL from the true reference standard; at blood glucose levels >75 mg/dL 100% of the measurements are within ±15% of the true reference standard. 100% of the results are within category A of the consensus grid. Within-run precision show CV < 3.72% between 24-50 mg/dL and CV<2.22% between 500 and 600 mg/dL. The results show that the In Touch® meter exceeds the minimum criteria of both the ISO 15197:2003 and ISO 15197:2013 standards. The results from a user panel show that 100% of the respondents reported that the color touch screen, with its graphic user interface (GUI), is well labeled and easy to navigate. Conclusions: To our knowledge this is the first touch screen glucose meter and the first study where accuracy of a new BGMS has been measured against a true primary reference standard, namely IDLC-MS. PMID:26002836
Nemes, Peter; Hoover, William J; Keire, David A
2013-08-06
Sensors with high chemical specificity and enhanced sample throughput are vital to screening food products and medical devices for chemical or biochemical contaminants that may pose a threat to public health. For example, the rapid detection of oversulfated chondroitin sulfate (OSCS) in heparin could prevent reoccurrence of heparin adulteration that caused hundreds of severe adverse events including deaths worldwide in 2007-2008. Here, rapid pyrolysis is integrated with direct analysis in real time (DART) mass spectrometry to rapidly screen major glycosaminoglycans, including heparin, chondroitin sulfate A, dermatan sulfate, and OSCS. The results demonstrate that, compared to traditional liquid chromatography-based analyses, pyrolysis mass spectrometry achieved at least 250-fold higher sample throughput and was compatible with samples volume-limited to about 300 nL. Pyrolysis yielded an abundance of fragment ions (e.g., 150 different m/z species), many of which were specific to the parent compound. Using multivariate and statistical data analysis models, these data enabled facile differentiation of the glycosaminoglycans with high throughput. After method development was completed, authentically contaminated samples obtained during the heparin crisis by the FDA were analyzed in a blinded manner for OSCS contamination. The lower limit of differentiation and detection were 0.1% (w/w) OSCS in heparin and 100 ng/μL (20 ng) OSCS in water, respectively. For quantitative purposes the linear dynamic range spanned approximately 3 orders of magnitude. Moreover, this chemical readout was successfully employed to find clues in the manufacturing history of the heparin samples that can be used for surveillance purposes. The presented technology and data analysis protocols are anticipated to be readily adaptable to other chemical and biochemical agents and volume-limited samples.
la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Malvagia, Sabrina; Funghini, Silvia; Moriondo, Maria; Valleriani, Claudia; Lippi, Francesca; Ombrone, Daniela; Della Bona, Maria Luisa; Speckmann, Carsten; Borte, Stephan; Brodszki, Nicholas; Gennery, Andrew R; Weinacht, Katja; Celmeli, Fatih; Pagel, Julia; de Martino, Maurizio; Guerrini, Renzo; Wittkowski, Helmut; Santisteban, Ines; Bali, Pawan; Ikinciogullari, Aydan; Hershfield, Michael; Notarangelo, Luigi D; Resti, Massimo; Azzari, Chiara
2014-07-01
Purine nucleoside phosphorylase (PNP) deficiency is a rare form of autosomal recessive combined primary immunodeficiency caused by a enzyme defect leading to the accumulation of inosine, 2'-deoxy-inosine (dIno), guanosine, and 2'-deoxy-guanosine (dGuo) in all cells, especially lymphocytes. Treatments are available and curative for PNP deficiency, but their efficacy depends on the early approach. PNP-combined immunodeficiency complies with the criteria for inclusion in a newborn screening program. This study evaluate whether mass spectrometry can identify metabolite abnormalities in dried blood spots (DBSs) from affected patients, with the final goal of individuating the disease at birth during routine newborn screening. DBS samples from 9 patients with genetically confirmed PNP-combined immunodeficiency, 10,000 DBS samples from healthy newborns, and 240 DBSs from healthy donors of different age ranges were examined. Inosine, dIno, guanosine, and dGuo were tested by using tandem mass spectrometry (TMS). T-cell receptor excision circle (TREC) and kappa-deleting recombination excision circle (KREC) levels were evaluated by using quantitative RT-PCR only for the 2 patients (patients 8 and 9) whose neonatal DBSs were available. Mean levels of guanosine, inosine, dGuo, and dIno were 4.4, 133.3, 3.6, and 3.8 μmol/L, respectively, in affected patients. No indeterminate or false-positive results were found. In patient 8 TREC levels were borderline and KREC levels were abnormal; in patient 9 TRECs were undetectable, whereas KREC levels were normal. TMS is a valid method for diagnosis of PNP deficiency on DBSs of affected patients at a negligible cost. TMS identifies newborns with PNP deficiency, whereas TREC or KREC measurement alone can fail. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Haramija, Marko; Peter-Katalinić, Jasna
2017-10-30
Affinity mass spectrometry (AMS) is an emerging tool in the field of the study of protein•carbohydrate complexes. However, experimental obstacles and data analysis are preventing faster integration of AMS methods into the glycoscience field. Here we show how analysis of direct electrospray ionization mass spectrometry (ESI-MS) AMS data can be simplified for screening purposes, even for complex AMS spectra. A direct ESI-MS assay was tested in this study and binding data for the galectin-3C•lactose complex were analyzed using a comprehensive and simplified data analysis approach. In the comprehensive data analysis approach, noise, all protein charge states, alkali ion adducts and signal overlap were taken into account. In a simplified approach, only the intensities of the fully protonated free protein and the protein•carbohydrate complex for the main protein charge state were taken into account. In our study, for high intensity signals, noise was negligible, sodiated protein and sodiated complex signals cancelled each other out when calculating the K d value, and signal overlap influenced the Kd value only to a minor extent. Influence of these parameters on low intensity signals was much higher. However, low intensity protein charge states should be avoided in quantitative AMS analyses due to poor ion statistics. The results indicate that noise, alkali ion adducts, signal overlap, as well as low intensity protein charge states, can be neglected for preliminary experiments, as well as in screening assays. One comprehensive data analysis performed as a control should be sufficient to validate this hypothesis for other binding systems as well. Copyright © 2017 John Wiley & Sons, Ltd.
Jiao, Jiao; Gai, Qing-Yan; Zhang, Lin; Wang, Wei; Luo, Meng; Zu, Yuan-Gang; Fu, Yu-Jie
2015-06-01
A new, simple and efficient analysis method for fresh plant in vitro cultures-namely, high-speed homogenization coupled with microwave-assisted extraction (HSH-MAE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-was developed for simultaneous determination of six alkaloids and eight flavonoids in Isatis tinctoria hairy root cultures (ITHRCs). Compared with traditional methods, the proposed HSH-MAE offers the advantages of easy manipulation, higher efficiency, energy saving, and reduced waste. Cytohistological studies were conducted to clarify the mechanism of HSH-MAE at cellular/tissue levels. Moreover, the established LC-MS/MS method showed excellent linearity, precision, repeatability, and reproducibility. The HSH-MAE-LC-MS/MS method was also successfully applied for screening high-productivity ITHRCs. Overall, this study opened up a new avenue for the direct determination of secondary metabolic profiles from fresh plant in vitro cultures, which is valuable for improving quality control of plant cell/organ cultures and sheds light on the metabolomic analysis of biological samples. Graphical Abstract HSH-MAE-LC-MS/MS opened up a new avenue for the direct determination of alkaloids and flavonoids in fresh Isatis tinctoria hairy root cultures.
Thiboonboon, Kittiphong; Leelahavarong, Pattara; Wattanasirichaigoon, Duangrurdee; Vatanavicharn, Nithiwat; Wasant, Pornswan; Shotelersuk, Vorasuk; Pangkanon, Suthipong; Kuptanon, Chulaluck; Chaisomchit, Sumonta; Teerawattananon, Yot
2015-01-01
Background Inborn errors of metabolism (IEM) are a rare group of genetic diseases which can lead to several serious long-term complications in newborns. In order to address these issues as early as possible, a process called tandem mass spectrometry (MS/MS) can be used as it allows for rapid and simultaneous detection of the diseases. This analysis was performed to determine whether newborn screening by MS/MS is cost-effective in Thailand. Method A cost-utility analysis comprising a decision-tree and Markov model was used to estimate the cost in Thai baht (THB) and health outcomes in life-years (LYs) and quality-adjusted life year (QALYs) presented as an incremental cost-effectiveness ratio (ICER). The results were also adjusted to international dollars (I$) using purchasing power parities (PPP) (1 I$ = 17.79 THB for the year 2013). The comparisons were between 1) an expanded neonatal screening programme using MS/MS screening for six prioritised diseases: phenylketonuria (PKU); isovaleric acidemia (IVA); methylmalonic acidemia (MMA); propionic acidemia (PA); maple syrup urine disease (MSUD); and multiple carboxylase deficiency (MCD); and 2) the current practice that is existing PKU screening. A comparison of the outcome and cost of treatment before and after clinical presentations were also analysed to illustrate the potential benefit of early treatment for affected children. A budget impact analysis was conducted to illustrate the cost of implementing the programme for 10 years. Results The ICER of neonatal screening using MS/MS amounted to 1,043,331 THB per QALY gained (58,647 I$ per QALY gained). The potential benefits of early detection compared with late detection yielded significant results for PKU, IVA, MSUD, and MCD patients. The budget impact analysis indicated that the implementation cost of the programme was expected at approximately 2,700 million THB (152 million I$) over 10 years. Conclusion At the current ceiling threshold, neonatal screening using MS/MS in the Thai context is not cost-effective. However, the treatment of patients who were detected early for PKU, IVA, MSUD, and MCD, are considered favourable. The budget impact analysis suggests that the implementation of the programme will incur considerable expenses under limited resources. A long-term epidemiological study on the incidence of IEM in Thailand is strongly recommended to ascertain the magnitude of problem. PMID:26258410
Screening spectroscopy of prostate cancer
NASA Astrophysics Data System (ADS)
Yermolenko, S. B.; Voloshynskyy, D. I.; Fedoruk, O. S.
2015-11-01
The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the state of prostate cancer and choosing the best personal treatment. The objects of study were selected venous blood plasma of patient with prostate cancer, histological sections of rat prostate gland in the postoperative period. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5-25 microns) dry residue of plasma by spectral diagnostic technique of thin histological sections of biological tissues.
Sun, Hao; Luo, Guangwen; Xiang, Zheng; Cai, Xiaojun; Chen, Dahui
2016-12-01
The selection of effect indicators in the pharmacokinetic/ pharmacodynamic study of complex diseases to describe the relationship between plasma concentration and effect indicators is difficult. Three effect indicators of renal fibrosis were successfully determined. The relationship between pharmacokinetics and pharmacodynamics of rhein in rhubarb was elucidated. The study was a metabolomics analysis of rat plasma and pharmacokinetics/ pharmacodynamics of rhein. A sensitive and simple ultra performance liquid chromatography-tandem triple quadrupole mass spectrometry (UPLC-MS/MS) method was applied to determine the rhein plasma concentration in the rat model of renal fibrosis and rat sham-operated group after the administration of rhubarb decoction. Then, the ultra performance liquid chromatography-Micromass quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS) metabolomics method was used to screen biomarkers of renal fibrosis in rat plasma. Furthermore, the relationship between the plasma concentration of rhein and the concentration of three biomarkers directly related to renal fibrosis were analyzed. The three screened biomarkers could represent the effect of rhein treatment on renal fibrosis. Increasing the plasma concentration of rhein tended to restore the concentration of the three biomarkers in the model group compared with that in the sham-operated group. Evident differences in the area under the plasma concentration-time curve (AUC) of rhein were also observed under different pathological states. The results provide valuable information for the clinical application of rhubarb. Rhein intervention could recover the physiological balance in living organisms from the pharmacokinetic/pharmacodynamic levels. New information on the pharmacokinetic/pharmacodynamic study of complex diseases is provided. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mess, Aylin; Vietzke, Jens-Peter; Rapp, Claudius; Francke, Wittko
2011-10-01
Tackifier resins play an important role as additives in pressure sensitive adhesives (PSAs) to modulate their desired properties. With dependence on their origin and processing, tackifier resins can be multicomponent mixtures. Once they have been incorporated in a polymer matrix, conventional chemical analysis of tackifiers usually tends to be challenging because a suitable sample pretreatment and/or separation is necessary and all characteristic components have to be detected for an unequivocal identification of the resin additive. Nevertheless, a reliable analysis of tackifiers is essential for product quality and safety reasons. A promising approach for the examination of tackifier resins in PSAs is the novel direct analysis in real time mass spectrometry (DART-MS) technique, which enables screening analysis without time-consuming sample preparation. In the present work, four key classes of tackifier resins were studied (rosin, terpene phenolic, polyterpene, and hydrocarbon resins). Their corresponding complex mass spectra were interpreted and used as reference spectra for subsequent analyses. These data were used to analyze tackifier additives in synthetic rubber and acrylic adhesive matrixes. To prove the efficiency of the developed method, complete PSA products containing two or three different tackifiers were analyzed. The tackifier resins were successfully identified, while measurement time and interpretation took less than 10 mins per sample. Determination of resin additives in PSAs can be performed down to 0.1% (w/w, limit of detection) using the three most abundant signals for each tackifier. In summary, DART-MS is a rapid and efficient screening method for the analysis of various tackifiers in PSAs.
Gentili, Alessandra; Caretti, Fulvia; Ventura, Salvatore; Pérez-Fernández, Virginia; Venditti, Alessandro; Curini, Roberta
2015-08-26
This paper presents an analytical strategy for a large-scale screening of carotenoids in tomato fruits by exploiting the potentialities of the triple quadrupole-linear ion trap hybrid mass spectrometer (QqQLIT). The method involves separation on C30 reversed-phase column and identification by means of diode array detection (DAD) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). The authentic standards of six model compounds were used to optimize the separative conditions and to predict the chromatographic behavior of untargeted carotenoids. An information dependent acquisition (IDA) was performed with (i) enhanced-mass scan (EMS) as the survey scan, (ii) enhanced-resolution (ER) scan to obtain the exact mass of the precursor ions (16-35 ppm), and (iii) enhanced product ion (EPI) scan as dependent scan to obtain structural information. LC-DAD-multiple reaction monitoring (MRM) chromatograms were also acquired for the identification of targeted carotenoids occurring at low concentrations; for the first time, the relative abundance between the MRM transitions (ion ratio) was used as an extra tool for the MS distinction of structural isomers and the related families of geometrical isomers. The whole analytical strategy was high-throughput, because a great number of experimental data could be acquired with few analytical steps, and cost-effective, because only few standards were used; when applied to characterize some tomato varieties ('Tangerine', 'Pachino', 'Datterino', and 'Camone') and passata of 'San Marzano' tomatoes, our method succeeded in identifying up to 44 carotenoids in the 'Tangerine'" variety.
Peters, Frank T; Schaefer, Simone; Staack, Roland F; Kraemer, Thomas; Maurer, Hans H
2003-06-01
The classical stimulants amphetamine, methamphetamine, ethylamphetamine and the amphetamine-derived designer drugs MDA, MDMA ('ecstasy'), MDEA, BDB and MBDB have been widely abused for a relatively long time. In recent years, a number of newer designer drugs have entered the illicit drug market. 4-Methylthioamphetamine (MTA), p-methoxyamphetamine (PMA) and p-methoxymethamphetamine (PMMA) are also derived from amphetamine. Other designer drugs are derived from piperazine, such as benzylpiperazine (BZP), methylenedioxybenzylpiperazine (MDBP), trifluoromethylphenylpiperazine (TFMPP), m-chlorophenylpiperazine (mCPP) and p-methoxyphenylpiperazine (MeOPP). A number of severe or even fatal intoxications involving these newer substances, especially PMA, have been reported. This paper describes a method for screening for and simultaneous quantification of the above-mentioned compounds and the metabolites p-hydroxyamphetamine and p-hydroxymethamphetamine (pholedrine) in human blood plasma. The analytes were analyzed by gas chromatography/mass spectrometry in the selected-ion monitoring mode after mixed-mode solid-phase extraction (HCX) and derivatization with heptafluorobutyric anhydride. The method was fully validated according to international guidelines. It was linear from 5 to 1000 micro g l(-1) for all analytes. Data for accuracy and precision were within required limits with the exception of those for MDBP. The limit of quantification was 5 micro g l(-1) for all analytes. The applicability of the assay was proven by analysis of authentic plasma samples and of a certified reference sample. This procedure should also be suitable for confirmation of immunoassay results positive for amphetamines and/or designer drugs of the ecstasy type. Copyright 2003 John Wiley & Sons, Ltd.
Wong, Jon W; Webster, Michael G; Bezabeh, Dawit Z; Hengel, Mathew J; Ngim, Kenley K; Krynitsky, Alexander J; Ebeler, Susan E
2004-10-20
A method was developed to determine pesticides in malt beverages using solid phase extraction on a polymeric cartridge and sample cleanup with a MgSO4-topped aminopropyl cartridge, followed by capillary gas chromatography with electron impact mass spectrometry in the selected ion monitoring mode [GC-MS(SIM)]. Three GC injections were required to analyze and identify organophosphate, organohalogen, and organonitrogen pesticides. The pesticides were identified by the retention times of peaks of the target ion and qualifier-to-target ion ratios. GC detection limits for most of the pesticides were 5-10 ng/mL, and linearity was determined from 50 to 5000 ng/mL. Fortification studies were performed at 10 ng/mL for three malt beverages that differ in properties such as alcohol content, solids, and appearance. The recoveries from the three malt beverages were greater than 70% for 85 of the 142 pesticides (including isomers) studied. The data showed that the different malt beverage matrixes had no significant effect on the recoveries. This method was then applied to the screening and analysis of malt beverages for pesticides, resulting in the detection of the insectide carbaryl and the fungicide dimethomorph in real samples. The study indicates that pesticide levels in malt beverages are significantly lower than the tolerance levels set by the United States Environmental Protection Agency for malt beverage starting ingredients. The use of the extraction/cleanup procedure and analysis by GC-MS(SIM) proved effective in screening malt beverages for a wide variety of pesticides. Copyright 2004 American Chemical Society
Chen, Yaqi; Chen, Zhui; Wang, Yi
2015-01-01
Screening and identifying active compounds from traditional Chinese medicine (TCM) and other natural products plays an important role in drug discovery. Here, we describe a magnetic beads-based multi-target affinity selection-mass spectrometry approach for screening bioactive compounds from natural products. Key steps and parameters including activation of magnetic beads, enzyme/protein immobilization, characterization of functional magnetic beads, screening and identifying active compounds from a complex mixture by LC/MS, are illustrated. The proposed approach is rapid and efficient in screening and identification of bioactive compounds from complex natural products.
Wu, Qian; Wang, Yan; Gu, Xue; Zhou, Junyi; Zhang, Huiping; Lv, Wang; Chen, Zhe; Yan, Chao
2014-07-01
Metabolic profiles from human urine reveal the significant difference of carnitine and acylcarnitines levels between non-small cell lung carcinoma patients and healthy controls. Urine samples from cancer patients and healthy individuals were assayed in this metabolomic study using ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The data were normalized by the sum of all intensities and creatinine calibration, respectively, before orthogonal partial least squares discriminant analysis. Twenty differential metabolites were identified based on standard compounds or tandem mass spectrometry fragments. Among them, some medium-/long-chain acylcarnitines, for example, cis-3,4-methylene heptanoylcarnitine, were found to be downregulated while carnitine was upregulated in urine samples from the cancer group compared to the control group. Receiver operating characteristic analysis of the two groups showed that the area under curve for the combination of carnitine and 11 selected acylcarnitines was 0.958. This study suggests that the developed carnitine and acylcarnitines profiling method has the potential to be used for screening non-small cell lung carcinoma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mycotoxin analysis: an update.
Krska, Rudolf; Schubert-Ullrich, Patricia; Molinelli, Alexandra; Sulyok, Michael; MacDonald, Susan; Crews, Colin
2008-02-01
Mycotoxin contamination of cereals and related products used for feed can cause intoxication, especially in farm animals. Therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current methods usually include an extraction step, a clean-up step to reduce or eliminate unwanted co-extracted matrix components and a separation step with suitably specific detection ability. Quantitative methods of analysis for most mycotoxins use immunoaffinity clean-up with high-performance liquid chromatography (HPLC) separation in combination with UV and/or fluorescence detection. Screening of samples contaminated with mycotoxins is frequently performed by thin layer chromatography (TLC), which yields qualitative or semi-quantitative results. Nowadays, enzyme-linked immunosorbent assays (ELISA) are often used for rapid screening. A number of promising methods, such as fluorescence polarization immunoassays, dipsticks, and even newer methods such as biosensors and non-invasive techniques based on infrared spectroscopy, have shown great potential for mycotoxin analysis. Currently, there is a strong trend towards the use of multi-mycotoxin methods for the simultaneous analysis of several of the important Fusarium mycotoxins, which is best achieved by LC-MS/MS (liquid chromatography with tandem mass spectrometry). This review focuses on recent developments in the determination of mycotoxins with a special emphasis on LC-MS/MS and emerging rapid methods.
Phytochemical screening and analysis of antioxidant properties of aqueous extract of wheatgrass.
Durairaj, Varalakshmi; Hoda, Muddasarul; Shakya, Garima; Babu, Sankar Pajaniradje Preedia; Rajagopalan, Rukkumani
2014-09-01
To screen the phytochemical constituents and study antioxidant properties of the aqueous extract of the wheatgrass. The current study was focused on broad parameters namely, phytochemical analysis, gas chromatography-mass spectrometry analysis and antioxidant properties in order to characterize the aqueous extract of wheatgrass as a potential free radical quencher. The phytochemical screening of the aqueous extract of wheatgrass showed the presence of various secondary metabolites but the absence of sterols and quinone in general. Wheatgrass was proved to be an effective radical scavenger in all antioxidant assays. The gas chromatography-mass spectrometry analysis confirmed the presence of diverse category of bioactive compounds such as squalene, caryophyllene and amyrins in varying percentage. From the results obtained, we conclude that wheatgrass aqueous extract contains various effective compounds. It is a potential source of natural antioxidants. Further analysis of this herb will help in finding new effective compounds which can be of potent use in pharmacological field. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Torres-Sepúlveda, María del Rosario; Martínez-de Villarreal, Laura E; Esmer, Carmen; González-Alanís, Rogerio; Ruiz-Herrera, Consuelo; Sánchez-Peña, Alejandra; Mendoza-Cruz, José Alberto; Villarreal-Pérez, Jesús Z
2008-01-01
To initiate a statewide expanded metabolic screening program in neonates with the purpose of identifying the most common inborn errors of metabolism. From March 2002 through February 2004, a blood sample was obtained between 24 and 48 hours after delivery from every consecutive child born in public hospitals in Nuevo León. It was spotted on filter paper and analyzed by tandem mass spectrometry for expanded metabolic screening. A total of 42 264 samples were analyzed. Were obtained seven positive results, one for each disorder: homocystinuria, hyperphenylalaninemia, citrulinemia, transient tyrosinemia, 3-methylcrotonyl CoA carboxylase deficiency, 3-hydroxy-3-methylglutaryl CoA deficiency, and classic galactosemia. The estimated incidence of inborn errors of metabolism is 1:5 000, with a false positive rate of 0.22%. The program permitted the identification of metabolic disorders in the newborn, allowing an early intervention and prevention of life-threatening events and permanent neurological damage.
Yang, Hongmei; Wang, Yihan; Yu, Wenjing; Shi, Lei; Wang, Hongfeng; Su, Rui; Chen, Changbao; Liu, Shuying
2018-05-15
The identification and screening of triplex DNA binders are important because these compounds, in many cases, are potential anticancer agents as well as promising drug candidates. Therefore, the ability to screen for these compounds in a high-throughput mode could dramatically improve the drug screening process. A method involving a combination of 96-well plate format and peak area-fading ultra high performance liquid chromatography coupled with Orbitrap mass spectrometry was employed for screening bioactive compounds binding to the triplex DNA from the extracts of Stephania tetrandra S. Moore. Two compounds were screened out and identified as fangchinoline and tetrandrine, based on the comparison of retention time and MS 2 data with those of standards. The binding mechanisms of fangchinoline and tetrandrine at the molecular level were explored using MS 2 , fluorescence spectroscopy, ultraviolet-visible spectroscopy, and circular dichroism. Collision-induced dissociation experiments showed that the complexes with fangchinoline and tetrandrine were dissociated by ligand elimination. According to these measurements, an intercalating binding is the most appropriate binding mode of these two alkaloids to the triplex DNA. The current work provides not only deep insight into alkaloid-triplex DNA complexes but also useful guidelines for the design of efficient anticancer agents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Seo, Ja Young; Park, Hyung-Doo; Kim, Jong Won; Oh, Hyeon Ju; Yang, Jeong Soo; Chang, Yun Sil; Park, Won Soon; Lee, Soo-Youn
2014-01-01
Newborn screening for congenital adrenal hyperplasia (CAH) based on measuring 17-hydroxyprogesterone (17-OHP) by immunoassay generates a number of false-positive results, especially in preterm neonates. We applied steroid profiling by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a second-tier test in newborns with positive CAH screening and evaluated its clinical utility in a tertiary care hospital setting. By performing a 4-year retrospective data review, we were able to test 121 dried blood spots from newborns with positive CAH screening for 17-OHP, androstenedione and cortisol levels by LC-MS/MS. We prospectively evaluated the clinical utility of steroid profiling after the implementation of steroid profiling as a second-tier test in our routine clinical practice. During the 2-year prospective study period, 104 cases with positive initial screening by FIA were tested by LC-MS/MS. Clinical and laboratory follow-up were performed for at least 6 months. The preterm neonates accounted for 50.7% (76/150) and 70.4% (88/125) of screening-positive cases in retrospective and prospective cohorts, respectively. By applying steroid profiling as a second-tier test for positive CAH screening, we eliminated all false-positive results and decreased the median follow-up time from 75 to 8 days. Our data showed that steroid profiling reduced the burden of follow-up exams by improving the positive predictive value of the CAH screening program. The use of steroid profiling as a second-tier test for positive CAH screening will improve clinical practice particularly in a tertiary care hospital setting where positive CAH screening from preterm neonates is frequently encountered.
Szafran, Adam T.; Mancini, Maureen G.; Nickerson, Jeffrey A.; Edwards, Dean P.; Mancini, Michael A.
2016-01-01
Understanding the properties and functions of complex biological systems depends upon knowing the proteins present and the interactions between them. Recent advances in mass spectrometry have given us greater insights into the participating proteomes, however, monoclonal antibodies remain key to understanding the structures, functions, locations and macromolecular interactions of the involved proteins. The traditional single immunogen method to produce monoclonal antibodies using hybridoma technology are time, resource and cost intensive, limiting the number of reagents that are available. Using a high content analysis screening approach, we have developed a method in which a complex mixture of proteins (e.g., subproteome) is used to generate a panel of monoclonal antibodies specific to a subproteome located in a defined subcellular compartment such as the nucleus. The immunofluorescent images in the primary hybridoma screen are analyzed using an automated processing approach and classified using a recursive partitioning forest classification model derived from images obtained from the Human Protein Atlas. Using an ammonium sulfate purified nuclear matrix fraction as an example of reverse proteomics, we identified 866 hybridoma supernatants with a positive immunofluorescent signal. Of those, 402 produced a nuclear signal from which patterns similar to known nuclear matrix associated proteins were identified. Detailed here is our method, the analysis techniques, and a discussion of the application to further in vivo antibody production. PMID:26521976
Szafran, Adam T; Mancini, Maureen G; Nickerson, Jeffrey A; Edwards, Dean P; Mancini, Michael A
2016-03-01
Understanding the properties and functions of complex biological systems depends upon knowing the proteins present and the interactions between them. Recent advances in mass spectrometry have given us greater insights into the participating proteomes, however, monoclonal antibodies remain key to understanding the structures, functions, locations and macromolecular interactions of the involved proteins. The traditional single immunogen method to produce monoclonal antibodies using hybridoma technology are time, resource and cost intensive, limiting the number of reagents that are available. Using a high content analysis screening approach, we have developed a method in which a complex mixture of proteins (e.g., subproteome) is used to generate a panel of monoclonal antibodies specific to a subproteome located in a defined subcellular compartment such as the nucleus. The immunofluorescent images in the primary hybridoma screen are analyzed using an automated processing approach and classified using a recursive partitioning forest classification model derived from images obtained from the Human Protein Atlas. Using an ammonium sulfate purified nuclear matrix fraction as an example of reverse proteomics, we identified 866 hybridoma supernatants with a positive immunofluorescent signal. Of those, 402 produced a nuclear signal from which patterns similar to known nuclear matrix associated proteins were identified. Detailed here is our method, the analysis techniques, and a discussion of the application to further in vivo antibody production. Copyright © 2015 Elsevier Inc. All rights reserved.
Counting Molecules by Desorption Ionization and Mass Spectrometry/Mass Spectrometry.
ERIC Educational Resources Information Center
Cooks, R. G.; Busch, K. L.
1982-01-01
Discusses two newer methods in mass spectrometry and shows how they can increase signal and signal-to-noise ratios, respectively. The first method, desorption ionization (DI), increases sensitivity while the second method, mass spectrometry/mass spectrometry (MS/MS), increases specificity. Together, the two methods offer improved analytical…
Uclés, A; Ulaszewska, M M; Hernando, M D; Ramos, M J; Herrera, S; García, E; Fernández-Alba, A R
2013-07-01
This work introduces a liquid chromatography-electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes (12)C and (13)C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R > 0.996), repeatability (RSD < 13.4%), and reproducibility (RSD < 10.9%) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers. Fig Liquid chromatography-electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix.
Wijesinghe, Priyanga; Bepler, Gerold
2014-01-01
Introduction ROS1 and RET gene fusions were recently discovered in non-small cell lung cancer (NSCLC) as potential therapeutic targets with small molecule kinase inhibitors. The conventional screening methods of these fusions are time consuming and require samples of high quality and quantity. Here, we describe a novel and efficient method by coupling the power of multiplexing PCR and the sensitivity of mass spectrometry. Methods The multiplex mass spectrometry platform simultaneously tests samples for the expression of nine ROS1 and six RET fusion genes. The assay incorporates detection of wild-type exon junctions immediately upstream and downstream of the fusion junction to exclude false negative results. To flag false positives, the system also comprises two independent assays for each fusion gene junction. Results The characteristic mass spectrometric peaks of the gene fusions were obtained using engineered plasmid constructs. Specific assays targeting the wild-type gene exon junctions were validated using cDNA from lung tissue of healthy individuals. The system was further validated using cDNA derived from NSCLC cell lines that express endogenous fusion genes. The expressed ROS1-SLC34A2 and CCDC6-RET gene fusions from the NSCLC cell lines HCC78 and LC-2/ad, respectively, were accurately detected by the novel assay. The assay is extremely sensitive, capable of detecting an event in test specimens containing 0.5% positive tumors. Conclusion The novel multiplexed assay is robustly capable of detecting 15 different clinically relevant RET and ROS1 fusion variants. The benefits of this detection method include exceptionally low sample input, high cost efficiency, flexibility, and rapid turnover. PMID:25384172
Sigmund, Gerd; Koch, Anja; Orlovius, Anne-Katrin; Guddat, Sven; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario
2014-01-01
Since January 2014, the anti-anginal drug trimetazidine [1-(2,3,4-trimethoxybenzyl)-piperazine] has been classified as prohibited substance by the World Anti-Doping Agency (WADA), necessitating specific and robust detection methods in sports drug testing laboratories. In the present study, the implementation of the intact therapeutic agent into two different initial testing procedures based on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) is reported, along with the characterization of urinary metabolites by electrospray ionization-high resolution/high accuracy (tandem) mass spectrometry. For GC-MS analyses, urine samples were subjected to liquid-liquid extraction sample preparation, while LC-MS/MS analyses were conducted by established 'dilute-and-inject' approaches. Both screening methods were validated for trimetazidine concerning specificity, limits of detection (0.5-50 ng/mL), intra-day and inter-day imprecision (<20%), and recovery (41%) in case of the GC-MS-based method. In addition, major metabolites such as the desmethylated trimetazidine and the corresponding sulfoconjugate, oxo-trimetazidine, and trimetazidine-N-oxide as identified in doping control samples were used to complement the LC-MS/MS-based assay, although intact trimetazidine was found at highest abundance of the relevant trimetazidine-related analytes in all tested sports drug testing samples. Retrospective data mining regarding doping control analyses conducted between 1999 and 2013 at the Cologne Doping Control Laboratory concerning trimetazidine revealed a considerable prevalence of the drug particularly in endurance and strength sports accounting for up to 39 findings per year. Copyright © 2014 John Wiley & Sons, Ltd.
Botch-Jones, Sabra; Foss, Jamie; Barajas, David; Kero, Frank; Young, Craig; Weisenseel, Jason
2016-10-01
New psychoactive substances (NPS) have been associated with fatalities and severe injuries in a number of cases in the United States and have led investigators to rethink traditional drug monitoring protocols. Of particular interest are the variable phenethylamine chemical structures known as 'NBOMes', which pose an emerging threat to public health with incidence steadily growing over the past decade. In this study, direct sample analysis (DSA)-time of flight mass spectrometry was employed to leverage rapid and sensitive ambient ionization mass spectrometry without chromatographic separation as verified with an authentic case sample. Samples for method development were prepared at Boston University School of Medicine's Biomedical Forensic Sciences program (Boston, MA) and analyzed at the State of Maine Health and Environmental Testing Laboratory's Forensic Chemistry Section (Augusta, ME). Preliminary method development work was performed at the University of Central Florida (Orlando, FL). DSA without any extraction step in addition to the evaluation of methanol, dichloromethane and hexane extractions were conducted. Methanol was found to not be a suitable extraction solvent for DSA analysis of these compounds. For the screening of NBOMe designer drug variables on blotter paper, DSA-TOFMS was successful at reducing analysis time to ∼15s per sample, for qualitative identification for the selected analytes of interest. The analysis of an authentic forensic case sample by DSA-TOFMS using the method development parameters demonstrates its utility in forensic laboratories. 25C-NBOMe was identified with an exact mass accuracy of 0.60ppm. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Antimalarial natural products drug discovery in Panama.
Calderón, Angela I; Simithy-Williams, Johayra; Gupta, Mahabir P
2012-01-01
Malaria is still a major public health problem. The biodiversity of the tropics is extremely rich and represents an invaluable source of novel bioactive molecules. For screening of this diversity more sensitive and economical in vitro methods are needed, Flora of Panama has been studied based on ethnomedical uses for discovering antimalarial compounds. This review aims to provide an overview of in vitro screening methodologies for antimalarial drug discovery and to present results of this effort in Panama during the last quarter century. A literature search in SciFinder and PubMed and original publications of Panamanian scientists was performed to gather all the information on antimalarial drug discovery from the Panamanian flora and in vitro screening methods. A variety of colorimetric, staining, fluorometric, and mass spectrometry and radioactivity-based methods have been provided. The advantages and limitations of these methods are also discussed. Plants used in ethnomedicine for symptoms of malaria by three native Panamanian groups of Amerindians, Kuna, Ngöbe Buglé and Teribes are provided. Seven most active plants with IC(50) values < 10 μg/mL were identified Talisia nervosa Radlk. (Sapindaceae), Topobea parasitica Aubl.(Melastomataceae), Monochaetum myrtoideum Naudin (Melastomataceae), Bourreria spathulata (Miers) Hemsl.(Boraginaceae), Polygonum acuminatum Kunth (Polygonaceae), Clematis campestris A. St.-Hil. (Ranunculaceae) and Terminalia triflora (Griseb.) Lillo (Combretaceae). Thirty bioactive compounds belonging to a variety of chemical classes such as spermine and isoquinoline alkaloids, glycosylflavones, phenylethanoid glycosides, ecdysteroids, quercetin arabinofuranosides, clerodane-type diterpenoids, sipandinolid, galloylquercetin derivatives, gallates, oleamide and mangiferin derivatives.
Xia, Yong-Gang; Guo, Xin-Dong; Liang, Jun; Yang, Bing-You; Kuang, Hai-Xue
2017-09-01
This study presents a practical and valid strategy for the screening and structural characterization of Anemarrhena asphodeloides Bge steroidal saponins (SSs) using ultra-high performance liquid chromatography coupled with triple quadrupole linear ion trap mass spectrometry. The whole analytical protocols integrate four-step procedures in the positive mode: (1) rational deduction of mass fragmentation pathways of A. asphodeloides SSs; (2) untargeted screening of potential A. asphodeloides SSs by multiple-ion monitoring-information-dependent-acquiring-enhanced product ion (MIM-IDA-EPI) scan through reverse phase liquid chromatography; (3) comprehensive construction of an ammoniated precursor ion database by combining untargeted MIM-IDA-EPI scans and data literature; and (4) structural interpretation of targeted A. asphodeloides SSs using MIM-IDA-EPI and multiple reaction monitoring (MRM)-IDA-EPI with an energy-resolved technique. The protocols were used to analyze SSs in A. asphodeloides; of the 87 detected SSs that were unambiguously characterized or tentatively identified, 19 compounds were the first to be reported from A. asphodeloides and 13 ones were characterized as potential new compounds. Accuracy of the analytical procedure was demonstrated by structural identification of three SSs by NMR spectroscopy. The proposed schemes hold an excellent promise in the structural prediction and interpretation of complex SSs from plant medicines by mass spectrometry. Copyright © 2017 Elsevier Inc. All rights reserved.
Newborn screening by tandem mass spectrometry: ethical and social issues.
Avard, Denise; Vallance, Hilary; Greenberg, Cheryl; Potter, Beth
2007-01-01
Emerging technologies like Tandem Mass Spectrometry (TMS) enable multiple tests on a single blood sample and allow the expansion of Newborn Screening (NBS) to include various metabolic diseases. Introducing TMS for NBS raises important social and ethical questions: what are the criteria for adding disorders to screening panels? What evidence justifies expansion of screening? How can equity in NBS access and standards be ensured? How can policy standards be set, given the multiplicity of stakeholders? To address emerging issues, policy-makers, patient advocates, clinicians and researchers had a workshop during the 2005 Garrod Symposium. The participants received a summary of the discussion and understood the workshop's goal was to provide a basis for further discussion. This article contributes to this ongoing discussion. Several proposed recommendations assert the centrality of including social and ethical issues in the assessment of whether or not to introduce TMS. The article outlines five key recommendations for advancing the NBS agenda: national public health leadership; transparency; increased national consistency in NBS strategy, including minimum standards; collaboration between the federal and provincial/territorial governments and diverse stakeholders; and supporting research and/or programs based on effectiveness, which integrate ethical and social issues into assessment.
Gerace, E; Salomone, A; Abbadessa, G; Racca, S; Vincenti, M
2012-02-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid-liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration.
Gerace, E.; Salomone, A.; Abbadessa, G.; Racca, S.; Vincenti, M.
2011-01-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid–liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration. PMID:29403714
Halme, Mia; Pesonen, Maija; Grandell, Toni; Kuula, Matti; Pasanen, Markku; Vähäkangas, Kirsi; Vanninen, Paula
2015-10-01
Chloropicrin (trichloronitromethane) is a widely used soil fumigant and an old chemical warfare agent. The metabolism of chloropicrin is not well known in mammals but nitromethane has been shown to be one of its main metabolites. Here, a fast and simple headspace gas chromatography with mass spectrometry method was applied for the measurement of nitromethane from aqueous samples. The analytical method was validated using stable isotope labeled internal standard and a small sample volume of 260 μL. No conventional sample preparation steps were needed. The method was accurate (relative standard deviations ≤1.5%) and linear (R(2) = 0.9996) within the concentration range of 0.1-6.0 μg/mL. This method was used to measure nitromethane in in vitro incubations with human and pig liver cell fractions containing enzymes for xenobiotic metabolism, exposed to chloropicrin. The results indicate that the presence of glutathione is necessary for the formation of nitromethane from chloropicrin. Also, nitromethane was formed mostly in liver cytosol fractions, but not in microsomal fractions after the incubation with chloropicrin. Our results suggest that although nitromethane is not the unequivocal biomarker of chloropicrin exposure, this method could be applied for screening the elevated levels in humans after chloropicrin exposure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Desfontaine, Vincent; Nováková, Lucie; Ponzetto, Federico; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy
2016-06-17
This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents. Copyright © 2016 Elsevier B.V. All rights reserved.
Combet, Emilie; Lean, Michael E J; Boyle, James G; Crozier, Alan; Davidson, D Fraser
2011-01-14
Urinary homovanillic acid (HVA) measurement is used routinely as a marker of the first test for the screening of catecholamine-secreting tumors and dopamine metabolism, but generates a large number of false-positive results. With no guidelines for dietary restrictions prior to the test, we hypothesize that consumption of flavonol-rich foods (such as onions, tomatoes, tea) prior to urinary catecholamine screening could be responsible for false-positive urinary HVA in healthy subjects. A randomized, crossover dietary intervention was carried out in healthy subjects (n=17). Volunteers followed either a low or high-flavonol diet, for a duration of 3 days, prior to providing a 24-h urine sample for HVA measurement using a routine, validated liquid chromatography method as well as a gas chromatography-mass spectrometry method. Dietary flavonol intake significantly increased urinary HVA excretion (p < 0.001), with 3 out of 17 volunteers (20%) exceeding the 40 μmol/24 h upper limit of normal for HVA excretion (false-positive result). Dietary flavonols commonly found in foodstuff such as tomatoes, onions, and tea, interfered with the routine urinary HVA screening test and should be avoided in the three-day run-up to the test. Copyright © 2010 Elsevier B.V. All rights reserved.
D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L
2014-01-01
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.
Woldegebriel, Michael; Zomer, Paul; Mol, Hans G J; Vivó-Truyols, Gabriel
2016-08-02
In this work, we introduce an automated, efficient, and elegant model to combine all pieces of evidence (e.g., expected retention times, peak shapes, isotope distributions, fragment-to-parent ratio) obtained from liquid chromatography-tandem mass spectrometry (LC-MS/MS/MS) data for screening purposes. Combining all these pieces of evidence requires a careful assessment of the uncertainties in the analytical system as well as all possible outcomes. To-date, the majority of the existing algorithms are highly dependent on user input parameters. Additionally, the screening process is tackled as a deterministic problem. In this work we present a Bayesian framework to deal with the combination of all these pieces of evidence. Contrary to conventional algorithms, the information is treated in a probabilistic way, and a final probability assessment of the presence/absence of a compound feature is computed. Additionally, all the necessary parameters except the chromatographic band broadening for the method are learned from the data in training and learning phase of the algorithm, avoiding the introduction of a large number of user-defined parameters. The proposed method was validated with a large data set and has shown improved sensitivity and specificity in comparison to a threshold-based commercial software package.
Maeda, Yasuhiro; Nakajima, Yoko; Gotoh, Kana; Hotta, Yuji; Kataoka, Tomoya; Sugiyama, Naruji; Shirai, Naohiro; Ito, Tetsuya; Kimura, Kazunori
2016-01-01
Newborns are routinely screened for organic acidemias by acylcarnitine analysis. We previously reported the partial catalytic methylesterification of dicarboxylic acylcarnitines by benzenesulfonic acid moiety in the solid extraction cartridge during extraction from serum. Since the diagnosis of organic acidemias by tandem mass spectrometry is affected by the higher molecular weight of these derivatized acylcarnitines, we investigated the methylesterification conditions. The kinetic constants for the methylesterification of carboxyl groups on the acyl and carnitine sides of carnitine were 2.5 and 0.24h(-1), respectively. The physical basis underlying this difference in methylesterification rates was clarified theoretically, illustrating that methylesterification during extraction proceeds easily and must be prevented. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.
2016-05-01
Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.
Li, Senlin; Li, Sainan; Tang, Ying; Liu, Chunming; Chen, Lina; Zhang, Yuchi
2016-12-01
Stroke represents the fourth leading cause of death in the USA and the second leading cause of death worldwide. Lactate dehydrogenase inhibitors are widely used in the treatment of ischemic stroke and natural products are considered a promising source of novel lactate dehydrogenase inhibitors. In this study, we used PC12 cells to determine the protective effect of extracts from the herb Belamcanda chinensis following toxic challenge. Using ultrafiltration high-performance liquid chromatography coupled with photo-diode array detection and electrospray ionization mass spectrometry, we screened and identified isoflavonoids from Belamcanda chinensis extracts. Semi-preparative high-performance liquid chromatography was then applied to separate and isolate the active constituents. Using these methods, we identified six major compounds in Belamcanda chinensis as lactate dehydrogenase inhibitors: tectoridin, iristectorin A, iridin, tectorigenin, irigenin, and irisflorentin, which were then isolated to >92% purity. This is the first report that Belamcanda chinensis extracts contain potent lactate dehydrogenase inhibitors. Our results demonstrate that the systematic isolation of bioactive components from Belamcanda chinensis guided by ultrafiltration high-performance liquid chromatography coupled with photo-diode array detection and electrospray ionization mass spectrometry represents a feasible and efficient technique that could be extended for the identification and isolation of other enzyme inhibitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.
1997-02-01
Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysismore » time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.« less
Ballesteros-Gómez, Ana; de Boer, Jacob; Leonards, Pim E G
2014-04-15
The presence of a novel brominated flame retardant named 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) is reported for the first time in plastic parts of consumer products and indoor dust samples. TTBP-TAZ was identified by untargeted screening and can be a replacement of the banned polybrominated diphenyl ethers. Analysis techniques based on ambient mass spectrometry and on liquid chromatography with atmospheric pressure chemical ionization combined with high resolution time-of-flight mass spectrometry were developed for the screening, detection and quantification of this low volatility and high molecular weight compound. TTBP-TAZ was present in 8 of 13 plastic parts of consumer products (from mainly electric and electronic equipment acquired in 2012) at estimated concentrations of 0.01-1.9% by weight of the product (%, w/w). It was not present in any of the older 13 plastic samples that were collected in a recycling park (manufacture date before 2006), this suggests a recent use of TTBP-TAZ. It was also found in 9 of 17 house dust samples in the range of 160-22150 ng g(-1), with the highest levels being found in samples collected on electronic and electrical equipment. These preliminary results highlight the need for further research on TTBP-TAZ and the potential of using alternative analysis methods for the identification of new flame retardants.
Simons, Rudy; Vincken, Jean-Paul; Bohin, Maxime C; Kuijpers, Tomas F M; Verbruggen, Marian A; Gruppen, Harry
2011-01-15
Phytoalexins from soya are mainly characterised as prenylated pterocarpans, the glyceollins. Extracts of non-soaked and soaked soya beans, as well as that of soya seedlings, grown in the presence of Rhizopus microsporus var. oryzae, were screened for the presence of prenylated flavonoids with a liquid chromatography/mass spectrometry (LC/MS)-based screening method. The glyceollins I-III and glyceollidins I-II, belonging to the isoflavonoid subclass of the pterocarpans, were tentatively assigned. The formation of these prenylated pterocarpans was accompanied by that of other prenylated isoflavonoids of the subclasses of the isoflavones and the coumestans. It was estimated that approx. 40% of the total isoflavonoid content in Rhizopus-challenged soya bean seedlings were prenylated pterocarpans, whereas 7% comprised prenylated isoflavones and prenylated coumestans. The site of prenylation (A-ring or B-ring) of the prenylated isoflavones was tentatively annotated using positive-ion mode MS by comparing the (1,3) A(+) retro-Diels-Alder (RDA) fragments of prenylated and non-prenylated isoflavones. Furthermore, the fragmentation pathways of the five pterocarpans in negative-ion (NI) mode were proposed, which involved the cleavage of the C-ring and/or D-ring. The absence of the ring-closed prenyl (pyran or furan) gave exclusively -H(2) O(x,y) RDA fragments, whereas its presence gave predominantly the common RDA fragments. Copyright © 2010 John Wiley & Sons, Ltd.
Synthesis, lipophilicity and antimicrobial activity evaluation of some new thiazolyl-oxadiazolines
STOICA, CRISTINA IOANA; IONUȚ, IOANA; PÎRNĂU, ADRIAN; POP, CARMEN; ROTAR, ANCUȚA; VLASE, LAURIAN; ONIGA, SMARANDA; ONIGA, OVIDIU
2015-01-01
Background and aims Synthesis of new potential antimicrobial agents and evaluation of their lipophilicity. Methods Ten new thiazolyl-oxadiazoline derivatives were synthesized and their structures were validated by 1H-NMR and mass spectrometry. The lipophilicity of the compounds was evaluated using the principal component analysis (PCA) method. The necessary data for applying this method were obtained by reverse-phase thin-layer chromatography (RP-TLC). The antimicrobial activities were tested in vitro against four bacterial strains and one fungal strain. Results The lipophilicity varied with the structure but could not be correlated with the antimicrobial activity, since this was modest. Conclusions We have synthesized ten new heterocyclic compounds. After their physical and chemical characterization, we determined their lipophilicity and screened their antimicrobial activity. PMID:26733751
Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer
Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro
2015-01-01
We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909
Wang, Guoying; Shi, Gaofeng; Chen, Xuefu; Chen, Fuwen; Yao, Ruixing; Wang, Zhenju
2013-11-13
A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC-PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-D-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3', 4', 5, 8-penta hydroxyflavone-6-β-D-glucopyranosiduronic acid-6'-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-D-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-D-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-D-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide radical scavenging capacity. The use of the free radical reaction screening method based on LC-PDA-ESI/APCI-MS/MS would provide a new approach for rapid detection and identification of radical-scavenging natural antioxidants from complex matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Nácher-Mestre, Jaime; Ibáñez, María; Serrano, Roque; Pérez-Sánchez, Jaume; Hernández, Félix
2013-03-06
This paper describes the development, validation, and application of a rapid screening method for the detection and identification of undesirable organic compounds in aquaculture products. A generic sample treatment was applied without any purification or preconcentration step. After extraction of the samples with acetonitrile/water 80:20 (0.1% formic acid), the extracts were centrifuged and directly injected in the LC-HRMS system, consisting of ultra-high performance liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). A qualitative validation was carried out for over 70 representative compounds, including antibiotics, pesticides, and mycotoxins, in fish feed and fish fillets spiked at 20 and 100 μg/kg. At the highest level, the great majority of compounds were detected (using the most abundant ion, typically the protonated molecule) and unequivocally identified (on the basis of the presence of two accurate-mass measured ions). At the 20 μg/kg level, many contaminants could already be detected, although identification using two ions was not fully reached for some of them, mainly in fish feed due to the complexity of this matrix. Subsequent application of this screening methodology to aquaculture samples made it possible to find several compounds from the target list, such as the antibiotic ciprofloxacin, the insecticide pirimiphos-methyl, and the mycotoxins fumonisin B2 and zearalenone. A retrospective analysis of accurate-mass full-spectrum acquisition data provided by QTOF MS was also made, without either reprocessing or injecting the samples. This allowed the detection and tentative identification of other organic undesirables different from those included in the validated list.
Fast IRMS screening of pseudoendogenous steroids in doping analyses.
de la Torre, Xavier; Colamonici, Cristiana; Curcio, Davide; Botrè, Francesco
2017-11-01
The detection of the abuse of pseudoendogenous steroids (testosterone and/or its precursors) is currently based, when possible, on the application of the steroid module of the World Anti-Doping Agency (WADA), athlete biological passport (ABP), implemented through the global database, ADAMS. When a suspicious sample is detected, the confirmation by isotope ratio mass spectrometry (IRMS) is required. It is well known that this confirmation procedure is time consuming and expensive and can be only applied on a reduced number of samples. In previous studies we have demonstrated that the longitudinal evaluation of the IRMS data is able to detect positive samples that otherwise will be evaluated as negative, improving the efficacy of the fight against doping in sport. This would require the analysis of a much larger volume of samples by IRMS. The aim of the present work is to describe an IRMS screening method allowing to increase the throughput of samples that can be analyzed by IRMS. The detection efficacy of the method is compared with the confirmation method in use, and to assess its robustness and applicability, all the samples of a major cycling stage competition were analyzed, with the agreement of the testing authority, under routine conditions and response times. The results obtained permit to conclude that the IRMS screening method here proposed has adequate selectivity and produces results that overlap with the already validated method currently in use permitting to analyze a much higher volume of samples even during a major event without compromising the detection capacity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Low background screening capability in the UK
NASA Astrophysics Data System (ADS)
Ghag, Chamkaur
2015-08-01
Low background rare event searches in underground laboratories seeking observation of direct dark matter interactions or neutrino-less double beta decay have the potential to profoundly advance our understanding of the physical universe. Successful results from these experiments depend critically on construction from extremely radiologically clean materials and accurate knowledge of subsequent low levels of expected background. The experiments must conduct comprehensive screening campaigns to reduce radioactivity from detector components, and these measurements also inform detailed characterisation and quantification of background sources and their impact, necessary to assign statistical significance to any potential discovery. To provide requisite sensitivity for material screening and characterisation in the UK to support our rare event search activities, we have re-developed our infrastructure to add ultra-low background capability across a range of complementary techniques that collectively allow complete radioactivity measurements. Ultra-low background HPGe and BEGe detectors have been installed at the Boulby Underground Laboratory, itself undergoing substantial facility re-furbishment, to provide high sensitivity gamma spectroscopy in particular for measuring the uranium and thorium decay series products. Dedicated low-activity mass spectrometry instrumentation has been developed at UCL for part per trillion level contaminant identification to complement underground screening with direct U and Th measurements, and meet throughput demands. Finally, radon emanation screening at UCL measures radon background inaccessible to gamma or mass spectrometry techniques. With this new capability the UK is delivering half of the radioactivity screening for the LZ dark matter search experiment.
NASA Astrophysics Data System (ADS)
Grzegorzewski, B.; Peresunko, O. P.; Yermolenko, S. B.
2018-01-01
This work is devoted to the substantiation and selection of patients with ovarian cancer (OC) for the purpose of conducting expensive molecular genetic studies on genotyping. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues. Obtained results showed that the use of spectrophotometry in the range of 1000-3000 cm-1 allowed to establish quantitative parameters of the plasma absorption rate of blood of patients in the third group in different ranges, which would allow in the future to conduct an express analysis of the patient's condition (procedure screening) for further molecular-genetic typing on BRCA I and II.
Development of a Bile Acid-Based Newborn Screen for Niemann-Pick C Disease
Jiang, Xuntian; Sidhu, Rohini; Mydock, Laurel; Hsu, Fong-Fu; Covey, Douglas F.; Scherrer, David E.; Earley, Brian; Gale, Sarah E.; Farhat, Nicole Y.; Porter, Forbes D.; Dietzen, Dennis J.; Orsini, Joseph J.; Berry-Kravis, Elizabeth; Zhang, Xiaokui; Reunert, Janice; Marquardt, Thorsten; Runz, Heiko; Giugliani, Roberto; Schaffer, Jean E.; Ory, Daniel S.
2017-01-01
Niemann-Pick disease type C (NPC) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, it is imperative to improve diagnostics and facilitate early intervention. We used metabolomic profiling to identify potential markers and discovered three unknown bile acids that were increased in plasma from NPC but not control subjects. The bile acids most elevated in the NPC subjects were identified as 3β,5α,6β-trihydroxycholanic acid and its glycine conjugate, both of which were shown to be metabolites of cholestane-3β,5α,6β-triol, an oxysterol elevated in NPC. A high-throughput, mass spectrometry-based method was developed and validated to measure the glycine-conjugated bile acid in dried blood spots. Analysis of dried blood spots from 4992 controls, 134 NPC carriers, and 44 NPC subjects provided 100% sensitivity and specificity in the study samples. Quantification of the bile acid in dried blood spots, therefore, provides the basis for a newborn screen for NPC that is ready for piloting in newborn screening programs. PMID:27147587
Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format
Pinzon, Neissa M.; Aukema, Kelly G.; Gralnick, Jeffrey A.; Wackett, Lawrence P.
2011-01-01
ABSTRACT A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone production as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. PMID:21712420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.
2013-01-01
A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited tomore » provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.« less
Chen, Yanni; Guo, Lingling; Liu, Liqiang; Song, Shanshan; Kuang, Hua; Xu, Chuanlai
2017-09-20
Group-specific monoclonal antibodies (Mabs) with selectivity for 27 sulfonamides were developed based on new combinations of immunogen and coating antigen. The Mab was able to recognize 27 sulfonamides with 50% inhibition concentration (IC 50 ) values ranging from 0.15 to 15.38 μg/L. In particular, the IC 50 values for five sulfonamides (sulfamethazine, sulfaquinoxaline, sulfamonomethoxine, sulfadimethoxine, and sulfamethoxazole) were 0.51, 0.15, 0.56, 0.54, and 2.14 μg/L, respectively. On the basis of the Mab, an immunochromatographic lateral flow strip test was established for rapid screening of sulfonamides in honey samples. The visual limit of detection of the strip test for most sulfonamides in spiked honey samples was below 10 μg/kg, satisfying the requirements of authorities. Positive honey and pork liver samples, which had been confirmed by high-performance liquid chromatography/mass spectrometry, were used to validate the reliability of the proposed strip test. The immunochromatographic lateral flow strip test provides a rapid and convenient method for fast screening of sulfonamides in honey samples.
Danese, Elisa; Salvagno, Gian Luca; Guzzo, Alessandra; Scurati, Samuele; Fava, Cristiano; Lippi, Giuseppe
2017-01-01
Introduction Liquid chromatography coupled to atmospheric pressure ionization tandem mass spectrometry (LC-ESI-MS/MS) is currently considered the reference method for quantitative determination of urinary free cortisol (UFC). One of the major drawbacks of this measurement is a particular form of matrix effect, conventionally known as ion suppression. Materials and methods We describe here the case of a 66-year-old-patient referred to the daily service of general medicine for intravenous antibiotic administration due to a generalized Staphylococcus aureus infection and for routine 24 hours UFC monitoring in the setting of glucocorticoid replacement therapy. Results The observation of 10-fold decrease of internal standard of cortisol signal led us to hypothesize the presence of an ion suppression effect due to a co-eluting endogenous compound. Screening analysis of tandem mass spectrometry (MS/MS) spectra of the interfering molecule, along with in vitro confirmation analyses, were suggestive of the presence of high concentration of piperacillin. The problem was then easily solved with minor modifications of the chromatographic technique. Conclusions According to our findings, antibiotic therapy with piperacillin/tazobactam should be regarded as an important interference in UFC assessment, which may potentially affect detection capability, precision and accuracy of this measurement. This case report emphasizes that accurate anamnesis and standardization of all phases of urine collection are essential aspects for preventing potential interference in laboratory testing. PMID:29180920
Tang, Caiming; Tan, Jianhua; Fan, Ruifang; Zhao, Bo; Tang, Caixing; Ou, Weihui; Jin, Jiabin; Peng, Xianzhi
2016-08-26
Metabolite identification is crucial for revealing metabolic pathways and comprehensive potential toxicities of polycyclic aromatic hydrocarbons (PAHs) in human body. In this work, a quasi-targeted analysis strategy was proposed for metabolite identification of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in human urine using liquid chromatography triple quadruple mass spectrometry (LC-QqQ-MS/MS) combined with liquid chromatography high resolution mass spectrometry (LC-HRMS). Potential metabolites of OH-PAHs were preliminarily screened out by LC-QqQ-MS/MS in association with filtering in a self-constructed information list of possible metabolites, followed by further identification and confirmation with LC-HRMS. The developed method can provide more reliable and systematic results compared with traditional untargeted analysis using LC-HRMS. In addition, data processing for LC-HRMS analysis were greatly simplified. This quasi-targeted analysis method was successfully applied to identifying phase I and phase II metabolites of OH-PAHs in human urine. Five metabolites of hydroxynaphthalene, seven of hydroxyfluorene, four of hydroxyphenanthrene, and three of hydroxypyrene were tentatively identified. Metabolic pathways of PAHs in human body were putatively revealed based on the identified metabolites. The experimental results will be valuable for investigating the metabolic processes of PAHs in human body, and the quasi-targeted analysis strategy can be expanded to the metabolite identification and profiling of other compounds in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Shen, Weijian; Xu, Jinzhong; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Ding, Tao; Wu, Bin
2007-09-01
An analytical method of solid phase extraction-gas chromatography-mass spectrometry with two different ionization techniques was established for simultaneous determination of 12 acetanilide herbicide residues in tea-leaves. Herbicides were extracted from tea-leaf samples with ethyl acetate. The extract was cleaned-up on an active carbon SPE column connected to a Florisil SPE column. Analytical screening was determined by the technique of gas chromatography (GC)-mass spectrometry (MS) in the selected ion monitoring (SIM) mode with either electron impact ionization (EI) or negative chemical ionization (NCI). It is reliable and stable that the recoveries of all herbicides were in the range from 50% to 110% at three spiked levels, 10 microg/kg, 20 microg/kg and 40 microg/kg, and the relative standard deviations (RSDs) were no more than 10.9%. The two different ionization techniques are complementary as more ion fragmentation information can be obtained from the EI mode while more molecular ion information from the NCI mode. By comparison of the two techniques, the selectivity of NCI-SIM was much better than that of EI-SIM method. The sensitivities of the both techniques were high, the limit of quantitative (LOQ) for each herbicide was no more than 2.0 microg/kg, and the limit of detection (LOD) with NCI-SIM technique was much lower than that of EI-SIM when analyzing herbicides with several halogen atoms in the molecule.
Beeman, Katrin; Baumgärtner, Jens; Laubenheimer, Manuel; Hergesell, Karlheinz; Hoffmann, Martin; Pehl, Ulrich; Fischer, Frank; Pieck, Jan-Carsten
2017-12-01
Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated "in-line reader" for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.
Chen, Guilin; Guo, Mingquan
2017-01-01
Gymnema sylvestre R. Br. (Asclepiadaceae) has been known to posses potential anti-diabetic activity, and the gymnemic acids were reported as the main bioactive components in this plant species. However, the specific components responsible for the hypoglycemic effect still remain unknown. In the present study, the in vitro study revealed that the extract of G. sylvestre exhibited significant inhibitory activity against α-glucosidase with IC50 at 68.70 ± 1.22 μg/mL compared to acarbose (positive control) at 59.03 ± 2.30 μg/mL, which further indicated the potential anti-diabetic activity. To this end, a method based on affinity ultrafiltration coupled with liquid chromatography mass spectrometry (UF-HPLC-MS) was established to rapidly screen and identify the α-glucosidase inhibitors from G. sylvestre. In this way, 9 compounds with higher enrichment factors (EFs) were identified according to their MS/MS spectra. Finally, the structure-activity relationships revealed that glycosylation could decrease the potential antisweet activity of sapogenins, and other components except gymnemic acids in G. sylvestre could also be good α-glucosidase inhibitors due to their synergistic effects. Taken together, the proposed method combing α-glucosidase and UF-HPLC-MS presents high efficiency for rapidly screening and identifying potential inhibitors of α-glucosidase from complex natural products, and could be further explored as a valuable high-throughput screening (HTS) platform in the early anti-diabetic drug discovery stage. PMID:28496409
Chen, Guilin; Guo, Mingquan
2017-01-01
Gymnema sylvestre R. Br. (Asclepiadaceae) has been known to posses potential anti-diabetic activity, and the gymnemic acids were reported as the main bioactive components in this plant species. However, the specific components responsible for the hypoglycemic effect still remain unknown. In the present study, the in vitro study revealed that the extract of G. sylvestre exhibited significant inhibitory activity against α-glucosidase with IC 50 at 68.70 ± 1.22 μg/mL compared to acarbose (positive control) at 59.03 ± 2.30 μg/mL, which further indicated the potential anti-diabetic activity. To this end, a method based on affinity ultrafiltration coupled with liquid chromatography mass spectrometry (UF-HPLC-MS) was established to rapidly screen and identify the α-glucosidase inhibitors from G. sylvestre . In this way, 9 compounds with higher enrichment factors (EFs) were identified according to their MS/MS spectra. Finally, the structure-activity relationships revealed that glycosylation could decrease the potential antisweet activity of sapogenins, and other components except gymnemic acids in G. sylvestre could also be good α-glucosidase inhibitors due to their synergistic effects. Taken together, the proposed method combing α-glucosidase and UF-HPLC-MS presents high efficiency for rapidly screening and identifying potential inhibitors of α-glucosidase from complex natural products, and could be further explored as a valuable high-throughput screening (HTS) platform in the early anti-diabetic drug discovery stage.
van Munster, Jolanda M.; Thomas, Baptiste; Riese, Michel; Davis, Adrienne L.; Gray, Christopher J.; Archer, David B.; Flitsch, Sabine L.
2017-01-01
Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry. PMID:28220903
Guo, Xiangyu; Bai, Hua; Lv, Yueguang; Xi, Guangcheng; Li, Junfang; Ma, Xiaoxiao; Ren, Yue; Ouyang, Zheng; Ma, Qiang
2018-04-01
Rapid, on-site analysis was achieved through significantly simplified operation procedures for a wide variety of toy samples (crayon, temporary tattoo sticker, finger paint, modeling clay, and bubble solution) using a miniature mass spectrometry system with ambient ionization capability. The labor-intensive analytical protocols involving sample workup and chemical separation, traditionally required for MS-based analysis, were replaced by direct sampling analysis using ambient ionization methods. A Mini β ion trap miniature mass spectrometer was coupled with versatile ambient ionization methods, e.g. paper spray, extraction spray and slug-flow microextraction nanoESI for direct identification of prohibited colorants, carcinogenic primary aromatic amines, allergenic fragrances, preservatives and plasticizers from raw toy samples. The use of paper substrates coated with Co 3 O 4 nanoparticles allowed a great increase in sensitivity for paper spray. Limits of detection as low as 5μgkg -1 were obtained for target analytes. The methods being developed based on the integration of ambient ionization with miniature mass spectrometer represent alternatives to current in-lab MS analysis operation, and would enable fast, outside-the-lab screening of toy products to ensure children's safety and health. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Wei; Fang, Dong-Mei; He, Hong-Ping; Hao, Xiao-Jiang; Wu, Zhi-Jun; Zhang, Guo-Lin
2013-06-15
Limonoids, a class of tetranortriterpenoids, exhibit various biological effects, including acting as potent antifeedants and insect growth-regulators against various pests. The analysis of phragmalin- and mexicanolide-type limonoids by collision-induced dissociation tandem mass spectrometry (CID-MS/MS) has not been reported. A high-performance liquid chromatography/electrospray ionization (HPLC/ESI)-MS/MS method was developed to investigate the fragmentation patterns of [M+NH4 ](+) ions for nine reference phragmalin- and mexicanolide-type limonoids. The method was also used in the identification of limonoid compounds in botanic extracts of Heynea trijuga. The losses of side chains and the furan part were the major fragmentation patterns. However, there was variation in the relative abundances of product ions resulting from the same fragmentation pathways. A total of 89 phragmalin- and mexicanolide-type limonoids in botanic extracts of Heynea trijuga were detected and 50 of these compounds were identified or tentatively characterized based on elemental constituents, fragmentation pathways, and the profile of the major product ions of reference compounds. In addition, the isomers could be tentatively distinguished. An HPLC/ESI-MS/MS method was developed and could be used to simultaneously identify and screen phragmalin- and mexicanolide-type limonoids in botanic extracts of Heynea trijuga. Copyright © 2013 John Wiley & Sons, Ltd.
Fernandes, Virgínia C; Lehotay, Steven J; Geis-Asteggiante, Lucía; Kwon, Hyeyoung; Mol, Hans G J; van der Kamp, Henk; Mateus, Nuno; Domingues, Valentina F; Delerue-Matos, Cristina
2014-01-01
This study analysed 22 strawberry and soil samples after their collection over the course of 2 years to compare the residue profiles from organic farming with integrated pest management practices in Portugal. For sample preparation, we used the citrate-buffered version of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. We applied three different methods for analysis: (1) 27 pesticides were targeted using LC-MS/MS; (2) 143 were targeted using low pressure GC-tandem mass spectrometry (LP-GC-MS/MS); and (3) more than 600 pesticides were screened in a targeted and untargeted approach using comprehensive, two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS). Comparison was made of the analyses using the different methods for the shared samples. The results were similar, thereby providing satisfactory confirmation of both similarly positive and negative findings. No pesticides were found in the organic-farmed samples. In samples from integrated pest management practices, nine pesticides were determined and confirmed to be present, ranging from 2 µg kg(-1) for fluazifop-p-butyl to 50 µg kg(-1) for fenpropathrin. Concentrations of residues in strawberries were less than European maximum residue limits.
Ma, Zhen; Ge, Liya; Lee, Anna S Y; Yong, Jean Wan Hong; Tan, Swee Ngin; Ong, Eng Shi
2008-03-10
Coconut (Cocos nucifera L.) water, which contains many uncharacterized phytohormones is extensively used as a growth promoting supplement in plant tissue culture. In this paper, a high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of various classes phytohormones, including indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), abscisic acid (ABA), gibberellic acid (GA), zeatin (Z), N(6)-benzyladenine (BA), alpha-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) in young coconut water (CW). The analysis was carried out using a reverse-phase HPLC gradient elution, with an aqueous mobile phase (containing 0.1% formic acid, pH adjusted to 3.2 with triethylamine (TEA)) modified by methanol, and solute detection made at 265 nm wavelength. The method was validated for specificity, quantification, accuracy and precision. After preconcentration of putative endogenous phytohormones in CW using C(18) solid-phase extraction (SPE) cartridges, the HPLC method was able to screen for putative endogenous phytohormones present in CW. Finally, the identities of the putative phytohormones present in CW were further confirmed using independent liquid chromatography-tandem mass spectrometry (LC-MS/MS) equipped with an electrospray ionization (ESI) interface.
Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Sun, Jiamu; Luo, Hai
2014-01-15
It is difficult to directly analyze carboxylic acids in complex mixtures by ambient high-voltage-assisted laser desorption ionization mass spectrometry (HALDI-MS) in negative ion mode due to the low ionization efficiency of carboxylic acids. A method for the rapid detection of carboxylic acids in negative HALDI-MS has been developed based on their inclusion with β-cyclodextrin (β-CD). The negative HALDI-MS signal-to-noise ratios (S/Ns) of aliphatic, aromatic and hetero atom-containing carboxylic acids can all be significantly improved by forming 1:1 complexes with β-CD. These complexes are mainly formed by specific inclusion interactions which are verified by their collision-induced dissociation behaviors in comparison with that of their corresponding maltoheptaose complexes. A HALDI-MS/MS method has been successfully developed for the detection of α-lipoic acid in complex cosmetics and ibuprofen in a viscous drug suspension. The negative HALDI-MS S/Ns of carboxylic acids can be improved up to 30 times via forming non-covalent complexes with β-CD. The developed method shows the advantages of being rapid and simple, and is promising for rapid detection of active ingredients in complex samples or fast screening of drugs and cosmetics. Copyright © 2013 John Wiley & Sons, Ltd.
Kwok, Karen Y; Choi, Timmy L S; Kwok, Wai Him; Wong, Jenny K Y; Wan, Terence S M
2017-04-14
Anabolic and androgenic steroids (AASs) are a class of prohibited substances banned in horseracing at all times. The common approach for controlling the misuse of AASs in equine sports is by detecting the presence of AASs and/or their metabolites in urine and blood samples using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). This approach, however, often falls short as the duration of effect for many AASs are longer than their detection time in both urine and blood. As a result, there is a high risk that such AASs could escape detection in their official race-day samples although they may have been used during the long period of training. Hair analysis, on the other hand, can afford significantly longer detection windows. In addition, the identification of synthetic ester derivatives of AASs in hair, particularly for the endogenous ones, can provide unequivocal proof of their exogenous origin. This paper describes the development of a sensitive method (at sub to low parts-per-billion or ppb levels) for detecting 48 AASs and/or their esters in horse hair using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Decontaminated horse hair was pulverised and subjected to in-situ liquid-liquid extraction in a mixture of hexane - ethyl acetate (7:3, v/v) and phosphate buffer (0.1M, pH 9.5), followed by additional clean-up using mixed-mode solid-phase extraction. The final extract was analysed using UHPLC-HRMS in the positive electrospray ionisation (ESI) mode with both full scan and parallel reaction monitoring (PRM). This method was validated for qualitative identification purposes. Validation data, including method specificity, method sensitivity, extraction recovery, method precision and matrix effect are presented. Method applicability was demonstrated by the successful detection and confirmation of testosterone propionate in a referee hair sample. To our knowledge, this was the first report of a comprehensive screening method for detecting as many as 48 AASs and/or their esters in horse hair. Moreover, retrospective analysis of non-targeted AASs and/or their esters was made feasible by re-examining the full scan UHPLC-HRMS data acquired. Copyright © 2017 Elsevier B.V. All rights reserved.
Meng, Juncai; Lai, Ming-Tain; Munshi, Vandna; Grobler, Jay; McCauley, John; Zuck, Paul; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Adam, Gregory C
2015-06-01
HIV-1 protease (PR) represents one of the primary targets for developing antiviral agents for the treatment of HIV-infected patients. To identify novel PR inhibitors, a label-free, high-throughput mass spectrometry (HTMS) assay was developed using the RapidFire platform and applied as an orthogonal assay to confirm hits identified in a fluorescence resonance energy transfer (FRET)-based primary screen of > 1 million compounds. For substrate selection, a panel of peptide substrates derived from natural processing sites for PR was evaluated on the RapidFire platform. As a result, KVSLNFPIL, a new substrate measured to have a ~ 20- and 60-fold improvement in k cat/K m over the frequently used sequences SQNYPIVQ and SQNYPIV, respectively, was identified for the HTMS screen. About 17% of hits from the FRET-based primary screen were confirmed in the HTMS confirmatory assay including all 304 known PR inhibitors in the set, demonstrating that the HTMS assay is effective at triaging false-positives while capturing true hits. Hence, with a sampling rate of ~7 s per well, the RapidFire HTMS assay enables the high-throughput evaluation of peptide substrates and functions as an efficient tool for hits triage in the discovery of novel PR inhibitors. © 2015 Society for Laboratory Automation and Screening.
Hopfer, Helene; Jodari, Farman; Negre-Zakharov, Florence; Wylie, Phillip L; Ebeler, Susan E
2016-05-25
Demand for aromatic rice varieties (e.g., Basmati) is increasing in the US. Aromatic varieties typically have elevated levels of the aroma compound 2-acetyl-1-pyrroline (2AP). Due to its very low aroma threshold, analysis of 2AP provides a useful screening tool for rice breeders. Methods for 2AP analysis in rice should quantitate 2AP at or below sensory threshold level, avoid artifactual 2AP generation, and be able to analyze single rice kernels in cases where only small sample quantities are available (e.g., breeding trials). We combined headspace solid phase microextraction with gas chromatography tandem mass spectrometry (HS-SPME-GC-MS/MS) for analysis of 2AP, using an extraction temperature of 40 °C and a stable isotopologue as internal standard. 2AP calibrations were linear between the concentrations of 53 and 5380 pg/g, with detection limits below the sensory threshold of 2AP. Forty-eight aromatic and nonaromatic, milled rice samples from three harvest years were screened with the method for their 2AP content, and overall reproducibility, observed for all samples, ranged from 5% for experimental aromatic lines to 33% for nonaromatic lines.
Guzzetta, Melissa; Williamson, Alex; Duong, Scott
2016-08-01
Clostridium sordellii (C. sordellii) is an anaerobic gram-positive rod most commonly found in the soil and sewage but also as part of the normal flora of the gastrointestinal tract and vagina of a small percentage of healthy individuals. C. sordellii infection is considered to result from childbirth, abortion, and/or gynecological procedures. Although many strains of C. sordellii are nonpathogenic, virulent toxin-producing strains exist. Infection with this organism typically manifests as a patient experiencing septic shock rapidly followed by end-organ failure. Identification of C. sordelli has been successful by traditional culture, mass spectrometry methods, and via molecular methods. Herein, we present a fatal case of C. sordellii infection of a postpartum 33-year-old Asian woman. The organism was isolated by culture and identified using matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) technology. With the advent of rapid detection methods, antepartum screening for the fatal Clostridium species should be implemented in the general female population. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Flinders, Bryn; Beasley, Emma; Verlaan, Ricky M.; Cuypers, Eva; Francese, Simona; Bassindale, Tom; Clench, Malcolm R.; Heeren, Ron M. A.
2017-08-01
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) has been employed to rapidly screen longitudinally sectioned drug user hair samples for cocaine and its metabolites using continuous raster imaging. Optimization of the spatial resolution and raster speed were performed on intact cocaine contaminated hair samples. The optimized settings (100 × 150 μm at 0.24 mm/s) were subsequently used to examine longitudinally sectioned drug user hair samples. The MALDI-MS/MS images showed the distribution of the most abundant cocaine product ion at m/z 182. Using the optimized settings, multiple hair samples obtained from two users were analyzed in approximately 3 h: six times faster than the standard spot-to-spot acquisition method. Quantitation was achieved using longitudinally sectioned control hair samples sprayed with a cocaine dilution series. A multiple reaction monitoring (MRM) experiment was also performed using the `dynamic pixel' imaging method to screen for cocaine and a range of its metabolites, in order to differentiate between contaminated hairs and drug users. Cocaine, benzoylecgonine, and cocaethylene were detectable, in agreement with analyses carried out using the standard LC-MS/MS method. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Guo, Mengmeng; Wu, Haiyan; Jiang, Tao; Tan, Zhijun; Zhao, Chunxia; Zheng, Guanchao; Li, Zhaoxin; Zhai, Yuxiu
2017-07-01
In this study, we established a comprehensive method for simultaneous identification and quantification of tetrodotoxin (TTX) in fresh pufferfish tissues and pufferfish-based products using liquid chromatography/quadrupole-linear ion trap mass spectrometry (LC-QqLIT-MS). TTX was extracted by 1% acetic acid-methanol, and most of the lipids were then removed by freezing lipid precipitation, followed by purification and concentration using immunoaffinity columns (IACs). Matrix effects were substantially reduced due to the high specificity of the IACs, and thus, background interference was avoided. Quantitation analysis was therefore performed using an external calibration curve with standards prepared in mobile phase. The method was evaluated by fortifying samples at 1, 10, and 100 ng/g, respectively, and the recoveries ranged from 75.8%-107%, with a relative standard deviation of less than 15%. The TTX calibration curves were linear over the range of 1-1 000 μg/L, with a detection limit of 0.3 ng/g and a quantification limit of 1 ng/g. Using this method, samples can be further analyzed using an information-dependent acquisition (IDA) experiment, in the positive mode, from a single liquid chromatography-tandem mass spectrometry injection, which can provide an extra level of confirmation by matching the full product ion spectra acquired for a standard sample with those from an enhanced product ion (EPI) library. The scheduled multiple reaction monitoring method enabled TTX to be screened for, and TTX was positively identified using the IDA and EPI spectra. This method was successfully applied to analyze a total of 206 samples of fresh pufferfish tissues and pufferfish-based products. The results from this study show that the proposed method can be used to quantify and identify TTX in a single run with excellent sensitivity and reproducibility, and is suitable for the analysis of complex matrix pufferfish samples.