Science.gov

Sample records for spectroscopic analysis study

  1. Spectroscopic analysis of bones for forensic studies

    NASA Astrophysics Data System (ADS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D'Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; de Holanda Cavalcanti, Gildo; Lezzerini, Marco; Palleschi, Vincenzo

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied.

  2. Conformational analysis and vibrational spectroscopic studies on dapsone

    NASA Astrophysics Data System (ADS)

    Ildiz, Gulce Ogruc; Akyuz, Sevim

    2012-11-01

    In this study, the theoretical conformation analysis of free dapsone has been performed by single point energy calculations at both semi-empirical PM3 and DFT/B3LYP-3-21G theory levels and three stable conformers were determined. Both the IR and Raman spectra of the molecule in solid phase have been recorded. The IR intensities and harmonic vibrational wavenumbers of each conformer were calculated by DFT method at B3LYP/6-31++G(d,p) theory level. For the fundamental characterization, the total energy distribution (TED) calculations of the vibrational modes were done using parallel quantum mechanic solution program (SQM) and the fundamental modes were assigned. The theoretical results are in agreement with the experimental ones.

  3. Spectroscopic Studies of Melanin.

    DTIC Science & Technology

    1986-01-01

    il), and leading to the production of oxygen radicals (12). Gallas (13) and Kozikowski et al. (14) have studied melanin fluorescence. As part of a...Raman scattering unobservable in aqueous solution by continuous wave techniques. As was also observed by Kozikowski et al. (14), the intrinsic...168B. 14. Kozikowski SD, Wolfram LJ, Alfano RR. Fluorescence spectroscopy of eumelanins. IEEE J Quant Electron 1984;OE20:1379-1382. 15. Slawinski J

  4. Application of spectroscopic techniques for the analysis of kidney stones: a pilot study

    NASA Astrophysics Data System (ADS)

    Shameem, K. M., Muhammed; Chawla, Arun; Bankapur, Aseefhali; Unnikrishnan, V. K.; Santhosh, C.

    2016-03-01

    Identification and characterization of kidney stone remains one of the important analytical tasks in the medical field. Kidney stone is a common health complication throughout the world, which may cause severe pain, obstruction and infection of urinary tract, and can lead to complete renal damage. It commonly occurs in both sexes regardless of age. Kidney stones have different composition, although each stones have a major single characteristic component. A complete understanding of a sample properties and their function can only be feasible by utilizing elemental and molecular information simultaneously. Two laser based analytical techniques; Laser Induced Breakdown spectroscopy (LIBS) and Raman spectroscopy have been used to study different types of kidney stones from different patients. LIBS and Raman spectroscopy are highly complementary spectroscopic techniques, which provide elemental and molecular information of a sample. Q-switched Nd:YAG laser at 355 nm laser having energy 17mJ per pulse at 10 Hz repetition rate was used for getting LIBS spectra. Raman measurements were carried out using a home assembled micro-Raman spectrometer. Using the recorded Raman spectra of kidney stones, we were able to differentiate different kinds of kidney stones. LIBS spectra of the same stones are showing the evidence of C, Ca, H, and O and also suggest the presence of certain pigments.

  5. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  6. Mono and binuclear ruthenium(II) complexes containing 5-chlorothiophene-2-carboxylic acid ligands: Spectroscopic analysis and computational studies

    NASA Astrophysics Data System (ADS)

    Swarnalatha, Kalaiyar; Kamalesu, Subramaniam; Subramanian, Ramasamy

    2016-11-01

    New Ruthenium complexes I, II and III were synthesized using 5-chlorothiophene-2-carboxylic acid (5TPC), as ligand and the complexes were characterized by elemental analysis, FT-IR, 1H, 13C NMR, and mass spectroscopic techniques. Photophysical and electrochemical studies were carried out and the structures of the synthesized complex were optimized using density functional theory (DFT). The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energies and Mulliken atomic charges of the molecules are determined at the B3LYP method and standard 6-311++G (d,p) basis set starting from optimized geometry. They possess excellent stabilities and their thermal decomposition temperatures are 185 °C, 180 °C and 200 °C respectively, indicating that the metal complexes are suitable for the fabrication processes of optoelectronic devices.

  7. The study of polymers in geometrically confined states by the thermal analysis, the spectroscopic study, and the morphological investigation

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolin

    2005-07-01

    This thesis focuses on the study of the different geometrically confined states of polyacrylamide (PAL) in bulk film, single chain globules, and thin films. The thermal analysis, the spectroscopic study, and the morphological investigation were carried out. The main contribution of this thesis is that we have acquired a better understanding about the glass transition (T g) behavior of polymers. Although the glass transition is a well known phenomenon for liquids with strong covalently bonded structures, and is especially noteworthy for amorphous polymers, understanding the glass transition still remains one of the most intriguing puzzles in condensed matter physics at present. The solution of the glass transition puzzle will ultimately influence different fields in polymer science, particularly biophysics and biochemistry. Our approach to this complicated assignment, the glass transition phenomenon, is to examine the glass transition behavior of polymer chains in 3 dimensional confinement for single molecular single chain globules, 1 dimensional confinement for polymer thin films, and 0 dimensional confinement for bulk state polymer. We found that the glass transition temperature of a polymer depends on several factors, such as the inter-chain interlock entanglement, the inter-chain molecular interactions, the intra-chain cohesional entanglement, and the local chain orientation and conformational entropy. These factors have been systematically investigated by carefully preparing the polymer samples in different confined states. The main conclusion is that, although the glass transition is a non-equilibrium dynamic property, the true glass transition can be reached when polymer chains are free of the inter-chain entanglement. A better example is illustrated, in this thesis, of the glass transition behavior for the well-annealed single chain globules. PAL single chain globules are prepared by spray drying from the dilute solution. The size and morphology of the

  8. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Abdulnabi, Zuhair A.; Bolandnazar, Zeinab

    2014-01-01

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, 13C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical 13C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  9. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes.

    PubMed

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S; Abdulnabi, Zuhair A; Bolandnazar, Zeinab

    2014-01-03

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR, (13)C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical (13)C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  10. Quantum chemical computations, vibrational spectroscopic analysis and antimicrobial studies of 2,3-Pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Beaula, T. Joselin; Packiavathi, A.; Manimaran, D.; Joe, I. Hubert; Rastogi, V. K.; Jothy, V. Bena

    2015-03-01

    Density Functional Theory (DFT) calculations at B3PW91 level with 6-311G (d) basis sets were carried out for 2,3-Pyrazinedicarboxylic acid (PDCA) to analyze in detail the equilibrium geometries and vibrational spectra. Calculations reveal that the optimized geometry closely resembles the experimental XRD data. Vibrational spectra were analyzed on the basis of potential energy distribution (PED) of each vibrational mode, which provides quantitative as well as qualitative interpretation of IR and Raman spectra. Information about size, shape, charge density distribution and site of chemical reactivity of the molecule were obtained by mapping electron density isosurface with the electrostatic potential surface (ESP). Based on optimized ground state geometries, NBO analysis was performed to study donor-acceptor (bond-antibond) interactions. TD-DFT analysis was also performed to calculate energies, oscillator strength of electronic singlet-singlet transitions and the absorption wavelengths. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by gauge independent atomic orbital (GIAO) method and compared with the experimental values. PDCA was screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. Molecular docking was also performed for the different receptors.

  11. Vibrational spectroscopic analysis, molecular dynamics simulations and molecular docking study of 5-nitro-2-phenoxymethyl benzimidazole

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Foto, Egemen; Mary, Y. Sheena; Karatas, Esin; Panicker, C. Yohannan; Yalcin, Gözde; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Yildiz, Ilkay

    2017-02-01

    FT-IR and FT-Raman spectra of 5-nitro-2-phenoxymethylbenzimidazole were recorded and analyzed theoretically and experimentally. The splitting of Nsbnd H stretching mode in the IR spectrum with a red shift from the calculated value indicates the weakening of the NH bond. The theoretical calculations give the phenyl ring breathing modes at 999 cm-1 for mono substituted benzene ring and at 1040 cm-1 for tri-substituted benzene ring. The theoretical NMR chemical shifts are in agreement with the experimental chemical shifts. The most reactive sites for electrophilic and nucleophilic attack are predicted from the MEP analysis. HOMO of π nature is delocalized over the entire molecule whereas the LUMO is located over the complete molecule except mono-substituted phenyl ring and oxygen atom. Reactive sites of the title molecule have been located with the help of ALIE surfaces and Fukui functions. In order to determine locations prone to autoxidation and locations interesting for starting of degradation, bond dissociation energies have been calculated for all single acyclic bonds. For the determination of atoms with pronounced interactions with water we have calculated radial distribution functions obtained after molecular dynamics simulations. The calculated first hyperpolarizability of the title compound is 58.03 times that of standard nonlinear optical material urea. The substrate binding site interactions of the title compound with Topo II enzyme is reported by using molecular docking study. Biological activity studies show that the title compound can be leaded for developing new anticancer agents.

  12. Vibrational spectroscopic studies of N,N'-dimethylpropyleneurea-water system: affected solvent spectra and factor analysis.

    PubMed

    Śmiechowski, Maciej

    2011-08-15

    FT-IR spectra of N,N'-dimethylpropyleneurea (DMPU)-water system have been measured in the 4000-500 cm(-1) range by Attenuated Total Reflectance (ATR) technique in the entire composition range. The hydration of DMPU in diluted aqueous solutions has been additionally studied with transmission FT-IR spectroscopy of isotopically diluted HDO in H(2)O, used as a probe of solute hydration. The spectra have been analysed with the quantitative version of the difference spectra method that leads to isolation of the spectrum of solvent affected by the presence of the solute. DMPU-affected HDO spectra provide information about the energetic state of water molecules in the hydration shell, while affected H(2)O spectra additionally reflect the structural state of the water hydrogen bond network. The CO stretching band of DMPU has been used to obtain also the H(2)O-affected DMPU spectrum. The affected H(2)O and DMPU spectra have been determined in infinite dilution approximation, as well as for increasing concentrations of the solute. These results are confronted with factor analysis of ATR spectra, which shows the presence of three well-defined intermolecular complexes in the studied system. Presumable structures of these complexes have been proposed on the basis of Density Functional Theory (DFT) calculations of optimal cluster geometries.

  13. ESCA studies of the surface chemistry of lunar fines. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1976-01-01

    The paper presents an ESCA analysis based on the use of a synthetic lunar-glass standard that allows determination of the surface composition of lunar samples with an accuracy that appears to be better than 10% of the amount present for all major elements except Ti. It is found that, on the average, grain surfaces in the lunar fines samples 10084 and 15301 are strongly enriched in Si, moderately enriched in Fe, moderately depleted in Al and Ca, and strongly depleted in Mg. This pattern could not be produced by the deposition of any expected meteoritic vapor. Neither could it be produced by simple inverse-mass-dependent element loss during sputtering. It is suggested that at least part of the pattern may be a simple consequence of agglutinate glass formation in the fines since there is some evidence that Si can become enriched on the surface of silicate melts. These results do not support the strong enrichments in Fe on grain surfaces reported from Auger studies.

  14. Spectroscopic, electronic structure and natural bond orbital analysis of o-fluoronitrobenzene and p-fluoronitrobenzene: A comparative study

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Govindaraja, S. Thillai; Sakiladevi, S.; Kalaivani, M.; Mohan, S.

    2011-12-01

    Experimental FTIR, FT-Raman and FT-NMR spectroscopic studies of o-fluoronitrobenzene and p-fluoronitrobenzene have been carried out. A detailed quantum chemical calculations have been performed using DFT/B3LYP method with 6-311++G** and 6-31G** basis sets. Complete vibrational analyses of the compounds were performed. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules in chloroform solvent and in gas phase were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and are found to be in good agreement with experimental values. The theoretical parameters obtained at B3LYP levels have been compared with the experimental values.

  15. Studies of the interaction between FNC and human hemoglobin: a spectroscopic analysis and molecular docking.

    PubMed

    Li, Huiyi; Dou, Huanjing; Zhang, Yuhai; Li, Zhigang; Wang, Ruiyong; Chang, Junbiao

    2015-02-05

    FNC (2'-deoxy-2'-bfluoro-4'-azidocytidine) is a novel nucleoside analogue with pharmacologic effects on several human diseases. In this work, the binding of FNC to human hemoglobin (HHb) have been investigated by absorption spectroscopy, fluorescence quenching technique, synchronous fluorescence, three-dimensional fluorescence and molecular modeling methods. Analysis of fluorescence data showed that the binding of FNC to HHb occurred via a static quenching mechanism. Thermodynamic analysis and molecular modeling suggest that hydrogen bond and van der Waals force are the mainly binding force in the binding of FNC to HHb.

  16. Experimental and theoretical spectroscopic analysis, HOMO-LUMO, and NBO studies of cyanuric chloride

    NASA Astrophysics Data System (ADS)

    Prabhaharan, M.; Prabakaran, A. R.; Srinivasan, S.; Gunasekaran, S.

    2014-06-01

    The vibrational spectral analysis of cyanuric chloride was carried out by using FT-Raman and FT-IR spectra in the range 100-4000 cm-1 and 400-4000 cm-1 respectively. The structure optimization was done and structural characteristics were determined by Density Functional Theory (B3LYP) method with 6-31G(d,p) and 6-311++G(d,p) basis sets. The vibrational wavenumbers have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED). The Natural bonding orbital (NBO) analysis performed to confirm the stability of the molecule arising from hyper conjugation and delocalization. The Mulliken atomic charges were also calculated. The computed HOMO-LUMO energy gap shows that charge transfer occurs within the molecule. The thermodynamic properties at different temperatures have been calculated from the vibrational analysis.

  17. Synthesis, spectroscopic analysis and theoretical study of new pyrrole-isoxazoline derivatives

    NASA Astrophysics Data System (ADS)

    Rawat, Poonam; Singh, R. N.; Baboo, Vikas; Niranjan, Priydarshni; Rani, Himanshu; Saxena, Rajat; Ahmad, Sartaj

    2017-02-01

    In the present work, we have efficiently synthesized the pyrrole-isoxazoline derivatives (4a-d) by cyclization of substituted 4-chalconylpyrrole (3a-d) with hydroxylamine hydrochloride. The reactivity of substituted 4-chalconylpyrrole (3a-d), towards nucleophiles hydroxylamine hydrochloride was evaluated on the basis of electrophilic reactivity descriptors (fk+, sk+, ωk+) and they were found to be high at unsaturated β carbon of chalconylpyrrole indicating its more proneness to nucleophilic attack and thereby favoring the formation of reported new pyrrole-isoxazoline compounds (4a-d). The structures of newly synthesized pyrrole-isoxazoline derivatives were derived from IR, 1H NMR, Mass, UV-Vis and elemental analysis. All experimental spectral data corroborate well with the calculated spectral data. The FT-IR analysis shows red shifts in vN-H and vC = O stretching due to dimer formation through intermolecular hydrogen bonding. On basis set superposition error correction, the intermolecular interaction energy for (4a-d) is found to be 10.10, 9.99, 10.18, 11.01 and 11.19 kcal/mol respectively. The calculated first hyperpolarizability (β0) values of (4a-d) molecules are in the range of 7.40-9.05 × 10-30 esu indicating their suitability for non-linear optical (NLO) applications. Experimental spectral results, theoretical data, analysis of chalcone intermediates and pyrrole-isoxazolines find usefulness in advancement of pyrrole-azole chemistry.

  18. "Vibrational spectroscopic analysis and molecular docking studies of (E)-4-methoxy-N‧-(4-methylbenzylidene) benzohydrazide by DFT"

    NASA Astrophysics Data System (ADS)

    Maheswari, R.; Manjula, J.

    2016-07-01

    (E)-4-methoxy-N‧-(4-methylbenzylidene)benzohydrazide (4MN'MBH) a novel, organic, hydrazone Schiff base compound was synthesized and its structure was characterized by Fourier Transform Infrared (4000-400 cm-1), Fourier Transform Raman (3500-50 cm-1), Ultraviolet-Visible (200-800 nm) and 1H and 13C NMR spectroscopic analysis. Optimized molecular structure, vibrational frequencies and corresponding vibrational assignments regarding 4MN'MBH has become screened tentatively as well as hypothetically utilizing Gaussian09Wprogram package. Potential energy distributions of the normal modes of vibrations connected with vibrations are generally accomplished by applying VEDA program. Natural Bonding Orbital (NBO) assessment was completed with a reason to clarify charge transfer or conjugative interaction, the intra-molecular-hybridization and delocalization of electron density within the molecule. Electronic transitions were studied employing UV-Visible spectrum and the observed values were compared with theoretical values. 1H and13C NMR spectral assessment had been made with choosing structure property relationship by chemical shifts along with magnetic shielding effects of title compound. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4MN'MBH were calculated. The computed first order hyperpolarizability commensurate with the documented worth of very similar structure and could be an interesting thing for more experiments on non linear optics. Molecular docking study has been performed by in silico method to analysis their antituberculosis aspects against Enoyl acyl carrier protein reductase (Mycobacterium tuberculosis InhA) protein.

  19. Multivariate analysis methods for spectroscopic blood analysis

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Rohani, Arash; Ghazalah, Rashid; Vitkin, I. Alex; Pawluczyk, Romuald

    2012-01-01

    Blood tests are an essential tool in clinical medicine with the ability diagnosis or monitor various diseases and conditions; however, the complexities of these measurements currently restrict them to a laboratory setting. P&P Optica has developed and currently produces patented high performance spectrometers and is developing a spectrometer-based system for rapid reagent-free blood analysis. An important aspect of this analysis is the need to extract the analyte specific information from the measured signal such that the analyte concentrations can be determined. To this end, advanced chemometric methods are currently being investigated and have been tested using simulated spectra. A blood plasma model was used to generate Raman, near infrared, and optical rotatory dispersion spectra with glucose as the target analyte. The potential of combined chemometric techniques, where multiple spectroscopy modalities are used in a single regression model to improve the prediction ability was investigated using unfold partial least squares and multiblock partial least squares. Results show improvement in the predictions of glucose levels using the combined methods and demonstrate potential for multiblock chemometrics in spectroscopic blood analysis.

  20. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks

    PubMed Central

    Zhang, Weiqing; Jiang, Shuguang; Hardacre, Christopher; Goodrich, Peter; Wang, Kai; Shao, Hao; Wu, Zhengyan

    2015-01-01

    Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA) measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite) and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of IGR/IAll and I(G + GR)/IAll but lower values of ID/I(G+GR), IDL/I(G+GR), I(S + SL)/I(G+GR), and I(GL+GL')/I(G+GR). The oxidation properties of the coal samples were characterized by the reactivity indexes Tig, T20%, and Tmax from TGA data which were found to correlate well with the band area ratios of IGR/IAll, I(G + GR)/IAll, and I(S + SL)/I(G+GR). Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements. PMID:26682084

  1. Spectroscopic and vibrational analysis of the methoxypsoralen system: A comparative experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yuan, H.; Vo-Dinh, T.

    2013-03-01

    Raman spectra measurements and density functional theory (DFT) calculations were performed to investigate three psoralens: 5-amino-8-methoxypsoralen (5-A-8-MOP), 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) with the aim of differentiating these similar bioactive molecules. The Raman spectra were recorded in the region 300-3500 cm-1. All three psoralens were found to have similar Raman spectrum in the region 1500-1650 cm-1. 5-A-8-MOP can be easily differentiated from 5-MOP or 8-MOP based on the Raman spectrum. The Raman spectrum differences at 651 and 795 cm-1 can be used to identify 5-MOP from 8-MOP. The theoretically computed vibrational frequencies and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-311++G(d,p) basis set were found to yield results that are very comparable to experimental Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program.

  2. Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Prabhakaran, A.

    2014-08-01

    In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.

  3. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure

    NASA Astrophysics Data System (ADS)

    Dimitrić Marković, Jasmina M.; Marković, Zoran S.; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.

  4. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    NASA Astrophysics Data System (ADS)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  5. Studies on the binding of fulvic acid with transferrin by spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-feng; Yang, Guang; Dong, Yu; Zhao, Yan-qin; Sun, Xiao-ran; Chen, Lei; Chen, Hong-bo

    2015-02-01

    Transferrin has shown potential in the delivery of anticancer drugs into primarily proliferating cancer cells that over-express transferrin receptors. Fulvic acid has a wide range of biological and pharmacological activities which caused widespread concerns, the interaction of fulvic acid with human serum transferrin (Tf) has great significance for gaining a deeper insight about anticancer activities of fulvic acid. In this study, the mechanism of interaction between fulvic acid and Tf, has been investigated by using fluorescence quenching, thermodynamics, synchronous fluorescence and circular dichroism (CD) under physiological condition. Our results have shown that fulvic acid binds to Tf and form a new complex, and the calculated apparent association constants are 5.04 × 108 M-1, 5.48 × 107 M-1, 7.38 × 106 M-1 from the fluorescence quenching at 288 K, 298 K, and 310 K. The thermodynamic parameters indicate that hydrogen bonding and weak van der Waals are involved in the interaction between fulvic acid and Tf. The binding of fulvic acid to Tf causes the α-helix structure content of the protein to reduce, and resulting that peptide chains of Tf become more stretched. Our results have indicated a mechanism of the interaction between fulvic acid and Tf, which may provide information for possible design of methods to deliver drug molecules via transferrin to target tissues and cells effectively.

  6. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  7. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  8. Terahertz Spectroscopic Analysis of Peptides and Proteins

    NASA Astrophysics Data System (ADS)

    Falconer, Robert J.; Markelz, Andrea G.

    2012-10-01

    Spectroscopic analysis using the Terahertz frequencies between 0.1-15 THz (3-500 cm-1) has been underutilised by the biochemistry community but is starting to yield some scientifically interesting information. Analysis of structures from simple molecules like N-methylacetamide, to polyamides, peptides and relatively complex proteins provides different types of information dependant on the molecular size. The absorbance spectrum of small molecules is dominated by individual modes and specific hydrogen bonds, peptide spectra have peaks associated with secondary structure, while protein spectra are dominated by ensembles of hydrogen bonds and/or collective modes. Protein dynamics has been studied using Terahertz spectroscopy using proteins like bacteriorhodopsin, illustrating a potential application where this approach can provide complementary global dynamics information to the current nuclear magnetic resonance and fluorescence-based techniques. Analysis of higher-order protein structures like polyomavirus virus-like particles generate quite different spectra compared to their constituent parts. The presence of an extended hydration layer around proteins, first postulated to explain data generated using p-germanium spectroscopy may present a particularly interesting opportunity to better understand protein's complex interaction with water and small solutes in an aqueous environment. The practical aspects of Terahertz spectroscopy including sample handling, the use of molecular dynamics simulation and orthogonal experiment design are also discussed.

  9. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  10. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  11. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Ferretti, V.; Jelsch, C.; Lefebvre, F.; Nasr, C. Ben

    2016-05-01

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd4Cl10(C6H14NO)2·2H2O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl6 and CdCl5O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O-H⋯Cl and O-H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C-H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the HC⋯Cl and HC⋯HC intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.

  12. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    SciTech Connect

    Soudani, S.; Ferretti, V.; Jelsch, C.; Lefebvre, F.; Nasr, C. Ben

    2016-05-15

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd{sub 4}Cl{sub 10}(C{sub 6}H{sub 14}NO){sub 2}·2H{sub 2}O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl{sub 6} and CdCl{sub 5}O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O–H⋯Cl and O–H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C–H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the H{sub C}⋯Cl and H{sub C}⋯H{sub C} intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The {sup 13}C and {sup 15}N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.

  13. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  14. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  15. Analysis of variance in spectroscopic imaging data from human tissues.

    PubMed

    Kwak, Jin Tae; Reddy, Rohith; Sinha, Saurabh; Bhargava, Rohit

    2012-01-17

    The analysis of cell types and disease using Fourier transform infrared (FT-IR) spectroscopic imaging is promising. The approach lacks an appreciation of the limits of performance for the technology, however, which limits both researcher efforts in improving the approach and acceptance by practitioners. One factor limiting performance is the variance in data arising from biological diversity, measurement noise or from other sources. Here we identify the sources of variation by first employing a high throughout sampling platform of tissue microarrays (TMAs) to record a sufficiently large and diverse set data. Next, a comprehensive set of analysis of variance (ANOVA) models is employed to analyze the data. Estimating the portions of explained variation, we quantify the primary sources of variation, find the most discriminating spectral metrics, and recognize the aspects of the technology to improve. The study provides a framework for the development of protocols for clinical translation and provides guidelines to design statistically valid studies in the spectroscopic analysis of tissue.

  16. Complex of manganese (II) with curcumin: Spectroscopic characterization, DFT study, model-based analysis and antiradical activity

    NASA Astrophysics Data System (ADS)

    Gorgannezhad, Lena; Dehghan, Gholamreza; Ebrahimipour, S. Yousef; Naseri, Abdolhossein; Nazhad Dolatabadi, Jafar Ezzati

    2016-04-01

    The complex formation between curcumin (Cur) and Manganese (II) chloride tetrahydrate (MnCl2.4H2O) was studied by UV-Vis and IR spectroscopy. Spectroscopic data suggest that Cur can chelate Manganese cations. A simple multi-wavelength model-based method was used to define stability constant for complexation reaction regardless of the spectra overlapping of components. Also, pure spectra and concentration profiles of all components were extracted using this method. Density functional theory (DFT) was also used to view insight into complexation mechanism. Antioxidant activity of Cur and Cur-Mn(II) complex was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging method. Bond dissociation energy (BDE), the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and Molecular electrostatic potential (MEP) of Cur and the complex also were calculated at PW91/TZ2P level of theory using ADF 2009.01 package. The experimental results show that Cur has a higher DPPH radical scavenging activity than Cur-Mn(II). This observation is theoretically justified by means of lower BDE and higher HOMO and LUMO energy values of Cur ligand as compared with those of Cur-Mn(II) complex.

  17. Studies on the synthesis, spectroscopic analysis, molecular docking and DFT calculations on 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazol 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Sheena, Mary Y.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Pradhan, Kiran; Nanda, Ashis Kumar; Van Alsenoy, C.

    2017-02-01

    In this work we have investigated in details the spectroscopic and reactive properties of newly synthesized imidazole derivative, namely the 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide (HHPDI). FT-IR and NMR spectra were measured and compared with theoretically obtained data provided by calculations of potential energy distribution and chemical shifts, respectively. Insight into the global reactivity properties has been obtained by analysis of frontier molecular orbitals, while local reactivity properties have been investigated by analysis of charge distribution, ionization energies and Fukui functions. NBO analysis was also employed to understand the stability of molecule, while hyperpolarizability has been calculated in order to assess the nonlinear optical properties of title molecule. Sensitivity towards autoxidation and hydrolysis mechanisms has been investigated by calculations of bond dissociation energies and radial distribution functions, respectively. Molecular docking study was also performed, in order to determine the pharmaceutical potential of the investigated molecule.

  18. Galaxy And Mass Assembly (GAMA): spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Hopkins, A. M.; Driver, S. P.; Brough, S.; Owers, M. S.; Bauer, A. E.; Gunawardhana, M. L. P.; Cluver, M. E.; Colless, M.; Foster, C.; Lara-López, M. A.; Roseboom, I.; Sharp, R.; Steele, O.; Thomas, D.; Baldry, I. K.; Brown, M. J. I.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Drinkwater, M. J.; Loveday, J.; Meyer, M.; Peacock, J. A.; Tuffs, R.; Agius, N.; Alpaslan, M.; Andrae, E.; Cameron, E.; Cole, S.; Ching, J. H. Y.; Christodoulou, L.; Conselice, C.; Croom, S.; Cross, N. J. G.; De Propris, R.; Delhaize, J.; Dunne, L.; Eales, S.; Ellis, S.; Frenk, C. S.; Graham, Alister W.; Grootes, M. W.; Häußler, B.; Heymans, C.; Hill, D.; Hoyle, B.; Hudson, M.; Jarvis, M.; Johansson, J.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; López-Sánchez, Á.; Maddox, S.; Madore, B.; Maraston, C.; McNaught-Roberts, T.; Nichol, R. C.; Oliver, S.; Parkinson, H.; Penny, S.; Phillipps, S.; Pimbblet, K. A.; Ponman, T.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Staveley-Smith, L.; Sutherland, W.; Taylor, E.; Van Waerbeke, L.; Vázquez-Mata, J. A.; Warren, S.; Wijesinghe, D. B.; Wild, V.; Wilkins, S.

    2013-04-01

    The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ˜300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s-1 to σv ≈ 100 km s-1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 Å at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10-20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.

  19. Vibrational spectroscopic (FT-IR, FT-Raman) studies, Hirshfeld surfaces analysis, and quantum chemical calculations of m-acetotoluidide and m-thioacetotoluidide

    NASA Astrophysics Data System (ADS)

    Śmiszek-Lindert, Wioleta Edyta; Chełmecka, Elżbieta; Góralczyk, Stefan; Kaczmarek, Marian

    2017-01-01

    Theoretical calculations of the m-acetotoluidide and m-thioacetotoluidide isolated molecules were performed by using density functional theory (DFT) method at B3LYP/6-311++G (d,p) and B3LYP/6-311++G (3df,2pd) basis set levels. The Hirshfeld surfaces analysis and FT-IR and FT-Raman spectroscopy studies have been reported. The geometrical parameters of the title amide and thioamide are in a good agreement with the XRD experiment. The vibrational frequencies were calculated and scaled, and subsequently values have been compared with the experimental Infrared and Raman spectra. The observed and calculated frequencies are found to be in good agreement. The analysis of the Hirshfeld surface has been well correlated to the spectroscopic studies. Additionally, the highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO) and the energy gap between EHOMO and ELUMO (ΔEHOMO-LUMO) have been calculated.

  20. Spectroscopic Analysis of Planetary Host Stars

    NASA Astrophysics Data System (ADS)

    Rittipruk, P.; Yushchenko, A.; Kang, Y. W.

    2014-08-01

    We observed the high resolution spectra of extra-solar planet host stars. The spectroscopic data of host stars were observed using the CHIRON echelle spectrometer and R-C Spectrograph for magnetic activity on the SMART-1.5 meter telescope at CTIO, Chile. The analysis of spectroscopic data was performed using URAN and SYNTHE programs. These spectra allow us to determine the effective temperatures, surface gravities, microturbulent velocities and, finally, the chemical composition of the hosts was obtained by spectrum synthesis. One of the targets, namely HD 47536, the host of two planets, appeared to be a halo star with overabundances of neutron capture elements. The effective temperature and the surface gravity of this star are 4400 K and log=1.5 respectively, the iron is underabundant by 0.6 dex. The heavy elements (up to thorium, Z=90) show the overabundances with respect to iron. The signs of accretion of interstellar gas are found in the atmosphere of this star.

  1. Spectroscopic study of Mentha oils

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Singh, A. K.

    The visible fluorescence and excitation spectra of Mentha oils (Japanese mint oil, peppermint oil and spearmint oil) have been recorded. Different physical constants which are characteristic of the fluorescent molecules have been calculated for all three oils. Results reveal that the same group of organic compounds dominate in the oils of peppermint and spearmint, whereas some different compound is present in Japanese mint oil. It is also found that the fluorescence intensity of these oils is comparable to that of Rhodamine 6G dye in methanol solution. Our studies suggest that Mentha oils may be a useful lasing material in the 450-600 nm wavelength range.

  2. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  3. Spectroscopic analysis of chromium bioremediation products

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Marcus, M. A.; Steefel, C.; Larsen, J. T.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Remediation of chromium contamination frequently involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to identify the biogeochemical reactions that control in situ chromium reduction in the presence of different dominant electron acceptors, i.e., NO3-, Fe(III), and SO42-. It was hypothesized that indirect, abiotic reduction of Cr(VI) by reduced metabolic products [Fe(II) and sulfides] would dominate over direct enzymatic reduction by denitrifying, iron-reducing, or sulfate-reducing bacteria. It is further hypothesized that the enzymatic reduction of Cr(VI) would produce relatively pure chromium hydroxide precipitates, whereas indirect reduction would result in mixed Cr-Fe hydroxide solid phases. Flow-through columns containing homogenized sediments from the 100H site at Hanford, WA were subjected to nitrate-, sulfate- or iron-reducing conditions in the presence of 5 µM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions from the nitrate- and sulfate-reducing columns; however only a small amount of Cr(VI) was removed under iron-reducing conditions. Preliminary analysis of micro X-ray absorption spectra indicate that the untreated and iron-reducing column sediments contained pre-existing Cr in the form of primary minerals, e.g. chromite and/or Cr-bearing micas. However, there was an increase in the relative abundance of mixed-phase Cr-Fe hydroxides, i.e., Cr1-xFex(OH)3 in the nitrate- and sulfate-treated columns. A possible explanation for the observations is that the production of Fe(II) was enhanced under the nitrate- and sulfate- reducing conditions, and was most likely sulfide-driven in the latter case. The Fe(II) was subsequently available for reduction of Cr(VI) resulting in the mixed-phase precipitates. The results from the spectroscopic analysis support the hypothesis that Fe(II)-mediated Cr reduction prevails over direct

  4. Spectroscopic studies of the transplutonium elements

    SciTech Connect

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables.

  5. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  6. Spectroscopic study of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curran, Seamus; Weldon, Declan N.; Blau, Werner J.; Zandbergen, Henny W.; Kastner, J.; Kuzmany, Hans

    1994-11-01

    We present a comprehensive experimental study of the vibrational spectra of nanotubes. There are two main lines observed in the Raman spectrum, one positioned at 1350 cm-1, the D line, and the other at 1580 cm-1, the G line. Both these lines are very similar to those seen with disordered graphite. The disorder induced D line is very weak compared to the G line which is indicative of high crystalline materials. The position and intensity of the D line strongly depends on the energy of the exciting laser. This dispersion effect was also observed for graphitic particles and may be explained by a photoselective resonance process of nanotubes with different sizes. There are two optically active modes in the Infrared spectrum for highly orientated polycrystalline graphite which are the E1u and A2u modes. The E1u mode is positioned at 1587 cm-1 while the A2u mode is positioned at 868 cm-1. The Infrared spectrum of the nanotubes shows both modes although the E1u mode is downshifted to 1575 cm-1.

  7. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F.; Reid, Ray D.

    2012-01-01

    This invention relates to non-contact spectroscopic methods and apparatus for performing chemical analysis and the ideal wavelengths and sources needed for this analysis. It employs deep ultraviolet (200- to 300-nm spectral range) electron-beam-pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor lightemitting devices, and hollow cathode metal ion lasers. Three achieved goals for this innovation are to reduce the size (under 20 L), reduce the weight [under 100 lb (.45 kg)], and reduce the power consumption (under 100 W). This method can be used in microscope or macroscope to provide measurement of Raman and/or native fluorescence emission spectra either by point-by-point measurement, or by global imaging of emissions within specific ultraviolet spectral bands. In other embodiments, the method can be used in analytical instruments such as capillary electrophoresis, capillary electro-chromatography, high-performance liquid chromatography, flow cytometry, and related instruments for detection and identification of unknown analytes using a combination of native fluorescence and/or Raman spectroscopic methods. This design provides an electron-beampumped semiconductor radiation-producing method, or source, that can emit at a wavelength (or wavelengths) below 300 nm, e.g. in the deep ultraviolet between about 200 and 300 nm, and more preferably less than 260 nm. In some variations, the method is to produce incoherent radiation, while in other implementations it produces laser radiation. In some variations, this object is achieved by using an AlGaN emission medium, while in other implementations a diamond emission medium may be used. This instrument irradiates a sample with deep UV radiation, and then uses an improved filter for separating wavelengths to be detected. This provides a multi-stage analysis of the sample. To avoid the difficulties related to producing deep UV semiconductor sources, a pumping approach has been developed that uses

  8. Spectroscopic studies of individual plasmon resonant nanoparticles

    NASA Astrophysics Data System (ADS)

    Mock, Jack J.; Smith, David R.; Barbic, Mladen; Oldenburg, Steven J.; Schultz, David A.; Schultz, Sheldon

    2003-11-01

    We present a detailed description of the apparatus and techniques that we have utilized in our experimental study of individual plas on resonant nanoparticles,along with a brief description of some major results. The apparatus consists of a spectroscopic system combined with a modified darkfield microscope, which enables the user to sequentially select individual resonant nanostructures in the microscopic field of view for spectroscopic study. Plasmon resonant nanostructures scatter light elastically,and typically have very large scattering cross-sections at their resonant optical wavelengths. In general, spectra can be obtained with acquisition times between .1 to 30 seconds,and color images can be captured using consumer digital color cameras. Spheres,tetrahedrons,and pentagonal platelets were fabricated using colloidal chemistry techniques. To produce highly anisotropic structures such as nanorods and "barbells", templates were used. Many of these nanostructures have been individually spectroscopically characterized,and their spectra correlated with their shape and size as determined by transmission electron icroscope (TEM). The unique shape,size, composition,and dielectric surroundings of the individual plasmon resonant nanostructures determine their plasmon resonant behavior. We will show how the composition of the substrate on which the particles are immobilized and the dielectric of the surrounding medium have a significant effect on the plasmon resonance of the individual particles.

  9. Binding of the iminium and alkanolamine forms of sanguinarine to lysozyme: spectroscopic analysis, thermodynamics, and molecular modeling studies.

    PubMed

    Jash, Chandrima; Payghan, Pavan V; Ghoshal, Nanda; Suresh Kumar, Gopinatha

    2014-11-20

    Sanguinarine (SGR) exists in charged iminium (SGRI) and neutral alkanolamine (SGRA) forms. The binding of these two forms to the protein lysozyme (Lyz) was investigated by fluorescence, UV-vis absorbance and circular dichroism spectroscopy, and in silico molecular docking approaches. Binding thermodynamics were studied by microcalorimetry. Both forms of sanguinarine quenched the intrinsic fluorescence of Lyz, but the quenching efficiencies varied on the basis of binding that was derived after correction for an inner-filter effect. The equilibrium binding constants at 25 ± 1.0 °C for the iminium and alkanolamine forms were 1.17 × 10(5) and 3.32 × 10(5) M(-1), respectively, with approximately one binding site for both forms of the protein. Conformational changes of the protein in the presence of SGR were confirmed by absorbance, circular dichroism, three-dimensional fluorescence, and synchronous fluorescence spectroscopy. Microcalorimetry data revealed that SGRI binding is endothermic and predominantly involves electrostatic and hydrophobic interactions, whereas SGRA binding is exothermic and dominated by hydrogen-bonding interactions. The molecular distances (r) of 3.27 and 3.04 nm between the donor (Lyz) and the SGRI and SGRA acceptors, respectively, were calculated according to Förster's theory. These data suggested that both forms were bound near the Trp-62/63 residues of Lyz. Stronger binding of SGRA than SGRI was apparent from the results of both structural and thermodynamic experiments. Molecular docking studies revealed that the putative binding site for the SGR analogues resides at the catalytic site. The docking results are in accordance with the spectroscopic and thermodynamic data, further validating the stronger binding of SGRA over SGRI to Lyz. The binding site is situated near a deep crevice on the protein surface and is close to several crucial amino acid residues, including Asp-52, Glu-35, Trp-62, and Trp-63. This study advances our knowledge of

  10. Selective spectroscopic methods for water analysis

    SciTech Connect

    Vaidya, Bikas

    1997-06-24

    This dissertation explores in large part the development of a few types of spectroscopic methods in the analysis of water. Methods for the determination of some of the most important properties of water like pH, metal ion content, and chemical oxygen demand are investigated in detail. This report contains a general introduction to the subject and the conclusions. Four chapters and an appendix have been processed separately. They are: chromogenic and fluorogenic crown ether compounds for the selective extraction and determination of Hg(II); selective determination of cadmium in water using a chromogenic crown ether in a mixed micellar solution; reduction of chloride interference in chemical oxygen demand determination without using mercury salts; structural orientation patterns for a series of anthraquinone sulfonates adsorbed at an aminophenol thiolate monolayer chemisorbed at gold; and the role of chemically modified surfaces in the construction of miniaturized analytical instrumentation.

  11. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  12. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martínez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    2009-02-01

    At the Universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (d<25 pc), late-type stellar population with the aim of contributing to the knowledge of the stellar formation history in the solar neighbourhood. Part of our sample will be observed by DUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results of the kinematics of the DUNES sample.

  13. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martinez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    At the universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (d<25pc), late-type stellar population with the aim of contributing to the knowledge of the stellar formation history in the solar neighbourhood. Part of our sample will be observed by DUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results on the kinematics of the DUNES sample.

  14. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: A combined experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Ali Cipiloglu, M.; Kurt, Mustafa

    2012-11-01

    This work presents the characterization of 2,3-difluorophenylboronic acid (abbreviated as 2,3-DFPBA, C6H3B(OH)2F2) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C nuclear magnetic resonance (NMR) techniques. The FT-IR spectrum (4000-400 cm-1) and the FT-Raman spectrum (3500-10 cm-1) in the solid phase were recorded for 2,3-DFPBA. The 1H and 13C NMR spectra were recorded in DMSO solution. The UV-Vis absorption spectra of the 2,3-DFPBA that dissolved in water and ethanol were recorded in the range of 200-400 nm. There are four possible conformers for this molecule. The computational results diagnose the most stable conformer of the 2,3-DFPBA as the trans-cis form. The structural and spectroscopic data of the molecule were obtained for all four conformers from DFT (B3LYP) with 6-311++G (d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. We obtained good consistency between experimental and theoretical spectra. 13C and 1H NMR chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Finally the calculation results were analyzed to simulate infrared, Raman, NMR and UV spectra of the 2,3-DFPBA which show good agreement with observed spectra.

  15. Apparatus and method for spectroscopic analysis of scattering media

    DOEpatents

    Strobl, Karlheinz; Bigio, Irving J.; Loree, Thomas R.

    1994-01-01

    Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.

  16. Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Pena, A.-M.; Strupler, M.; Boulesteix, T.; Schanne-Klein, M.-C.

    2005-08-01

    We recorded one-photon excited fluorescence (1PEF) and two-photon excited fluorescence (2PEF) spectra of purified keratin from human epidermis, and determined the action cross section of this endogenous chromophore. We used this spectroscopic analysis to analyse multiphoton images of skin biopsies and assign the intrinsic fluorescence signals in the epidermis. We observed a good agreement between in situ and in vitro 2PEF spectra of keratin. This study provides a comprehensive characterization of the 2PEF signal of the keratins from the epidermis, and will be of practical interest for multiphoton imaging of the skin.

  17. Spectroscopic analysis and charge transfer interaction studies of 4-benzyloxy-2-nitroaniline insecticide: A density functional theoretical approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2015-01-01

    A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.

  18. Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analysis.

    PubMed

    Rabbani, Gulam; Baig, Mohammad Hassan; Lee, Eun Ju; Cho, Won Kyung; Ma, Jin Yeul; Choi, Inho

    2017-04-05

    Eperisone hydrochloride (EH) is a widely used as a muscle relaxant for patients with muscular contracture, low back pain, or spasticity. Human serum albumin (HSA), a highly soluble negatively charged, endogenous and abundant plasma protein ascribed with the ligand binding and transport properties. The current study was undertaken to explore the interaction between EH and the serum transport protein, HSA. Study of the interaction between HSA and EH was carried by UV-vis, fluorescence quenching, circular dichroism (CD) spectroscopy, FRET, and ITC. Tryptophan fluorescence intensity of HSA was strongly quenched by EH. The binding constants (Kb) were obtained by fluorescence quenching and results shows that the EH-HSA interaction revealed a static mode of quenching, with binding constant Kb ~104 reflecting high affinity of EH for HSA. The negative ΔGº value for binding indicated that HSA-EH interaction is a spontaneous process. Thermodynamic analysis shows HSA-EH complex formation occurs primarily due to hydrophobic interactions and hydrogen bonds were facilitate the binding of EH. EH binding induces α-helix of HSA as obtained by far-UV CD and FTIR spectroscopy. In addition, the distance between EH (acceptor) and Trp residue of HSA (donor) was calculated 2.18 nm using Förster's resonance energy transfer theory. Furthermore, molecular docking results revealed EH binds with HSA, and binding site is positioned in Sudlow Site I of HSA (subdomain IIA). This work provides a useful experimental strategy for studying the interaction of myorelaxant with HSA, helping to understand the activity and mechanism of drug binding.

  19. Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and painted enamels from the Imperial Palace

    NASA Astrophysics Data System (ADS)

    Su, Yan; Qu, Liang; Duan, Hongying; Tarcea, Nicolae; Shen, Aiguo; Popp, Jürgen; Hu, Jiming

    2016-01-01

    Two kinds of enamels, including Chinese cloisonné wares from Fuwang chamber and gourd-shaped painted enamels decorations from the Forbidden City, in the Imperial Palace of China, are investigated by micro-Raman spectroscopy in combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy-dispersive X-ray fluorescence (EDXRF) in order to examine and analyze the composition of the glaze layer in each case. In this study the excitation is employed with either a NIR laser (785 nm) or a red laser (632.8 nm) in order to effectively eliminate the interference of background fluorescence and resonance effect. We have identified that the major matrix ingredients of the cloisonné wares are lead-based potash-lime silicate glasses while lead-potash silicate glass matrix is the main constituent for the painted enamels. Eight different colored areas of glaze layer also have been discussed in detail due to the distinct colors including turquoise, deep blue, yellow, white, red, pink, deep green and pale green. Their identification based on Raman data will be useful with regard to rapid and on site analysis and the restoration of the enamel decorations.

  20. Elemental analysis-aided Raman spectroscopic studies on Chinese cloisonné wares and painted enamels from the Imperial Palace.

    PubMed

    Su, Yan; Qu, Liang; Duan, Hongying; Tarcea, Nicolae; Shen, Aiguo; Popp, Jürgen; Hu, Jiming

    2016-01-15

    Two kinds of enamels, including Chinese cloisonné wares from Fuwang chamber and gourd-shaped painted enamels decorations from the Forbidden City, in the Imperial Palace of China, are investigated by micro-Raman spectroscopy in combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy-dispersive X-ray fluorescence (EDXRF) in order to examine and analyze the composition of the glaze layer in each case. In this study the excitation is employed with either a NIR laser (785 nm) or a red laser (632.8 nm) in order to effectively eliminate the interference of background fluorescence and resonance effect. We have identified that the major matrix ingredients of the cloisonné wares are lead-based potash-lime silicate glasses while lead-potash silicate glass matrix is the main constituent for the painted enamels. Eight different colored areas of glaze layer also have been discussed in detail due to the distinct colors including turquoise, deep blue, yellow, white, red, pink, deep green and pale green. Their identification based on Raman data will be useful with regard to rapid and on site analysis and the restoration of the enamel decorations.

  1. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  2. Preparation of cesium targets for gamma-spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Basu, S. K.; Chanda, S.; Deb, P.; Eqbal, Md; Kundu, S.; Joseph, D.

    2000-11-01

    A procedure to prepare monoisotopic cesium compound targets for gamma-spectroscopic experiments is described. Using this procedure, uniform targets up to thicknesses of 0.6-1.2 mg/cm 2 were prepared and used for in-beam spectroscopic studies. The purity of the target was tested by energy dispersive X-ray fluorescence (EDXRF) measurements.

  3. Structural and vibrational spectroscopic analysis of anticancer drug mitotane using DFT method; a comparative study of its parent structure

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2015-04-01

    A comprehensive screening of the density functional theoretical approach to structural analysis is presented in this section. DFT calculations using B3LYP/6-311++G(d,p) level of theory were found to yield results that are very comparable to experimental IR and Raman spectra. Computed geometrical parameters and harmonic vibrational wavenumbers of the fundamentals were found in satisfactory agreement with the experimental data and also its parent structure. The vibrational assignments of the normal modes were performed on the basis of the potential energy distribution (PED) calculations. It can be proven from the comparative results of mitotane and its parent structure Dichlorodiphenyldichloroethane (DDD), the intramolecular nonbonding interaction between (C1sbnd H19⋯Cl18) in the ortho position which is calculated 2.583 Å and the position of the substitution takeover the vibrational wavenumber to redshift of 47 cm-1. In addition, natural bond orbital (NBO) analysis has been performed for analyzing charge delocalization throughout the molecule. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity and charge delocalization has been analyzed. 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method and compared with published results.

  4. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  5. Spectroscopic studies of detonating heterogeneous explosives. [HNS

    SciTech Connect

    Renlund, A.M.; Trott, W.M.

    1985-01-01

    The experimental objectives of this work are to use real-time spectroscopic techniques, emission spectroscopy and Raman spectra to monitor chemical and physical changes in shock-loaded or detonating high explosive (HE) samples. The investigators hope to identify chemical species including any transient intermediates. Also, they wish to determine the physical state of the material when the reactions are taking place; measure the temperature and the pressure; and study the effect of different initiation parameters and bulk properties of the explosive material. This work is just part of the effort undertaken to gain information on the detailed chemistry involved in initiation and detonation. In summary, the investigators have obtained vibrational temperatures of some small radical products of detonation, which may correlate with the detonation temperature. They have also observed that NO/sub 2/ is an early product from detonating HNS and RDX, and that other electronically excited radical species such as CN(B) are formed in HNS detonations. In the Raman work, the single-pulse spectra could be obtained even in the severe environment of a detonation, and that the rate of removal of the parent molecule could be monitored. 2 refs., 6 figs.

  6. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt - NMR, FT-IR and DFT studies

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Regulska, E.; Lewandowski, W.

    2014-01-01

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. The influence of sodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G** method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. 1H and 13C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  7. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt--NMR, FT-IR and DFT studies.

    PubMed

    Samsonowicz, M; Kowczyk-Sadowy, M; Regulska, E; Lewandowski, W

    2014-01-24

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. Theinfluence ofsodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G(**) method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. (1)H and (13)C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  8. Study on the interactional behaviour of transition metal ions with myoglobin: A detailed calorimetric, spectroscopic and light scattering analysis

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Banipal, Parampaul K.; Banipal, Tarlok S.

    2017-03-01

    The energetics and the impact on the conformation of heme containing protein myoglobin (Mb) due to the binding of three transition metal ions (Zn2 +, Ni2 +, and Mn2 +) have been investigated using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), UV-vis, and circular dichroism (CD) spectroscopy under physiological conditions. The binding affinity of the order of 104 M- 1 has been observed for all metal ions from calorimetry as well as from absorption spectroscopy. The binding of these metal ions with Mb is a spontaneous process that exposes the hydrophobic groups away from the protein core as exhibited by the negative Gibbs free energy change (ΔG) and positive heat capacity change (ΔCp) values. Both light scattering and CD results demonstrates that the binding of Zn2 + and Mn2 + ions with Mb results in the folding whereas Ni2 + ion results in the unfolding of the protein. No direct interactions among the transition metal ions and heme moiety of Mb has been observed from absorption study. The results of these studies reveals that Mn2 + ion influences the biological functions of Mb to a larger extent in spite of its lowest affinity followed by Zn2 + and Ni2 + ions.

  9. Spectroscopic investigation, vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking studies of oxoaporphine alkaloid liriodenine

    NASA Astrophysics Data System (ADS)

    Costa, Renyer A.; Pitt, Priscilla Olliveira; Pinheiro, Maria Lucia B.; Oliveira, Kelson M. T.; Salomé, Kahlil Schwanka; Barison, Andersson; Costa, Emmanoel Vilaça

    2017-03-01

    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of liriodenine is presented using B3LYP function with 6-311G (2d, p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing similar values. In addition, natural bond orbitals (NBOs), HOMO-LUMO energy gap, mapped molecular Electrostatic Potential (MEP) surface calculation, first and second order hyperpolarizabilities were also performed with the same calculation level. Theoretical UV spectrum agreed well with the measured experimental data, with transitions assigned. The molecular electrostatic potential map shows opposite potentials regions that forms hydrogen bonds that stabilize the dimeric form, which were confirmed by the close values related to the C dbnd O bond stretching between the dimeric form and the experimental IR spectra (1654 cm- 1 for the experimental, 1700 cm- 1 for the dimer form). Calculated HOMO/LUMO gaps shows the excitation energy for Liriodenine, justifying its stability and kinetics reaction. Molecular docking studies with Candida albicans dihydrofolate reductase (DHFR) and Candida albicans secreted aspartic protease (SAP) showed binding free energies values of - 8.5 and - 8.3 kcal/mol, suggesting good affinity between the liriodenine and the target macromolecules.

  10. Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging †

    PubMed Central

    Lanzarotta, Adam

    2016-01-01

    A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach. PMID:26927101

  11. Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging.

    PubMed

    Lanzarotta, Adam

    2016-02-24

    A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach.

  12. Spectroscopic analysis of LYSO:Ce crystals

    NASA Astrophysics Data System (ADS)

    Martins, A. F.; Carreira, J. F. C.; Rodrigues, J.; Sedrine, N. Ben; Castro, I. F. C.; Correia, P. M. M.; Veloso, J. F. C. A.; Rino, L.; Monteiro, T.

    2017-02-01

    Rare earth orthosilicates are among the most widely used scintillator materials in the last decades. Particularly, lutetium-yttrium oxyorthosilicate (LYSO) is known to exhibit great potentialities in the field of radiation detectors for medical imaging. Consequently, an in-depth knowledge of the material properties is of utmost interest for the mentioned applications. In this work the spectroscopic properties of commercial cerium doped lutetium-yttrium oxyorthosilicate crystals (LYSO:Ce) were investigated by Raman spectroscopy, steady state photoluminescence, photoluminescence excitation and time resolved photoluminescence. Site selective excitation was used under steady state (325 nm) and pulsed (266 nm) conditions to separately investigate the temperature dependence of the 5d → 4f Ce1 and Ce2 luminescence, allowing to establish the thermal quenching dependence of the Ce2 optical center. In the case of the Ce1 optical center, a luminescence quantum efficiency of 78% was obtained from 14 K to room temperature with 266 nm photon excitation.

  13. Spectroscopic analysis of protein Fe-NO complexes.

    PubMed

    Bellota-Antón, César; Munnoch, John; Robb, Kirsty; Adamczyk, Katrin; Candelaresi, Marco; Parker, Anthony W; Dixon, Ray; Hutchings, Matthew I; Hunt, Neil T; Tucker, Nicholas P

    2011-10-01

    The toxic free radical NO (nitric oxide) has diverse biological roles in eukaryotes and bacteria, being involved in signalling, vasodilation, blood clotting and immunity, and as an intermediate in microbial denitrification. The predominant biological mechanism of detecting NO is through the formation of iron nitrosyl complexes, although this is a deleterious process for other iron-containing enzymes. We have previously applied techniques such as UV-visible and EPR spectroscopy to the analysis of protein Fe-NO complex formation in order to study how NO controls the activity of the bacterial transcriptional regulators NorR and NsrR. These studies have analysed NO-dependent biological activity both in vitro and in vivo using diverse biochemical, molecular and spectroscopic methods. Recently, we have applied ultrafast 2D-IR (two-dimensional IR) spectroscopy to the analysis of NO-protein interactions using Mb (myoglobin) and Cc (cytochrome c) as model haem proteins. The ultrafast fluctuations of Cc and Mb show marked differences, indicating altered flexibility of the haem pockets. We have extended this analysis to bacterial catalase enzymes that are known to play a role in the nitrosative stress response by detoxifying peroxynitrite. The first 2D-IR analysis of haem nitrosylation and perspectives for the future are discussed.

  14. Quantitative multi-image analysis for biomedical Raman spectroscopic imaging.

    PubMed

    Hedegaard, Martin A B; Bergholt, Mads S; Stevens, Molly M

    2016-05-01

    Imaging by Raman spectroscopy enables unparalleled label-free insights into cell and tissue composition at the molecular level. With established approaches limited to single image analysis, there are currently no general guidelines or consensus on how to quantify biochemical components across multiple Raman images. Here, we describe a broadly applicable methodology for the combination of multiple Raman images into a single image for analysis. This is achieved by removing image specific background interference, unfolding the series of Raman images into a single dataset, and normalisation of each Raman spectrum to render comparable Raman images. Multivariate image analysis is finally applied to derive the contributing 'pure' biochemical spectra for relative quantification. We present our methodology using four independently measured Raman images of control cells and four images of cells treated with strontium ions from substituted bioactive glass. We show that the relative biochemical distribution per area of the cells can be quantified. In addition, using k-means clustering, we are able to discriminate between the two cell types over multiple Raman images. This study shows a streamlined quantitative multi-image analysis tool for improving cell/tissue characterisation and opens new avenues in biomedical Raman spectroscopic imaging.

  15. Combined spectroscopic and quantum chemical studies of ezetimibe

    NASA Astrophysics Data System (ADS)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  16. Crystallographic and spectroscopic study on a known orally active progestin.

    PubMed

    Ferraboschi, Patrizia; Ciuffreda, Pierangela; Ciceri, Samuele; Grisenti, Paride; Castellano, Carlo; Meneghetti, Fiorella

    2015-12-01

    6,17α-Dimethyl-4,6-pregnadiene-3,20-dione (medrogestone, 2) is for a long time known steroid endowed with progestational activity. In order to study its crystallographic and NMR spectroscopic properties with the aim to fill the literature gap, we prepared medrogestone following a traditional procedure. A careful NMR study allowed the complete assignment of the (1)H and (13)C NMR signals not only of medrogestone but also of its synthetic intermediates. The structural and stereochemical characterizations of medrogestone together with its precursor 17α-methyl-3-ethoxy-pregna-3,5-dien-20-one were described by means of X-ray analysis, allowing a deepened conformational investigation.

  17. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  18. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking

    NASA Astrophysics Data System (ADS)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J.; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level.

  19. A detailed spectroscopic study of an Italian fresco

    SciTech Connect

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-02-15

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied.

  20. Note: Multivariate system spectroscopic model using Lorentz oscillators and partial least squares regression analysis

    NASA Astrophysics Data System (ADS)

    Gad, R. S.; Parab, J. S.; Naik, G. M.

    2010-11-01

    Multivariate system spectroscopic model plays important role in understanding chemometrics of ensemble under study. Here in this manuscript we discuss various approaches of modeling of spectroscopic system and demonstrate how Lorentz oscillator can be used to model any general spectroscopic system. Chemometric studies require customized templates design for the corresponding variants participating in ensemble, which generates the characteristic matrix of the ensemble under study. The typical biological system that resembles human blood tissue consisting of five major constituents i.e., alanine, urea, lactate, glucose, ascorbate; has been tested on the model. The model was validated using three approaches, namely, root mean square error (RMSE) analysis in the range of ±5% confidence interval, clerk gird error plot, and RMSE versus percent noise level study. Also the model was tested across various template sizes (consisting of samples ranging from 10 up to 1000) to ascertain the validity of partial least squares regression. The model has potential in understanding the chemometrics of proteomics pathways.

  1. Spectroscopic studies of the classical Cepheid ζ Gem: Analysis of the velocity field in the atmosphere and manifestation of the presence of a circumstellar envelope

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.

    2016-06-01

    Based on five high-resolution spectra in the range 5625-7525 ˚A taken in 1995 and covering the ascending branch of the light curve from minimum to maximum, we have performed spectroscopic studies of the classical Cepheid ζ Gem. The atmospheric parameters and chemical composition of the Cepheid have been refined. The abundances of the key elements of the evolution of yellow supergiants are typical for an object that has passed the first dredge-up: a C underabundance, N, Na, and Al overabundances, and nearly solar O and Mg abundances. We have estimated [Fe/H] = +0.01 dex; the abundances of the remaining elements are also nearly solar. The metal absorption lines in all spectra show a clear asymmetry and the formation of secondary blue (B1 and B2) and red (R1 and R2) components, just as for the Cepheid X Sgr. The Hα absorption line is also split into blue (B) and red (R) components with different depths changing with pulsation phase. To analyze the velocity field in the atmosphere of ζ Gem, we have estimated the radial velocities from specially selected (with clear signatures of the B1, B2, R1, and R2 components) absorption lines (neutral atoms and ions) of metals (38 lines) and the B and R components of the Hα line. Analysis of these estimates has shown that their scatter is from -22 to 36 km s-1 for all pulsation phases but does not exceed 35-40 km s-1 for each individual phase, while it does not exceed 22 km s-1 for the Hα line components. The radial velocity estimates for the metal lines and their B1 and B2 components have been found to depend on the depths, suggesting the presence of a velocity gradient in the atmosphere. No significant difference in velocities between the atoms and ions of the metal lines is observed, i.e., there is no significant inhomogeneity in the upper atmospheric layers of the Cepheid. Since the averaged radial velocity estimates for the cores of the metal lines and their B1 and B2 components change with pulsation phase and coincide

  2. Spectroscopic study of the peculiar galaxy IC 883

    NASA Astrophysics Data System (ADS)

    Yakovleva, V. A.; Merkulova, O. A.; Karataeva, G. M.; Shalyapina, L. V.; Yablokova, N. V.; Burenkov, A. N.

    2016-04-01

    We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry-Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy's minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy's stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region ( r ≤ 5"), are ≈1 Gyr and ≈-0.4 dex, respectively. Both young (2-5 × 108 yr) and old (5-10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8" south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.

  3. Spectroscopic Studies of Double Beta Decays and MOON

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2007-10-01

    This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0νββ) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0νββ experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0νββ studies with the ν-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin ββ source film.

  4. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  5. Synthesis, spectroscopic characterization, X-ray powder structure analysis, DFT study and in vitro anticancer activity of N-(2-methoxyphenyl)-3-methoxysalicylaldimine

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Basab; Basu, Soumya; Chakraborty, Paramita; Choudhuri, Soumitra Kumar; Mukherjee, Alok K.; Mukherjee, Monika

    2009-08-01

    Schiff base, N-(2-methoxyphenyl)-3-methoxysalicylaldimine (MPMS), was synthesized and characterized by spectroscopic methods. Crystal structure of the title compound crystallizing in the orthorhombic space group P ca2 1, a = 23.695(2), b = 7.7011(8), c = 7.3570(9) Å, V = 1342.5(2) Å 3, Z = 4 has been solved from X-ray powder diffraction data following direct-space approach and refined by the Rietveld method. In solid state, the salicylaldimine compound exists as a phenol-imine tautomer with a strong intramolecular O-H…N hydrogen bond. The molecular geometry and electronic structure of MPMS were calculated at the DFT level using the hybrid exchange-correlation functional, BLYP. The optimized molecular geometry corresponds to the non-planar conformation of the molecule as established by the crystallographic analysis. The anticancer activity of the title Schiff base was evaluated against three different cell lines, SF-268, MCF-7 and NCI-H460.

  6. Spectroscopic analysis of skin intrinsic signals for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Pena, Ana-Maria; Strupler, Mathias; Boulesteix, Thierry; Senni, Karim; Godeau, Gaston; Beaurepaire, Emmanuel; Schanne-Klein, Marie-Claire

    2006-02-01

    We recorded multiphoton images of human skin biopsies using endogenous sources of nonlinear optical signals. We detected simultaneously two-photon excited fluorescence (2PEF) from intrinsic fluorophores and second harmonic generation (SHG) from collagen. We observed SHG from fibrillar collagens in the dermis, whereas no SHG was detectable from the non fibrillar type IV collagen in the basal laminae. We compared these distinct behaviours of collagens I and IV in SHG microscopy to polarization-resolved surface SHG experiments on thin films of collagens I and IV molecules. We observed similar signals for both types of molecular films, except for the chiroptical contributions which are present only for collagen I and enhance the signal typically by a factor of 2. We concluded that SHG microscopy is a sensitive probe of the micrometer-scale structural organization of collagen in biological tissues. In order to elucidate the origin of the endogenous fluorescence signals, we recorded 2PEF spectra at various positions in the skin biopsies, and compared these data to in vitro spectroscopic analysis. In particular, we studied the keratin fluorescence and determined its 2PEF action cross section. We observed a good agreement between 2PEF spectra recorded in the keratinized upper layers of the epidermis and in a solution of purified keratin. Finally, to illustrate the capabilities of this technique, we recorded 2PEF/SHG images of skin biopsies obtained from patients of various ages.

  7. [Chemiluminescence spectroscopic analysis of homogeneous charge compression ignition combustion processes].

    PubMed

    Liu, Hai-feng; Yao, Ming-fa; Jin, Chao; Zhang, Peng; Li, Zhe-ming; Zheng, Zun-qing

    2010-10-01

    To study the combustion reaction kinetics of homogeneous charge compression ignition (HCCI) under different port injection strategies and intake temperature conditions, the tests were carried out on a modified single-cylinder optical engine using chemiluminescence spectroscopic analysis. The experimental conditions are keeping the fuel mass constant; fueling the n-heptane; controlling speed at 600 r x min(-1) and inlet pressure at 0.1 MPa; controlling inlet temperature at 95 degrees C and 125 degrees C, respectively. The results of chemiluminescence spectrum show that the chemiluminescence is quite faint during low temperature heat release (LTHR), and these bands spectrum originates from formaldehyde (CH2O) chemiluminescence. During the phase of later LTHR-negative temperature coefficient (NTC)-early high temperature heat release (HTHR), these bands spectrum also originates from formaldehyde (CH2O) chemiluminescence. The CO--O* continuum is strong during HTHR, and radicals such as OH, HCO, CH and CH2O appear superimposed on this CO--O* continuum. After the HTHR, the chemiluminescence intensity is quite faint. In comparison to the start of injection (SOI) of -30 degrees ATDC, the chemiluminescence intensity is higher under the SOI = -300 degrees ATDC condition due to the more intense emissions of CO--O* continuum. And more radicals of HCO and OH are formed, which also indicates a more intense combustion reaction. Similarly, more intense CO--O* continuum and more radicals of HCO and OH are emitted under higher intake temperature case.

  8. Spectroscopic Analysis of Wall Conditioning Methods in NSTX

    NASA Astrophysics Data System (ADS)

    Forbes, Eleanor; Soukhanovskii, Vlad

    2015-11-01

    Plasma confinement and performance in NSTX are reliant upon well-conditioned plasma facing components (PFCs). Past conditioning techniques used in NSTX include hot and cold boronization, lithium pellet injection (LPI), and lithium evaporation. The influx of hydrogen-containing molecules and radicals can be studied through spectroscopic observation of the hydrogen to deuterium (H/D) intensity ratio in the edge plasma. A code to determine H/D ratios has been developed and tested on known light sources before being applied to data from prior NSTX experiments. In general, boronization was found to reduce the H/D ratio, with further H reduction seen from cold boronization when compared to hot boronization. No correlation between LPI and H/D ratio was observed. Lithium evaporation produced a significant H decrease. In the future this analysis will be applied immediately following NSTX-U pulses to provide data on plasma-surface interactions. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-AC52-07NA27344.

  9. EEL spectroscopic tomography: towards a new dimension in nanomaterials analysis.

    PubMed

    Yedra, Lluís; Eljarrat, Alberto; Arenal, Raúl; Pellicer, Eva; Cabo, Moisés; López-Ortega, Alberto; Estrader, Marta; Sort, Jordi; Baró, Maria Dolors; Estradé, Sònia; Peiró, Francesca

    2012-11-01

    Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80 kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to Fe(x)Co((3-x))O(4)@Co(3)O(4) mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D.

  10. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  11. Spectroscopic study of acetylene and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Rozario, Hoimonti Immaculata

    High-resolution molecular spectroscopy has been used to study acetylene line parameters and emission spectra of hydrogen cyanide. All acetylene spectra were recorded in our laboratory at the University of Lethbridge using a 3-channel tuneable diode laser spectrometer. N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the v1+v3 band of acetylene at seven temperatures in the range 213-333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. The line-broadening and line-shift coefficients as well as their temperature-dependent parameters have been also evaluated theoretically, in the frame work of a semi-classical approach based on an exponential representation of the scattering operator, an intermolecular potential composed of electrostatic quadrupole--quadrupole and pairwise atom--atom interactions as well as on exact trajectories driven by an effective isotropic potential. The experimental results for both N2-broadening and shifting show good agreement with the theoretical results. We have studied the line intensities of the 1vl 20←0v120 band system from the HCN emission spectrum. The infrared emission spectrum of H12C 14N was measured at the Justus-Liebig University, Giessen, Germany. The emission spectrum was analyzed with the spectrum analysis software Symath running using Mathematica as a platform. This approach allowed us to retrieve information on band intensity parameters.

  12. On-line separator for {gamma}-spectroscopic studies

    SciTech Connect

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Kabachenko, A. P.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.; Dorvaux, O.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.

    2008-05-12

    We report about R and D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized U400R FLNR cyclotron and which will allow to realize new possibilities of the JINR-IN2P3 collaboration project GABRIELA.

  13. On-line separator for γ-spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Dorvaux, O.; Hauschild, K.; Kabachenko, A. P.; Korichi, A.; Lopez-Martens, A.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.

    2008-05-01

    We report about R&D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized U400R FLNR cyclotron and which will allow to realize new possibilities of the JINR-IN2P3 collaboration project GABRIELA [1, 2].

  14. High temperature furnace system for vacuum ultraviolet spectroscopic studies.

    PubMed

    Brown, C M; Naber, R H; Tilford, S G; Ginter, M L

    1973-08-01

    An improved furnace system for use in vacuum ultraviolet spectroscopic studies of atomic and molecular species stable at high temperatures (800-2500 degrees C) is described in detail. A new and improved high resolution spectrum of Mg I and several impurity spectra produced in the furnace are presented.

  15. Spectroscopic studies of alkaline activated slag geopolymers

    NASA Astrophysics Data System (ADS)

    Mozgawa, W.; Deja, J.

    2009-04-01

    In the work, results of structural studies of different geopolymers, obtained using a granulated blast furnace slag, are presented. The slag was subjected to an alkaline activation process. As activators, NaOH, Na 2CO 3 and liquid glass were applied. IR and NMR spectroscopy were the main experimental methods used, the results obtained were compared with XRD phase analysis and SEM observations. In the IR spectra of raw slag as well as in the spectra of products of paste hydration, the bands due to the characteristic vibrations of bonds observed in both types of oxygen bridges: Si-O-Si and Si-O-Al, were assigned. These bridges constitute basic structural units, forming tetrahedral geopolymer chains. It was found that the slag composition, mainly SiO 2/Al 2O 3 ratio and modification in oxides concentration, influences the presence of the bands connected with the phases (mainly C-S-H) formed during the hydration in the IR spectra. Additionally, significant effect of amorphous phases share on the spectra shape was established. 29Si and 27Al MAS-NMR spectra of initial slag geopolymers and pastes provided information concerning coordination of both atoms in the structures. It was revealed that the kind of slag geopolymers and the conditions of paste hydration influence connectedness of silicooxygen tetrahedra and coordination number of aluminium atoms. Based on IR spectra, it was also possible to determine the influence of the activator type, activation time and hydration conditions on the products formed. Significant changes were observed for the bands assigned to vibrations of carbonate and hydroxide groups. The changes were also noticed in the case of bands due to vibrations of silicate and aluminosilicate bonds.

  16. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    PubMed

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed.

  17. Raman spectroscopic study of reaction dynamics

    NASA Astrophysics Data System (ADS)

    MacPhail, R. A.

    1990-12-01

    The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.

  18. A spectroscopic study of the globular Cluster NGC 4147

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Monaco, L.; Moni Bidin, C.; Assmann, P.

    2016-08-01

    We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 ± 0.02 and an α-enhancement of +0.38 ± 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only ˜15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.

  19. Spectroscopic and Microscopic Study of Peroxyformic Pulping of Agave Waste.

    PubMed

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Vega, Alberto; Ligero, Pablo; Farrera-Rebollo, Reynold R; Mendoza-Pérez, Jorge A; Calderón-Domínguez, Georgina; Vera, Norma Güemes

    2016-10-01

    The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60-180 min), formic acid concentration (80-95%), temperature (60-80°C), and hydrogen peroxide concentration (2-4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables. Mathematical optimization enabled us to select a set of operational variables that produced the best fractionation of the material with the following results: pulp yield (26.9%), KN (3.6), and pulp viscosity (777 mL/g). Furthermore, this work allowed the description and evaluation of changes to the agave fibers during the fractionation process using different microscopic and spectroscopic techniques, and provided a comprehensive and qualitative view of the phenomena occurring in the delignification of agave fibers. The use of confocal and scanning electron microscopy provided a detailed understanding of the microstructural changes to the lignin and cellulose in the fibers throughout the process, whereas Raman spectroscopy and X-ray diffraction analysis indicated that cellulose in the pulp after treatment was mainly of type I.

  20. Inhibition of urinary calculi -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  1. Integrated Spectroscopic Studies of Hydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.; Lane, M. D.; Bishop, J. L.; OConnor, V.; Cloutis, E.; Hiroi, T.

    2005-01-01

    Sulfate minerals have been identified in Martian meteorites and on Mars using a suite of instruments aboard the MER rovers. These results have confirmed previous groundbased observations and orbital measurements that suggested their presence. The orbiting OMEGA instrument on Mars Express is also finding evidence for sulfate. In order to better interpret remote-sensing data, we present here the results of a coordinated visible/near infrared (VNIR) reflectance, Moussbauer (MB), and thermal emittance study of wellcharacterized hydrous sulfate minerals.

  2. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  3. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  4. Spectroscopic studies of silver boro tellurite glasses

    SciTech Connect

    Kumar, E. Ramesh Kumari, K. Rajani Rao, B. Appa Bhikshamaiah, G.

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  5. Spectroscopic studies of silver boro tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kumar, E. Ramesh; Kumari, K. Rajani; Rao, B. Appa; Bhikshamaiah, G.

    2014-04-01

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO2 on SBT glass system is that as increasing the concentration of TeO2 the band intensity at 707 cm-1 increase.

  6. Terahertz spectroscopic study of benzodiazepine sedative hypnotics

    NASA Astrophysics Data System (ADS)

    Deng, Fusheng; Shen, Jingling; Wang, Xianfeng

    2011-08-01

    Terahertz time domain spectroscopy (THz-TDS) is used to the pure active ingredient of three benzodiazepine sedative hypnotics with similar molecular structure. The absorption spectra of them are studied in the range of 0.2~2.6THz. Based on the experiment, the theoretical simulation results of diazepam, nitrazepam and clonazepam are got by the Gaussian03 package of DFT/B3LYP/6-31G* method in single-molecule models. The experimental results show that even if the molecular structure and medicine property of them are similar, the accurate identification of them can still be done with their characteristic absorption spectra. Theoretical simulation results are well consistent with the experimental results. It demonstrates that absorption peaks of them in THz range mainly come from intra-molecular forces and are less affected by the intermolecular interaction and crystal effects.ô

  7. Spectroscopic studies near the proton drip line

    SciTech Connect

    Toth, K.S. ); Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A. ); Robertson, J.D. )

    1990-01-01

    We have investigated nuclei close to the proton drip line by using heavy-ion fusion reactions to produce extremely neutron-deficient nuclides. Their nuclear decay properties were studied by using on-line isotope separators at Oak Ridge (UNISOR) and Berkeley (OASIS), the Oak Ridge National Laboratory velocity filter, and a fast helium-gas-jet transport system at Lawrence Berkeley Laboratory 88-Inch Cyclotron. Many isotopes, isomers, and {beta}-delayed-proton and {alpha}-particle emitters were discovered. This contribution summarizes three topics that are part of our overall program: decay rates of even-even {alpha}-particle emitters, mass excesses of {sup 181}Pb, {sup 182}Pb, and {sup 183}Pb, and {beta}-delayed proton emitters near N = 82. 14 refs., 6 figs.

  8. A spectroscopic study of anomalous stellar populations in M67

    NASA Astrophysics Data System (ADS)

    McGahee, Courtney Elizabeth

    A population of stars exists in the old, open cluster M67, whose photometry, color magnitude diagram locations and associated evolutionary states cannot be explained by current, standard single star evolution theory. These stars are often referred to as "yellow straggler" stars. Yellow stragglers have been identified in multiple star clusters suggesting that these stars constitute a real population. Additionally, according to independent studies, at least some of the yellow straggler stars in M67 are likely cluster members. Therefore, cluster non-membership is not a sufficient explanation for the observed anomalous photometry of these stars. It is possible that the yellow stragglers occupy their precarious color magnitude diagram positions as a result of the evolution of mass transfer blue straggler stars. These are stars which have been formed by Roche Lobe overflow mass transfer in close binary systems. If this the case for the yellow stragglers, it is hypothesized that they could potentially exhibit two spectroscopic characteristics that can be indicative of this type of mass transfer system. Specifically, variable radial velocities can be used to indicate that the yellow stragglers exist in binary systems and enhancements of s-process elements in yellow stragglers can indicate Roche Lobe overflow mass transfer from a once asymptotic giant branch star which has since evolved into a white dwarf. This dissertation details the radial velocity survey and the chemical abundance analysis that have been conducted to investigate the yellow stragglers with regard to this hypothesis. The radial velocity survey revealed that eight of the ten yellow stragglers studied exhibit variable radial velocities indicating that the yellow straggler population of M67 possess a high binary frequency. However, the chemical abundance analysis revealed that none of the yellow stragglers exhibited enhancements of the s-process elements Y and Ba. Therefore, a history which involves Roche

  9. Interactions of Isophorone Derivatives with DNA: Spectroscopic Studies

    PubMed Central

    Deiana, Marco; Matczyszyn, Katarzyna; Massin, Julien; Olesiak-Banska, Joanna; Andraud, Chantal; Samoc, Marek

    2015-01-01

    Interactions of three new isophorone derivatives, Isoa Isob and Isoc with salmon testes DNA have been investigated using UV-Vis, fluorescence and circular dichroism spectroscopic methods. All the studied compounds interact with DNA through intercalative binding mode. The stoichiometry of the isophorone/DNA adducts was found to be 1:1. The fluorescence quenching data revealed a binding interaction with the base pairs of DNA. The CD data indicate that all the investigated isophorones induce DNA modifications. PMID:26069963

  10. Photoelectron spectroscopic studies of 5-halouracil anions

    SciTech Connect

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Bowen, Kit H.; Sevilla, Michael D.; Rak, Janusz

    2011-01-07

    The parent negative ions of 5-chlorouracil, UCl{sup -} and 5-fluorouracil, UF{sup -} have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl{sup -} and UF{sup -} and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr{sup -}, we did not observe it, the mass spectrum exhibiting only Br{sup -} fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  11. Photoelectron spectroscopic studies of 5-halouracil anions

    NASA Astrophysics Data System (ADS)

    Radisic, Dunja; Ko, Yeon Jae; Nilles, John M.; Stokes, Sarah T.; Sevilla, Michael D.; Rak, Janusz; Bowen, Kit H.

    2011-01-01

    The parent negative ions of 5-chlorouracil, UCl- and 5-fluorouracil, UF- have been studied using anion photoelectron spectroscopy in order to investigate the electrophilic properties of their corresponding neutral halouracils. The vertical detachment energies (VDE) of these anions and the adiabatic electron affinities (EA) of their neutral molecular counterparts are reported. These results are in good agreement with the results of previously published theoretical calculations. The VDE values for both UCl- and UF- and the EA values for their neutral molecular counterparts are much greater than the corresponding values for both anionic and neutral forms of canonical uracil and thymine. These results are consistent with the observation that DNA is more sensitive to radiation damage when thymine is replaced by halouracil. While we also attempted to prepare the parent anion of 5-bromouracil, UBr-, we did not observe it, the mass spectrum exhibiting only Br- fragments, i.e., 5-bromouracil apparently underwent dissociative electron attachment. This observation is consistent with a previous assessment, suggesting that 5-bromouracil is the best radio-sensitizer among these three halo-nucleobases.

  12. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  13. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  14. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  15. Imaging spectroscopic analysis at the Advanced Light Source

    SciTech Connect

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  16. Spectroscopic analysis of vermicompost for determination of nutritional quality.

    PubMed

    Subhash Kumar, M; Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2015-01-25

    Spectroscopic analysis has been carried out to examine the compost quality, maturity and nutritional levels of vermicompost and compost of Eichhornia. 50% Eichhorniacrassipes and 50% cow dung mixtures were vermicomposted using earthworms (Eudrilus eugeniae) and collected on different days' time intervals. Fourier transform infrared spectroscopy (FT-IR) spectra reveal the presence of humic substance from compost and vermicompost, which improves the soil fertility. Gas chromatography-mass spectroscopy (GC-MS) analysis shows maximum level of Benzene propanoic acid (95.98%) and by 2-Propanone, 1-Phenyl-, OXIM (10.10%) from vermicompost through earthworms activity. Atomic absorption spectroscopy (AAS) results reported high level of micronutrient from Eichhornia mediated compost and vermicompost.

  17. Spectroscopic analysis of vermicompost for determination of nutritional quality

    NASA Astrophysics Data System (ADS)

    Subhash Kumar, M.; Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2015-01-01

    Spectroscopic analysis has been carried out to examine the compost quality, maturity and nutritional levels of vermicompost and compost of Eichhornia. 50% Eichhorniacrassipes and 50% cow dung mixtures were vermicomposted using earthworms (Eudrilus eugeniae) and collected on different days' time intervals. Fourier transform infrared spectroscopy (FT-IR) spectra reveal the presence of humic substance from compost and vermicompost, which improves the soil fertility. Gas chromatography-mass spectroscopy (GC-MS) analysis shows maximum level of Benzene propanoic acid (95.98%) and by 2-Propanone, 1-Phenyl-, OXIM (10.10%) from vermicompost through earthworms activity. Atomic absorption spectroscopy (AAS) results reported high level of micronutrient from Eichhornia mediated compost and vermicompost.

  18. MULTIBAND PHOTOMETRIC AND SPECTROSCOPIC ANALYSIS OF HV Cnc

    SciTech Connect

    Gökay, G.; Gürol, B.; Derman, E.

    2013-11-01

    In this paper, radial velocity and VI- and JHK{sub S} - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D) code and JHK{sub S} filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M {sub ☉}, 0.52 M {sub ☉}, 1.87 R {sub ☉}, and 0.48 R {sub ☉}, respectively. All results are compared with previously published literature values and discussed.

  19. Development of Data Processing Software for NBI Spectroscopic Analysis System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2015-04-01

    A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation

  20. Spectroscopic studies of cold, gas-phase biomolecular ions

    NASA Astrophysics Data System (ADS)

    Rizzo, Thomas R.; Stearns, Jaime A.; Boyarkin, Oleg V.

    While the marriage of mass spectrometry and laser spectroscopy is not new, developments over the last few years in this relationship have opened up new horizons for the spectroscopic study of biological molecules. The combination of electrospray ionisation for producing large biological molecules in the gas phase together with cooled ion traps and multiple-resonance laser schemes are allowing spectroscopic investigation of individual conformations of peptides with more than a dozen amino acids. Highly resolved infrared spectra of single conformations of such species provide important benchmarks for testing the accuracy of theoretical calculations. This review presents a number of techniques employed in our laboratory and in others for measuring the spectroscopy of cold, gas-phase protonated peptides. We show examples that demonstrate the power of these techniques and evaluate their extension to still larger biological molecules.

  1. Raman spectroscopic analysis of a `noli me tangere' painting

    NASA Astrophysics Data System (ADS)

    Hibberts, Stephen; Edwards, Howell G. M.; Abdel-Ghani, Mona; Vandenabeele, Peter

    2016-12-01

    The discovery of an oil painting in seriously damaged condition with an important historical and a heterodox detail with possible origins in the late fifteenth century has afforded the opportunity for Raman microscopic analysis prior to its restoration being undertaken. The painting depicts a risen Christ following His crucifixion in a `noli me tangere' pose with three women in an Italian terrace garden with a stone balustrade overlooking a rural landscape and an undoubted view of late-medieval Florence. The picture has suffered much abuse and is in very poor condition, which is possibly attributable to its controversial portrayal of a polydactylic Christ with six toes on His right foot. By the late sixteenth century, after the Council of Trent, this portrayal would almost certainly have been frowned upon by the Church authorities or more controversially as a depiction of the holy. Raman spectroscopic analysis of the pigments places the painting as being consistent chronologically with the Renaissance period following the identification of cinnabar, haematite, red lead, lead white, goethite, verdigris, caput mortuum and azurite with no evidence of more modern synthetic pigments or of modern restoration having been carried out. An interesting pigment mixture found here is that of the organic dye carmine and cinnabar to produce a particular bright red pigment coloration. Stratigraphic examination of the paint fragments has demonstrated the presence of an orange resin layer immediately on top of the canvas substrate, effectively rendering the pigment as a sandwich between this substratal resin and the overlying varnish. The Raman spectroscopic evidence clearly indicates that an attribution of the artwork to the Renaissance is consistent with the scientific analysis of the pigment composition. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  2. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Stimulated emission pumping (SEP) spectroscopy was used on acetylene and on formyl radical. An attempt was made for pattern recognition based on statistics; a method was invented that combined CNPI (complete nuclear permutation-inversion) group theory and SCC (spectral cross-correlation). But the direction away from statistical pattern recognition back to traditional spectroscopic pattern recognition was taken. Vibrational states and quantum numbers are discussed. For the formyl radical, the fluorescence excitation spectrum was recorded and a rotational analysis of the 0(sup 0)(sub 0) band performed.

  3. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils.

    PubMed

    Baranska, M; Schulz, H; Reitzenstein, S; Uhlemann, U; Strehle, M A; Krüger, H; Quilitzsch, R; Foley, W; Popp, J

    2005-08-05

    This article presents a novel and original approach to analyze in situ the main components of Eucalyptus oil by means of Raman spectroscopy. The obtained two-dimensional Raman maps demonstrate a unique possibility to study the essential oil distribution in the intact plant tissue. Additionally, Fourier Transform (FT)-Raman and attenuated total reflection (ATR)-IR spectra of essential oils isolated from several Eucalyptus species by hydrodistillation are presented. Density Functional Theory (DFT) calculations were performed in order to interpret the spectra of the essential oils of the Eucalyptus species. It is shown that the main components of the essential oils can be recognized by both vibrational spectroscopic techniques using the spectral information of the pure terpenoids. Spectroscopic analysis is based on the key bands of the individual volatile substances and therefore allows one to discriminate different essential oil profiles of several Eucalyptus species. It has been found that the presented spectroscopic data correlate very well with those obtained by gas chromatography (GC) analysis. All these investigations are helpful tools to generate a fast and easy method to control the quality of the essential oils with vibrational spectroscopic techniques in combination with DFT calculations.

  4. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  5. Cationic half-sandwich Ru(II) complexes containing (N,N)-bound Schiff-base ligands: Synthesis, crystal structure analysis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Tao, Li; Miao, Qian; Tehrani, Alireza Azhdari; Hajiashrafi, Taraneh; Hu, Mao-Lin; Morsali, Ali

    2016-08-01

    Three Ru(II) half-sandwich complexes containing (N,N)-bound Schiff-base ligands, [(η6-C6H6) RuCl(L1)]PF6 (1) L1 = (E)-1-(6-methylpyridin-2-yl)-N-(p-tolyl)methanimine, [(η6-p-cymene)RuCl(L1)]PF6 (2) and [(η6-p-cymene)RuCl(L2)]PF6(3) L2 = (E)-1-(6-bromopyridin-2-yl)-N-(p-tolyl)methanimine, were synthesized, characterized and their supramolecular structures were analyzed. The crystal packing of these compounds was studied using geometrical analysis and Hirshfeld surface analysis. The fluorescence behavior of these compounds was also studied. TD-DFT calculations were carried out to better understand the fluorescence properties of complexes 1-3. These compounds could be promising for the design of organometallic dye systems.

  6. Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV-Vis), NBO and HOMO-LUMO analysis of 1-benzyl-3-(2-furoyl) thiourea.

    PubMed

    Gil, Diego M; Defonsi Lestard, M E; Estévez-Hernández, O; Duque, J; Reguera, E

    2015-06-15

    Vibrational and electronic spectra for 1-benzyl-3-(2-furoyl) thiourea were calculated by using density functional method (B3LYP) with different basis sets. The complete assignment of all vibrational modes was performed on basis of the calculated frequencies and comparing with the reported IR and Raman spectra for that thiourea derivative. UV-visible absorption spectra of the compound dissolved in methanol were recorded and analyzed using time dependent density functional theory (TD-DFT). The calculated values for the geometrical parameters of the title compound are consistent with the ones reported from XRD studies. The stability of the molecule, related to hyper-conjugative interactions, and electron delocalization were evaluated using natural bond orbital (NBO) analysis. Intra-molecular interactions were studied by AIM approach. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. Molecular electrostatic potential map was performed by the DFT method.

  7. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  8. Spectroscopic Analysis of the Supergiant Star HD 54605

    NASA Astrophysics Data System (ADS)

    Peña, L.; Rosenzweig, P.; Guzmán, E.; Hearnshaw, J.

    2009-05-01

    The main purpose of the present study is to analyze a high resolution spectrum of the supergiant star HD 54605, obtained in the year 2003, with a CCD coupled with the spectrograph HERCULES, attached to the 1m reflector telescope of Mt. John Observatory of the University of Canterbury (New Zealand). This spectrum covers the region λλ ≈ 4505-7080Å, with R = 41000 and a dispersion of ≈ 2Å/mm. According to previous spectroscopic observations, of low dispersion, the radial velocity of this star showed that it does not vary in periods of time relatively short. Until the present, we have identified five hundred photospheric lines, from which, with no doubt, we will obtain a satisfactory result that will give an important contribution to the database of the values of the radial velocity of HD 54605. We observe that Hβ, shows a relatively wide and deep profile and is in complete absorption.

  9. Vibrational spectroscopic studies of newly developed synthetic biopolymers.

    PubMed

    Bista, Rajan K; Bruch, Reinhard F; Covington, Aaron M

    2010-05-01

    Vibrational spectroscopic techniques such as near-infrared (NIR), Fourier transform infrared (FTIR), and Raman spectroscopy are valuable diagnostic tools that can be used to elucidate comprehensive structural information of numerous biological samples. In this review article, we have highlighted the advantages of nanotechnology and biophotonics in conjunction with vibrational spectroscopic techniques in order to understand the various aspects of new kind of synthetic biopolymers termed as polyethylene glycol (PEG)ylated lipids. In contrast to conventional phospholipids, these novel lipids spontaneously form liposomes or nanovesicles upon hydration, without the supply of external activation energy. The amphiphiles considered in this study differ in their hydrophobic acyl chain length and contain different units of PEG hydrophilic headgroups. We have further explored the thermotropic phase behaviors and associated changes in the conformational order/disorder of such lipids by using variable-temperature FTIR and Raman spectroscopy. Phase transition temperature profiles and correlation between various spectral indicators have been identified by either monitoring the shifts in the vibrational peak positions or plotting vibrational peak intensity ratios in the C--H stretching region as a function of temperature. To supplement our observations of phase transformations, a thermodynamic approach known as differential scanning calorimetry (DSC) has been applied and revealed a good agreement with the infrared and Raman spectroscopic data. Finally, the investigation of thermal properties of lipids is extremely crucial for numerous purposes, thus the results obtained in this work may find application in a wide variety of studies including the development of PEGylated lipid based drug and substances delivery vehicles.

  10. Spectroscopic studies of cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Totir, Dana Alexa

    2000-10-01

    Structural changes that occur during electrochemical cycling of lithium-ion battery cathode materials have been investigated using in situ spectroscopic techniques. A new method was developed for the preparation of carbon and binder free cathodes utilizing powder materials of interest for commercial batteries. The extraordinary quality of the cyclic voltammetric curves recorded for this type of electrodes during the in situ measurements allows direct correlations to be made between the state of charge of the material and its structural and electronic characteristics. LiCoO2, LiMn2O4 and LiCo0.15Ni 0.85O2 electrodes were evaluated using cycling voltammetry and the mean diffusion coefficient for Li-ions in the lattice (DLi) was calculated for LiMn2O4. LiMn2O4 electrodes prepared by this technique have been studied in situ using Mn K-edge XAS. Data analysis for the species formed at different potentials indicated a contraction of the lattice associated with the increase in the oxidation state of manganese. In situ Raman spectra of particles of LiMn2O 4, and LiCoO2 embedded in Au and also of KS-44 graphite and carbon microfibers MCF28 embedded in thermally annealed Ni have been recorded as a function of the applied potential. Fe K-edge XAFS of pyrite electrodes in a Li/PEO(LiClO4)/FeS 2 cell and S K-edge XANES measurements of a FeS2 electrode in a non-aqueous electrolyte have been acquired as a function of the state of charge. The studies have clearly evidenced the formation of metallic Fe and Li2S as intermediates after 4 e- discharge and the formation of Li2FeS2 after 2 e- recharge. While Fe K-edge studies have indicated that there is no change in the Fe environment and oxidation state upon 4 e- recharge, the results obtained from S K-edge studies are inconclusive for this stage. Finally, in situ Co K-edge XAFS data were obtained for the first time during the electrochemical cycling of electrodeposited Co(OH) 2 films in alkaline solutions. The results support

  11. X-ray spectroscopic studies of secondary battery materials

    NASA Astrophysics Data System (ADS)

    Kostov, Svilen Dimitar

    1998-09-01

    X-ray spectroscopic methods, both NEXAFS and EXAFS were used in the study of the structural and electronic properties of different types of new battery materials. NEXAFS analysis of the spectra of Lisb{1-x}CoO2 secondary battery cathodes revealed that the addition of Li proceeds is strongly correlated to the increase in electronic charge on the Co ion. A structural phase transition is confirmed for x=0.5. The presence of Mnsp{+2} is detected in the conventionally made LiMnOsb2 cathodes but not in ones prepared according to the new ADL process. Lisb{x}Vsb6Osb{13} cathode material, where 0≤ x≤6, was measured using x-ray absorption, EPR and NMR techniques. The intercalation mechanism involves a conversion of Vsp{+5} to Vsp{+4} in Vsb6Osb{13} until the composition Lisb2Vsb6Osb{13} is reached. Further addition of lithium is accompanied by the conversion of Vsp{+4} to Vsp{+3} until Lisb8Vsb6Osb{13} is reached. The process is complicated and involves structural phase changes and increasing structural disorder within the multi-phase system as Li concentration is increased. Studies of LiNi/CoOsb2 intercalation cathodes prepared by a novel sol-gel technique suggests that although the partial substitution of Co for Ni stabilizes the system by removing Nisp{+2}, a Jahn-Teller type structural distortion in the predominantly Nisp{=3} system persists. In-situ EXAFS measurements of the pyrite cathode in a new Li/CPE/FeSsb2 showed two distinct environments of the Fe ion, which were interpreted as those of metallic Fe and residual FeSsb2 at high lithium concentration, and Lisb2FeSsb2 and residual FeSsb2 at low lithium concentration. The formation of FeS was not detected. A new type of hydrogen ion battery incorporating a MnSOsb4sp&*slash;Hsb2O based cathode and polymer electrolyte was also studied. Heavily cycled and discharged cathodes showed an almost identical Mn local structure to that of single cycled ones. The Mn environment becomes very different in the charged cathodes

  12. Vibrational spectroscopic study, structural analysis, photophysical properties and theoretical calculations of cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline

    NASA Astrophysics Data System (ADS)

    Baldenebro-López, Jesús; Báez-Castro, Alberto; Glossman-Mitnik, Daniel; Höpfl, Herbert; Cruz-Enríquez, Adriana; Miranda-Soto, Valentín; Parra-Hake, Miguel; Campos-Gaxiola, José J.

    2017-02-01

    cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline has been fully characterized by FT-IR, FT-Raman, UV-Vis and fluorescence spectroscopy, one- and two-dimensional NMR spectroscopy (1H, 1H-1H gCOSY, 1H-1H gNOESY,13C{1H} ATP, 1H-13C and 1H-15N gHSQC and 1H-13C gHMBC), high-resolution mass spectrometry (HR-FAB+), TG-DSC analysis and low-temperature single-crystal X-ray diffraction analysis. Additionally, the molecular geometry and the vibrational infrared and Raman frequencies were calculated by density functional theory using the M06/6-31G(d) level of theory, showing good agreement with the experimental results. The title compound showed interesting photophysical properties, which were studied experimentally in solution and in the solid state by UV-Vis and fluorescence spectroscopy and compared to the theoretically obtained parameters using TD-DFT calculations. Natural and Mulliken atomic charges and the molecular electrostatic potential (MEP) have been mapped.

  13. Studies on the synthesis, spectroscopic analysis and DFT calculations on (E)-4,6-dichloro-2-[(2-chlorophenylimino)methyl]-3methoxyphenol as a novel Schiff's base

    NASA Astrophysics Data System (ADS)

    Yıldırım, Arzu Özek; Yıldırım, M. Hakkı; Kaştaş, Çiğdem Albayrak

    2016-06-01

    In this study, we report synthesis, single crystal X-ray diffraction, FT-IR and Uv-Vis. characterizations and computational investigations of the (E)-4,6-dichloro-2-[(2-chlorophenylimino)methyl]-3-methoxyphenol. The tautomeric equilibrium between enol, keto and transition state (TS) forms of (E)-4,6-dichloro-2-[(2-chlorophenylimino)methyl]-3-methoxyphenol have been investigated by considering the presence of the compound in vacuum and various solvents. Experimental studies clearly reveal that the title compound has enol form in solid state and ethanol solution. In addition, the enol, keto and TS structures of the compound have been investigated computationally. Intramolecular proton transfer process on the O-H⋯N hydrogen bond and transition state structure during the transfer process have been studied by scan calculations for vacuum and solvent media. Moreover, the stabilization energies of the title compound were computed by using second-order perturbation theory to have insight on the intra- and intermolecular interactions, interaction among bonds, conjugative interactions. To find out most reactive sites of the title molecule, condensed Fukui functions have been calculated by means of natural population analysis. Nonlinear optical property calculations of the compound indicate that the compound can be used as a NLO material.

  14. IR spectroscopic analysis of the new organic silver complex C13H13N4OAg

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.

    2013-07-01

    IR analysis in the frequency range 400-4000 cm-1 is used here to investigate the changes in different modes of thermally treated new metal complex (diphenyl carbazide silver complex DPCAg, C13H13N4OAg) during the glass transition at 91 °C and the high temperature phase transition at 167 °C. These two phase transitions in this new metal compound are studied here by detecting the changes in some IR spectroscopic parameters (e.g., mode shift, band contour, peak height and peak intensity) during the elevation of temperature. All of the vibrations of DPCAg were found to be due to ionic fundamentals 3311 cm-1, 3097 cm-1, 3052 cm-1, 1677 cm-1, 1602 cm-1, 1492 cm-1, 1306 cm-1, 1252 cm-1, 887 cm-1 and 755 cm-1. The results obtained can be considered as the first spectroscopic analysis of this new metal complex. These results strongly confirmed that the thermally treated DPCAg transverse a glass transition at 91 °C and a high temperature phase transition at 167 °C. Anomalous spectroscopic changes near the glass transition temperature Tg could be recorded. A temperature dependence of peak intensity of the two modes 810 cm-1 and 3440 cm-1 could be observed beyond Tg. Also, the high temperature phase modification at 167 °C showed anomalous change in the spectroscopic parameters before and after the phase transition process. A proposed silver position in the new silver complex DPCAg has been presented.

  15. Spectroscopic study of Er:Sm doped barium fluorotellurite glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2010-09-15

    In this paper, we report the physical and spectroscopic properties of Er(3+), Sm(3+) and Er(3+):Sm(3+) ions codoped barium fluorotellurite (BFT) glasses. Different Stokes and anti-Stokes emissions were observed under 532 nm and 976 nm laser excitations. Energy transfer from Er(3+) ion to Sm(3+) ion was confirmed on the basis of luminescence intensity variation and decay curve analysis in both the cases. Under green (532 nm) excitation emission intensity of Sm(3+) ion bands improves whereas on NIR (976 nm) excitation new emission bands of Sm(3+) ions were observed in Er:Sm codoped samples. Ion interactions and the different energy transfer parameters were also calculated.

  16. Raman spectroscopic study of a genetically altered kidney cell

    NASA Astrophysics Data System (ADS)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

    2008-02-01

    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  17. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  18. Raman spectroscopic analysis of a belltower commemorative wall decoration

    NASA Astrophysics Data System (ADS)

    Fernandes, R. F.; de Oliveira, L. F. C.; Edwards, H. G. M.; Brooke, C. J.; Pepper, M.

    2017-02-01

    The Raman spectroscopic analysis of a rare wall decoration in a church belltower, depicting the initials of couples married there in circular roundels over some 230 years, since 1777, has been undertaken prior to their impending restoration. The spectral data indicate that the red pigment is exclusively haematite which has been applied to plaster which exhibits the signatures variously of calcite, gypsum, anhydrite, calcium phosphate and dolomitic limestone; evidence of amorphous carbon is attributed to the deposition of soot from candle illumination, which has been recorded in historical documentation. The presence of biosignatures attributed to carotenoids in several samples is evidence of biological colonisation and potential deterioration which requires special treatment in the restoration strategies. The blackened areas near the upper edges of the wall decoration indicate carbon deposition and organic contamination. The latest addition to the decoration accomplished in 2008 shows that haematite has been used over a calcite ground. In earlier dated specimens, the presence of limewash is evident, which has only been partially converted into calcite by aerial attack from carbon dioxide in moist conditions.

  19. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  20. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  1. Effects of essential oil treatments on the secondary protein structure of Vicia faba: a mid-infrared spectroscopic study supported by two-dimensional correlation analysis.

    PubMed

    Mecozzi, Mauro; Sturchio, Elena

    2015-02-25

    In this study we investigated the effects of essential oil treatments on the secondary protein structure of the Vicia faba roots, a bioindicator plant, in order to obtain information for the potential allelopathic uses of these oils as alternative to the use of pesticides in agriculture. We tested two mixtures of essential oils consisting of Tween 20-emulsions of tea tree oil (TTO) and Tween 20-emulsion of Clove and Rosemary (GARROM) essential oils respectively at three different oil concentrations each. The molecular modifications caused in Vicia faba by exposure to oil emulsions were investigated by FTIR spectroscopy in diffuse reflectance (DRIFT) mode. We considered the specific Amide I, Amide II and Amide VI bands by ordinary and second derivative spectroscopy and the results showed that both Tween 20-emulsion of GARROM and Tween 20-emulsion of TTO oils cause transitions among the secondary (α-helix, β-sheet and β-turn) structures with in addition the appearance of random coil structures in exposed samples. The Amide VI bands, placed between 500 and 600 cm(-1), confirmed the structural transitions observed for the Amide I bands. In addition we observed the presence of a protein oxidation effect for TTO treated samples, oxidation which resulted negligible instead for the GARROM oil samples. At last, FTIR spectra were also submitted to two-dimensional correlation analysis (2DCORR) and double two-dimensional correlation analysis (D2DCORR); the results confirmed the different effects caused by the two typologies of essential oils on the secondary protein structures of Vicia faba roots.

  2. Effects of essential oil treatments on the secondary protein structure of Vicia faba: A mid-infrared spectroscopic study supported by two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Sturchio, Elena

    2015-02-01

    In this study we investigated the effects of essential oil treatments on the secondary protein structure of the Vicia faba roots, a bioindicator plant, in order to obtain information for the potential allelopathic uses of these oils as alternative to the use of pesticides in agriculture. We tested two mixtures of essential oils consisting of Tween 20-emulsions of tea tree oil (TTO) and Tween 20-emulsion of Clove and Rosemary (GARROM) essential oils respectively at three different oil concentrations each. The molecular modifications caused in Vicia faba by exposure to oil emulsions were investigated by FTIR spectroscopy in diffuse reflectance (DRIFT) mode. We considered the specific Amide I, Amide II and Amide VI bands by ordinary and second derivative spectroscopy and the results showed that both Tween 20-emulsion of GARROM and Tween 20-emulsion of TTO oils cause transitions among the secondary (α-helix, β-sheet and β-turn) structures with in addition the appearance of random coil structures in exposed samples. The Amide VI bands, placed between 500 and 600 cm-1, confirmed the structural transitions observed for the Amide I bands. In addition we observed the presence of a protein oxidation effect for TTO treated samples, oxidation which resulted negligible instead for the GARROM oil samples. At last, FTIR spectra were also submitted to two-dimensional correlation analysis (2DCORR) and double two-dimensional correlation analysis (D2DCORR); the results confirmed the different effects caused by the two typologies of essential oils on the secondary protein structures of Vicia faba roots.

  3. Spectroscopic studies of carbon impurities in PISCES-A

    SciTech Connect

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W. . Inst. of Plasma and Fusion Research); Pospieszczyk, A. . Inst. fuer Plasmaphysik)

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and CO{sub 2} were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab.

  4. An in situ FTIR spectroscopic and thermogravimetric analysis study of the dehydration and dihydroxylation of SnO2: the contribution of the (100), (110) and (111) facets.

    PubMed

    Christensen, P A; Attidekou, P S; Egdell, R G; Maneelok, S; Manning, D A C

    2016-08-17

    Nanoparticulate SnO2 produced by a hydrothermal method was characterised by BET, XRD, TGA-MS and in situ variable temperature diffuse reflectance infra red spectroscopy (DRIFTS) to determine the surface behaviour of water. For the (100) facets, hydrogen bonding does not occur, and water adsorption is less strong than for the (111) and (110) facets where hydrogen bonding does occur. Reversible uptake of oxygen was observed. These findings have implications for other surface-gas reactions in which Ni and Sb co-doped SnO2 (NATO) anodes are used for ozone generation. BET showed the relatively high surface area and nanometer scale of the SnO2 particles, whilst XRD confirmed the nano dimension of the crystallites and showed only the cassiterite phase. TGA analysis indicated four temperature regions over which mass loss was observed. These and the in situ DRIFTS studies revealed the existence of various forms of water associated with specific crystal facets of the SnO2, as well as the existence of isolated O-H groups and adsorbed oxygen species. Electronic absorptions were also observed and the data rationalised in terms of the existence of both free electron absorptions, and absorptions from oxygen vacancy states. The role of adsorbed molecular oxygen in electrochemical ozone generation at Ni and Sb co-doped SnO2 (NATO) anodes was strongly suggested by this work.

  5. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  6. Spectroscopic investigation (FT-IR, FT-Raman and SERS), vibrational assignments, HOMO-LUMO analysis and molecular docking study of Opipramol.

    PubMed

    Mary, Y Sheena; Panicker, C Yohannan; Kavitha, C N; Yathirajan, H S; Siddegowda, M S; Cruz, Sandra M A; Nogueira, Helena I S; Al-Saadi, Abdulaziz A; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-02-25

    FT-IR and FT-Raman spectra of Opipramol were recorded and analyzed. SERS spectrum was recorded in silver colloid. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in infrared and Raman spectra as well as in SERS of the studied molecule. Potential energy distribution was done using GAR2PED program. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The presence of CH2 stretching modes in the SERS spectrum indicates the close of piperazine ring with the metal surface and the interaction of the silver surface with this moiety. NBO analysis, HOMO-LUMO, first hyperpolarizability and molecular electrostatic potential results are also reported. The inhibitor Opipramol forms a stable complex with P4502C9 as is evident from the ligand-receptor interactions and a -9.0 kcal/mol docking score and may be an effective P4502C9 inhibitor if further biological explorations are carried out.

  7. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  8. Time Domain Reflectometric and spectroscopic studies on toluene + butyronitrile solution

    NASA Astrophysics Data System (ADS)

    Karthick, N. K.; Arivazhagan, G.; Kumbharkhane, A. C.; Joshi, Y. S.; Kannan, P. P.

    2016-03-01

    The dielectric parameters of toluene + butyronitrile solution have been obtained by time domain reflectometry (TDR) technique in the frequency range from 10 MHz to 30 GHz at 298 K. Spectroscopic (FTIR and 13C NMR) studies have also been carried out on the solution and the results of the studies show that neat butyronitrile is self-associative through C-H⋯N contacts and weak intermolecular forces of C-H⋯N and C-H⋯π type are operative in the solution. The obtained dielectric parameters such as Kirkwood correlation factor g, relaxation time τ etc. have been analyzed in view of these weak intermolecular forces. The weak non-covalent interactions between heteromolecules appear to have no influence on the ideality of ɛm vs X2 curve of the solution. Heteromolecular entities with weak intermolecular forces experience larger hindrance leading to longer relaxation time τ.

  9. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  10. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid.

    PubMed

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-05

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n=1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts ((1)H and (13)C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  11. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  12. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin

    2012-10-01

    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  13. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    PubMed Central

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-01-01

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. This demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects. PMID:26160318

  14. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    SciTech Connect

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.

  15. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  16. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    DOE PAGES

    Cao, R. X.; Sun, L.; Miao, B. F.; ...

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of themore » corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.« less

  17. Spectroscopic study of photo and thermal destruction of riboflavin

    NASA Astrophysics Data System (ADS)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  18. Spectroscopic Study of Low Mass Members of NGC 2244

    NASA Astrophysics Data System (ADS)

    Alty, Michelle; Ybarra, Jason E.; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2017-01-01

    The results of a near-infrared spectroscopic study of low-mass stars in open cluster NGC 2244 are presented. JH spectra of the stars were obtained using the FLAMINGOS instrument at KPNO. To determine cluster membership, we used Spitzer Space Telescope mid-infrared photometry along with X-ray detections from the Chandra X-ray Observatory. The stars were spectral typed using absorption line ratios and spectral shapes. The stars were then plotted on an H-R diagram along with theoretical isochrones. We discuss these results in context of cluster evolution in the Rosette Molecular Complex. Work supported, in part, by the Dr. John W. Martin Summer Science Research Institute at Bridgewater College.

  19. Ultrasonic and spectroscopic studies on photoactivation of euglena

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Morita, Shin

    2006-12-01

    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  20. Spectroscopic Capabilities of XMM for Stellar Coronal Studies

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    The turn of the millennium will be a marvelous time for X-ray astronomy with the launch of powerful missions such as AXAF, XMM, and ASTRO-E. Stellar coronae, with their spectra rich in emission lines, will be primary targets to exploit the spectroscopic capabilities of these missions. In particular, the CCD cameras and reflection gratings on XMM will allow us to address a number of key questions in stellar coronal physics. The capabilities of XMM for the study of stellar coronae are illustrated by means of simulations of EPIC and RGS spectra for a variety of typical stellar coronal sources. The mission time-line and the policy for accessing the data are also briefly illustrated.

  1. DFT electronic structure calculations, spectroscopic studies, and normal coordinate analysis of 2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl acetate.

    PubMed

    Muthu, S; Elamuruguporchelvi, E; Varghese, Anitha

    2015-03-05

    The solid phase FTIR and FT-Raman spectra of 2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl acetate (25N2LCPA) have been recorded 450-4000cm(-1) and 100-4000cm(-1) respectively. The normal coordinate analysis was carried out to confirm the precision of the assignments. DFT calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies and IR intensities. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31+G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The Vibrational frequencies are calculated in the above method and are compared with experimental frequencies which yield good agreement between observed and calculated frequencies. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. In addition, Frontiers molecular orbital and molecular electrostatic potential were computed by using Density Functional Theory (DFT) B3LYP/6-31+G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule.

  2. Analysis of a new class of grazing incidence spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Green, J. C.; Bowyer, S.

    1986-01-01

    The throughput and imaging properties of one of a new class of grazing incidence spectroscopic telescope are examined with a Monte Carlo ray tracing technique. The results are compared with Wolter Schwarzschild type II telescopes of similar size. The image quality of this telescope is comparable, and the control of the off-axis light is superior to the Wolter Schwarzschild design.

  3. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of 3-hydroxy-6-methyl-2-nitropyridine

    NASA Astrophysics Data System (ADS)

    Karnan, M.; Balachandran, V.; Murugan, M.

    2012-10-01

    The optimized molecular structure and corresponding vibrational assignments of 3-hydroxy-6-methyl-2-nitropyridine have been investigated using density functional theory (DFT) B3LYP method with 6-311++G(d,p), 6-311++G(2d,2p) and 6-311++G(3d,3p) basis sets. Investigation of the relative orientation of the hydroxyl group with respect to the nitro group has shown that two conformers (O-cis) and (O-trans) exist. The vibrational analysis of the stable conformer of the title compound is performed by means of infrared absorption and Raman spectroscopy in combination with theoretical simulations. The molecular stability and bond strength were investigated by applying the natural bond orbital (NBO) analysis. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with electrostatic potential (ESP). The isotropic chemical shift computed by 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the HMNP calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations.

  4. X-ray powder diffraction, spectroscopic study, dielectric properties and thermal analysis of new doped compound TiGa0.67Te2.33O8

    NASA Astrophysics Data System (ADS)

    Smaoui, S.; Ben Aribia, W.; Kabadou, A.; Abdelmouleh, M.

    2017-04-01

    A novel mixed valence tellurium oxide, TiGa0.67Te2.33O8, was synthesized and its crystal structure determined using the X-ray powder diffraction technique. The obtained oxide was found to crystallize in a cubic unit-cell, Ia 3 bar space group, with the lattice parameter a = 10.9557(1) Å. Rietveld refinement of the structure led to ultimate confidence factors Rp = 7.63 and Rwp = 6.71. This structure was based on slabs containing groups of (Te/Ga)O4 joined by the metal cations Ti4+. The structure analysis showed a cation ordering of Te4+ and Te6+ yielding a TiGa2/3Te7/3O8 formula. The IR and RAMAN spectra confirmed the presence of the TiO6 and (Te/Ga)O4 groups. The dielectric anomalies observed at 500 K were attributed to the mixed valence structure, arising from the mixed-valence Te6+/Te4+. We detected only one peak in thermal behavior by the DTA/TG analysis; which implied a melting reaction.

  5. Vibrational spectroscopic studies and Natural Bond Orbital analysis of 4,6-dichloro-2-(methylthio)pyrimidine based on density functional theory.

    PubMed

    Balachandran, V; Lakshmi, A; Janaki, A

    2011-10-15

    The FT-IR and FT-Raman spectra of 4,6-dichloro-2-(methylthio)pyrimidine (DMP) have been recorded and analyzed. The optimized geometry, intramolecular hydrogen bonding, and harmonic vibrational wave numbers of DMP have been investigated with the help of B3LYP density functional theory (DFT) method supplemented with 6-31G** basis set. The infrared and Raman spectra were predicted theoretically from the calculated intensities. Natural Bond Orbital (NBO) analysis of DMP has been performed to indicate the presence of intramolecular C-H⋯Cl hydrogen bonding. The formation of Lewis and non-Lewis orbitals and second-order perturbation energies of DMP have also been reported.

  6. Study of spectroscopic and thermal characteristics of nonlinear optical molecular crystals based on 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Pavlovetc, I. M.; Fokina, M. I.

    2016-08-01

    The paper presents the results of study of spectroscopic and thermal characteristics of molecular co-crystals: 2-aminopyridine-4-nitrophenol-4-mtrophenolate (2AP4N) and 2,6- diaminopyridine-4-nitrophenol-4nitrophenolate (26DAP4N). Crystals were successfully grown by slow evaporation technique. Optical transparency in the region of 190-1100 was found to be suitable for applications with cut off wavelengths 420 and 430 nm respectively. Thermogravimetric and differential thermal analysis show good quality and thermal stability for studied crystals. Kurtz and Perry powder technique proves that the crystals are acentric and have significant nonlinear optical response.

  7. Laser irradiated gas jet: A spectroscopic experimental and theoretical study

    SciTech Connect

    Lee, R.W.; Matthews, D.L.; Koppel, L.; Busch, G.E.; Charatis, G.; Dunning, M.J.; Mayer, F.J.

    1983-09-01

    We present x-ray spectroscopic measurements of the longitudinal electron density profile and the longitudinal and transverse electron temperature profiles for a laser irradiated gas jet. We attempt to verify our spectroscopic method by laser interferometry and by comparison of inferred quantities to those determined from laser plasma interaction simulations. Because temperature profiles were time dependent, we used a theoretical time dependent radiation transport code to analyze the data.

  8. Diagnostic Chemical Analysis of Exhaled Human Breath Using a Novel Sub-Millimeter Spectroscopic Approach

    NASA Astrophysics Data System (ADS)

    Fosnight, Alyssa M.; Moran, Benjamin L.; Branco, Daniela R.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    As many as 3000 chemicals are reported to be found in exhaled human breath. Many of these chemicals are linked to certain health conditions and environmental exposures. Present state of the art techniques used for analysis of exhaled human breath include mass spectrometry based methods, infrared spectroscopic sensors, electro chemical sensors and semiconductor oxide based testers. Some of these techniques are commercially available but are somewhat limited in their specificity and exhibit fairly high probability of false alarm. Here, we present the results of our most recent study which demonstrated a novel application of a terahertz high resolutions spectroscopic technique to the analysis of exhaled human breath, focused on detection of ethanol in the exhaled breath of a person which consumed an alcoholic drink. This technique possesses nearly ``absolute'' specificity and we demonstrated its ability to uniquely identify ethanol, methanol, and acetone in human breath. This project is now complete and we are looking to extend this method of chemical analysis of exhaled human breath to a broader range of chemicals in an attempt to demonstrate its potential for biomedical diagnostic purposes.

  9. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  10. Conformational stability, spectroscopic and computational studies, HOMO-LUMO, NBO, ESP analysis, thermodynamic parameters of natural bioactive compound with anticancer potential of 2-(hydroxymethyl)anthraquinone.

    PubMed

    Balachandran, V; Karpagam, V; Revathi, B; Kavimani, M; Ilango, G

    2015-11-05

    Natural product drugs play a dominant role in pharmaceutical care. Nature is an attractive source of new therapeutic candidate compounds as a tremendous chemical diversity is found in millions of species of plants, animals, marine organism and micro-organism. A antifungal activity against important opportunist micro-organism and against those involved in superficial mycosis, all from nosocomial origin. The acute in vitro cytotoxicity evaluation of each anthraquinone (AQ) isolated from these bioactive extracts, on a mammalian eukaryotic cell line (Vero cells), allowed us to establish the non-cytotoxic concentration range, which was used to evaluate the anti-microbial effect. A comprehensive ab initio calculation using the DFT/6-31+G(d) level theory showed that 2-(hydroxymethyl)anthraquinone can exist in four possible conformations, which can interchange through the OH group on the five-membered ring. Density functional theory calculations were used to predict the vibrational frequencies and to help in normal mode, assignments. Furthermore, a natural bond orbital analysis was performed describing each hydrogen bond as donor accepter interaction. The Fourier transform infrared spectra (4000-400 cm(-1)) and the Fourier transform Raman spectra (3500-100 cm(-1)) of the HMA in the solid space have been recorded. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The calculated ESP contour map shows the electrophilic and nucleophilic region of the molecule.

  11. Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C{sub 6}-ring-containing molecules

    SciTech Connect

    Kolczewski, C.; Puettner, R.; Martins, M.; Schlachter, A.S.; Snell, G.; Sant'Anna, M.M.; Hermann, K.; Kaindl, G.

    2006-01-21

    We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C{sub 6}-ring-containing molecules benzene (C{sub 6}H{sub 6}), 1,3- and 1,4-cyclohexadiene (C{sub 6}H{sub 8}), cyclohexene (C{sub 6}H{sub 10}), cyclohexane (C{sub 6}H{sub 12}), styrene (C{sub 8}H{sub 8}), and ethylbenzene (C{sub 8}H{sub 10}) which allow us to examine the gradual development of delocalization of the corresponding {pi} electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to {pi}*- and {sigma}*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s{yields}1{pi}* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C{sub 6}H{sub 8}) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.

  12. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods.

    PubMed

    Saravanan, S; Balachandran, V

    2014-09-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined.

  13. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation.

    PubMed

    Suess, Daniel L M; Britt, R David

    2015-09-01

    Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H(+) and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN(-) ligands of the H-cluster, tracing (57)Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe-S cluster in HydG, and isotopic labeling of the CN(-) ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications.

  14. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis.

    PubMed

    Kloß, Sandra; Lorenz, Björn; Dees, Stefan; Labugger, Ines; Rösch, Petra; Popp, Jürgen

    2015-11-01

    Lower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens. However, before Raman spectroscopy can be used to identify pathogens, they have to be isolated from the sample matrix, i.e., sputum in case of lower respiratory tract infections. In this study, we report an isolation protocol for single bacterial cells from sputum samples for Raman spectroscopic identification. Prior to the isolation, a liquefaction step using the proteolytic enzyme mixture Pronase E is required in order to deal with the high viscosity of sputum. The extraction of the bacteria was subsequently performed via different filtration and centrifugation steps, whereby isolation ratios between 46 and 57 % were achieved for sputa spiked with 6·10(7) to 6·10(4) CFU/mL of Staphylococcus aureus. The compatibility of such a liquefaction and isolation procedure towards a Raman spectroscopic classification was shown for five different model species, namely S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. A classification of single-cell Raman spectra of these five species with an accuracy of 98.5 % could be achieved on the basis of a principal component analysis (PCA) followed by a linear discriminant analysis (LDA). These classification results could be validated with an independent test dataset, where 97.4 % of all spectra were identified correctly. Graphical Abstract Development of an isolation protocol of bacterial cells out of sputum samples followed by Raman spectroscopic measurement and species identification using chemometrical models.

  15. Whole-Brain Analysis of Amyotrophic Lateral Sclerosis by Using Echo-Planar Spectroscopic Imaging

    PubMed Central

    Verma, Gaurav; Woo, John H.; Chawla, Sanjeev; Wang, Sumei; Sheriff, Sulaiman; Elman, Lauren B.; McCluskey, Leo F.; Grossman, Murray; Melhem, Elias R.; Maudsley, Andrew A.

    2013-01-01

    Purpose: To detect regional metabolic differences in amyotrophic lateral sclerosis (ALS) with whole-brain echo-planar spectroscopic imaging. Materials and Methods: Sixteen patients with ALS (nine men, seven women; mean age, 56.6 years), five persons suspected of having ALS (four men, one woman; mean age, 62.6 years), and 10 healthy control subjects (five men, five women; mean age, 56.1 years) underwent echo-planar spectroscopic imaging after providing informed consent. The study was approved by the institutional review board and complied with HIPAA. Data were analyzed with the Metabolic Imaging and Data Analysis System software, and processed metabolite maps were coregistered and normalized to a standard brain template. Metabolite maps of creatine (Cr), choline (Cho), and N-acetylaspartate (NAA) were segmented into 81 regions with Automated Anatomical Labeling software to measure metabolic changes throughout the brains of patients with ALS. Statistical analysis involved an unpaired, uncorrected, two-sided Student t test. Results: The NAA/Cho ratio across six regions was significantly lower by a mean of 23% (P ≤ .01) in patients with ALS than in control subjects. These regions included the caudate, lingual gyrus, supramarginal gyrus, and right and left superior and right inferior occipital lobes. The NAA/Cr ratio was significantly lower (P ≤ .01) in eight regions in the patient group, by a mean of 16%. These included the caudate, cuneus, frontal inferior operculum, Heschl gyrus, precentral gyrus, rolandic operculum, and superior and inferior occipital lobes. The Cho/Cr ratio did not significantly differ in any region between patient and control groups. Conclusion: Whole-brain echo-planar spectroscopic imaging permits detection of regional metabolic abnormalities in ALS, including not only the motor cortex but also several other regions implicated in ALS pathophysiologic findings. © RSNA, 2013 PMID:23360740

  16. A spectroscopic study on applicability of spectral analysis for simultaneous quantification of L-dopa, benserazide and ascorbic acid in batch and flow systems

    NASA Astrophysics Data System (ADS)

    Karpińska, Joanna; Smyk, Jerzy; Wołyniec, Elżbieta

    2005-11-01

    The usefulness of derivative spectrophotometry for simultaneous assay of L-dopa, benserazide and ascorbic acid in pharmaceuticals was studied. The parameters of derivatisation depends on composition of solution in which particular compound was determined. For quantification of L-dopa in mixtures with benserazide or ascorbic acid the first derivative was used. Its determination in ternary mixture ( L-dopa + benserazide + ascorbic acid) is possible by third derivative spectra. Benserazide was assayed in presence of L-dopa using first derivative while in ternary mixture by third derivative. Direct determination of ascorbic acid is possible applying first derivative only in presence of L-dopa. The elaborated derivative spectrophotometric methods were used for assaying of L-dopa and benserazide in their commercial form "Madopar". The proposed spectrophotometric derivative method of simultaneous determination of L-dopa and benserazide was combined with FIA technique.

  17. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  18. A spectroscopic analysis of three cataclysmic variable stars

    NASA Astrophysics Data System (ADS)

    Unda-Sanzana, E.

    2005-02-01

    Cataclysmic variable stars (CVs) are binary systems in which matter is transferred from a low mass star to a white dwarf via an accretion disc. My thesis is a spectroscopic study of three of these objects: U Gem, GD 552 and GY Cnc. I present high-resolution optical spectra of U Gem taken during quiescence. For U Gem, the radial velocity semi-amplitude of the white dwarf, K1, is accurately known thanks to a direct observation by Long et al. (1999). I find that even with these data the optical measurements are seriously distorted compared to the known value, which is not recovered to better than 20%. Doppler tomograms show emission at low velocity, close to the centre of mass, and a transient and sharp absorption feature is seen in the Balmer lines close to eclipse. I suggest that stellar prominences may explain part of these features. I study two features detected in HeII 4686.75 angstroms. They seem to be produced in the bright spot. The narrower feature has a velocity close to that of the accretion disc in the impact region. I present evidence of weak spiral structure, which may support explanations for ``spiral shocks'' based upon 3-body effects. I apply a method of isophote fitting to search for evidence of stream-disc overflow, but fail to uncover any. I detect evidence of irradiation of the mass donor with shielding by the disc: I estimate an H/R ratio between 0.15 and 0.20. For GD 552 I present spectroscopy taken with the aim of detecting emission from the mass donor. I fail to do so at a level which allows me to rule out the presence of a near-main-sequence star donor. Given GD 552's orbital period of 103 minutes, this suggests instead that it may be a system that has evolved through the 80 minute orbital period minimum of CVs and now has a brown dwarf mass donor. Finally, I give a first look at high-resolution data for GY Cnc, whose dynamical parameters make it a near-perfect twin of U Gem. I find several surprising features: the bright spot is completely

  19. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization.

    PubMed

    Selvaraju, R; Raja, A; Thiruppathi, G

    2015-02-25

    In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques.

  20. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization

    NASA Astrophysics Data System (ADS)

    Selvaraju, R.; Raja, A.; Thiruppathi, G.

    2015-02-01

    In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques.

  1. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  2. Thermal Physical, and Infrared Spectroscopic Studies on Glasses Prepared by Microwave Route

    SciTech Connect

    Jagadeesha, N.; Gowda, V. C. Veeranna; Chakradhar, R. P. S.; Reddy, C. Narayana

    2011-07-15

    This paper describes thermal, physical and spectroscopic properties of glasses prepared by a novel micro wave method. These studies exhibited a strong compositional dependent trend and existence of characteristic boro-vanadate groups in these glasses. The scheme of modification of borate and vanadate groups is controlled by Sanderson's electronegativity principle. Analysis of density and glass transition temperatures suggests the presence of characteristic four coordinated borate and diboro - vanadate groups in these glasses. The presence of [BO{sub 4/2}]{sup -} and [B{sub 2}V{sub 2}O{sub 9}]{sup 2-}) groups are confirmed by Infrared Spectroscopy of investigated glasses.

  3. Quantum mechanical and spectroscopic (FT-IR, FT-Raman,1H,13C NMR, UV-Vis) studies, NBO, NLO, HOMO, LUMO and Fukui function analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT studies

    NASA Astrophysics Data System (ADS)

    Pandey, Manju; Muthu, S.; Nanje Gowda, N. M.

    2017-02-01

    Theoretical analysis of the molecular structure, spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) studies, and thermodynamic characteristics of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione (5MBIT) molecule were done by DFT/B3LYP using 6-311++G(d, p) basis set. Theoretical parameters were compared with experimental data. The dipole moment (μ), polarizability (Δα) and first order hyperpolarizability (β) of the molecule were calculated. Thermodynamic properties, HOMO and LUMO energies were determined. Global reactivity parameters and Fukui function of the 5MBIT molecule were predicted.

  4. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes.

    PubMed

    Pentak, Danuta

    2016-03-01

    Black pepper is a source of effective antioxidants. It contains several powerful antioxidants and is thus one of the most important spices for preventing and curtailing oxidative stress. There is considerable interest in the development of a drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic and amphiphilic molecules. This article focuses on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. Liposome formulations of piperine were analyzed with various spectroscopic methods. The formulation with the highest entrapment efficiency (90.5%) was formulated with an L-α-phosphatidylcholine dipalmitoyl (DPPC):piperine, 30:1 molar ratio, and total lipid count of 19.47 mg/ml in the final liposomal preparation. The liposome formulation was found to be stable after storage at 4 °C, protected from light, for a minimum of 3 weeks. The incremental process of piperine penetration through the phospholipid membrane was analyzed using the FT-IR, UV-Vis and NMR methods. Temperature stability studies carried out at 37 °C showed the highest percentage of piperine release in the first 3 h of incubation.

  5. Spectroscopic Study on the Interaction of 4-dimethylaminochalcones with Phospholipids

    NASA Astrophysics Data System (ADS)

    Tomečková, V.; Revická, M.; Sassen, A.; Veliká, B.; Stupák, M.; Perjési, P.

    2014-11-01

    The ultraviolet-visible and fluorescence spectroscopic properties of 4'-dimethylaminochalcone ( 1a) and its cyclic analogs 2a-4a have been studied in the presence of phospholipid vesicles (i.e., egg yolk lecithin and dipalmitoylpho sphatidylcholine), bovine serum albumin (BSA), and lipoprotein particles (i.e., bovine serum albumin plus egg yolk lecithin). The spectral results showed that compounds 1a-4a formed hydrophobic interactions with the phospholipids, lipoproteins, and BSA at the polar/nonpolar interface. Compounds 3a and 4a exhibited the strongest hydrophobic interactions of all of the compounds tested towards the phospholipids. Compound 2a gave the best fluorescent fluorophore indicating interactions with the lipids, lipoproteins, and proteins. Fluorescent microscopic imaging of breast cancer cells treated with compounds 1a-4a revealed that they could be used to stain all of the cellular components and destroy the nuclear structure. Compounds 1a-4a were found to be concentrated predominantly on the surfaces of the liposomes and lipoproteins.

  6. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-05

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects.

  7. Spectroscopic study of HNO3 dissociation on ice.

    PubMed

    Marchand, Patrick; Marcotte, Guillaume; Ayotte, Patrick

    2012-12-13

    A detailed spectroscopic study of HNO(3):H(2)O binary amorphous mixtures, and of the adsorption of HNO(3) onto ice, is reported. Using a classical optics model, the extent of intermixing and of ionic dissociation of adsorbed HNO(3), which forms a strong acid with liquid water, is determined as a function of HNO(3) coverage and temperature. Even at temperatures as low as 45 K, where intermixing is limited to at most a few molecular layers at the interface, ionic dissociation of adsorbed HNO(3) is observed to be extensive. While some amount of molecularly adsorbed HNO(3) is observed at the surface of ice at 45 K, its ionic dissociation occurs irreversibly upon heating the ice substrate to 120 K. The molecularly adsorbed state of HNO(3) is not restored upon cooling, suggesting HNO(3) is a metastable entity at the surface of ice. Therefore, despite ionic dissociation of HNO(3) being thermodynamically favored, it appears to be kinetically inhibited at the surface of amorphous solid water at temperatures below 120 K.

  8. Spectroscopic studies of cryogenic fluids: Benzene in propane

    NASA Astrophysics Data System (ADS)

    Nowak, R.; Bernstein, E. R.

    1987-03-01

    Energy shifts and bandwidths for the 1B2u↔1A1g optical absorption and emission transitions of benzene dissolved in propane are presented as a function of pressure, temperature, and density. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas no shifts are observed if density is kept constant and temperature and pressure are varied simultaneously. Density is thus the fundamental microscopic parameter for energy shifts of optical transitions. The emission half-width is a linear function of both temperature and pressure but the absorption half-width is dependent only upon pressure. These results are interpreted qualitatively in terms of changes occurring in the intermolecular potentials of the ground and excited states. Both changes in shape of and separation between the ground and excited state potentials are considered as a function of density. Classical dielectric (Onsager-Böttcher), microscopic dielectric (Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra are compared with the experimental results. Calculations suggest limited applicability of dielectric theories but good agreement between experiment and microscopic theory. The results demonstrate the usefulness of cryogenic solutions for high pressure, low temperature spectroscopic studies of liquids.

  9. Spectroscopic Studies of Dehydrogenation of Ammonia Borane in Carbon Cryogel

    SciTech Connect

    Sepehri, Saghar; Feaver, Aaron M.; Shaw, Wendy J.; Howard, Christopher J.; Zhang, Qifeng; Autrey, Thomas; Cao, Guozhong

    2007-12-27

    The reaction pathways leading to the thermal decomposition of solid state ammonia borane (AB) incorporated in carbon cryogels (CC) have been studied by spectroscopic methods. The time dependent thermal decomposition was followed by in situ 11B NMR and showed a significant increase in hydrogen release kinetics. Both 11B NMR and Fourier Transform Infrared Spectroscopy (FTIR) show new reaction products formed in the thermal decomposition of AB-CC that are assigned to reactions with surface oxygen groups. The results indicate that incorporation of AB in CC enhance kinetics due to reactions with residual surface-bound oxygen functional groups. The formation of new products with surface-O-B bonds is consistent with the greater reaction exothermicity observed when hydrogen is released from AB-CC materials. Scanning electron microscopy (SEM) shows different morphology of AB in ammonia borane – carbon cryogel (AB-CC) nanocomposite as compared to neat AB. Support for this work is provided by NSF (DMR-0605159), WTC, and EnerG2 LLC as well as the DoE Center of Excellence in Chemical Hydrogen Storage funded by the DOE H2 Program. FTIR experiments were performed in Professor Zhang’s lab in MSE department at UW. Part of this research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, located at the Pacific Northwest National Laboratory, which is operated by the Battelle for the U.S. Department of Energy.

  10. Theoretical DFT study on spectroscopic signature and molecular dynamics of neurotransmitter and effect of hydrogen removal

    NASA Astrophysics Data System (ADS)

    Mukherjee, V.; Singh, N. P.; Yadav, R. A.

    2013-04-01

    Vibrational spectroscopic study has been made for the serotonin molecule and its deprotonated form. The Infrared and Raman spectra in optimum geometry of these two molecules are calculated using density functional theorem and the normal modes are assigned using potential energy distributions (PEDs) which are calculated using normal coordinate analysis method. The vibrational frequencies of these two molecules are reported and a comparison has been made. The effect of removal of the hydrogen atom from the serotonin molecule upon its geometry and vibrational frequencies are studied. Electronic structures of these two molecules are also studied using natural bond orbital (NBO) analysis. Theoretical Raman spectrum of serotonin at different exciting laser frequencies and at different temperatures are obtained and the results are discussed. Present study reveals that some wrong assignments had been made for serotonin molecule in earlier study.

  11. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis of regenerated bone

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Kazarain, Sergei G.; Alves, Marco A. V.; Blay, Alberto; Correa, Luciana; Zezell, Denise M.

    2014-03-01

    The cutting of bone is routinely required in medical procedures, especially in dental applications. In such cases, bone regeneration and new bone quality can determine the success of the treatment. This study investigated the main spectral differences of undamaged and healed bone using the ATR-FTIR spectroscopy technique. Three rabbits were submitted to a surgical procedure; a small piece of bone (3x3 mm2) was removed from both sides of their jaws using a high speed drill. After 15 days, the rabbits were euthanized and the jaws were removed. A bone slice was cut from each side of the jaw containing regions of undamaged and newly formed bone, resulting in six samples which were polished for spectroscopic comparison. The samples were analyzed by FTIR spectroscopy using a diamond ATR accessory. Spectral characteristics were compared and particular attention was paid to the proportion of phosphate to amide I bands and the width of the phosphate band. The results show that the ratio of phosphate to amide I is smaller in new bone tissue than in the undamaged bone, indicating a higher organic content in the newly formed bone. The analysis of the width of the phosphate band suggests a crystallinity difference between both tissues, since the width was higher in the new bone than in the natural bone. These results suggest that the differences observed in bone aging processes by FTIR spectroscopic can be applied to the study of healing processes.

  12. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  13. The spectroscopic study of building composites containing natural sorbents

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.

    2011-08-01

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag +, Pb 2+, Zn 2+, Cd 2+ and Cr 3+) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm -1). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm -1 - the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm -1 - the range of the bands originating from OH - groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials.

  14. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Sułkowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms π-π complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  15. Spectroscopic study of graphene oxide membranes exposed to ultraviolet light

    SciTech Connect

    Schwenzer, Birgit; Kaspar, Tiffany C.; Shin, Yongsoon; Gotthold, David W.

    2016-05-16

    Research on graphene oxide (GO) as anything but a precursor material for synthesizing graphene started to pick up in 20061,2 and was soon followed by a first report of freestanding GO membranes (also referred to as GO paper) from R. S. Ruoff’s group at Northwestern University.3 The first GO membranes were prepared by vacuum filtration. More recently, larger scale GO membranes have been prepared by tape casting4 and other methods.5 In step with the development of new fabrication techniques, GO membranes are now tested for a wide array of applications6 ranging from energy-related4,7 or biomedical8 applications to more conventional uses for filtration9 and dehumidification.10 For all these proposed and implemented applications it remains to be seen how sensitive each of them is with respect to chemical and physical changes of the GO membranes over time. In this study, we report the effects of UV exposure on 2D-hierarchically stacked (Fig. S1 in ESI†) GO membranes. Macroscopically observable changes, such as darkening and mechanical deformation, have been correlated to chemical changes at the molecular level through spectroscopic measurements. Not only do the results of this work offer insights into the stability of GO membranes under UV light, but the findings will enable researchers, who are studying the use of these materials for different applications, to better understand the shelf life and packaging requirements for GO membranes. Furthermore, our results demonstrate the feasibility of deep ultraviolet (DUV) photolithography for graphene oxide-based devices. This approach is readily scalable as opposed to previous reports on photolithographic patterned reduction of GO to graphene by AFM,11 electron-beam12 or with an extreme ultraviolet (λ = 46.9 nm) laser.13

  16. A Far Ultraviolet Spectroscopic Analysis of the Old Nova Q Cygni

    NASA Astrophysics Data System (ADS)

    Kolobow, Craig; Sion, E. M.

    2011-01-01

    Q Cygni (Nova Cygni 1876) is one of the oldest old novae with a long orbital period of 10.08 hours and spectroscopic peculiarities in the optical including the presence of variable wind outflow revealed by optical P Cygni profiles in the He I lines and Halpha (Kafka et al.2003). There has never been a far UV spectroscopic analysis of this system. Therefore, we have carried out a synthetic spectral analysis of a far ultraviolet IUE archival spectrum of Q Cygni using our optically thick, steady state, accretion disk models and model white dwarf photospheres. We report the results of our spectroscopic analysis and compare the physical parameters we derive with those of other old novae. We gratefully acknowledge the support of this by NSF grant 0807892 to Villanova University.

  17. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  18. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  19. Comparative spectroscopic analysis of urinary calculi inhibition by Larrea Tridentata infusion and NDGA chemical extract

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia

    2012-10-01

    In the present comparative spectroscopic study we try to understand calcium oxalate kidney stone formation as well as its inhibition by using a traditional medicine approach with Larrea Tridentata (LT) herbal extracts and nordihydroguaiaretic acid (NDGA), which is a chemical extract of the LT bush. The samples were synthesized without and with LT or NDGA using a simplified single diffusion gel growth technique. While the use of infusion from LT decreases the sizes of calcium oxalate crystals and also changes their structure from monohydrate for pure crystals to dihydrate for crystals grown with different amounts of inhibitor, both Raman and infrared absorption spectroscopic techniques, which are the methods of analysis employed in this work, reveal that NDGA is not responsible for the change in the morphology of calcium oxalate crystals and does not contribute significantly to the inhibition process. The presence of NDGA slightly affects the structure of the crystals by modifying the strength of the C-C bonds as seen in the Raman data. Also, the current infrared absorption results demonstrate the presence of NDGA in the samples through a vibrational line that corresponds to the double bond between carbon atoms of the ester group of NDGA.

  20. Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis.

    PubMed

    Koerdt, Andrea; Orell, Alvaro; Pham, Trong Khoa; Mukherjee, Joy; Wlodkowski, Alexander; Karunakaran, Esther; Biggs, Catherine A; Wright, Phillip C; Albers, Sonja-Verena

    2011-09-02

    Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ~3.4 and ~1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development.

  1. Macromolecular Fingerprinting of Sulfolobus Species in Biofilm: A Transcriptomic and Proteomic Approach Combined with Spectroscopic Analysis

    PubMed Central

    2011-01-01

    Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ∼3.4 and ∼1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development. PMID:21761944

  2. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  3. A spectroscopic study of the radial velocity variations and accretion disks found in four dwarf novae

    NASA Astrophysics Data System (ADS)

    Stover, R. J.

    Time resolved spectroscopic observations of the four dwarf novae SS Cyg, EM Cyg, U Gem, and RU Peg are presented. Although these systems were studied previously, all of the spectroscopic studies were done photographically. A linear response, digital detector is employed. Analytic techniques to the study of the radial velocity variations and emission line profiles found in dwarf novae are applied. In the study of SS Cyg cross-correlation techniques were used for the first time to measure the radial velocity variations of the secondary star absorption lines. In the study of U Gem, analysis of the accretion disk emission lines showed that the motion of the material in the disk cannot be described accurately by orbits defined within the three-body approximation. The observations of EM Cyg reveal an unstable accretion disk, with emission lines that vary erratically on timescales of minutes to days. New measurements of the radial velocity variations of the emission and absorption lines found in the spectrum of RU Peg agree with previous measurements but have a higher accuracy.

  4. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  5. Spectroscopic analysis of impurity precipitates in CdS films

    SciTech Connect

    Webb, J.D.; Keane, J.; Ribelin, R.; Gedvilas, L.; Swartzlander, A.; Ramanathan, K.; Albin, D.S.; Noufi, R.

    1999-03-01

    Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR). Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 10{sup 2} micron-scale precipitates. {copyright} {ital 1999 American Institute of Physics.}

  6. Spectroscopic Analysis of Impurity Precipitates in CdS Films

    SciTech Connect

    Webb, J. D.; Keane, J.; Ribelin, R.; Gedvilas, L.; Swartzlander, A.; Ramanathan, K.; Albin, D. S.; Noufi, R.

    1999-10-31

    Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR), Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 10{sup 2} micron-scale precipitates.

  7. Investigation on interaction of prulifloxacin with pepsin: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Huang, Yabei; Yan, Jie; Liu, Benzhi; Yu, Zhang; Gao, Xiaoyan; Tang, Yingcai; Zi, Yanqin

    2010-03-01

    The interaction between prulifloxacin, a kind of new oral taking antibiotic and pepsin, a kind of enzyme in the stomach has been investigated in vitro under a simulated physiological condition by different spectroscopic methods. The intrinsic fluorescence of pepsin was strongly quenched by prulifloxacin. This effect was rationalized in terms of a static quenching procedure. The binding parameters have been evaluated by fluorescence quenching methods. The negative value of Δ G0 reveals that the binding process is a spontaneous process. The binding distance R between donor (pepsin) and acceptor (prulifloxacin) was obtained according to the Förster's resonance energy transfer theory and found to be 0.95 nm. The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  8. Investigation on interaction of prulifloxacin with pepsin: a spectroscopic analysis.

    PubMed

    Huang, Yabei; Yan, Jie; Liu, Benzhi; Yu, Zhang; Gao, Xiaoyan; Tang, Yingcai; Zi, Yanqin

    2010-03-01

    The interaction between prulifloxacin, a kind of new oral taking antibiotic and pepsin, a kind of enzyme in the stomach has been investigated in vitro under a simulated physiological condition by different spectroscopic methods. The intrinsic fluorescence of pepsin was strongly quenched by prulifloxacin. This effect was rationalized in terms of a static quenching procedure. The binding parameters have been evaluated by fluorescence quenching methods. The negative value of DeltaG(0) reveals that the binding process is a spontaneous process. The binding distance R between donor (pepsin) and acceptor (prulifloxacin) was obtained according to the Förster's resonance energy transfer theory and found to be 0.95 nm. The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  9. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  10. Spectroscopic study of honey from Apis mellifera from different regions in Mexico.

    PubMed

    Frausto-Reyes, C; Casillas-Peñuelas, R; Quintanar-Stephano, J L; Macías-López, E; Bujdud-Pérez, J M; Medina-Ramírez, I

    2017-05-05

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  11. Vibrational spectroscopic studies, NMR, HOMO-LUMO, NLO and NBO analysis of 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole with use X-ray diffractions and DFT calculations

    NASA Astrophysics Data System (ADS)

    Demir, Sibel; Tinmaz, Feyza; Dege, Necmi; Ilhan, Ilhan Ozer

    2016-03-01

    The crystal and molecular structure of the title compound, 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole, was reported and confirmed by single crystal X-ray diffraction and spectroscopic data. The structure, geometry optimization, vibrational frequencies and nuclear magnetic resonance were also investigated. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation was analysed using natural bond orbital analysis. The results show that charge in electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalisation energies E(2) confirms the occurrence of intramolecular charge transfer within the molecule. Satisfactory theoretical aspects were made for the stable conformer of the molecule using density functional theory DFT-B3LYP methods with the 6-311G++(d,p) basis set.

  12. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  13. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V. K.; Singh, Bachcha; Singh, Ranjan K.

    2016-02-01

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.

  14. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    PubMed

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.

  15. Structural, spectroscopic and theoretical study of novel ephedrinum salt

    NASA Astrophysics Data System (ADS)

    Ivanova, B.; Kolev, T.; Lamshöft, M.; Mayer-Figge, H.; Seidel, R.; Sheldrick, W. S.; Spiteller, M.

    2010-05-01

    Ephedrinum violurate dihydrate was synthesized, spectroscopically and structural elucidated. The data are compared with those of the free-base ephedrine hemihydrate. Discussion on the stable conformer of the ephedrinum cation is carried out. Quantum chemical calculations were performed for the theoretical elucidation of the conformational preference of the ephedrinum cation and its vibrational properties. The model systems neutral ephedrine hemihydrate ( 1) and violurate salt dihydrate ( 2) are elucidated.

  16. VLT spectroscopic analysis of HH 202. Implications on dust destruction and thermal inhomogeneities

    NASA Astrophysics Data System (ADS)

    Espíritu, J. N.; Peimbert, A.; Delgado-Inglada, G.; Ruiz, M. T.

    2017-04-01

    We present a long-slit spectroscopic analysis of Herbig-Haro 202 and the surrounding gas of the Orion Nebula using data from the Very Large Telescope. We determined the spatial variation of its physical conditions and chemical abundances; our results are consistent with those from previous studies albeit with improved uncertainties in some determinations. Special attention is paid to the iron (Fe) and oxygen (O) abundances, which show a peak at the brightest part of HH 202, allowing us to estimate that 57% of the dust is the destroyed; we also calculate the amount of depletion of oxygen in dust grains, which amounts to 0.126±0.024 dex. Finally we show that O abundances determined from collisionally excited lines and recombination lines are irreconcilable at the center of the shock unless thermal inhomogeneities are considered.

  17. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  18. A Raman Spectroscopic Study of Kernite to 25 GPa

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; O'Bannon, E. F., III; Williams, Q. C.

    2015-12-01

    A Raman spectroscopic study of kernite to 25 GPaMarcus Silva, Earl O'Bannon III, and Quentin Williams Department of Earth & Planetary Sciences, University of California Santa Cruz The Raman spectrum of kernite (Na2B4O6(OH)2·3(H2O)) has been characterized up to ~25 GPa in order to explore pressure-induced changes in a structurally novel mineral that contains mixed coordination borate groups (three- and four-fold), and both hydroxyl units and water. During compression, all of the ~30 modes monitored shift positively and monotonically until ~2.2 GPa where a few low frequency modes disappear and tetrahedral borate modes merge. The low frequency modes that disappear at ~2.2 GPa are likely associated with Na vibrations, and their disappearance suggests that dramatic changes occur in the Na sites at ~2.2 GPa. The merging of the boron bending and stretching modes at ~2.2 GPa suggests that the local symmetry of the BO4 tetrahedra changes at this pressure, and likely becomes more symmetric. The remaining modes shift positively up to ~7.4 GPa where a second notable change occurs. All but 5 modes (with initial frequencies of 150, 166, 289, 307, and 525 cm-1) disappear at ~7.4 GPa. This indicates that a second phase transition has occurred which affects both the BO3H and BO4­ groups: based on the loss of modes, this transition may be associated with disordering of the crystal. These 5 modes persist and shift monotonically up to ~25 GPa. On decompression, the 5 modes shift smoothly down to ~2.0 GPa where a few new modes appear in the spectrum. When fully decompressed to room pressure, the Raman spectrum of the recovered sample is significantly different from the ambient spectrum of the initial sample. Thus, our results are suggest a phase transition occurring at 2.2 GPa with changes in the Na and tetrahedral boron sites, followed by an additional transition at 7.4 GPa that may involve disordering of the crystal. In the latter transition, at least the BO3H groups appear to be

  19. The effect of refluxing on the alkoxide-based sodium potassium niobate sol-gel system: Thermal and spectroscopic studies

    SciTech Connect

    Chowdhury, Anirban; Bould, Jonathan; Londesborough, Michael G.S.; Milne, Steven J.

    2011-02-15

    A study on the effects of prolonged heating under reflux conditions of up to 70 h on alkoxides of sodium, potassium and niobium dissolved in 2-methoxyethanol for the synthesis of sols of composition Na{sub 0.5}K{sub 0.5}NbO{sub 3} (NKN) has been carried out using combined thermogravimetric-Fourier transform infrared spectroscopic analyses. Extended refluxing increases the homogeneity of the Na{sub 0.5}K{sub 0.5}NbO{sub 3} (NKN) system. Spectroscopic analyses on the non-refluxed and 70 h refluxed NKN gels reveal the existence of inorganic hydrated carbonates and bicarbonates, which we propose arise from the hydration and carbonation of the samples on standing in air. The X-ray diffraction patterns of these two types of gels show orthorhombic NKN phase evolutions at higher temperatures. -- Graphical abstract: Total organic evolution plots over time for NKN dried gels obtained under different refluxing times show different thermochemical behaviours and these were investigated by thermal and spectroscopic analysis tools to find a correlation between the extent of -M-O-M- chain link formation and the amount of solvent vapour (methoxyethanol) evolution. Display Omitted Research highlights: > Prolonged refluxing of sol-gel NKN precursor solutions improves final properties of an NKN system. > An NKN process thermo-chemistry with thermal and spectroscopic analysis tools was explored. > An FTIR of NKN gels reveals tendency of NKN systems for rehydration and recarbonation on standing.

  20. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  1. Vibrational Spectroscopic Studies on Some Double Alkali Tungstates Belonging to Orthorhombic Class at Room Temperature

    SciTech Connect

    Sharaff, Usha; Bajpai, P. K.; Choudhary, R. N. P.

    2011-11-22

    Room temperature IR and Raman spectra of rubidium lithium tungstate and sodium lithium tungstates belonging to double alkali tungstate family are investigated using group theoretical methods. Observed internal and lattice modes in both systems studied are assigned. Analysis of spectral behavior reveals that the effect of site potential around tungstates ion is weak and the factor group splitting is operative. Differences in the lattice mode mixing and splitting of internal modes is influenced by the statistical ordering between two alkali ions having large and small ionic radii and is explained using size and charge effect observed earlier in scheelite type of structure. Thus, vibrational spectroscopic analysis may be a tool to understand the alkali ion ordering in double alkali systems.

  2. Spectroscopic analysis of Pr^3+ (4f^2) absorption intensities in a plastic host (HEMA).

    NASA Astrophysics Data System (ADS)

    Stonestreet, David; Nash, Kelly; Dee, Doug; Yow, Raylon; Gruber, John; Sardar, Dhiraj

    2006-10-01

    A spectroscopic investigation has been performed on the Pr^3+ ions embedded in 2-hydroxyethyl methacrylate (HEMA) solid plastic host. The standard Judd-Ofelt analysis was applied to the room temperature absorption intensities of Pr^3+ transitions to determine three phenomenological intensity parameters: φ2, φ4 and φ6. Values of the intensity parameters were subsequently used to determine the decay rates (emission probabilities), radiative lifetimes, and branching ratios of the principal intermanifold transitions of Pr^3+ from the ^3P2, ^1D2, and ^3P0 manifold states to the lower-lying manifolds. The spectroscopic properties Pr^3+ in HEMA will be compared with those in glasses.

  3. [Spectroscopic analysis of sun protection factor (SPF) of sunscreen cosmetic].

    PubMed

    Qiu, Zheng-Jun; Lu, Jiang-Feng; He, Yong; Fang, Hui

    2007-07-01

    Sunscreen index is the primary indicator of the protection effect of sunscreen cosmetics. A handheld spectrometer was used to study the relationship between sunscreen index and reflectance spectra. Three kinds of Dingjiayi brand sunscreen cosmetics, which is SPF15, SPF20 and SPF30, were chosen as experimental material. The sunscreen cosmetics were divided into 75 samples, and 60 of them were used as calibrated samples, while the other 15 samples were used as prediction samples. The reflectance spectra data were collected by the spectrometer. The data from the wavelength range between 400 and 960 nm were processed by principal component analysis method, and the results showed that the cumulate reliabilities of PC1 and PC2 (the first two principal components) reached 91%. Then partial least square analysis method was applied to build prediction models, and the remaining 15 prediction samples were disposed by this model. The results show that the prediction correlation coefficient is 0.967 7, and the prediction precision is good. So the spectral analysis method proposed in the present paper has good performance in classification and discrimination of sunscreen cosmetics, and is a new approach to test the SPF of cosmetics.

  4. Synthesis, spectroscopic characterization, DNA interaction and antibacterial study of metal complexes of tetraazamacrocyclic Schiff base

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Khanam, Sadiqa; Firdaus, Farha; Latif, Abdul; Aatif, Mohammad; Al-Resayes, Saud I.

    The template condensation reaction between benzil and 3,4-diaminotoulene resulted mononuclear 12-membered tetraimine macrocyclic complexes of the type, [MLCl2] [M = Co(II), Ni(II), Cu(II) and Zn(II)]. The synthesized complexes have been characterized on the basis of the results of elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz. FT-IR, 1H and 13C NMR, FAB mass, UV-vis and EPR. An octahedral geometry has been envisaged for all these complexes, while a distorted octahedral geometry has been noticed for Cu(II) complex. Low conductivity data of all these complexes suggest their non-ionic nature. The interactive studies of these complexes with calf thymus DNA showed that the complexes are avid binders of calf thymus DNA. The in vitro antibacterial studies of these complexes screened against pathogenic bacteria proved them as growth inhibiting agents.

  5. Spectroscopic studies (FTIR, FT-Raman and UV), potential energy surface scan, normal coordinate analysis and NBO analysis of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl) piperidine-3,4,5-triol by DFT methods.

    PubMed

    Isac Paulraj, E; Muthu, S

    2013-05-01

    This work presents the characterization of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol (abbreviated as HEHMPT) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman and UV-Vis techniques. The FT-IR spectrum (4000-400 cm(-1)) and FT-Raman spectrum (4000-100 cm(-1)) in solid phase was recorded for HEHMPT. The UV-Vis absorption spectrum of the HEHMPT that dissolved in water was recorded in the range of 100-400 nm. The structural and spectroscopic data of the molecule were obtained from B3LYP and M06-2X with 6-31G(d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the normal co-ordinate analysis (NCA), experimental results and potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. The stable geometry of the compound has been determined from the potential energy surface scan. The stability of molecule has been analyzed by NBO analysis. The molecule orbital contributions were studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. The electronic properties like UV spectral analysis and HOMO-LUMO energies were reported. The calculated HOMO and LUMO energies shows that charge transfer interactions taking place within the molecule. Mulliken population analysis on atomic charges is also calculated.

  6. Electron spectroscopic study (ESI, EELS) of Nanoplast-embedded mammalian lung.

    PubMed

    Fehrenbach, H; Richter, J; Schnabel, P A

    1992-06-01

    The potential of Nanoplast melamine resin embedding for the study of mammalian lung parenchyma was examined by means of electron spectroscopic imaging (ESI) and electron energy-loss spectroscopy (EELS). Samples were either fixed with glutaraldehyde-paraformaldehyde or glutaraldehyde-tannic acid, or were directly transferred to the embedding medium without prior fixation. Organic dehydrants, as well as fixatives containing heavy metals and stains, were omitted. A very high level of ultrastructural detail of chromatin, ribosomes, mitochondria and plasma membranes was achieved by ESI from the Nanoplast-embedded samples. The most prominent gain in ultrastructural detail was achieved when moving from an energy loss just below the L2,3 edge of phosphorus at 132 eV to an energy loss just beyond this edge. This reflects the prominent P L2,3 edge observed by EELS of Nanoplast-embedded samples in comparison with conventionally processed samples. Thus, taking into account possible sectioning artefacts, excellent heterochromatin images which rely on the phosphorus distribution can be obtained from Nanoplast-embedded samples by computer-assisted analysis of electron spectroscopic images. In this respect glutaraldehyde-paraformaldehyde fixation is preferable to glutaraldehyde-tannic acid fixation because the presence of silicon, revealed by EELS, in tannic-acid-fixed samples may introduce artefacts in phosphorus distribution images obtained by the three-window method because of the close proximity of the L2,3 edges of silicon and phosphorus.

  7. Studies on Nephrite and Jadeite Jades by Fourier Transform Infrared (ftir) and Raman Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Lim, L. C.

    2013-10-01

    The mineralogical properties of black nephrite jade from Western Australia are studied by Fourier transform infrared (FTIR) spectroscopy using both transmission and specular reflectance techniques in the 4000-400 cm-1 wavenumber region. The infrared absorption peaks in the 3700-3600 cm-1 region which are due to the O-H stretching mode provides a quantitative analysis of the Fe/(Fe+Mg) ratio in the mineral composition of jade samples. The Fe/(Fe+Mg) percentage in black nephrite is found to be higher than that in green nephrite, but comparable to that of actinolite (iron-rich nephrite). This implies that the mineralogy of black nephrite is closer to actinolite than tremolite. The jade is also characterized using Raman spectroscopy in the 1200-200 cm-1 region. Results from FTIR and Raman spectroscopic data of black nephrite jade are compared with those of green nephrite jade from New Zealand and jadeite jade from Myanmar. Black nephrite appears to have a slightly different chemical composition from green nephrite. Spectra from FTIR and Raman spectroscopic techniques were found to be useful in differentiating black nephrite, green nephrite, and green jadeite jades. Furthermore, data on refractive index, specific gravity, and hardness of black nephrite jade are measured and compared with those of green nephrite and of jadeite jade.

  8. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  9. Spectroscopic study of the extremely fast rotating star 44 Geminorum

    NASA Astrophysics Data System (ADS)

    Iliev, L.; Vennes, S.; Kawka, A.; Kubat, J.; Nemeth, P.; Borisov, G.; KRaus, M.

    Stars with extremely fast rotation represent interesting challenge to modern understanding of the stellar evolution. The reasons why such a spin-up process should occur during the evolution to otherwise normal star are still not well understood. Already in the beginning of the XX century Otto Struve proposed that fast rotation of the group of stars spectroscopically classified as Be could be the main reason for the formation of observed disks of circumstellar material around them. This circumstellar material is responsible for the emission lines observed in the spectrum of Be-stars as well as for the whole complex of spectral and photometrical patterns called in general Be-phenomenon.

  10. A Detailed Spectroscopic Analysis of The EQ Pegasi System

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Murphy, Simon; Riedel, Adric R.

    2015-01-01

    EQ Pegasi (GJ 896, HIP 116132 ) is a resolved binary system comprised of mid-M dwarfs at a distance of only 6.2 pc. The system has been studied extensively over a broad range of wavelengths from the X-ray to the radio. These observations reveal both components are variable, flare, and exhibit high levels of magnetic activity. The pair were recently proposed as members of a nearby young kinematic association on the basis of consistent Galactic kinematics, strong X-ray emission, and color-magnitude diagram position. Thus, they may be the closest pre-main-sequence system to the Sun. Here we present a detailed analysis of EQ Peg A and B using medium resolution spectra covering ~0.5-2.5 microns. We investigate spectral types, chromospheric activity indicators, lithium depletion, and gravity sensitive alkali lines and molecular bands to characterize the system and place constraints on its age.

  11. Spectroscopic Analysis of Perfluoropolyether Lubricant Degradation During Boundary Lubrication

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Shogrin, Bradley A.; Jones, William R., Jr.

    1996-01-01

    The degradation of a branched perfluoropolyether (PFPE) under boundary lubrication conditions was studied using mu-FTIR and mu-Raman spectroscopies. Stainless steel (440C) discs coated with thin (600A), uniform films of the PFPE were tested in a ball-on-disc apparatus until various levels of friction coefficient were attained. Discs were then examined using the above techniques. When the friction coefficient surpassed the value obtained with an un-lubricated control, the lubricant film had either been physically displaced or partially transformed in to a 'friction polymer'. Infrared analysis of this 'friction polymer' indicated the presence of a polymeric fluorinated acid species (R(sub f)COOH). Raman spectroscopy indicated the presence of amorphous carbon in the wear track and in the friction polymer. Some reaction mechanisms are suggested to explain the results.

  12. Infrared spectroscopic analysis of skin tumor of mice treated with several medicinal plants

    PubMed Central

    Ali, Huma; Dixit, Savita

    2013-01-01

    Objective To evaluate the differences between cancerous tissue, drug treated tissue and its corresponding normal tissue by infrared spectroscopic analysis. Methods Methanolic extracts of Azadirachta indica, Ocimum sanctum, Aloe barbandesis, Tinospora cordifolia and Triticum aestivum were assessed for the isolation and purification of active compound. After that, combine crude and combine isolated samples were prepared. Skin tumor was induced by topical application of 7, 12-dimethyl benz (a) anthracene and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of different drugs, it was administered at a concentration of 400 mg/kg body weight daily up to 16 weeks. Fourier transform infrared spectroscopy analysis was used to differentiate the drug treated tissues with the normal and cancerous tissue. In the present study, spectra of different tissues were recorded in the range of 400-4 000 cm−1. Results The results of the present study have shown that the remarkable difference exists between the IR spectra of normal, drugs treated and cancerous tissue in terms of frequencies and intensities of prominent bands of cellular biomolecules. Conclusions Fourier transform infrared spectroscopy analysis suggests the chemopreventive effect of above treated drugs and the best result was observed in combine crude sample and in combine isolated sample or synergistic effect of individual crude and isolated extract in 7, 12-dimethyl benz (a) anthracene croton oil induced skin carcinogenesis in Swiss albino mice.

  13. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  14. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    NASA Astrophysics Data System (ADS)

    Harde, G. B.; Muley, G. G.

    2016-05-01

    Borate glasses of the system xNd2O3-(1-x) La2O3-SrCO3-10H3BO3 (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition 4I9/2 → 4G5/2 + 2G7/2 has found more prominent than the other transitions. Optical band gap energies of glasses have been determined and found less for Nd doped glass.

  15. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix.

    PubMed

    Rerek, Mark E; Van Wyck, Dina; Mendelsohn, Richard; Moore, David J

    2005-03-01

    IR spectroscopic studies are reported for N-stearyl-D-erythro-phytosphingosine (Cer NP) and N-stearyl-2-hydroxy-D-erythro-phytosphingosine (Cer AP) in a hydrated model of the skin lipid barrier comprised of equimolar mixtures of each ceramide with cholesterol and d(35)-stearic acid. Examination of the methylene stretching, rocking and bending modes reveal some rotational freedom and hexagonal packing in both the ceramide and stearic acid chains. Analysis of the acid carbonyl stretch and the ceramide Amide I modes show both shift to higher frequencies, indicating weaker hydrogen bonding, in the mixed systems compared to the pure materials. For both systems, the fatty acid chain disordering temperatures are significantly increased from those of the pure acids. The observed behaviors of these phytosphingosine ceramide systems are fundamentally different from the previously reported analogous sphingosine ceramide systems. The implications of these observations for lipid organization in the stratum corneum are briefly discussed.

  16. Spectroscopic studies of the physical origin of environmental aging effects on doped graphene

    NASA Astrophysics Data System (ADS)

    Chang, J.-K.; Hsu, C.-C.; Liu, S.-Y.; Wu, C.-I.; Gharib, M.; Yeh, N.-C.

    2016-06-01

    The environmental aging effect of doped graphene is investigated as a function of the organic doping species, humidity, and the number of graphene layers adjacent to the dopant by studies of the Raman spectroscopy, x-ray and ultraviolet photoelectron spectroscopy, scanning electron microscopy, infrared spectroscopy, and electrical transport measurements. It is found that higher humidity and structural defects induce faster degradation in doped graphene. Detailed analysis of the spectroscopic data suggest that the physical origin of the aging effect is associated with the continuing reaction of H2O molecules with the hygroscopic organic dopants, which leads to formation of excess chemical bonds, reduction in the doped graphene carrier density, and proliferation of damages from the graphene grain boundaries. These environmental aging effects are further shown to be significantly mitigated by added graphene layers.

  17. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga)

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  18. Raman spectroscopic study of “The Malatesta”: A Renaissance painting?

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; Vandenabeele, Peter; Benoy, Timothy J.

    2015-02-01

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  19. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga).

    PubMed

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  20. Using Spectroscopic Profiles to Study the Morphology of Comets

    NASA Astrophysics Data System (ADS)

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2016-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3. CH, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets. We will present results for several comets, including 2009P1 (Garradd). This work was funded by NASA's Planetary Atmospheres program (Award No. NNX14AH186).

  1. A Spectroscopic Study of Anomalous Stellar Populations in M67

    NASA Astrophysics Data System (ADS)

    McGahee, Courtney; King, Jeremy R.; Deliyannis, Constantine P.

    2015-01-01

    A population of so-called "yellow straggler" stars occupy precarious color magnitude diagram positions in the old open cluster M67 that cannot be explained by standard single star evolution theory. These stars may have been formed by Roche lobe overflow mass transfer in close binary systems. We present new radial velocities and spectroscopic abundances of M67 yellow stragglers to test this hypothesis, and find that these objects possess a high binary frequency, but no enhancements of s-process elements that might be a smoking gun signature of mass transfer. Observations were conducted using the WIYN 3.5 m telescope in conjunction with the HYDRA spectrograph at Kitt Peak National Observatory. Support for this project was provided by NSF grants AST 09-08342, AST 0607567, and AST 1211699.

  2. Models of chemical biosignatures - a vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bödeker, B.; Böttger, U.; Hübers, H.-W.; deVera, J.-P.; Fox, S.; Strasdeit, H.

    2013-09-01

    Investigating possible biosignatures is of central interest in the search for the oldest traces of terrestrial life. Possible biosignatures are: (i) physical structures, such as fossilized single-celled or colonyforming microorganisms; (ii) biomolecules and their altered residues (chemical biosignatures); (iii) altered element, isotope and mineral compositions in former microbial habitats and related effects caused by metabolic activity [1]. New insights in this field of research are also important in the search for life on other planets and moons, especially Mars. However, abiotically formed organic compounds are widely distributed in the universe. Therefore, in future Mars missions, it will be essential to know whether organic molecules are actually of biological origin. Here, we describe the syntheses and spectroscopic (Raman and infrared) properties of artificial chemical biosignatures that might help answering this question.

  3. Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies.

    PubMed

    Singha Roy, Atanu; Pandey, Nitin Kumar; Dasgupta, Swagata

    2013-04-01

    We have investigated the binding of the biologically important flavonoid fisetin with the carrier protein bovine serum albumin using multi-spectroscopic and molecular docking methods. The binding constants were found to be in the order of 10(4) M(-1) and the number of binding sites was determined as one. MALDI-TOF analyses showed that one fisetin molecule binds to a single bovine serum albumin (BSA) molecule which is also supported by fluorescence quenching studies. The negative Gibbs free energy change (∆G°) values point to a spontaneous binding process which occurs through the presence of electrostatic forces with hydrophobic association that results in a positive entropy change (+51.69 ± 1.18 J mol(-1) K(-1)). The unfolding and refolding of BSA in urea have been studied in absence and presence of fisetin using steady-state fluorescence and lifetime measurements. Urea denaturation studies indicate that fisetin is gradually released from its binding site on the protein. In the absence of urea, an increase in temperature that causes denaturation of the protein results in the release of fisetin from its bound state indicating that fisetin binds only to the native state of the protein. The circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic studies showed an increase in % α-helix content of BSA after binding with fisetin. Site marker displacement studies in accordance with the molecular docking results suggested that fisetin binds in close proximity of the hydrophobic cavity in site 1 (subdomain IIA) of the protein. The PEARLS (Program of Energetic Analysis of Receptor Ligand System) has been used to estimate the interaction energy of fisetin with BSA and the results are in good correlation with the experimental findings.

  4. A spectroscopic study of the open cluster NGC 6250

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Stift, M. J.; Fossati, L.; Bagnulo, S.; Scalia, C.; Leone, F.; Smalley, B.

    2017-04-01

    We present the chemical abundance analysis of 19 upper main-sequence stars of the young open cluster NGC 6250 (log t ∼ 7.42 yr). This work is part of a project aimed at setting observational constraints on the theory of atomic diffusion in stellar photospheres, by means of a systematic study of the abundances of the chemical elements of early F-, A- and late B-type stars of well-determined age. Our data set consists of low-, medium- and high-resolution spectra obtained with the Fibre Large Array Multi Element Spectrograph (FLAMES) instrument of the ESO Very Large Telescope (VLT). To perform our analysis, we have developed a new suite of software tools for the chemical abundance analysis of stellar photospheres in local thermodynamical equilibrium. Together with the chemical composition of the stellar photospheres, we have provided new estimates of the cluster mean radial velocity, proper motion, refined the cluster membership, and we have given the stellar parameters including masses and fractional age. We find no evidence of statistically significant correlation between any of the parameters, including abundance and cluster age, except perhaps for an increase in Ba abundance with cluster age. We have proven that our new software tool may be successfully used for the chemical abundance analysis of large data sets of stellar spectra.

  5. Micro-Raman spectroscopic study of thyroid tissues.

    PubMed

    Medeiros Neto, Lázaro Pinto; das Chagas E Silva de Carvalho, Luis Felipe; Santos, Laurita Dos; Tellez Soto, Cláudio Alberto; de Azevedo Canevari, Renata; de Oliveira Santos, André Bandiera; Mello, Evandro Sobroza; Pereira, Marina Aparecida; Cernea, Cláudio Roberto; Brandão, Lenine Garcia; Martin, Aírton Abrahão

    2017-03-01

    Thyroid carcinomas are the most common endocrine malignancy. Inconclusive results for the analysis of malignancies are an issue in the diagnosis of thyroid carcinomas; 20% of thyroid cancer diagnoses are indeterminate or suspicious, resulting in a surgical procedure without immediate need. The use of Raman spectroscopy may help improve the diagnosis of thyroid carcinoma. In this study, 30 thyroid samples, including normal thyroid, goiter and thyroid cancer, were analyzed by confocal Raman spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA) with cross validation and binary logistic regression (BLR) analysis were applied to discriminate among tissues. Significant discrimination was observed, with a consistent rate of concordant pairs of 89.2% for normal thyroid versus cancer, 85.7% for goiter versus cancer and 80.6% for normal thyroid versus goiter using just the amide III region. Raman spectroscopy was thus proven to be an important and fast tool for the diagnosis of thyroid tissues. The spectral region of 1200-1400cm(-1) discriminated normal versus goiter tissues despite the great similarity of these tissues.

  6. Microwave spectra of some chlorine and fluorine compounds. [spectroscopic analysis

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequencies, peak absorption intensities, and integrated intensities are shown for 21 organic compounds which contain chlorine, fluorine, or both.

  7. A General Chemistry Laboratory Theme: Spectroscopic Analysis of Aspirin

    NASA Astrophysics Data System (ADS)

    Byrd, Houston; O'Donnell, Stephen E.

    2003-02-01

    In this paper, we describe the introduction of spectroscopy into the general chemistry laboratory using a series of experiments based on a common substance, aspirin. In the first lab the students synthesize and recrystallize aspirin and take melting points of their product, an aspirin standard, and salicylic acid. The students perform the remaining experiments on a rotating basis where the following four labs run simultaneously: structural characterization of the synthesized aspirin by IR and NMR; analysis of synthesized aspirin and commercial products by UV vis spectroscopy; analysis of synthesized aspirin and commercial products by HPLC; and analysis of calcium in commercial buffered aspirin tablets by AAS. In each of the analysis experiments, students collect, graph, and analyze their data using a spreadsheet. We have found that this series of labs has been very beneficial to our students. From the course evaluations, students indicate that they are beginning to understand how chemistry is applied outside of the classroom.

  8. The origin, composition and history of cometary ices from spectroscopic studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1989-01-01

    The spectroscopic analysis of pristine cometary material provides a very important probe of the chemical identity of the material as well as of the physical and chemical conditions which prevailed during the comet's history. Concerning classical spectroscopy, the spectral regions which will most likely prove most useful are the infrared, the visible and ultraviolet. Newer spectroscopic techniques which have the potential to provide equally important information include nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Each technique is summarized with emphasis placed on the kind of information which can be obtained.

  9. Synthesis, Spectroscopic, Structural and Quantum Chemical Studies of a New Imine Oxime and Its Palladium(II) Complex: Hydrolysis Mechanism.

    PubMed

    Kaya, Yunus; Yilmaz, Veysel T; Buyukgungor, Orhan

    2016-01-21

    In this work, we report synthesis, crystallographic, spectroscopic and quantum chemical studies of a new imine oxime, namely (4-nitro-phenyl)-(1-phenyl-ethylimino)-acetaldehyde oxime (nppeieoH). Spectroscopic and X-ray diffraction studies showed that nppeieoH is hydrolyzed in aqueous solution, forming nitroisonitrosoacetophenone (ninap) and the hydrolysis product binds to Pd(II) to yield [Pd(nppeieo)(ninap)]. The mechanism of the hydrolysis reaction has been theoretically investigated in detail, using density functional theory (DFT) with the B3LYP method. The vibrational and the electronic spectra of nppeieoH and its Pd(II) complex, the HOMO and LUMO analysis, Mulliken atomic charges and molecular electrostatic potential were also performed. The predicted nonlinear optical properties of both compounds are higher than those of urea.

  10. RAMAN SPECTROSCOPIC ANALYSIS OF FERTILIZERS AND PLANT TISSUE FOR PERCHLORATE

    EPA Science Inventory

    Raman spectroscopy, without the need for prior chromatographic separation, was used for qualitative and quantitative analysis of 59 samples of fertilizers for perchlorate (ClO4-). These primarily lawn and garden products had no known link to Chile saltpeter, which is known to con...

  11. Chemical factor analysis of skin cancer FTIR-FEW spectroscopic data

    NASA Astrophysics Data System (ADS)

    Bruch, Reinhard F.; Sukuta, Sydney

    2002-03-01

    Chemical Factor Analysis (CFA) algorithms were applied to transform complex Fourier transform infrared fiberoptical evanescent wave (FTIR-FEW) normal and malignant skin tissue spectra into factor spaces for analysis and classification. The factor space approach classified melanoma beyond prior pathological classifications related to specific biochemical alterations to health states in cluster diagrams allowing diagnosis with more biochemical specificity, resolving biochemical component spectra and employing health state eigenvector angular configurations as disease state sensors. This study demonstrated a wealth of new information from in vivo FTIR-FEW spectral tissue data, without extensive a priori information or clinically invasive procedures. In particular, we employed a variety of methods used in CFA to select the rank of spectroscopic data sets of normal benign and cancerous skin tissue. We used the Malinowski indicator function (IND), significance level and F-Tests to rank our data matrices. Normal skin tissue, melanoma and benign tumors were modeled by four, two and seven principal abstract factors, respectively. We also showed that the spectrum of the first eigenvalue was equivalent to the mean spectrum. The graphical depiction of angular disparities between the first abstract factors can be adopted as a new way to characterize and diagnose melanoma cancer.

  12. Optical properties of InN studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Chunya, Ye; Wei, Lin; Jin, Zhou; Shuping, Li; Li, Chen; Heng, Li; Xiaoxuan, Wu; Songqing, Liu; Junyong, Kang

    2016-10-01

    With recently developed InN epitaxy via a controlling In bilayer, spectroscopic ellipsometry (SE) measurements had been carried out on the grown InN and the measured ellipsometric spectra were fitted with the Delta Psi2 software by using a suitable model and the dispersion rule. The thickness was measured by a scanning electron microscope (SEM). Insight into the film quality of InN and the lattice constant were gained by X-ray diffraction (XRD). By fitting the SE, the thickness of the InN film is consistent with that obtained by SEM cross-sectional thickness measurement. The optical bandgap of InN was put forward to be 1.05 eV, which conforms to the experimental results measured by the absorption spectrum and cathodoluminescence (CL). The refractive index and the extinction coefficient of interest were represented for InN, which is useful to design optoelectronic devices. Project supported by the State Key Development Program for Basic Research of China (No. 2012CB619301), the National High Technology Research and Development Program of China (No. 2014AA032608), the National Natural Science Foundation of China (Nos. 11204254, 11404271), and the Fundamental Research Funds for the Central Universities (Nos. 2012121014, 20720150027).

  13. Acid doping of polyaniline: Spectroscopic and electrochemical studies

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.

    1999-12-16

    A detailed investigation of the acid doping behavior of polyaniline has led to a robust and reproducible procedure for controlled adjustment of the redox state of dry polyaniline films. The initial step in this procedure is the casting of PANI films from formic acid. The subsequent exchange of the trapped formic acid for other primary dopants obtained from mono- and polyprotic acids (e.g., CH{sub 3}COO{sup {minus}}, BF{sub 4}{sup {minus}}, HSO{sub 4}{sup {minus}}, SO{sub 4}{sup 2{minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and HPO{sub 4}{sup 2{minus}}) is demonstrated. The voltammetric and the spectroscopic behavior of the PANI doped with different anions indicate that both the protons and the anions of dopant acids influence the structure and redox properties of the polymer. The redox state of PANI doped with homologous series of chloroacetic and carboxylic acids correlates with the pK{sub a} of the dopant acid. These results show that it is possible to prepare the polymer with a desired oxidation state according to the pK{sub a} of the dopant acid of a given homologous series. The exchange of the formic acid for both stronger and weaker doping acid can be repeatedly accomplished by electrochemical cycling.

  14. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  15. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  16. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    SciTech Connect

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}Σ) and hydrideisocyanidezinc HZnNC ({sup 1}Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}Σ) and HCNZn{sup +} ({sup 2}Σ)

  17. The HERMES solar atlas and the spectroscopic analysis of the seismic solar analogue KIC 3241581

    NASA Astrophysics Data System (ADS)

    Beck, P. G.; Allende Prieto, C.; Van Reeth, T.; Tkachenko, A.; Raskin, G.; van Winckel, H.; do Nascimento, J.-D., Jr.; Salabert, D.; Corsaro, E.; García, R. A.

    2016-05-01

    Context. Solar-analogue stars provide an excellent resource to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. Aims: We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar- and late-type stars observed with this instrument and thus perform differential spectroscopic comparisons. Methods: We acquire high-resolution and high signal-to-noise (S/N) spectroscopy to construct three solar reference spectra by observing the reflected light of the asteroids Vesta and Victoria and the jovian moon Europa (100 ≲ S/N ≲ 450) with the HERMES spectrograph. We then observe the Kepler solar analogue KIC 3241581 (S/N ~ 170). For this star, the fundamental spectral parameters are extracted using a differential analysis. Sufficient S/N in the near ultraviolet allows us to investigate the chromospheric magnetic activity in both objects. Results: We constructed three solar spectrum atlases from 385 to 900 nm, obtained with the HERMES spectrograph from observations of two bright asteroids and a jovian moon. A comparison between our solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent agreement. KIC 3241581 was found to be a long-periodic binary system. The fundamental parameter for the stellar primary component are Teff = 5689 ± 11 K, log g = 4.385 ± 0.005, [Fe/H] = + 0.22 ± 0.01, being in agreement with the published global seismic values, which confirms its status as solar analogue. The chromospheric activity level is

  18. Spectroscopic analysis of time-resolved emission from detonating thin film explosive samples

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey J.; Wixom, Ryan R.; Jilek, Brook A.; Knepper, Robert; Tappan, Alexander S.; Damm, David L.

    2017-01-01

    We report a series of time-resolved spectroscopic measurements that aim to characterize the reactions that occur during shock initiation of high explosives. The experiments employ time- and wavelength-resolved emission spectroscopy to analyze light emitted from detonating thin explosive films. This paper presents analysis of optical emission spectra from hexanitrostilbene (HNS) and pentaerythritol tetranitrate (PETN) thin film samples. Both vibrationally resolved and broadband emission features are observed in the spectra and area as electronic transitions of intermediate species.

  19. Raman spectroscopic analysis of human tissue engineered oral mucosa constructs (EVPOME) perturbed by physical and biochemical methods

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Ganguly, Arindam; Raghavan, Mekhala; Kuo, Shiuhyang; Cole, Jacqueline H.; Marcelo, Cynthia L.; Feinberg, Stephen E.; Izumi, Kenji; Morris, Michael D.

    2012-01-01

    We show the application of near-infrared Raman Spectroscopy to in-vitro monitoring of the viability of tissue constructs (EVPOMEs). During their two week production period EVPOME may encounter thermal, chemical or biochemical stresses that could cause development to cease, rendering the affected constructs useless. We discuss the development of a Raman spectroscopic technique to study EVPOMEs noninvasively, with the ultimate goal of applying it in-vivo. We identify Raman spectroscopic failure indicators for EVPOMEs, which are stressed by temperature, and discuss the implications of varying calcium concentration and pre-treatment of the human keratinocytes with Rapamycin. In particular, Raman spectra show correlation of the peak height ratios of CH2 deformation to phenylalanine ring breathing, providing a Raman metric to distinguish between viable and nonviable constructs. We also show the results of singular value decomposition analysis, demonstrating the applicability of Raman spectroscopic technique to both distinguish between stressed and non-stressed EVPOME constructs, as well as between EVPOMEs and bare AlloDerm® substrates, on which the oral keratinocytes have been cultured. We also discuss complications arising from non-uniform thickness of the AlloDerm® substrate and the cultured constructs, as well as sampling protocols used to detect local stress and other problems that may be encountered in the constructs.

  20. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-01-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here.

  1. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  2. Electrochemical and spectroscopic study of octadecyltrimethylammonium bromide/DNA surfoplexes.

    PubMed

    Rodríguez-Pulido, Alberto; Aicart, Emilio; Junquera, Elena

    2009-04-21

    The use of cationic micelles consisting of octadecyltrimethylammonium bromide (C18TAB) to compact calf thymus DNA has been investigated in aqueous buffered solution at 310.15 K by means of conductometry, electrophoretic mobility, and several fluorescence spectroscopy methods. The results indicate that C18TAB micelles, consisting of 44 monomers on average, may compact DNA molecule by an electrostatic interaction that takes place at the cationic spherical micelle surface. The surfoplexes thus formed show a surface density charge that goes from negative to positive values at a Lmic/D mass ratio of around 1.0 (where Lmic and D are the masses of micellized cationic surfactant and DNA), called the isoneutrality ratio (Lmic/D)phi. Values of this characteristic parameter, determined in this work not only from the electrochemical experimental data but also from spectroscopic measurements, are in very good agreement with those ones calculated from molecular parameters and some other properties also obtained in this work. The electrostatic character of the DNA-micelle interaction has been confirmed by analyzing the decrease in fluorescence emission of the fluorophore ethidium bromide, EtBr, initially intercalated between DNA base pairs, as long as the surfoplexes are formed. Fluorescence anisotropy experiments have revealed that micelle packing becomes more rigid in the presence of DNA, but once the surfoplex is formed, the fluidity increases with the Lmic/D mass ratio, attaining its maximum when the isoneutrality ratio is exceeded. This fact, together with the net positive charge of the surfoplexes with the Lmic/D mass ratio over the isoneutrality ratio, makes this regimen of lipid and DNA content the optimum for efficiency in the transfection process.

  3. Spectroscopic Study of Sediments from Chapala Lake in Western Mexico

    NASA Astrophysics Data System (ADS)

    Arízaga, G. G. Carbajal; Doumer, M. E.; Lucio, G. Álvarez; Salazar, S. Gómez; Mangrich, A. S.; Huerta, A. García

    2016-11-01

    The first 10 cm of sediment from Lake Chapala, Western Mexico are in constant activity related to the exchange and speciation of metal cations. Samples of this sediment were analyzed in electron paramagnetic resonance (EPR) equipment to study the paramagnetic metals. Assays indicated that only Fe3+ was present in a detectable amount. This cation, along with chemical fractions of sediment obtained by sequential extraction, was analyzed by EPR. The analysis supported by infrared data revealed that Fe3+ was present in diluted and concentrated domains. Easily exchangeable iron was retained by carbonyl groups in organic matter. The carbonate fraction and oxides contained iron in concentrated domains. The alumina-silicate fraction (that resisted the sequential extraction digestions) presented diluted domains of iron in the octahedral alumina sheet along with occlusions of concentrated domains. This last inference was obtained by comparing EPR results against the spectrum of iron in synthetic model clay.

  4. Raman and infrared spectroscopic study of kamphaugite-(Y)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo

    2015-05-01

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088 cm-1 provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

  5. Computational and vibrational spectroscopic studies of ipratropium bromide.

    PubMed

    Ali, H R H; Edwards, H G M; Kendrick, J; Scowen, I J

    2009-02-01

    In this study, ipratropium bromide is investigated using vibrational spectroscopy and quantum chemical calculations. The structure of ipratropium bromide was optimised using density functional theory calculations and the geometry optimisation has been carried out on two conformations with and without intramolecular hydrogen bonding. Infrared and Raman spectra were calculated from the optimised structures. Many modes in the calculated spectra could be matched with the experimental spectra and a description of the modes is given. By analysis of the theoretical vibrational modes, it is shown that ipratropium bromide specimens are likely to be a mixture of the two conformations with and without intramolecular hydrogen bonding. In addition, several spectral features and band intensities in the CH and OH stretching regions are explained. Quantum mechanical calculations allowed improved understanding of ipratropium bromide and its vibrational spectra.

  6. Mössbauer spectroscopic analysis of ancient Egyptian pottery

    NASA Astrophysics Data System (ADS)

    Stevens, John G.; Zhu, Wenjun

    1986-02-01

    Ten pieces of Egyptian pottery ware and eleven silt samples collected at Hierakonopolis (Nile River, Egypt) were studied by Mössbauer spectroscopy. Three Nile silt samples and three pottery sherds were test fired and refired in an oxidized atmosphere up to 1100°C. Changes of the Mössbauer parameters depend upon the firing temperatures as well as the firing atmosphere. Three kinds of pottery were studied: Plum Red Ware, Straw Tempered Ware, and Orange Ware.

  7. Tween-embedded microemulsions--physicochemical and spectroscopic analysis for antitubercular drugs.

    PubMed

    Mehta, S K; Kaur, Gurpreet; Bhasin, K K

    2010-03-01

    The microemulsion composed of oleic acid, phosphate buffer, ethanol, and Tween (20, 40, 60, and 80) has been investigated in the presence of antitubercular drugs of extremely different solubilities, viz. isoniazid (INH), pyrazinamide (PZA), and rifampicin (RIF). The phase behavior showing the realm of existence of microemulsion has been delineated at constant surfactant/co-surfactant ratio (K (m) = 0.55) with maximum isotropic region resulting in the case of Tween 80. The changes in the microstructure of Tween 80-based microemulsion in the presence of anti-TB drugs have been established using conductivty (sigma) and viscosity (eta) behavior. The optical microscopic images of the system help in understanding the effect of dilution and presence of drug on the structure of microemulsion. Partition coefficient, particle size analysis, and spectroscopic studies (UV-visible, Fourier transform infrared, and 1H NMR) have been performed to evaluate the location of a drug in the colloidal formulation. To compare the release of RIF, PZA, and INH from Tween 80 formulation, the dissolution studies have been carried out. It shows that the release of drugs follow the order INH>PZA>RIF. The kinetics of the release of drug has been analyzed using the Korsmeyer and Peppas equation. The results have given a fair success to predict that the release of PZA and INH from Tween 80 microemulsion is non-Fickian, whereas RIF is found to follow a Fickian mechanism.

  8. Spectroscopic analysis of four post-AGB candidates

    NASA Astrophysics Data System (ADS)

    Molina, R. E.; Giridhar, S.; Pereira, C. B.; Arellano Ferro, A.; Muneer, S.

    2014-10-01

    We have done a detailed abundance analysis of four unexplored candidate post- Asymptotic Giant Branch(AGB) stars IRAS 13110 - 6629, IRAS 17579 - 3121, IRAS 18321 - 1401 and IRAS 18489 - 0629 using high resolution spectra. We have constructed Spectral Energy Distributions (SED) for these objects using the existing photometric data combined with infrared (IR) fluxes. For all sample stars, the SEDs exhibit double peaked energy distribution with well separated IR peaks showing the presence of dusty circumstellar material. The CNO abundances indicate the production of N via CN cycling, but observed [C/Fe] indicates the mixing of carbon produced by He burning by third dredge up although C/O ratio remains less that 1. A moderate DG-effect is clearly seen for IRAS 18489 - 0629 and IRAS 17579 - 3121 while a large scatter observed in depletion plots for IRAS 18321 - 1401 and IRAS 13110 - 6629 indicate the presence of other processes affecting the observed abundance pattern.

  9. An expert system for spectroscopic analysis of rocket engine plumes

    NASA Technical Reports Server (NTRS)

    Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy

    1991-01-01

    The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.

  10. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques

    NASA Astrophysics Data System (ADS)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav

    2011-01-01

    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  11. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  12. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA.

    PubMed

    Subastri, A; Ramamurthy, C H; Suyavaran, A; Mareeswaran, R; Lokeswara Rao, P; Harikrishna, M; Suresh Kumar, M; Sujatha, V; Thirunavukkarasu, C

    2015-01-01

    Troxerutin (TXER) is a derivative of naturally occurring bioflavonoid rutin. It possesses different biological activities in rising clinical world. The biological activity possessed by most of the drugs mainly targets on macromolecules. Hence, in the current study we have examined the interaction mechanism of TXER with calf thymus DNA (CT-DNA) by using various spectroscopic methods, isothermal titration calorimetry (ITC) and molecular docking studies. Further, DNA cleavage study was carried out to find the DNA protection activity of TXER. UV-absorption and emission spectroscopy showed low binding constant values via groove binding. Circular dichroism study indicates that TXER does not modify native B-form of DNA, and it retains the native B-conformation. Furthermore, no effective positive potential peak shift was observed in TXER-DNA complex during electrochemical analysis by which it represents an interaction of TXER with DNA through groove binding. Molecular docking study showed thymine guanine based interaction with docking score -7.09 kcal/mol. This result was compared to experimental ITC value. The DNA cleavage study illustrates that TXER does not cause any DNA damage as well as TXER showed DNA protection against hydroxyl radical induced DNA damage. From this study, we conclude that TXER interacts with DNA by fashion of groove binding.

  13. Fourier transform infrared spectroscopic analysis of cell differentiation

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.

  14. Molecular and mass spectroscopic analysis of isotopically labeled organic residues

    NASA Technical Reports Server (NTRS)

    Mendoza-Gomez, Celia X.; Greenberg, J. Mayo; Mccain, P.; Ferris, J. P.; Briggs, R.; Degroot, M. S.; Schutte, Willem A.

    1989-01-01

    Experimental studies aimed at understanding the evolution of complex organic molecules on interstellar grains were performed. The photolysis of frozen gas mixtures of various compositions containing H2O, CO, NH3, and CH4 was studied. These species were chosen because of their astrophysical importance as deducted from observational as well as theoretical studies of ice mantles on interstellar grains. These ultraviolet photolyzed ices were warmed up in order to produce refractory organic molecules like the ones formed in molecular clouds when the icy mantles are being irradiated and warmed up either by a nearby stellar source or impulsive heating. The laboratory studies give estimates of the efficiency of production of such organic material under interstellar conditions. It is shown that the gradual carbonization of organic mantles in the diffuse cloud phase leads to higher and higher visual absorptivity - yellow residues become brown in the laboratory. The obtained results can be applied to explaining the organic components of comets and their relevance to the origin of life.

  15. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes

    NASA Astrophysics Data System (ADS)

    Samsonowicz, Mariola; Regulska, Ewa

    2017-02-01

    Flavonols with varied hydroxyl substitution can act as strong antioxidants. Thanks to their ability to chelate metals as well as to donate hydrogen atoms they have capacity to scavenge free radicals. Their metal complexes are often more active in comparison with free ligands. They exhibit interesting biological properties, e.g. anticancer, antiphlogistic and antibacterial. The relationship between molecular structure and their biological properties was intensively studied using spectroscopic methods (UV-Vis, IR, Raman, NMR, ESI-MS). The aim of this paper is review on spectroscopic analyses of molecular structure and biological activity of hydroxyflavonol metal complexes.

  16. [Infrared spectroscopic study on leaf senescence of evergreen tree].

    PubMed

    Li, Lun; Zhou, Xiang-Ping; Liu, Gang; Zhang, Li; Ou, Quan-Hong; Hao, Jian-Ming

    2013-02-01

    In order to investigate plant physiological process of leaf senescence and aging, Fourier transform infrared (FTIR) spectroscopy was used to study the young, mature, and old yellow leaves from seven species of evergreen trees. The spectra of the leaves from different growing period are different in the region of 1 800-700 cm(-1). The absorption ratios A1 070/A2 927, A1 070/A1 160 were used to evaluate the relative changes of polysaccharides, and A1 318/A2 922 was used to estimate the change of calcium oxalate during leaf senescence. Decomposition and curve-fitting analysis was performed in the region of 1 800 -1 500 cm(-1). The sub-band absorption ratio H1 650/H1 740 was used to evaluate the relative changes of protein in the leaves. The results show that the accumulation and mobilization of polysaccharides, protein, and calcium oxalate during leaf growing period were different in different plant species. This study demonstrates the potential of mid-infrared spectroscopy for investigation of plants senescence, as well as physiological and biochemical changes of plants.

  17. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    PubMed

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations.

  18. Raman spectroscopic study of Lactarius spores (Russulales, Fungi)

    NASA Astrophysics Data System (ADS)

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products.

  19. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Małgorzata; Kaczyński, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  20. Hybrid pigments resulting from several guest dyes onto γ-alumina host: A spectroscopic analysis.

    PubMed

    Pérez, Erik; Ibarra, Ilich A; Guzmán, Ariel; Lima, Enrique

    2017-02-05

    The synthesis of hybrid pigments was made from combination of γ-Al2O3 and some organic chromophores such as carminic acid, alizarin, purpurin, curcumin, fluorescein and betacyanins. The γ-Al2O3 was obtained through sol-gel synthesis with 2-propanol and aluminium tri-sec-butoxide (ATB). This article presents some spectroscopic evidences related to the formation of aluminium complexes between coordinative unsaturated sites (CUS) of aluminium and some organic groups (carboxylic acid, quaternary ammonium and β-keto enol) present in the chromophores structure. The physicochemical properties upcoming from a spectroscopic analysis point out that these materials can be applied in the design of new materials with potential uses in artworks and in the field of cultural heritage.

  1. Hybrid pigments resulting from several guest dyes onto γ-alumina host: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Erik; Ibarra, Ilich A.; Guzmán, Ariel; Lima, Enrique

    2017-02-01

    The synthesis of hybrid pigments was made from combination of γ-Al2O3 and some organic chromophores such as carminic acid, alizarin, purpurin, curcumin, fluorescein and betacyanins. The γ-Al2O3 was obtained through sol-gel synthesis with 2-propanol and aluminium tri-sec-butoxide (ATB). This article presents some spectroscopic evidences related to the formation of aluminium complexes between coordinative unsaturated sites (CUS) of aluminium and some organic groups (carboxylic acid, quaternary ammonium and β-keto enol) present in the chromophores structure. The physicochemical properties upcoming from a spectroscopic analysis point out that these materials can be applied in the design of new materials with potential uses in artworks and in the field of cultural heritage.

  2. Raman spectroscopic analysis of an important Visigothic historiated manuscript.

    PubMed

    Carter, Elizabeth A; Perez, Fernando Rull; Garcia, Jesús Medina; Edwards, Howell G M

    2016-12-13

    Raman spectroscopy has been used to study fragments of early Visigothic historiated manuscripts from the important mediaeval library at Santo Domingo de Silos which were a part of a Beato dating from the tenth to the mid-eleventh centuries. These fragments are from some of the oldest manuscripts in the scriptorium of the monastery. In this study, a comparison is made between the pigments and inks used on these manuscripts and those used in a previous study of the unique Visigothic Beato de Valcavado in Santa Cruz, Valladolid, completed in the year 970, which is noted for its quality of execution as well as its content and is remarkable eschatologically in being identifiable as the complete work of only a single scribe. For comparative purposes, the pigments and inks used in the Silos Monastery Beato and a series of historiated early manuscripts from mediaeval times through to the Renaissance also held in the monastic library were analysed. Raman spectroscopy identified a range of mineral and organic pigments such as cinnabar, orpiment, minium, azurite and indigo. In addition, a number of admixtures were found, for example, indigo and orpiment to produce vergaut (green) and a mixture of cinnabar with iron-gall ink and cerussite to produce darker and lighter shades of red. Some interesting conclusions were drawn about the use of iron-gall and carbon-based inks.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'.

  3. Raman spectroscopic analysis of an important Visigothic historiated manuscript

    NASA Astrophysics Data System (ADS)

    Carter, Elizabeth A.; Perez, Fernando Rull; Garcia, Jesús Medina; Edwards, Howell G. M.

    2016-12-01

    Raman spectroscopy has been used to study fragments of early Visigothic historiated manuscripts from the important mediaeval library at Santo Domingo de Silos which were a part of a Beato dating from the tenth to the mid-eleventh centuries. These fragments are from some of the oldest manuscripts in the scriptorium of the monastery. In this study, a comparison is made between the pigments and inks used on these manuscripts and those used in a previous study of the unique Visigothic Beato de Valcavado in Santa Cruz, Valladolid, completed in the year 970, which is noted for its quality of execution as well as its content and is remarkable eschatologically in being identifiable as the complete work of only a single scribe. For comparative purposes, the pigments and inks used in the Silos Monastery Beato and a series of historiated early manuscripts from mediaeval times through to the Renaissance also held in the monastic library were analysed. Raman spectroscopy identified a range of mineral and organic pigments such as cinnabar, orpiment, minium, azurite and indigo. In addition, a number of admixtures were found, for example, indigo and orpiment to produce vergaut (green) and a mixture of cinnabar with iron-gall ink and cerussite to produce darker and lighter shades of red. Some interesting conclusions were drawn about the use of iron-gall and carbon-based inks. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  4. A mass spectroscopic analysis of {gamma}-GPS films

    SciTech Connect

    Dillingham, R.G.; Boerio, F.J.; Bertelsen, C.; Savina, M.R.; Lykke, K.; Calaway, W.

    1996-12-31

    Preparation of substrates for painting or adhesive bonding frequently includes roughening through sanding, chemical etching, or gritblasting. Increased roughness can improve interfacial strength and durability due to increased mechanical interlocking, increased surface area, and improved wettability of the substrate. The chemical reactivity of the surface with the organic phase may be affected as well, perhaps related to the strain energy stored in the surface regions through the intense plastic deformation that occurs. Unfortunately, the chemistry of interactions taking place near a surface that has been roughened is difficult to access analytically by some of the more useful techniques such as infrared spectroscopy. This paper discusses analysis of nonreflective grit-blasted surfaces using mass spectroscopy of species which were either sputtered off using an ion beam (Static Secondary Ion Mass Spectroscopy, or SSIMS) or thermally desorbed as neutrals using a pulsed laser and then post-ionized using a secondary laser (Laser Desorption-Laser Ionization Mass Spectroscopy, or LDLIMS). Both of these techniques exhibit sub-nanometer sensitivity and provide significant information as to the chemistry and structure of the surface regions. In a current application of {gamma}-glycidoxypropyltrimethoxysilane ({gamma}-GPS) for the pre-treatment of grit-blasted aluminum before adhesive bonding, certain factors related to the handling of the primer solution and to the application technique were found to significantly affect the performance of the adhesive bond under long-term aging conditions including stress and humidity. To understand why these parameters are important and to potentially improve the pretreatment process even further, the authors have been investigating how the structure and reactivity of these silane films are related to the application techniques.

  5. Photometric and spectroscopic study of low mass embedded star clusters in reflection nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2005-02-01

    An analysis of the candidate embedded stellar systems in the reflection nebulae vdBH-RN 26, vdBH-RN} 38, vdBH-RN} 53a, GGD 20, ESO 95-RN 18 and NGC 6595 is presented. Optical spectroscopic data from CASLEO (Argentina) in conjunction with near infrared photometry from the 2MASS Point Source Catalogue were employed. The analysis is based on source surface density, colour-colour and colour-magnitude diagrams together with theoretical pre-main sequence isochrones. We take into account the field population affecting the analysis by carrying out a statistical subtraction. The fundamental parameters for the stellar systems were derived. The resulting ages are in the range 1-4 Myr and the objects are dominated by pre-main sequence stars. The observed masses locked in the clusters are less than 25 M⊙. The studied systems have no stars of spectral types earlier than B, indicating that star clusters do not necessarily evolve through an HII region phase. The relatively small locked mass combined with the fact that they are not numerous in catalogues suggests that these low mass clusters are not important donors of stars to the field populations. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  6. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  7. Spectroscopic Analysis of Flooded Craters from Oceanus Procellarum

    NASA Astrophysics Data System (ADS)

    Besse, Sebastien; Staid, Matthew; Hiesinger, Harald

    2013-04-01

    extent the craters Plato, Hansteen and Flamsteed G (although the later one is clearly connected to the surroundings lava flows through its breached walls). More detailed analysis will be performed to highlights the similarities and differences of these flooded craters from a spectral point of view.

  8. A SPECTROSCOPIC SURVEY AND ANALYSIS OF BRIGHT, HYDROGEN-RICH WHITE DWARFS

    SciTech Connect

    Gianninas, A.; Bergeron, P.; Ruiz, M. T. E-mail: bergeron@astro.umontreal.ca

    2011-12-20

    We have conducted a spectroscopic survey of over 1300 bright (V {<=} 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook and Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations.

  9. Fluorescence spectroscopic analysis on interaction of fleroxacin with pepsin.

    PubMed

    Lian, Shuqin; Wang, Guirong; Zhou, Liping; Yang, Dongzhi

    2013-01-01

    The interaction between fleroxacin (FLX) and pepsin was investigated by spectrofluorimetry. The effects of FLX on pepsin showed that the microenvironment of tryptophan residues and molecular conformation of pepsin were changed based on fluorescence quenching and synchronous fluorescence spectroscopy in combination with three-dimensional fluorescence spectroscopy. Static quenching was suggested and it was proved that the fluorescence quenching of pepsin by FLX was related to the formation of a new complex and a non-radiation energy transfer. The quenching constants KSV , binding constants K and binding sites n were calculated at different temperatures. The molecular interaction distance (r = 6.71) and energy transfer efficiency (E = 0.216) between pepsin and FLX were obtained according to the Forster mechanism of non-radiation energy transfer. Hydrophobic and electrostatic interaction played a major role in FLX-pepsin association. In addition, the hydrophobic interaction and binding free energy were further tested by molecular modeling study.

  10. Spectroscopic analysis of urinary calculi and inhibition of their growth

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Durrer, William; Govani, Jayesh; Reza, Layra; Pinales, Luis

    2009-10-01

    We present here a study of kidney stone formation and growth inhibition based on a traditional medicine approach with Aquatica Lour (RAL) herbal extracts. Kidney stone material systems were synthesized in vitro using a simplified single diffusion gel growth technique. With the objective of revealing the mechanism of inhibition of calculi formation by RAL extracts, samples prepared without the presence of extract, and with the presence of extract, were analyzed using Raman, photoluminescence, and XPS. The unexpected presence of Zn revealed by XPS in a sample prepared with RAL provides an explanation for the inhibition process, and also explains the dramatic reflectance of incident light observed in attempts to obtain infrared transmission data. Raman data are consistent with the binding of the inhibitor to the oxygen of the kidney stone. Photoluminescence data corroborate with the other results to provide additional evidence of Zn-related inhibition.

  11. Galaxy cluster mass estimation from stacked spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Farahi, Arya; Evrard, August E.; Rozo, Eduardo; Rykoff, Eli S.; Wechsler, Risa H.

    2016-08-01

    We use simulated galaxy surveys to study: (i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and (ii) the accuracy of a mean dynamical cluster mass, Mσ(λ), derived from stacked pairwise spectroscopy of clusters with richness λ. Using ˜130 000 galaxy pairs patterned after the Sloan Digital Sky Survey (SDSS) redMaPPer cluster sample study of Rozo et al., we show that the pairwise velocity probability density function of central-satellite pairs with mi < 19 in the simulation matches the form seen in Rozo et al. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes ˜60 per cent of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. to the velocity normalization matches, to within a few per cent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with miscentring and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z = 0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al., we find = ln (M30) + αm ln (λ/30) with M30 = 1.56 ± 0.35 × 1014 M⊙ and αm = 1.31 ± 0.06stat ± 0.13sys. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.

  12. IR spectroscopic analysis of polymorphism in C 13H 14N 4O

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.

    2011-03-01

    IR analysis is used here to investigate the changes in N-N, N-H, C dbnd O modes of thermally treated diphenyl carbazide (DPC) during the variation of temperature from room temperature up to ≈160 °C. Polymorphism in DPC compound has been studied here by detecting the changes in some IR spectroscopic parameters (e.g., mode shift, band contour) during the elevation of temperature. Also, DSC, X-ray, NMR and atomic mass spectra are used as confirming tools for what is obtained by IR. All of the vibrations of DPC were found to be due to ionic fundamentals 3311 cm -1, 3097 cm -1, 3052 cm -1, 1677 cm -1, 1602 cm -1, 1492 cm -1, 1306 cm -1, 1252 cm -1, 887 cm -1 and 755 cm -1. The results revealed for the first time that the thermally treated DPC traverse four different phase transformations at 50 °C, 90 °C, 125 °C and 140 °C. The crystal structure was found to be amorphous, monoclinic, tetragonal, orthorhombic and amorphous within a temperature range (30 °C-160 °C). X-ray diffraction patterns support the results obtained by IR and DSC.

  13. Development of in-situ full-field spectroscopic imaging analysis and application on Li-ion battery using transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen K.; Wang, Jiajun; Wang, Jun

    2013-09-01

    This paper presents the advance in spectroscopic imaging technique and analysis method from the newly developed transmission x-ray microscopy (TXM) at the beamline X8C of National Synchrotron Light Source. Through leastsquares linear combination fitting we developed on the in situ spectroscopic images, a time-dependent and spatially resolved chemical composition mapping can be obtained and quantitatively analyzed undergone chemical/electrochemical reactions. A correlation of morphological evolution, chemical state distribution changes and reaction conditions can be revealed. We successfully applied this method to study the electrochemical evolution of CuO, an anode material of Li-ion battery, during the lithiation-delitiation cycling.

  14. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  15. A theoretical and spectroscopic study of conformational structures of piroxicam

    NASA Astrophysics Data System (ADS)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério

    2010-02-01

    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  16. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  17. A Spectroscopic Study of the Blue Component of Albireo

    NASA Astrophysics Data System (ADS)

    Whight, Kenneth R.

    2013-05-01

    This paper describes an investigation into what can be learned about the physical properties of the blue component of the Albireo double star system from both low (150 lines/mm) and high (2400 lines/mm) resolution spectra, based on the simple model that the star is a rotating uniformly emitting oblate spheroid with a photosphere that is a single layer in thermal equilibrium. The blue component of Albireo is an interesting target in that it exhibits emission at both Halpha and Hbeta wavelengths; this emission is believed to originate from an equatorial decretion disk spun off from the star. The aim of this work was to split the observed high resolution spectra into an absorption component, from the star, and an emission component, from the disk. To achieve this aim the continuum spectrum was modeled as a "black body" to obtain an effective temperature and the Hgamma absorption line was studied to obtain values for the star's model parameters. These results were then used to predict the expected absorption at Halpha and Hbeta wavelengths. Measured Halpha and Hbeta lines were then divided by their expected absorption lines to reveal the pure disk emission for further analysis.

  18. Spectroscopic study on binding of rutin to human serum albumin

    NASA Astrophysics Data System (ADS)

    Pastukhov, Alexander V.; Levchenko, Lidiya A.; Sadkov, Anatoli P.

    2007-10-01

    Steady-state and time-resolved fluorescence spectroscopy techniques were used to study the interaction of the flavonoid rutin with human serum albumin (HSA) as well as spectral properties of the protein-bound flavonoid. Both quenching of the intrinsic fluorescence of the protein (Trp214) and the ligand fluorescence, appearing upon complexation with HSA, were used to determine binding parameters. The binding constant determined from the quenching of the Trp214 fluorescence by rutin is equal to 6.87 ± 0.22 × 10 4 M -1 and that obtained from the fluorescence of HSA-bound rutin is 3.8 ± 0.4 × 10 4 M -1. Based on the Job plot analysis, the 1:1 binding stoichiometry for the HSA-rutin complex was determined. The efficient quenching of the Trp214 fluorescence by rutin, fluorescence resonance energy transfer from excited Trp214 to rutin, and competitive binding of warfarin indicate that the binding site for the flavonoid is situated within subdomain IIA of HSA. The presence of the sugar moiety in the flavonoid molecule reduces affinity of rutin for binding to HSA but does not affect the binding stoichiometry and location of the binding site compared with aglycone analogues.

  19. HPLC assisted Raman spectroscopic studies on bladder cancer

    NASA Astrophysics Data System (ADS)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  20. Spectroscopic analysis of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly global tide-gage sea-level data are fitted to numerically generated tidal data in order to search for the 18.6-yr lunar nodal tide and 14-month pole tide. Both of these tides are clearly evident, with amplitudes and phases that are consistent with a global equilibrium response. The ocean's response to atmospheric pressure is studied with the least-squares fit technique. Consideration is given to the global rise in sea level, the effects of postglacial rebound, and the possible causes of the enhanced pole tides in the North Sea, the Baltic Sea, and the Gulf of Bothnia. The results support O'Connor's (1986) suggestion that the enhanced pole tide in these regions is due to meteorological forcing rather than a basin-scale resonance. Also, the global average of the tide-gage data show an increase in sea level over tha last 80 yr of between 1.1 and 1.9 mm/yr.

  1. Raman spectroscopic studies of carbon in extra-terrestrial materials

    NASA Technical Reports Server (NTRS)

    Macklin, John; Brownlee, Donald; Chang, Sherwood; Bunch, Ted

    1990-01-01

    The measurements obtained here indicate ways in which micro-Raman spectroscopy can be used to elucidate structural characteristics and distribution of carbon in meteorites and interplanetary dust particles (IDPs). Existing information about structurally significant aspects of Raman measurements of graphite is combined with structurally relevant findings from the present micro-Raman studies of carbons prepared by carbonization of polyvinylidine chloride (PVDC) at various temperatures and natural material, as well as several acid residues from the Allende and Murchison meteorites in order to establish new spectra-structure relationships. Structural features of many of the materials in this study have been measured by x ray analysis and electron microscopy: thus, their structural differences can be directly correlated with differences in the Raman spectra. The spectral parameters consequently affirmed as indicators of structure are used as a measure of structure in materials that have unknown carbon structure, especially IDPs. The unique applicability of micro-Raman spectroscopy is realized not only in the ability to conveniently measure spectra of micron-size IDPs, but also micro-sized parts of an inhomogeneous material. Microcrystalline graphite is known to give Raman spectra that differ dependent on crystallite size (see e.g., Lespade, et. al., 1984, or Nemanich and Solin, 1979). The spectral changes that accompany decreasing particle size include increase in the ratio (R) of the intensity of the band near 1350 cm(-1) (D band) to that of the band near 1600 cm(-1) (G band) increase in the half width of the D band (wD) increase in the frequency maximum of the G band and increase in the half-width (wG) of the 2nd order band near 2700 cm(-1) (G) band.

  2. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  3. [Infrared spectroscopic analysis of Guilin watermelon frost products].

    PubMed

    Huang, Dong-lan; Chen, Xiao-kang; Xu, Yong-qun; Sun, Su-qin; Zhou, Qun; Lu, Wen-guan

    2012-08-01

    The objective of the present study is to analyze different products of Guilin watermelon frost by Fourier transform infrared spectroscopy (FTIR), second derivative infrared spectroscopy and two-dimensional correlation spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicates that samples from the same factory but of different brands had some dissimilarities in the IR spectra, and the type and content of accessories of them were different compared with conventional IR spectra of samples, peaks at 638 and 616 cm(-1) all arise from anhydrous sodium sulfate in watermelon frost spray and watermelon frost capsule; the characteristic absorption peaks of the sucrose, dextrin or other accessories can be seen clearly in the spectra of watermelon frost throat-clearing buccal tablets, watermelon frost throat tablets and watermelon frost lozenge. And the IR spectra of watermelon frost lozenge is very similar to the IR spectra of sucrose, so it can be easily proved that the content of sucrose in watermelon frost lozenge is high. In the 2D-IR correlation spectra, the samples presented the differences in the position, number and relative intensity of autopeaks and correlation peak clusters. Consequently, the macroscopical fingerprint characters of FTIR, second derivative infrared spectra and 2D-IR spectra can not only provide the information about main chemical constituents in medical materials, but also analyze and identify the type and content of accessories in Guilin watermelon frost. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  4. Reaction and spectroscopic study of supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Narayanan C.

    The role of surface structure, cation reducibility, surface acidity and the effect of the support was examined in the reaction of 1-butene over well characterized, supported metal oxide catalysts. Cr, Mo and W oxides supported on SiOsb2 were used to study the effect of structure, surface acidity and cation reducibility in the isomerization and selective oxidation of 1-butene. Supported oxides of Mo on TiOsb2,\\ Alsb2Osb3 and SiOsb2 were used to understand the role of the support in the selective oxidation of 1-butene. The surface acidity of SiOsb2 supported Cr, Mo, W and V oxide catalysts was examined by pyridine adsorption. Existing theoretical models of acidity were compared against experimental data. Over Mo(VI)/SiOsb2 and W(VI)/SiOsb2, isomerization through both a Bronsted catalyzed pathway and an allylic pathway were observed, while only the allylic pathway was observed over Cr(VI)/SiOsb2. The greater reducibility of the Cr cation compared to Mo and W cations was identified as the reason for the allylic pathway being dominant over Cr(VI)/SiOsb2. Cation reducibility was again seen to play an important role in the selective oxidation of 1-butene over SiOsb2 supported metal oxides. The turn over frequencies for 1,3-butadiene formation followed the trend in red-ox ability, with Cr > Mo > W. The activity to 1,3-butadiene formation did not change with increasing weight loading of Mo over TiOsb2 and Alsb2Osb3 supports. An analysis of the turn over frequencies of the supports and the supported cations revealed that a support effect, through the bridging oxygen ligand, dominated the intrinsic cation reducibility of Mo for these catalysts. The existence of Bronsted acidity over SiOsb2 supported Cr, Mo and V oxides was shown by an analysis of the OH region of the infrared spectrum, and by the adsorption of 1-butene and pyridine. Existing theoretical models for Bronsted acidity over supported metal oxides were shown to be inadequate to describe the observed results over

  5. Spectroscopic Analysis of Hybrid White Dwarf Spectra from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Manseau, P. M.; Bergeron, P.; Green, E. M.

    2017-03-01

    We present a model atmosphere analysis of hot (Teff> 30 000 K) white dwarf spectra from the Sloan Digital Sky Survey showing both hydrogen and helium lines, under the assumption of chemically homogeneous and stratified atmospheric compositions. We identify several hybrid white dwarfs in the SDSS that are better explained in terms of chemically stratified atmospheres, where a thin hydrogen atmosphere floats in diffusive equilibrium on top of a more massive helium envelope. We also present an updated analysis of PG 1305–017, the only stratified white dwarf identified in previous spectroscopic analyses of DAO white dwarfs. We interpret our results in the general context of the spectral evolution of white dwarfs.

  6. Fourier-transform Raman spectroscopy of ivory: II. Spectroscopic analysis and assignments

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Farwell, D. W.; Holder, J. M.; Lawson, E. E.

    1997-11-01

    The FT-Raman spectra of African and Asian elephant and woolly mammoth ivory are reported and comprehensive molecular vibrational assignments are proposed. Since ivory is composed of proteinaceous collagen embedded in an inorganic matrix of carbonated hydroxyapatite, the Raman spectrum of pure natural collagen recorded under similar conditions aids the identification of the vibrational modes. Several bands are identified which could be used for the Raman spectroscopic characterisation of the mammalian ivories studied.

  7. Spectroscopic and thermogravimetric study of nickel sulfaquinoxaline complex

    NASA Astrophysics Data System (ADS)

    Tailor, Sanjay M.; Patel, Urmila H.

    2016-05-01

    The ability of sulfaquinoxaline (4-Amino-N-2-quinoxalinylbenzenesulfonamide) to form metal complexes are investigated. The nickel complex of sulfaquinoxaline is prepared by reflux method and characterized by CHN analysis and IR spectra. The results of IR spectral data suggest that the binding of nickel atom to the sulfonamidic nitrogen are in good agreement. The thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential thermogravimetric (DTG) analysis of nickel sulfaquinoxaline are carried out from ambient temperature to 750°C in inert nitrogen atmosphere. The activation energy, enthalpy, entropy and Gibbs free energy of nickel sulfaquinoxaline complex is determined from the thermal curves using Broido method. The results are reported in this paper.

  8. Spectroscopic analysis of solar and cosmic X-ray spectra. 1: The nature of cosmic X-ray spectra and proposed analytical techniques

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.

    1975-01-01

    Techniques for the study of the solar corona are reviewed as an introduction to a discussion of modifications required for the study of cosmic sources. Spectroscopic analysis of individual sources and the interstellar medium is considered. The latter was studied via analysis of its effect on the spectra of selected individual sources. The effects of various characteristics of the ISM, including the presence of grains, molecules, and ionization, are first discussed, and the development of ISM models is described. The expected spectral structure of individual cosmic sources is then reviewed with emphasis on supernovae remnants and binary X-ray sources. The observational and analytical requirements imposed by the characteristics of these sources are identified, and prospects for the analysis of abundances and the study of physical parameters within them are assessed. Prospects for the spectroscopic study of other classes of X-ray sources are also discussed.

  9. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    PubMed

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  10. Study of Characterization of Pure and Malachite Green Doped Samples Using Spectroscopic Studies

    NASA Astrophysics Data System (ADS)

    Mishra, Jyoti; Mishra, Pankaj K.; Khare, P. K.

    2011-07-01

    This paper describes the results of SEM, EDX, UV-vis and TSDC study of malachite green doped PVK thermelectrets. TSDC study has been carried out in the temperature range 300 °C to 1500 °C with four different polarizing fields. One peak was observed at 110±10 °C which shifts toward high temperature with the increase in polarizing field. The activation energy found by initial rise method are 0.27±0.02 eV for pure and 0.40±0.03 eV for malachite green doped PVK thermoelectrets. Spectroscopic study concluded that impregnation of malachite green in polymer matrix forms charge transfer complexes.

  11. Newly synthesized dihydroquinazoline derivative from the aspect of combined spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Mary, Y. Sheena; Mary, Y. Shyma; Panicker, C. Yohannan; Abdel-Aziz, Alaa A.-M.; El-Sherbeny, Magda A.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2017-04-01

    In this work, spectroscopic characterization of 2-(2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)ethyl)isoindoline-1,3-dione have been obtained with experimentally and theoretically. Complete assignments of fundamental vibrations were performed on the basis of the potential energy distribution of the vibrational modes and good agreement between the experimental and scaled wavenumbers has been achieved. Frontier molecular orbitals have been used as indicators of stability and reactivity. Intramolecular interactions have been investigated by NBO analysis. The dipole moment, linear polarizability and first and second order hyperpolarizability values were also computed. In order to determine molecule sites prone to electrophilic attacks DFT calculations of average local ionization energy (ALIE) and Fukui functions have been performed as well. Intra-molecular non-covalent interactions have been determined and analyzed by the analysis of charge density. Stability of title molecule have also been investigated from the aspect of autoxidation, by calculations of bond dissociation energies (BDE), and hydrolysis, by calculations of radial distribution functions after molecular dynamics (MD) simulations. In order to assess the biological potential of the title compound a molecular docking study towards breast cancer type 2 complex has been performed.

  12. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    NASA Astrophysics Data System (ADS)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  13. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  14. Raman spectroscopic study of the frustrated spin 1/2 antiferromagnet clinoatacamite

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Dong; Zheng, Xu-Guang; Meng, Dong-Dong; Xu, Xing-Liang; Guo, Qi-Xin

    2013-06-01

    Raman spectroscopy is a valuable and complementary tool for studying geometrically frustrated magnetic systems due to the intrinsic spin-phonon coupling. Here, we report on a Raman spectroscopic study of the geometrically frustrated spin 1/2 antiferromagnet microcrystalline clinoatacamite Cu2(OH)3Cl, focusing on the anomalous transition into the intermediate phase at Tc1 = 18.1 K. By measuring the temperature-dependent (295-4 K) full spectral profiles and main representative modes in spectral regions from 4000 to 95 cm-1, we observed probable signatures of successive magnetic transitions near Tc1 = 18 K and Tc2 = 6.4 K in the Raman band frequencies and peak widths of the representative modes. Further, we observed a pronounced Raman spectroscopy background featuring a broad continuum at all temperatures. A quantitative analysis reveals that spin fluctuations may exist on a picosecond time scale in the intermediate phase. The short time scale falls out of the μSR time window; therefore, in the intermediate phase, the μSR study as reported in (2005 Phys. Rev. Lett. 95 057201) apparently only probed the local field of the ordered spins but overlooked the quickly fluctuating ones. This is likely to give a reasonable explanation of the fact that only a small entropy release occurs at Tc1 = 18 K although a long-range order is formed.

  15. Spectroscopic and molecular modeling studies on the interactions of N-Methylformamide with superoxide dismutase.

    PubMed

    Kalyani, Durai; Jyothi, Kanagaraj; Sivaprakasam, Chinnarasu; Nachiappan, Vasanthi

    2014-04-24

    N-Methylformamide, a polar solvent has a wide industrial applications and it is well-known for hepatotoxicity. The interaction between NMF with superoxide dismutase, an antioxidant defense enzyme has been studied for the first time using spectroscopic methods including Fourier transform infrared (FT-IR) spectroscopy, Circular dichroism (CD) spectroscopy and UV-visible spectroscopy under simulative physiological conditions and also by molecular modelling. Fourier Transform Infra Red analysis showed that the change in peak positions and shapes revealed that the secondary structure of SOD had been changed by the interaction with NMF. The data of CD spectra also confirmed that NMF decreased the degree of secondary structure of SOD, which directly resulted in destabilization of enzyme. We studied the inhibitory effect of NMF on enzyme kinetics by pyrogallol autoxidation revealed that protein-ligand complex caused structural unfolding which resulted in enzymatic inhibition. Thus the spectral behaviour of superoxide dismutase provides data concerning its conformational changes in the presence of NMF. Furthermore, molecular docking was applied to explore the binding mode between the protein-ligand complex. This suggested that Asn54 and Val302 residues of dimeric protein were predicted to interact with NMF. The present study provides direct evidence at a molecular level to show that exposure to NMF cause perturbation in its structure and function.

  16. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies.

    PubMed

    Liu, Yingying; Zhang, Guowen; Liao, Yijing; Wang, Yaping

    2015-01-01

    Psoralen (PSO) is a naturally occurring furanocoumarin with a variety of pharmacological activities, however very limited information on the interaction of PSO with trypsin is available. In this study, the binding characteristics between PSO and trypsin at physiological pH were investigated using a combination of fluorescence, UV-vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic, chemometric and molecular modeling approaches. It was found that the fluorescence quenching of trypsin by PSO was a static quenching procedure, ascribing the formation of a PSO-trypsin complex. The binding of PSO to trypsin was driven mainly by hydrophobic forces as the positive enthalpy change and entropy change values. The molecular docking showed that PSO inserted into the active site pocket of trypsin to interact with the catalytic residues His57, Asp102 and Ser195 and may cause a decrease in trypsin activity. The results of CD and FT-IR spectra along with the temperature-induced denaturation studies indicated that the addition of PSO to trypsin led to the changes in the secondary structure of the enzyme. The concentration profiles and spectra of the three components (PSO, trypsin, and PSO-trypsin complex) obtained by multivariate curve resolution-alternating least squares analysis exhibited the kinetic processes of PSO-trypsin interaction. This study will be helpful to understand the mechanism of PSO that affects the conformation and activity of trypsin in biological processes.

  17. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine.

    PubMed

    Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin

    2015-03-15

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  18. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine

    NASA Astrophysics Data System (ADS)

    Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-03-01

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  19. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    PubMed

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  20. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, Paul L.; Gourley, Mark F.

    1997-01-01

    An apparatus and method for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis thereof.

  1. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  2. A Combined Remote LIBS and Raman Spectroscopic Study of Minerals

    NASA Technical Reports Server (NTRS)

    Hubble, H. W.; Ghosh, M.; Sharma, S. K.; Horton, K. A.; Lucey, P. G.; Angel, S. M.; Wiens, R. C.

    2002-01-01

    In this paper, we explore the use of remote LIBS combined with pulsed-laser Raman spectroscopy for mineral analysis at a distance of 10 meters. Samples analyzed include: carbonates (both biogenic and abiogenic), silicates, and sulfates. Additional information is contained in the original extended abstract.

  3. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    NASA Astrophysics Data System (ADS)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2010-12-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  4. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    NASA Astrophysics Data System (ADS)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2011-08-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  5. Static and time-resolved spectroscopic studies of low-symmetry Ru(II) polypyridyl complexes

    SciTech Connect

    Curtright, A.E.; McCusker, J.K.

    1999-09-02

    The spectroscopic and electrochemical properties of a series of four Ru{sup II} polypyridyl complexes are reported. Compounds of the form [Ru(dmb){sub x}(dea){sub 3{minus}x}]{sup 2+} (x = 0--3), where dmb is 4,4{prime}-dimethyl-2,2{prime}-bipyridine and dea is 4,4{prime}-bis(diethylamino)-2,2{prime}-bipyridine, have been prepared and studied using static and time-resolved electronic and vibrational spectroscopies as a prelude to femtosecond spectroscopic studies of excited-state dynamics. Static electronic spectra in CH{sub 3}CN solution reveal a systematic shift of the MLCT absorption envelope from a maximum of 458 nm in the case of [Ru(dmb){sub 3}]{sup 2+} to 518 nm for [Ru(dea){sub 3}]{sup 2+} with successive substitutions of dea for dmb, suggesting a dea-based chromophore as the lowest-energy species. However, analysis of static and time-resolved emission data indicates an energy gap ordering of [Ru(dmb){sub 3}]{sup 2+} > [Ru(dmb){sub 2}(dea)]{sup 2+} > [Ru(dea){sub 3}]{sup 2+} > [Ru(dmb)(DEA){sub 2}]{sup 2+}, at variance with the electronic structures inferred from the absorption spectra. Nanosecond time-resolved electronic absorption and time-resolved step-scan infrared data are used to resolve this apparent conflict and confirm localization of the long-lived {sup 3}MLCT state on dmb in all three complexes where this ligand is present, thus making the dea-based excited state unique to [Ru(dea){sub 3}]{sup 2+}. Electrochemical studies further reveal the origin of this result, where a strong influence of the dea ligand on the oxidative Ru{sup II/III} couple, due to {pi} donation from the diethylamino substituent, is observed. The electronic absorption spectra are then reexamined in light of the now well-determined excited-state electronic structure. The results serve to underscore the importance of complete characterization of the electronic structures of transition metal complexes before embarking on ultrafast studies of their excited-state properties.

  6. Synthesis, structural and spectroscopic studies of 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide

    NASA Astrophysics Data System (ADS)

    Henriques, M. S. C.; Del Amparo, R.; Pérez-Álvarez, D.; Nogueira, B. A.; Rodríguez-Argüelles, M. C.; Paixão, J. A.

    2017-02-01

    The synthesis of a new hydrazone, 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide, and its structural and spectroscopic characterization is reported. The obtained powder was recrystallized from DMSO and ethanol that afforded small crystals used for single-crystal X-ray diffraction studies. The compound was found to crystallize in two polymorphs, depending on the crystallization conditions. One of the polymorphs (form I) crystallizes in the centrosymmetric P21/c monoclinic space group, the other (form II) crystallizes in the non-centrosymmetric, but achiral, orthorhombic space group P212121. Conformation of the molecules is similar in both polymorphs, but the network of weak intermolecular interactions determining the crystal packing is different. In form II an additional C-H⋯O bond connects molecules related by the screw-axis running parallel to the a-axis. Crystals of both polymorphs were also screened by FT-IR and Raman microscopy; a detailed analysis of the spectra and comparison with those of the isolated molecule calculated by ab-initio HF/MP2 and DFT/B3LYP methods using a correlation consistent cc-pVDZ basis set is presented. In addition, UV-vis and NMR studies were performed in solution.

  7. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors.

    PubMed

    Nashy, El-Shahat H A; Al-Ashkar, Emad; Moez, A Abdel

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  8. Studies on the inclusion behavior of 9-Aminoacridine into cyclodextrins: Spectroscopic and theoretical evidences

    NASA Astrophysics Data System (ADS)

    Manivannan, C.; Vijay Solomon, R.; Venuvanalingam, P.; Renganathan, R.

    2013-02-01

    9-Aminoacridine (9-AA) is an important attractive pharmaceutical drug employed as chemotheraptic agent for wound dressings. However, 9-AA possesses limited solubility and rapid metabolic decomposition renders this potential drug to limit its applications. Here we propose cyclodextrins (CDs) as a drug carrier to improve the bioavailability, solubility of 9-AA. The interaction between 9-AA and CDs (α-CD and β-CD) has been studied using UV-Vis absorption, steady state time resolved fluorescence, 1H NMR and FT-IR spectroscopy techniques. The spectroscopic measurements show that 9-AA does not form stable complex with α-CD and also confirmed by DFT calculations. On the other hand, 9-AA forms inclusion complex with β-CD in a 1:1 stoichiometry ratio. Our DFT results suggest that 9-AA stabilizes inside the CD environment through hydrogen bonding that has unambiguously confirmed by AIM analysis. Thus our studies provide a useful insights in the development of Aminoacridine based drugs & its delivery through a suitable carrier like CDs.

  9. Synthesis, structural and spectroscopic studies of 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide.

    PubMed

    Henriques, M S C; Del Amparo, R; Pérez-Álvarez, D; Nogueira, B A; Rodríguez-Argüelles, M C; Paixão, J A

    2017-02-05

    The synthesis of a new hydrazone, 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide, and its structural and spectroscopic characterization is reported. The obtained powder was recrystallized from DMSO and ethanol that afforded small crystals used for single-crystal X-ray diffraction studies. The compound was found to crystallize in two polymorphs, depending on the crystallization conditions. One of the polymorphs (form I) crystallizes in the centrosymmetric P21/c monoclinic space group, the other (form II) crystallizes in the non-centrosymmetric, but achiral, orthorhombic space group P212121. Conformation of the molecules is similar in both polymorphs, but the network of weak intermolecular interactions determining the crystal packing is different. In form II an additional C-H⋯O bond connects molecules related by the screw-axis running parallel to the a-axis. Crystals of both polymorphs were also screened by FT-IR and Raman microscopy; a detailed analysis of the spectra and comparison with those of the isolated molecule calculated by ab-initio HF/MP2 and DFT/B3LYP methods using a correlation consistent cc-pVDZ basis set is presented. In addition, UV-vis and NMR studies were performed in solution.

  10. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  11. Theoretical and spectroscopic studies of pyridyl substituted bis-coumarins and their new neodymium (III) complexes

    NASA Astrophysics Data System (ADS)

    Kostova, Irena; Trendafilova, Natasha; Mihaylov, Tzvetan

    2005-07-01

    Ab initio, DFT and spectroscopic studies of 3,3'-( o-pyridinomethylene)di-[4-hydroxycoumarin], 3,3'-( m-pyridinomethylene)di-[4-hydroxycoumarin] and 3,3'-( p-pyridinomethylene)di-[4-hydroxycoumarin] were performed. The molecular and electronic structures of the compounds were investigated using accurate HF and B3LYP/6-31G(d) calculations. Molecular quantities as vertical ionization potential, electron affinity, electronegativity, hardness and electrophilicity indices of the neutral species were calculated and discussed. Molecular electrostatic potential was considered as an additional molecular characteristic for predicting the most probable sites for electrophilic attack. The molecular structure and quantities of the dianionic species, which are active in solution, were calculated and discussed. The theoretical results suggested that both carbonyl and both hydroxyl oxygen atoms are preferred binding sites for electrophilic attack, in particular for a metal coordination. Further, the coordination abilities of the compounds were studied in complexation reactions with Nd(III). Complexes of Nd(III) with o-, m- and p-3,3'-(pyridinomethylene)di-[4-hydroxycoumarin] were synthesized and characterized by different physicochemical methods: elemental analysis, IR, 1H NMR spectroscopies and mass spectral data. The experimental data confirmed the theoretical predictions that the ligands in Nd(III) complexes are tetradentate and bound the metal ion through both carbonyl and both deprotonated hydroxyl oxygen atoms.

  12. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  13. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz

    2017-01-01

    A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.

  14. Spectroscopic Analysis of Time-Resolved Emission from Shocked Explosive Samples

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey; Jilek, Brook; Wixom, Ryan; Knepper, Robert; Tappan, Alexander; Damm, David

    2015-06-01

    We report a series of time-resolved spectroscopic measurements that aim to characterize the reactions that occur during shock initiation of high explosives. The experiments employ time- and wavelength-resolved emission spectroscopy to analyze light emitted from shocked and detonating thin explosive films. In this talk we present analysis of optical emission spectra from hexanitroazobenzene (HNAB), hexanitrostilbene (HNS), and pentaerythritol tetranitrate (PETN) samples. The emission features observed in the spectra are assigned to electronic transitions of molecular fragments, and the implications of these findings on our understanding of the underlying reaction mechanisms are discussed.

  15. In vivo localized proton spectroscopic studies of human gastrocnemius muscle

    SciTech Connect

    Narayana, P.A.; Jackson, E.F.; Hazle, J.D.; Fotedar, L.K.; Kulkarni, M.V.; Flamig, D.P.

    1988-10-01

    In vivo proton magnetic resonance spectroscopy studies of gastrocnemius muscle were performed in six normal volunteers. Both spatially resolved spectroscopy (SPARS) and stimulated echo acquisition mode (STEAM) sequences were used for volume localization. A number of water suppression sequences have been combined with these localization schemes. Among the various techniques investigated in these studies, STEAM with an inversion pulse (T1-discriminated spectrum) seems to have the best potential for in vivo localized high-resolution proton spectroscopy studies of human muscle.

  16. Mössbauer spectroscopic study on glaze of pottery

    NASA Astrophysics Data System (ADS)

    Endo, Kazutoyo; Haruta, Hiroshi; Honda, Chikako; Katada, Motomi; Nakahara, Hiromichi; Nakada, Masami; Saeki, Masakatsu; Aratono, Yasuyuki

    1994-12-01

    Iron-barium glaze was prepared from commercially available materials for ceramic arts and from chemical reagents, and investigated by means of Mössbauer spectroscopy and an electron probe micro analyzer (EPMA). Mössbauer spectra showed a doublet of paramagnetic high-spin Fe(II) and Fe(III) incorporated into aluminosilicate, and the magnetically-split hyperfine structures of hematite and magnetite, depending on the iron content and firing conditions. The EPMA indicated striped patterns on the secondary electron images, and the fluorescent X-ray analysis proved that the patterns are due to the heterogeneous distribution of elements in the glaze.

  17. Spectroscopic study of proflavine adsorption on the carbon nanotube surface.

    PubMed

    Buchelnikov, Anatoly S; Dovbeshko, Galina I; Voronin, Dmitry P; Trachevsky, Vladimir V; Kostjukov, Viktor V; Evstigneev, Maxim P

    2014-01-01

    Despite the fact that non-covalent interactions between various aromatic compounds and carbon nanotubes are being extensively investigated now, there is still a lack of understanding about the nature of such interactions. The present paper sheds light on one of the possible mechanisms of interaction between the typical aromatic dye proflavine and the carbon nanotube surface, namely, π-stacking between aromatic rings of these compounds. To investigate such a complexation, a qualitative analysis was performed by means of ultraviolet visible, infrared, and nuclear magnetic resonance spectroscopy. The data obtained suggest that π-stacking brings the major contribution to the stabilization of the complex between proflavine and the carbon nanotube.

  18. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  19. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    SciTech Connect

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  20. SPECTROSCOPIC STUDY OF SORPTION OF NITROGEN HETEROCYCLIC COMPOUNDS ON PHYLLOSILICATES

    EPA Science Inventory

    The present study focused on understanding the sorption characteristics of acridine (AcN)and acridine-9-carboxylic acid (AcNCOOH), two typical nitrogen heterocyclic compounds (NHCs), on well-characterized phyllosilicates (hectorite, saponite, and muscovite). Results presented in...

  1. Conceptual design study to determine optimal enclosure vent configuration for the Maunakea Spectroscopic Explorer (MSE)

    NASA Astrophysics Data System (ADS)

    Szeto, Kei; Vogiatzis, Konstantinos; Hangan, Horia; Jubayer, Chowdhury M.; Breckenridge, Craig; Loewen, Nathan; Bauman, Steven; Salmon, Derrick

    2014-07-01

    The Maunakea Spectroscopic Explorer (MSE; formerly Next Generation Canada-France-Hawaii Telescope) is a dedicated, 10m aperture, wide-field, fiber-fed multi-object spectroscopic facility proposed as an upgrade to the existing Canada-France-Hawaii Telescope on the summit of Mauna Kea. The enclosure vent configuration design study is the last of three studies to examine the technical feasibility of the proposed MSE baseline concept. The enclosure vent configuration study compares the aero-thermal performance of three enclosure ventilation configurations based on the predicted dome thermal seeing and air flow attenuation over the enclosure aperture opening of a Calotte design derived from computational fluid dynamics simulations. In addition, functional and operation considerations such as access and servicing of the three ventilation configurations is discussed.

  2. Spectroscopic studies on the interaction of bovine serum albumin with surfactants and apigenin

    NASA Astrophysics Data System (ADS)

    Zhao, Xu-Na; Liu, Yi; Niu, Li-Yuan; Zhao, Chen-Ping

    The binding of apigenin (Ap) to bovine serum albumin (BSA) has been studied using the methods of fluorescence spectroscopy and UV-vis absorption spectroscopy. The spectroscopic analysis of the quenching mechanism indicates that the quenching constants are inversely correlated with the temperatures and the quenching process could result from a static interaction. The type of interaction force was discussed and the binding site of Ap was in site I (subdomain IIA) of BSA. The thermodynamic parameters ΔH and ΔS are -42.02 kJ mol-1 and -48.31 J mol-1 K-1, respectively and the negative ΔG implying that the binding interaction was spontaneous. The distance r between BSA and Ap was calculated according to Förster's theory and the value is 3.44 nm. The synchronous and three-dimensional fluorescence spectra show that the binding of Ap to BSA could lead to the changes in the conformation and microenvironment of BSA. At the same time, the effects of ionic surfactants on the interaction of Ap and BSA have also been investigated.

  3. Photometric and spectroscopic study of the intermediate-age open cluster NGC 2355

    NASA Astrophysics Data System (ADS)

    Donati, P.; Bragaglia, A.; Carretta, E.; D'Orazi, V.; Tosi, M.; Cusano, F.; Carini, R.

    2015-11-01

    In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long-term programme Bologna Open Clusters Chemical Evolution. NGC 2355 was observed with the Large Binocular Camera at the Large Binocular Telescope using the Bessel B, V, and Ic filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram method, as done in other papers of this series. Additional spectroscopic observations with the Fibre-fed Echelle Spectrograph at the Nordic Optical Telescope of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]= -0.06 dex, age between 0.8 and 1 Gyr, reddening E(B - V) in the range 0.14-0.19 mag, and distance modulus (m - M)0 of about 11 mag. We also investigate the abundances of O, Na, Al, α, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC 2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.

  4. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid"

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Balachandran, V.; Perumal, S.

    2015-04-01

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm-1 has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  5. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands.

    PubMed

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A; Piro, Oscar E; Pis-Diez, Reinaldo; González-Baró, Ana C

    2015-02-25

    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular O-H⋯N interactions in salicylaldehyde derivatives between the O-H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory.

  6. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands

    NASA Astrophysics Data System (ADS)

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A.; Piro, Oscar E.; Pis-Diez, Reinaldo; González-Baró, Ana C.

    2015-02-01

    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular Osbnd H⋯N interactions in salicylaldehyde derivatives between the Osbnd H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory.

  7. WIYN open cluster study. LX. Spectroscopic binary orbits in NGC 6819

    SciTech Connect

    Milliman, Katelyn E.; Mathieu, Robert D.; Gosnell, Natalie M.; Geller, Aaron M.; Meibom, Søren; Platais, Imants

    2014-08-01

    We present the current state of the WOCS radial-velocity (RV) survey for the rich open cluster NGC 6819 (2.5 Gyr) including 93 spectroscopic binary orbits with periods ranging from 1.5 to 8000 days. These results are the product of our ongoing RV survey of NGC 6819 using the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope. We also include a detailed analysis of multiple prior sets of optical photometry for NGC 6819. Within a 1° field of view, our stellar sample includes the giant branch, the red clump, and blue straggler candidates, and extends to almost 2 mag below the main sequence (MS) turnoff. For each star observed in our survey we present all RV measurements, the average RV, and velocity variability information. Additionally, we discuss notable binaries from our sample, including eclipsing binaries (WOCS 23009, WOCS 24009, and WOCS 40007), stars noted in Kepler asteroseismology studies (WOCS 4008, WOCS 7009, and WOCS 8007), and potential descendants of past blue stragglers (WOCS 1006 and WOCS 6002). We find the incompleteness-corrected binary fraction for all MS binaries with periods less than 10{sup 4} days to be 22% ± 3% and a tidal circularization period of 6.2{sub −1.1}{sup +1.1} days for NGC 6819.

  8. Hunting the parent of the Orphan stream. II. The first high-resolution spectroscopic study

    SciTech Connect

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Maunder, Elizabeth; Frebel, Anna

    2014-03-20

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ∼1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [α/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [α/Fe] abundance ratios in the Orphan stream are in tension with the high [α/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the 'parent' of the Orphan stream. The parent system could well remain undiscovered in the southern sky.

  9. A spectroscopic study of the globular cluster M28 (NGC 6626)

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Moni Bidin, C.; Mauro, F.; Munoz, C.; Monaco, L.

    2017-01-01

    We present the abundance analysis for a sample of 17 red giant branch stars in the metal-poor globular cluster M28 based on high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, and Eu. We find a metallicity of [Fe/H] = -1.29 ± 0.01 and an α-enhancement of +0.34 ± 0.01 (errors on the mean), typical of halo globular clusters in this metallicity regime. A large spread is observed in the abundances of light elements O, Na, and Al. Mg also shows an anti-correlation with Al with a significance of 3σ. The cluster shows a Na-O anti-correlation and a Na-Al correlation. This correlation is not linear but `segmented' and that the stars are not distributed continuously, but form at least three well-separated sub-populations. In this aspect, M28 resembles NGC 2808 that was found to host at least five sub-populations. The presence of a Mg-Al anti-correlation favour massive AGB stars as the main polluters responsible for the multiple-population phenomenon.

  10. Spectroscopic and theoretical study on alkali metal phenylacetates

    NASA Astrophysics Data System (ADS)

    Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.

    2013-07-01

    The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of phenylacetic acid was studied. The FT-IR, FT-Raman and 1H and 13C NMR spectra were recorded for studied compounds. Characteristic shifts in IR and NMR spectra along alkali metal phenylacetates were observed. Good correlations between the wavenumbers of the vibrational bands in the IR spectra of phenylacetates and some alkali metal parameters such as ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy were found. The density functional hybrid method B3LYP with 6-311++G** basis set was used to calculate optimized geometrical structures of studied compounds. Aromaticity indices, atomic charges, dipole moments and energies were calculated as well as the wavenumbers and intensities of IR spectra and chemical shifts in NMR spectra. The theoretical parameters were compared to experimental characteristic of alkali metal phenylacetates.

  11. Spectroscopic and Raman excitation profile studies of 3-benzoylpyridine

    NASA Astrophysics Data System (ADS)

    Sett, Pinaky; Datta, Shirsendu; Chowdhury, Joydeep; Ghosh, Manash; Mallick, Prabal Kumar

    2017-03-01

    In the present work IR, UV absorption and Raman spectra including Raman excitation profiles and structure of 3-benzoyl pyridine have been investigated. Detailed studies on the vibrational and electronic properties of the molecule have been carried out. All these studies are aided with valuable quantum chemical calculations. The structural changes encountered on excitation to the low lying excited states have been investigated. Theoretical profiles determined by the sum-over-states method based on pertinent Franck-Condon and Herzberg-Teller terms have satisfactorily simulated the experimentally measured relative Raman intensities and these are also in compliance with the structural changes and potential energy distributions.

  12. Optical spectroscopic studies of heme proteins at high pressure

    SciTech Connect

    Swanson, B.I.; Agnew, S.F.; Ondrias, M.R.; Alden, R.G.

    1986-01-22

    There has been considerable interest in studying the physical and chemical behavior of small molecules at high static pressure by using diamond-anvil cells. In contrast to the relatively rich chemistry now developing on small molecules at high densities, studies of metalloproteins have largely been limited to relatively low pressures (<7 kbar) using UV-vis absorption, magnetic susceptibility, or NMR spectroscopy. Low-pressure studies of a variety of oxidized heme proteins have conclusively shown evidence for spin-state changes for the iron site at pressures above 1 kbar. Optical absorption studies of reduced heme proteins, while not conclusive, have also been interpreted in terms of spin-state changes. Other changes within the heme pocket most notably in the proximal histidine in the ..beta..-chain of Hb via proton NMR, have also been detected. The molecular bases for these changes and the behavior of the heme electronic states at higher pressures, however, remain open questions. In this paper both resonance Raman and absorption spectroscopy are used to address these problems in reduced heme proteins. Resonance Raman scattering is well suited for this application as it provides a structurally specific probe of the heme active site. 11 references, 2 figures.

  13. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    Metal oxide phases play an important role in governing the sorption and desorption mechanisms of metals in water, soils, and sediments. Many researchers have examined the efficiency of Pb sorption on Mn, Fe, Al, Ti, and Si oxide surfaces. Most studies concluded that adsorption ...

  14. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  15. Coordination behaviour of nicotinamide: an infrared spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bayarı, Sevgi; Ataç, Ahmet; Yurdakul, Şenay

    2003-07-01

    A series of Hofmann-type complexes containing two nicotinamide(nia) molecules attached to transition metal (II) (M) tetracyanonickelate frame with the formula: M(nia) 2Ni(CN) 4 (where M=Mn, Co, Ni, Cu or Cd) have been synthesised for the first time. Metal (II) halide complexes of nicotinamide complexes of the type [M(nia) 2X 2 (M=Cd, Ni, Cu, Hg; X=Cl, Br) and Ni(nia) 4Br 2 nia=nicotinamide] have also synthesised. The FTIR spectra are reported in the 4000-400 cm -1 region. Vibrational assignments are given for all the observed bands. The analysis of the vibrational spectra indicates that there are some structure-spectra correlations. A pronounced change was observed in the N-H stretching frequencies of the NH 2 group. It is proposed that the amide NH 2 group influence by the intramolecular hydrogen bond in the complexes. The coordination effect on the nicotinamide modes is analysed.

  16. Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications

    NASA Astrophysics Data System (ADS)

    Timalsina, Yukta P.; Branen, Joshua; Aston, D. Eric; Noren, Kenneth; Corti, Giancarlo; Schumacher, Randi; McIlroy, David N.

    2011-07-01

    In this study, alternating current impedance spectroscopic analysis of the biofunctionalization process of a vertically-aligned (silica) nanosprings (VANS) surface is presented. The VANS surface is functionalized with a biotinylated immunoglobulin G (B-IgG) layer formed by physisorption of B-IgG from the solution phase. Bovine serum albumin passivation of the B-IgG layer reduces additional surface adsorption by blocking the potential sites of weak bond formation via electrostatic and hydrophobic interactions. As avidin acts as a receptor of biotinylated compounds, avidin conjugated glucose oxidase (Av-GOx) binds to the B-IgG layer via biotin. This avidin-biotin bond is a stable bond with high association affinity (Ka = 1015 M-1) that withstands wide variations in chemistry and pH. An IgG layer without biotin shows no binding to the Av-GOx, indicating that bonding is through the avidin-biotin interaction. Finally, fluoroscein iso-thiocyanate (FITC) labeled biotinylated bovine serum albumin (B-BSA) added to the Av-GOx surface is used to fluorescently label Av-GOx for fluorescent measurements that allow for the correlation of surface binding with impedance measurements. Modeling of impedance spectra measured after the addition of each biological solution indicates that the bimolecular layers behave as insulating layers. The impedance spectra for the VANS-based sensor are compared to simple parallel capacitor sensors, sans VANS, and serve as controls. VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls below 10 kHz. Changes in the magnitudes of the components of the VANS equivalent circuit indicate that the addition of biological layers changes the effective dielectric response of the VANS via the impediment of ionic motion and biomolecule polarization.

  17. Detailed spectroscopic analysis of chloride salt deposits in Terra Sirenum, Mars

    NASA Astrophysics Data System (ADS)

    Osterloo, M. M.; Glotch, T. D.; Bandfield, J. L.

    2015-12-01

    Chloride salt-bearing deposits have been identified throughout the southern highlands of Mars [1] based on the lack of diagnostic spectral features of anhydrous chlorides in both the visible near infrared (VNIR) and middle infrared (MIR) wavelength ranges [1,2]. A puzzling aspect of martian chloride deposits is the apparent lack of other weathering or evaporite phases associated with most of the deposits. A global analysis over the chloride salt sites conducted by [3] found that only ~9% of the deposits they analyzed were associated with minerals such as phyllosilicates. Most of these occurrences are in Terra Sirenum where [4] noted that salt-bearing deposits lie stratigraphically above Noachian phyllosilicates. Although a variety of formation mechanisms have been proposed for these intriguing deposits, detailed geologic mapping by [5] suggests that surface water and evaporation played a dominant role. On Earth, evaporative settings are often characterized by a multitude of evaporite and phyllosilicate phases including carbonates, sulfates, and nitrates. [6] evaluated chemical divides and brine evolution for martian systems and their results indicate three pathways wherein late-stage brines favor chloride precipitation. In each case the pathway to chloride formation includes precipitation of carbonates (calcite, siderite, and/or magnesite) and sulfates (gypsum, melanterite, and/or epsomite). Here, we present the results of our detailed and systematic spectroscopic study to identify additional evaporite phases associated with salt/silicate mixtures in Terra Sirenum. [1] Osterloo et al. (2008) Science, 319, [2] Glotch, T. D. et al. (2013) Lunar and Planet. Sci. XLIV, abstract #1549 [3] Ruesch, O. et al. (2012), J. Geophys. Res., 117, E00J13 [4] Glotch, T. D. et al. (2010) Geophys. Res. Lett. 37, L16202, [5] Osterloo, M. M. and B. M Hynek (2015) Lunar and Planet. Sci XLVI. Abstract #1054 [6] Tosca, N. J. and S. M. McLennan (2006), Earth and Planet. Sci. Lett., 241.

  18. Magnetic resonance and optical spectroscopic studies of carotenoids

    SciTech Connect

    Kispert, L.D.

    1991-05-01

    It is our goal to study the role of a host lattice in the formation of radicals and excited singlet and triplet states that are relevant to photosynthesis. Particular emphasis is being placed on determining what is special about carotenoids that natural photosynthetic systems require them as antennae as well as for protection. We are thus manipulating the host matrix so as to understand the carotenoid function (protection, quenching, energy transfer and antenna) and the structure of carotenoid cations. To characterize their properties, we have carried out EPR, ENDOR, optical, molecular orbital and electrochemical studies of carotenoids and carotenoid cations produced chemically, electrochemically, radiolytically (x-ray irradiated freon matrices) and photolytically (solution photolysis by excimer radiation) as a function of the host matrix. 36 refs.

  19. Green-synthesis, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods.

    PubMed

    Marwani, Hadi M; Asiri, Abdullah M; Khan, Salman A

    2012-01-01

    Preparation, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods were achieved. The Schiff base dyes were prepared by the reaction of salicylaldehyde/2-Hydroxy-1-naphthaldehyde with aminophenazone under microwave irradiation. The spectroscopic (FT-IR, 1H NMR, 13C-NMR, Mass) studies and elemental analyses were in good agreement with chemical structure of synthesized compounds. In addition, UV-Vis and fluorescence spectroscopic experiments showed that these dyes are good absorbent and fluorescent. Based on the photostability study of these dyes, minimal to no loss in fluorescence intensities of 4-[(2-Hydroxy-benzylidene)-amino] 1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D1) (6.14%) and 4-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (D2) (2.95%) was observed with an increase in the exposure time using time-based fluorescence steady-state experiments. These studies also inferred that these Schiffbase dyes have a high photostability against photobleaching. In addition, Dye 2 is found to be more sensitive than Dye 1 to the polarity of the microenvironment provided by different solvents based on the results of fluorescence polarity studies.

  20. Spectroscopic and computational study of a new isomer of salinomycin

    NASA Astrophysics Data System (ADS)

    Pankiewicz, Radosław

    2013-09-01

    A new derivative of polyether ionophore salinomycin was obtained as a result of a rearrangement catalysed by sulphuric acid in two-phase medium of water/methylene chloride solution. The new isomer was fully characterized by multinuclear 2D NMR, NOESY and MALDI-TOF. The properties of the new compound were additionally study by semiempirical (PM5) and DFT (B3LYP) methods. A potential mechanism of the rearrangement was also proposed.

  1. Spectroscopic Studies of Metal-Ligand-Surface Interactions

    DTIC Science & Technology

    1988-10-01

    recent calculations by Bauschlicher. In this theoretical study the complexes’ bonding was attributed to an electrostatic interaction between the...section about the bonding mechanisms in the ammonia versus the hydrazine complexes. 3. Normal Coordinate Calculations on Metal.Ammonia Complexes To...and Benzene ...... o......46 III CALCULATIONS OF THE VIBRATIONAL SPECTRA OF N2 H4 ,’ ALL ITS DEUTERATED DERIVATIVES AND CH3 N2 13 . ........ oo.o

  2. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  3. X-ray spectroscopic studies of microbial transformations of uranium

    SciTech Connect

    Dodge, C.J.; Francis, A.J.; Clayton, C.R.

    1995-10-01

    Several uranium compounds U-metal ({alpha}-phase), UO{sub 2}, U{sub 3}O{sub 8}, {gamma}-UO{sub 3}, uranyl acetate, uranyl nitrate, uranyl sulfate, aqueous and solid forms of 1:1 U:citric acid and 1:1:2 U:Fe:citric acid mixed-metal complexes, and a precipitate obtained by photodegradation of the U-citrate complex were characterized by X-ray spectroscopy using XPS, XANES, and EXAFS. XPS and XANES were used to determine U oxidation states. Spectral shifts were obtained at the U 4f{sub 7/2} and U 4f{sub 5/2} binding energies using XPS, and at the uranium M{sub V} absorption edge using XANES. The magnitude of the energy shift with oxidation state, and the ability to detect mixed-valent forms make these ideal techniques for determining uranium speciation in wastes subjected to bacterial action. The structure of 1:1 U:citric acid complex in both the aqueous and solid state was determined by EXAFS analysis of hexavalent uranium at the L{sub M} absorption edge and suggests the presence of a binuclear complex with a (UO{sub 2}){sub 2}({mu},{eta}{sup 2} {minus}citrato){sub 2} core with a U-U distance of 5.2 {angstrom}. The influence of Fe on the structure of U-citrate complex was determined by EXAFS and the presence of a binuclear mixed-metal citrate complex with a U-Fe distance of 4.8 {angstrom} was confirmed. The precipitate resulting from photodegradation of U-citrate complex was identified as an amorphous form of uranium trioxide by XPS and EXAS.

  4. Virgin and recycled engine oil differentiation: a spectroscopic study.

    PubMed

    Al-Ghouti, Mohammad A; Al-Atoum, Lina

    2009-01-01

    As a result of the changes that occur during their use, used engine oils tend to differ in chemical and physical composition from a virgin oil. In general recycled oils have: much higher water and sediment levels than virgin oil; relatively higher concentrations of organic compounds (oxidation products); and relatively higher levels of metals such as Fe, Cd, Cr, Pb, etc. Therefore, the aim of this work was to investigate, assess and to observe, by means of the physical and the chemical properties of the oils, atomic absorption (AA), inductive couple plasma (ICP) and Fourier transform infrared (FTIR) analyses the extent of the differences occurring between the virgin and recycled oil. In important part of this work was also the development of analytical techniques based on the use of FTIR spectroscopy; in relation to the rapid analysis of lubricants; in particular for the differentiation of virgin and recycled oil. The results obtained were expected to be useful for differentiation purposes, providing information on whether the metal concentrations and oxidation products could be an appropriate feature for differentiating a particular oil sample from the others. This work is categorized into a two-step procedure. Firstly, an evaluation of a typical FTIR spectrum of an engine oil sample (mono- and multigrade) is presented. The broad feature centered at 1716 cm(-1) is due to the presence of carbonyl containing degradation products of oil. A band observed at 1732, 1169, 1154 and 1270 cm(-1) assigned to the polymethacrylate stretching vibrations, allows the determination of viscosity modifier and pour point depressant additives. The observed differences in the specific spectral bands (1732, 1169, 1154 and 1270 and 1716 cm(-1)) are investigated and discussed. Secondly, an analytical technique for the measurement of the levels of the wear metals is also applied.

  5. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  6. Spectroscopic study on sorption of hydrogen sulfide by means of red soil

    NASA Astrophysics Data System (ADS)

    Ko, T. H.; Chu, H.

    2005-07-01

    This paper reports the results of the characterization of red soils in relation to the sorption of H 2S from coal gas at 500 °C by spectroscopic techniques in order to provide more information on red soils' structural change both before and after reaction. In addition, by-products analysis has also been studied using Fourier transform infrared (FTIR) spectroscopy. Before and after the experiments the red soils were characterized with X-ray powder diffraction (XRPD), energy dispersion spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and FTIR spectroscopy. XRPD results indicate that iron oxide species disappear from the original to reacted red soil. EDS analysis shows that a significant amount of sulfur is present in the reacted red soil, which is in agreement with the results of the elemental analysis and the calculated value based on breakthrough curve. XPS regression fitting results further indicate that sulfur retention may be associated with the iron oxides. S 2p XPS fittings point out that the major sulfur species present in the reacted red soil are composed of S -2, elemental sulfur, polysulfide, sulfite and sulfate. Additionally, the binding energy of iron shifts to a lower position for the reacted red soil, which indicates that iron oxides in the original red soil have been converted into iron sulfide. Appreciable amounts of the by-products CO 2, SO 2 and COS are detected by on-line FTIR spectroscopy during the initial and later stages of the sorption process. The formation of CO 2 is related to the water-shift reaction, and SO 2 is probably attributable to the reaction of organic matters and H 2S. The concentration of COS is quantified by GC/FPD and found it to be about 350 ppm, which is close to the equilibrium concentration of the reaction of inlet CO and H 2S at a temperature of 500 °C.

  7. Spectroscopic study on sorption of hydrogen sulfide by means of red soil.

    PubMed

    Ko, T H; Chu, H

    2005-07-01

    This paper reports the results of the characterization of red soils in relation to the sorption of H2S from coal gas at 500 degrees C by spectroscopic techniques in order to provide more information on red soils' structural change both before and after reaction. In addition, by-products analysis has also been studied using Fourier transform infrared (FTIR) spectroscopy. Before and after the experiments the red soils were characterized with X-ray powder diffraction (XRPD), energy dispersion spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and FTIR spectroscopy. XRPD results indicate that iron oxide species disappear from the original to reacted red soil. EDS analysis shows that a significant amount of sulfur is present in the reacted red soil, which is in agreement with the results of the elemental analysis and the calculated value based on breakthrough curve. XPS regression fitting results further indicate that sulfur retention may be associated with the iron oxides. S 2p XPS fittings point out that the major sulfur species present in the reacted red soil are composed of S(-2), elemental sulfur, polysulfide, sulfite and sulfate. Additionally, the binding energy of iron shifts to a lower position for the reacted red soil, which indicates that iron oxides in the original red soil have been converted into iron sulfide. Appreciable amounts of the by-products CO2, SO2 and COS are detected by on-line FTIR spectroscopy during the initial and later stages of the sorption process. The formation of CO2 is related to the water-shift reaction, and SO2 is probably attributable to the reaction of organic matters and H2S. The concentration of COS is quantified by GC/FPD and found it to be about 350 ppm, which is close to the equilibrium concentration of the reaction of inlet CO and H2S at a temperature of 500 degrees C.

  8. Mössbauer spectroscopic study of iron-chelate trammels

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Meena, S. S.; Ningthoujam, R. S.; Goswami, D.

    2014-04-01

    Any kind of waste effluent in the Indian context and other countries contains a lot of iron in any ore. During mining, milling, extraction and purification process iron acts as contaminant towards other metal's purity. It is essential to remove iron to the maximum extent. In this case, an "IN-HOUSE" resin polyacrylamidehydroxamic acid (PHOA) has been designed and developed which is highly hydrophilic three dimensionally cross-linked. It has an excellent iron binding capacity with almost no leaching. Interaction of resin with ammonium ferrous sulphate and red-mod (Fe2O3) is studied using Mössbauer spectroscopy.

  9. Electrochemical and spectroscopic studies of fuel cell reactions

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    Fuel cells, especially proton exchange membrane fuel cells (PEMFCs) are expected soon to become a major source of clean energy. However, the sluggish kinetics of the fuel cell reactions, i.e., the fuel oxidation and oxygen reduction, hinders the wide-spread application of PEMFCs. These problems prompted our studies to focus on elucidating the nature of the reaction intermediates during the oxidation of fuels and the reduction of oxygen on electrocatalysts, and understanding the mechanisms of these reactions. The results from these studies will provide basic information for designing new electrocatalysts. In this dissertation, the oxidation reactions of ethanol and dimethyl ether (DME) on Pt were investigated by the surface enhanced infrared absorption spectroscopy with an attenuated total reflection configuration (ATR-SEIRAS). Various reaction intermediates were detected and their electrochemical behaviors were studied. We also benefited from advantages of the ATR-SEIRAS technique and observed superoxide anion (O2-) and hydrogen peroxide anion (H2-) as the intermediates in the oxygen reduction reaction (ORR) on Pt and Au electrodes for the first time. The other main goal of this study is design of new electrocatalysts for ORR with low cost and high activity. Two novel electrocatalysts were developed. One is Pt monolayer electrocatalysts consisting of a Pt monolayer formed by a red-ox replacement of the Cu monolayer by Pt atoms on non-noble metal-noble metal core-shell nanoparticles. In such catalyst, the total noble mass activity of the catalyst was 2--6 times larger that of commercial Pt catalyst. Another way of lowering the cost of catalysts and enhancing the ORR activity involves alloying less expensive noble metals with other non-noble elements. In this dissertation, the nano-structured Pd based alloy electrocatalysts have been explored. The results showed that their ORR activities surpass that of commercial Pt. The density functional theory (DFT) calculations

  10. Raman and infrared spectroscopic study of turquoise minerals.

    PubMed

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L

    2015-10-05

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)(2-) units were observed.

  11. Raman and infrared spectroscopic study of turquoise minerals

    NASA Astrophysics Data System (ADS)

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L.

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)2- units were observed.

  12. A Spectroscopic and Mineralogical Study of Multiple Asteroid Systems

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Emery, J. P.; Marchis, F.; Enriquez, J.; Assafin, M.

    2013-10-01

    There are currently ~200 identified multiple asteroid systems (MASs). These systems display a large diversity in heliocentric distance, size/mass ratio, system angular momentum, mutual orbital parameters, and taxonomic class. These characteristics are simplified under the nomenclature of Descamps and Marchis (2008), which divides MASs into four types: Type-1 - large asteroids with small satellites; Type-2 - similar size double asteroids; Type-3 - small asynchronous systems; and Type-4 - contact-binary asteroids. The large MAS diversity suggests multiple formation mechanisms are required to understand their origins. There are currently three broad formation scenarios: 1) ejecta from impacts; 2) catastrophic disruption followed by rotational fission; and 3) tidal disruption. The taxonomic class and mineralogy of the MASs coupled with the average density and system angular momentum provide a potential means to discriminate between proposed formation mechanisms. We present visible and near-infrared (NIR) spectra spanning 0.45 - 2.45 μm for 23 Main Belt MASs. The data were primarily obtained using the Southern Astrophysical Research Telescope (SOAR) Goodman High Throughput Spectrograph (August 2011 - July 2012) for the visible data and the InfraRed Telescope Facility (IRTF) SpeX Spectrograph (August 2008 - May 2013) for the IR data. Our data were supplemented using previously published data when necessary. The asteroids' Bus-DeMeo taxonomic classes are determined using the MIT SMASS online classification routines. Our sample includes 3 C-types, 1 X-type, 1 K-type, 1 L-type, 4 V-types, 10 S-types, 2 Sq- or Q-types, and 1 ambiguous classification. We calculate the 1- and 2-μm band centers, depths, and areas to determine the pyroxene mineralogy (molar Fs and Wo) of the surfaces using empirically derived equations. The NIR band analysis allows us to determine the S-type subclasses, S(I) - S(VII), which roughly tracks olivine-pyroxene chemistry. A comparison of the orbital

  13. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.

  14. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    SciTech Connect

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  15. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  16. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  17. Theoretical spectroscopic study of protonated and deuteronated PAHs

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit

    The study of Polycyclic Aromatic Hydrocarbon (PAH) plays a key role to understand astrophysical environments as they are ubiquitous in the Interstellar Medium (ISM). They account for about 5-10% of carbon budget in the universe and are responsible for the strong IR emission features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7mum seen towards most of the interstellar objects including HII regions, reflection nebulae, planetary nebulae, late-type stars, as well as active star-forming regions. These IR features result from the relaxation of vibrationally excited PAHs. As PAHs are stable enough to survive the interstellar conditions, they could possibly be responsible for the enigmatic Diffuse Interstellar Bands (DIBs) which are optical absorption features on the interstellar extinction curve. The fact that interstellar PAHs are more likely to be ions has motivated the study of radical PAHs. Protonated PAHs formed by H(+) addition to neutral parent molecules, denoted as HPAH(+) , are an important form of closed shell PAH cation. Protonated forms show electronic transitions in the visible part of the spectrum where most DIBs are present, whereas neutral forms generally show their strongest electronic transitions in the UV region. We also report quantum chemical calculations on HPAH(+) and DPAH(+) (D(+) attached to PAH) to get the electronic and IR spectra to understand the IR emission and DIB features. A comparison of theoretical spectra with the available experimental spectra has also been carried out.

  18. Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography

    PubMed Central

    Jaedicke, Volker; Agcaer, Semih; Robles, Francisco E.; Steinert, Marian; Jones, David; Goebel, Sebastian; Gerhardt, Nils C.; Welp, Hubert; Hofmann, Martin R.

    2013-01-01

    Spectroscopic Optical Coherence Tomography (S-OCT) extracts depth resolved spectra that are inherently available from OCT signals. The back scattered spectra contain useful functional information regarding the sample, since the light is altered by wavelength dependent absorption and scattering caused by chromophores and structures of the sample. Two aspects dominate the performance of S-OCT: (1) the spectral analysis processing method used to obtain the spatially-resolved spectroscopic information and (2) the metrics used to visualize and interpret relevant sample features. In this work, we focus on the second aspect, where we will compare established and novel metrics for S-OCT. These concepts include the adaptation of methods known from multispectral imaging and modern signal processing approaches such as pattern recognition. To compare the performance of the metrics in a quantitative manner, we use phantoms with microsphere scatterers of different sizes that are below the system’s resolution and therefore cannot be differentiated using intensity based OCT images. We show that the analysis of the spectral features can clearly separate areas with different scattering properties in multi-layer phantoms. Finally, we demonstrate the performance of our approach for contrast enhancement in bovine articular cartilage. PMID:24409393

  19. Kinetic and Spectroscopic Studies of Heterogeneous Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Wilke, Todd E.

    1990-01-01

    The selective oxidation of ethylene was studied on a high surface area colloidal silver catalyst. In 0.1 to 1 torr of 20% ethylene in oxygen, the catalyst produced ethylene oxide with a selectivity of 20 to 30% at temperatures between 473 and 573 K. Surface-enhanced Raman (SER) spectra exhibited a distinct feature at 995 cm^ {-1}. This band was also observed for catalysts exposed to just oxygen, and it shifted to 980 cm^{-1} after heating the catalyst to 873 K in ^{18} O_2. No isotopic shift was observed with ^{18}O _2 at temperatures below 573 K. Similar spectral results were obtained at atmospheric pressure. For silver catalysts that contain adsorbed chlorine, SER bands were observed at 240, 1015, and 1045 cm^ {-1} in oxygen-containing atmospheres; the 995 cm^{-1} band was not evident. The extension of SERS to other metals that do not exhibit the surface-enhanced effect was examined by electrodepositing thin layers (2 to 3 monolayers) of platinum, rhodium, and ruthenium on a roughened gold substrate. At atmospheric pressure and temperatures between 298 and 473 K, metal-oxygen features were observed at 500 cm ^{-1}, and 490 and 600 cm ^{-1} in SER spectra of rhodium and ruthenium surfaces exposed to oxygen, respectively. Bands attributed to adsorbed carbon monoxide were observed in SER spectra of platinum (470, 2060, 390, and 1890 cm ^{-1}) and rhodium (465 and 2040 cm^{-1}) surfaces exposed to carbon monoxide and oxygen mixtures. The temporal replacement of adsorbed carbon monoxide by nitric oxide as well as temperature-induced changes in the surface composition were studied on a seconds timescale with a spectrograph -charge coupled device detector arrangement. The adsorption and oxidation of sulfur dioxide was also studied. A band assigned to the S-O stretch of molecularly adsorbed sulfur dioxide was observed at 1130 cm^{-1} on unmodified gold and platinum-coated gold surfaces exposed to sulfur dioxide at 298 K. Dissociative chemisorption of sulfur dioxide on

  20. Negative ion photoelectron spectroscopic studies of transition metal cluster

    NASA Astrophysics Data System (ADS)

    Marcy, Timothy Paul

    The studies reported in this thesis were performed using a negative ion photoelectron spectrometer consisting of a cold cathode DC discharge ion source, a flowing afterglow ion-molecule reactor, a magnetic sector mass analyzer, an argon ion laser for photodetachment and a hemispherical electron kinetic energy analyzer and microchannel plate detector for photoelectron spectrum generation. The 476.5 nm (2.601 eV), 488.0 nm (2.540 eV) and 514.5 nm (2.410 eV) negative ion photoelectron spectra of VMn are reported and compared to the previously studied spectra of isoelectronic Cr2.1 The photoelectron spectra are remarkably similar to those of Cr2 in electron affinity and vibrational frequencies. The 488.0 nm photoelectron spectra and electron affinities of Nb n- (n = 1 - 9) are reported with discussion of observed vibrational structure. There are transitions to several electronic states of Nb2 in the reported spectra with overlapping vibrational progressions. The spectra of Nb3, Nb4 and Nb6 show partially resolved vibrational structure in the transitions to the lowest observed electronic state of each cluster. There is a single distinct active vibrational mode in the transition to the ground state of Nb8. Spin-orbit energies of Nb- are also reported. The 488.0 nm negative ion photoelectron spectra of Nb3H(D) are reported and compared to those of Nb3. There is a single vibrational mode active in the spectra of Nb3H(D) which is very similar to the most distinct mode active in the spectrum of Nb3. The 488.0 nm photoelectron spectra of the NbxCyH(D) y- (x = 1, 2, 3, y = 2, 4, 6) dehydrogenated products of the reactions of ethylene with niobium cluster anions are reported. Temperature studies of some of these species give evidence for the presence of multiple isomers of each molecule in the ion beam. The spectra of NbC6H(D) 6 are identical to those obtained from the reactions of benzene with niobium clusters and indicate that benzene is being formed from ethylene in the flow

  1. Identification and derivatization of selected cathinones by spectroscopic studies.

    PubMed

    Nycz, Jacek E; Pazdziorek, Tadeusz; Malecki, Grzegorz; Szala, Marcin

    2016-09-01

    In this study we identified three novel hydrochloride salts of cathinones 2-(pyrrolidin-1-yl)-1-(5,6,7,8-tetrahydronaphthalen-2-yl)pentan-1-one (1a) (TH-PVP), 2-(methylamino)-1-(2-methylphenyl)-1-propanone (1b) (2-MMC) and 1-(4-chlorophenyl)-2-(methylamino)propan-1-one (1c) (4-CMC). Their properties have been examined through combinations of GC-MS, IR, NMR, electronic absorption spectroscopy and single crystal X-ray diffraction method. NMR solution spectra showed readily diagnostic H-1 and C-13 signals from methyl, N-methyl and carbonyl groups. Additionally the use of thionation and amination reactions for identification of selected cathinones was presented.

  2. Spectroscopic study of low-temperature hydrogen absorption in palladium

    SciTech Connect

    Ienaga, K. Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T.; Tsujii, H.; Kimura, T.

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  3. Preparations and spectroscopic studies of organotin complexes of diclofenac*1

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, Nikolaos; Demertzis, Mavroudis A.; Kovala-Demertzi, Dimitra; Koutsodimou, Aglaia; Moukarika, Alice

    2004-08-01

    The reactions of the potent and widely used anti-inflammatory drug diclofenac, HL, with diorganotin(IV) oxides were studied. The dimeric tetraorganodistannoxane complexes [Me 2LSnOSnLMe 2] 2, [Bu 2LSnOSnLBu 2] 2, [Ph 2LSnOSnLPh 2] 2 and the dibutyltin complex [Bu 2SnL 2], have been prepared and structurally characterized in the solid state by means of vibrational and 119Sn Mössbauer spectroscopy. Determination of lattice dynamics by temperature-dependent 119Sn Mössbauer spectroscopy. From the variable-temperature Mössbauer effect, the Debye temperature was determined. The complexes have been characterized in solution by NMR ( 1H and 13C) spectroscopy. Vibrational, Mössbauer, and NMR data are discussed in terms of the proposed structures.

  4. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  5. [Spectroscopic studies of guanidine hydrochloride-induced unfolding of hemoglobin].

    PubMed

    Li, Jin-Jing; Tang, Qian; Cao, Hong-Yu; Zhang, Yu-Jiao; Zhang, Tao; Zheng, Xue-Fang

    2012-09-01

    In the present paper, based on the ultraviolet-visible (UV-Vis) absorption spectroscopy, fluorescence spectroscopy, and stopped flow-fluorescence spectroscopy, the authors studied the protein unfolding process of hemoglobin induced by GdmHcl. The experiments result shows that there were two different procedures about GdmHcl inducing hemoglobin unfolding from the evidences of UV-Vis absorption spectrum and fluorescence phase diagrams. Namely, the hemoglobin subunit exhibits depolymerization, forming the intermediates when incubated with GdmHcl at the concentration of 1. 0 mol x L(-1). With the increase in the concentration, various subunit structure became loose gradually, and the protoheme collapsed eventually. UV-Vis absorption spectroscopy indicates that the addition of reductant can cooperate with the depolymerization of hemoglobin subunit and the disaggregation of protoheme. The reductant results in the unfolding procedure that hemoglobin from "three-state model" turns into "two-state model".

  6. Spectroscopic STM studies of single gold(III) porphyrin molecules.

    PubMed

    Müllegger, Stefan; Schöfberger, Wolfgang; Rashidi, Mohammad; Reith, Lorenz M; Koch, Reinhold

    2009-12-16

    Low-temperature scanning tunneling microscopy, a well-established technique for single-molecule investigations in an ultrahigh vacuum environment, has been used to study the electronic properties of Au(III) 5,10,15,20-tetraphenylporphyrin (AuTPP) molecules on Au(111) at the submolecular scale. AuTPP serves as a model system for chemotherapeutically relevant Au(III) porphyrins. For the first time, real-space images and local scanning tunneling spectroscopy data of the frontier molecular orbitals of AuTPP are presented. A comparison with results from density functional theory reveals significant deviations from gas-phase behavior due to a non-negligible molecule/substrate interaction. We identify the oxidation state of the central metal ion in the adsorbed AuTPP as Au(3+).

  7. A spectroscopic study of the blue stragglers in M67

    NASA Astrophysics Data System (ADS)

    Liu, G. Q.; Deng, L.; Chávez, M.; Bertone, E.; Davo, A. Herrero; Mata-Chávez, M. D.

    2008-10-01

    Based on spectrophotometric observations from the Guillermo Haro Observatory (Cananea, Mexico), a study of the spectral properties of the complete sample of 24 blue straggler stars (BSs) in the old Galactic open cluster M67 (NGC 2682) is presented. All spectra, calibrated using spectral standards, were recalibrated by means of photometric magnitudes in the Beijing-Arizona-Taipei-Connecticut system, which includes fluxes in 11 bands covering ~3500-10000 Å. The set of parameters was obtained using two complementary approaches that rely on a comparison of the spectra with (i) an empirical sample of stars with well-established spectral types and (ii) a theoretical grid of optical spectra computed at both low and high resolution. The overall results indicate that the BSs in M67 span a wide range in Teff(~ 5600 -12600 K) and surface gravities that are fully compatible with those expected for main-sequence objects (log g = 3.5 -5.0 dex).

  8. Enhanced Raman spectroscopic study of rotational isomers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1986-01-01

    Surfaced-enhanced Raman spectroscopy has been used to study rotational isomers of succinonitrile and N-methyl-thioacetamide on Cu and Ag surfaces. Both the gauche and trans conformers of succinonitrile are found to chemisorb on the metal surface. The doubly degenerate nu(C-triple bond-N) in the free molecules is removed when succinonitrile adsorbs on copper, which indicates that the two (C-triple bond-N) groups are no longer chemically equivalent. Both conformers are found to coordinate to the copper surface through the pi system of one of the two (C-triple bond-N) groups. In the case of N-methyl-thioacetamide, the population of the cis isomer is greatly increased on Cu and Ag surfaces. This is probably due to surface-induced cis-trans isomerization, in which the predominant trans isomer is converted to the cis isomer.

  9. Raman spectroscopic study of ancient South African domestic clay pottery.

    PubMed

    Legodi, M A; de Waal, D

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al2Si2O5(OH)5), illite (KAl4(Si7AlO20)(OH)4), feldspar (K- and NaAlSi3O8), quartz (alpha-SiO2), hematite (alpha-Fe2O3), montmorillonite (Mg3(Si,Al)4(OH)2 x 4.5 5H(2)O[Mg]0.35), and calcium silicate (CaSiO3). Gypsum (CaSO4 x 2H2O) and calcium carbonates (most likely calcite, CaCO3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO(2)) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 degrees C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  10. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  11. Raman spectroscopic study of ancient South African domestic clay pottery

    NASA Astrophysics Data System (ADS)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (α-SiO 2), hematite (α-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 °C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  12. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  13. Ir Spectroscopic Studies on Microsolvation of HCl by Water

    NASA Astrophysics Data System (ADS)

    Mani, Devendra; Schwan, Raffael; Fischer, Theo; Dey, Arghya; Kaufmann, Matin; Redlich, Britta; van der Meer, Lex; Schwaab, Gerhard; Havenith, Martina

    2016-06-01

    Acid dissociation reactions are at the heart of chemistry. These reactions are well understood at the macroscopic level. However, a microscopic level understanding is still in the early stages of development. Questions such as 'how many H_2O molecules are needed to dissociate one HCl molecule?' have been posed and explored both theoretically and experimentally.1-5 Most of the theoretical calculations predict that four H_2O molecules are sufficient to dissociate one HCl molecule, resulting in the formation of a solvent separated H_3O+(H_2O)3Cl- cluster.1-3 IR spectroscopy in helium nanodroplets has earlier been used to study this dissociation process.3-5 However, these studies were carried out in the region of O-H and H-Cl stretch, which is dominated by the spectral features of undissociated (HCl)m-(H_2O)n clusters. This contributed to the ambiguity in assigning the spectral features arising from the dissociated cluster.4,5 Recent predictions from Bowman's group, suggest the presence of a broad spectral feature (1300-1360 wn) for the H_3O+(H_2O)3Cl- cluster, corresponding to the umbrella motion of H_3O+ moiety.6 This region is expected to be free from the spectral features due to the undissociated clusters. In conjunction with the FELIX laboratory, we have performed experiments on the (HCl)m(H_2O)n (m=1-2, n≥4) clusters, aggregated in helium nanodroplets, in the 900-1700 wn region. Mass selective measurements on these clusters revealed the presence of a weak-broad feature which spans between 1000-1450 wn and depends on both HCl as well as H_2O concentration. Measurements are in progress for the different deuterated species. The details will be presented in the talk. References: 1) C.T. Lee et al., J. Chem. Phys., 104, 7081 (1996). 2) H. Forbert et al., J. Am. Chem. Soc., 133, 4062 (2011). 3) A. Gutberlet et al., Science, 324, 1545 (2009). 4) S. D. Flynn et al., J. Phys. Chem. Lett., 1, 2233 (2010). 5) M. Letzner et al., J. Chem. Phys., 139, 154304 (2013). 6) J. M

  14. Luminescence and spectroscopic studies of halosulfate phosphors: a review.

    PubMed

    Gedam, S C; Thakre, P S; Dhoble, S J

    2015-03-01

    This review discusses the photoluminescence (PL) characteristics of halosulfate phosphors developed by us. Halosulfate phosphors KCaSO4 Cl:X,Y (X = Eu or Ce; Y = Dy or Mn) and Na6 (SO4 )2 FCl (doped with Dy, Ce or Eu) were prepared using a solid-state diffusion method. The mechanism of energy transfer from Eu(2+) →Dy(3+) , Ce(3+) →Dy(3+) and Ce(3+) →Mn(2+) has also been studied. Dy(3+) emission in the host at 475 and 570 nm is observed due to (4) F9/2 →(6) H15/2 and (4) F9/2 →(6) H13/2 transition, whereas the PL emission spectra of Na6 (SO4 )2 FCl:Ce phosphor shows Ce(3+) emission at 322 nm due to 5d→4f transition of the Ce(3+) ion. The main property of KCaSO4 Cl is its very high sensitivity, particularly when doped by Dy, Mn or Pb activators. This review also discusses the PL characteristics of some new phosphors such as LiMgSO4 F, Na6 Pb4 (SO4 )6 Cl2 , Na21 Mg(SO4 )10 Cl3 and Na15 (SO4 )5 F4 Cl.

  15. Spectroscopic studies of aluminosilicate formation in tank waste simulants

    SciTech Connect

    Su, Y.; Wang, L.; Bunker, B.C.; Windisch, C.F.

    1997-12-31

    Aluminosilicates are one of the major class of species controlling the volume of radioactive high-level waste that will be produced from future remediation at Hanford site. Here the authors present studies of the phases and structures of aluminosilicates as a function of sludge composition using X-ray powder diffraction, solid state {sup 27}Al and {sup 29}Si NMR, and Raman spectroscopy. The results show that the content of NaNO{sub 3} in solution has significant effects on the nature of the insoluble aluminosilicate phases produced. It was found that regardless of the initial Si:Al ratio, nitrate cancrinite was the main phase formed in the solution with pH of 13.5 and 5 M NaNO{sub 3}. However, at lower NaNO{sub 3} concentration with initial Si:Al ratios of 1.1, 2.2, and 11.0 in the solutions, a range of aluminosilicate zeolites was produced with Si:Al ratios of 1.1, 1.3, and 1.5, respectively. Lowering the solution pH appears to promote the formation of amorphous aluminosilicates. The results presented here are important for the prediction of the solubility and dissolution rate of Al in tank wastes.

  16. [The IR spectroscopic study of hydrothermal synthetic KTP].

    PubMed

    Xie, Hao; Pei, Jing-Cheng; Qi, Li-Jian; Zhong, Zeng-Qiu

    2010-05-01

    In the present paper, different-generation hydrothermally grown KTP crystals were tested by the Nicolet 550 type FIR spectrometer with the reflective technique. They were studied on different crystal faces. Since the hydrothermally grown KTP crystal usually grows (100), (011) and (201) crystal faces, these faces were tested in different-generation products, and they were tested by two spectral wave bands, 2 000-4 000 and 400-2 000 cm(-1). The figures were compared with the flux-melt grown KTP crystal. In addition, making reference to the method of calculation about the consistence of OH- in quartz, the consistence of OH- in different -generation hydrothermally grown KTP crystals was estimated. In the hydrothermal grown KTP crystals, the stretching vibration of OH- shows distinct directivity characteristic. The absorption at [100] direction is obvious and the frequency is about 30 cm(-1) higher than the flux-melt grown KTP. Each new generation weakened the consistency of OH-, which restrained the growth of the KTP crystal. Accordingly, increasing the purity of rough materials plays a very important role in improving the quality of the crystals.

  17. Borax methylene blue: a spectroscopic and staining study.

    PubMed

    Donaldson, P T; Russo, A; Reynolds, C; Lillie, R D

    1978-07-01

    Borax methylene blue is quite stable at room temperatures of 22-25 C. At 30 C polychroming is slow; during 50 days in a water bath at this temperature the absorption peak moves from 665 to 656 nm. At 35 C, the absorption peak reaches 660 nm in 7 days, 654 nm in 14. At 60 C polychroming is rapid, the absorption peak reaching 640-620 nm in 3 days. When the pH of the borax methylene blue solutions, normally about 9.0, is adjusted to pH 6.5, the absorption peak remains at 665 nm even when incubated at 60 C for extended periods. When used as a blood stain 0.4 ml borax methylene blue (1% methylene blue in 1% borax), 4 ml acetone, 2 ml borax-acid phosphate buffer to bring the solution to pH 6.5, and distilled water to make 40 ml, with 0.2 ml 1% eosin added just before using, an excellent Nocht-Giemsa type stain is achieved after 30 minutes staining. The material plasmodia P. falciparum, P. vivax, and P. berghei stain moderate blue with dark red chromatin and green to black pigment granules. The study confirms Malachowski's 1891 results and explains Gautier's 1896-98 failure to duplicate it.

  18. A spectroscopic study of laser ablation plasma from Mo target

    NASA Astrophysics Data System (ADS)

    Jakubowska, Katarzyna; Kubkowska, Monika; Blagoev, Alexander; Rosiński, Marcin; Parys, Piotr; Gąsior, Paweł

    2014-05-01

    The goal of this contribution is to present time-resolved optical spectroscopy studies of laser ablation of the Mo target with ˜ 3.5 ns, 0.4 J pulses delivered by the Nd-YAG laser system at 1.06 μm. The sample was placed in a vacuum chamber under 5 × 10-5 mbar pressure and irradiated, with power densities varied up to 22.7 GW cm-2. The ion emission from the plasma plume was measured using an electrostatic ion energy analyzer (IEA) and ion collector, which allowed us to estimate the ion kinetic energy and charge independent of the applied power densities. The signal collected by the IEA indicated the presence of molybdenum ions up to eight-ion charge. Simultaneously after the ion emission, the optical spectra acquired within 2 μs of exposure time were observed in the wavelength range from 200 to 1000 nm with a Mechelle 5000 spectrometer equipped with an iCCD (iStar) detector. The plasma electron temperature was estimated from a Boltzmann plot based on the registered spectra as well as from the ion measurements.

  19. High resolution spectroscopic study of BeΛ10

    DOE PAGES

    Gogami, T.; Chen, C.; Kawama, D.; ...

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  20. Raman spectroscopic studies of gas/aerosol chemical reactions

    SciTech Connect

    Aardahl, C.L.; Davis, E.J.

    1995-12-31

    Reactions between sorbent particles and SO{sub 2} can be used to reduce atmospheric pollution either by {open_quotes}dry scrubbing{close_quotes} or {open_quotes}wet scrubbing{close_quotes} processes. This paper reports Raman spectroscopy results for single electrodynamically levitated droplets of NaOH reacting with SO{sub 2} and studies of the dehydration reactions of some hygroscopic salt species. The NaOH/SO{sub 2} reaction products and the liquid or solid state of the products are shown to depend on the gas phase SO{sub 2} concentration. Deliquesced particles of NaOH exhibit enhanced light scattering intensities associated with morphological resonances of the incident laser light, but crystalline materials show no such resonances. Raman-active hygroscopic salts exhibit bond frequencies characteristic of the stretching vibrations of the anionic group, but these frequencies are different in the presence of water because hydrogen bonding changes the bond force. This allows efficient tracking of the dehydration reactions in hygroscopic aerosols by Raman spectroscopy as the intensities of the two different modes are related to the degree of dehydration in the particle.

  1. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  2. Spectroscopic studies on the antioxidant activity of ellagic acid.

    PubMed

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-15

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTS+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  3. Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies

    NASA Astrophysics Data System (ADS)

    Mendaza, Teresa; Martin-Torres, Javier

    2016-04-01

    We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of

  4. Vibrational spectroscopic studies, Fukui functions, HOMO-LUMO, NLO, NBO analysis and molecular docking study of (E)-1-(1,3-benzodioxol-5-yl)-4,4-dimethylpent-1-en-3-one, a potential precursor to bioactive agents

    NASA Astrophysics Data System (ADS)

    Al-Wabli, Reem I.; Resmi, K. S.; Sheena Mary, Y.; Yohannan Panicker, C.; Attia, Mohamed I.; El-Emam, Ali A.; Van Alsenoy, C.

    2016-11-01

    The FT-IR and FT-Raman spectra of (E)-1-(1,3-benzodioxol-5-yl)-4,4-dimethylpent-1-en-3-one were recorded and analyzed experimentally and theoretically. The observed experimental and theoretical wavenumbers were assigned using potential energy distribution. The NLO properties were evaluated by the determination of first and second hyperpolarizabilities of the title compound. From the frontier molecular orbital study, the HOMO centers over the entire molecule except the methyl groups, while the LUMO is over the entire molecule except the CH2 group with the dioxole ring and one of the methyl groups. From the MEP plot, it is evident that the negative region covers the carbonyl and Cdbnd C groups and the positive region is over CH2 groups. The Fukui functions are also reported. The calculated geometrical parameters are in agreement with the XRD results. From the molecular docking study, the docked ligand title compound forms a stable complex with the androgen receptor and gives a binding affinity value of -8.1 kcal/mol and the results suggest that the compound might exhibit inhibitory activity against androgen receptor.

  5. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  6. Influence of environment on piroxicam polymorphism: vibrational spectroscopic study.

    PubMed

    Taddei, P; Torreggiani, A; Simoni, R

    2001-01-01

    FTIR and FT-Raman spectroscopies were used to evaluate the mechanism of transformation of piroxicam into its different forms (alpha, beta, and monohydrate), depending on the environment. These vibrational techniques allowed us to identify the forms of piroxicam that crystallize from different solvents at different cooling rates and the conformation of the drug in some of its derivatives: piroxicam hydrochloride, piroxicam thallium and sodium salt hemihydrates, and piroxicam sodium salt. The usefulness of Raman spectroscopy in characterizing piroxicam:beta-cyclodextrin (PbetaCD) inclusion compounds was described. The Raman spectrum of 1:2 PbetaCD was discussed in comparison with that of the corresponding piroxicam sodium salt containing inclusion compound (1:2 PNabetaCD) in order to study the influence of the piroxicam derivative used on the structure of the inclusion compound. The Raman results showed that in both of the inclusion compounds the piroxicam mainly assumes the zwitterionic structure typical of a monohydrate; therefore, the kind of derivative used does not affect the conformation of the drug in its inclusion compound. The effect of the method of synthesis utilized (freeze-drying or freeze-thaw cycling) to obtain 1:2.5 PbetaCD was investigated. The inclusion compound obtained by freeze-thaw cycling proved to be more crystalline and to contain a higher amount of the beta form than the freeze-dried inclusion compound. Raman spectroscopy proved to be a useful technique for evaluating the effectiveness of the manufacturing process in relation to the pharmaceutical properties of the drug and to the nondestructive and noninvasive on-line quality control of the industrial products.

  7. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    SciTech Connect

    Gindt, Y.M.

    1993-04-01

    The role of the L{sub cm} (I), {beta}{sup 18} (II), and {alpha}{sup AP-B} (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A{sub max} = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  8. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    SciTech Connect

    Gindt, Y.M.

    1993-04-01

    The role of the L[sub cm] (I), [beta][sup 18] (II), and [alpha][sup AP-B] (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A[sub max] = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  9. A spectroscopic and dynamical study of binary and other Cepheids

    NASA Astrophysics Data System (ADS)

    Petterson, Orlon King Lee

    High resolution observations have been made of a number of southern Cepheids to make an observational and theoretical study of Cepheid variables using radial velocities. The stars studied were part of a long term programme to observe southern variable stars, from which a valuable database of radial velocities gathered over a long period were available. Sixteen échelle spectrograph orders in the wavelength region 5400 - 8600Å were used, which included a number of absorption lines covering a range of species and excitation potentials. The line bisector technique was used to measure stellar and telluric lines and to obtain radial velocities. To improve the precision of the radial velocities we used telluric lines to calibrate the observations to a common reference frame. The radial velocities have a precision of ~300ms-1 allowing the detection of velocity differences of ~1 kms-1 with confidence. The radial velocity data obtained at Mount John University Observatory (MJUO) was combined with data from various sources to determine the orbits of any Cepheids exhibiting orbital motion. The various orbital parameters were determined for a number of systems and where radial velocities for the companions exist, some estimate of the mass was made. The precision of the radial velocities obtained from MJUO also allowed us to search for line level effects for a number of species among the Cepheid spectra. A number of IAU standard stars were observed to calibrate the radial velocities obtained at MJUO to the IAU standard scale. The radial velocities from MJUO were found not to differ significantly from the IAU values. Binary Cepheids are particularly useful in the determination of Cepheid masses, which are still an active topic for astronomical research. The value of the MJUO data was that it provided a consistent set of data against which other sources of data could be compared. For 8 of the Cepheids new or improved orbital solutions were found. They are Y Car, YZ Car, AX Cir

  10. Near-infrared spectroscopic studies of self-forming lipids and nanovesicles

    NASA Astrophysics Data System (ADS)

    Bista, Rajan K.; Bruch, Reinhard F.

    2009-02-01

    Lipids and liposomes have remained an active research topic for several decades due to their significance as membrane model. Several vibrational spectroscopic techniques have been developed and employed to study the properties of lipids and liposomes. In this study, near-infrared (NIR) spectroscopy has been used to analyze a suite of synthesized PEGylated lipids trademarked as QuSomesTM. The three amphiphiles used in this study, differ in their apolar hydrophobic chain length and contain various units of polar polyethylene glycol (PEG) head groups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes spontaneously upon hydration, without the supply of external activation energy. Whilst the NIR spectra of QuSomesTM show a common pattern, differences in the spectra are observed which enable the lipids to be distinguished. NIR absorption spectra of these new artificial lipids have been recorded in the spectral range of 4800-9000 cm-1 (~2100-1100 nm) by using a new miniaturized spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. In particular, we have established specific band structures as "molecular fingerprints" corresponding to overtones and combinations vibrational modes involving mainly C-H and O-H functional groups for sample analysis of QuSomesTM. Moreover, we have demonstrated that the nanovesicles formed by such lipids in polar solvents show high stability and obey Beer's law at low concentration. The results reported in this study may find applications in various field including the development of lipids based drug delivery systems.

  11. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging.

    PubMed

    Kong, Rong; Bhargava, Rohit

    2011-06-07

    Porcine skin is often considered a substitute for human skin based on morphological and functional data, for example, for transdermal drug diffusion studies. A chemical, structural and temporal characterization of porcine skin in comparison to human skin is not available but will likely improve our understanding of this porcine skin model. Here, we employ Fourier transform infrared (FT-IR) spectroscopic imaging to holistically measure chemical species as well as spatial structure as a function of time to characterize porcine skin as a model for human skin. Porcine skin was found to resemble human skin spectroscopically and differences are elucidated. Cryo-prepared fresh porcine skin samples for spectroscopic imaging were found to be stable over time and small variations are observed. Hence, we extended characterization to the use of this model for dynamic processes. In particular, the capacity and stability of this model in transdermal diffusion is examined. The results indicate that porcine skin is likely to be an attractive tool for studying diffusion dynamics of materials in human skin.

  12. Galactic Soft X-ray Emission Revealed with Spectroscopic Study of Absorption and Emission Spectra

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Mitsuda, K.; Takei, Y.; Hagihara, T.; Yoshino, T.; Wang, Q. D.; Yao, Y.; McCammon, D.

    2010-03-01

    Spectroscopic study of Oxygen emission/absorption lines is a new tool to investigate the nature of the soft X-ray background. We investigated the emission spectra of 14 fields obtained by Suzaku, and detected OVII and OVIII lines separately. There is an almost isotropic OVII line emission with 2 LU intensity. As the attenuation length in the Galactic plane for that energy is short, that OVII emission should arise within 300 pc of our neighborhood. In comparison with the estimated emission measure for the local bubble, the most plausible origin of this component is the solar wind charge exchange with local interstellar materials. Another component presented from the correlation between the OVII and OVIII line intensity is a thermal emission with an apparent temperature of 0.2 keV with a field-to-field fluctuation of 10% in temperature, while the intensity varies about a factor of 4. By the combination analysis of the emission and the absorption spectra, we can investigate the density and the scale length of intervening plasma separately. We analyzed the Chanrdra grating spectra of LMC X-3 and PKS 2155-304, and emission spectra toward the line of sight by Suzaku. In both cases, the combined analysis showed that the hot plasma is not iso-thermal nor uniform. Assuming an exponential disk distribution, the thickness of the disk is as large as a few kpc. It suggests that there is a thick hot disk or hot halo surrounding our Galaxy, which is similar to X-ray hot haloes around several spiral galaxies.

  13. A spectroscopic and photometric study of the planetary nebulae Kn 61 and Pa 5

    SciTech Connect

    García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.; Zharikov, S.; Tovmassian, G.; Borisov, N.; Valyavin, G. E-mail: dgonzalez@astro.unam.mx E-mail: zhar@astro.unam.mx E-mail: borisov@sao.ru

    2014-09-01

    We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. The [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s{sup –1} and the shell is currently not expanding isotropically. We derived a kinematic age of ∼1.6 × 10{sup 4} yr for an assumed distance of 4 kpc. A photometric period of ∼5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s{sup –1}. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.

  14. Systematic toxicological analysis of drugs and poisons in biosamples by hyphenated chromatographic and spectroscopic techniques.

    PubMed

    Polettini, A

    1999-10-15

    The introduction of hyphenated chromatographic-spectroscopic techniques represented a substantial step-forward for Systematic Toxicological Analysis (STA), increasing the amount and quality of information obtainable from the analysis of a biological sample, and enhancing the possibilities of identifying unknown drugs and poisons. STA methods based either on GC-MS or on HPLC-UV published in the last decade are reviewed in this paper. The different analytical phases, i.e. sample preparation (pretreatment, extraction, derivatisation), chromatographic separation and detection/identification are examined in detail in order to emphasise the complementarity of the two approaches. In addition, the first STA method based on HPLC-MS is illustrated and some applications of TLC-UV to drug screening are also described. Finally, an overview of semi- and fully-automated STA methods is given.

  15. Photometric and Spectroscopic Analysis of CP Stars Under Indo-Russian Collaboration

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Semenko, E.; Moiseeva, A.; Joshi, G. C.; Joshi, Y. C.; Sachkov, M.

    2015-04-01

    The Indo-Russian collaboration is a joint venture between the astronomers of India (ARIES) and Russia (SAO and INASAN) to develop scientific and technical interactions by making use of observational facilities. Here we present the results obtained after the “Magnetic Conference” that was held in the Special Astrophysical Observatory, Russia in 2010. The analysis of time-series photometric CCD observations of HD 98851 shows a pulsation period of 1fh55, which is consistent with the period reported previously. We have also found a signature of short-term periodic variability in HD 207561. The analysis of high-resolution spectroscopic and spectropolarimetric observations of the sample stars revealed characteristics similar to Am stars, hence the excitation of the low-overtone pulsations are expected in these stars.

  16. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  17. Synthesis, X-ray crystallographic, spectroscopic and computational studies of aminothiazole derivatives

    NASA Astrophysics Data System (ADS)

    Adeel, Muhammad; Braga, Ataualpa A. C.; Tahir, Muhammad Nawaz; Haq, Fazal; Khalid, Muhammad; Halim, Mohammad A.

    2017-03-01

    Aminothiazole organic compounds have diverse biological applications. Herein we report the synthesis of two aminothiazole derivatives: 4-(biphenyl-4-yl)thiazol-2-amine (1) and 4-(2‧,4‧-difluorobiphenyl-4-yl)thiazol-2-amine (2) via Suzuki-Miyaura cross coupling reaction. The chemical structures of 1 and 2 are confirmed using 1HNMR, 13CNMR, FT-IR, UV-Vis and single crystal x-ray studies. The XRD study reveals that the both solid state structures (1) and (2) are diffused to form poly chain structures due to presence of intra molecular hydrogen bonding (H.B). Furthermore, these compounds were analysed by density functional theory (DFT) at M06-2X/6-311G(d,p), B3LYP/6-31G(d) B3LYP/6-31G(d,p) and B3LYP/6-311G(2d,p) level of theories to obtain optimized geometry, electronic and spectroscopic properties. DFT optimized geometry supports the experimental XRD parameters. Natural bond orbital (NBO) calculation predicted the hyper conjugative interaction and hydrogen bonding in all derivatives. The FT-IR and thermodynamic studies also confirm the presence of hydrogen bonding network in the dimers which agrees well with the XRD results. Moreover, UV-Vis analysis reveals that maximum excitations take place in 1 and 2 due to HOMO → LUMO(98%) and HOMO → LUMO(97%) respectively which show good agreement to experimental data. The first order hyperpolarizability of both molecules is remarkably greater than the value of urea. The global reactivity parameters which are obtained by frontier molecular orbitals disclose that the molecules might be bioactive.

  18. Spectroscopic analysis (FT-IR, FT-Raman and NMR) and molecular docking study of ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Jalaja, K.; Abdel-Aziz, Alaa A.-M.; Al-Obaid, Abdulrahman M.; Sheena Mary, Y.; Yohannan Panicker, C.; Van Alsenoy, C.

    2016-09-01

    The vibrational wavenumbers, molecular structure, MEP, NLO, NBO and HOMO, LUMO analysis of Ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate (EPDA) were reported. The change in electron density in the antibonding orbitals and stabilization energies have been calculated by NBO analysis to give clear evidence of stabilization in the hyperconjugation of hydrogen bonded interaction. The difference in HOMO and LUMO energy support the charge transfer interaction within the molecule. NMR studies and Fukui functions are also reported. From molecular electrostatic potential plot it is evident that the negative charge covers the carbonyl groups, phenyl rings and the positive region is over the CH2 groups with the acetate group. Molecular docking studies shows that the title compound forms a stable complex with pyrrole inhibitor and gives a binding affinity value of -8.3 kcal/mol and the results suggest that the compound might exhibit inhibitory activity against pyrrole inhibitor.

  19. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes.

    PubMed

    Adeniyi, Adebayo A; Ajibade, Peter A

    2013-11-01

    The mechanism of activation of metal-based anticancer agents was reported to be through hydrolysis. In this study, computational method was used to gain insight to the correlation between the chemistry of the hydrolysis and the anticancer activities of selected Ru(II)-based complexes. Interestingly, we observed that the mechanism of activation by hydrolysis and their consequential anticancer activities is associated with favourable thermodynamic changes, higher hyperpolarizability (β), lower band-gap and higher first-order net current. The Fermi contact (FC) and spin dipole (SD) are found to be the two most significant Ramsey terms that determine the spin-spin couplings (J(HZ)) of most of the existing bonds in the complexes. Many of the computed properties give insights into the change in the chemistry of the complexes due to hydrolysis. Besides strong correlations of the computed properties to the anticancer activities of the complexes, using the quantum theory of atoms in a molecule (QTAIM) to analyse the spectroscopic properties shows a stronger correlation between the spectroscopic properties of Ru atom to the reported anticancer activities than the sum over of the spectroscopic properties of all atoms in the complexes.

  20. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes

    NASA Astrophysics Data System (ADS)

    Adeniyi, Adebayo A.; Ajibade, Peter A.

    2013-11-01

    The mechanism of activation of metal-based anticancer agents was reported to be through hydrolysis. In this study, computational method was used to gain insight to the correlation between the chemistry of the hydrolysis and the anticancer activities of selected Ru(II)-based complexes. Interestingly, we observed that the mechanism of activation by hydrolysis and their consequential anticancer activities is associated with favourable thermodynamic changes, higher hyperpolarizability (β), lower band-gap and higher first-order net current. The Fermi contact (FC) and spin dipole (SD) are found to be the two most significant Ramsey terms that determine the spin-spin couplings (J(HZ)) of most of the existing bonds in the complexes. Many of the computed properties give insights into the change in the chemistry of the complexes due to hydrolysis. Besides strong correlations of the computed properties to the anticancer activities of the complexes, using the quantum theory of atoms in a molecule (QTAIM) to analyse the spectroscopic properties shows a stronger correlation between the spectroscopic properties of Ru atom to the reported anticancer activities than the sum over of the spectroscopic properties of all atoms in the complexes.

  1. Applications of Linear Systems Theory to Spectroscopic Instrumentation and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Erickson, Chris L.

    This research employs linear systems theory to design novel spectroscopic instruments, explain their operation, and provide insight into methods of data analysis. The first study examines the relationship between digital filtering, a technique based on linear systems theory, and multivariate regression, a statistical method. The study focuses on quantitative property estimation for one -sided, repetitive, linear, shift-invariant systems, and compares matched filtering, Kalman innovation filtering, classical least-squares regression, and principal components regression. Kalman innovation filters, which are derived by making signals independent of interferences via orthogonalization, are similar to the respective columns of the pseudo-inverse of the pure signal matrix in classical least-squares regression, and to the regression vectors of principal components least -squares regression, which are derived via calibration. Inverse regression methods, such as principal components regression, are advantageous in that if the experiment is carefully designed, interferences need not be explicitly defined and properties that depend on multiple components can be estimated. In the second study, an absorption spectrophotometer based on a novel stationary interferometer is described. A major advantage of the interferometer is that it requires few optical components: minimally a slit, a collimator, a planar mirror, a magnification lens, and a photodiode array detector. The interferometer images a linear spatial interferogram on a photodiode array. Fourier transformation of the detected interferogram yields the desired spectrum. Equations describing interferometer operation are derived using electromagnetic wave theory and linear systems theory. Systems theory is also used to model and correct systematic errors. The interferometer's baseline noise, resolution, dynamic range and precision are assessed and compared to those of a modern grating-based photodiode-array spectrograph

  2. Spectroscopic Study of Methylglyoxal and its Hydrates : a Gaseous Precursor of Secondary Organic Aerosols.

    NASA Astrophysics Data System (ADS)

    Bteich, Sabath; Goubet, Manuel; Margulès, L.; Motiyenko, R. A.; Huet, T. R.

    2016-06-01

    Secondary organic aerosols (SOA) have a significant effect on climate change. They are mainly produced in the atmosphere by oxidation of gaseous precursors. Fu et al. have suggested trans-methylglyoxal (MG) as a possible precursor of SOA in the cloud for its presence in large quantities in the atmosphere. The characterization of SOAs precursors by laboratory spectroscopy allows providing elements for the understanding of the process of formation of these aerosols. For this purpose, we completed the existing pure rotational spectrum of MG in the 12-40 GHz range by new records in a supersonic jet in the 4-20 GHz range (FTMW) and at room temperature in the 150-500 GHz range (mm/submm-wave spectrometer). The analysis was made with the support of quantum chemistry calculations (MP2/CBS and B98/CBS using the Gaussian 09 software). The adjustment of the spectroscopic parameters, taking into account the internal rotation related to the presence of a methyl group, was performed using the RAM36 code. The spectra have been reproduced at the experimental precision up to maximal values of J and K_a equal to 85 and 35, respectively. The data obtained for the isolated molecule, both experimentally and theoretically, will allow the study of its hydrated complexes and, by comparison, will give access to (micro-) hydration properties. For this purpose, two stable complexes predicted by theoretical calculations will be studied. T.- M. Fu et al., J. Geophys. Res., 113, (2008). C.E. Dyltick-Brenzinger and A. Bauder, Chem. Phys. 30, 147 (1978).

  3. Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Long, S. A. T.

    1985-01-01

    The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking.

  4. Synthesis, structural and spectroscopic studies of two new benzimidazole derivatives: A comparative study

    NASA Astrophysics Data System (ADS)

    Saral, Hasan; Özdamar, Özgür; Uçar, İbrahim

    2017-02-01

    In the present work, structural and spectroscopic studies on 1-Methyl-2-(2‧-hydroxy-4‧-chlorophenyl)benzimidazole (1) and 1-Methyl-2-(2‧-hydroxy-4‧-methoxyphenyl)benzimidazole (2), have been carried out extensively by X-ray diffraction, HRMS, UV-Vis, FT-IR and 1H and 13C NMR spectroscopy. The crystal structure of both compounds is stabilized by Osbnd H⋯N hydrogen bond and π-π interactions. Contrary to compound 1, the skeleton of compound 2 is considerably deviated from the planarity probably caused by intermolecular hydrogen bonding. The experimental results were compared to the theoretical ones, obtained at DFT level. Ground state geometry, electronic structure, vibrational and NMR spectra have been performed using the B3LYP functional with the 6-31 G(d,p) basis set. It was observed that the bond distances and angles in the both compounds were in good with those of the experiment. The energetic behaviors of the both compounds in methanol solvent were examined using by time-dependent DFT (TD-DFT) method by applying the polarizable continuum model (PCM). Isotropic chemical shifts (13C and 1H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. The HOMO and LUMO analyses were used to elucidate information regarding charge transfer within the molecule.

  5. Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study

    SciTech Connect

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva

    2015-01-14

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.

  6. Spectroscopic and structural study of proton and halide ion cooperative binding to gfp.

    PubMed

    Arosio, Daniele; Garau, Gianpiero; Ricci, Fernanda; Marchetti, Laura; Bizzarri, Ranieri; Nifosì, Riccardo; Beltram, Fabio

    2007-07-01

    This study reports the influence of halogens on fluorescence properties of the Aequorea victoria Green Fluorescent Protein variant S65T/T203Y (E(2)GFP). Halide binding forms a specific nonfluorescent complex generating a substantial drop of the fluorescence via static quenching. Spectroscopic analysis under different solution conditions reveals high halogen affinity, which is strongly dependent on the pH. This evidences the presence in E(2)GFP of interacting binding sites for halide ions and for protons. Thermodynamic link and cooperative interaction are assessed demonstrating that binding of one halide ion is associated with the binding of one proton in a cooperative fashion with the formation, in the pH range 4.5-10, of a single fully protonated E(2)GFP.halogen complex. To resolve the structural determinants of E(2)GFP sensitivity to halogens, high-resolution crystallographic structures were obtained for the halide-free and I(-), Br(-), and Cl(-) bound E(2)GFP. Remarkably the first high-resolution (1.4 A) crystallographic structure of a chloride-bound GFP is reported. The chloride ion occupies a specific and unique binding pocket in direct contact (3.4 A) with the chromophore imidazolidinone aromatic ring. Unanticipated flexibility, strongly modulated by halide ion interactions, is observed in the region surrounding the chromophore. Furthermore molecular dynamics simulations identified E222 residue (along with the chromophore Y66 residue) being in the protonated state when E(2)GFP.halogen complex is formed. The impact of these results on high-sensitivity biosensor design will be discussed.

  7. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples.

    PubMed

    Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Han, Gi Myung; Rani, Manviri; Lee, Jongmyoung; Shim, Won Joon

    2015-04-15

    The analysis of microplastics in various environmental samples requires the identification of microplastics from natural materials. The identification technique lacks a standardized protocol. Herein, stereomicroscope and Fourier transform infrared spectroscope (FT-IR) identification methods for microplastics (<1mm) were compared using the same samples from the sea surface microlayer (SML) and beach sand. Fragmented microplastics were significantly (p<0.05) underestimated and fiber was significantly overestimated using the stereomicroscope both in the SML and beach samples. The total abundance by FT-IR was higher than by microscope both in the SML and beach samples, but they were not significantly (p>0.05) different. Depending on the number of samples and the microplastic size range of interest, the appropriate identification method should be determined; selecting a suitable identification method for microplastics is crucial for evaluating microplastic pollution.

  8. [FT-IR spectroscopic analysis in monitoring of hydroxyl stretching vibrations in plant hydrogels].

    PubMed

    Pielesz, Anna; Biniaś, Dorota; Wieczorek, Joanna

    2011-01-01

    In recent years, some bioactive hydrogels isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. This article attempts to review the current structural and conformational characterization of some importantly bioactive hydrogels isolated from following plant: Symphytum officinale, Thymus pulegioides, Trigonella foenum-graecum L., Tussilago farfara L., Hyssopus officinalis, Althaea officinalis L., Equisetum arvense L. Linum usitatissimum L. and Fucus vesiculosus L. Hydrogels are cross-linked three-dimensional polysaccharide macromolecular networks that contain a large fraction of water within their structure. FT-IR spectroscopic analysis showed a strong band at 3500-3100 cm(-1) attributed to hydroxyl (the intermolecular and the intramolecular hydrogen bonds) stretching vibrations changes.

  9. DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis.

    PubMed

    Wheate, Nial J; Brodie, Craig R; Collins, J Grant; Kemp, Sharon; Aldrich-Wright, Janice R

    2007-06-01

    Since the discovery of the DNA intercalation process by Lerman in 1961 thousands of organic, inorganic octahedral (particularly ruthenium(II) and rhodium(III)) and square-planar (particularly platinum(II)) compounds have been developed as potential anticancer agents and diagnostic agents. The design and synthesis of new drugs is focused on bis-intercalators which have two intercalating groups linked via a variety of ligands, and synergistic drugs, which combine the anticancer properties of intercalation with other functionalities, such as covalent binding or boron-cages (for radiation therapy). Advances in spectroscopic techniques mean that the process of DNA intercalation can be examined in far greater detail than ever before, yielding important information on structure-activity relationships. In this review we examine the history and development of DNA intercalators as anticancer agents and advances in the analysis of DNA-drug interactions.

  10. Raman spectroscopic analysis of archaeological specimens from the wreck of HMS Swift, 1770

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G. M.; Elkin, Dolores; Maier, Marta S.

    2016-12-01

    Specimens from underwater archaeological excavations have rarely been analysed by Raman spectroscopy probably due to the problems associated with the presence of water and the use of alternative techniques. The discovery of the remains of the Royal Navy warship HMS Swift off the coast of Patagonia, South America, which was wrecked in 1770 while undertaking a survey from its base in the Falkland/Malvinas Islands, has afforded the opportunity for a first-pass Raman spectroscopic study of the contents of several glass jars from a wooden chest, some of which had suffered deterioration of their contents owing to leakage through their stoppers. From the Raman spectroscopic data, it was possible to identify organic compounds such as anthraquinone and copal resin, which were empirically used as materia medica in the eighteenth century to treat shipboard diseases; it seems very likely, therefore, that the wooden chest belonged to the barber-surgeon on the ship. Spectra were obtained from the wet and desiccated samples, but several samples from containers that had leaked were found to contain only minerals, such as aragonite and sediment. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  11. Spectroscopic Analysis of Nd^3+:Y2O3 Nanocrystals for Photonic and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Dennis, Robert C.; Nash, Kelly L.; Gruber, John B.; Sardar, Dhiraj K.

    2008-03-01

    Spectroscopic properties are investigated for Nd^3+ in nanocrystalline Nd^3+:Y2O3. Room temperature absorption intensities of Nd^3+(4f^3) transitions in synthesized Nd^3+:Y2O3 nanocrystals have been analyzed using the Judd-Ofelt (J-O) approach in order to obtain the phenomenological intensity parameters. The J-O intensity parameters are used to calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios of the Nd^3+ transitions from the upper multiplet manifolds to the corresponding lower-lying multiplet manifolds ^2S+1LJ of Nd^3+(4f^3). A comparison between the spectroscopic properties of the Nd^3+ nanocrystals suspended in epoxy, Chitosan, and 2-hydoxyethyl methacrylate (HEMA) has been performed. This study suggests that synthesized Nd^3+:Y2O3 nanocrystals could be an excellent alternative to single-crystal Ho^3+:Y2O3 for various photonic applications, in particularly biosensors, when used in the near infrared (0.8 to 0.9 μm ) region. *This research was supported in part by the National Science Foundation Grant No. DMR-0602649 and the NSF-sponsored CBST at UC Davis under the cooperative agreement No. PHY-0120999.

  12. Raman spectroscopic analysis of archaeological specimens from the wreck of HMS Swift, 1770.

    PubMed

    Edwards, Howell G M; Elkin, Dolores; Maier, Marta S

    2016-12-13

    Specimens from underwater archaeological excavations have rarely been analysed by Raman spectroscopy probably due to the problems associated with the presence of water and the use of alternative techniques. The discovery of the remains of the Royal Navy warship HMS Swift off the coast of Patagonia, South America, which was wrecked in 1770 while undertaking a survey from its base in the Falkland/Malvinas Islands, has afforded the opportunity for a first-pass Raman spectroscopic study of the contents of several glass jars from a wooden chest, some of which had suffered deterioration of their contents owing to leakage through their stoppers. From the Raman spectroscopic data, it was possible to identify organic compounds such as anthraquinone and copal resin, which were empirically used as materia medica in the eighteenth century to treat shipboard diseases; it seems very likely, therefore, that the wooden chest belonged to the barber-surgeon on the ship. Spectra were obtained from the wet and desiccated samples, but several samples from containers that had leaked were found to contain only minerals, such as aragonite and sediment.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'.

  13. Spectroscopic Studies of Doping and Charge Transfer in Single Walled Carbon Nanotubes and Lead Sulfide Quantum Dots

    NASA Astrophysics Data System (ADS)

    Haugen, Neale O.

    The use of single wall carbon nanotubes (SW-CNTs) in solar photovoltaic (PV) devices is a relatively new, but quickly growing field. SW-CNTs have found application as transparent front contacts, and high work function back contacts in thin film solar PV. For the utility of SW-CNTs to be fully realized, however, controllable and stable doping as well as long term protection from doping must be achieved. Spectroscopic techniques facilitate detailed investigations of the intrinsic and variable properties of semiconductor materials without the issues of contact deposition and the possibility of sample contamination. Detailed spectroscopic analysis of the doping induced changes in the optical properties of SW-CNTs has revealed normally hidden excited state transitions in large diameter single walled carbon nanotubes for the first time. Spectroscopic monitoring of the degree of doping in SW-CNTs made possible studies of the dopant complex desorption and readsorption energies and kinetics. The long term protection from doping of SW-CNTs exposed to ambient laboratory conditions was achieved as a result of the more detailed understanding of the doping processes and mechanisms yielded by these spectroscopic studies. The application of SW-CNTs to other roles in solar PV devices was another goal of this research. Efficient collection of photogenerated charge carriers in semiconductor quantum dot (QD) based solar photovoltaic devices has been limited primarily by the poor transport properties and high density of recombination sites in the QD films. Coupling semiconductor QDs to nanomaterials with better transport properties is one potential solution to the poor transport within the QD films. This portion of the work investigated the possibility of charge transfer occurring in nano-heterostructures (NHSs) of PbS QDs and SW-CNTs produced through spontaneous self-assembly in solution. Electronic coupling in the form of charge transfer from the QDs to the SW-CNTs is unambiguously

  14. Fourier transform Raman spectroscopic studies of a novel wood pulp bleaching system

    NASA Astrophysics Data System (ADS)

    Weinstock, Ira A.; Atalla, Rajai H.; Agarwal, Umesh P.; Minor, James L.; Petty, Chris

    1993-06-01

    The use of near-infrared (NIR) Fourier transform (FT) Raman spectroscopy for the study of lignocellulosic materials is discussed. An application utilizing NIR FT-Raman spectroscopy to study a novel chlorine-free process for the bleaching of wood pulps is presented in detail. The new process, still under development, entails the oxidation of residual lignin in wood pulps by vanadium-substituted polyoxometalates, and reoxidation of the reduced polyoxometalates by chlorine-free oxidants such as air, dioxygen, peroxides or ozone. Results from FT-Raman measurements of polyoxometalate-treated pulps are compared with those from chemical, spectroscopic and optical techniques commonly used in the pulp and paper industry.

  15. Spectroscopic study of sub-barrier quasi-elastic nuclear reactions

    SciTech Connect

    Pass, C.N.; Evans, P.M.; Smith, A.E.; Stuttge, L.; Betts, R.R.; Lilley, J.S.; Connell, K.A.; Simpson, J.; Smith, J.R.; James, A.N.

    1988-01-01

    The technique developed in this paper is particularly well suited to the detailed spectroscopic study of low energy quasi-elastic nuclear reactions and by overcoming the limitations of conventional procedure, the prospect of detailed studies of inclusive reaction mechanism may be realised. With only limited statistics we find evidence for strong multistep character in the transfer of a single nucleon from spherical vibrational target to spherical projectile nuclei. The suggestive measurements reported here may be made definitive through extended runs based on this technique and experiments planned for the future offer the real prospect of developing a quantified interpretation of the reaction process. 9 refs. 5 figs.

  16. A whole spectroscopic mapping approach for studying the spatial distribution of pigments in paintings

    NASA Astrophysics Data System (ADS)

    Mosca, S.; Alberti, R.; Frizzi, T.; Nevin, A.; Valentini, G.; Comelli, D.

    2016-09-01

    We propose a non-invasive approach for the identification and mapping of pigments in paintings. The method is based on three highly complementary imaging spectroscopy techniques, visible multispectral imaging, X-Ray fluorescence mapping and Raman mapping, combined with multivariate data analysis of multidimensional spectroscopic datasets for the extraction of key distribution information in a semi-automatic way. The proposed approach exploits a macro-Raman mapping device, capable of detecting Raman signals from non-perfectly planar surfaces without the need of refocusing. Here, we show that the presence of spatially correlated Raman signals, detected in adjacent points of a painted surface, reinforces the level of confidence for material identification with respect to single-point analysis, even in the presence of very weak and complex Raman signals. The new whole-mapping approach not only provides the identification of inorganic and organic pigments but also gives striking information on the spatial distribution of pigments employed in complex mixtures for achieving different hues. Moreover, we demonstrate how the synergic combination on three spectroscopic methods, characterized by highly different time consumption, yields maximum information.

  17. Experimental (FT-IR, FT-Raman, UV and NMR) and quantum chemical studies on molecular structure, spectroscopic analysis, NLO, NBO and reactivity descriptors of 3,5-Difluoroaniline.

    PubMed

    Pathak, S K; Srivastava, R; Sachan, A K; Prasad, O; Sinha, L; Asiri, A M; Karabacak, M

    2015-01-25

    Comprehensive investigation of geometrical and electronic structure in ground as well as the first excited state of 3,5-Difluoroaniline (C6H5NF2) was carried out. The experimentally observed spectral data (FT-TR and FT-Raman) of the title compound was compared with the spectral data obtained by DFT/B3LYP method using 6-311++G(d,p) basis set. The molecular properties like dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface (MEPs), and contour map were calculated to get a better insight of the properties of the title molecule. Natural bond orbital (NBO) analysis was applied to study stability of the molecule arising from charge delocalization. UV-Vis spectrum of the title compound was also recorded and the electronic properties, such as Frontier orbitals and band gap energies were measured by TD-DFT approach. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. Global and local reactivity descriptors were computed to predict reactivity and reactive sites on the molecule. (1)H and (13)C NMR spectra by using gauge including atomic orbital (GIAO) method of studied compound were compared with experimental data obtained. Moreover, the thermodynamic properties were evaluated.

  18. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    SciTech Connect

    Ng, Cheuk-Yiu

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  19. Vibrational assignments, spectroscopic investigation (FT-IR and FT-Raman), NBO, MEP, HOMO‒LUMO analysis and intermolecular hydrogen bonding interactions of 7-fluoroisatin, 7-bromoisatin and 1-methylisatin ‒ A comparative study

    NASA Astrophysics Data System (ADS)

    Polat, Turgay; Bulut, Fatih; Arıcan, Ilknur; Kandemirli, Fatma; Yildirim, Gürcan

    2015-12-01

    In this comprehensive study, theoretical and experimental studies were carried out on 7-fluoroisatin, 7-bromoisatin and 1-methylisatin using FT-Raman and FT-IR spectra. The optimized geometrical parameters and theoretical vibrational frequencies were calculated by means of density functional theory (DFT/B3LYP) with 6-311++G(d,p) basis set based on scaled quantum mechanical (SQM) method for the first time. The relative abundances of the possible tautomers or conformers found were calculated with respect to the Boltzmann distribution. Moreover, the harmonic vibrational frequencies including IR and Raman intensities, thermodynamic and electronic parameters were computed in detail. The effects of substituents -F, ‒Br and -CH3 on the crucial characteristics pertaining to the title compound of isatin were investigated, and the obtained data were compared with each other. Natural bond orbital (NBO) analysis was applied to study the stability arising from charge delocalization along with the compound. The chemical reactivity parameters (chemical hardness and softness, electronegativity, chemical potential and electrophilicity index) were discussed clearly. The HOMO and LUMO energies determined showed that the serious charge transfer occurs in the title molecules studied. Furthermore, the size, shape, charge density distributions and chemical reactivity sites belonging to the molecules were obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Additionally, the hydrogen-bonded complexes were simulated to describe the roles of intermolecular hydrogen bonding on the molecular structures and vibrational frequencies.

  20. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide

    NASA Astrophysics Data System (ADS)

    Benzon, K. B.; Varghese, Hema Tresa; Panicker, C. Yohannan; Pradhan, Kiran; Tiwary, Bipransh Kumar; Nanda, Ashis Kumar; Alsenoy, C. Van

    2015-07-01

    In this work, the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy of 2-(4-hydroxyphenyl)-4,5-dimethyl-1H-imidazole 3-oxide. The computations were performed at DFT levels of theory to get the optimized geometry and vibrational frequencies of the normal modes of the title compound using Gaussian09 software. The complete vibrational assignments of frequencies were made on the basis of potential energy distribution. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The hyperpolarizability values are reported and the first hyperpolarizability of the title compound is 19.61 times that of standard NLO material urea. From the MEP plot, the negative charge covers the nitro group and the positive region is over the hydroxyl group and N-H part of the imidazole ring. The calculated 1H NMR results are in good agreement with experimental data. Molecular docking study is also reported.

  1. In situ orientation studies of a poly(3-hydroxybutyrate)/poly(epsilon-caprolactone) blend by rheo-optical fourier transform infrared spectroscopy and two-dimensional correlation spectroscopic analysis.

    PubMed

    Unger, Miriam; Siesler, Heinz W

    2009-12-01

    In the present study, the orientation of a poly(3-hydroxybutyrate) (PHB)/poly(epsilon-caprolactone) (PCL) blend was monitored during uniaxial elongation by rheo-optical Fourier transform infrared (FT-IR) spectroscopy and analyzed by generalized two-dimensional correlation spectroscopy (2D-COS). The dichroism of the delta(CH(2)) absorption bands of PHB and PCL was employed to determine the polymer chain orientation in the PHB/PCL blend during the elongation up to 267% strain. From the PHB and PCL specific orientation functions it was derived that the PCL chains orient into the drawing direction while the PHB chains orient predominantly perpendicular to the applied strain. To extract more detailed information about the polymer orientation during uniaxial elongation, 2D-COS analysis was employed for the dichroic difference of the polarization spectra recorded during the drawing process. In the corresponding synchronous and asynchronous 2D correlation plots, absorption bands characteristic of the crystalline and amorphous regions of PHB and PCL were separated. Furthermore, the 2D-COS analysis revealed that during the mechanical treatment the PCL domains orient before the PHB domains.

  2. Synthesis, spectroscopic characterization of novel 16α-(3-acetyl phenyl amino)-3β-hydroxy pregn-5-ene-20-one, its molecular structure, NBO analysis, intramolecular interactions studied by DFT and AIM approach

    NASA Astrophysics Data System (ADS)

    Sethi, Arun; Shukla, Dolly; Singh, Ranvijay Pratap

    2014-09-01

    A novel compound 16α-(3-acetyl phenyl amino)-3β-hydroxy pregn-5-ene-20-one was synthesized by Michael addition reaction and characterized with the aid of 1H, 13C NMR, IR, UV and mass spectrometry. The molecular geometry of synthesized compound was calculated in the ground state by density functional theory (DFT/B3LYP) using 6-31G(d,p) basis set. 1H and 13C NMR chemical shifts were calculated using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with the experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent density functional theory (TD-DFT). Stability of the molecule as a result of hyperconjugative interactions and electron delocalization were analyzed using natural bond orbital (NBO) analysis. Intramolecular interactions were analyzed by AIM approach. Local reactivity descriptors were calculated to study the reactive site within the molecule.

  3. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  4. On-line separator for {gamma}-spectroscopic studies at FLNR JINR

    SciTech Connect

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Kabachenko, A. P.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.; Dorvaux, O.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.

    2007-05-22

    A JINR - IN2P3 collaboration project named 'GABRIELA' aimed at the nuclear spectroscopy of transfermium elements using the recoil separator VASSILISSA was launched in 2004 at JINR in Dubna. In the close future the FLNR cyclotron U400M will go through a major upgrade with the goal to deliver heavy ion beams at the energy close to the Coulomb barrier in a new experimental area. Here we report about R and D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized accelerator and which will allow to realize new possibilities of the GABRIELA project.

  5. On-line separator for γ-spectroscopic studies at FLNR JINR

    NASA Astrophysics Data System (ADS)

    Popeko, A. G.; Belozerov, A. V.; Chepigin, V. I.; Dorvaux, O.; Hauschild, K.; Kabachenko, A. P.; Korichi, A.; Lopez-Martens, A.; Malyshev, O. N.; Shutov, A. V.; Svirikhin, A. I.; Yeremin, A. V.

    2007-05-01

    A JINR — IN2P3 collaboration project named "GABRIELA" aimed at the nuclear spectroscopy of transfermium elements using the recoil separator VASSILISSA was launched in 2004 at JINR in Dubna. In the close future the FLNR cyclotron U400M will go through a major upgrade with the goal to deliver heavy ion beams at the energy close to the Coulomb barrier in a new experimental area. Here we report about R&D of the new separator for spectroscopic studies which we plan to install at the beam of the modernized accelerator and which will allow to realize new possibilities of the GABRIELA project.

  6. HeI photoelectron spectroscopic studies on the electronic structure of alkyl nitrosamines

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Qian, Ximei; Li, Chunhui; Qiao, Chunhua; Wang, Dianxun

    1997-10-01

    HeI photoelectron spectroscopic (PES) studies on the electronic structure of alkyl nitrosamines R 2N 2O (R = CH 3-, CH 3CH 2-, and CH 3CH 2CH 2-) are reported. The assignment of the PES bands for this series of compounds has been made with the aid of the band shapes, the band intensity and ab initio SCF MO calculations based on the 631 ∗ G basis sets. Both PES experiment and the ab initio SCF MO calculations show that the detoxification ability of nitrosamine with longer alkyl chain is stronger.

  7. Dielectric properties of WS2-coated multiwalled carbon nanotubes studied by energy-loss spectroscopic profiling

    NASA Astrophysics Data System (ADS)

    Stolojan, Vlad; Silva, S. R. P.; Goringe, Michael J.; Whitby, R. L. D.; Hsu, Wang K.; Walton, D. R. M.; Kroto, Harold W.

    2005-02-01

    We investigate experimentally the electronic properties of the coating for multiwalled carbon nanotubes covered in tungsten disulfide (WS2) of various thicknesses. Coatings of thicknesses between 2 and 8 monolayers (ML) are analyzed using energy-loss spectroscopic profiling (ELSP), by studying the variations in the plasmon excitations across the coated nanotube, as a function of the coating thickness. We find a change in the ELSP for coatings above 5 ML thickness, which we interpret in terms of a change in its dielectric properties.

  8. Spectroscopic study on the interaction of ct-DNA with manganese Salen complex containing triphenyl phosphonium groups.

    PubMed

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khalegh; Lincoln, Per; Mirkhani, Valiollah

    2012-05-01

    The DNA binding properties of a bulky and hydrophobic Schiff base complex of manganese(III) [N,N'-bis(5-(triphenyl phosphonium methyl)salicylidene)-1,2-ethylene diamine chloride Mn(III) acetate] was examined by spectroscopic techniques. UV-vis titration data indicate both hypo and hyperchromic effect with addition of DNA to complex. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by adding Mn Salen complex. This finding indicates that Mn Salen complex displaces EB from its binding site in DNA. Helix melting studies indicate improvement in the helix stability, and an increase in the melting temperature. The analysis of CD spectra represents the structural changes in DNA due to the binding of Mn Salen complex. The binding constant has been calculated using absorbance and fluorescence data. The results also represent that the binding process proceeds by strong electrostatic and hydrophobic interactions.

  9. Spectroscopic study on the interaction of ct-DNA with manganese Salen complex containing triphenyl phosphonium groups

    NASA Astrophysics Data System (ADS)

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khalegh; Lincoln, Per; Mirkhani, Valiollah

    2012-05-01

    The DNA binding properties of a bulky and hydrophobic Schiff base complex of manganese(III) [N,N'-bis(5-(triphenyl phosphonium methyl)salicylidene)-1,2-ethylene diamine chloride Mn(III) acetate] was examined by spectroscopic techniques. UV-vis titration data indicate both hypo and hyperchromic effect with addition of DNA to complex. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by adding Mn Salen complex. This finding indicates that Mn Salen complex displaces EB from its binding site in DNA. Helix melting studies indicate improvement in the helix stability, and an increase in the melting temperature. The analysis of CD spectra represents the structural changes in DNA due to the binding of Mn Salen complex. The binding constant has been calculated using absorbance and fluorescence data. The results also represent that the binding process proceeds by strong electrostatic and hydrophobic interactions.

  10. Spectroscopic analysis of a novel Nd3+-activated barium borate glass for broadband laser amplification

    NASA Astrophysics Data System (ADS)

    Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.

    2015-08-01

    Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 → 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 → 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 → 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 → 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.

  11. Optical characteristics of pulsed laser deposited Ge-Sb-Te thin films studied by spectroscopic ellipsometry

    SciTech Connect

    Nemec, P.; Prikryl, J.; Frumar, M.; Nazabal, V.

    2011-04-01

    Pulsed laser deposition technique was used for the fabrication of (GeTe){sub 1-x}(Sb{sub 2}Te{sub 3}){sub x} (x = 0, 0.33, 0.50, 0.66, and 1) amorphous thin films. Scanning electron microscopy with energy-dispersive x-ray analysis, x-ray diffraction, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (rocksaltlike) layers. In order to extract optical functions of the films, the Cody-Lorentz model was applied for the analysis of ellipsometric data. Fitted sets of Cody-Lorentz model parameters are discussed in relation with chemical composition and the structure of the layers. The GeTe component content was found to be responsible for the huge optical functions and thickness changes upon amorphous-to-fcc phase transition.

  12. The molecular structure of chloritoid: a mid-infrared and near-infrared spectroscopic study.

    PubMed

    Li, Kuo; Liu, Qinfu; Cheng, Hongfei; Deng, Yutao; Frost, Ray L

    2015-06-15

    The mineral chloritoid collected from the argillite in the bottom of Yaopo Formation of Western Beijing was characterized by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The MIR spectra showed all fundamental vibrations including the hydroxyl units, basic aluminosilicate framework and the influence of iron on the chloritoid structure. The NIR spectrum of the chloritoid showed combination (ν+δ)OH bands with the fundamental stretching (ν) and bending (δ) vibrations. Based on the chemical component data and the analysis result from the MIR and NIR spectra, the crystal structure of chloritoid from western hills of Beijing, China, can be illustrated. Therefore, the application of the technique across the entire infrared region is expected to become more routine and extend its usefulness, and the reproducibility of measurement and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for the unit cell structural analysis.

  13. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    SciTech Connect

    Pizarro, Shelly Ann

    2000-05-01

    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K). Because L

  14. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  15. Majorana Neutrino Masses by Spectroscopic Studies of Double Beta Decays and Moon

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    This is a brief review of spectroscopic studies of neutrino-less double beta decays (0νββ) and the MOON (Mo Observatory Of Neutrinos) project. It aims at studying the Majorana nature of neutrinos and the mass spectrum by spectroscopic studies of 0νββ with ν-mass sensitivity of ≈ 30 meV. The solid scintillator option of the MOON detector is a super ensemble of multi-layer modules, each being composed by a scintillator plate and two tracking detector planes. Thin ββ source films are interleaved between the detector planes. High localization of the two β tracks enables one to select true signals and reject BG ones by spatial and time correlation analyses. MOON with detector ≠ ββ source is used for studying 0νββ decays from 100Mo, 82Se and other ββ isotopes with large nuclear sensitivity (large Qββ). Real-time exclusive measurements of low energy solar neutrinos can also be made by observing inverse β rays from solar-ν captures of 100Mo in delayed coincidence with the subsequent β decay of 100Tc.

  16. Conformational stability, spectroscopic and computational studies, hikes' occupied molecular orbital, lowest unoccupied molecular orbital, natural bond orbital analysis and thermodynamic parameters of anticancer drug on nanotube-A review.

    PubMed

    Ghasemi, A S; Mashhadban, F; Hoseini-Alfatemi, S M; Sharifi-Rad, J

    2015-12-24

    Today the use of nanotubes (CNTs) is widely spread a versatile vector for drug delivery that can officiate as a platform for transporting a variety of bioactive molecules, such as drugs. In the present study, the interaction between the nanotube and anticancer drugs is investigated. Density functional theory (DFT) calculations were using the Gauss view and the complexes were optimized by B3LYP method using B3LYP/6-31G (d, p) and B3LYP/6-311++G (d, p) basis set in the gas phase and water solution at 298.15K. The calculated hikes' occupied molecular orbital (HOMO) and the lowest unoccupied (LUMO) energies Show that charge transfer occurs within the molecule. Furthermore, the effects of interactions on the natural bond orbital analysis (NBO) have been used to a deeper investigation into the studied compounds. These factors compete against each other to determine the adsorption behavior of the tube computer simulation is seen to be capable to optimize anticancer drug design. This review article mainly concentrates on the different protocols of loading anticancer drugs onto CNTs as well as how to control the anticancer drug release and cancer treatment.

  17. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    NASA Astrophysics Data System (ADS)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  18. Molecular orbital studies (hardness, chemical potential, electronegativity and electrophilicity), vibrational spectroscopic investigation and normal coordinate analysis of 5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol.

    PubMed

    Muthu, S; Renuga, S

    2014-01-24

    FT-IR and FT-Raman spectra of 5-{1-hydroxy-2-[(propan-2-yl) amino] ethyl} benzene-1,3-diol (abbrevi- 54 ated as HPAEBD) were recorded in the region 4000-450 cm(-1) and 4000-100 cm(-1) respectively. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (B3LYP) and HF method with 6-31 G(d,p) as basis set. The theoretical wave numbers were scaled and compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated Potential energy distribution (PED). Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ antibonding orbitals and E (2) energies confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The molecule orbital contributions were studied by using the total (TDOS), sum of α and β electron (αβDOS) density of States. Mulliken population analysis of atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in this compound. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.

  19. Recognizing brain activities by functional near-infrared spectroscope signal analysis

    PubMed Central

    Khoa, Truong Quang Dang; Nakagawa, Masahiro

    2008-01-01

    Background Functional Near-Infrared Spectroscope (fNIRs) is one of the latest technologies which utilize light in the near-infrared range to determine brain activities. Near-infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems. This indicates that fNIRs signal monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis to show that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a Brain-Computer interface. Results We applied Higuchi's fractal dimension algorithms to analyse irregular and complex characteristics of fNIRs signals, and then Wavelets transform is used to analysis for preprocessing as signal filters and feature extractions and Neural networks is a module for cognition brain tasks. Conclusion Throughout two experiments, we have demonstrated the feasibility of fNIRs analysis to recognize human brain activities. PMID:18590571

  20. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    SciTech Connect

    Dasan, Y. K. Bhat, A. H.; Faiz, A.

    2015-07-22

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC’s were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC’s are strongly dependent on the hydrolysis time and acid concentration.

  1. Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber

    NASA Astrophysics Data System (ADS)

    Dasan, Y. K.; Bhat, A. H.; Faiz, A.

    2015-07-01

    This work evaluates the use of oil palm empty fruit bunch (OPEFB) fiber as a source of cellulose to obtain nanocrystalline cellulose (CNC) by acid hydrolysis reaction. The raw OPEFB fibers were pretreated with aqueous Sodium hydroxide at 80°C followed by bleaching treatment and further hydrolyzed with Sulphuric acid at 45°C with limited range of hydrolysis time and acid concentration. The resulting CNC's were characterized for spectroscopic, crystallographic and morphological properties using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM) and Atomic Force Microscopy (AFM). Finding of this study shows that the properties of CNC's are strongly dependent on the hydrolysis time and acid concentration.

  2. The Distance to the Massive Galactic Cluster Westerlund 2 from a Spectroscopic and HST Photometric Study

    NASA Astrophysics Data System (ADS)

    Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.

    2013-05-01

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters RV and AV for O-type stars in Wd2. We find average values langRV rang = 3.77 ± 0.09 and langAV rang = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance langdrang = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  3. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    SciTech Connect

    Vargas Alvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P. E-mail: chipk@uwyo.edu E-mail: sheila@physics.unc.edu E-mail: rcool@obs.carnegiescience.edu

    2013-05-15

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R{sub V} and A{sub V} for O-type stars in Wd2. We find average values (R{sub V} ) = 3.77 {+-} 0.09 and (A{sub V} ) = 6.51 {+-} 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 {+-} 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  4. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole

    NASA Astrophysics Data System (ADS)

    Haress, Nadia G.; Al-Omary, Fatmah; El-Emam, Ali A.; Mary, Y. Sheena; Panicker, C. Yohannan; Al-Saadi, Abdulaziz A.; War, Javeed Ahmad; Van Alsenoy, Christian

    2015-01-01

    FT-IR and FT-Raman spectra of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. The energy barriers of the internal rotations about the Csbnd C bonds connecting the oxadiazole to the adamantane and benzene rings are reported. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As can be seen from the MEP map of the title compound, which regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl and adamantine rings and the remaining species are surrounded by zero potential. The molecular docking studies reveal that the adamantyl derivative may exhibit C-South African HIV-proteas inhibitory activity.

  5. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole.

    PubMed

    Haress, Nadia G; Al-Omary, Fatmah; El-Emam, Ali A; Mary, Y Sheena; Panicker, C Yohannan; Al-Saadi, Abdulaziz A; War, Javeed Ahmad; Van Alsenoy, Christian

    2015-01-25

    FT-IR and FT-Raman spectra of 2-(Adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. The energy barriers of the internal rotations about the C-C bonds connecting the oxadiazole to the adamantane and benzene rings are reported. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As can be seen from the MEP map of the title compound, which regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl and adamantine rings and the remaining species are surrounded by zero potential. The molecular docking studies reveal that the adamantyl derivative may exhibit C-South African HIV-proteas inhibitory activity.

  6. Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive.

    PubMed

    Mohammadzadeh-Aghdash, Hossein; Ezzati Nazhad Dolatabadi, Jafar; Dehghan, Parvin; Panahi-Azar, Vahid; Barzegar, Abolfazl

    2017-08-01

    Sodium acetate (SA) has been used as a highly effective protectant in food industry and the possible effect of this additive on the binding to albumin should be taken into consideration. Therefore, for the first time, the mechanism of SA interaction with bovine serum albumin (BSA) has been investigated by multi-spectroscopic and molecular modeling methods under physiological conditions. Stern-Volmer fluorescence quenching analysis showed an increase in the fluorescence intensity of BSA upon increasing the amounts of SA. The high affinity of SA to BSA was demonstrated by a binding constant value (1.09×10(3) at 310°K). The thermodynamic parameters indicated that hydrophobic binding plays a main role in the binding of SA to Albumin. Furthermore, the results of UV-vis spectra confirmed the interaction of this additive to BSA. In addition, molecular modeling study demonstrated that A binding sites of BSA play the main role in the interaction with acetate.

  7. Nucleation and growth of MgO atomic layer deposition: A real-time spectroscopic ellipsometry study

    SciTech Connect

    Wang, Han; Fu, Kan

    2013-11-15

    The atomic layer deposition (ALD) of MgO thin films from bis(cyclopentadienyl) magnesium and H{sub 2}O was studied using in-situ real-time spectroscopic ellipsometry (SE), ex-situ x-ray photoelectron spectroscopy, and grazing-incidence x-ray diffraction. It is found that the initial growth is not linear during the first ten cycles, and magnesium silicate forms spontaneously on the SiO{sub 2}/Si substrates at 250 °C. Submonolayer sensitivity of SE is demonstrated by the analysis of each half-cycle and self-limiting adsorption, revealing characteristic features of hetero- and homo-MgO ALD processes.

  8. Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide.

    PubMed

    Lessing, Joshua; Roy, Santanu; Reppert, Mike; Baer, Marcel; Marx, Dominik; Jansen, Thomas La Cour; Knoester, Jasper; Tokmakoff, Andrei

    2012-03-21

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides. This analysis revealed that changing the size of the side chain at the X amino acid site from Gly to Ala to Val substantially alters the conformation of the peptide. To quantify this effect, proline peak shifts and intensity changes were compared to a structure-based spectroscopic model. These simulated spectra were used to assign the population of type-II β turns, bulged turns, and irregular β turns for each peptide. Of particular interest was the Val variant commonly found in the protein elastin, which contained a 25% population of irregular β turns containing two peptide hydrogen bonds to the proline C═O.

  9. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  10. Laser Spectroscopic and Theoretical Studies of the Structures and Encapsulation Motifs of Functional Molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-02-01

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) "hosts" interacting with N2, acetylene, water, and ammonia "guest" molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes

  11. Vibrational spectroscopic study of newly developed self-forming lipids and nanovesicles.

    NASA Astrophysics Data System (ADS)

    Bista, Rajan; Bruch, Reinhard

    2009-03-01

    We present the first experimental study of self-forming synthetic nanovesicles, trademarked as QuSomes, using vibrational spectroscopic techniques namely near-infrared (NIR) and laser tweezers Raman spectroscopy. Raman spectra of these new artificial nanovesicles suspended in Phosphate Buffered Saline (PBS) have been obtained by using an inverted confocal laser-tweezers-Raman-microscopy system in the spectral range of 3100 to 500 cm-1. This spectrometer works with an 80 mW diode-pumped solid-state laser, operating at a wavelength of 785 nm in the TEM00 mode. The laser is used both for optical trapping and Raman excitation. Similarly, NIR absorption spectra of these novel nanovesicles have been recorded in the spectral range of 9000-4800 cm-1 by using a new miniaturized micro-mirror spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. In this work, we have found that the most prominent bands in the studied spectral region of Raman spectra are dominated by vibrational modes arising from C-C and CH2 bonds. Similarly, NIR spectra are primarily assigned as first and second overtone of C-H stretching mode and second overtone of C=O stretching mode. These spectroscopic techniques have proven to be an excellent tool to establish the fingerprint region revealing the molecular structure and conformation of QuSomes nanoparticles.

  12. Spectroscopic Study on Ultrafast Carrier Dynamics and Terahertz Amplified Stimulated Emission in Optically Pumped Graphene

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Boubanga-Tombet, Stephane; Satou, Akira; Suemitsu, Maki; Ryzhii, Victor

    2012-08-01

    This paper reviews recent advances in spectroscopic study on ultrafast carrier dynamics and terahertz (THz) stimulated emission in optically pumped graphene. The gapless and linear energy spectra of electrons and holes in graphene can lead to nontrivial features such as negative dynamic conductivity in the THz spectral range, which may lead to the development of new types of THz lasers. First, the non-equilibrium carrier relaxation/recombination dynamics is formulated to show how photoexcited carriers equilibrate their energy and temperature via carrier-carrier and carrier-phonon scatterings and in what photon energies and in what time duration the dynamic conductivity can take negative values as functions of temperature, pumping photon energy/intensity, and carrier relaxation rates. Second, we conduct time-domain spectroscopic studies using an optical pump and a terahertz probe with an optical probe technique at room temperature and show that graphene sheets amplify an incoming terahertz field. Two different types of samples are prepared for the measurement; one is an exfoliated monolayer graphene on SiO2/Si substrate and the other is a heteroepitaxially grown non-Bernal stacked multilayer graphene on a 3C-SiC/Si epi-wafer.

  13. Theoretical study of spectroscopic constants and anharmonic force field of SiF2.

    PubMed

    Li, Jing; Wang, Meishan; Yang, Chuanlu; Ma, Meizhong; Tong, Dianmin

    2015-05-01

    The equilibrium structure, spectroscopy constants, and anharmonic force field of SiF2 have been investigated at MP2, B3LYP, and B3PW91 levels of theory employing two basis sets cc-pVQZ and cc-pVTZ, respectively. The obtained equilibrium geometries, rotational constants, fundamental vibrational wave numbers, and centrifugal distortion constants are compared with the available experimental data or the previous theoretical values. The MP2/cc-pVQZ results of SiF2 are in excellent agreement with the available experimental data and afford a marked improvement over B3LYP/cc-pVQZ and B3PW91/cc-pVQZ in the calculation of spectroscopic constants and force constants of SiF2. The basis set enhancement beyond cc-pVQZ does not lead to a major improvement so that the cc-pVQZ basis set is sufficient for SiF2. The MP2/cc-pVQZ results may provide useful data for the spectroscopic experiment studies of SiF2. The used DFT method is also an advisable choice to study anharmonic force field of SiF2.

  14. Spectroscopic and quantum chemical analysis of a natural product - Hayatin hydrochloride

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2015-08-01

    Majority of drugs in use today are natural products, natural product mimics or semi synthetic derivatives. Therefore in recent times, focus on plant research has increased all over the world and large body of evidence has been collected to show immense potential of medicinal plants used in various traditional systems. Therefore, in the present communication to aid that research, structural and spectroscopic analysis of a natural product, an alkaloid Hayatin hydrochloride was performed. Both ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311G (d,p) basis set were used for the calculations. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and micro-Raman spectra. The complete assignments were performed on the basis of potential energy distribution. The structure-activity relationship has also been interpreted by mapping electrostatic potential surface, which are valuable information for the quality control of medicines and drug-receptor interactions. Electronic properties have been analysed employing TD-DFT for both gaseous and solvent phase. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  15. Critical evaluation of spectroscopic indices for organic matter source tracing via end member mixing analysis based on two contrasting sources.

    PubMed

    Yang, Liyang; Hur, Jin

    2014-08-01

    Despite the wide use of absorption and fluorescence spectroscopy for tracking the sources of dissolved organic matter (DOM), there are limited studies on evaluating their source discrimination capabilities at variable solution chemistry (pH, NaCl, Ca(2+), and DOM concentration). For this study, we compared the applicability of several well-known spectroscopic indices via end member mixing analysis based on two contrasting DOM sources (Suwannee River fulvic acid and an algal DOM). The absorption coefficients and the intensities of fluorescent components from parallel factor analysis (PARAFAC) showed linear relationships with increasing algal carbon fraction in the mixture of the two DOMs. In contrast, although they still behaved conservatively, spectral ratio indices such as spectral slopes, ratios of PARAFAC components, humification index, and fluorescence index changed in nonlinear patterns with the mixing ratios. The indices based on PARAFAC results exhibited strong discrimination capabilities, as indicated by high susceptibility to the changes in DOM sources relative to the analytical precision. While variable NaCl concentrations had limited effects, most fluorescence indices were considerably affected by other solution chemistry such as pH, Ca(2+), and DOM level. Our study demonstrated that the applicability of the source discrimination indices should be critically examined especially in the environments with notable changes in the solution chemistry. The solution chemistry effects could be minimized by adjusting samples to a constant condition prior to the measurements or otherwise the effects should be fully taken into account in interpreting the field observations.

  16. Spectroscopic study and structure of ( E)-2-[(2-chlorobenzylimino)methyl]methoxyphenol

    NASA Astrophysics Data System (ADS)

    Ünver, Hüseyin; Yıldız, Mustafa; Özay, Hava; Durlu, Tahsin Nuri

    2009-12-01

    ( E)-2-[(2-Chlorobenzylimino)methyl]methoxyphenol has been synthesized from the reaction of 2-hydroxy-3-methoxy-1-benzaldehyde( o-vanillin) with 2-chlorobenzylamine. The title compound has been characterized by using elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-vis spectroscopic techniques. The crystal structure of the title compound has also been examined cyrstallographically. It crystallizes in the orthorhombic space group Pbca with unit cell parameters: a = 7.208(1) Å, b = 13.726(2) Å, c = 27.858(4) Å, V = 2756.0(1) Å 3, Dc = 1.18 g cm -3 and Z = 8. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R = 0.046 for 2773 observed reflections.

  17. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    NASA Astrophysics Data System (ADS)

    Vera, L. P.; Pérez, J. A.; Riascos, H.

    2014-05-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C2 Swan System (d3Πg→a3Πu), the First Negative System N2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x1018 cm-3 respectively.

  18. Spectroscopic studies and crystal structure of (E)-N Prime -(2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide

    SciTech Connect

    Ozay, H. Yildiz, M.; Unver, H.; Kiraz, A.

    2013-01-15

    The structure of compound has also been examined cyrstallographically. It crystallizes in the monoclinic space group P2{sub 1}/c with a = 7.673(1), b = 16.251(2), c = 10.874(1) A, {beta} = 110.42(1) Degree-Sign , V = 1270.7(3) A{sup 3}, D{sub x} = 1.418 g cm{sup -3}, R{sub 1} = 0.0349 and wR{sub 2} = 0.0935 [I > 2{sigma}(I)], respectively. The title compound has been synthesized from the reaction of isonicotinohydrazide with 2-hydroxy-3-methoxybenzaldehyde. It has been characterized by using elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR and UV-Visible spectroscopic techniques.

  19. Copper(II) complexes of prion protein PEG11-tetraoctarepeat fragment: spectroscopic and voltammetric studies.

    PubMed

    Bonomo, Raffaele P; Di Natale, Giuseppe; Rizzarelli, Enrico; Tabbì, Giovanni; Vagliasindi, Laura I

    2009-04-14

    Spectroscopic (UV-Vis and EPR) and voltammetric studies have been carried out on the copper(II) complexes with the Ac-PEG11-(PHGGGWGQ)4-NH2 (L) polypeptide. In the ratios Cu : L 3 : 1 and 4 : 1, the two [Cu3(L)H(-6)] and [Cu4(L)H(-8)] complex species have been characterized at neutral pH values. All the copper atoms occupy similar coordination sites formed by imidazole, peptidic nitrogen atoms and carbonyl oxygen atoms in a square base pyramidal geometry. Voltammetric measurements on these systems point out the cooperativity in the electron transfer processes among the copper(II) sites during their reduction. NO interaction with these polynuclear copper species is characterized by the reduction of the copper sites through the formation of two different intermediate complex species. When an excess of the Ac-PEG11-(PHGGGWGQ)4-NH2 ligand is considered, frozen solution EPR parameters and UV-Vis spectroscopic data identify the [Cu(N(im))4]2+ chromophore, which does not interact with NO.

  20. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed.

  1. Studying the dwarf galaxies in nearby groups of galaxies: Spectroscopic and photometric data

    NASA Astrophysics Data System (ADS)

    Hopp, U.; Vennik, J.

    2014-11-01

    Galaxy evolution by interaction-driven transformation is probably highly efficient in groups of galaxies. Dwarf galaxies with their shallow potential are expected to reflect the interaction most prominently in their observable structure. The major aim of this series of papers is to establish a data base which allows to study the impact of group interaction onto the morphology and star-forming properties of dwarf galaxies. Firstly, we present our selection rules for target groups and the morphological selection method of target dwarf member candidates. Secondly, the spectroscopic follow-up observations with the HET are presented. Thirdly, we applied own reduction methods based on adaptive filtering to derive surface photometry of the candidates. The spectroscopic follow-up indicate a dwarf identification success rate of roughly 55 %, and a group member success rate of about 33 %. A total of 17 new low surface-brightness members is presented. For all candidates, total magnitudes, colours, and light distribution parameters are derived and discussed in the context of scaling relations. We point out short comings of the SDSS standard pipeline for surface photometry for these dim objects. We conclude that our selection strategy is rather efficient to obtain a sample of dim, low surface brightness members of groups of galaxies within the Virgo super-cluster. The photometric scaling relation in these X-ray dim, rather isolated groups does not significantly differ from those of the galaxies within the local volume.

  2. Design of and Studies with a Novel One Meter Multi - Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Barry, Donald James

    1996-01-01

    A traditional one-meter imaging telescope costs 250,000 and weighs several tons. A novel multi -element spectroscopic telescope is described which trades imaging ability and monolithic size for low cost and weight, producing the same light gathering power at under one-tenth the cost. A complete spectroscopic facility consisting of one-meter equivalent-aperture telescope, fiber optical feed, Newtonian-Ebert spectrograph, and automated processing software has been prototyped, constructed, and placed into operation. The total cost of materials is under 85,000. A variety of science observations have been conducted with this facility including a tomographic reconstruction of the component spectra of the massive binary Plaskett's star components, a measurement of the line-profile variability of the Be stars lambda Eridani and BK Camelopardalis, and a dynamical study of the orbit of the triple star system 55 Ursae Majoris. The instrument performs well and is now in regular use as a scheduled telescope at the Georgia State University Hard Labor Creek Observatory. Improvements continue, and the telescope continues to serve a valuable role in the GSU Astronomy program's scientific programs and pedagogical mission.

  3. Spectroscopic analysis of bacterial biological warfare simulants and the effects of environmental conditioning on a bacterial spectrum.

    PubMed

    McIntosh, Alastair J S; Barrington, Stephen J; Bird, Hilary; Hurst, Daniel; Spencer, Phillippa; Pelfrey, Suzanne H; Baker, Matthew J

    2012-11-01

    The ability to distinguish bacteria from mixed samples is of great interest, especially in the medical and defence arenas. This paper reports a step towards the aim of differentiating pathogenic endospores in situ, to aid any required response for hazard management using infrared spectroscopy combined with multivariate analysis. We describe a proof-of-principle study aimed at discriminating biological warfare simulants from common environmental bacteria. We also report an evaluation of multiple pre-processing techniques and subsequent differences in cross-validation of two pattern recognition models (Support Vector Machines and Principal Component-Linear Discriminant Analysis) for a six-class classification (bacterial classification). These classifications were possible with an average sensitivity of 88.0 and 86.9 %, and an average specificity of 97.6 and 97.5 % for the SVM and the PC-LDA models, respectively. Most spectroscopic models are built upon spectra from bacteria that have been specifically prepared for analysis by a particular method; this paper will comment upon the differences in the bacterial spectrum that occur between specific preparations when the bacteria have spent 30 days in the simulated weather conditions of a hot dry climate.

  4. X-ray photoelectron and Raman spectroscopic studies of MeV proton irradiated graphite

    NASA Astrophysics Data System (ADS)

    Mathew, S.; Joseph, B.; Sekhar, B. R.; Dev, B. N.

    2008-07-01

    Poly-crystalline graphite samples were irradiated using 2.25 MeV H + ions with a fluence of 2 × 10 17 ions/cm 2. Magnetic ordering in highly oriented pyrolytic graphite samples have been reported earlier under the similar irradiation conditions [Esquinazi et al., Phys. Rev. Lett. 91 (2003) 227201]. In that study, the authors attribute the observed irradiation induced magnetic ordering to the formation of a mixed sp 2-sp 3 hybridized carbon atoms. In the present study, we report the X-ray photoelectron and Raman spectroscopic studies on pristine and irradiated samples. Irradiated samples are found to show an increased number of sp 3 hybridized carbon atoms. However, the Raman spectrum, specially the second order data, do indicate that the nature of the graphene lattice structure has been preserved in the irradiated samples. The mechanisms for the irradiation induced enhancement in sp 3 hybridization are discussed.

  5. Spectroscopic Studies on Eu{sup 3+} Doped Boro-Tellurite Glasses

    SciTech Connect

    Selvaraju, K.; Marimuthu, K.

    2011-07-15

    Eu{sup 3+} doped boro-tellurite glasses have been synthesized and its optical behavior have been studied and reported. The presence of varying tellurium dioxide content results changes in spectroscopic behavoir were explored through UV-VIS, and Luminescence spectra. The bonding parameters have been calculated based on the observed band positions of the absorption spectra. The Judd-Ofelt intensity parameters {Omega}{sub {lambda}} ({lambda} = 2, 4 and 6) have been determined through the luminescence spectra without applying any constraints and the results are presented. The Judd-Ofelt parameters have been used to determine various optical properties corresponding to {sup 5}D{sub 0}{yields}{sup 7}F{sub J}(J = 1,2,3 and 4) transitions of Eu{sup 3+} ions. The varying optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar studies.

  6. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation

    NASA Astrophysics Data System (ADS)

    Picquart, Michel; Abedinzadeh, Zohreh; Grajcar, Lydie; Baron, Marie Héléne

    1998-03-01

    A spectroscopic study of N-acetylcysteine (RSH) and N-acetylcystine (RSSR) has been performed using infrared absorption and Raman scattering in order to pinpoint the sites of complexation of these two species with H 2O 2. Molecules of RSH and RSSR were studied in KBr pellets, and in aqueous solutions of H 2O, D 2O and H 2O with H 2O 2 (1 mol l -1) to characterize the specific influence of the solvent molecules. A time-resolved Raman study was performed for RSH-H 2O 2 in aqueous solution at 1:1 molar ratio in order to observe the formation of RSSR and to discuss the mechanism of this redox reaction.

  7. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study.

    PubMed

    Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai

    2015-01-01

    This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment.

  8. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide

    NASA Astrophysics Data System (ADS)

    Nunes, Julia Helena Bormio; de Paiva, Raphael Enoque Ferraz; Cuin, Alexandre; da Costa Ferreira, Ana Maria; Lustri, Wilton Rogério; Corbi, Pedro Paulo

    2016-05-01

    New ternary copper(II) complexes of sulfathiazole (SFT, C9H8N3O2S2) or nimesulide (NMS, C13H11N2O5S) and 2,2‧-bipyridine (bipy) were synthesized, and characterized by chemical and spectroscopic techniques. Elemental analyses indicated a 2:1:1 sulfonamide/copper/bipy composition for both complexes. Mass spectrometric measurements permitted identifying the molecular ions [Cu(SFT)2(bipy)+H]+ and [Cu(NMS)2(bipy)+H]+ at m/z 728 and 835, respectively, confirming the proposed compositions. Crystal structure of the [Cu(SFT)2(bipy)] complex was solved by powder X-ray diffraction analysis (PXRD), attesting that the Cu(II) ion is hexacoordinated in a distorted octahedral geometry. Each SFT molecule coordinates to the metal ion by the nitrogen atoms of the SO2-N group and of the heterocyclic ring. The coordination sphere is completed by a bipyridine. Electronic paramagnetic resonance (EPR) studies were carried out for the [Cu(NMS)2(bipy)] complex, indicating a tetragonal environment around the metal ion. It was suggested that NMS coordinates to Cu(II) by the nitrogen and oxygen atoms of the SO2-N group, which was confirmed by infrared spectroscopic studies. Biological studies showed the antibacterial activity of both Cu-SFT and Cu-NMS complexes, with the minimum inhibitory concentration (MIC) values ranging from 0.10 to 0.84 mmol L-1 against Gram-negative bacteria for [Cu(SFT)2(bipy)], and from 1.50 to 3.00 mmol L-1 against Gram-positive and -negative bacteria for [Cu(NMS)2(bipy)].

  9. Batch sorption and spectroscopic speciation studies of neptunium uptake by montmorillonite and corundum

    NASA Astrophysics Data System (ADS)

    Elo, O.; Müller, K.; Ikeda-Ohno, A.; Bok, F.; Scheinost, A. C.; Hölttä, P.; Huittinen, N.

    2017-02-01

    Detailed information on neptunium(V) speciation on montmorillonite and corundum surfaces was obtained by batch sorption and desorption studies combined with surface complexation modelling using the Diffuse Double-Layer (DDL) model, in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and X-ray absorption (XAS) spectroscopies. The pH-dependent batch sorption studies and the spectroscopic investigations were conducted under carbonate-free conditions in 10 mM NaClO4 or 10 mM NaCl. Solid concentrations of 0.5 g/l and 5 g/l were used depending on the experiment. The neptunium(V) desorption from the two mineral surfaces was investigated at pH values ranging from 8 to 10, using the replenishment technique. Neptunium(V) was found to desorb from the mineral surface, however, the extent of desorption was dependent on the solution pH. The desorption of neptunium(V) was confirmed in the ATR FT-IR spectroscopic studies at pH 10, where all of the identified inner-sphere complexed neptunium(V), characterized by a vibrational band at 790 cm-1, was desorbed from both mineral surfaces upon flushing the mineral films with a blank electrolyte solution. In XAS investigations of neptunium(V) uptake by corundum, the obtained structural parameters confirm the formation of an inner-sphere complex adsorbed on the surface in a bidentate fashion. As the inner-sphere complexes found in the IR-studies are characterized by identical sorption bands on both corundum and montmorillonite, we tentatively assigned the neptunium(V) inner-sphere complex on montmorillonite to the same bidentate complex found on corundum in the XAS investigations. Finally, the obtained batch sorption and spectroscopic results were modelled with surface complexation modelling to explain the neptunium(V) speciation on montmorillonite over the entire investigated pH range. The modelling results show that cation exchange in the interlayer space as well as two pH-dependent surface complexes

  10. FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells

    PubMed Central

    Mata-Miranda, Monica Maribel; Sanchez-Monroy, Virginia; Delgado-Macuil, Raul Jacobo; Perez-Ishiwara, David Guillermo

    2016-01-01

    Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells. PMID:27651798

  11. FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells.

    PubMed

    Vazquez-Zapien, Gustavo Jesus; Mata-Miranda, Monica Maribel; Sanchez-Monroy, Virginia; Delgado-Macuil, Raul Jacobo; Perez-Ishiwara, David Guillermo; Rojas-Lopez, Marlon

    2016-01-01

    Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells.

  12. Ascidian (Chordata-Tunicata) glycosaminoglycans: extraction, purification, biochemical, and spectroscopic analysis.

    PubMed

    Pavão, Mauro S G

    2015-01-01

    Sulfated polysaccharides with unique structures of the chondroitin/dermatan and heparin/heparan families of sulfated glycosaminoglycans have been described in several species of ascidians (Chordata-Tunicata). These unique sulfated glycans have been isolated from-ascidians and characterized by biochemical and spectroscopic methods. The ascidian glycans can be extracted by different tissues or cells by proteolytic digestion followed by cetylpyridinium chloride/ethanol precipitation. The total glycans are then fractionated by ion-exchange chromatography on DEAE-cellulose and/or Mono Q (HR 5/5) columns. Alternatively, precipitation with different ethanol concentrations can be employed. An initial analysis of the purified ascidian glycans is carried out by agarose gel electrophoresis on diaminopropane/acetate buffer, before or after digestion with specific glycosaminoglycan lyases or deaminative cleavage with nitrous acid. The disaccharides formed by exhaustive degradation of the glycans is purified by gel-filtration chromatography on a Superdex-peptide column and analyzed by HPLC on a strong ion exchange Sax-Spherisorb column. 1H or 13C nuclear magnetic resonance spectroscopy in one or two dimensions is used to confirm the structure of the intact glycans.

  13. Silicon fin line edge roughness determination and sensitivity analysis by Mueller matrix spectroscopic ellipsometry based scatterometry

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya; O'Mullane, Samuel; Sunkoju, Sravan; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe; Keller, Nick; Race, Joseph; Muthinti, Gangadhara Raja; Diebold, Alain C.

    2015-03-01

    Measurement and control of line edge roughness (LER) is one of the most challenging issues facing patterning technology. As the critical dimensions (CD) of patterned structures decrease, LER of only a few nanometers can negatively impact device performance. Here, Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry is used to determine LER in periodic line-space structures in 28 nm pitch Si fin samples fabricated by directed selfassembly (DSA) patterning. The optical response of the Mueller matrix (MM) elements is influenced by structural parameters like pitch, CD, height, and side-wall angle (SWA), as well as the optical properties of the materials. Evaluation and decoupling MM element response to LER from other structural parameters requires sensitivity analysis using simulations of optical models that include LER. Here, an approach is developed that quantifies Si fin LER by comparing the optical responses generated by systematically varying the grating shape and measurement conditions. Finally, the validity of this approach is established by comparing the results obtained from top down scanning electron microscope (SEM) images and cross-sectional TEM image of the 28 nm pitch Si fins.

  14. Spectral analysis of tissues from patients with cancer using a portable spectroscopic diagnostic ratiometer unit

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Sordillo, Peter P.; Budansky, Yury; Alfano, R. R.

    2014-05-01

    Spectral profiles of tissues from patients with breast carcinoma, malignant carcinoid and non-small cell lung carcinoma were acquired using native fluorescence spectroscopy. A novel spectroscopic ratiometer device (S3-LED) with selective excitation wavelengths at 280 nm and 335 nm was used to produce the emission spectra of the key biomolecules, tryptophan and NADH, in the tissue samples. In each of the samples, analysis of emission intensity peaks from biomolecules showed increased 340 nm/440 nm and 340 nm/460 nm ratios in the malignant samples compared to their paired normal samples. This most likely represented increased tryptophan to NADH ratios in the malignant tissue samples compared to their paired normal samples. Among the non-small cell lung carcinoma and breast carcinomas, it appeared that tumors of very large size or poor differentiation had an even greater increase in the 340 nm/440 nm and 340 nm/460 nm ratios. In the samples of malignant carcinoid, which is known to be a highly metabolically active tumor, a marked increase in these ratios was also seen.

  15. Spectroscopic Analysis of Nd^3+:Y2O3 Nanocrystals in Polymers and Copolymers

    NASA Astrophysics Data System (ADS)

    Ray, Nathan; Nash, Kelly; Dennis, Robert; Gruber, John; Sardar, Dhiraj; Gen Zhang, Mao

    2009-04-01

    Spectroscopic properties of nanocrystalline Nd^3+ in Nd^3+:Y2O3 embedded in solid plastic hosts (2-hydroxyethyl methacrylate (HEMA) and copolymer of HEMA/styrene) are characterized. The standard Judd-Ofelt model has been applied to the room temperature absorption intensities of Nd^3+(4f^3) transitions in the plastic hosts to determine the three phenomenological intensity parameters: φ2, φ4, and φ6. Intensity parameters are then utilized to determine the radiative decay rates and branching ratios of the Nd^3+(4f^ 3) transitions from the upper manifold state ^4F3/2 to the lower-lying multiplet manifolds ^4IJ (J= 9/2, 11/2, 13/2, 15/2). Emission cross sections and room temperature fluorescence lifetimes of the important intermanifold ^4F3/2->^4IJ (J=9/2, 11/2, 13/2)transitions are determined. We investigate the detailed crystal-field splitting of the energy levels of the Nd^3+ ion in the Y2O3/polymer host. The 300 K spectraare analyzed for the energy level transitions between the ^2S+1LJ multiplet manifolds of Nd^3+(4f^3). Results are also compared with a crystal-field splitting analysis reported earlier for single-crystal Nd^3+:Y2O3.

  16. Spectroscopic Observations and Analysis of the Unusual Type Ia SN1999ac

    SciTech Connect

    Garavini, G.; Aldering, G.; Amadon, A.; Amanullah, R.; Astier,P.; Balland, C.; Blanc, G.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis,R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Folatelli, G.; Frye, B.; Gates,E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.; Howell, D.A.; Kent, S.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lee, B.C.; Lidman, C.; Mendez,J.; Miller, G.J.; Moniez, M.; Mouchet, M.; Mourao, A.; Newberg, H.; Nobili, S.; Nugent, P.E.; Pain, R.; Perdereau, O.; Perlmutter, S.; Quimby, R.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-12

    The authors present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger Si II and Ca II signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from Si II are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v{sub 10}(Si II), R(Si II), v, and {Delta}m{sub 15} further underlines the unique characteristics of SN 1999ac. They find convincing evidence of C II {lambda}6580 in the day -15 spectrum with ejection velocity v > 16,000 km s{sup -1}, but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy.

  17. Line parameter study of ozone at 5 and 10 μm using atmospheric FTIR spectra from the ground: A spectroscopic database and wavelength region comparison

    NASA Astrophysics Data System (ADS)

    Janssen, Christof; Boursier, Corinne; Jeseck, Pascal; Té, Yao

    2016-08-01

    Atmospheric ozone concentration measurements mostly depend on spectroscopic methods that cover different spectral regions. Despite long years of measurement efforts, the uncertainty goal of 1% in absolute line intensities has not yet been reached. Multispectral inter-comparisons using both laboratory and atmospheric studies reveal that important discrepancies exist when ozone columns are retrieved from different spectral regions. Here, we use ground based FTIR to study the sensitivity of ozone columns on different spectroscopic parameters as a function of individual bands for identifying necessary improvements of the spectroscopic databases. In particular, we examine the degree of consistency that can be reached in ozone retrievals using spectral windows in the 5 and 10 μm bands of ozone. Based on the atmospheric spectra, a detailed database inter-comparison between HITRAN (version 2012), GEISA (version 2011) and S&MPO (as retrieved from the website at the end of 2015) is made. Data from the 10 μm window are consistent to better than 1%, but there are larger differences when the windows at 5 μm are included. The 5 μm results agree with the results from 10 μm within ±2% for all databases. Recent S&MPO data are even more consistent with the desired level of 1%, but spectroscopic data from HITRAN give about 4% higher ozone columns than those from GEISA. If four sub-windows in the 5 μm band are checked for consistency, retrievals using GEISA or S&MPO parameters show less dispersion than those using HITRAN, where one window in the P-branch of the ν1 + ν3 band gives about 2% lower results than the other three. The atmospheric observations are corroborated by a direct comparison of the spectroscopic databases, using a simple statistical analysis based on intensity weighted spectroscopic parameters. The bias introduced by the weighted average approach is investigated and it is negligible if relative differences between databases do not correlate with line

  18. Interaction between serum albumins and sonochemically synthesized cadmium sulphide nanoparticles: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Naveenraj, Selvaraj; Asiri, Abdullah M.; Anandan, Sambandam

    2013-05-01

    Cadmium Sulphide nanoparticles approximately 5-10 nm in size range were synthesized by sonochemical technique, which follows acoustic cavitation phenomenon and generates nanoparticles with a smaller size range and higher surface area. The in vitro binding interaction of these sonochemically synthesized CdS nanoparticles with serum albumins (SA) were investigated using UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques since CdS nanoparticles has biological applications such as cellular labelling and deep-tissue imaging. UV-Vis absorption and fluorescence studies confirm that CdS nanoparticles bind with SA through ground state complex formation (static quenching mechanism). The results suggest that sonochemically synthesized CdS nanoparticles interact with HSA more than that of BSA and these nanoparticles can be easily transported and rapidly released to the targets by serum albumins. CD studies confirmed the conformational change of serum albumins on the interaction of CdS nanoparticles.

  19. Synthesis, Spectroscopic, ac Conductivity and Thermal Studies on Co(III) Acetylacetonate-Iodine Complex

    NASA Astrophysics Data System (ADS)

    Hashem, H. A.; Refat, M. S.

    A spectrophotometric study of 1:1 donor-acceptor complex, cobalt (III) acetylacetonate (donor) and iodine (σ-acceptor) has been preformed. The equilibrium constants, (K) and the absorpitivity (ɛ) for the formation of the iodine complex have been calculated. The predicted structure of the solid triiodide charge-transfer complex reported in this study is further supported by thermal, far and mid infrared spectroscopic measurements. Electron transfer from Co (acac = 2, 4-pentanedionate)3 to iodine leads to the formation of an organic semiconductor with the formula of [Co(acac)3]_2 I+. I3-. The kinetic parameters (nonisothermal method) for their decomposition have been evaluated by graphical methods using the equations of Freeman-Carroll (FC), Horowitz-Metzger (HM) and Coats-Redfern (CR). The ac conductivity and dielectric properties of [Co(acac)3]_2 I+. I3- have been measured over the frequency 50-106 Hz at temperature 298 K.

  20. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-10-01

    This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.