High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Wako; Suda, Takuma; Beers, Timothy C.
2015-02-01
The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less
The True Ultracool Binary Fraction Using Spectral Binaries
NASA Astrophysics Data System (ADS)
Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris
2018-01-01
Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (< 5 AU) binary systems of brown dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.
NASA Astrophysics Data System (ADS)
Jaehnig, Karl; Bird, Jonathan C.; Stassun, Keivan G.; Da Rio, Nicola; Tan, Jonathan C.; Cotaar, Michiel; Somers, Garrett
2017-12-01
We study the occurrence of spectroscopic binaries in young star-forming regions using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS-III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC 2264, NGC 1333, IC 348, and the Pleiades have been carried out, yielding H-band spectra with a nominal resolution of R = 22,500 for sources with H < 12 mag. Radial velocity precisions of ˜0.3 {km} {{{s}}}-1 were achieved, which we use to identify radial velocity variations indicative of undetected companions. We use Monte Carlo simulations to assess the types of spectroscopic binaries to which we are sensitive, finding sensitivity to binaries with orbital periods ≲ {10}3.5 days, for stars with 2500 {{K}}≤slant {T}{eff}≤slant 6000 {{K}} and v \\sin i < 100 {km} {{{s}}}-1. Using Bayesian inference, we find evidence for a decline in the spectroscopic binary fraction, by a factor of 3-4, from the age of our pre-main-sequence (PMS) sample to the Pleiades age . The significance of this decline is weakened if spot-induced radial-velocity jitter is strong in the sample, and is only marginally significant when comparing any one of the PMS clusters against the Pleiades. However, the same decline in both sense and magnitude is found for each of the five PMS clusters, and the decline reaches a statistical significance of greater than 95% confidence when considering the PMS clusters jointly. Our results suggest that dynamical processes disrupt the widest spectroscopic binaries ({P}{orb}≈ {10}3{--}{10}4 days) as clusters age, indicating that this occurs early in the stars’ evolution, while they still reside within their nascent clusters.
A Search for Binary Systems in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Brown, Cody; Nidever, David L.
2018-06-01
The Large and Small Magellanic Clouds are two of the closest dwarf galaxies to our Milky Way and offer an excellent laboratory to study the evolution of galaxies. The close proximity of these galaxies provide a chance to study individual stars in detail and learn about stellar properties and galactic formation of the Clouds. The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the SDSS-IV, has gathered high quality, multi-epoch, spectroscopic data on a multitude of stars in the Magellanic Clouds. The time-series data can be used to detect and characterize binary stars and make the first spectroscopic measurements of the field binary fraction of the Clouds. I will present preliminary results from this project.
A Speckle survey of Southern Hipparcos Visual Doubles and Geneva-Copenhagen Spectroscopic Binaries
NASA Astrophysics Data System (ADS)
Mendez, R. A.; Tokovinin, A.; Horch, E.
2018-01-01
We present a speckle survey of Hipparcos visual doubles and spectroscopic binary stars identified by the Geneva-Copenhagen spectroscopic survey with the SOAR 4m telescope + HRCam. These systems represent our best chance to take advantage of Gaia parallaxes for the purpose of stellar mass determinations. Many of these systems already have mass fractions (although generally no spectroscopic orbit - an astrometric orbit will determine individual masses), metallicity information, and Hipparcos distances. They will be used to improve our knowledge of the mass-luminosity relation, particularly for lower-metallicity stars. Our survey will create the first all-sky, volume-limited, speckle archive for the two primary samples, complementing a similar effort that has been recently been completed at the WIYN 3.5-m telescope in the Northern Hemisphere. This extension to the Southern Hemisphere will fill out the picture for a wider metallicity range.
The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population
NASA Astrophysics Data System (ADS)
Sana, H.; de Koter, A.; de Mink, S. E.; Dunstall, P. R.; Evans, C. J.; Hénault-Brunet, V.; Maíz Apellániz, J.; Ramírez-Agudelo, O. H.; Taylor, W. D.; Walborn, N. R.; Clark, J. S.; Crowther, P. A.; Herrero, A.; Gieles, M.; Langer, N.; Lennon, D. J.; Vink, J. S.
2013-02-01
Context. The Tarantula Nebula in the Large Magellanic Cloud is our closest view of a starburst region and is the ideal environment to investigate important questions regarding the formation, evolution and final fate of the most massive stars. Aims: We analyze the multiplicity properties of the massive O-type star population observed through multi-epoch spectroscopy in the framework of the VLT-FLAMES Tarantula Survey. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods: We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. By modeling simultaneously the observed binary fraction, the distributions of the amplitudes of the radial velocity variations and the distribution of the time scales of these variations, we constrain the intrinsic current binary fraction and period and mass-ratio distributions. Results: We observe a spectroscopic binary fraction of 0.35 ± 0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20 km s-1. We compute the intrinsic binary fraction to be 0.51 ± 0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f(log 10P/d) ~ (log 10P/d)π (with log 10P/d in the range 0.15-3.5) and f(q) ~ qκ with 0.1 ≤ q = M2/M1 ≤ 1.0. The power-law indexes that best reproduce the observed quantities are π = -0.45 ± 0.30 and κ = -1.0 ± 0.4. The period distribution that we obtain thus favours shorter period systems compared to an Öpik law (π = 0). The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function (κ = -2.35). The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer region of the field of view (r > 7.8', i.e. ≈117 pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. The observed and intrinsic binary fractions are also lower for the faintest objects in our sample (Ks > 15.5 mag), which results from observational effects and the fact that our O star sample is not magnitude-limited but is defined by a spectral-type cutoff. We also conclude that magnitude-limited investigations are biased towards larger binary fractions. Conclusions: Using the multiplicity properties of the O stars in the Tarantula region and simple evolutionary considerations, we estimate that over 50% of the current O star population will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars. Based on observations collected at the European Southern Observatory under program ID 182.D-0222.Full Tables 1-3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A107Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.
2017-12-01
We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.
MUCHFUSS: Status and Highlights
NASA Astrophysics Data System (ADS)
Geier, S.; Kupfer, T.; Barlow, B.; Schaffenroth, V.; Fürst, F.; Heuser, C.; Ziegerer, E.; Heber, U.; Marsh, T.; Maxted, P.; Östensen, R.; O'Toole, S.; Gänsicke, B.; Napiwotzki, R.
2014-04-01
The MUCHFUSS project aims at finding sdBs with massive compact companions. Here we report on the current status of our spectroscopic and photometric follow-up campaigns and present some highlight results. We derive orbital solutions of seven new sdB binaries and estimate the fraction of close substellar companions to sdBs. Finally, we present an ultracompact sdB+WD binary as possible progenitor of a thermonuclear supernova and connect it to the only known hypervelocity subdwarf star, which might be the donor remnant of such an event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Sweta; Nelemans, Gijs, E-mail: s.shah@astro.ru.nl
The space-based gravitational wave (GW) detector, evolved Laser Interferometer Space Antenna (eLISA) is expected to observe millions of compact Galactic binaries that populate our Milky Way. GW measurements obtained from the eLISA detector are in many cases complimentary to possible electromagnetic (EM) data. In our previous papers, we have shown that the EM data can significantly enhance our knowledge of the astrophysically relevant GW parameters of Galactic binaries, such as the amplitude and inclination. This is possible due to the presence of some strong correlations between GW parameters that are measurable by both EM and GW observations, for example, themore » inclination and sky position. In this paper, we quantify the constraints in the physical parameters of the white-dwarf binaries, i.e., the individual masses, chirp mass, and the distance to the source that can be obtained by combining the full set of EM measurements such as the inclination, radial velocities, distances, and/or individual masses with the GW measurements. We find the following 2σ fractional uncertainties in the parameters of interest. The EM observations of distance constrain the chirp mass to ∼15%-25%, whereas EM data of a single-lined spectroscopic binary constrain the secondary mass and the distance with factors of two to ∼40%. The single-line spectroscopic data complemented with distance constrains the secondary mass to ∼25%-30%. Finally, EM data on double-lined spectroscopic binary constrain the distance to ∼30%. All of these constraints depend on the inclination and the signal strength of the binary systems. We also find that the EM information on distance and/or the radial velocity are the most useful in improving the estimate of the secondary mass, inclination, and/or distance.« less
Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.
We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of amore » white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.« less
SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fu, Hai; Steffen, Joshua L.; Gross, Arran C.; Dai, Y. Sophia; Isbell, Jacob W.; Lin, Lihwai; Wake, David; Xue, Rui; Bizyaev, Dmitry; Pan, Kaike
2018-04-01
We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s‑1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.
Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey
NASA Astrophysics Data System (ADS)
Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.
2017-09-01
We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.
Physical properties of the WR stars in Westerlund 1
NASA Astrophysics Data System (ADS)
Rosslowe, C. K.; Crowther, P. A.; Clark, J. S.; Negueruela, I.
The Westerlund 1 (Wd1) cluster hosts a rich and varied collection of massive stars. Its dynamical youth and the absence of ongoing star formation indicate a coeval population. As such, the simultaneous presence of both late-type supergiants and Wolf-Rayet stars has defied explanation in the context of single-star evolution. Observational evidence points to a high binary fraction, hence this stellar population offers a robust test for stellar models accounting for both single-star and binary evolution. We present an optical to near-IR (VLT & NTT) spectroscopic analysis of 22 WR stars in Wd 1, delivering physical properties for the WR stars. We discuss how these differ from the Galactic field population, and how they may be reconciled with the predictions of single and binary evolutionary models.
NASA Astrophysics Data System (ADS)
Karami, K.; Mohebi, R.
2007-08-01
We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o-c). Using the measured radial velocity data of the four double lined spectroscopic binary systems, AI Phe, GM Dra, HD 93917 and V502 Oph, we derived both the orbital and combined spectroscopic elements of these systems. Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhé.
Radial Velocities of 41 Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.
2017-12-01
Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.
2008-08-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.
2009-02-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.
2008-02-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
A detached stellar-mass black hole candidate in the globular cluster NGC 3201
NASA Astrophysics Data System (ADS)
Giesers, Benjamin; Dreizler, Stefan; Husser, Tim-Oliver; Kamann, Sebastian; Anglada Escudé, Guillem; Brinchmann, Jarle; Carollo, C. Marcella; Roth, Martin M.; Weilbacher, Peter M.; Wisotzki, Lutz
2018-03-01
As part of our massive spectroscopic survey of 25 Galactic globular clusters with MUSE, we performed multiple epoch observations of NGC 3201 with the aim of constraining the binary fraction. In this cluster, we found one curious star at the main-sequence turn-off with radial velocity variations of the order of 100 km s- 1, indicating the membership to a binary system with an unseen component since no other variations appear in the spectra. Using an adapted variant of the generalized Lomb-Scargle periodogram, we could calculate the orbital parameters and found the companion to be a detached stellar-mass black hole with a minimum mass of 4.36 ± 0.41 M⊙. The result is an important constraint for binary and black hole evolution models in globular clusters as well as in the context of gravitational wave sources.
The observed distribution of spectroscopic binaries from the Anglo-Australian Planet Search
NASA Astrophysics Data System (ADS)
Jenkins, J. S.; Díaz, M.; Jones, H. R. A.; Butler, R. P.; Tinney, C. G.; O'Toole, S. J.; Carter, B. D.; Wittenmyer, R. A.; Pinfield, D. J.
2015-10-01
We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the systems potentially contain brown-dwarf companions while another two have eccentricities that place them in the extreme upper tail of the eccentricity distribution for binaries with periods less than 1000 d. For periods up to 12 years, the distribution of our stellar companion masses is fairly flat, mirroring that seen in other radial velocity surveys, and contrasts sharply with the current distribution of candidate planetary masses, which rises strongly below 10 MJ. When looking at a larger sample of binaries that have FGK star primaries as a function of the primary star metallicity, we find that the distribution maintains a binary fraction of ˜43 ± 4 per cent between -1.0 and +0.6 dex in metallicity. This is in stark contrast to the giant exoplanet distribution. This result is in good agreement with binary formation models that invoke fragmentation of a collapsing giant molecular cloud, suggesting that this is the dominant formation mechanism for close binaries and not fragmentation of the primary star's remnant protoplanetary disc.
Spectroscopic obit for the eclipsing binary IQ Persei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, A.
1975-10-01
Spectroscopic orbital elements are derived for the eclipsing binary IQ Per. Faint secondary lines are detected, and a mass ratio and individual masses are inferred. The components are found to be on the main sequence, and the system is detached. (auth)
ORBITAL SOLUTIONS FOR TWO YOUNG, LOW-MASS SPECTROSCOPIC BINARIES IN OPHIUCHUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosero, V.; Prato, L.; Wasserman, L. H.
2011-01-15
We report the orbital parameters for ROXR1 14 and RX J1622.7-2325Nw, two young, low-mass, and double-lined spectroscopic binaries recently discovered in the Ophiuchus star-forming region. Accurate orbital solutions were determined from over a dozen high-resolution spectra taken with the Keck II and Gemini South telescopes. These objects are T Tauri stars with mass ratios close to unity and periods of {approx}5 and {approx}3 days, respectively. In particular, RX J1622.7-2325Nw shows a non-circularized orbit with an eccentricity of 0.30, higher than any other short-period pre-main-sequence (PMS) spectroscopic binary known to date. We speculate that the orbit of RX J1622.7-2325Nw has notmore » yet circularized because of the perturbing action of a {approx}1'' companion, itself a close visual pair. A comparison of known young spectroscopic binaries (SBs) and main-sequence (MS) SBs in the eccentricity-period plane shows an indistinguishable distribution of the two populations, implying that orbital circularization occurs in the first 1 Myr of a star's lifetime. With the results presented in this paper we increase by {approx}4% the small sample of PMS spectroscopic binary stars with known orbital elements.« less
Hiding in Plain Sight: The Low Mass Helium Star Companion of EL CVn
NASA Astrophysics Data System (ADS)
Gies, Douglas
2016-10-01
Binary stars with orbital periods of a decade or less are destined to interact during their evolution. The mass donor star among intermediate binaries may be stripped of its envelope by mass transfer to reveal its helium core. In cases that avoid merger, the low mass helium star will remain in a binary orbit but be lost in the glare of the mass gainer star.Thanks to photometric time series from Kepler and WASP, we now know of 27 such systems that are oriented to produce mutual eclipses. Althoughthe helium star companions are too small and faint in the optical bandfor spectroscopic detection, they contribute a larger fraction of the total flux in the ultraviolet. HST/COS measurements of one long period system, KOI-81, successfully detected the helium star's spectrum in the far-ultraviolet, leading to estimates of its mass and temperature. Here we propose to obtain new HST/COS FUV spectra of the prototype of this class of evolved binaries, EL CVn, and to determine the mass and physical properties of a star that barely escaped a merger.
Spectroscopic monitoring of bright A-F type candidate hybrid stars discovered by the Kepler mission
NASA Astrophysics Data System (ADS)
Lampens, Patricia; Frémat, Y.; Vermeylen, Lore; De Cat, Peter; Dumortier, Louis; Sódor, Ádám; Sharka, Marek; Bognár, Zsófia
2018-04-01
We report on a study of 250 optical spectra for 50 bright A/F-type candidate hybrid pulsating stars from the Kepler field. Most of the spectra have been collected with the high-resolution spectrograph HERMES attached to the Mercator telescope, La Palma. We determined the radial velocities (RVs), projected rotational velocities, fundamental atmospheric parameters and provide a classification based on the appearance of the cross-correlation profiles and the behaviour of the RVs with time in order to find true hybrid pulsators. Additionally, we also detected new spectroscopic binary and multiple systems in our sample and determined the fraction of spectroscopic systems. In order to be able to extend this investigation to the fainter A-F type candidate hybrid stars, various high-quality spectra collected with 3-4 m sized telescopes suitably equipped with a high-resolution spectrograph and furthermore located in the Northern hemisphere would be ideal. This programme could be done using the new instruments installed at the Devasthal Observatory.
Chen, Z H; Yeung, S Y; Li, H; Qian, J C; Zhang, W J; Li, Y Y; Bello, I
2012-05-21
ZnO/Zn(1-x)Pb(x)Se core-shell nanowires (NWs) have been synthesized by a solution based surface ion transfer method at various temperatures. The energy dispersive spectroscopic (EDS) mapping of single NWs suggests that the Zn, Pb and Se atoms are uniformly distributed in their shell layers. The ternary Zn(1-x)Pb(x)Se layers with tunable bandgaps extend the band-edge of optical absorption from 450 nm to 700 nm contrasting with the binary ZnSe layers. The ultraviolet photoelectron spectroscopic (UPS) analysis reveals a transition from the type I to type II band alignment when the x fraction decreases from 0.66 to the value of 0.36 in the nanoshell layers. This quantitative investigation of electronic energy levels at ZnO and Zn(1-x)Pb(x)Se interfaces indicates that the proper type II band alignment is well suited for photovoltaic energy conversion. The photovoltaic cells comprising a ZnO/Zn(1-x)Pb(x)Se nano-heterojunction with the optimized Pb content are expected to be more efficient than the devices sensitized by binary ZnSe or PbSe.
Thirty New Low-mass Spectroscopic Binaries
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.; Hebb, Leslie; Liu, Michael C.; Reid, I. Neill; Collier Cameron, Andrew
2010-06-01
As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P rot to determine the true orbital parameters. For those with no P rot, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope and by the WASP Consortium. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii. The WASP Consortium consists of astronomers primarily from the Queen's University Belfast, St Andrews, Keele, Leicester, The Open University, Isaac Newton Group La Palma, and Instituto de Astrofísica de Canarias. The SuperWASP Cameras were constructed and operated with funds made available from Consortium Universities and the UK's Science and Technology Facilities Council.
NASA Astrophysics Data System (ADS)
Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.
2017-02-01
Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z 1 to 2 which are estimated to have Z 0.5 Z⊙. The log of observations and RV measurements for all targets are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A84
New Spectroscopic Solution of the Eclipsing Binary HX Vel A
NASA Astrophysics Data System (ADS)
Sürgit, D.; Erdem, A.; Özkardeş, B.; Butland, R.; Budding, E.
2015-07-01
We present a preliminary analysis of new spectroscopic observations of the southern binary HX Vel A. High-resolution spectroscopic observations were made at the Mt. John University Observatory in 2014. Radial velocities for HX Vel A were determined from the Gaussian profile-fitting method. The Keplerian radial velocity model gives the close binary mass ratio as 0.57±0.06. The resulting orbital elements are a1sin i=0.0086 ±0.0003 au, a2sin i=0.0151 ±0.0003 au, M1 sin3i =0.887 ±0.046 M⊙, and M2 sin3i =0.504 ±0.032 M⊙.
NASA Astrophysics Data System (ADS)
Reid, Piper
2013-01-01
A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.
Radial Velocity Studies of Close Binary Stars. XI.
NASA Astrophysics Data System (ADS)
Pribulla, Theodor; Rucinski, Slavek M.; Lu, Wenxian; Mochnacki, Stefan W.; Conidis, George; Blake, R. M.; DeBond, Heide; Thomson, J. R.; Pych, Wojtek; Ogłoza, Waldemar; Siwak, Michal
2006-08-01
Radial-velocity measurements and sine-curve fits to orbital radial velocity variations are presented for 10 close binary systems: DU Boo, ET Boo, TX Cnc, V1073 Cyg, HL Dra, AK Her, VW LMi, V566 Oph, TV UMi, and AG Vir. With this contribution, the David Dunlap Observatory program has reached the point of 100 published radial velocity orbits. The radial velocities have been determined using an improved fitting technique that uses rotational profiles to approximate individual peaks in broadening functions. Three systems, ET Boo, VW LMi, and TV UMi, are found to be quadruple, while AG Vir appears to be a spectroscopic triple. ET Boo, a member of a close visual binary with Pvis=113 yr, was previously known to be a multiple system, but we show that the second component is actually a close, noneclipsing binary. The new observations have enabled us to determine the spectroscopic orbits of the companion, noneclipsing pairs in ET Boo and VW LMi. A particularly interesting case is VW LMi, for which the period of the mutual revolution of the two spectroscopic binaries is only 355 days. While most of the studied eclipsing pairs are contact binaries, ET Boo is composed of two double-lined detached binaries, and HL Dra is a single-lined detached or semidetached system. Five systems of this group have been observed spectroscopically before: TX Cnc, V1073 Cyg, AK Her (as a single-lined binary), V566 Oph, and AG Vir, but our new data are of much higher quality than in the previous studies. Based on data obtained at the David Dunlap Observatory, University of Toronto, Canada.
An accessible echelle pipeline and its application to a binary star
NASA Astrophysics Data System (ADS)
Carmichael, Theron; Johnson, John Asher
2018-01-01
Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.
VizieR Online Data Catalog: M4 Core Project with HST. Radial velocities (Malavolta+, 2015)
NASA Astrophysics Data System (ADS)
Malavolta, L.; Piotto, G.; Bedin, L. R.; Sneden, C.; Nascimbeni, V.; Sommariva, V.
2016-07-01
The spectra for our project were originally used by Sommariva et al. (2009A&A...493..947S) to study the internal velocity dispersion of M4 and to search for spectroscopic binaries. A total of 2771 stars covering colour-magnitude diagram (CMD) positions from the upper RGB to about 1mag fainter than the main-sequence turnoff (TO) luminosity were observed between 2003 and 2009, including 306 new spectra obtained in 2009 and targeting MS stars already observed in the previous epochs. Determination of the M 4 velocity dispersion and binary star fraction were the prime motivators for obtaining these data. Therefore nearly all stars were observed at least twice, and three or more spectra were obtained for nearly 40 per cent of the sample. (2 data files).
RADIAL VELOCITY VARIABILITY OF FIELD BROWN DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prato, L.; Mace, G. N.; Rice, E. L.
2015-07-20
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ∼ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ∼2 km s{sup −1}, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties,more » and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.« less
CAFÉ-BEANS: An exhaustive hunt for high-mass binaries
NASA Astrophysics Data System (ADS)
Negueruela, I.; Maíz-Apellániz, J.; Simón-Díaz, S.; Alfaro, E. J.; Herrero, A.; Alonso, J.; Barbá, R.; Lorenzo, J.; Marco, A.; Monguió, M.; Morrell, N.; Pellerin, A.; Sota, A.; Walborn, N. R.
2015-05-01
CAFÉ-BEANS is an on-going survey running on the 2.2 m telescope at Calar Alto. For more than two years, CAFÉ-BEANS has been collecting high-resolution spectra of early-type stars with the aim of detecting and characterising spectroscopic binaries. The main goal of this project is a thorough characterisation of multiplicity in high-mass stars by detecting all spectroscopic and visual binaries in a large sample of Galactic O-type stars, and solving their orbits. Our final objective is eliminating all biases in the high-mass-star IMF created by undetected binaries.
Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf
NASA Technical Reports Server (NTRS)
Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna
1993-01-01
We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.
Radial velocity measurements of the chromospherically-active stars (2): HD 28591 = V492 Per
NASA Technical Reports Server (NTRS)
Dadonas, V.; Sperauskas, J.; Fekel, F. C.; Morton, M. D.
1994-01-01
From two sets of the spectroscopic observations covering a ten year period we have obtained 59 radial velocities of the chromospherically-active star HD 28591 = V492 Per. It is a G9III single-lined spectroscopic binary with a period of 21.2910 days and a circular orbit. The upsilon sin i of 24.6 km/sec, results in a minimum radius 10.3 solar radii. We estimate a distance of 165 +/- 40 pc and an orbital inclination of 65 +/- 25 degrees. The secondary is probably a mid to late-type K dwarf. The star is brighter than the limiting magnitude of the Bright Star Catalogue. The mean photometric and the orbital periods are identical within their uncertainties. Since the star fills a significant fraction of its Roche lobe, about 62%, the photometric light curve may be the result of starspots and a modest ellipticity effect.
WIYN OPEN CLUSTER STUDY. XXXVI. SPECTROSCOPIC BINARY ORBITS IN NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.
2009-04-15
We present 98 spectroscopic binary orbits resulting from our ongoing radial velocity survey of the old (7 Gyr) open cluster NGC 188. All but 13 are high-probability cluster members based on both radial velocity and proper motion membership analyses. Fifteen of these member binaries are double lined. Our stellar sample spans a magnitude range of 10.8 {<=}V{<=} 16.5 (1.14-0.92 M {sub sun}) and extends spatially to 17 pc ({approx}13 core radii). All of our binary orbits have periods ranging from a few days to on the order of 10{sup 3} days, and thus are hard binaries that dynamically power themore » cluster. For each binary, we present the orbital solutions and place constraints on the component masses. Additionally, we discuss a few binaries of note from our sample, identifying a likely blue straggler-blue straggler binary system (7782), a double-lined binary with a secondary star which is underluminous for its mass (5080), two potential eclipsing binaries (4705 and 5762), and two binaries which are likely members of a quadruple system (5015a and 5015b)« less
WNL Stars - the Most Massive Stars in the Universe?
NASA Astrophysics Data System (ADS)
Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.
2001-08-01
We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.
WNLh Stars - The Most Massive Stars in the Universe?
NASA Astrophysics Data System (ADS)
Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric
2002-08-01
We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.
Using large spectroscopic surveys to test the double degenerate model for Type Ia supernovae
NASA Astrophysics Data System (ADS)
Breedt, E.; Steeghs, D.; Marsh, T. R.; Gentile Fusillo, N. P.; Tremblay, P.-E.; Green, M.; De Pasquale, S.; Hermes, J. J.; Gänsicke, B. T.; Parsons, S. G.; Bours, M. C. P.; Longa-Peña, P.; Rebassa-Mansergas, A.
2017-07-01
An observational constraint on the contribution of double degenerates to Type Ia supernovae requires multiple radial velocity measurements of ideally thousands of white dwarfs. This is because only a small fraction of the double degenerate population is massive enough, with orbital periods short enough, to be considered viable Type Ia progenitors. We show how the radial velocity information available from public surveys such as the Sloan Digital Sky Survey can be used to pre-select targets for variability, leading to a 10-fold reduction in observing time required compared to an unranked or random survey. We carry out Monte Carlo simulations to quantify the detection probability of various types of binaries in the survey and show that this method, even in the most pessimistic case, doubles the survey size of the largest survey to date (the SPY Survey) in less than 15 per cent of the required observing time. Our initial follow-up observations corroborate the method, yielding 15 binaries so far (eight known and seven new), as well as orbital periods for four of the new binaries.
NASA Astrophysics Data System (ADS)
Karami, K.; Mohebi, R.; Soltanzadeh, M. M.
2008-11-01
Using measured radial velocity data of nine double lined spectroscopic binary systems NSV 223, AB And, V2082 Cyg, HS Her, V918 Her, BV Dra, BW Dra, V2357 Oph, and YZ Cas, we find corresponding orbital and spectroscopic elements via the method introduced by Karami and Mohebi (Chin. J. Astron. Astrophys. 7:558, 2007a) and Karami and Teimoorinia (Astrophys. Space Sci. 311:435, 2007). Our numerical results are in good agreement with those obtained by others using more traditional methods.
NASA Astrophysics Data System (ADS)
dos Santos, Leonardo A.; Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Spina, Lorenzo; Alves-Brito, Alan; Dreizler, Stefan; Ramírez, Iván; Asplund, Martin
2017-12-01
Previous studies on the rotation of Sun-like stars revealed that the rotational rates of young stars converge towards a well-defined evolution that follows a power-law decay. It seems, however, that some binary stars do not obey this relation, often by displaying enhanced rotational rates and activity. In the Solar Twin Planet Search program, we observed several solar twin binaries, and found a multiplicity fraction of 42 per cent ± 6 per cent in the whole sample; moreover, at least three of these binaries (HIP 19911, HIP 67620 and HIP 103983) clearly exhibit the aforementioned anomalies. We investigated the configuration of the binaries in the program, and discovered new companions for HIP 6407, HIP 54582, HIP 62039 and HIP 30037, of which the latter is orbited by a 0.06 M⊙ brown dwarf in a 1 m long orbit. We report the orbital parameters of the systems with well-sampled orbits and, in addition, the lower limits of parameters for the companions that only display a curvature in their radial velocities. For the linear trend binaries, we report an estimate of the masses of their companions when their observed separation is available, and a minimum mass otherwise. We conclude that solar twin binaries with low-mass stellar companions at moderate orbital periods do not display signs of a distinct rotational evolution when compared to single stars. We confirm that the three peculiar stars are double-lined binaries, and that their companions are polluting their spectra, which explains the observed anomalies.
NASA Astrophysics Data System (ADS)
Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Morris, Mark R.; Do, Tuan; Ghez, Andrea
2017-09-01
We used 4-yr baseline Hubble Space Telescope/Wide Field Camera 3 IR observations of the Galactic Centre in the F153M band (1.53 μm) to identify variable stars in the central ∼2.3 arcmin × 2.3 arcmin field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33 070 stars. For 36 of the latter ones, we also derived their periods (<3 d). Our catalogue not only confirms bright long period variables and massive eclipsing binaries identified in previous works but also contains many newly recognized dim variable stars. For example, we found δ Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalogue with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalogue will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.
NASA Technical Reports Server (NTRS)
Gies, Douglas R.; Mason, Brian D.; Hartkopf, William I.; Mcalister, Harold A.; Frazin, Richard A.; Hahula, Michael E.; Penny, Laura R.; Thaller, Michelle L.; Fullerton, Alexander W.; Shara, Michael M.
1993-01-01
We report on the discovery of a speckle binary companion to the O7 V (f) star 15 Monocerotis. A study of published radial velocities in conjunction with new measurements from Kitt Peak National Observatory (KPNO) and IUE suggests that the star is also a spectroscopic binary with a period of 25 years and a large eccentricity. Thus, 15 Mon is the first O star to bridge the gap between the spectroscopic and visual separation regimes. We have used the star's membership in the cluster NGC 2264 together with the cluster distance to derive masses of 34 and 19 solar mass for the primary and secondary, respectively. Several of the He I line profiles display a broad shallow component which we associate with the secondary, and we estimate the secondary's classification to be O9.5 Vn. The new orbit leads to several important predictions that can be tested over the next few years.
Binary Star Fractions from the LAMOST DR4
NASA Astrophysics Data System (ADS)
Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua
2018-05-01
Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.
NASA Astrophysics Data System (ADS)
Cai, K.; Durisen, R. H.; Deliyannis, C. P.
2003-05-01
Binary stars in Galactic open clusters are difficult to detect without spectroscopic observations. However, from theoretical isochrones, we find that binary stars with different primary masses M1 and mass ratios q = M2/M1 have measurably different behaviors in various UBVRI color-magnitude and color-color diagrams. By using appropriate Yonsei-Yale Isochrones, in the best cases we can evaluate M1 and q to within about +/- 0.1Msun and +/- 0.1, respectively, for individual proper-motion members that have multiple WOCS UBVRI measurements of high quality. The cluster metallicity, reddening, and distance modulus and best-fit isochrones are determined self-consistently from the same WOCS data. This technique allows us to detect binaries and determine their mass ratios in open clusters without time-consuming spectrocopy, which is only sensitive to a limited range of binary separations. We will report results from this photometric technique for WOCS cluster M35 for M1 in the range of 1 to 4 Msun. For the lower main sequence, we used the empirical colors to reduce the error introduced by the problematic color transformations of Y2 Isochrones. In addition to other sources of uncertainty, we have considered effects of rapid rotation and pulsational instability. We plan to apply our method to other WOCS clusters in the future and explore differences in binary fractions and/or mass ratio distributions as a function of cluster age, metallicity, and other parameters.
NASA Astrophysics Data System (ADS)
Raghavan, Deepak; McAlister, H. A.
2007-12-01
We present a visual orbit for the spectroscopic binary, HD 146361, derived from observations at the CHARA Array's long baseline interferometer. The 26 calibrated visibility measurements obtained during May - July 2007 allow us to determine a full orbital solution and component masses for this known spectroscopic binary. The HD 146361 pair has a circular orbit of nearly equal-mass components with a good quality double-lined spectroscopic orbit (Dave Latham, private communication). We have adopted the well-constrained spectroscopic orbital elements and fit the angular semi-major axis, inclination, and longitude of nodes to the binary visibility curve equations. Using these elements and the Hipparcos parallax of 46.11 ± 0.98 mas, we obtain component masses of 1.046 ± 0.084 Msol and 1.000 ± 0.080 Msol. We have planned further observations of this system to reduce the mass uncertainties and may present an updated result at the meeting. This is the shortest period spectroscopic binary resolved as of yet with an interferometer. This work is being done in the context of Raghavan's thesis project, which is a survey of solar-type stars in the solar neighborhood. By completing this survey, we hope to build a comprehensive view of the environments around solar-type stars and improve our understanding of their habitats by analyzing their companions of all types - stars, brown dwarfs, and planets. We have chosen an unbiased, volume-limited sample of 455 primary stars as representatives of the solar-type stars in our Galaxy. Our effort is a modern update to the seminal work of Duquennoy & Mayor (1991) and will contribute to the broader subjects of stellar evolution and planetary system formation, evolution, and stability. Research at the CHARA Array is supported by the College of Arts and Sciences at Georgia State University and by the National Science Foundation through NSF Grant AST 0606958.
NASA Astrophysics Data System (ADS)
Huyskens, P.; Kapuku, F.; Colemonts-Vandevyvere, C.
1990-09-01
In liquids the partners of H bonds constantly change. As a consequence the entities observed by IR spectroscopy are not the same as those considered for thermodynamic properties. For the latter, the H-bonds are shared by all the molecules. The thermodynamic "monomeric fraction", γ, the time fraction during which an alcohol molecule is vaporizable, is the square root of the spectroscopic monomeric fraction, and is the fraction of molecules which, during a time interval of 10 -14 s, have their hydroxylic proton and their lone pairs free. The classical thermodynamic treatments of Mecke and Prigogine consider the spectroscopic entities as real thermodynamic entities. Opposed to this, the mobile order theory considers all the formal molecules as equal but with a reduction of the entropy due to the fact that during a fraction 1-γ of the time, the OH proton follows a neighbouring oxygen atom on its journey through the liquid. Mobile order theory and classic multicomponent treatment lead, in binary mixtures of the associated substance A with the inert substance S, to expressions of the chemical potentials μ A and μ S that are fundamentally different. However, the differences become very important only when the molar volumes overlineVS and overlineVA differ by a factor larger than 2. As a consequence the equations of the classic theory can still fit the experimental vapour pressure data of mixtures of liquid alcohols and liquid alkanes. However, the solubilities of solid alkanes in water for which overlineVS > 3 overlineVA are only correctly predicted by the mobile order theory.
The first orbital solution for the massive colliding-wind binary HD 93162 (≡ WR 25)
NASA Astrophysics Data System (ADS)
Gamen, R.; Gosset, E.; Morrell, N. I.; Niemela, V. S.; Sana, H.; Nazé, Y.; Rauw, G.; Barbá, R. H.; Solivella, G. R.
2008-08-01
Since the discovery, with EINSTEIN, of strong X-ray emission associated with HD 93162, this object was recurrently predicted by some authors to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have never been found so far. We spectroscopically monitored this object in order to investigate its possible variability and to provide an answer to the above-mentioned discordance. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched for periodicities. For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR 25 is actually an eccentric binary system with a probable period of about 208 days.
NASA Astrophysics Data System (ADS)
Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.
2016-10-01
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.
s-Process in low metallicity Pb stars.
NASA Astrophysics Data System (ADS)
Bisterzo, S.; Gallino, R.; Straniero, O.; Ivans, I. I.; Käppeler, F.; Aoki, W.
We consider a sample of very metal-poor, C-rich, s-rich and lead-rich stars observed at high-resolution spectroscopy, and some recent spectroscopic data of C+s-rich stars obtained at moderate resolution. The spectroscopic data of these stars are interpreted with AGB theoretical models of different 13C-pocket efficiencies, initial mass and initial r-enrichment. When lead is not measured we give our theoretical prediction. The observed stars are not on the AGB phase, but are main sequence or giant stars. They acquired the C and s enrichments by mass transfer in a close binary system from the more massive companion while on the AGB (now a white dwarf). A considerable fraction of the stars show both high s and r enrichments. To explain the s+r enriched stars we assume a parental cloud already enriched in r-elements. The measurement of Nb is an indicator of an extrinsic AGB in a binary system. The intrinsic indicator [hs/ls] constrains the initial mass, while [Pb/hs] and [Pb/ls] are a measure of the s-process efficiency. The apparent discrepancies of C and N abundances may be reconciled by assuming a strong cool bottom process occurring during the AGB. An important primary production of light elements, from Ne to Si, increasing with the star mass, is predicted for AGB models at very low metallicity, induced by n capture on primary 22Ne and its progenies.
Karthick, N K; Kumbharkhane, A C; Joshi, Y S; Mahendraprabu, A; Shanmugam, R; Elangovan, A; Arivazhagan, G
2017-05-05
Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13 C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) CH⋯OC (EA), (EA) methylene CH⋯π electrons (CBZ) and (EA) methyl CH⋯Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (ε E ) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.
2017-05-01
Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.
NASA Technical Reports Server (NTRS)
Gies, Douglas R.; Wiggs, Michael S.
1991-01-01
AO Cas, a short-period, double-lined spectroscopic binary, is studied as part of a search for spectroscopic evidence of colliding stellar winds in binary systems of O-type stars. High S/N ratio spectra of the H-alpha and He I 6678-A line profiles are presented, and their orbital-phase-related variations are examined in order to derive the location and motions of high-density circumstellar gas in the system. These profile variations are compared with those observed in the UV stellar wind lines in IUE archival spectra. IUE spectra are also used to derive a system mass ratio by constructing cross-correlation functions of a single-lined phase spectrum with each of the other spectra. The resulting mass ratio is consistent with the rotational line broadening of the primary star, if the primary is rotating synchronously with the binary system. The best-fit models were found to have an inclination of 61.1 deg + or - 3.0 deg and have a primary which is close to filling its critical Roche lobe.
Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST
NASA Astrophysics Data System (ADS)
Lee, Chien-Hsiu; Lin, Chien-Cheng
2017-02-01
Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.
The first orbital solution for the massive colliding-wind binary HD 93162 (≡WR 25)
NASA Astrophysics Data System (ADS)
Gamen, R.; Gosset, E.; Morrell, N.; Niemela, V.; Sana, H.; Nazé, Y.; Rauw, G.; Barbá, R.; Solivella, G.
2006-12-01
Context: Since the discovery, with the EINSTEIN satellite, of strong X-ray emission associated with HD 93162 (≡WR 25), this object has been predicted to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have yet to be found. Aims: We spectroscopically monitored this object to investigate its possible variability to address this discordance. Methods: We compiled the largest available radial-velocity data set for this star to look for variations that might be due to binary motion. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched these radial velocities for periodicities using different numerical methods. Results: For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR 25 is an eccentric binary system with a probable period of about 208 days.
V342 Andromedae B is an eccentric-orbit eclipsing binary
NASA Astrophysics Data System (ADS)
Dimitrov, W.; Kamiński, K.; Lehmann, H.; Ligęza, P.; Fagas, M.; Bagińska, P.; Kwiatkowski, T.; Bąkowska, K.; Kowalczyk, A.; Polińska, M.; Bartczak, P.; Przybyszewska, A.; Kruszewski, A.; Kurzawa, K.; Schwarzenberg-Czerny, A.
2015-03-01
We present a photometric and spectroscopic study of the visual binary V342 Andromedae. Visual components of the system have angular separations of 3 arcseconds. We obtained two spectroscopic data sets. An examination of both the A and B component spectra reveals that the B component is a spectroscopic binary with an eccentric orbit. The orbital period, taken from the Hipparcos Catalog, agrees with the orbital period of the B component measured spectroscopically. We also collected a new set of photometric measurements. The argument of periastron is close to 270° and the orbit eccentricity is not seen in our photometric data. About five years after the first spectroscopic observations, a new set of spectroscopic data was obtained. We analysed the apsidal motion, but we did not find any significant changes in the orbital orientation. A Wilson-Devinney model was calculated based on the photometric and the radial velocity curves. The result shows two very similar stars with masses M1 = 1.27 ± 0.01 M⊙, M2 = 1.28 ± 0.01 M⊙, respectively. The radii are R1 = 1.21 ± 0.01 R⊙, R2 = 1.25 ± 0.01 R⊙, respectively. Radial velocity measurements of component A, the most luminous star in the system, reveal no significant periodic variations. We calculated the time of the eclipsing binary orbit's circularization, which is about two orders of magnitude shorter than the estimated age of the system. The discrepancies in the age estimation can be explained by the Kozai effect induced by the visual component A. The atmospheric parameters and the chemical abundances for the eclipsing pair, as well as the LSD profiles for both visual components, were calculated from two high-resolution, well-exposed spectra obtained on the 2-m class telescope. Based on spectroscopy obtained at the David Dunlap Observatory, University of Toronto, Canada, Poznań Spectroscopic Telescope 1, Poland and Thüringer Landessternwarte, Tautenburg, Germany.
Spectroscopic Binaries: Towards the 100-Year Time Domain
NASA Astrophysics Data System (ADS)
Griffin, R. F.
2012-04-01
Good measurements of visual binary stars (position angle and angular separation) have been made for nearly 200 years. Radial-velocity observers have exhibited less patience; when the orbital periods of late-type stars in the catalogue published in 1978 are sorted into bins half a logarithmic unit wide, the modal bin is the one with periods between 3 and 10 days. The same treatment of the writer's orbits shows the modal bin to be the one between 1000 and 3000 days. Of course the spectroscopists cannot quickly catch up the 200 years that the visual observers have been going, but many spectroscopic orbits with periods of decades, and a few of the order of a century, have been published. Technical developments have also been made in `visual' orbit determination, and orbits with periods of only a few days have been determined for certain `visual' binaries. In principle, therefore, the time domains of visual and spectroscopic binaries now largely overlap. Overlap is essential, as it is only by combining both techniques that orbits can be determined in three dimensions, as is necessary for the important objective of determining stellar masses accurately. Nevertheless the actual overlap-objects with accurate measurements by both techniques-remains disappointingly small. There have, however, been unforeseen benefits from the observation of spectroscopic binaries that have unconventionally long orbital periods, not a few of which have proved to be interesting and significant objects in their own right. It has also been shown that binary membership is more common than was once thought (orbits have even been determined for some of the IAU standard radial-velocity stars!); a recent study of the radial velocities of K giants that had been monitored for 45 years found a binary incidence of 30%, whereas a figure of 13.7% was given as recently as 2005 for a similar group.
Interactions in Massive Colliding Wind Binaries
NASA Technical Reports Server (NTRS)
Corcoran, M.
2012-01-01
The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.
Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E
2014-08-14
The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.
Supergiant fast X-ray transients with Swift: Spectroscopic and temporal properties
NASA Astrophysics Data System (ADS)
Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Farinelli, R.; Ceccobello, C.; Vercellone, S.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.
2012-12-01
Supergiant fast X-ray transients (SFXTs) are a class of high-mass X-ray binaries with possible counterparts in the high energy gamma rays. The Swift SFXT Project1 has conducted a systematic investigation of the properties of SFTXs on timescales ranging from minutes to years and in several intensity states (from bright flares, to intermediate intensity states, and down to almost quiescence). We also performed broad-band spectroscopy of outbursts, and intensity-selected spectroscopy outside of outbursts. We demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we assessed the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present the most recent results from our investigation. The spectroscopic and, most importantly, timing properties of SFXTs we have uncovered with Swift will serve as a guide in search for the high energy emission from these enigmatic objects.
Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes
NASA Astrophysics Data System (ADS)
Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.
2017-08-01
Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is < 10%. Here we investigate a case in which BDs in Taurus formed dominantly, but not exclusively, through peripheral fragmentation, which naturally results in small binary fractions. The decline of the binary frequency in the transition region between star-like formation and peripheral formation is modelled. Methods: We employed a dynamical population synthesis model in which stellar binary formation is universal with a large binary fraction close to unity. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), their own orbital parameter distributions for binaries, and small binary fractions, according to observations and expectations from smoothed particle hydrodynamics (SPH) and grid-based computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldoretta, E. J.; Gies, D. R.; Henry, T. J.
2015-01-01
We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additionalmore » targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.« less
Effect of binary fraction on color-magnitude diagram of NGC 1904
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Deng, Yangyang
2018-05-01
The age of a southern globular cluster in Milky Way, NGC 1904, was shown to be larger than the typical age of the universe, around 13.7 Gyr, by some photometric studies which assumed all stars as single stars. Besides the uncertainties in photometry, isochrone and fitting technique, the neglect of binary stars possibly distorted the result. We study the effect of binary fraction on the color-magnitude diagram (CMD) of NGC 1904, via a new tool for CMD studies, Powerful CMD, which can determine binary fraction, age, metallicity, distance modulus, color excess, rotating star fraction and star formation history simultaneously. We finally obtain the youngest age of 14.1±2.1 Gyr with a zero-age binary fraction of 60 percent for cluster NGC 1904. The result is consistent with the age of the universe. Although our result suggests that binary fraction affects the determination of age slightly, it can improve the fitting to observed CMD, in particular blue stragglers. This suggests us to consider the effect of binaries in the studies of star clusters.
30+ New & Known SB2s in the SDSS-III/APOGEE M Dwarf Ancillary Science Project Sample
NASA Astrophysics Data System (ADS)
Skinner, Jacob; Covey, Kevin; Bender, Chad; De Lee, Nathan Michael; Chojnowski, Drew; Troup, Nicholas; Badenes, Carles; Mahadevan, Suvrath; Terrien, Ryan
2018-01-01
Close stellar binaries can drive dynamical interactions that affect the structure and evolution of planetary systems. Binary surveys indicate that the multiplicity fraction and typical orbital separation decrease with primary mass, but correlations with higher order architectural parameters such as the system's mass ratio are less well constrained. We seek to identify and characterize double-lined spectroscopic binaries (SB2s) among the 1350 M dwarf ancillary science targets with APOGEE spectra in the SDSS-III Data Release 13. We quantitatively measure the degree of asymmetry in the APOGEE pipeline cross-correlation functions (CCFs), and use those metrics to identify a sample of 44 high-likelihood candidate SB2s. Extracting radial velocities (RVs) for both binary components from the CCF, we then measure mass ratios for 31 SB2s; we also use Bayesian techniques to fit orbits for 4 systems with 8 or more distinct APOGEE observations. The (incomplete) mass ratio distribution of this sample rises quickly towards unity. Two-sided Kolmogorov-Smirnov (K-S) tests find probabilities of 13.8% and 14.2% that the M dwarf mass ratio distribution is consistent with those measured by Pourbaix et al. (2004) and Fernandez et al. (2017), respectively. The samples analyzed by Pourbaix et al. and Fernandez et al. are dominated by higher-mass solar type stars; this suggests that the mass ratio distribution of close binaries is not strongly dependent on primary mass.
NASA Astrophysics Data System (ADS)
Schaffenroth, Veronika; Barlow, Brad; Geier, Stephan; Vučković, Maja; Kilkenny, Dave; Schaffenroth, Johannes
2017-12-01
Planets and brown dwarfs in close orbits will interact with their host stars, as soon as the stars evolve to become red giants. However, the outcome of those interactions is still unclear. Recently, several brown dwarfs have been discovered orbiting hot subdwarf stars at very short orbital periods of 0.065 - 0.096 d. More than 8% of the close hot subdwarf binaries might have sub-stellar companions. This shows that such companions can significantly affect late stellar evolution and that sdB binaries are ideal objects to study this influence. Thirty-eight new eclipsing sdB binary systems with cool low-mass companions and periods from 0.05 to 0.5 d were discovered based on their light curves by the OGLE project. In the recently published catalog of eclipsing binaries in the Galactic bulge, we discovered 75 more systems. We want to use this unique and homogeneously selected sample to derive the mass distribution of the companions, constrain the fraction of sub-stellar companions and determine the minimum mass needed to strip off the red-giant envelope. We are especially interested in testing models that predict hot Jupiter planets as possible companions. Therefore, we started the EREBOS (Eclipsing Reflection Effect Binaries from the OGLE Survey) project, which aims at analyzing those new HW Vir systems based on a spectroscopic and photometric follow up. For this we were granted an ESO Large Program for ESO-VLT/FORS2. Here we give an update on the the current status of the project and present some preliminary results.
GJ 3236 - radial velocity determination
NASA Astrophysics Data System (ADS)
Kára, J.; Wolf, M.; Zharikov, S.
2018-04-01
We present a new study of low-mass red-dwarf eclipsing binary GJ 3236 using spectroscopic data obtained by the 2.12-m telescope at the San Pedro Mártir Observatory. We resolved radial velocities of both components of the binary and improved determination of the physical parameters of the binary.
Spectroscopic Study of the Early-Type Binary HX Vel A
NASA Astrophysics Data System (ADS)
Özkardeş, Burcu; Sürgit, Derya; Erdem, Ahmet; Budding, Edwin; Soydugan, Faruk; Demircan, Osman
2012-04-01
This paper presents high resolution spectroscopy of the HX Vel (IDS 08390-4744 AB) multiple system. New spectroscopic observations of the system were made at Mt. John University Observatory in 2007 and 2008. Radial velocities of both components of HX Vel A were measured using gaussian fitting. The spectroscopic mass ratio of the close binary was determined as 0.599+/-0.052, according to a Keplerian orbital solution. The resulting orbital elements are a1sini=0.0098+/-0.0003 AU, a2sini=0.0164+/-0.0003 AU, M1sin3i=1.19+/-0.07 M⊙ and M2sin3i=0.71+/-0.04 M⊙.
Massive binaries in R136 using Hubble
NASA Astrophysics Data System (ADS)
Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus
2014-09-01
We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.
NASA Astrophysics Data System (ADS)
Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.; McMillan, Robert S.; Murison, Marc; Meade, Jeff; Hindsley, Robert
2011-07-01
We present orbital parameters for six double-lined spectroscopic binaries (ι Pegasi, ω Draconis, 12 Boötis, V1143 Cygni, β Aurigae, and Mizar A) and two double-lined triple star systems (κ Pegasi and η Virginis). The orbital fits are based upon high-precision radial velocity (RV) observations made with a dispersed Fourier Transform Spectrograph, or dFTS, a new instrument that combines interferometric and dispersive elements. For some of the double-lined binaries with known inclination angles, the quality of our RV data permits us to determine the masses M 1 and M 2 of the stellar components with relative errors as small as 0.2%.
First Spectroscopic Solutions of Two Southern Eclipsing Binaries: HO Tel and QY Tel
NASA Astrophysics Data System (ADS)
Sürgit, D.; Erdem, A.; Engelbrecht, C. A.; van Heerden, P.; Manick, R.
2015-07-01
We present preliminary results from the analysis of spectroscopic observations of two southern eclipsing binary stars, HO Tel and QY Tel. The grating spectra of these two systems were obtained at the Sutherland Station of the South African Astronomical Observatory in 2013. Radial velocities of the components were determined by the Fourier disentangling technique. Keplerian radial velocity models of HO Tel and QY Tel give their mass ratio as 0.921±0.005 and 1.089±0.007, respectively.
NASA Astrophysics Data System (ADS)
Marocco, F.; Jones, H. R. A.; Day-Jones, A. C.; Pinfield, D. J.; Lucas, P. W.; Burningham, B.; Zhang, Z. H.; Smart, R. L.; Gomes, J. I.; Smith, L.
2015-06-01
We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from the United Kingdom Deep Infrared Sky Survey. Using the YJHK photometry from the Large Area Survey and the red-optical photometry from the Sloan Digital Sky Survey we selected a sample of 262 brown dwarf candidates and we have followed-up 196 of them using the echelle spectrograph X-shooter on the Very Large Telescope. The large wavelength coverage (0.30-2.48 μm) and moderate resolution (R ˜ 5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low-gravity M dwarfs. Using a spectral indices-based technique, we identified 27 unresolved binary candidates, for which we have determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity of our targets, and we determined the distribution of the sample, which is centred at -1.7 ± 1.2 km s-1 with a dispersion of 31.5 km s-1. Using our results, we estimated the space density of field brown dwarfs and compared it with the results of numerical simulations. Depending on the binary fraction, we found that there are (0.85 ± 0.55) × 10-3 to (1.00 ± 0.64) × 10-3 objects per cubic parsec in the L4-L6.5 range, (0.73 ± 0.47) × 10-3 to (0.85 ± 0.55) × 10-3 objects per cubic parsec in the L7-T0.5 range, and (0.74 ± 0.48) × 10-3 to (0.88 ± 0.56) × 10-3 objects per cubic parsec in the T1-T4.5 range. We notice that there seems to be an excess of objects in the L-T transition with respect to the late-T dwarfs, a discrepancy that could be explained assuming a higher binary fraction than expected for the L-T transition, or that objects in the high-mass end and low-mass end of this regime form in different environments, i.e. following different initial mass functions.
NASA Astrophysics Data System (ADS)
Boden, A. F.; Lane, B. F.; Creech-Eakman, M. J.; Queloz, D.; Koresko, C. D.
2000-05-01
The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. For the past several years we have had an ongoing program of resolving and reconstructing the visual and physical orbits of spectroscopic binary stars with PTI, with the goal of obtaining precise dynamical mass estimates and other physical parameters. We will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival and new spectroscopic radial velocity data. The systems for which we will discuss our orbit models are: iota Pegasi (HD 210027), 64 Psc (HD 4676), 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064), and 3 Boo (HD 120064). All of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions.
Absolute parameters and chemical composition of the binary star OU Gem
NASA Astrophysics Data System (ADS)
Glazunova, L. V.; Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.
2014-10-01
The absolute parameters and chemical composition of the BY Dra-type spectroscopic binary OU Gem (HD 45088) were determined on the basis of 10 high-resolution spectra. A new orbital solution of the binary system was determined, the binary ephemerides were specified, and the main physical and atmospheric parameters of the binary components were obtained. The chemical composition of both components was estimated for the first time for the stars of such type.
A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries
NASA Astrophysics Data System (ADS)
Correia, S.; Zinnecker, H.; Ratzka, Th.; Sterzik, M. F.
2006-12-01
Aims.This paper describes a systematic search for high-order multiplicity among wide visual Pre-Main Sequence (PMS) binaries. Methods: .We conducted an Adaptive Optics survey of a sample of 58 PMS wide binaries from various star-forming regions, which include 52 T Tauri systems with mostly K- and M-type primaries, with the NIR instrument NACO at the VLT. Results: .Of these 52 systems, 7 are found to be triple (2 new) and 7 quadruple (1 new). The new close companions are most likely physically bound based on their probability of chance projection and, for some of them, on their position on a color-color diagram. The corresponding degree of multiplicity among wide binaries (number of triples and quadruples divided by the number of systems) is 26.9 ± 7.2% in the projected separation range ~0.07 arcsec -12'', with the largest contribution from the Taurus-Auriga cloud. We also found that this degree of multiplicity is twice in Taurus compared to Ophiuchus and Chamaeleon for which the same number of sources are present in our sample. Considering a restricted sample composed of systems at distance 140-190 pc, the degree of multiplicity is 26.8 ± 8.1%, in the separation range 10/14 AU-1700/2300 AU (30 binaries, 5 triples, 6 quadruples). The observed frequency agrees with results from previous multiplicity surveys within the uncertainties, although a significant overabundance of quadruple systems compared to triple systems is apparent. Tentatively including the spectroscopic pairs in our restricted sample and comparing the multiplicity fractions to those measured for solar-type main-sequence stars in the solar neighborhood leads to the conclusion that both the ratio of triples to binaries and the ratio of quadruples to triples seems to be in excess among young stars. Most of the current numerical simulations of multiple star formation, and especially smoothed particles hydrodynamics simulations, over-predict the fraction of high-order multiplicity when compared to our results. The circumstellar properties around the individual components of our high-order multiple systems tend to favor mixed systems (i.e. systems including components of wTTS and cTTS type), which is in general agreement with previous studies of disks in binaries, with the exception of Taurus, where we find a preponderance of similar type of components among the multiples studied.
Fractional labelmaps for computing accurate dose volume histograms
NASA Astrophysics Data System (ADS)
Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor
2017-03-01
PURPOSE: In radiation therapy treatment planning systems, structures are represented as parallel 2D contours. For treatment planning algorithms, structures must be converted into labelmap (i.e. 3D image denoting structure inside/outside) representations. This is often done by triangulated a surface from contours, which is converted into a binary labelmap. This surface to binary labelmap conversion can cause large errors in small structures. Binary labelmaps are often represented using one byte per voxel, meaning a large amount of memory is unused. Our goal is to develop a fractional labelmap representation containing non-binary values, allowing more information to be stored in the same amount of memory. METHODS: We implemented an algorithm in 3D Slicer, which converts surfaces to fractional labelmaps by creating 216 binary labelmaps, changing the labelmap origin on each iteration. The binary labelmap values are summed to create the fractional labelmap. In addition, an algorithm is implemented in the SlicerRT toolkit that calculates dose volume histograms (DVH) using fractional labelmaps. RESULTS: We found that with manually segmented RANDO head and neck structures, fractional labelmaps represented structure volume up to 19.07% (average 6.81%) more accurately than binary labelmaps, while occupying the same amount of memory. When compared to baseline DVH from treatment planning software, DVH from fractional labelmaps had agreement acceptance percent (1% ΔD, 1% ΔV) up to 57.46% higher (average 4.33%) than DVH from binary labelmaps. CONCLUSION: Fractional labelmaps promise to be an effective method for structure representation, allowing considerably more information to be stored in the same amount of memory.
HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smullen, Rachel A.; Kobulnicky, Henry A., E-mail: rsmullen@email.arizona.edu
2015-08-01
We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars inmore » this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.« less
NASA Astrophysics Data System (ADS)
Mendez, Rene A.; Claveria, Ruben M.; Orchard, Marcos E.; Silva, Jorge F.
2017-11-01
We present orbital elements and mass sums for 18 visual binary stars of spectral types B to K (five of which are new orbits) with periods ranging from 20 to more than 500 yr. For two double-line spectroscopic binaries with no previous orbits, the individual component masses, using combined astrometric and radial velocity data, have a formal uncertainty of ˜ 0.1 {M}⊙ . Adopting published photometry and trigonometric parallaxes, plus our own measurements, we place these objects on an H-R diagram and discuss their evolutionary status. These objects are part of a survey to characterize the binary population of stars in the Southern Hemisphere using the SOAR 4 m telescope+HRCAM at CTIO. Orbital elements are computed using a newly developed Markov chain Monte Carlo (MCMC) algorithm that delivers maximum-likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate the uncertainty of our derived parameters in a robust way. For spectroscopic binaries, using our approach, it is possible to derive a self-consistent parallax for the system from the combined astrometric and radial velocity data (“orbital parallax”), which compares well with the trigonometric parallaxes. We also present a mathematical formalism that allows a dimensionality reduction of the feature space from seven to three search parameters (or from 10 to seven dimensions—including parallax—in the case of spectroscopic binaries with astrometric data), which makes it possible to explore a smaller number of parameters in each case, improving the computational efficiency of our MCMC code. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
NASA Astrophysics Data System (ADS)
Samec, Ronald G.; Smith, Paul M.; Robb, Russell; Faulkner, Danny R.; Van Hamme, W.
2012-07-01
We present a spectrum and a photometric analysis of the newly discovered, high-amplitude, solar-type, eclipsing binary HO Piscium. A spectroscopic identification, a period study, q-search, and a simultaneous UBVRc Ic light-curve solution are presented. The spectra and our photometric solution indicate that HO Psc is a W-type W UMa shallow-contact (fill-out ˜8%) binary system. The primary component has a G6V spectral type with an apparently precontact spectral type of M2V for the secondary component. The small fill-out indicates that the system has not yet achieved thermal contact and thus has recently come into physical contact. This may mean that this solar-type binary system has not attained its ˜0.4 mass ratio via a long period of magnetic braking, as would normally be assumed.
The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy
NASA Astrophysics Data System (ADS)
MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.
2018-01-01
As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.
WR 148 and the not so compact companion
NASA Astrophysics Data System (ADS)
Munoz, Melissa; Moffat, Anthony J.; Hill, Grant M.; Shenar, Tomer; Richardson, Noel D.; Pablo, Herbert; St-Louis, Nicole; Ramiaramanantsoa, Tahina
2017-11-01
The objective is to determine the nature of the unseen companion of the single-lined spectroscopic binary, WR 148 (= WN7h+?). The absence of companion lines supports a compact companion (cc) scenario. The lack of hard X-rays favours a non-compact companion scenario. Is WR 148 a commonplace WR+OB binary or a rare WR+cc binary?
Orbital Analysis of Two Triple Systems in the Open Cluster NGC 2516
NASA Astrophysics Data System (ADS)
Veramendi, M. E.; González, J. F.
2010-12-01
We report the discovery of two hierarchical triple systems in the open cluster NGC 2516. Both systems are double-lined spectroscopic binaries whose center-of-mass velocity varies in a time scale of a few years. The system BDA 19 consists of an eccentric spectroscopic binary with a period of 8.7 days and a third body orbiting with a period of about 3300 days. The close pair in the triple BDA 2 has an orbital period of 11.2 days and contains a HgMn star.
Low resolution spectroscopy of selected Algol systems
NASA Astrophysics Data System (ADS)
Devarapalli, Shanti Priya; Jagirdar, Rukmini; Parthasarathy, M.; Sahu, D. K.; Mohan, Vijay; Bhatt, B. C.; Thomas, Vineet S.
2018-04-01
The analysis of spectroscopic data for 30 Algol-type binaries is presented. All these systems are short period Algols having primaries with spectral types B and A. Dominant spectral lines were identified for the spectra collected and their equivalent widths were calculated. All the spectra were examined to understand presence of mass transfer, a disk or circumstellar matter and chromospheric emission. We also present first spectroscopic and period study for few Algols and conclude that high resolution spectra within and outside the primary minimum are needed for better understanding of these Algol type close binaries.
THE EFFECT OF UNRESOLVED BINARIES ON GLOBULAR CLUSTER PROPER-MOTION DISPERSION PROFILES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchini, P.; Norris, M. A.; Ven, G. van de
2016-03-20
High-precision kinematic studies of globular clusters (GCs) require an accurate knowledge of all possible sources of contamination. Among other sources, binary stars can introduce systematic biases in the kinematics. Using a set of Monte Carlo cluster simulations with different concentrations and binary fractions, we investigate the effect of unresolved binaries on proper-motion dispersion profiles, treating the simulations like Hubble Space Telescope proper-motion samples. Since GCs evolve toward a state of partial energy equipartition, more-massive stars lose energy and decrease their velocity dispersion. As a consequence, on average, binaries have a lower velocity dispersion, since they are more-massive kinematic tracers. Wemore » show that, in the case of clusters with high binary fractions (initial binary fractions of 50%) and high concentrations (i.e., closer to energy equipartition), unresolved binaries introduce a color-dependent bias in the velocity dispersion of main-sequence stars of the order of 0.1–0.3 km s{sup −1} (corresponding to 1%−6% of the velocity dispersion), with the reddest stars having a lower velocity dispersion, due to the higher fraction of contaminating binaries. This bias depends on the ability to distinguish binaries from single stars, on the details of the color–magnitude diagram and the photometric errors. We apply our analysis to the HSTPROMO data set of NGC 7078 (M15) and show that no effect ascribable to binaries is observed, consistent with the low binary fraction of the cluster. Our work indicates that binaries do not significantly bias proper-motion velocity-dispersion profiles, but should be taken into account in the error budget of kinematic analyses.« less
NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093
NASA Astrophysics Data System (ADS)
Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.
2017-10-01
We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}p< 19 % in the range 4 ms < P< 40 ks. No red noise is detected in the FFT power spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.
A High Angular Resolution Multiplicity Survey of the Open Clusters α Persei and Praesepe
NASA Astrophysics Data System (ADS)
Patience, J.; Ghez, A. M.; Reid, I. N.; Matthews, K.
2002-03-01
Two hundred forty-two members of the Praesepe and α Persei clusters have been surveyed with high angular resolution 2.2 μm speckle imaging on the 3 m Infrared Telescope Facility, the 5 m Hale, and the 10 m Keck telescopes, along with direct imaging using the near-infrared camera (NICMOS) aboard the Hubble Space Telescope. The observed stars range in spectral type from B (~5 Msolar) to early M (~0.5 Msolar), with the majority of the targets more massive than ~0.8 Msolar. The one quadruple and 39 binary systems detected encompass separations from 0.053" to 7.28" 28 of the systems are new detections, and there are nine candidate substellar companions. The results of the survey are used to test binary star formation and evolution scenarios and to investigate the effects of companion stars on X-ray emission and stellar rotation. The main results are as follows:1. Over the projected separation range of 26 to 581 AU and magnitude differences of ΔK<4.0 (comparable to mass ratios q=Msec/Mprim>0.25), the companion-star fraction (CSF) for α Per is 0.09+/-0.03, and that for Praesepe is 0.10+/-0.03. This fraction is consistent with the field G dwarf value, implying that there is not a systematic decline in multiplicity with age at these separations on timescales of a few times 107 yr. The combination of previous spectroscopic work and the current cluster survey results in a cluster binary separation distribution that peaks at 4+1-1.5 AU, a significantly smaller value than the peaks of both the field G dwarf and the nearby T Tauri distributions. If the field G dwarf distribution represents a superposition of distributions from the populations that contributed to the field, then the data imply that ~30% of field binaries formed in dark clouds like the nearby T Tauri stars and the remaining ~70% formed in denser regions.2. An exploration of the binary star properties reveals a cluster CSF that increases with decreasing target mass, and a cluster mass ratio distribution that rises more sharply for higher mass stars but is independent of binary separation. These observational trends are consistent with several models of capture in small clusters and simulations of accretion following fragmentation in a cluster environment. Other types of capture and fragmentation are either inconsistent with these data or currently lack testable predictions.3. Among the cluster A stars, there is a higher fraction of binaries in the subset with X-ray detections, consistent with the hypothesis that lower mass companions are the true source of X-ray emission.4. Finally, in the younger cluster α Per, the rotational velocities for solar-type binaries with separations less than 60 AU are significantly higher than those of wider systems. This suggests that companions may critically affect the rotational evolution of young stars.
The binarity of Galactic dwarf stars along with effective temperature and metallicity
NASA Astrophysics Data System (ADS)
Gao, Shuang; Zhao, He; Yang, Hang; Gao, Ran
2017-07-01
The fraction of binary stars fb is one of most valuable tools to probe the star formation and evolution of multiple systems in the Galaxy. We focus on the relationship between fb and stellar metallicity [Fe/H] by employing the differential radial velocity (DRV) method and the large sample observed by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Main-sequence stars from A- to K-type in the third data release of LAMOST are selected to estimate fb. Contributions to a profile of DRV from the radial velocity (RV) error of single stars σRV and the orbital motion of binary stars are evaluated from the DRV profile. We employ 365 911 stars with randomly repeating spectral observations to present a detailed analysis of fb and σRV in the two-dimensional space of Teff and [Fe/H]. The A-type stars are more likely to be companions in binary star systems than other stars. Furthermore, the reverse correlation between fb and [Fe/H] can be shown statistically, which suggests that fb is a joint function of Teff and [Fe/H]. At the same time, σRV of the sample are fitted for different Teff and [Fe/H]. Metal-rich cold stars in our sample have the best RV measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fekel, Francis C.; Williamson, Michael H.; Muterspaugh, Matthew W.
2015-02-01
With extensive sets of new radial velocities we have determined orbital elements for three previously known spectroscopic binaries, HD 54371, HR 2692, and 16 UMa. All three systems have had the lines of their secondaries detected for the first time. The orbital periods range from 16.24 to 113.23 days, and the three binaries have modestly or moderately eccentric orbits. The secondary to primary mass ratios range from 0.50 to 0.64. The orbital dimensions (a{sub 1} sin i and a{sub 2} sin i) and minimum masses (m{sub 1} sin{sup 3} i and m{sub 2} sin{sup 3} i) of the binary componentsmore » all have accuracies of ⩽1%. With our spectroscopic results and the Hipparcos data, we also have determined astrometric orbits for two of the three systems, HR 2692 and 16 UMa. The primaries of HD 54371 and 16 UMa are solar-type stars, and their secondaries are likely K or M dwarfs. The primary of HR 2692 is a late-type subgiant and its secondary is a G or K dwarf. The primaries of both HR 2692 and 16 UMa may be pseudosynchronously rotating, while that of HD 54371 is rotating faster than its pseudosynchronous velocity.« less
New neighbours. III. 21 new companions to nearby dwarfs, discovered with adaptive optics
NASA Astrophysics Data System (ADS)
Beuzit, J.-L.; Ségransan, D.; Forveille, T.; Udry, S.; Delfosse, X.; Mayor, M.; Perrier, C.; Hainaut, M.-C.; Roddier, C.; Roddier, F.; Martín, E. L.
2004-10-01
We present some results of a CFHT adaptive optics search for companions to nearby dwarfs. We identify 21 new components in solar neighbourhood systems, of which 13 were found while surveying a volume-limited sample of M dwarfs within 12 pc. We are obtaining complete observations for this subsample, to derive unbiased multiplicity statistics for the very-low-mass disk population. Additionally, we resolve for the first time 6 known spectroscopic or astrometric binaries, for a total of 27 newly resolved companions. A significant fraction of the new binaries has favourable parameters for accurate mass determinations. The newly resolved companion of Gl 120.1C was thought to have a spectroscopic minimum mass in the brown-dwarf range (Duquennoy & Mayor \\cite{duquennoy91}), and it contributed to the statistical evidence that a few percent of solar-type stars might have close-in brown-dwarf companions. We find that Gl 120.1C actually is an unrecognised double-lined spectroscopic pair. Its radial-velocity amplitude had therefore been strongly underestimated by Duquennoy & Mayor (\\cite{duquennoy91}), and it does not truly belong to their sample of single-lined systems with minimum spectroscopic mass below the substellar limit. We also present the first direct detection of Gl 494B, an astrometric brown-dwarf candidate. Its luminosity straddles the substellar limit, and it is a brown dwarf if its age is less than ˜300 Myr. A few more years of observations will ascertain its mass and status from first principles. Based on observations made at Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
A spectroscopic binary in the Hercules dwarf spheroidal galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Andreas; Hansen, Terese; Feltzing, Sofia
2014-01-01
We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at a{submore » p} sin i = 38 R {sub ☉}. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.« less
Das Mahanta, Debasish; Patra, Animesh; Samanta, Nirnay; Luong, Trung Quan; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2016-10-28
A combined experimental (mid- and far-infrared FTIR spectroscopy and THz time domain spectroscopy (TTDS) (0.3-1.6 THz)) and molecular dynamics (MD) simulation technique are used to understand the evolution of the structure and dynamics of water in its binary mixture with 1,2-dimethoxy ethane (DME) over the entire concentration range. The cooperative hydrogen bond dynamics of water obtained from Debye relaxation of TTDS data reveals a non-monotonous behaviour in which the collective dynamics is much faster in the low X w region (where X w is the mole fraction of water in the mixture), whereas in X w ∼ 0.8 region, the dynamics gets slower than that of pure water. The concentration dependence of the reorientation times of water, calculated from the MD simulations, also captures this non-monotonous character. The MD simulation trajectories reveal presence of large amplitude angular jumps, which dominate the orientational relaxation. We rationalize the non-monotonous, concentration dependent orientational dynamics by identifying two different physical mechanisms which operate at high and low water concentration regimes.
A Multiple-star Combined Solution Program - Application to the Population II Binary μ Cas
NASA Astrophysics Data System (ADS)
Gudehus, D. H.
2001-05-01
A multiple-star combined-solution computer program which can simultaneously fit astrometric, speckle, and spectroscopic data, and solve for the orbital parameters, parallax, proper motion, and masses has been written and is now publicly available. Some features of the program are the ability to scale the weights at run time, hold selected parameters constant, handle up to five spectroscopic subcomponents for the primary and the secondary each, account for the light travel time across the system, account for apsidal motion, plot the results, and write the residuals in position to a standard file for further analysis. The spectroscopic subcomponent data can be represented by reflex velocities and/or by independent measurements. A companion editing program which can manage the data files is included in the package. The program has been applied to the Population II binary μ Cas to derive improved masses and an estimate of the primordial helium abundance. The source code, executables, sample data files, and documentation for OpenVMS and Unix, including Linux, are available at http://www.chara.gsu.edu/\\rlap\\ \\ gudehus/binary.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Sweta; Nelemans, Gijs, E-mail: s.shah@astro.ru.nl
The discovery of the most compact detached white dwarf (WD) binary SDSS J065133.33+284423.3 has been discussed in terms of probing the tidal effects in WDs. This system is also a verification source for the space-based gravitational wave (GW) detector, eLISA, or the evolved Laser Interferometer Space Antenna, which will observe short-period compact Galactic binaries with P {sub orb} ≲ 5 hr. We address the prospects of performing tidal studies using eLISA binaries by showing the fractional uncertainties in the orbital decay rate, f-dot , and the rate of that decay, f{sup ¨} expected from both the GW and electromagnetic (EM)more » data for some of the high-f binaries. We find that f-dot and f{sup ¨} can be measured using GW data only for the most massive WD binaries observed at high frequencies. From timing the eclipses for ∼10 yr, we find that f-dot can be known to ∼0.1% for J0651. We find that from GW data alone, measuring the effects of tides in binaries is (almost) impossible. We also investigate the improvement in the knowledge of the binary parameters by combining the GW amplitude and inclination with EM data with and without f-dot . In our previous work, we found that EM data on distance constrained the 2σ uncertainty in chirp mass to 15%-25% whereas adding f-dot reduces it to 0.11%. EM data on f-dot also constrain the 2σ uncertainty in distance to 35%-19%. EM data on primary mass constrain the secondary mass m {sub 2} to factors of two to ∼40% whereas adding f-dot reduces this to 25%. Finally, using single-line spectroscopic data constrains 2σ uncertainties in both the m {sub 2}, d to factors of two to ∼40%. Adding EM data on f-dot reduces these 2σ uncertainties to ≤25% and 6%-19%, respectively. Thus we find that EM measurements of f-dot and radial velocity are valuable in constraining eLISA binary parameters.« less
CARMENES input catalogue of M dwarfs. II. High-resolution imaging with FastCam
NASA Astrophysics Data System (ADS)
Cortés-Contreras, M.; Béjar, V. J. S.; Caballero, J. A.; Gauza, B.; Montes, D.; Alonso-Floriano, F. J.; Jeffers, S. V.; Morales, J. C.; Reiners, A.; Ribas, I.; Schöfer, P.; Quirrenbach, A.; Amado, P. J.; Mundt, R.; Seifert, W.
2017-01-01
Aims: We search for low-mass companions of M dwarfs and characterize their multiplicity fraction with the purpose of helping in the selection of the most appropriate targets for the CARMENES exoplanet survey. Methods: We obtained high-resolution images in the I band with the lucky imaging instrument FastCam at the 1.5 m Telescopio Carlos Sánchez for 490 mid- to late-M dwarfs. For all the detected binaries, we measured angular separations, position angles, and magnitude differences in the I band. We also calculated the masses of each individual component and estimated orbital periods, using the available magnitude and colour relations for M dwarfs and our own MJ-spectral type and mass-MI relations. To avoid biases in our sample selection, we built a volume-limited sample of M0.0-M5.0 dwarfs that is complete up to 86% within 14 pc. Results: From the 490 observed stars, we detected 80 companions in 76 systems, of which 30 are new discoveries. Another six companion candidates require additional astrometry to confirm physical binding. The multiplicity fraction in our observed sample is 16.7 ± 2.0%. The bias-corrected multiplicity fraction in our volume-limited sample is 19.5 ± 2.3% for angular separations of 0.2 to 5.0 arcsec (1.4-65.6 au), with a peak in the distribution of the projected physical separations at 2.5-7.5 au. For M0.0-M3.5 V primaries, our search is sensitive to mass ratios higher than 0.3 and there is a higher density of pairs with mass ratios over 0.8 compared to those at lower mass ratios. Binaries with projected physical separations shorter than 50 au also tend to be of equal mass. For 26 of our systems, we estimated orbital periods shorter than 50 a, 10 of which are presented here for the first time. We measured variations in angular separation and position angle that are due to orbital motions in 17 of these systems. The contribution of binaries and multiples with angular separations shorter than 0.2 arcsec, longer than 5.0 arcsec, and of spectroscopic binaries identified from previous searches, although not complete, may increase the multiplicity fraction of M dwarfs in our volume-limited sample to at least 36%. Tables A.1-A.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A47
BINARY ASTROMETRIC MICROLENSING WITH GAIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajadian, Sedighe, E-mail: sajadian@ipm.ir; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran
2015-04-15
We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth duemore » to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.« less
Chromospherically Active Stars. XXV. HD 144110=EV Draconis, a Double-lined Dwarf Binary
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Henry, Gregory W.; Lewis, Ceteka
2005-08-01
New spectroscopic and photometric observations of HD 144110 have been used to obtain an improved orbital element solution and determine some basic properties of the system. This chromospherically active, double-lined spectroscopic binary has an orbital period of 1.6714012 days and a circular orbit. We classify the components as G5 V and K0 V and suggest that they are slightly metal-rich. The photometric observations indicate that the rotation of HD 144110 is synchronous with the orbital period. Despite the short orbital period, no evidence of eclipses is seen in our photometry.
The double-lined spectroscopic binary Iota Pegasi
NASA Technical Reports Server (NTRS)
Fekel, F. C.; Tomkin, J.
1983-01-01
Reticon observations of the spectroscopic binary Iota Peg at 6430 A show the secondary star's weak, but well defined lines. Determinations have accordingly been made of the secondary velocity curve as well as that of the primary, together with the orbits and the minimum masses of the two components. The 1.31 + or - 0.02 and 0.81 + or - 0.01 solar mass minimum masses are sufficiently close to the expected actual masses to suggest eclipses, despite the relatively long, 10.2-day period. The spectral type of the secondary is estimated to be G8 V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apellániz, J. Maíz; Sota, A.; Alfaro, E. J.
This is the third installment of the Galactic O-Star Spectroscopic Survey (GOSSS), a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations selected from the Galactic O-Star Catalog. In this paper, we present 142 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects, there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries, 6 of which are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary of O+O+Bmore » type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al.« less
Correcting Velocity Dispersions of Dwarf Spheroidal Galaxies for Binary Orbital Motion
NASA Astrophysics Data System (ADS)
Minor, Quinn E.; Martinez, Greg; Bullock, James; Kaplinghat, Manoj; Trainor, Ryan
2010-10-01
We show that the measured velocity dispersions of dwarf spheroidal galaxies from about 4 to 10 km s-1 are unlikely to be inflated by more than 30% due to the orbital motion of binary stars and demonstrate that the intrinsic velocity dispersions can be determined to within a few percent accuracy using two-epoch observations with 1-2 yr as the optimal time interval. The crucial observable is the threshold fraction—the fraction of stars that show velocity changes larger than a given threshold between measurements. The threshold fraction is tightly correlated with the dispersion introduced by binaries, independent of the underlying binary fraction and distribution of orbital parameters. We outline a simple procedure to correct the velocity dispersion to within a few percent accuracy by using the threshold fraction and provide fitting functions for this method. We also develop a methodology for constraining properties of binary populations from both single- and two-epoch velocity measurements by including the binary velocity distribution in a Bayesian analysis.
VizieR Online Data Catalog: Double stars with wide separations in the AGK3 (Halbwachs+, 2016)
NASA Astrophysics Data System (ADS)
Halbwachs, J. L.; Mayor, M.; Udry, S.
2016-10-01
A large list of common proper motion stars selected from the third Astronomischen Gesellschaft Katalog (AGK3) was monitored with the CORAVEL (for COrrelation RAdial VELocities) spectrovelocimeter, in order to prepare a sample of physical binaries with very wide separations. In paper I,66 stars received special attention, since their radial velocities (RV) seemed to be variable. These stars were monitored over several years in order to derive the elements of their spectroscopic orbits. In addition, 10 of them received accurate RV measurements from the SOPHIE spectrograph of the T193 telescope at the Observatory of Haute-Provence. For deriving the orbital elements of double-lined spectroscopic binaries (SB2s), a new method was applied, which assumed that the RV of blended measurements are linear combinations of the RV of the components. 13 SB2 orbits were thus calculated. The orbital elements were eventually obtained for 52 spectroscopic binaries (SBs), two of them making a triple system. 40 SBs received their first orbit and the orbital elements were improved for 10 others. In addition, 11 SBs were discovered with very long periods for which the orbital parameters were not found. It appeared that HD 153252 has a close companion, which is a candidate brown dwarf with a minimum mass of 50 Jupiter masses. In paper II, 80 wide binaries (WBs) were detected, and 39 optical pairs were identified. Adding CPM stars with separations close enough to be almost certain they are physical, a "bias-controlled" sample of 116 wide binaries was obtained, and used to derive the distribution of separations from 100 to 30,000 au. The distribution obtained doesn't match the log-constant distribution, but is in agreement with the log-normal distribution. The spectroscopic binaries detected among the WB components were used to derive statistical informations about the multiple systems. The close binaries in WBs seem to be similar to those detected in other field stars. As for the WBs, they seem to obey the log-normal distribution of periods. The number of quadruple systems is in agreement with the "no correlation" hypothesis; this indicates that an environment conducive to the formation of WBs doesn't favor the formation of subsystems with periods shorter than 10 years. (9 data files).
Frontiers of stellar evolution
NASA Technical Reports Server (NTRS)
Lambert, David L. (Editor)
1991-01-01
The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.
Spectral types of four binaries based on photometric observations
NASA Astrophysics Data System (ADS)
Shimanskii, V. V.; Bikmaev, I. F.; Borisov, N. V.; Vlasyuk, V. V.; Galeev, A. I.; Sakhibullin, N. A.; Spiridonova, O. I.
2008-09-01
We present results of photometric and spectroscopic observations of four close binaries with subdwarf B components: PG 0918+029, PG 1000+408, PG 1116+301, PG 0001+275. We discovered that PG 1000+408 is a close binary, with the most probable orbital period being P orb = 1.041145 day. Based on a comparison of the observed light curves at selected orbital phases and theoretical predictions for their variations, all the systems are classified as doubly degenerate binaries with low-luminosity white-dwarf secondaries.
Complementing asteroseismology with 4MOST spectroscopy
NASA Astrophysics Data System (ADS)
de Jong, R. S.; 4MOST Consortium; 4MOST Spectroscopy Consortium
2016-09-01
4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the areas of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO. 4MOST will have an unique operations concept in which 5-years public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. As a dedicated spectroscopic survey facility with a large field-of-view, a high multiplex that can be reconfigured quickly, and with a broad wavelength coverage, 4MOST is particularly well suited to complement the upcoming asteroseismology space missions like TESS and PLATO. Here we show that, by dedicating the observing time during twilight and poor observing conditions to bright stars, 4MOST will obtain resolution {R>18 000} spectra of nearly all stars brighter than ˜ 12th magnitude at Dec < 30o every ˜ 2 years. 4MOST is also expected to spectroscopically complement any fainter asteroseismology target to be observed with PLATO. These observations will provide a chemical characterization of nearly all stars to be observed with the TESS and PLATO missions and place any planets found in a full chemo-dynamical context of the star formation history of the Galaxy, yield very accurate ages and masses for all stars that can be characterized with asteroseismology, and allow removal of contaminants from target samples (e.g., spectroscopic binaries).
NASA Astrophysics Data System (ADS)
Sahu, Smriti; Manivannan, Anbarasu; Shaik, Habibuddin; Mohan Rao, G.
2017-07-01
Reversible switching between highly resistive (binary "0") amorphous phase and low resistive (binary "1") crystalline phase of chalcogenide-based Phase Change Materials is accredited for the development of next generation high-speed, non-volatile, data storage applications. The doped Sb-Te based materials have shown enhanced electrical/optical properties, compared to Ge-Sb-Te family for high-speed memory devices. We report here the local atomic structure of as-deposited amorphous Ag5In5Sb60Te30 (AIST) and In3SbTe2 (IST) phase change materials using X-ray photoelectron and Raman spectroscopic studies. Although AIST and IST materials show identical crystallization behavior, they differ distinctly in their crystallization temperatures. Our experimental results demonstrate that the local environment of In remains identical in the amorphous phase of both AIST and IST material, irrespective of its atomic fraction. In bonds with Sb (˜44%) and Te (˜56%), thereby forming the primary matrix in IST with a very few Sb-Te bonds. Sb2Te constructs the base matrix for AIST (˜63%) along with few Sb-Sb bonds. Furthermore, an interesting assimilation of the role of small-scale dopants such as Ag and In in AIST, reveals rare bonds between themselves, while showing selective substitution in the vicinity of Sb and Te. This results in increased electronegativity difference, and consequently, the bond strength is recognized as the factor rendering stability in amorphous AIST.
Far-UV spectroscopy of two extremely hot, helium-rich white dwarfs
NASA Astrophysics Data System (ADS)
Werner, K.; Rauch, T.; Kruk, J. W.
2017-05-01
A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50%, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1% or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of Teff = 115 000 ± 5000 K and 125 000 ± 5000 K, respectively, and a surface gravity of log g= 7 ± 0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer.
Nodding motions of accretion rings and disks - A short-term period in SS 433
NASA Technical Reports Server (NTRS)
Katz, J. I.; Anderson, S. F.; Grandi, S. A.; Margon, B.
1982-01-01
It is pointed out that accretion disks and rings in mass transfer binaries have been observed spectroscopically and calculated theoretically for many years. The present investigation is partly based on the availability of several years of spectroscopic observations of the Doppler shifts of the moving lines in SS433. A formalism is presented to compute frequencies and amplitudes of short-term 'nodding' motions in precessing accretion disks in close binary systems. This formalism is applied to an analysis of the moving-line Doppler shifts in SS433. The 35d X-ray cycle of Hercules X-1 is also discussed. In the considered model, the companion star exerts a gravitational torque on the disk rim. Averaged over the binary orbit, this yields a steady torque which results in the mean driven counterprecession of the disk.
Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II
NASA Astrophysics Data System (ADS)
Boden, A. F.; Lane, B. F.; Creech-Eakman, M.; Queloz, D.; PTI Collaboration
1999-12-01
The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. Following our previous work on resolving spectroscopic binary stars with the Palomar Testbed Interferometer (PTI), we will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival radial velocity data. The six systems for which we will present new orbit models are: 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064). Most of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions. The work described in this paper was performed under contract with the National Aeronautics and Space Administration.
The Binary Dwarf Carbon Star SDSS J125017.90+252427.6
NASA Astrophysics Data System (ADS)
Margon, Bruce; Kupfer, Thomas; Burdge, Kevin; Prince, Thomas A.; Kulkarni, Shrinivas R.; Shupe, David L.
2018-03-01
Although dwarf carbon (dC) stars are universally thought to be binaries in order to explain the presence of C 2 in their spectra while still near main-sequence luminosity, direct observational evidence for their binarity is remarkably scarce. Here, we report the detection of a 2.92 day periodicity in both the photometry and radial velocity of SDSS J125017.90+252427.6, an r = 16.4 dC star. This is the first photometric binary dC, and only the second dC spectroscopic binary. The relative phase of the photometric period to the spectroscopic observations suggests that the photometric variations are a reflection effect due to heating from an unseen companion. The observed radial velocity amplitude of the dC component (K = 98.8 ± 10.7 km s‑1) is consistent with a white dwarf companion, presumably the evolved star that earlier donated the carbon to the dC, although substantial orbital evolution must have occurred. Large synoptic photometric surveys such as the Palomar Transient Factory, which was used for this work, may prove useful for identifying binaries among the shorter-period dC stars.
A Photometric (griz) Metallicity Calibration for Cool Stars
NASA Astrophysics Data System (ADS)
West, Andrew A.; Davenport, James R. A.; Dhital, Saurav; Mann, Andrew; Massey, Angela P
2014-06-01
We present results from a study that uses wide pairs as tools for estimating and constraining the metal content of cool stars from their spectra and broad band colors. Specifically, we will present results that optimize the Mann et al. M dwarf metallicity calibrations (derived using wide binaries) for the optical regime covered by SDSS spectra. We will demonstrate the robustness of the new calibrations using a sample of wide, low-mass binaries for which both components have an SDSS spectrum. Using these new spectroscopic metallicity calibrations, we will present relations between the metallicities (from optical spectra) and the Sloan colors derived using more than 20,000 M dwarfs in the SDSS DR7 spectroscopic catalog. These relations have important ramifications for studies of Galactic chemical evolution, the search for exoplanets and subdwarfs, and are essential for surveys such as Pan-STARRS and LSST, which use griz photometry but have no spectroscopic component.
Spectroscopic study of the strontium AM binaries HD 434 and 41 Sex A
NASA Astrophysics Data System (ADS)
Sreedhar Rao, S.; Abhyankar, K. D.
1992-10-01
Improved spectroscopic orbital elements of the single-line Am binary HD 434 are presented, and cover large gaps in the radial velocity curve obtained earlier by Hube and Gulliver (1985). The MK morphology of the spectrum of HD 434 is examined, and the classification of its metallic line types in the violet and blue regions, along with its revised K- and H-line spectral types, are given for the first time. The strontium anomaly in its spectrum is discussed. 41 Sex A is found to be a prototype of an Am star exhibiting transitional characteristics, forming an evolutionary link between Ap and Am groups of CP stars. Its spectroscopic orbital elements are confirmed using our own velocities. The MK morphology of its spectrum and its spectral line behavior, especially that of the Sr II 4077 line, are briefly discussed.
A search for spectroscopic binaries among the runaway O type stars
NASA Technical Reports Server (NTRS)
Stone, R. C.
1982-01-01
Numerous radial velocity measurements of medium dispersion were made for the 10 brighter stars given in Stone's list of very probable O type runaways. All plates were measured with the KPNO PDS microdensitometer, and a new iterative reductional analysis was used to derive plate velocities, which are estimated to be 1.6 times more accurate internally than those found by using the traditional method. Of thse stars, psi Per, alpha Cam, HD 188209, and 26 Cep are identified as probable velocity variables, while 9 Sge, lambda Cep, and HD 218915 are classed as possible variables. If the source of this variability is Keplerian rather than atmospheric, which cannot be established unequivocally from the observations of this paper, psi Per could be a spectroscopic binary with a black hole companion, and at least 1.2 solar mass. The detection of runaway binary systems from radial velocity measurements is discussed.
Tests of Stellar Models Using Four Extremely Massive Spectroscopic Binaries in the R136 Cluster
NASA Astrophysics Data System (ADS)
Massey, Philip
1999-07-01
We are proposing to observe four non-interacting double-lined spectroscopic binaries discovered in the R136 cluster by our Cycle 6 FOS spectroscopy {Massey & Hunter 1998, ApJ, 493, 180}. These binaries are all of very early type {O3-4 + O3-8} and should prove to be of very high mass. These data will allow us to extend the empirical mass-luminosity relation to higher masses, providing crucial checks on stellar interior and atmosphere models. Examination of the WFPC2 archives reveals that at least three of the four systems undergo eclipses. We plan to obtain simultaneous spectroscopy and photometry for all four systems during a single 2-orbit visit. Fourteen such visits, over an interval of a few weeks, should provide direct measurements for the masses of eight of the highest mass stars ever analyzed.
A HST Search to Constrain the Binary Fraction of Stripped-Envelope Supernovae
NASA Astrophysics Data System (ADS)
Fox, Ori
2018-01-01
Stripped-envelope supernovae (e.g., SNe IIb, Ib, and Ic) refer to a subset of core-collapse explosions with progenitors that have lost some fraction of their outer envelopes in pre-SN mass loss. Mounting evidence over the past decade suggests that the mass loss in a large fraction of these systems occurs due to binary interaction. An unbiased, statistically significant sample of companion-star characteristics (including deep upper limits) can constrain the binary fraction, having direct implications on the theoretical physics of both single star and binary evolution. To date, however, only two detections have been made: SNe 1993J and 2011dh. Over the past year, we have improved this sample with an HST WFC3/NUV survey for binary companions of three additional nearby stripped-envelope SNe: 2002ap, 2001ig, and 2010br. I will present a review of previous companion searches and results from our current HST survey, which include one detection and two meaningful upper limits.
Cas A and the Crab were not stellar binaries at death
NASA Astrophysics Data System (ADS)
Kochanek, C. S.
2018-01-01
The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb < 44 per cent. In a passively evolving binary model (meaning no binary interactions), with a flat mass ratio distribution and a Salpeter IMF, the resulting 90 per cent confidence upper limit on the initial binary fraction of F < 63 per cent is in tension with observed massive binary statistics. Allowing a significant fraction fM ≃ 25 per cent of stellar binaries to merge reduces the tension, with F < 63({1-f}M)^{-1}{ per cent} ˜eq 81{ per cent}, but allowing for the significant fraction in higher order systems (triples, etc.) reintroduces the tension. That Cas A was not a stellar binary at death also shows that a surviving massive binary companion at the time of the explosion is not necessary for producing a Type IIb SNe. Much larger surveys for binary companions to Galactic SNe will become feasible with the release of the full Gaia proper motion and parallax catalogues providing a powerful probe of the statistics of such binaries and their role in massive star evolution, neutron star velocity distributions and runaway stars.
The chemically peculiar double-lined spectroscopic binary HD 90264
NASA Astrophysics Data System (ADS)
Quiroga, C.; Torres, A. F.; Cidale, L. S.
2010-10-01
Context. HD 90264 is a chemically peculiar (CP) double-lined spectroscopic binary system of the type He-weak. Double-lined binaries are unique sources of data for stellar masses, physical properties, and evolutionary aspects of stars. Therefore, the determination of orbital elements is of great importance to study how the physical characteristics of CP stars are affected by a companion. Aims: We carried out a detailed spectral and polarimetric study of the spectroscopic binary system HD 90264 to characterize its orbit, determine the stellar masses, and investigate the spectral variability and possible polarization of the binary components. Methods: We employed medium-resolution échelle spectra and polarimetric data obtained at the 2.15-m telescope at CASLEO Observatory, Argentina. We measured radial velocities and line equivalent widths with IRAF packages. The radial velocity curves of both binary components were obtained combining radial velocity data derived from the single line of Hg II λ3984 Åand the double lines of Mg II λ4481 Å. Polarimetric data were studied by means of the statistical method of Clarke & Stewart and the Welch test. Results: We found that both components of the binary system are chemically peculiar stars, deficient in helium, where the primary is a He variable and the secondary is a Hg-Mn star. We derived for the first time the orbital parameters of the binary system. We found that the system has a quasi-circular orbit (e ~ 0.04) with an orbital period of 15.727 days. Taking into account the circular orbit solution, we derived a mass ratio of q = MHe-w/MHg-Mn = 1.22. We also found a rotational period of around 15-16 days, suggesting a spin-orbit synchronization. Possible signs of intrinsic polarization have also been detected. Conclusions: HD 90264 is the first known binary system comprised of a He variable star as the primary component and a Hg-Mn star as the secondary one. Based on observations taken at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación and the National Universities of La Plata, Córdoba and San Juan.
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
Accretion of chemically fractionated material on a wide binary with a blue straggler
NASA Astrophysics Data System (ADS)
Desidera, S.; Gratton, R. G.; Lucatello, S.; Endl, M.; Udry, S.
2007-02-01
Context: The components of the wide binary HIP 64030 = HD 113984 show a large (about 0.25 dex) iron content difference (Desidera et al. 2006). The positions of the components on the color magnitude diagram suggest that the primary is a blue straggler. Aims: We studied the abundance difference of several elements besides iron, and we searched for stellar and substellar companions around the components to unveil the origin of the observed iron difference. Methods: A line-by-line differential abundance analysis for several elements was performed for iron, while suitable spectral synthesis was performed for C, N, and Li. High precision radial velocities obtained with the iodine cell were combined with available literature data. Results: The analysis of additional elements shows that the abundance difference for the elements studied increases with increasing condensation temperature, suggesting that accretion of chemically fractionated material might have occurred in the system. Alteration of C and N likely due to CNO processing is also observed. We also show that the primary is a spectroscopic binary with a period of 445 days and moderate eccentricity. The minimum mass of the companion is 0.17~M⊙. Conclusions: .Two scenarios were explored to explain the observed abundance pattern. In the first, all abundance anomalies arise on the blue straggler. If this is the case, the dust-gas separation may have been occurred in a circumbinary disk around the blue straggler and its expected white dwarf companion, as observed in several RV Tauri and post AGB binaries. In the second scenario, accretion of dust-rich material occurred on the secondary. This would also explain the anomalous carbon isotopic ratio of the secondary. Such a scenario requires that a substantial amount of mass lost by the central binary has been accreted by the wide component. Further studies to compare the two scenarios are proposed. Based on observations collected at the European Southern Observatory, Chile, using FEROS spectrograph (proposal ID: 70.D-0081), on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and on observations made at McDonald Observatory.
A Speckle survey of Southern Hipparcos Visual Doubles and Geneva-Copenhagen Spectroscopic Binaries
NASA Astrophysics Data System (ADS)
Mendez, R. A.; Tokovinin, A.; Horch, E.
2017-07-01
The prospect of exquisite-precision parallaxes that will be enabled by the Gaia satellite dramatically changes the landscape of observational stellar astrophysics: If one considers the Hipparcos double stars that lie within 250 pc of the Solar system, a parallax determined by Gaia would yield an uncertainty under 1% for all these objects. In this volume, there are 591 Hipparcos double star discoveries and 160 spectroscopic binaries from the Geneva-Copenhagen spectroscopic survey in the declination range of -20° to -90°. These two samples are important as a source of new binaries from which we will derive masses, component luminosities, and effective temperatures in the coming years. The northern hemisphere counterpart of these objects have been systematically observed at the WIYN Telescope by Horch and collaborators (Horch, E. P., van Altena, W. F., Howell, S. B., Sherry, W. H., & Ciardi, D. R. 2011, AJ, 141, 180). On the other hand, Tokovinin has shown the ability of HRCam at the CTIO/SOAR 4m telescope for binary star research. In 2014 we started a speckle survey with SOAR+HRCam that will complement and significantly extend those previous efforts, allowing us to compile a unique all-sky, volume-limited speckle survey of these two primary samples. So far 12 nights (spread over 3 semesters) have been granted through the Chilean reserved time, with lots of binaries confirmed, many new binaries found, and with several multiple systems discovered (Tokovinin et al., 2015, AJ, 150, 50 and 2016, AJ, 151, 153). Our survey, when complete, will open the door to many sensitive tests of stellar evolution theory, and a large number of new points on the MLR. With this we will truly be able to investigate effects such as metallicity and age on the MLR for the first time. In cases where one component has evolved off the main sequence, age determinations will also be possible.
MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team
2016-01-01
Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.
Photometric Monitoring of Short-Period Contact Binaries
NASA Astrophysics Data System (ADS)
Vanko, M.
2001-12-01
The first photoelectric B,V light curves of the contact binary FU Dra, as well as new B,V light curves of the contact binaries AH Aur, UV Lyn and YY CrB, obtained at the Stará Lesná and Skalnaté Pleso Observatories, are presented. New photometric elements of AH Aur, FU Dra and UV Lyn computed from these light curves were combined with published spectroscopic elements to derive the absolute parameters of the systems.
A photometric study of the eclipsing binary RX Hercules
NASA Technical Reports Server (NTRS)
Jeffreys, K. W.
1980-01-01
A new photoelectric light curve of RX Hercules, a binary system with similar components, has been analyzed using Wood's computer model. RX Her, using Popper's spectroscopic mass ratio of q = 0.8472, turned out to be composed of a dimmer AO component and a larger B9.5 component. This detached system, upon analysis of the residuals in secondary minimum, shows some asymmetry during ingress which then disappears just before secondary minimum. The eccentricity e = 0.022 determined in this study is a little larger than previously published values of e = 0.018. In combination with the spectroscopic analysis of Popper, and ubvy data of Olson and Hill and Hilditch new photometric elements for RX Her were found.
NASA Astrophysics Data System (ADS)
Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2018-05-01
Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.
Light Curve and Analysis of the Eclipsing Binary BF Centauri
NASA Astrophysics Data System (ADS)
Morris, M. A.; Wolf, G. W.
2003-12-01
The eclipsing binary star BF Centauri was observed photometrically by GWW in the uvby filter system from Mt. John Observatory in New Zealand during 1982, 1989 and 1998. It was also observed spectroscopically at 10 A/mm by W. A. Lawson in 1993 at Mt. Stromlo in Australia to obtain a radial velocity solution. The combined light curves and spectroscopic results have been analyzed using the 1998 version of Robert Wilson's WD light-curve programs. A consistent model for the system will be presented. This analysis was done as a part of a senior research project by MAM, who would like to acknowledge financial support from the Missouri Space Grant Consortium.
NASA Astrophysics Data System (ADS)
Zinnecker, Hans
We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.
NASA Astrophysics Data System (ADS)
Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong
2018-05-01
This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.
ERIC Educational Resources Information Center
De Lorenzi Pezzolo, Alessandra
2013-01-01
Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…
NASA Astrophysics Data System (ADS)
Yakut, Kadri
2015-08-01
We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.
Dielectric and spectroscopic study of binary mixture of Acrylonitrile with Chlorobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, Snehal D.; Pattebahadur, K. L.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
In this paper, study of binary mixture of Acrylonitrile (ACN) with Chlorobenzene (CBZ) has been carried out at eleven concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range and fitted to the Redlich-Kister equation. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Chlorobenzene is supported by the FTIR spectra.
Spectroscopy of hot subdwarf binaries
NASA Astrophysics Data System (ADS)
Kreuzer, Simon; Irrgang, Andreas; Heber, Ulrich
2018-06-01
We present a status report of our spectroscopic analysis of subdwarf binaries consisting of a subdwarf and a F/G/K-type main-sequence companion. These systems selected from SDSS photometry show significant excess in the (infra-)red which can not be explained by interstellar reddening. Inspection of SDSS spectra revealed that most of them are composite spectrum sdB binaries. Once their spectra are disentangled, a detailed spectral analysis can be carried out. It reveals Teff, log g and the metal abundance of each individual star. The cool companion is of particular interest, because its spectrum reveals the original chemical composition of the binary.
Wide binaries in the direction of Andromeda
NASA Technical Reports Server (NTRS)
Bahcall, J. N.; Ratnatunga, K. U.; Jones, B. F.
1986-01-01
A statistically well-defined sample of candidate binary stars with separations that are expected to be mostly in the range 0.01-0.1 pc is presented. The 36 candidate pairs are all brighter than apparent visual magnitude 12; about half of the projected pairs are expected to be physically associated. After the candidates are studied spectroscopically and photometrically to establish which pairs are real binaries and to measure their physical characteristics, the sample can be used to help determine the dependence of number density on semimajor axis for wide binaries, a function that is of considerable theoretical interest.
Radial-velocity measures and the existence of astrophysical binaries in late-type dwarf stars
NASA Technical Reports Server (NTRS)
Bopp, B. W.; Meredith, R.
1986-01-01
Radial velocities with errors of 1-2 km/s are presented based on CCD scans obtained with the Kitt Peak National Observatory coude feed telescope between 1982 and 1985 of 48 dK-M stars that lack Balmer emission. Comparison with Gliese's (1969) values shows only two stars to be spectroscopic binary candidates with small velocity amplitudes. No evidence for any short period (less than 10 days) binaries is found, supporting the conclusions of Young et al. (1986) that there are no astrophysical binaries among these chromosherically inactive dM stars.
NASA Astrophysics Data System (ADS)
Nazé, Y.; Antokhin, I. I.; Sana, H.; Gosset, E.; Rauw, G.
2005-05-01
We present the analysis of an extensive set of high-resolution spectroscopic observations of HD 93161, a visual binary with a separation of 2 arcsec. HD 93161 A is a spectroscopic binary, with both components clearly detected throughout the orbit. The primary star is most probably of spectral type O8V, while the secondary is likely an O9V. We obtain the first orbital solution for this system, characterized by a period of 8.566 +/- 0.004 d. The minimum masses of the primary and secondary stars are 22.2 +/- 0.6 and 17.0 +/- 0.4 Msolar, respectively. These values are quite large, suggesting a high inclination of the orbit. The second object, HD 93161 B, displays an O6.5V(f) spectral type and is thus slightly hotter than its neighbour. This star is at first sight single but presents radial velocity variations. Finally, we study HD 93161 in the X-ray domain. No significant variability is detected. The X-ray spectrum is well described by a 2T model with kT1~ 0.3 keV and kT2~ 0.7 keV. The X-ray luminosity is rather moderate, without any large emission excess imputable to a wind interaction.
Using Kepler K2 to Measure the Binary Fraction of PN Central Stars
NASA Astrophysics Data System (ADS)
Jacoby, George H.; Hillwig, Todd; De Marco, Orsola; Hurowitz, Jonathan; Jones, David; Kronberger, Matthias; Harmer, Dianne
2018-01-01
During the initial Kepler mission, 5 Planetary Nebula (PN) central stars were observed. The light curves for 4 of these central stars indicated a history of close binary interactions. That large fraction was suggestive that the actual fraction of PN harboring close binaries is much larger than the known lower limit of 20%, but that sample is far too small to be compelling. We have since acquired Kepler K2 data for Campaigns 0, 2, 7, and 11, hosting PN samples of 3, 4, 8, and 185 targets, respectively. We will provide an update on the number of binary candidates found in each field, and in particular, the Galactic Bulge field of Campaign 11. We also will discuss the challenges of working with Kepler observations in the crowded Campaign 11 field and the impact of those challenges on our ability to estimate the fraction of PN central stars that are binaries. This study was supported in part by NASA grants NNX17AE64G and NNX17AF80G.
Evolution of Optical Binary Fraction in Sparse Stellar Systems
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Mao, Caiyan
2018-05-01
This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.
Modeling and Observations of Massive Binaries with the B[e] Phenomenon
NASA Astrophysics Data System (ADS)
Lobel, A.; Martayan, C.; Mehner, A.; Groh, J. H.
2017-02-01
We report a long-term high-resolution spectroscopic monitoring program of LBVs and candidate LBVs with Mercator-HERMES. Based on 7 years of data, we recently showed that supergiant MWC 314 is a (Galactic) semi-detached eccentric binary with stationary permitted and forbidden emission lines in the optical and near-IR region. MWC 314 is a luminous and massive probable LBV star showing a strongly orbitally-modulated wind variability. We observe discrete absorption components in P Cyg He I lines signaling large-scale wind structures. In 2014 XMM observed X-rays indicating strong wind-wind collision in the close binary system (a ≃1 AU). A VLT-NACO imaging survey recently revealed that MWC 314 is a triple hierarchical system. We present a 3-D non-LTE radiative transfer model of the extended asymmetric wind structure around the primary B0 supergiant for modeling the orbital variability of P Cyg absorption (v∞˜1200 km s-1) in He I lines. An analysis of the HERMES monitoring spectra of the Galactic LBV star MWC 930 however does not show clear indications of a spectroscopic binary. The detailed long-term spectroscopic variability of this massive B[e] star is very similar to the spectroscopic variability of the prototypical blue hypergiant S Dor in the LMC. We observe prominent P Cyg line shapes in MWC 930 that temporarily transform into split absorption line cores during variability phases of its S Dor cycle over the past decade with a brightening in V of ˜ 1.2 mag. The line splitting phenomenon is very similar to the split metal line cores observed in pulsating Yellow Hypergiants ρ Cas (F-K Ia+) and HR 8752 (A-K Ia+) with [Ca II] and [N II] emission lines. We propose the line core splitting in MWC 930 is due to optically thick central line emission produced in the inner ionized wind region becoming mechanically shock-excited with the increase of R* and decrease of Teff of the LBV.
Maurya, Sandeep Kumar; Das, Dhiman; Goswami, Debabrata
2016-06-13
Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔT P-V ) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid. © The Author(s) 2016.
Dynamical evolution of young binaries and multiple systems
NASA Astrophysics Data System (ADS)
Reipurth, B.
Most stars, and perhaps all, are born in small multiple systems whose components interact, leading to chaotic dynamic behavior. Some components are ejected, either into distant orbits or into outright escapes, while the remaining components form temporary and eventually permanent binary systems. More than half of all such breakups of multiple systems occur during the protostellar phase, leading to the occasional ejection of protostars outside their nascent cloud cores. Such orphaned protostars are observed as wide companions to embedded protostars, and thus allow the direct study of protostellar objects. Dynamic interactions during early stellar evolution explain the shape and enormous width of the separation distribution function of binaries, from close spectroscopic binaries to the widest binaries.
BD -22 5866: A Low-Mass, Quadruple-lined Spectroscopic and Eclipsing Binary
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill; Hebb, Leslie; Cameron, Andrew C.; Torres, Carlos A.; Wilson, David M.
2008-08-01
We report our discovery of an extremely rare, low-mass, quadruple-lined spectroscopic binary BD -22 5866 (=NLTT 53279, integrated spectral type = M0 V), found during an ongoing search for the youngest M dwarfs in the solar neighborhood. From the cross-correlation function, we are able to measure relative flux levels, estimate the spectral types of the components, and set upper limits on the orbital periods and separations. The resulting system is hierarchical, composed of a K7 + K7 binary and an M1 + M2 binary with semimajor axes of aAsin iA <= 0.06 and aBsin iB <= 0.30 AU. A subsequent search of the SuperWASP photometric database revealed that the K7 + K7 binary is eclipsing with a period of 2.21 days and at an inclination angle of 85°. Within uncertainties of 5%, the masses and radii of both components appear to be equal (0.59 M⊙, 0.61 R⊙). These two tightly orbiting stars (a = 0.035 AU) are in synchronous rotation, causing the observed excess Ca II, Hα, X-ray, and UV emission. The fact that the system was unresolved with published adaptive optics imaging, limits the projected physical separation of the two binaries at the time of the observation to dABlesssim 4.1 AU at the photometric distance of 51 pc. The maximum observed radial velocity difference between the A and B binaries limits the orbit to aABsin iAB <= 6.1 AU. As this tight configuration is difficult to reproduce with current formation models of multiple systems, we speculate that an early dynamical process reduced the size of the system, such as the interaction of the two binaries with a circumquadruple disk. Intensive photometric, spectroscopic, and interferometric monitoring, as well as a parallax measurement of this rare quadruple system, is certainly warranted. Based on observations collected at the W. M. Keck Observatory and the Canada-France-Hawaii Telescope (CFHT). The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
A Search for Low Mass Stars and Substellar Companions and A Study of Circumbinary Gas and Dust Disks
NASA Astrophysics Data System (ADS)
Rodriguez, David R.
2011-01-01
We have searched for nearby low-mass stars and brown dwarfs and have studied the planet-forming environment of binary stars. We have carried out a search for young, low-mass stars in nearby stellar associations using X-ray and UV source catalogs. We discovered a new technique to identify 10-100 Myr-old low-mass stars within 100 pc of the Earth using GALEX-optical/near-IR data. We present candidate young stars found by applying this new method in the 10 Myr old TW Hydrae and Scorpius-Centaurus associations. In addition, we have searched for the coolest brown dwarf class: Y-dwarfs, expected to appear at temperatures <500 K. Using wide-field near infrared imaging with ground (CTIO, Palomar, KPNO) and space (Spitzer, AKARI) observatories, we have looked for companions to nearby, old (2 Gyr or older), high proper motion white dwarfs. We present results for Southern Hemisphere white dwarfs. Additionally, we have characterized how likely planet formation occurs in binary star systems. While 20% of planets have been discovered around one member of a binary system, these binaries have semi-major axes larger than 20 AU. We have performed an AO and spectroscopic search for binary stars among a sample of known debris disk stars, which allows us to indirectly study planet formation and evolution in binary systems. As a case study, we examined the gas and dust present in the circumbinary disk around V4046 Sagittarii, a 2.4-day spectroscopic binary. Our results demonstrate it is unlikely that planets can form in binaries with stellar semi-major axes of 10s of AU. This research has been funded by a NASA ADA grant to UCLA and RIT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Halpern, Jules P.; Eracleous, Michael
2016-01-20
One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less
NASA Astrophysics Data System (ADS)
Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.
2016-10-01
Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.
NASA Astrophysics Data System (ADS)
Cottaar, M.; Hénault-Brunet, V.
2014-02-01
Orbital motions from binary stars can broaden the observed line-of-sight velocity distribution of a stellar system and artificially inflate the measured line-of-sight velocity dispersion, which can in turn lead to erroneous conclusions about the dynamical state of the system. Recently, a maximum-likelihood procedure was proposed to recover the intrinsic velocity dispersion of a resolved star cluster from a single epoch of radial velocity data of individual stars, which was achieved by simultaneously fitting the intrinsic velocity distribution of the single stars and the centers of mass of the binaries along with the velocity shifts caused by binary orbital motions. Assuming well-characterized binary properties, this procedure can accurately reproduce intrinsic velocity dispersions below 1 km s-1 for solar-type stars. Here we investigate the systematic offsets induced when the binary properties are uncertain and we show that two epochs of radial velocity data with an appropriate baseline can help to mitigate these systematic effects. We first test the method described above using Monte Carlo simulations, taking into account the large uncertainties in the binary properties of OB stars. We then apply it to radial velocity data in the young massive cluster R136 for which the intrinsic velocity dispersion of O-type stars is known from an intensive multi-epoch approach. For typical velocity dispersions of young massive clusters (≳4 km s-1) and with a single epoch of data, we demonstrate that the method can just about distinguish between a cluster in virial equilibrium and an unbound cluster. This is due to the higher spectroscopic binary fraction and more loosely constrained distributions of orbital parameters of OB stars compared to solar-type stars. By extending the maximum-likelihood method to multi-epoch data, we show that the accuracy on the fitted velocity dispersion can be improved by only a few percent by using only two epochs of radial velocities. This procedure offers a promising method of accurately measuring the intrinsic stellar velocity dispersion in other systems for which the binary properties are poorly constrained, for example, young clusters and associations whose luminosity is dominated by OB stars. Appendix A is available in electronic form at http://www.aanda.org
Detection of spectroscopic binaries: lessons from the Gaia-ESO survey
NASA Astrophysics Data System (ADS)
van der Swaelmen, Mathieu; Merle, Thibault; van Eck, Sophie; Jorissen, Alain; Zwitter, Tomaž
2018-04-01
The Gaia-ESO survey (GES; Gilmore et al. (2012), Randich et al. (2013)) is a spectroscopic survey complementing the Gaia mission to bring accurate radial velocities and chemical abundances for 105 stars. Merle et al. (submitted to A&A see also this volume) developped a tool (DOE) to detect multiple peaks in the cross-correlation functions (CCFs) of GES spectra. Using the GIRAFFE HR10 and HR21 settings, we were able to compare the efficiency of our SB detection tool depending on the wavelength range and resolution. We show that a careful design of CCF masks can improve the detection rate in the HR21 settings. HR21 spectra are similar to the ones produced by the RVS spectrograph of the Gaia mission, though the lower resolution of RVS spectra may result in a lower detection efficiency than the case of HR21. Analysis of RVS spectra in the context of spectroscopic binaries can take advantage of the lessons learnt from the GES to maximize the detection rate.
THE NuSTAR Hard X-Ray Survey of the Norma Arm Region
NASA Technical Reports Server (NTRS)
Fornasini, Francesca M.; Tomsick, John A.; Hong, Jaesub; Gotthelf, Eric V.; Bauer, Franz; Rahoui, Farid; Stern, Daniel K.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca;
2017-01-01
We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array (NuSTAR) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 x 10(exp -14) and 4 x 10(exp -14) ergs/s/sq cm in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of approx. 10-20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR logN-logS distribution in the 10-20keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with kT approx. =15 keV, as observed for the CV candidates.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.
Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G
2017-04-20
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.
2018-01-01
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167
Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries
NASA Technical Reports Server (NTRS)
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.
2017-01-01
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus
2017-04-20
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less
W134: A new pre-main-sequence double-lined spectroscopic binary
NASA Technical Reports Server (NTRS)
Padgett, Deborah L.; Stapelfeldt, Karl R.
1994-01-01
We report the discovery that the pre-main-sequence star Walker 134 in the young cluster NGC 2264 is a double-lined spectroscopic binary. Both components are G stars with strong Li I 6708 A absorption lines. Twenty radial velocity measurements have been used to determined the orbital elements of this system. The orbit has a period of 6.3532 +/- 0.0012 days and is circular within the limits of our velocity resolution; e less than 0.01. The total system mass is stellar mass sin(exp 3) i = 3.16 solar mass with a mass ratio of 1.04. Estimates for the orbit inclination angle and stellar radii place the system near the threshold for eclipse observability; howerver, no decrease in brightness was seen during two attempts at photometric monitoring. The circular orbit of W 134 fills an important gap in the period distribution of pre-main-sequence binaries and thereby constrains the effectiveness of tidal orbital circularization during the pre-main sequence.
Weak Magnetic Fields in Two Herbig Ae Systems: The SB2 AK Sco and the Presumed Binary HD 95881
NASA Astrophysics Data System (ADS)
Järvinen, S. P.; Carroll, T. A.; Hubrig, S.; Ilyin, I.; Schöller, M.; Castelli, F.; Hummel, C. A.; Petr-Gotzens, M. G.; Korhonen, H.; Weigelt, G.; Pogodin, M. A.; Drake, N. A.
2018-05-01
We report the detection of weak mean longitudinal magnetic fields in the Herbig Ae double-lined spectroscopic binary AK Sco and in the presumed spectroscopic Herbig Ae binary HD 95881 using observations with the High Accuracy Radial velocity Planet Searcher polarimeter (HARPSpol) attached to the European Southern Observatory’s (ESO’s) 3.6 m telescope. Employing a multi-line singular value decomposition method, we detect a mean longitudinal magnetic field < {B}{{z}}> =-83+/- 31 G in the secondary component of AK Sco on one occasion. For HD 95881, we measure < {B}{{z}}> =-93+/- 25 G and < {B}{{z}}> =105+/- 29 G at two different observing epochs. For all the detections the false alarm probability is smaller than 10‑5. For AK Sco system, we discover that accretion diagnostic Na I doublet lines and photospheric lines show intensity variations over the observing nights. The double-lined spectral appearance of HD 95881 is presented here for the first time.
The star 12 Persei and separated fringe packet binaries (SFPB)
NASA Astrophysics Data System (ADS)
Bagnuolo, William G., Jr.; ten Brummelaar, Theo A.; McAlister, H. A.; Gies, Douglas R.; Ridgway, Stephen T.
2006-06-01
We have obtained high resolution orbital data with the CHARA Array for the bright star 12 Persei, a resolved double-lined spectroscopic binary, an example of a Separated Fringe Packet Binary. We describe the data reduction process involved. By using a technique we have developed of 'side-lobe verniering', we can obtain an improved precision in separation of up to 25 micro-arcsec along a given baseline. For this object we find a semi-major axis 0.3 of Barlow, Scarfe, and Fekel (1998) [BSF], but with an increased inclination angle. The revised masses are therefore almost 6% greater than those of BSF. The overall accuracy in the masses is about 1.3%, now primarily limited by the spectroscopically determined radial velocities. The precision of the masses due to the interferometrically derived "visual" orbit alone is only about 0.2%. We expect that improved RVs and improved absolute calibration can bring down the mass errors to below 1%.
A simultaneous spectroscopic and photometric study of two eclipsing binaries: V566 Oph and V972 Her
NASA Astrophysics Data System (ADS)
Selam, S. O.; Esmer, E. M.; Şenavcı, H. V.; Bahar, E.; Yörükoğlu, O.; Yılmaz, M.; Baştürk, Ö.
2018-02-01
In this study, we have performed simultaneous solutions of light and radial velocity curves of two eclipsing binary systems, V566 Oph and V972 Her. We observed both systems spectroscopically with a very recently installed spectrograph on the 40 cm telescope, T40, located in Ankara University Kreiken Observatory (AUKR), for the first time. We made use of the photometric data from the Hipparcos satellite for V972 Her, while we obtained the photometric observations of V566 Oph by using the 35 cm telescope, T35, located also in our observatory campus. We derived the absolute parameters for both systems and discussed their evolutionary states. In addition to the simultaneous analysis, we have also analyzed the change in mid-eclipse times for V566 Oph, and found cyclic variations, for which we have discussed light-time effect and magnetic activity as their potential origin, superimposed on a secular change due to a mass transfer between the components of the binary.
Absolute dimensions and masses of eclipsing binaries. V. IQ Persei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, C.H.; Frueh, M.L.
1985-08-01
New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, andmore » apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references.« less
NASA Astrophysics Data System (ADS)
Korolkov, Victor P.; Konchenko, Alexander S.; Cherkashin, Vadim V.; Mironnikov, Nikolay G.; Poleshchuk, Alexander G.
2013-09-01
Detailed analysis of etch depth map for phase binary computer-generated holograms intended for testing aspheric optics is a very important task. In particular, diffractive Fizeau null lenses need to be carefully tested for uniformity of etch depth. We offer a simplified version of the specular spectroscopic scatterometry method. It is based on the spectral properties of binary phase multi-order gratings. An intensity of zero order is a periodical function of illumination light wave number. The grating grooves depth can be calculated as it is inversely proportional to the period. Measurement in reflection allows one to increase the phase depth of the grooves by a factor of 2 and measure more precisely shallow phase gratings. Measurement uncertainty is mainly defined by the following parameters: shifts of the spectrum maximums that occur due to the tilted grooves sidewalls, uncertainty of light incidence angle measurement, and spectrophotometer wavelength error. It is theoretically and experimentally shown that the method we describe can ensure 1% error. However, fiber spectrometers are more convenient for scanning measurements of large area computer-generated holograms. Our experimental system for characterization of binary computer-generated holograms was developed using a fiber spectrometer.
Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes
NASA Technical Reports Server (NTRS)
Artymowicz, Pawel; Lubow, Stephen H.
1994-01-01
We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to Linblad resonances, even if the disk is nonviscous.
Observations of suspected low-mass post-T Tauri stars and their evolutionary status
NASA Technical Reports Server (NTRS)
Mundt, R.; Walter, F. M.; Feigelson, E. D.; Finkenzeller, U.; Herbig, G. H.; Odell, A. P.
1983-01-01
The results of a study of five X-ray discovered weak emission pre-main-sequence stars in the Taurus-Auriga star formation complex are presented. All are of spectral type K7-M0, and about 1-2 mag above the main sequence. One is a double-lined spectroscopic binary, the first spectroscopic binary PMS star to be confirmed. The ages, masses, and radii of these stars as determined by photometry and spectroscopy are discussed. The difference in emission strength between these and the T Tauri stars is investigated, and it is concluded that these 'post-T Tauri' stars do indeed appear more evolved than the T Tauri stars, although there is no evidence of any significant difference in ages.
Wide- and contact-binary formation in substructured young stellar clusters
NASA Astrophysics Data System (ADS)
Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.
2017-02-01
We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.
NASA Astrophysics Data System (ADS)
Noll, K. S.
2017-12-01
The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.
Properties OF M31. V. 298 eclipsing binaries from PAndromeda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.-H.; Koppenhoefer, J.; Seitz, S.
2014-12-10
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less
NASA Astrophysics Data System (ADS)
González, J. F.; Levato, H.; Grosso, M.
We present preliminary results of a long-term project devoted to the observational study of the binary star population in open clusters and its connection with the dynamical and evolutionary properties of the clusters. We report the discovery of 17 double-lined spectroscopic binaries, 30 radial velocity variables and about 30 suspected variables. In the 17 clusters of our sample the binary frequency ranges between 20 and 40 %, and reaches typically 60 % if all suspected binaries are included. We study the spatial distribution of the binary stars with respect to the cluster center and we discuss the statistical correlation of the mass-ratio distribution with the cluster age.
The MUCHFUSS photometric campaign
NASA Astrophysics Data System (ADS)
Schaffenroth, V.; Geier, S.; Heber, U.; Gerber, R.; Schneider, D.; Ziegerer, E.; Cordes, O.
2018-06-01
Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which have lost almost all of their hydrogen envelope. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light-curve variations like reflection effects and often also eclipses. To search for such objects, we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system (P = 0.168938 d) with a low-mass M dwarf companion (0.116 M⊙). Three more reflection effect binaries found in the course of the campaign have already been published; two of them are eclipsing systems, and in one system only showing the reflection effect but no eclipses, the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15% and the fraction of close substellar companions in sdB binaries may be as high as 8.0%. This would result in a close substellar companion fraction to sdB stars of about 3%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might suggest that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chien-Hsiu, E-mail: leech@naoj.org
Eclipsing binaries offer a unique opportunity to determine basic stellar properties. With the advent of wide-field camera and all-sky time-domain surveys, thousands of eclipsing binaries have been charted via light curve classification, yet their fundamental properties remain unexplored mainly due to the extensive efforts needed for spectroscopic follow-ups. In this paper, we present the discovery of a short-period ( P = 0.313 day), double-lined M-dwarf eclipsing binary, CSSJ114804.3+255132/SDSSJ114804.35+255132.6, by cross-matching binary light curves from the Catalina Sky Survey and spectroscopically classified M dwarfs from the Sloan Digital Sky Survey. We obtain follow-up spectra using the Gemini telescope, enabling us to determinemore » the mass, radius, and temperature of the primary and secondary component to be M {sub 1} = 0.47 ± 0.03(statistic) ± 0.03(systematic) M {sub ⊙}, M {sub 2} = 0.46 ± 0.03(statistic) ± 0.03(systematic) M {sub ⊙}, R {sub 1} = 0.52 ± 0.08(statistic) ± 0.07(systematic) R {sub ⊙}, R {sub 2} =0.60 ± 0.08(statistic) ± 0.08(systematic) R {sub ⊙}, T {sub 1} = 3560 ± 100 K, and T {sub 2} = 3040 ± 100 K, respectively. The systematic error was estimated using the difference between eccentric and non-eccentric fits. Our analysis also indicates that there is definitively third-light contamination (66%) in the CSS photometry. The secondary star seems inflated, probably due to tidal locking of the close secondary companion, which is common for very short-period binary systems. Future spectroscopic observations with high resolution will narrow down the uncertainties of stellar parameters for both components, rendering this system as a benchmark for studying fundamental properties of M dwarfs.« less
The massive multiple system HD 64315
NASA Astrophysics Data System (ADS)
Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.
2017-10-01
Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙. Conclusions: HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙, but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system. Based on observations obtained at the European Southern Observatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-9001(A). Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
Evans, P. A.; Cenko, S. B.; Kennea, J. A.; ...
2017-10-16
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova.
Evans, P A; Cenko, S B; Kennea, J A; Emery, S W K; Kuin, N P M; Korobkin, O; Wollaeger, R T; Fryer, C L; Madsen, K K; Harrison, F A; Xu, Y; Nakar, E; Hotokezaka, K; Lien, A; Campana, S; Oates, S R; Troja, E; Breeveld, A A; Marshall, F E; Barthelmy, S D; Beardmore, A P; Burrows, D N; Cusumano, G; D'Aì, A; D'Avanzo, P; D'Elia, V; de Pasquale, M; Even, W P; Fontes, C J; Forster, K; Garcia, J; Giommi, P; Grefenstette, B; Gronwall, C; Hartmann, D H; Heida, M; Hungerford, A L; Kasliwal, M M; Krimm, H A; Levan, A J; Malesani, D; Melandri, A; Miyasaka, H; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Palmer, D M; Perri, M; Pike, S; Racusin, J L; Rosswog, S; Siegel, M H; Sakamoto, T; Sbarufatti, B; Tagliaferri, G; Tanvir, N R; Tohuvavohu, A
2017-12-22
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction ( Y e ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow). Copyright © 2017, American Association for the Advancement of Science.
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, P. A.; Cenko, S. B.; Kennea, J. A.
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.
2016-10-01
From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly longer period of time than high mass ratio systems. We also find that the mean of the log-normal BYORP coefficient distribution μB ≳10-2 , which is consistent with estimates from shape modeling (McMahon and Scheeres, 2012a).
Subdwarf B Stars: Tracers Of Binary Evolution
NASA Astrophysics Data System (ADS)
Morales-Rueda, L.; Maxted, P. F. L.; Marsh, T. R.
2007-08-01
Subdwarf B stars are a superb stellar population to study binary evolution. In 2001, Maxted et al. (MNRAS, 326, 1391) found that 21 out of the 36 subdwarf B stars they studied were in short period binaries. These observations inspired new theoretical work that suggests that up to 90 per cent of subdwarf B stars are in binary systems with the remaining apparently single stars being the product of merging pairs. This high binary fraction added to the fact that they are detached binaries that have not changed significantly since they came out of the common envelope, make subdwarf B stars a perfect population to study binary evolution. By comparing the observed orbital period distribution of subdwarf B stars with that obtained from population synthesis calculations we can determine fundamental parameters of binary evolution such as the common envelope ejection efficiency. Here we give an overview of the fraction of short period binaries found from different surveys as well as the most up to date orbital period distribution determined observationally. We also present results from a recent search for subdwarf B stars in long period binaries.
Lyman-alpha fractions in the Hubble Ultra Deep Field at 4 < z < 6
NASA Astrophysics Data System (ADS)
Harish, Santosh; Malhotra, Sangeeta; Rhoads, James; Christensen, Lise; Tilvi, Vithal; Finkelstein, Steven; Pharo, John
2018-01-01
Lyman-alpha (Lya) emitting galaxies at high-redshifts serve as a good probe of neutral hydrogen in the intergalactic medium (IGM). Here we present measurements of the Lya fraction using a sample of Lyman-break galaxies (LBGs) between 4 < z < 6 with deep HST grism observations from the GRAPES/PEARS projects as well as spectroscopic observations from the MUSE integral-field spectrograph. The sample of LBGs at z~5 & 6 are spectroscopically confirmed with deep HST grism data from the GRAPES and PEARS projects. We also measure Lya fractions using a sample of photometrically-selected LBGs for the same redshift range. In addition, we study the EW distribution in relation to continuum and line luminosities, as well as the relation between photometric and spectroscopic redshift. We find that objects with higher EWs tend to have larger differences between photometric and spectroscopic redshifts.
A Single Circumbinary Disk in the HD 98800 Quadruple System.
Koerner; Jensen; Cruz; Guild; Gultekin
2000-04-10
We present subarcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0&farcs;8 (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 µm show unequivocally that the optically fainter binary, HD 98800B, is the sole source of a comparatively large infrared excess on which a silicate emission feature is superposed. The excess is detected only at wavelengths of 7.9 µm and longer, peaks at 25 µm, and has a best-fit blackbody temperature of 150 K, indicating that most of the dust lies at distances greater than the orbital separation of the spectroscopic binary. We estimate the radial extent of the dust with a disk model that approximates radiation from the spectroscopic binary as a single source of equivalent luminosity. Given the data, the most likely values of disk properties in the ranges considered are Rin=5.0+/-2.5 AU, DeltaR=13+/-8 AU, lambda0=2+4-1.5 µm, gamma=0+/-2.5, and sigmatotal=16+/-3 AU2, where Rin is the inner radius, DeltaR is the radial extent of the disk, lambda0 is the effective grain size, gamma is the radial power-law exponent of the optical depth tau, and sigmatotal is the total cross section of the grains. The range of implied disk masses is 0.001-0.1 times that of the Moon. These results show that, for a wide range of possible disk properties, a circumbinary disk is far more likely than a narrow ring.
fd3: Spectral disentangling of double-lined spectroscopic binary stars
NASA Astrophysics Data System (ADS)
Ilijić, Saša
2017-05-01
The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.
Physical Parameters of Components in Close Binary Systems: IV
NASA Astrophysics Data System (ADS)
Gazeas, K. D.; Baran, A.; Niarchos, P.; Zola, S.; Kreiner, J. M.; Ogloza, W.; Rucinski, S. M.; Zakrzewski, B.; Siwak, M.; Pigulski, A.; Drozdz, M.
2005-03-01
The paper presents new geometric, photometric and absolute parameters, derived from combined spectroscopic and photometric solutions, for ten contact binary systems. The analysis shows that three systems (EF Boo, GM Dra and SW Lac) are of W-type with shallow to moderate contact. Seven systems (V417 Aql, AH Aur, YY CrB, UX Eri, DZ Psc, GR Vir and NN Vir) are of A-type in a deep contact configuration. For six systems (V417 Aql, YY CrB, GM Dra, UX Eri, SW Lac and GR Vir) a spot model is introduced to explain the O'Connell effect in their light curves. The photometric and geometric elements of the systems are combined with the spectroscopic data taken at David Dunlap Observatory to yield the absolute parameters of the components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zola, S.; Baştürk, Ö.; Şenavcı, H. V.
2016-08-01
In this paper, we present a combined photometric, spectroscopic, and orbital period study of three early-type eclipsing binary systems: XZ Aql, UX Her, and AT Peg. As a result, we have derived the absolute parameters of their components and, on that basis, we discuss their evolutionary states. Furthermore, we compare their parameters with those of other binary systems and with theoretical models. An analysis of all available up-to-date times of minima indicated that all three systems studied here show cyclic orbital changes; their origin is discussed in detail. Finally, we performed a frequency analysis for possible pulsational behavior, and asmore » a result we suggest that XZ Aql hosts a δ Scuti component.« less
Are Binary Separations related to their System Mass?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.
2004-08-01
We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.
POLARIZATION MODULATION FROM LENSE–THIRRING PRECESSION IN X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Adam; Maccarone, Thomas J.; Poutanen, Juri
2015-07-01
It has long been recognized that quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting black hole and neutron star binaries have the potential to be powerful diagnostics of strong field gravity. However, this potential cannot be fulfilled without a working theoretical model, which has remained elusive. Perhaps, the most promising model associates the QPO with Lense–Thirring precession of the inner accretion flow, with the changes in viewing angle and Doppler boosting modulating the flux over the course of a precession cycle. Here, we consider the polarization signature of a precessing inner accretion flow. We use simple assumptions about themore » Comptonization process generating the emitted spectrum and take all relativistic effects into account, parallel transporting polarization vectors toward the observer along null geodesics in the Kerr metric. We find that both the degree of linear polarization and the polarization angle should be modulated on the QPO frequency. We calculate the predicted absolute rms variability amplitude of the polarization degree and angle for a specific model geometry. We find that it should be possible to detect these modulations for a reasonable fraction of parameter space with a future X-ray polarimeter such as NASA’s Polarization Spectroscopic Telescope Array (the satellite incarnation of the balloon experiment X-Calibur)« less
Simultaneous Photometric and Spectroscopic Solution for AW Cam
NASA Astrophysics Data System (ADS)
Frey, J. R.; Angione, R. J.; Sievers, J. R.
2010-07-01
We present the first four color Stromgren uvby photometric observations of the eclipsing binary system AW Cam along with the first simultaneous photometric and spectroscopic solution. This solution produced a detached system with a mass ratio of 0.45 consisting of an A1 primary and an F8 secondary, both in the main sequence band. The Hipparcos/Tycho Catalogue gives V = 8.24 and a parallax = 2.17 mas.
PMMA and polystyrene films modification under ion implantation studied by spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Leontyev, A. V.; Kovalev, V. I.; Khomich, A. V.; Komarov, Fadei F.; Grigoryev, V. V.; Kamishan, A. S.
2004-05-01
We have applied spectroscopic ellipsometry with binary polarization modulation to study the refractive index n(λ) and extinction coefficient k(λ) spectra of as-deposited and irradiated with nitrogen ions polymethylmethacrylate (PMMA) and polystyrene (PS) films in 300-1030 nm range. The results of performed investigation confirmed the possibility and estimate restrictions of the ion implantation for local change the refractive index of polymeric materials.
Multiplicity of the Galactic Senior Citizens: A high-resolution search for cool subdwarf companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.
2015-01-01
Cool subdwarfs, with spectral types late K and M, are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low metallicity and high proper-motions. Understanding their binary fraction could give key insights into the star formation process early in the Milky Way's history. However, because of their low luminosity and relative rarity in the solar neighborhood, binary surveys of cool subdwarfs have suffered from small sample sizes and large incompleteness gaps. It appears, however, that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs yet. We find from 349 target cool subdwarfs, 39 are in multiple systems, 13 newly discovered, for a binary fraction of 11 ± 1.8%.
Massive eclipsing binary candidates
NASA Technical Reports Server (NTRS)
Garrison, R. F.; Schild, R. E.; Hiltner, W. A.
1983-01-01
New UBV data are provided for 63 southern OB stars which are either identified in the survey by Garrison, Hiltner, and Schild as having double lines or are known from Wood et al. to be eclipsing binaries. Twenty of the stars are known eclipsing variables. Four stars, not previously known as eclipsing, have both spectroscopic evidence of duplicity and significant photometric variations. Several additional stars have a marginally significant spread in V magnitude.
V474 Car: A RARE HALO RS CVn BINARY IN RETROGRADE GALACTIC ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bubar, Eric J.; Mamajek, Eric E.; Jensen, Eric L. N.
We report the discovery that the star V474 Car is an extremely active, high velocity halo RS CVn system. The star was originally identified as a possible pre-main-sequence star in Carina, given its enhanced stellar activity, rapid rotation (10.3 days), enhanced Li, and absolute magnitude which places it above the main sequence (MS). However, its extreme radial velocity (264 km s{sup -1}) suggested that this system was unlike any previously known pre-MS system. Our detailed spectroscopic analysis of echelle spectra taken with the CTIO 4 m finds that V474 Car is both a spectroscopic binary with an orbital period similarmore » to the photometric rotation period and metal-poor ([Fe/H] {approx_equal}-0.99). The star's Galactic orbit is extremely eccentric (e {approx_equal} 0.93) with a perigalacticon of only {approx}0.3 kpc of the Galactic center-and the eccentricity and smallness of its perigalacticon are surpassed by only {approx}0.05% of local F/G-type field stars. The observed characteristics are consistent with V474 Car being a high-velocity, metal-poor, tidally locked, chromospherically active binary, i.e., a halo RS CVn binary, and one of only a few such specimens known.« less
Astroserver - Research Services in the Stellar Webshop
NASA Astrophysics Data System (ADS)
Németh, Péter
2017-12-01
A quick look at research and development in astronomy shows that we live in exciting times. Exoplanetary systems, supernovae, and merging binary black holes were far out of reach for observers two decades ago and now such phenomena are recorded routinely. This quick development would not have been possible without the ability for researchers to be connected, to think globally and to be mobile. Classical short-term positions are not always suitable to support these conditions and freelancing may be a viable alternative.We introduce the Astroserver framework, which is a new freelancing platform for scientists, and demonstrate through examples how it contributed to some recent projects related to hot subdwarf stars and binaries. These contributions, which included spectroscopic data mining, computing services and observing services, as well as artwork, allowed a deeper look into the investigated systems. The work on composite spectra binaries provided new details for the hypervelocity wide subdwarf binary PB 3877 and found diverse and rare systems with sub-giant companions in high-resolution spectroscopic surveys. The models for the peculiar abundance pattern of the evolved compact star LP 40-365 showed it to be a bound hypervelocity remnant of a supernova Iax event. Some of these works also included data visualizations to help presenting the new results. Such services may be of interest for many researchers.
Infrared studies of galactic center x-ray sources
NASA Astrophysics Data System (ADS)
DeWitt, Curtis
In this dissertation I use a variety of approaches to discover the nature of a subset of the nearly 10,000 X-ray point sources in the 2° x 0.8° region around the Galactic Center. I produced a JHK s source catalog of the 170 x170 region around Sgr A* an area containing 4339 of these X-ray sources, with the ISPI camera on the CTIO 4-m telescope. I cross-correlated the Chandra and ISPI catalogs to find potential near-infrared (NIR) counterparts to the X-ray sources. The extreme NIR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. I found 2137 IR/X-ray astrometrically matched sources; statistically I calculated that my catalog contains 289+/-13 true matches to soft X-ray sources and 154 +/- 39 matches to hard X-ray sources. However, the fraction of matches to hard sources that are spurious is 90%, compared to 40% for soft source matches, making the hard source NIR matches particularly challenging for spectroscopic follow-up. I statistically investigated the parameter space of matched sources and identified a set of 98 NIR matches to hard X-ray sources with reddenings consistent with the GC distance which have a 45% probability of being true counterparts. I created two additional photometric catalogs of the GC region to investigate the variability of X-ray counterparts over a time baseline of several years. I found 48 variable NIR sources matched to X-ray sources, with 2 spectroscopically confirmed to be true counterparts (1 in previous literature and one in this study). I took spectra of 46 of my best candidates for counterparts to X-ray sources toward the GC, and spectroscopically confirmed 4 sources as the authentic physical counterpart on the basis of emission lines in the H and K band spectra. These sources include a Be high mass X-ray binary located 16 pc in projection away from Sgr A*; a hard X-ray symbiotic binary located 22 pc in projection from Sgr A*; an O-type supergiant at an distance of 3.7 kpc; and an O star at the Galactic Center distance. I also identified 3 foreground X-ray source counterparts within a distance of 1 kpc which do not show obvious emission features in their spectra. However, on the basis of the low surface density of unreddened sources along the line-of-sight to the Galactic Center and our previous statistical analysis (DeWitt et al., 2010), these can be securely identified as the true counterparts to their coincident X-ray point sources. Lastly, I used the results of my matching simulations to infer the presence of 7+/-2 true counterparts within a set of late type giants that I observed without detectable emission features. I conclude from this work that the probable excess in red giant X-ray counterparts without emission lines needs to be confirmed both with larger samples of spectroscopically surveyed counterparts and more advanced statistical simulations of the match authenticity. Also, the nature of the compact object in two of my counterpart discoveries, the Be HMXB and the symbiotic binary, can be strongly constrained with X-ray spectral fitting. Lastly, I conclude that spectroscopic surveys for new X-ray source counterparts in the GC may be able to increase their efficiency by specifically targeting photometric variables and very close astrometric matches of IR/X-ray sources.
NASA Astrophysics Data System (ADS)
Tomza, Paweł; Wrzeszcz, Władysław; Mazurek, Sylwester; Szostak, Roman; Czarnecki, Mirosław Antoni
2018-05-01
Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H2O/CH3OH and H2O/CD3OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (XME < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture.
Tomza, Paweł; Wrzeszcz, Władysław; Mazurek, Sylwester; Szostak, Roman; Czarnecki, Mirosław Antoni
2018-05-15
Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H 2 O/CH 3 OH and H 2 O/CD 3 OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (X ME < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture. Copyright © 2018 Elsevier B.V. All rights reserved.
Absolute parameters of southern detached eclipsing binary: HD 53570
NASA Astrophysics Data System (ADS)
Sürgit, D.
2018-05-01
In this study, we conducted the first analysis of spectroscopic and photometric observations of the eclipsing binary star HD 53570. Spectroscopic observations of HD 53570 were made at the Sutherland Station of the South African Astronomical Observatory in 2013 and 2014. The radial velocities of the components were determined using the cross-correlation technique. The spectroscopic mass ratio obtained for the system was 1.13 ( ± 0.07). The All Sky Automated Survey V light curve of HD 53570 was analyzed using the Wilson-Devinney code combined with the Monte Carlo search method. The final model showed that HD 53570 has a detached configuration. The mass and radii of the primary and secondary components of HD 53570 were derived as 1.06 ( ± 0.07) M⊙, 1.20 ( ± 0.16) M⊙, and 1.42 ( ± 0.14) R⊙, 2.07 ( ± 0.16) R⊙, respectively. The distance of HD 53570 was computed as 248 ( ± 38) pc considering interstellar extinction. The evolutionary status of the component stars was also investigated using Geneva evolutionary models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu
Seven spectroscopic orbits in nearby solar-type multiple stars are presented. The primary of the chromospherically active star HIP 9642 is a 4.8 day double-lined pair; the outer 420 year visual orbit is updated, but remains poorly constrained. HIP 12780 is a quadruple system consisting of the resolved 6.7 year pair FIN 379 Aa,Ab, for which the combined orbit, masses, and orbital parallax are determined here, and the single-lined binary Ba,Bb with a period of 27.8 days. HIP 28790 is a young quintuple system composed of two close binaries, Aa,Ab and Ba,Bb, with periods of 221 and 13 days, respectively, and a singlemore » distant component C. Its subsystem Ba,Bb is peculiar, having a spectroscopic mass ratio of 0.89 but a magnitude difference of ∼2.2 mag. HIP 64478 also contains five stars: the A-component is a 29 year visual pair with a previously known 4 day twin subsystem, while the B-component is a contact binary with a period of 5.8 hr, seen nearly pole-on.« less
NASA Astrophysics Data System (ADS)
Marschall, L. A.; Torres, G.; Neuhauser, R.
1998-05-01
BVRI Observations of the star BD+05 706, carried out between January, 1997, and April 1998 using the 0.4m reflector and Photometrics CCD camera at the Gettysburg College Observatory, show that the star is an eclipsing binary system with a light curve characteristic of a class of semi-detached binaries known as the "cool Algols". These results are in good agreement with the previous report of BD+05 706 as a cool Algol by Torres, Neuhauser, and Wichmann,(Astron. J., 115, May 1998) who based their classification on the strong X-ray emission detected by Rosat and on a series of spectroscopic observations of the radial velocities of both components of the system obtained at the Oak Ridge Observatory, the Fred L. Whipple Observatory, and the Multiple Mirror Telescope. Only 10 other examples of cool Algols are known, and the current photometric light curve, together with the radial velocity curves obtained previously, allows us to derive a complete solution for the physical parameters of each component, providing important constraints on models for these interesting systems.
Absolute parameters of eclipsing binaries in Southern Hemisphere sky - II: QY Tel
NASA Astrophysics Data System (ADS)
Erdem, A.; Sürgit, D.; Engelbrecht, C. A.; van Heerden, H. P.; Manick, R.
2016-11-01
This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M⊙, 1.74 (± 0.15) R⊙ and 1.44 (± 0.09) M⊙, 2.70 (± 0.16) R⊙ for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2 Gy, when compared to Geneva theoretical evolution models.
NASA Technical Reports Server (NTRS)
Mccluskey, G. E.; Kondo, Y.
1983-01-01
The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.
Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown
NASA Astrophysics Data System (ADS)
Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás
2018-05-01
The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-03-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.
Forming spectroscopic massive protobinaries by disc fragmentation
NASA Astrophysics Data System (ADS)
Meyer, D. M.-A.; Kuiper, R.; Kley, W.; Johnston, K. G.; Vorobyov, E.
2018-01-01
The surroundings of massive protostars constitute an accretion disc which has numerically been shown to be subject to fragmentation and responsible for luminous accretion-driven outbursts. Moreover, it is suspected to produce close binary companions which will later strongly influence the star's future evolution in the Hertzsprung-Russel diagram. We present three-dimensional gravitation-radiation-hydrodynamic numerical simulations of 100 M⊙ pre-stellar cores. We find that accretion discs of young massive stars violently fragment without preventing the (highly variable) accretion of gaseous clumps on to the protostars. While acquiring the characteristics of a nascent low-mass companion, some disc fragments migrate on to the central massive protostar with dynamical properties showing that its final Keplerian orbit is close enough to constitute a close massive protobinary system, having a young high- and a low-mass components. We conclude on the viability of the disc fragmentation channel for the formation of such short-period binaries, and that both processes - close massive binary formation and accretion bursts - may happen at the same time. FU-Orionis-type bursts, such as observed in the young high-mass star S255IR-NIRS3, may not only indicate ongoing disc fragmentation, but also be considered as a tracer for the formation of close massive binaries - progenitors of the subsequent massive spectroscopic binaries - once the high-mass component of the system will enter the main-sequence phase of its evolution. Finally, we investigate the Atacama Large (sub-)Millimeter Array observability of the disc fragments.
NASA Astrophysics Data System (ADS)
Fernandez, M. A.; Covey, Kevin R.; De Lee, Nathan; Chojnowski, S. Drew; Nidever, David; Ballantyne, Richard; Cottaar, Michiel; Da Rio, Nicola; Foster, Jonathan B.; Majewski, Steven R.; Meyer, Michael R.; Reyna, A. M.; Roberts, G. W.; Skinner, Jacob; Stassun, Keivan; Tan, Jonathan C.; Troup, Nicholas; Zasowski, Gail
2017-08-01
We present radial velocity measurements for 70 high confidence, and 34 potential binary systems in fields containing the Perseus Molecular Cloud, Pleiades, NGC 2264, and the Orion A star-forming region. Eighteen of these systems have been previously identified as binaries in the literature. Candidate double-lined spectroscopic binaries (SB2s) are identified by analyzing the cross-correlation functions (CCFs) computed during the reduction of each APOGEE spectrum. We identify sources whose CCFs are well fit as the sum of two Lorentzians as likely binaries, and provide an initial characterization of the system based on the radial velocities indicated by that dual fit. For systems observed over several epochs, we present mass ratios and systemic velocities; for two systems with observations on eight or more epochs, and which meet our criteria for robust orbital coverage, we derive initial orbital parameters. The distribution of mass ratios for multi-epoch sources in our sample peaks at q = 1, but with a significant tail toward lower q values. Tables reporting radial velocities, systemic velocities, and mass ratios are provided online. We discuss future improvements to the radial velocity extraction method we employ, as well as limitations imposed by the number of epochs currently available in the APOGEE database. The Appendix contains brief notes from the literature on each system in the sample, and more extensive notes for select sources of interest.
Spectroscopic classification of X-ray sources in the Galactic Bulge Survey
NASA Astrophysics Data System (ADS)
Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.
2017-10-01
We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.
NASA Astrophysics Data System (ADS)
Richardson, Noel D.; Russell, Christopher M. P.; St-Jean, Lucas; Moffat, Anthony F. J.; St-Louis, Nicole; Shenar, Tomer; Pablo, Herbert; Hill, Grant M.; Ramiaramanantsoa, Tahina; Corcoran, Michael; Hamuguchi, Kenji; Eversberg, Thomas; Miszalski, Brent; Chené, André-Nicolas; Waldron, Wayne; Kotze, Enrico J.; Kotze, Marissa M.; Luckas, Paul; Cacella, Paulo; Heathcote, Bernard; Powles, Jonathan; Bohlsen, Terry; Locke, Malcolm; Handler, Gerald; Kuschnig, Rainer; Pigulski, Andrzej; Popowicz, Adam; Wade, Gregg A.; Weiss, Werner W.
2017-11-01
We report on the first multi-colour precision light curve of the bright Wolf-Rayet binary γ2 Velorum, obtained over six months with the nanosatellites in the BRITE-Constellation fleet. In parallel, we obtained 488 high-resolution optical spectra of the system. In this first report on the data sets, we revise the spectroscopic orbit and report on the bulk properties of the colliding winds. We find a dependence of both the light curve and excess emission properties that scales with the inverse of the binary separation. When analysing the spectroscopic properties in combination with the photometry, we find that the phase dependence is caused only by excess emission in the lines, and not from a changing continuum. We also detect a narrow, high-velocity absorption component from the He I λ5876 transition, which appears twice in the orbit. We calculate smoothed-particle hydrodynamical simulations of the colliding winds and can accurately associate the absorption from He I to the leading and trailing arms of the wind shock cone passing tangentially through our line of sight. The simulations also explain the general strength and kinematics of the emission excess observed in wind lines such as C III λ5696 of the system. These results represent the first in a series of investigations into the winds and properties of γ2 Velorum through multi-technique and multi-wavelength observational campaigns.
NASA Astrophysics Data System (ADS)
Clariá, J. J.; Mermilliod, J. C.; Piatti, A. E.
We present new Coravel radial-velocity observations and photoelectric photometry in the UBV, DDO and Washington systems for a sample of red giant candidates in the field of the intermediate-age open cluster NGC 2354. Photometric membership probabilities show very good agrement with those obtained from Coravel radial velocities. The analysis of the photometric and kinematical data allow us to confirm cluster membership for 9 red giants, one of them being a spectroscopic binary, while 4 confirmed spectroscopic binaries appear to be probable members. We have also discovered 4 spectroscopic binaries not belonging to the cluster. A mean radial velocity of (33.40±0.27)km s-1 and a mean reddening E(B-V)= 0.13±0.03 were derived for the cluster giants. NGC 2354 has a mean ultraviolet excess <δ(U-B)>=-0.03±0.01, relative to the field K giants, and a mean new cyanogen anomaly ΔCN=-0.035±0.007, both implying [Fe/H]≈-0.3. The moderately metal-poor character of NGC 2354 is confirmed using five different metal abundance indicators of the Washington system. The cluster giant branch is formed by a well defined clump of 7 stars and 4 stars with high membership probabilities seem to define an ascending giant branch. The whole red giant locus cannot be reproduced by any theoretical track. This paper will appear in Astron. & Astrophys. Suppl. (1999).
Orbital parameters of the multiple system EM Boo
NASA Astrophysics Data System (ADS)
Özkardeş, B.; Bakış, H.; Bakış, V.
2018-02-01
EM Boo is a relatively bright (V = 8.98 mag.) and short orbital period (P⁓2.45 days) binary star member of the multiple system WDS J14485+2445AB. There is neither photometric nor spectroscopic study of the system in the literature. In this work, we obtained spectroscopic orbital parameters of the system from new high resolution spectroscopic observations made with échelle spectrograph attached to UBT60 telescope of Akdeniz University. The spectroscopic solution yielded the values K1 = 100.7±2.6 km/s, K2 = 120.1±2.6 km/s and Vγ = -14.6±3.1 km/s, and thus the mass ratio of the system q = 0.838±0.064.
Population of Nuclei Via 7Li-Induced Binary Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Rodney M.; Phair, Larry W.; Descovich, M.
2005-08-08
The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less
Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A
2012-09-03
Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.
Dynamical effects of stellar companions
NASA Astrophysics Data System (ADS)
Naoz, Smadar
2015-08-01
The fraction of stellar binaries in the field is extremely high (about 40% - 70% for > 1 Msun stars), and thus, given this frequency, a large fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (<100 AU) is significantly lower than in the overall population. Stellar companions’ gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. I will review the dynamical effects stellar binaries have on a planetary systems. I will also present new results on the influence that stellar evolution has on the dynamical processes in these systems.
Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data
NASA Astrophysics Data System (ADS)
Prsa, Andrej
Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary-to-primary light ratio regime of ~1-2% for the circumbinary host system Kepler-16. Semi-detached binaries are ideal targets to study the dynamical processes such as mass flow and accretion, and the associated thermal processes such as intensity variation due to distortion of the lobe-filling component and material inflow collisions with accretion disks. Overcontact binaries are very abundant, yet their evolution and radiative properties are poorly understood and conflicting theories exist to explain their population frequency and structure. In addition, we will measure eclipse timing variations for all program binaries that attest to the presence of perturbing third bodies (stellar and substellar!) or dynamical interaction between the components. By a dedicated, detailed, manual modeling of these sets of targets, we will be able to use Kepler's ultra-high precision photometry to a rewarding scientific end. Thanks to the unprecedented quality of Kepler data, this will be a highly focused effort that maximizes the scientific yield and the reliability of the results. Our team has ample experience dealing with Kepler data (PI Prsa serves as chair of the Eclipsing Binary Working Group in the Kepler Science Team), spectroscopic follow-up (Co-Is Mahadevan and Bender both have experience with radial velocity instrumentation and large spectroscopic surveys), and eclipsing binary modeling (PI Prsa and Co-I Devinney both have a long record of theoretical and computational development of modeling tools). The bulk of funding we are requesting is for two postdoctoral research fellows to conduct this work at 0.5 FTE/year each, for the total of 2 years.
Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.
Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku
2015-10-15
The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.
Massive binary stars as a probe of massive star formation
NASA Astrophysics Data System (ADS)
Kiminki, Daniel C.
2010-10-01
Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass-ratios, and eccentricities, are --0.2 +/- 0.3, 0.3 +/- 0.3, and --0.8 +/- 0.3 respectively (or not consistent with a simple power law distribution). The observed distributions indicate a preference for short period systems with nearly circular orbits and companions that are not likely drawn from a standard initial mass function, as would be expected from random pairing. An interesting and unexpected result is that the period distribution is inconsistent with a standard power-law slope stemming mainly from an excess of periods between 3 and 5 days and an absence of periods between 7 and 14 days. One possible explanation of this phenomenon is that the binary systems with periods from 7--14 days are migrating to periods of 3--5 days. In addition, the binary distribution here is not consistent with previous suggestions in the literature that 45% of OB binaries are members of twin systems (mass ratio near 1).
SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems
NASA Technical Reports Server (NTRS)
Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud
2010-01-01
Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.
1998 UBV Light Curves of Eclipsing Binary AI Draconis and Absolute Parameters
NASA Astrophysics Data System (ADS)
Jassur, D. M. Z.; Khaledian, M. S.; Kermani, M. H.
New UBV photometry of Algol-Type eclipsing binary star AI Dra and the absolute physical parameters of this system have been presented. The light curve analysis carried out by the method of differential corrections indicates that both components are inside their Roche-Lobes. From combining the photometric solution with spectroscopic data obtained from velocity curve analysis, it has been found that the system consist of a main sequence primary and an evolved (subgiant) secondary.
A Spectroscopic Orbit for the Late-type Be Star β CMi
NASA Astrophysics Data System (ADS)
Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.; Bjorkman, J. E.; Bjorkman, K. S.; Carciofi, Alex C.; Klement, Robert; Wang, Luqian; Morrison, Nancy D.; Bratcher, Allison D.; Greco, Jennifer J.; Hardegree-Ullman, Kevin K.; Lembryk, Ludwik; Oswald, Wayne L.; Trucks, Jesica L.
2017-02-01
The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the Hα line with a period of 170 days and an amplitude of 2.25 km s-1, consistent with a low-mass binary companion (M ≈ 0.42 M ⊙). We then compared small changes in the violet-to-red peak height changes (V/R) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.
NASA Astrophysics Data System (ADS)
Vos, Joris; Zorotovic, Monica; Vučković, Maja; Schreiber, Matthias R.; Østensen, Roy
2018-06-01
We report the discovery of HE 0430-2457, the first extremely low-mass pre-white dwarf (ELM pre-WD) in a long period binary (P = 771 ± 3 d). The spectroscopic parameters of the primary are determined to be Teff = 26 200 ± 1500 K and log g = 5.40 ± 0.35, placing it in the region occupied by core He-burning hot subdwarf B stars. By comparing the spectroscopic parameters of the K-type companion to stellar models, and using the mass ratio, the mass of the hot primary is determined to be 0.23 M⊙. Given that this is too low for core He-burning, the primary in HE 0430-2457 is not an extreme horizontal branch (EHB) star but a pre-WD of the ELM type. As the lifetime of ELM pre-WDs in this region of the Hertzsprung Russel diagram populated by EHBs is thought to be very short, they are not considered to be part of the observed EHBs. However, the discovery of this system indicates that the percentage of ELM pre-WDs in the observed EHB population might be higher than previously thought. Binary evolution models indicate that HE 0430-2457 is likely formed by a merger of the inner binary in a hierarchical triple system.
Dynamical Effects of Stellar Companions
NASA Astrophysics Data System (ADS)
Naoz, Smadar
2016-10-01
The fraction of stellar binaries in the field is extremely high (about 40% - 70% forM > 1M⊙ stars), and thus, given this frequency, a high fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (>100-1000 AU) is significantly lower than in the overall population. Stellar companions gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. These planets typically are misaligned with the parent star.
THE HOT R CORONAE BOREALIS STAR DY CENTAURI IS A BINARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kameswara Rao, N.; Lambert, David L.; McArthur, Barbara
2012-11-20
The remarkable hot R Coronae Borealis (RCB) star DY Cen is revealed to be the first and only binary system to be found among the RCB stars and their likely relatives, including the extreme helium stars and the hydrogen-deficient carbon stars. Radial velocity determinations from 1982 to 2010 have shown that DY Cen is a single-lined spectroscopic binary in an eccentric orbit with a period of 39.67 days. It is also one of the hottest and most H-rich member of the class of RCB stars. The system may have evolved from a common envelope to its current form.
NASA Technical Reports Server (NTRS)
Bernacca, P. L.
1971-01-01
The correlation between the equatorial velocities of the components of double stars is studied from a statistical standpoint. A theory of rotational correlation is developed and discussed with regard to its applicability to existing observations. The theory is then applied to a sample of visual binaries which are the least studied for rotational coupling. Consideration of eclipsing systems and spectroscopic binaries is limited to show how the degrees of freedom in the spin parallelism problem can be reduced. The analysis lends support to the existence of synchronism in closely spaced binaries.
VizieR Online Data Catalog: OGLE eclipsing binaries in LMC (Wyrzykowski+, 2003)
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-09-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive. (2 data files).
NASA Astrophysics Data System (ADS)
Schnurr, Olivier
2008-09-01
This thesis presents the results of an intense, spectroscopic survey of 41 of the 47 known, late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) which could be observed with ground-based, optical telescopes. For the study of the remaining 6 WNL located in the extremely dense central object of 30 Dor, R136, adaptive-optics assisted, near-infrared spectroscopy was required. The results of this study will be published elsewhere. Our survey concludes the decade-long effort of the Montreal Massive-Star Group to monitor all known WR stars in the Magellanic Clouds for radial-velocity (RV) variations due to binarity, a point which has been debated since the true, evolved nature of WR stars has been recognized in the late 1960s. From model calculations, it was expected that with decreasing metallicity, the binary frequency among WR stars increases, or otherwise the progenitor stars could not have turned into a WR star. Our survey set out to observationally test this assumption. After summarizing the general importance of massive stars, we describe the spectroscopic observations of our program stars. We then detail the data analysis process, which encompasses careful calibration and proper choice of RV standards. We also include publicly available, visible and X-ray photometric data in our analysis. We are able to identify four previously unknown binaries in our sample, bringing the total number of known WNL binaries in the LMC to only nine. As a direct result, we question the assumption that binarity is required to form WR stars at lower metallicity. At least some of the hydrogen-containing WNL stars in our sample seem not to be genuine, evolved, helium-burning WR stars, but rather unevolved, hydrogen- burning objects. There is ample evidence that some of these stars are the most massive stars known. As a second and most remarkable result, all but one of our nine binaries harbor such extreme objects; this greatly enlarges the sample of such known binaries, and paves the way for an independent mass determination via Keplerian orbits in further studies, some of which we have already initiated. The results of those studies will be crucial for calibrating stellar models. One of these binaries, R145, is then studied in greater detail, combining previously published and unpublished data with ours, to present, for the first time, a full set of orbital parameters for both components of the binary system. Since we also determine the orbital inclination angle, we are able to derive the absolute masses of this extreme object. It is found that R145 very likely harbors the most massive star known and properly "weighed" so far.
Orbit of the young very low-mass spectroscopic binary CHXR 74
NASA Astrophysics Data System (ADS)
Joergens, V.; Janson, M.; Müller, A.
2012-01-01
The pre-main sequence star CHXR 74 (M4.25) in Chamaeleon I was found a few years ago to be a very low-mass spectroscopic binary. A determination of its mass would provide a valuable dynamical mass measurement at young ages in the poorly constrained mass regime of <0.3 M⊙. We carried out follow-up radial velocity monitoring with UVES/VLT between 2008 and 2011 and high-resolution adaptive-optic-assisted imaging with NACO/VLT in 2008 with the aim of constraining the binary orbit. We present an orbital solution of the system based on the combined radial velocity data set, which spans more than eleven years of UVES monitoring for CHXR 74. The best-fit Kepler model has an orbital period of 13.1 years, zero eccentricity, and a radial velocity semi-amplitude of 2.2 km s-1. A companion mass M2sini (which is a lower limit due to the unknown orbital inclination i) of 0.08 M⊙ is derived by using a model-dependent mass estimate for the primary of 0.24 M⊙. The binary separation (a1sini + a2) for an inclination of 90° is 3.8 AU, which corresponds to 23 mas. Complementary NACO/VLT images of CHXR 74 were taken with the aim to directly resolve the binary. While there are marginal signs of an extended point spread function (PSF), we have detected no convincing companion to CHXR 74 in the NACO images. From the non-detection of the companion together with a prediction of the binary separation at the time of the NACO observations, we derive an upper limit for the K-band brightness ratio of the two binary components of 0.5. This allows us to estimate an upper limit of the companion mass of 0.14 M⊙ by applying evolutionary models. Thus, we confirm that CHXR 74 is a very low-mass spectroscopic binary and constrain the secondary mass to lie within the range of about 0.08 and 0.14 M⊙. We predict an astrometric signal of the primary between 0.2 and 0.4 mas when taking into account the luminosity of the companion. The Gaia astrometric mission might well be able to solve the astrometric orbit of the primary and in combination with the presented radial velocity data determine an absolute companion mass. Based on observations obtained at the Very Large Telescope of the European Southern Observatory at Paranal, Chile with UVES in program 65.I-0011(A), 72.C-0653(A), 75.C-0851(C), 77.C-0831(A+D), 380.C-0596(A), 082.C-0023(A), 087.C-0962(B), and with NACO in program 380.C-0596(B).
The little-studied cluster Berkeley 90. I. LS III +46 11: a very massive O3.5 If* + O3.5 If* binary
NASA Astrophysics Data System (ADS)
Maíz Apellániz, J.; Negueruela, I.; Barbá, R. H.; Walborn, N. R.; Pellerin, A.; Simón-Díaz, S.; Sota, A.; Marco, A.; Alonso-Santiago, J.; Sanchez Bermudez, J.; Gamen, R. C.; Lorenzo, J.
2015-07-01
Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims: We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods: Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results: LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.
The massive star binary fraction in young open clusters - II. NGC6611 (Eagle Nebula)
NASA Astrophysics Data System (ADS)
Sana, H.; Gosset, E.; Evans, C. J.
2009-12-01
Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is fmin = 0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75 per cent of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC 6611, despite the difference in age and environment of the two clusters.
Spectroscopic observations of X-ray selected late type stars
NASA Technical Reports Server (NTRS)
Takalo, L. O.
1988-01-01
A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.
Determination of the Fundamental Properties of the Eclipsing Binary V541 Cygni
NASA Astrophysics Data System (ADS)
McGruder, Chima; Torres, Guillermo; Siverd, Robert; Pepper, Joshua; Rodriguez, Joseph; KELT Collaboration
2017-01-01
We report new high-resolution spectroscopic observations of the B-type detached spectroscopic eclipsing binary V541 Cygni (e = 0.465 and P =15.34 days). We combine analysis of these new spectra with analysis of V-band photometry from the literature to obtain the most precise measurements of the fundamental properties of the stars to date (yielding ~1% errors in the masses and ~2% for the radii). A comparison with current stellar evolution models indicates good fits for an age of ~ 200 million years and [Fe/H] ~ -0.2. Available eclipse timings gathered over 40 years were used to re-determine the apsidal motion of the system, dω/dt = 0.993 degs/cent, which is larger than what theory suggests.The SAO REU program was funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Kirkpatrick, J. Davy; Yang, Xinxing; Strassmeier, Klaus G.
1989-01-01
The variable star HD 136901 = UV CrB is a chromospherically active K2 III single-lined spectroscopic binary with an orbital period of 18.665 days. It has modest-strength Ca H and K emission and UV features, while H-alpha is a strong absorption feature containing little or no emission. The inclination of the system is 53 + or - 12 deg. The v sin i of the primary is 42 + or - 2 km/s, resulting in a minimum radius of 15.5 + or - 0.8 solar. When compared with the Roche lobe radius, this results in a mass ratio of 2.90 or larger. Additional constraints indicate that the secondary has a mass between 0.85 and 1.25 solar. Thus, the mass of the primary is at least 2.5 solar and probably is in the range 2.5-4 solar.
LSS 2018: A double-lined spectroscopic binary central star with an extremely large reflection effect
NASA Technical Reports Server (NTRS)
Drilling, J. S.
1985-01-01
LSS 2018, the central star of the planetry nebulae DS1, was found to be a double-lined spectroscopic binary with a period of 8.571 hours. Light variations with the same period were observed in U, B, and V; in the wavelength regions defined by the two IUE cameras; and in the strength of the CIII 4647 emission line. The light variations can be accurately predicted by a simple reflection effect, and an analysis of the light curves yields the angular diameter and effective temperature of the primary, the radii of the two stars in terms of their separation, and the inclination of the system. Analysis of the radial velocities then yields the masses of the two stars, their separation, the distance of the system, the absolute magnitude of the primary, and the size of the nebula.
Absolute and geometric parameters of contact binary BO Arietis
NASA Astrophysics Data System (ADS)
Gürol, B.; Gürsoytrak, S. H.; Bradstreet, D. H.
2015-08-01
We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system BO Ari from analyzed CCD (BVRI) light curves and radial velocity data. The photometric data were obtained in 2009 and 2010 at Ankara University Observatory (AUO) and the spectroscopic observations were made in 2007 and 2010 at TUBITAK National Observatory (TUG). These light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be an A-type W UMa system. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.995M⊙,M2 = 0.189M⊙,R1 = 1.090R⊙ and R2 = 0.515R⊙ . Finally, we discuss the evolutionary status of the system.
Absolute and geometric parameters of contact binary V1918 Cyg
NASA Astrophysics Data System (ADS)
Gürol, B.
2016-08-01
We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system V1918 Cyg from analyzed CCD (BVR) light curves and radial velocity data. We used the photometric data published by Yang et al. (2013) and spectroscopic data obtained in 2012 at TUBITAK National Observatory (TUG). The light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2015 revision) code to obtain absolute and geometrical parameters of the system. It is confirmed that the system is an A-type W UMa as indicated by Yang et al. (2013). Combining our spectroscopic data with the photometric solution we derived masses and radii of the eclipsing system as M1 = 1.302M⊙ , M2 = 0.362M⊙ , R1 = 1.362R⊙ and R2 = 0.762R⊙ . Finally, we discuss the evolutionary status of the system.
Hypervelocity stars from young stellar clusters in the Galactic Centre
NASA Astrophysics Data System (ADS)
Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.
2017-05-01
The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.
SPECKLE INTERFEROMETRY AT SOAR IN 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.
2015-08-15
The results of speckle interferometric observations at the Southern Astrophysical Research Telescope (SOAR) telescope in 2014 are given. A total of 1641 observations were taken, yielding 1636 measurements of 1218 resolved binary and multiple stars and 577 non-resolutions of 441 targets. We resolved for the first time 56 pairs, including some nearby astrometric or spectroscopic binaries and ten new subsystems in previously known visual binaries. The calibration of the data is checked by linear fits to the positions of 41 wide binaries observed at SOAR over several seasons. The typical calibration accuracy is 0.°1 in angle and 0.3% in pixelmore » scale, while the measurement errors are on the order of 3 mas. The new data are used here to compute 194 binary star orbits, 148 of which are improvements on previous orbital solutions and 46 are first-time orbits.« less
The NuSTAR Hard X-Ray Survey of the Norma Arm Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornasini, Francesca M.; Tomsick, John A.; Chiu, Jeng-Lun
2017-04-01
We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array ( NuSTAR ) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 × 10{sup −14} and 4 × 10{sup −14} erg s{sup −1} cm{sup −2} in the 3–10 and 10–20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected tomore » be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of ≈10–20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR log N –log S distribution in the 10–20 keV band is consistent with the distribution measured by Chandra at 2–10 keV if the average source spectrum is assumed to be a thermal model with kT ≈ 15 keV, as observed for the CV candidates.« less
Wind-accelerated orbital evolution in binary systems with giant stars
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan
2018-01-01
Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.
Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia
2017-06-05
Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of the multiple system with chemically peculiar component φ Draconis
NASA Astrophysics Data System (ADS)
Liška, J.
2016-09-01
The star ϕ Dra comprises a spectroscopic binary and a third star that together form a visual triple system. It is one of the brightest chemically peculiar stars of the upper main sequence. Despite these facts, no comprehensive study of its multiplicity has been performed yet. In this work, we present a detailed analysis of the triple system based on available measurements. We use radial velocities taken from four sources in the literature in a re-analysis of the inner spectroscopic binary (Aab). An incorrect value of the orbital period of the inner system Aab about 27 d was accepted in literature more than 40 yr. A new solution of orbit with the 128-d period was determined. Relative position measurements of the outer visual binary system (AB) from Washington Double Star Catalog were compared with known orbital models. Furthermore, it was shown that astrometric motion in system AB is well described by the model of Andrade with a 308-yr orbital period. Parameters of A and B components were utilized to estimate individual brightness for all components and their masses from evolutionary tracks. Although we found several facts which support the gravitational bond between them, unbound solution cannot be fully excluded yet.
Population of Nuclei Via 7Li-Induced Binary Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R M; Phair, L W; Descovich, M
2005-08-09
The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less
NASA Astrophysics Data System (ADS)
Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.
2013-05-01
We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters RV and AV for O-type stars in Wd2. We find average values langRV rang = 3.77 ± 0.09 and langAV rang = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance langdrang = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
R144: a very massive binary likely ejected from R136 through a binary-binary encounter
NASA Astrophysics Data System (ADS)
Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran
2014-02-01
R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.
Nearby stars of the Galactic disc and halo - IV
NASA Astrophysics Data System (ADS)
Fuhrmann, Klaus
2008-02-01
The Milky Way Galaxy has an age of about 13 billion years. Solar-type stars evolve all the long way to the realm of degenerate objects on essentially this time-scale. This, as well as the particular advantage that the Sun offers through reliable differential spectroscopic analyses, render these stars the ideal tracers for the fossil record of our parent spiral. Astrophysics is a science that is known to be notoriously plagued by selection effects. The present work - with a major focus in this fourth contribution on model atmosphere analyses of spectroscopic binaries and multiple star systems - aims at a volume-complete sample of about 300 nearby F-, G-, and K-type stars that particularly avoids any kinematical or chemical pre-selection from the outset. It thereby provides an unbiased record of the local stellar populations - the ancient thick disc and the much younger thin disc. On this base, the detailed individual scrutiny of the long-lived stars of both populations unveils the thick disc as a single-burst component with a local normalization of no less than 20 per cent. This enormous fraction, combined with its much larger scaleheight, implies a mass for the thick disc that is comparable to that of the thin disc. On account of its completely different mass-to-light ratio the thick disc thereby becomes the dark side of the Milky Way, an ideal major source for baryonic dark matter. This massive, ancient population consequently challenges any gradual build-up scenario for our parent spiral. Even more, on the supposition that the Galaxy is not unusual, the thick disc - as it emerges from this unbiased spectroscopic work - particularly challenges the hierarchical cold-dark-matter-dominated formation picture for spiral galaxies in general.
WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing; Xin, Yu; Liu, Ji-Feng
2016-06-01
Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P {sub orb}) and rotation period ( P {sub rot}, calculated for only detached binaries). Wemore » find that the AL increases with decreasing P {sub orb} or P {sub rot}, up to the critical values at P {sub orb} ∼ 3 days or P {sub rot} ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.« less
Shrinking of Binaries in a WIMPY Background at the Galactic Center
NASA Astrophysics Data System (ADS)
Hills, J. G.
2001-12-01
The nature of the dark matter in the Galactic Halo is still not clear. Constraints can be placed on it; e.g., it cannot be in baryons less massive than about 1022 grams (Hills, 1986, Astron. J. 92, 595). It may be in elementary weakly interacting massive particles, WIMPS. Apart from providing most of the mass of the Galaxy, the only known significant dynamical effect of WIMPS is to cause a gradual shrinking of tightly bound binaries (Hills 1983, Astron. J. 88, 1269) as they interact with the background soup of WIMPS. This effect may be observable in binaries close to the Galactic Center if a significant fraction of the mass density near the central black hole is from WIMPS. The requisite binaries would have to have orbital velocities greater than the local velocity dispersion of the WIMPS relative to the binary. The velocity dispersion increases near the black hole. The binary cannot be too close to the black hole or its tidal field will breakup the binary. If the local WIMP density is 107 g/cm3, the fractional rate of reduction in the binary orbital period is about 5 x 10-10/yr for a binary having a semimajor axis equal to 3 solar radii in a soup of WIMPS having a velocity dispersion of 200 km/s relative to the binary. This gradual erosion of the binary period may be detectable, particularly, if one of the binary components is a pulsar.
Water cavities of sH clathrate hydrate stabilized by molecular hydrogen.
Strobel, Timothy A; Koh, Carolyn A; Sloan, E Dendy
2008-02-21
X-ray diffraction and Raman spectroscopic measurements confirm that molecular hydrogen can be contained within the small water cavities of a binary sH clathrate hydrate using large guest molecules that stabilize the large cavity. The potential increase in hydrogen storage could be more than 40% when compared with binary sII hydrates. This work demonstrates the stabilization of hydrogen in a hydrate structure previously unknown for encapsulating molecular hydrogen, indicating the potential for other inclusion compound materials with even greater hydrogen storage capabilities.
The Spectrum analysis of three chromospherically active binary stars.
NASA Astrophysics Data System (ADS)
Gu, Shenghong; Tan, Huisong; Liu, Yuefu
1999-12-01
The authors present the research results on new CCD spectroscopic observations of three chromospherically active binary stars (BY Dra class), which were obtained by means of Coudé echelle spectrograph fed by the 2.16 m telescope at Beijing Astronomical Observatory. With the aid of stellar model atmosphere, the autors have analyzed these spectra and derived the average metal abundance and Li abundance of three systems. Using two special spectral lines, they have alsop discussed the chromospheric activity indicators of them.
The Gaia-ESO Survey: double-, triple-, and quadruple-line spectroscopic binary candidates
NASA Astrophysics Data System (ADS)
Merle, T.; Van Eck, S.; Jorissen, A.; Van der Swaelmen, M.; Masseron, T.; Zwitter, T.; Hatzidimitriou, D.; Klutsch, A.; Pourbaix, D.; Blomme, R.; Worley, C. C.; Sacco, G.; Lewis, J.; Abia, C.; Traven, G.; Sordo, R.; Bragaglia, A.; Smiljanic, R.; Pancino, E.; Damiani, F.; Hourihane, A.; Gilmore, G.; Randich, S.; Koposov, S.; Casey, A.; Morbidelli, L.; Franciosini, E.; Magrini, L.; Jofre, P.; Costado, M. T.; Jeffries, R. D.; Bergemann, M.; Lanzafame, A. C.; Bayo, A.; Carraro, G.; Flaccomio, E.; Monaco, L.; Zaggia, S.
2017-12-01
Context. The Gaia-ESO Survey (GES) is a large spectroscopic survey that provides a unique opportunity to study the distribution of spectroscopic multiple systems among different populations of the Galaxy. Aims: Our aim is to detect binarity/multiplicity for stars targeted by the GES from the analysis of the cross-correlation functions (CCFs) of the GES spectra with spectral templates. Methods: We developed a method based on the computation of the CCF successive derivatives to detect multiple peaks and determine their radial velocities, even when the peaks are strongly blended. The parameters of the detection of extrema (DOE) code have been optimized for each GES GIRAFFE and UVES setup to maximize detection. The DOE code therefore allows to automatically detect multiple line spectroscopic binaries (SBn, n ≥ 2). Results: We apply this method on the fourth GES internal data release and detect 354 SBn candidates (342 SB2, 11 SB3, and even one SB4), including only nine SBs known in the literature. This implies that about 98% of these SBn candidates are new because of their faint visual magnitude that can reach V = 19. Visual inspection of the SBn candidate spectra reveals that the most probable candidates have indeed a composite spectrum. Among the SB2 candidates, an orbital solution could be computed for two previously unknown binaries: CNAME 06404608+0949173 (known as V642 Mon) in NGC 2264 and CNAME 19013257-0027338 in Berkeley 81 (Be 81). A detailed analysis of the unique SB4 (four peaks in the CCF) reveals that CNAME 08414659-5303449 (HD 74438) in the open cluster IC 2391 is a physically bound stellar quadruple system. The SB candidates belonging to stellar clusters are reviewed in detail to discard false detections. We suggest that atmospheric parameters should not be used for these system components; SB-specific pipelines should be used instead. Conclusions: Our implementation of an automatic detection of spectroscopic binaries within the GES has allowed the efficient discovery of many new multiple systems. With the detection of the SB1 candidates that will be the subject of a forthcoming paper, the study of the statistical and physical properties of the spectroscopic multiple systems will soon be possible for the entire GES sample. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.
SPOTS: The Search for Planets Orbiting Two Stars
NASA Astrophysics Data System (ADS)
Thalmann, Christian; Desidera, Silvano; Bergfors, Carolina; Boccaletti, Anthony; Bonavita, Mariangela; Carson, Joseph; Feldt, Markus; Goto, Miwa; Henning, Thomas; Janson, Markus; Klahr, Hubert; Marzari, Francesco; Mordasini, Christoph
2013-07-01
Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the frequency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.
SPOTS: Search for Planets Orbiting Two Stars A Direct Imaging Survey for Circumbinary Planets
NASA Astrophysics Data System (ADS)
Thalmann, C.; Desidera, S.; Bergfors, C.; Boccaletti, A.; Bonavita, M.; Carson, J. C.; Feldt, M.; Goto, M.; Henning, T.; Janson, M.; Mordasini, C.
2013-09-01
Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the fre- quency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.
On the uncertain nature of the core of α Cen A
NASA Astrophysics Data System (ADS)
Bazot, M.; Christensen-Dalsgaard, J.; Gizon, L.; Benomar, O.
2016-08-01
High-quality astrometric, spectroscopic, interferometric and, importantly, asteroseismic observations are available for α Cen A, which is the closest binary star system to earth. Taking all these constraints into account, we study the internal structure of the star by means of theoretical modelling. Using the Aarhus STellar Evolution Code (ASTEC) and the tools of Computational Bayesian Statistics, in particular a Markov chain Monte Carlo algorithm, we perform statistical inferences for the physical characteristics of the star. We find that α Cen A has a probability of approximately 40 per cent of having a convective core. This probability drops to few per cent if one considers reduced rates for the 14N(p,γ)15O reaction. These convective cores have fractional radii less than 8 per cent when overshoot is neglected. Including overshooting also leads to the possibility of a convective core mostly sustained by the ppII chain energy output. We finally show that roughly 30 per cent of the stellar models describing α Cen A are in the subgiant regime.
Speckle Imaging at Gemini and the DCT
NASA Astrophysics Data System (ADS)
Horch, E. P.; Löbb, J.; Howell, S. B.; van Altena, W. F.; Henry, T. J.; van Belle, G. T.
2018-01-01
A program of speckle observations at Lowell Observatory's Discovery Channel Telescope (DCT) and the Gemini North and South Telescopes will be described. It has featured the Differential Speckle Survey Instrument (DSSI), built at Southern Connecticut State University in 2008. DSSI is a dual-port system that records speckle images in two colors simultaneously and produces diffraction limited images to V˜ 16.5 mag at Gemini and V˜ 14.5 mag at the DCT. Of the several science projects that are being pursued at these telescopes, three will be highlighted here. The first is high-resolution follow-up observations for Kepler and K2 exoplanet missions, the second is a study of metal-poor spectroscopic binaries in an attempt to resolve these systems and determine their visual orbits en route to making mass determinations, and the third is a systematic survey of nearby late-type dwarfs, where the multiplicity fraction will be directly measured and compared to that of G dwarfs. The current status of these projects is discussed and some representative results are given.
Gaia Reveals Evidence for Merged White Dwarfs
NASA Astrophysics Data System (ADS)
Kilic, Mukremin; Hambly, N. C.; Bergeron, P.; Genest-Beaulieu, C.; Rowell, N.
2018-06-01
We use Gaia Data Release 2 to identify 13,928 white dwarfs within 100 pc of the Sun. The exquisite astrometry from Gaia reveals for the first time a bifurcation in the observed white dwarf sequence in both Gaia and the Sloan Digital Sky Survey (SDSS) passbands. The latter is easily explained by a helium atmosphere white dwarf fraction of 36%. However, the bifurcation in the Gaia colour-magnitude diagram depends on both the atmospheric composition and the mass distribution. We simulate theoretical colour-magnitude diagrams for single and binary white dwarfs using a population synthesis approach and demonstrate that there is a significant contribution from relatively massive white dwarfs that likely formed through mergers. These include white dwarf remnants of main-sequence (blue stragglers) and post-main sequence mergers. The mass distribution of the SDSS subsample, including the spectroscopically confirmed white dwarfs, also shows this massive bump. This is the first direct detection of such a population in a volume-limited sample.
NASA Technical Reports Server (NTRS)
Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.
1992-01-01
The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.
Identifying the Young Low-mass Stars within 25 pc. I. Spectroscopic Observations
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill
2009-07-01
We have completed a high-resolution (R ≈ 60,000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the NStars 20 pc census and the Moving-M sample with distances determined from parallaxes or spectrophotometric relations. We limited our sample to 25 pc from the Sun, prior to correcting for pre-main-sequence overluminosity or binarity. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth. This is equivalent to a 16% SB fraction, with at most a handful of undiscovered SBs. We estimate upper limits on the age of the remaining M dwarfs using spectroscopic youth indicators such as surface gravity-sensitive indices (CaH and K I). We find that for a sample of field stars with no metallicity measurements, a single CaH gravity index may not be sufficient, as higher metallicities mimic lower gravity. This is demonstrated in a subsample of metal-rich radial velocity (RV) standards, which appear to have low surface gravity as measured by the CaH index, yet show no other evidence of youth. We also use additional youth diagnostics such as lithium absorption and strong Hα emission to set more stringent age limits. Eleven M dwarfs with no Hα emission or absorption are likely old (>400 Myr) and were caught during an X-ray flare. We estimate that our final sample of the 144 youngest and nearest low-mass objects in the field is less than 300 Myr old, with 30% of them being younger than 150 Myr and four very young (lap10 Myr), representing a generally untapped and well-characterized resource of M dwarfs for intensive planet and disk searches. Based on observations collected at the W. M. Keck Observatory and the Canada-France-Hawaii Telescope. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Morgan, D. P.
2017-01-01
I present a study of close white dwarf (WD) and M dwarf (dM) binary systems (WD+dM) to examine the effects that close companions have on magnetic field generation in dMs. Using the Sloan Digital Sky Survey (SDSS) Data Release 8 spectroscopic database, I constructed a sample of 1756 WD+dM high-quality pairs. I show that early-type dMs (
The new eclipsing magnetic binary system E 1114 + 182
NASA Technical Reports Server (NTRS)
Biermann, P.; Schmidt, G. D.; Liebert, J.; Tapia, S.; Strittmatter, P. A.; West, S.; Stockman, H. S.; Kuehr, H.; Lamb, D. Q.
1985-01-01
A comprehensive analysis of E 1114 + 182, the first eclipsing AM Herculis binary system and the shortest-period eclipsing cataclysmic variable known, is presented. The time-resolved X-ray observations which led to the system's recognition as an AM Her system with a roughly 90 minute orbital period are reported. The current optical photometric and polarimetric ephemeris and a description of the system's phase-modulated properties are given. The detailed photometric eclipse profile and the highly variable spectroscopic behavior are addressed. This information is used to determine systemic parameters and derive new information on the line emission regions. The data put severe constraints on current torque models for keeping the binary and white dwarf rotation in phase.
NASA Astrophysics Data System (ADS)
Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.
2008-12-01
Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.
A Spectroscopic Survey and Analysis of Bright, Hydrogen-rich White Dwarfs
NASA Astrophysics Data System (ADS)
Gianninas, A.; Bergeron, P.; Ruiz, M. T.
2011-12-01
We have conducted a spectroscopic survey of over 1300 bright (V <= 17.5), hydrogen-rich white dwarfs based largely on the last published version of the McCook & Sion catalog. The complete results from our survey, including the spectroscopic analysis of over 1100 DA white dwarfs, are presented. High signal-to-noise ratio optical spectra were obtained for each star and were subsequently analyzed using our standard spectroscopic technique where the observed Balmer line profiles are compared to synthetic spectra computed from the latest generation of model atmospheres appropriate for these stars. First, we present the spectroscopic content of our sample, which includes many misclassifications as well as several DAB, DAZ, and magnetic white dwarfs. Next, we look at how the new Stark broadening profiles affect the determination of the atmospheric parameters. When necessary, specific models and analysis techniques are used to derive the most accurate atmospheric parameters possible. In particular, we employ M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs that are in DA+dM binary systems. Certain unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and their distribution as a function of temperature. We then proceed to test the accuracy and robustness of our method by comparing our results to those of other surveys such as SPY and Sloan Digital Sky Survey. Finally, we revisit the ZZ Ceti instability strip and examine how the determination of its empirical boundaries is affected by the latest line profile calculations. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under program ID 078.D-0824(A).
A Spectroscopic Orbit for the Late-type Be Star β CMi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.
The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the H α linemore » with a period of 170 days and an amplitude of 2.25 km s{sup −1}, consistent with a low-mass binary companion ( M ≈ 0.42 M {sub ⊙}). We then compared small changes in the violet-to-red peak height changes ( V / R ) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groot, Paul J., E-mail: pgroot@astro.ru.nl
In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less
NASA Astrophysics Data System (ADS)
Murphy, Simon J.; Moe, Maxwell; Kurtz, Donald W.; Bedding, Timothy R.; Shibahashi, Hiromoto; Boffin, Henri M. J.
2018-03-01
The orbital parameters of binaries at intermediate periods (102-103 d) are difficult to measure with conventional methods and are very incomplete. We have undertaken a new survey, applying our pulsation timing method to Kepler light curves of 2224 main-sequence A/F stars and found 341 non-eclipsing binaries. We calculate the orbital parameters for 317 PB1 systems (single-pulsator binaries) and 24 PB2s (double-pulsators), tripling the number of intermediate-mass binaries with full orbital solutions. The method reaches down to small mass ratios q ≈ 0.02 and yields a highly homogeneous sample. We parametrize the mass-ratio distribution using both inversion and Markov-Chain Monte Carlo forward-modelling techniques, and find it to be skewed towards low-mass companions, peaking at q ≈ 0.2. While solar-type primaries exhibit a brown dwarf desert across short and intermediate periods, we find a small but statistically significant (2.6σ) population of extreme-mass-ratio companions (q < 0.1) to our intermediate-mass primaries. Across periods of 100-1500 d and at q > 0.1, we measure the binary fraction of current A/F primaries to be 15.4 per cent ± 1.4 per cent, though we find that a large fraction of the companions (21 per cent ± 6 per cent) are white dwarfs in post-mass-transfer systems with primaries that are now blue stragglers, some of which are the progenitors of Type Ia supernovae, barium stars, symbiotics, and related phenomena. Excluding these white dwarfs, we determine the binary fraction of original A/F primaries to be 13.9 per cent ± 2.1 per cent over the same parameter space. Combining our measurements with those in the literature, we find the binary fraction across these periods is a constant 5 per cent for primaries M1 < 0.8 M⊙, but then increases linearly with log M1, demonstrating that natal discs around more massive protostars M1 ≳ 1 M⊙ become increasingly more prone to fragmentation. Finally, we find the eccentricity distribution of the main-sequence pairs to be much less eccentric than the thermal distribution.
WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819
NASA Astrophysics Data System (ADS)
Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.
2006-12-01
We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yue; Liu, Xin; Loeb, Abraham
We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{submore » BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close binaries is much weakened or even disfavored for massive companions. Future time-domain spectroscopic surveys of normal quasars can provide vital prior information on the structure function of stochastic velocity shifts induced by broad-line variability in single BHs. Such surveys with improved spectral quality, increased time baseline, and more epochs can greatly improve the statistical constraints of this method on the general binary population in broad-line quasars, further shrink the allowed binary parameter space, and detect true sub-parsec binaries.« less
Binary interaction dominates the evolution of massive stars.
Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N
2012-07-27
The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.
NASA Astrophysics Data System (ADS)
Bonatto, C.; Lima, E. F.; Bica, E.
2012-04-01
Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the simulated Hess diagrams. Conclusions: Even for low-mass star clusters, ASAmin is sensitive to the values of cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and to a lesser degree, binary fraction. Compared with simpler approaches, including binaries, a decaying star-formation rate, and a normally distributed differential reddening appears to yield more constrained parameters, especially the mass, age, and distance from the Sun. A robust determination of cluster parameters may have a positive impact on many fields. For instance, age, mass, and binary fraction are important for establishing the dynamical state of a cluster or for deriving a more precise star-formation rate in the Galaxy.
NASA Astrophysics Data System (ADS)
Hełminiak, K. G.; Konacki, M.; Muterspaugh, M. W.; Browne, S. E.; Howard, A. W.; Kulkarni, S. R.
2012-01-01
We present the most precise to date orbital and physical parameters of the well-known short period (P= 5.975 d), eccentric (e= 0.3) double-lined spectroscopic binary BY Draconis (BY Dra), a prototype of a class of late-type, active, spotted flare stars. We calculate the full spectroscopic/astrometric orbital solution by combining our precise radial velocities (RVs) and the archival astrometric measurements from the Palomar Testbed Interferometer (PTI). The RVs were derived based on the high-resolution echelle spectra taken between 2004 and 2008 with the Keck I/high-resolution echelle spectrograph, Shane/CAT/HamSpec and TNG/SARG telescopes/spectrographs using our novel iodine-cell technique for double-lined binary stars. The RVs and available PTI astrometric data spanning over eight years allow us to reach 0.2-0.5 per cent level of precision in Msin 3i and the parallax but the geometry of the orbit (i≃ 154°) hampers the absolute mass precision to 3.3 per cent, which is still an order of magnitude better than for previous studies. We compare our results with a set of Yonsei-Yale theoretical stellar isochrones and conclude that BY Dra is probably a main-sequence system more metal rich than the Sun. Using the orbital inclination and the available rotational velocities of the components, we also conclude that the rotational axes of the components are likely misaligned with the orbital angular momentum. Given BY Dra's main-sequence status, late spectral type and the relatively short orbital period, its high orbital eccentricity and probable spin-orbit misalignment are not in agreement with the tidal theory. This disagreement may possibly be explained by smaller rotational velocities of the components and the presence of a substellar mass companion to BY Dra AB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapovalova, A. I.; Burenkov, A. N.; Zhdanova, V. E.
2016-02-15
We report the results of the first long-term (1990–2014) optical spectrophotometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift, high-luminosity, radio-quiet quasar. In the monitored period, the continua and Hγ fluxes changed about two times, while the Hβ flux changed about 1.4 times. We found periodical variations in the photometric flux with periods of 1200, 1850, and 4000 days, and 4500-day periodicity in the spectroscopic variations. However, the periodicity of 4000–4500 days covers only one cycle of variation and should be confirmed with a longer monitoring campaign. There is an indication of the period around 1300 daysmore » in the spectroscopic light curves, buts with small significance level, while the 1850-day period could not be clearly identified in the spectroscopic light curves. The line profiles have not significantly changed, showing an important red asymmetry and broad line peak redshifted around +1000 km s{sup −1}. However, Hβ shows a broader mean profile and has a larger time lag (τ ∼ 120 days) than Hγ (τ ∼ 60 days). We estimate that the mass of the black hole is ∼2.6 × 10{sup 9} M{sub ⊙}. The obtained results are discussed in the frame of the binary black hole hypothesis. To explain the periodicity in the flux variability and high redshift of the broad lines, we discuss a scenario where dense, gas-rich, cloudy-like structures are orbiting around a recoiling black hole.« less
The TWA 3 Young Triple System: Orbits, Disks, Evolution
NASA Astrophysics Data System (ADS)
Kellogg, Kendra; Prato, L.; Torres, Guillermo; Schaefer, G. H.; Avilez, I.; Ruíz-Rodríguez, D.; Wasserman, L. H.; Bonanos, Alceste Z.; Guenther, E. W.; Neuhäuser, R.; Levine, S. E.; Bosh, A. S.; Morzinski, Katie M.; Close, Laird; Bailey, Vanessa; Hinz, Phil; Males, Jared R.
2017-08-01
We have characterized the spectroscopic orbit of the TWA 3A binary and provide preliminary families of probable solutions for the TWA 3A visual orbit, as well as for the wide TWA 3A-B orbit. TWA 3 is a hierarchical triple located at 34 pc in the ˜10 Myr old TW Hya association. The wide component separation is 1.″55 the close pair was first identified as a possible binary almost 20 years ago. We initially identified the 35-day period orbital solution using high-resolution infrared spectroscopy that angularly resolved the A and B components. We then refined the preliminary orbit by combining the infrared data with a reanalysis of our high-resolution optical spectroscopy. The orbital period from the combined spectroscopic solution is ˜35 days, the eccentricity is ˜0.63, and the mass ratio is ˜0.84 although this high mass ratio would suggest that optical spectroscopy alone should be sufficient to identify the orbital solution, the presence of the tertiary B component likely introduced confusion in the blended optical spectra. Using millimeter imaging from the literature, we also estimate the inclinations of the stellar orbital planes with respect to the TWA 3A circumbinary disk inclination and find that all three planes are likely misaligned by at least ˜30°. The TWA 3A spectroscopic binary components have spectral types of M4.0 and M4.5; TWA 3B is an M3. We speculate that the system formed as a triple, is bound, and that its properties were shaped by dynamical interactions between the inclined orbits and disk.
The TWA 3 Young Triple System: Orbits, Disks, Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, Kendra; Prato, L.; Avilez, I.
2017-08-01
We have characterized the spectroscopic orbit of the TWA 3A binary and provide preliminary families of probable solutions for the TWA 3A visual orbit, as well as for the wide TWA 3A–B orbit. TWA 3 is a hierarchical triple located at 34 pc in the ∼10 Myr old TW Hya association. The wide component separation is 1.″55; the close pair was first identified as a possible binary almost 20 years ago. We initially identified the 35-day period orbital solution using high-resolution infrared spectroscopy that angularly resolved the A and B components. We then refined the preliminary orbit by combining themore » infrared data with a reanalysis of our high-resolution optical spectroscopy. The orbital period from the combined spectroscopic solution is ∼35 days, the eccentricity is ∼0.63, and the mass ratio is ∼0.84; although this high mass ratio would suggest that optical spectroscopy alone should be sufficient to identify the orbital solution, the presence of the tertiary B component likely introduced confusion in the blended optical spectra. Using millimeter imaging from the literature, we also estimate the inclinations of the stellar orbital planes with respect to the TWA 3A circumbinary disk inclination and find that all three planes are likely misaligned by at least ∼30°. The TWA 3A spectroscopic binary components have spectral types of M4.0 and M4.5; TWA 3B is an M3. We speculate that the system formed as a triple, is bound, and that its properties were shaped by dynamical interactions between the inclined orbits and disk.« less
NASA Astrophysics Data System (ADS)
Eftekharzadeh, S.; Myers, A. D.; Hennawi, J. F.; Djorgovski, S. G.; Richards, G. T.; Mahabal, A. A.; Graham, M. J.
2017-06-01
We present the most precise estimate to date of the clustering of quasars on very small scales, based on a sample of 47 binary quasars with magnitudes of g < 20.85 and proper transverse separations of ˜25 h-1 kpc. Our sample of binary quasars, which is about six times larger than any previous spectroscopically confirmed sample on these scales, is targeted using a kernel density estimation (KDE) technique applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is 'complete' in that all of the KDE target pairs with 17.0 ≲ R ≲ 36.2 h-1 kpc in our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We catalogue 230 candidate quasar pairs with angular separations of <8 arcsec, from which our binary quasars were identified. We determine the projected correlation function of quasars (\\bar{W}_p) in four bins of proper transverse scale over the range 17.0 ≲ R ≲ 36.2 h-1 kpc. The implied small-scale quasar clustering amplitude from the projected correlation function, integrated across our entire redshift range, is A = 24.1 ± 3.6 at ˜26.6 h-1 kpc. Our sample is the first spectroscopically confirmed sample of quasar pairs that is sufficiently large to study how quasar clustering evolves with redshift at ˜25 h-1 kpc. We find that empirical descriptions of how quasar clustering evolves with redshift at ˜25 h-1 Mpc also adequately describe the evolution of quasar clustering at ˜25 h-1 kpc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, N. D.; Morrison, N. D.; Kryukova, E. E.
2011-01-15
Deneb is often considered the prototypical A-type supergiant and is one of the visually most luminous stars in the Galaxy. A-type supergiants are potential extragalactic distance indicators, but the variability of these stars needs to be better characterized before this technique can be considered reliable. We analyzed 339 high-resolution echelle spectra of Deneb obtained over the five-year span of 1997 through 2001 as well as 370 Stroemgren photometric measurements obtained during the same time frame. Our spectroscopic analysis included dynamical spectra of the H{alpha} profile, H{alpha} equivalent widths, and radial velocities measured from Si II {lambda}{lambda} 6347, 6371. Time-series analysismore » reveals no obvious cyclic behavior that proceeds through multiple observing seasons, although we found a suspected 40 day period in two, non-consecutive observing seasons. Some correlations are found between photometric and radial velocity data sets and suggest radial pulsations at two epochs. No correlation is found between the variability of the H{alpha} profiles and that of the radial velocities or the photometry. Lucy found evidence that Deneb was a long-period single-lined spectroscopic binary star, but our data set shows no evidence for radial velocity variations caused by a binary companion.« less
The Double Contact Nature of TT Herculis
NASA Astrophysics Data System (ADS)
Terrell, Dirk; Nelson, Robert H.
2014-03-01
We present new radial velocities and photometry of the short-period Algol TT Herculis. Previous attempts to model the light curves of the system have met with limited success, primarily because of the lack of a reliable mass ratio. Our spectroscopic observations are the first to result in radial velocities for the secondary star, and thus provide a spectroscopic mass ratio. Simultaneous analysis of the radial velocities and new photometry shows that the system is a double contact binary, with a rapidly rotating primary that fills its limiting lobe.
Substellar Companions to weak-line TTauri Stars
NASA Astrophysics Data System (ADS)
Brandner, W.; Alcala, J. M.; Covino, E.; Frink, S.
1997-05-01
Weak-line TTauri stars, contrary to classical TTauri stars, no longer possess massive circumstellar disks. In weak-line TTauri stars, the circumstellar matter was either accreted onto the TTauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line TTauri stars in the Chamaeleon T association and the Scorpius Centaurus OB association. In the course of follow-up observations we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass-ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line TTauri stars. We have initiated a program to spatially RESOLVE young brown dwarfs and young giant planets as companions to single weak-line TTauri stars using adaptive optics at the ESO 3.6m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations.
VizieR Online Data Catalog: Multiplicity among chemically peculiar stars II (Carrier+, 2002)
NASA Astrophysics Data System (ADS)
Carrier, F.; North, P.; Udry, S.; Babel, J.
2002-08-01
We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are : HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars as for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. (4 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.
Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H{alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M{sub 1}more » = 0.283 {+-} 0.064 M{sub sun} and M{sub 2} = 0.274 {+-} 0.034 M{sub sun}, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.« less
LX Persei, an eclipsing binary with H and K emission
NASA Technical Reports Server (NTRS)
Weiler, E. J.
1974-01-01
The masses and MK classes were calculated for the eclipsing spectroscopic binary LX Persei. Its spectrum shows strong H and K emission and doubled lines in the photographic region. The Ca II emission velocity shifts vary in phase with the secondary's absorption lines and are presumably associated with this component. The stars are tentatively classed as G0 V and K0 IV, and the cooler component is the more massive by a ratio of 0.96. The system has a period of 8.0 days.
Orbits of Four Very Massive Binaries in the R136 Cluster
NASA Astrophysics Data System (ADS)
Penny, L. R.; Massey, P.; Vukovich, J.
2001-12-01
We present radial velocity and photometry for four early-type, massive double-lined spectroscopic binaries in the R136 cluster. Three of these systems are eclipsing, allowing orbital inclinations to be determined. One of these systems, R136-38 (O3 V + O6 V), has one of the highest masses ever measured, 57 Modot, for the primary. Comparison of our masses with those derived from standard evolutionary tracks shows excellent agreement. We also identify five other light variables in the R136 cluster worthy of follow-up study.
The enigmatic star EZ Pegasi - A mystery solved?
NASA Technical Reports Server (NTRS)
Howell, S. B.; Bopp, B. W.
1985-01-01
EZ Peg, a ninth-magnitude G star that has been classified by various authors as an irregular variable, a U Gem system, and a contact binary, is shown to have all the spectroscopic and photometric characteristics of an active-chromosphere RS CVn binary. It is suggested that the reported outburst of 1943, when the spectrum appeared to be that of a B star, never occurred. The strong Ca II H and K reversals, viewed with low spectral resolution, caused the photospheric Ca II absorption to appear abnormally weak, mimicking a much earlier spectral type.
SPECTROSCOPIC ORBITS FOR 15 LATE-TYPE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willmarth, Daryl W.; Abt, Helmut A.; Fekel, Francis C.
2016-08-01
Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their massmore » functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.« less
VizieR Online Data Catalog: Hα observations of LSI+61 303 (Zamanov+, 2013)
NASA Astrophysics Data System (ADS)
Zamanov, R.; Stoyanov, K.; Marti, J.; Tomov, N. A.; Belcheva, G.; Luque-Escamilla, P. L.; Latev, G.
2013-09-01
Optical spectroscopic observations of the Hα emission line (137 spectra obtained during the period of September 1998 - January 2013) are presented for the the radio- and gamma-ray-emitting Be/X-ray binary LSI+61 303. (2 data files).
Red giants and yellow stragglers in the young open cluster NGC 2447
NASA Astrophysics Data System (ADS)
da Silveira, M. D.; Pereira, C. B.; Drake, N. A.
2018-06-01
In this work we analysed, using high-resolution spectroscopy, a sample of 12 single and 4 spectroscopic binary stars of the open cluster NGC 2447. For the single stars, we obtained atmospheric parameters and chemical abundances of Li, C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, Nd, Eu. Rotational velocities were obtained for all the stars. The abundances of the light elements and Eu and the rotational velocities were derived using spectral synthesis technique. We obtained a mean metallicity of [Fe/H] = -0.17 ± 0.05. We found that the abundances of all elements are similar to field giants and/or giants of open clusters, even for the s-process elements, which are enhanced as in other young open clusters. We show that the spectroscopic binaries NGC 2447-26, 38, and 42 are yellow-straggler stars, of which the primary is a giant star and the secondary a main-sequence A-type star.
Glamazda, A.; Lemmens, P.; Do, S. -H.; Choi, Y. S.; Choi, K. -Y.
2016-01-01
The fractionalization of elementary excitations in quantum spin systems is a central theme in current condensed matter physics. The Kitaev honeycomb spin model provides a prominent example of exotic fractionalized quasiparticles, composed of itinerant Majorana fermions and gapped gauge fluxes. However, identification of the Majorana fermions in a three-dimensional honeycomb lattice remains elusive. Here we report spectroscopic signatures of fractional excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3. Using polarization-resolved Raman spectroscopy, we find that the dynamical Raman response of β- and γ-Li2IrO3 features a broad scattering continuum with distinct polarization and composition dependence. The temperature dependence of the Raman spectral weight is dominated by the thermal damping of fermionic excitations. These results suggest the emergence of Majorana fermions from spin fractionalization in a three-dimensional Kitaev–Heisenberg system. PMID:27457278
Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.
Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A
2009-10-22
Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.
Inferring Binary and Trinary Stellar Populations in Photometric and Astrometric Surveys
NASA Astrophysics Data System (ADS)
Widmark, Axel; Leistedt, Boris; Hogg, David W.
2018-04-01
Multiple stellar systems are ubiquitous in the Milky Way but are often unresolved and seen as single objects in spectroscopic, photometric, and astrometric surveys. However, modeling them is essential for developing a full understanding of large surveys such as Gaia and connecting them to stellar and Galactic models. In this paper, we address this problem by jointly fitting the Gaia and Two Micron All Sky Survey photometric and astrometric data using a data-driven Bayesian hierarchical model that includes populations of binary and trinary systems. This allows us to classify observations into singles, binaries, and trinaries, in a robust and efficient manner, without resorting to external models. We are able to identify multiple systems and, in some cases, make strong predictions for the properties of their unresolved stars. We will be able to compare such predictions with Gaia Data Release 4, which will contain astrometric identification and analysis of binary systems.
NASA Astrophysics Data System (ADS)
Hedlund, Anne; Sandquist, Eric L.; Arentoft, Torben; Brogaard, Karsten; Grundahl, Frank; Stello, Dennis; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico; Molenda-Zakowicz, Joanna; Vanderburg, Andrew
2018-06-01
V1178 Tau is a double-lined spectroscopic eclipsing binary in NGC1817, one of the more massive clusters observed in the K2 mission. We have determined the orbital period (P = 2.20 d) for the first time, and we model radial velocity measurements from the HARPS and ALFOSC spectrographs, light curves collected by Kepler, and ground based light curves using the Eclipsing Light Curve code (ELC, Orosz & Hauschildt 2000). We present masses and radii for the stars in the binary, allowing for a reddening-independent means of determining the cluster age. V1178 Tau is particularly useful for calculating the age of the cluster because the stars are close to the cluster turnoff, providing a more precise age determination. Furthermore, because one of the stars in the binary is a delta Scuti variable, the analysis provides improved insight into their pulsations.
HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia
2015-11-20
The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likelymore » to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.« less
A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu
We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less
Analysis of reflection effects in HS 2333+3927
NASA Astrophysics Data System (ADS)
Shimanskii, V. V.; Yakin, D. G.; Borisov, N. V.; Bikmaev, I. F.
2012-11-01
The results of photometric and spectroscopic observations of the pre-cataclysmic variable HS 2333+3927, which is a HW Vir binary system, are analyzed. The parameters of the sdB subdwarf companion ( T eff = 37 500 ± 500 K, log g = 5.7 ± 0.05) and the chemical composition of its atmosphere are refined using a spectrum of the binary system obtained at minimum brightness. Reflection effects can fully explain the observed brightness variations of HS 2333+3927, changes in the HI and HeI line profiles, and distortions of the radial-velocity curve of the primary star. A new method for determining the component-mass ratios in HW Vir binaries, based on their radial-velocity curves and models of irradiated atmospheres, is proposed. The set of parameters obtained for the binary components corresponds to models of horizontal-branch sdB subdwarfs and main-sequence stars.
STELLAR LOCI. I. METALLICITY DEPENDENCE AND INTRINSIC WIDTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng
2015-02-01
Stellar loci are widely used for selection of interesting outliers, reddening determinations, and calibrations. However, until now, the dependence of stellar loci on metallicity has not been fully explored, and their intrinsic widths are unclear. In this paper, by combining the spectroscopic and recalibrated imaging data of the Sloan Digital Sky Survey (SDSS) Stripe 82, we have built a large, clean sample of dwarf stars with accurate colors and well-determined metallicities to investigate the metallicity dependence and intrinsic widths of the SDSS stellar loci. Typically, 1 dex decrease in metallicity causes 0.20 and 0.02 mag decrease in colors u – g and g – rmore » and 0.02 and 0.02 mag increase in colors r – i and i – z, respectively. The variations are larger for metal-rich stars than for metal-poor ones, and larger for F/G/K stars than for A/M ones. Using the sample, we have performed two-dimensional polynomial fitting to the u – g, g – r, r – i, and i – z colors as a function of color g – i and metallicity [Fe/H]. The residuals, at the level of 0.029, 0.008, 0.008, and 0.011 mag for the u – g, g – r, r – i, and i – z colors, respectively, can be fully accounted for by the photometric errors and metallicity uncertainties, suggesting that the intrinsic widths of the loci are at maximum a few millimagnitudes. The residual distributions are asymmetric, revealing that a significant fraction of stars are binaries. In a companion paper, we will present an unbiased estimate of the binary fraction for field stars. Other potential applications of the metallicity-dependent stellar loci are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Bardalez Gagliuffi, Daniella C.; Gelino, Christopher R.; Burgasser, Adam J.
2015-11-01
We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341-3052, SDSS J1511+0607 and SDSS J2052-1609 the first two are resolved for the first time. All three have projected separations <8 AU and estimated periods of 14-80 years. We also report a preliminary orbit determination for SDSS J2052-1609 based on six epochs of resolved astrometry between 2005 and 2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of {47}-11+12% for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
The Primordial Binary Fraction in Trumpler 14: Frequency and Multiplicity Parameters
NASA Astrophysics Data System (ADS)
Sabbi, Elena
2017-08-01
This is an astrometric proposal designed to identify and characterize the properties of medium- and long-period (orbital periods ranging from 1.8 to 100 years) visual binaries in the mass range between 4 and 20 Mo in the young compact cluster Trumpler 14 in the Carina Nebula. We aim to probe the virtually unexplored population of intermediate- and high-mass binaries that will experience a Roche-lobe overflow during their post-main-sequence evolution. These binaries are of particular interest because they are expected to be the progenitors of supernovae Type Ia, b, and c, X-ray binaries, double neutron stars and double black holes. Multiplicity properties of young stars can be further used to constrain the outcome of the star-formation process and hence distinguish between various formation scenarios. The medium- and long-period binaries (P> 0.5 yr) are hard to detect and expensive to characterize with traditional ground-based spectroscopy. Knowledge of their orbital properties is however crucial to properly estimate the overall fraction of OB stars whose evolution is affected by binary interaction and to predict the outcome of such interaction. Because of the well characterized PSF of WFC3/UVIS and its temporal stability, HST is the only facility able to characterize the properties of OB-type medium-period binaries in Tr14, and Tr14 is the only nearby high-density OB-type young cluster.
Shapes and binary fractions of Jovian Trojans and Hildas through NEOWISE
NASA Astrophysics Data System (ADS)
Sonnett, S.; Mainzer, A.; Grav, T.; Bauer, J.; Masiero, J.; Stevenson, R.; Nugent, C.
2014-07-01
Jovian Trojans (hereafter, Trojans) and Hildas are indicative of planetary migration patterns since their capture and physical state must be explained by dynamical evolution models. Early models of minimal planetary migration necessitate that Trojans were dynamically captured from the giant planet region (e.g., Marzari & Scholl 1998). The Nice model instead suggests that Trojans were injected from the outer solar system during a period of significant giant planet migration (e.g., Morbidelli et al. 2005). A more recent version of the Nice model suggests that asymmetric scatterings and collisions would have taken place, producing dissimilar L4 and L5 clouds (Nesvorny et al. 2013). Each of these formation scenarios predicts a different origin and/or collisional evolution for Trojans, which can be inferred from rotation properties. Namely, the physical shape as a function of size helps determine the degree of collisional processing (Farinella et al. 1992). Also, the binary fraction as a function of separation between the two components can be used to determine the dominant binary formation mechanism and thus helps characterize the dynamical environment (e.g., Kern & Elliot 2006). Rotational variation usually corresponds to elongated shapes, but high amplitudes (> 0.9 magnitudes; Sheppard & Jewitt 2004) can only be explained by close or contact binaries. Therefore, rotational lightcurves can be used to infer both shape and the presence of a close companion. Motivated by the need for more observational constraints on solar system formation models and a poor understanding of the rotation properties and binary fraction of Trojans and Hildas, we are studying their rotational lightcurve amplitudes using infrared photometry from NEOWISE (Mainzer et al. 2011; Grav et al. 2011) in order to determine debiased rotational lightcurve amplitude distributions for various Trojan subpopulations and for Trojans compared to Hildas. Preliminary amplitude distributions show a large fraction of potential close or contact binaries (having Δ m > 0.9). These distributions can be used to constrain the collisional and dynamical history of solar system formation models.
NASA Astrophysics Data System (ADS)
Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.
2017-11-01
The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.
Far-UV Spectroscopy of Two Extremely Hot, Helium-Rich White Dwarfs
NASA Technical Reports Server (NTRS)
Werner, K.; Rauch, T.; Kruk, J. W.
2017-01-01
A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1 or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of T(eff) =115000 +/- 5000 K and 125000 +/- 5000 K, respectively, and a surface gravity of log g = 7 +/-0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution.
The Mass Distribution of Companions to Low-mass White Dwarfs
NASA Astrophysics Data System (ADS)
Andrews, Jeff J.; Price-Whelan, Adrian M.; Agüeros, Marcel A.
2014-12-01
Measuring the masses of companions to single-line spectroscopic binary stars is (in general) not possible because of the unknown orbital plane inclination. Even when the mass of the visible star can be measured, only a lower limit can be placed on the mass of the unseen companion. However, since these inclination angles should be isotropically distributed, for a large enough, unbiased sample, the companion mass distribution can be deconvolved from the distribution of observables. In this work, we construct a hierarchical probabilistic model to infer properties of unseen companion stars given observations of the orbital period and projected radial velocity of the primary star. We apply this model to three mock samples of low-mass white dwarfs (LMWDs; M <~ 0.45 M ⊙) and a sample of post-common-envelope binaries. We use a mixture of two Gaussians to model the WD and neutron star (NS) companion mass distributions. Our model successfully recovers the initial parameters of these test data sets. We then apply our model to 55 WDs in the extremely low-mass (ELM) WD Survey. Our maximum a posteriori model for the WD companion population has a mean mass μWD = 0.74 M ⊙, with a standard deviation σWD = 0.24 M ⊙. Our model constrains the NS companion fraction f NS to be <16% at 68% confidence. We make samples from the posterior distribution publicly available so that future observational efforts may compute the NS probability for newly discovered LMWDs.
R144 revealed as a double-lined spectroscopic binary
NASA Astrophysics Data System (ADS)
Sana, H.; van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; de Koter, A.; Kaper, L.; Moffat, A. F. J.; Schnurr, O.; Schneider, F. R. N.; Gies, D. R.
2013-05-01
R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new X-shooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope. We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km s-1 in N IV and N V lines. Furthermore, the N III and N V line Doppler shifts are anticorrelated and the N IV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from two to six months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/L⊙ ≈ 6.8) suggests a present-day total mass content in the range of about 200-300 M⊙, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 M⊙. We briefly discuss the presence of such a massive object, 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.
9 Sagittarii: uncovering an O-type spectroscopic binary with an 8.6 year period
NASA Astrophysics Data System (ADS)
Rauw, G.; Sana, H.; Spano, M.; Gosset, E.; Mahy, L.; De Becker, M.; Eenens, P.
2012-06-01
Context. The O-type object 9 Sgr is a well-known synchrotron radio emitter. This feature is usually attributed to colliding-wind binary systems, but 9 Sgr was long considered a single star. Aims: We have conducted a long-term spectroscopic monitoring of this star to investigate its multiplicity and search for evidence for wind-wind interactions. Methods: Radial velocities are determined and analysed using various period search methods. Spectral disentangling is applied to separate the spectra of the components of the binary system. Results: We derive the first ever orbital solution of 9 Sgr. The system is found to consist of an O3.5 V((f+)) primary and an O5-5.5 V((f)) secondary moving around each other on a highly eccentric (e = 0.7), 8.6 year orbit. The spectra reveal no variable emission lines that could be formed in the wind interaction zone in agreement with the expected properties of the interaction in such a wide system. Conclusions: Our results provide further support to the paradigm of synchrotron radio emission from early-type stars being a manifestation of interacting winds in a binary system. Based on observations collected at the European Southern Observatory (La Silla, Chile and Cerro Paranal, Chile) and the San Pedro Mártir observatory (Mexico).Appendix A is available in electronic form at http://www.aanda.orgThe reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tessmer, Manuel
This paper generalizes the structure of gravitational waves from orbiting spinning binaries under leading order spin-orbit coupling, as given in the work by Koenigsdoerffer and Gopakumar [Phys. Rev. D 71, 024039 (2005)] for single-spin and equal-mass binaries, to unequal-mass binaries and arbitrary spin configurations. The orbital motion is taken to be quasicircular and the fractional mass difference is assumed to be small against one. The emitted gravitational waveforms are given in analytic form.
Mass flow in interacting binaries observed in the ultraviolet
NASA Technical Reports Server (NTRS)
Kondo, Yoji
1989-01-01
Recent satellite observations of close binary systems show that practically all binaries exhibit evidence of mass flow and that, where the observations are sufficiently detailed, a fraction of the matter flowing out of the mass-losing component is accreted by the companion and the remainder is lost from the binary system. The mass flow is not conservative. During the phase of dynamic mass flow, the companion star becomes immersed in optically-thick plasma and the physical properties of that star elude close scrutiny.
Binary statistics among population II stars
NASA Astrophysics Data System (ADS)
Zinnecker, H.; Köhler, R.; Jahreiß, H.
2004-08-01
Population II stars are old, metal-poor, Galactic halo stars with high proper motion. We have carried out a visual binary survey of 164 halo stars in the solar neighborhood (median distance 100 pc), using infrared speckle interferometry, adaptive optics, and wide field direct imaging. The sample is based on the lists of Population II stars of Carney et al. (1994) and Norris (1986), with reliable distances from HIPPARCOS measurements. At face value, we found 33 binaries, 6 triples, and 1 quadruple system. When we limit ourselves to K-band flux ratios larger than 0.1 (to avoid background contamination), the numbers drop to 9 binaries and 1 triple, corresponding to a binary frequency of 6 - 7 % above our angular resolution limit of about 0.1 arcsec. If we count all systems with K-band flux ratios greater than 0.01, we obtain 15 more binaries and 3 more triples, corresponding to a binary frequency for projected separations in excess of 10 AU of around 20 %. This is to be compared with the frequency of spectroscopic binaries (up to a period of 3000 days) of Population II stars of about 15 % (Latham et al. 2002). We also determined a semi-major axis distribution for our visual Population II binary and triple systems, which appears to be remarkably different from that of Population I stars. Second epoch-observations must help confirm the reality of our results.
Long-Term Photometric and Spectroscopic Behavior of a Symbiotic System AG DRA
NASA Astrophysics Data System (ADS)
Gális, R.; Hric, L.; Petrík, K.
A symbiotic binary, AG Dra, is studied using long-term photometry and radial velocity measurements. New radial velocities confirm the presence of a second period, found in our previous analysis, which could be due to pulsation of the cool component of the AG Dra system.
X Persei - correlation between H-alpha and X-ray variability
NASA Astrophysics Data System (ADS)
Zamanov, R.; Stoyanov, K. A.; Petrov, N.; Nikolov, Y.; Marchev, D.; Wolter, U.
2018-03-01
We performed H-alpha spectroscopic observations of the Be/X-ray binary X Per, optical counterpart of the slow X-ray pulsar 4U 0352+30, using the 2.0m telescope of the Rozhen National Astronomical Observatory, Bulgaria and the 1.2m TIGRE telescope located in Mexico.
NASA Astrophysics Data System (ADS)
Tobin, John J.; Hartmann, Lee; Furesz, Gabor; Mateo, Mario; Megeath, S. Tom
2013-08-01
Not Available This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.
Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.
2014-01-01
Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flesch, K.; Kremeyer, T.; Schmitz, O.
Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flesch, K., E-mail: kbflesch@wisc.edu; Kremeyer, T.; Schmitz, O.
Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D{sub 2} molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude abovemore » the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less
Flesch, K.; Kremeyer, T.; Schmitz, O.; ...
2016-08-18
Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less
A three-dimensional orbit for the binary star Alpha Andromedae
NASA Astrophysics Data System (ADS)
Branham, Richard L., Jr.
2017-01-01
Stars that are both spectroscopic and optical binaries present a means to determine simultaneously the masses of the components and the distance of the system independent of trigonometric parallax. Alpha Andromedae (Alpheratz) represents such a system and, moreover, the primary is the brightest of the mercury-manganese stars. An orbit, based on 42 interferometric observations and 378 radial velocities, is calculated to solve for 10 parameters: the six coefficients of the apparent ellipse, the constant of areal velocity, the systemic velocity, and the semi-amplitudes. From these, one calculates the orbit of the binary, its period and time of periastron passage, the masses of the components, and the distance of the system. The dynamical parallax does not differ greatly from the trigonometric parallax found from Hipparcos.
NASA Technical Reports Server (NTRS)
Sion, E. M.; Guinan, E. F.; Wesemael, F.
1984-01-01
Low-resolution ultraviolet International Ultraviolet Explorer spectra of the DA white dwarf Case 1 are presented. The spectra show the presence of the 1400 A feature, already discovered in several other DA stars, and of a shallower trough in the 1550-1700 A range. A model atmosphere analysis of the ultraviolet energy distribution of the Ly-alpha red wing yields T(e) = 13,000 + or - 500 K. Possible interpretations of the 1400 A feature are reviewed. Case 1 is the coolest white dwarf found in a short-period, detached white dwarf-red dwarf binary, and its cooling time is consistent with estimates of the efficiency of angular momentum removal mechanisms in the phases subsequent to common envelope binary evolution.
Spectroscopic observations of the symbiotic binary RW Hydrae
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Fernandez-Castro, Telmo
1987-01-01
Ultraviolet/optical spectrophotometry and infrared photometry show that the symbiotic binary RW Hya is comprised of an M giant (with L of about 1000 solar luminosities) and a compact object (with L of about 200 solar luminosities) which resembles the central star of a planetary nebula. The luminosity of the hot component is produced by a nuclear shell source which is replenished by the wind of the red giant at a rate of about 10 to the -8th solar mass/yr. Results indicate that the binary is surrounded by an H II region (of radius of about 10 AU) which gives rise to the observed emission lines and radio emission. The He(2+) and O(2+) regions are found to be confined to the immediate vicinity of the hot component.
Binary Cepheids From High-Angular Resolution
NASA Astrophysics Data System (ADS)
Gallenne, A.; Mérand, A.; Kervella, P.
2015-12-01
Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations
Low-Resolution Radial-Velocity Monitoring of Pulsating sdBs in the Kepler Field
NASA Astrophysics Data System (ADS)
Telting, J.; Östensen, R.; Reed, M.; Kiæerad, F.; Farris, L.; Baran, A.; Oreiro, R.; O'Toole, S.
2014-04-01
We present preliminary results from an ongoing spectroscopic campaign to uncover the binary status of the 18 known pulsating subdwarf B stars and the one pulsating BHB star observed with the Kepler spacecraft. During the 2010-2012 observing seasons, we have used the KP4m Mayall, NOT, and WHT telescopes to obtain low-resolution (R˜2000-2500) Balmer-line spectroscopy of our sample stars. We applied a standard cross-correlation technique to derive radial velocities, and find clear evidence for binarity in several of the pulsators, some of which were not previously known to be binaries.
Neutron star binaries, pulsars and burst sources
NASA Technical Reports Server (NTRS)
Lamb, F. K.
1981-01-01
Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.
Ultraviolet observations of alpha Aurigae from Copernicus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, A. K.
1975-08-01
Emission lines of L$alpha$ (1215.67 A) and O vi (1031.94 A) were detected in the spectroscopic binary $alpha$ Aur (Capella) with the Princeton experiment on Copernicus. Temperatures of the emitting regions are inferred to be in excess of 3times10$sup 5$ K. The temperature and emission measure are consistent with atmosphere is expanding with velocities approx.20 to 100 km s$sup -1$. Such expansion can lead to material within the binary system. The density of interstellar hydrogen inferred from absorption of stellar L$alpha$ appears to be approx.0.01 hydrogen atoms cm$sup -3$.
AK Sco: a tidally induced atmospheric dynamo in a pre-main sequence binary?
NASA Astrophysics Data System (ADS)
Gómez de Castro, A. I.
2009-02-01
AK Sco is a unique source: a 10-30 Myrs old pre-main sequence spectroscopic binary composed by two nearly equal F5 stars that at periastron are separated by barely eleven stellar radii so, the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes of AK Sco, the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during pre-main sequence evolution. Evidence of this effect is reported in this contribution.
Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.
Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D
2018-01-18
Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.
Photometric Solutions of Three Eclipsing Binary Stars Observed from Dome A, Antarctica
NASA Astrophysics Data System (ADS)
Liu, N.; Fu, J. N.; Zong, W.; Wang, L. Z.; Uddin, S. A.; Zhang, X. B.; Zhang, Y. P.; Cang, T. Q.; Li, G.; Yang, Y.; Yang, G. C.; Mould, J.; Morrell, N.
2018-04-01
Based on spectroscopic observations for the eclipsing binaries CSTAR 036162 and CSTAR 055495 with the WiFeS/2.3 m telescope at SSO and CSTAR 057775 with the Mage/Magellan I at LCO in 2017, stellar parameters are derived. More than 100 nights of almost-continuous light curves reduced from the time-series photometric observations by CSTAR at Dome A of Antarctic in i in 2008 and in g and r in 2009, respectively, are applied to find photometric solutions for the three binaries with the Wilson–Devinney code. The results show that CSTAR 036162 is a detached configuration with the mass ratio q = 0.354 ± 0.0009, while CSTAR 055495 is a semi-detached binary system with the unusual q = 0.946 ± 0.0006, which indicates that CSTAR 055495 may be a rare binary system with mass ratio close to one and the secondary component filling its Roche Lobe. This implies that a mass-ratio reversal has just occurred and CSTAR 055495 is in a rapid mass-transfer stage. Finally, CSTAR 057775 is believed to be an A-type W UMa binary with q = 0.301 ± 0.0008 and a fill-out factor of f = 0.742(8).
NASA Astrophysics Data System (ADS)
Bright, Jane; Torres, Guillermo
2018-01-01
We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Tomkin, Jocelyn; Williamson, Michael H.
2009-04-01
We have determined improved spectroscopic orbits for three double-lined binaries, HD 82191 (Am), ω Dra (F5 V), and 108 Her (Am), using radial velocities from the 2.1 m telescope at McDonald Observatory, the coudé feed telescope at Kitt Peak National Observatory, and 2 m telescope at Fairborn Observatory. The orbital periods range from 5.28 to 9.01 days, and all three systems have circular orbits. The new orbital dimensions (a 1 sin i and a 2 sin i) and minimum masses (m 1 sin3 i and m 2 sin3 i) have accuracies of 0.2% or better. Our improved results confirm the large minimum masses of HD 82191 and also agree with the values previously found for ω Dra. However, for the components of 108 Her our minimum masses are about 20% larger than the previous best values. We conclude that both components of HD 82191 as well as the primary of 108 Her are Am stars. However, the A9 secondary of 108 Her has normal abundances. We estimate spectral types of F4 dwarf and G0 dwarf for the components of ω Dra. The primaries of the three binaries are synchronously rotating as is the secondary of 108 Her. The secondaries of HD 82191 and ω Dra are possibly synchronously rotating.
High-Precision Studies of Compact Variable Stars
NASA Astrophysics Data System (ADS)
Bloemen, Steven
2014-10-01
This book, which is a reworked and updated version of Steven Bloemen's original PhD thesis, reports on several high-precision studies of compact variable stars. Its strength lies in the large variety of observational, theoretical and instrumentation techniques that are presented and used and paves the way towards new and detailed asteroseismic applications of single and binary subdwarf stars. Close binary stars are studied using high cadence spectroscopic datasets collected with state of the art electron multiplying CCDs and analysed using Doppler tomography visualization techniques. The work touches upon instrumentation, presenting the calibration of a new fast, multi-colour camera installed at the Mercator Telescope on La Palma. The thesis also includes theoretical work on the computation of the temperature range in which stellar oscillations can be driven in subdwarf B-stars. Finally, the highlight of the thesis is the measurement of velocities of stars using only photometric data from NASA's Kepler satellite. Doppler beaming causes stars to appear slightly brighter when they move towards us in their orbits, and this subtle effect can be seen in Kepler's brightness measurements. The thesis presents the first validation of such velocity measurements using independent spectroscopic measurements. Since the detection and validation of this Doppler beaming effect, it has been used in tens of studies to detect and characterize binary star systems, which are key calibrators in stellar astronomy.
A Binary Nature of the Marginal CP Star Sigma Sculptoris
NASA Astrophysics Data System (ADS)
Janík, Jan; Krtička, Jiří; Mikulášek, Zdeněk; Zverko, Juraj; Pintado, Olga; Paunzen, Ernst; Prvák, Milan; Skalický, Jan; Zejda, Miloslav; Adam, Christian
2018-05-01
The A2 V star σ Scl was suspected of being a low-amplitude rotating variable of the Ap-type star by several authors. Aiming to decide whether the star is a variable chemically peculiar (CP) star, we searched for the photometric and spectroscopic variability, and determined chemical abundances of σ Scl. The possible variability was tested using several types of periodograms applied to the photometry from Long-Term Photometry of Variables project (LTPV) and Hipparcos. Sixty spectrograms of high signal-to-noise (S/N) were obtained and used for chemical analysis of the stellar atmosphere and for looking for spectral variability that is symptomatic for the CP stars. We did not find any signs of the light variability or prominent chemical peculiarity, that is specific for the CP stars. The only exception is the abundance of scandium, which is significantly lower than the solar one and yttrium and barium, which are strongly overabundant. As a by-product of the analysis, and with the addition of 29 further spectra, we found that σ Scl is a single-lined spectroscopic binary with orbital period of 46.877(8) d. We argue that σ Scl is not an Ap star, but rather a marginal Am star in SB1 system. The spectral energy distribution of the binary reveals infrared excess due to circumstellar material.
A NEARLY VOLUME-COMPLETE SPECTROSCOPIC SURVEY OF THE CLOSESTMID-TO-LATE M DWARFS
NASA Astrophysics Data System (ADS)
Winters, Jennifer; Irwin, Jonathan; Newton, Elisabeth; Charbonneau, David; Latham, David W.; Mink, Jessica; Esquerdo, Gil; Berlind, Perry; Calkins, Mike
2018-01-01
Recent results from Kepler estimate that M dwarfs harbor 2.5 planets per star. Yet, we will understand our exoplanet discoveries only as well as we understand their host stars, and much remains unknown about our low-mass stellar neighbors, such as their kinematics, ages, and multiplicity. A nearly volume-complete sample of M dwarfs lies within 15 pc of the Sun, and it is only for planets orbiting these nearest and smallest stars that thorough follow-up work for characterization will be possible. Unfortunately, more than half of this sample have only low-resolution (R < 19,000) spectroscopic measurements available from the literature, while ten percent have no published spectrum at all.We have undertaken a multi-epoch, high-resolution (R ~ 44,000) spectroscopic survey of the mid-to-late M dwarfs that lie within 15 pc via acurate trigonometric parallaxes. Observations with the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5m telescope at the Fred Lawrence Whipple Observatory (FLWO) on Mt. Hopkins, AZ, are currently underway. We will shortly begin the southern part of this survey with CHIRON at the Cerro Tololo Inter-American Observatory / Small and Moderate Aperture Research Telescope System (CTIO/SMARTS) 1.5m. We present here results from year one of our TRES survey. We have measured radial velocities, rotational broadening, and H-alpha equivalent widths for 305 mid-to-late M dwarfs. We have discovered five new spectroscopic binaries, one of which is a rare M dwarf - (likely) brown dwarf binary within 10 pc, for which we have determined the orbit.Our survey more than doubles the number of mid-M dwarfs within 15 pc with complete high-resolution spectroscopic and trigonometric characterization. We hope to provide a legacy dataset for the use of future generations of astronomers.This work is being supported by grants from the National Science Foundation and the John Templeton Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Jennifer C.; Johnson, John Asher; Eastman, Jason
Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Hence, it is desirable to perform independent tests of the predictions of microlens orbit models using radial velocity (RV) time series of the lens binary system. To this end, we presentmore » 3.5 years of RV monitoring of the binary lens system OGLE-2009-BLG-020 L, for which Skowron et al. constrained all internal parameters of the 200–700 day orbit. Our RV measurements reveal an orbit that is consistent with the predictions of the microlens light curve analysis, thereby providing the first confirmation of orbital elements inferred from microlensing events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu
Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5 m telescope to study short-period systems. The data reduction is described, and mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, and for some of them the orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binariesmore » within 67 pc. It is found that 43 binaries contain at least one subsystem, and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods matches the simple prescription proposed by the author. The remaining 53 simple wide binaries with a median projected separation of 1300 AU have an RV difference distribution between their components that is not compatible with the thermal eccentricity distribution f (e) = 2e but rather matches the uniform eccentricity distribution.« less
Double stars with wide separations in the AGK3 - II. The wide binaries and the multiple systems*
NASA Astrophysics Data System (ADS)
Halbwachs, J.-L.; Mayor, M.; Udry, S.
2017-02-01
A large observation programme was carried out to measure the radial velocities of the components of a selection of common proper motion (CPM) stars to select the physical binaries. 80 wide binaries (WBs) were detected, and 39 optical pairs were identified. By adding CPM stars with separations close enough to be almost certain that they are physical, a bias-controlled sample of 116 WBs was obtained, and used to derive the distribution of separations from 100 to 30 000 au. The distribution obtained does not match the log-constant distribution, but agrees with the log-normal distribution. The spectroscopic binaries detected among the WB components were used to derive statistical information about the multiple systems. The close binaries in WBs seem to be like those detected in other field stars. As for the WBs, they seem to obey the log-normal distribution of periods. The number of quadruple systems agrees with the no correlation hypothesis; this indicates that an environment conducive to the formation of WBs does not favour the formation of subsystems with periods shorter than 10 yr.
Detectability of gravitational waves from binary black holes: Impact of precession and higher modes
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Laguna, Pablo; Shoemaker, Deirdre
2017-05-01
Gravitational wave templates used in current searches for binary black holes omit the effects of precession of the orbital plane and higher-order modes. While this omission seems not to impact the detection of sources having mass ratios and spins similar to those of GW150914, even for total masses M >200 M⊙ , we show that it can cause large fractional losses of sensitive volume for binaries with mass ratio q ≥4 and M >100 M⊙, measured in the detector frame. For the highest precessing cases, this is true even when the source is face-on to the detector. Quantitatively, we show that the aforementioned omission can lead to fractional losses of sensitive volume of ˜15 %, reaching >25 % for the worst cases studied. Loss estimates are obtained by evaluating the effectualness of the SEOBNRv2-ROM double spin model, currently used in binary black hole searches, towards gravitational wave signals from precessing binaries computed by means of numerical relativity. We conclude that, for sources with q ≥4 , a reliable search for binary black holes heavier than M >100 M⊙ needs to consider the effects of higher-order modes and precession. The latter seems especially necessary when Advanced LIGO reaches its design sensitivity.
The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5
NASA Astrophysics Data System (ADS)
Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O.
2017-04-01
The importance of long-period binaries for the formation and evolution of planetary nebulae is still rather poorly understood, which in part is due to the lack of central star systems that are known to comprise such long-period binaries. Here, we report on the latest results from the on-going Mercator-HERMES survey for variability in the central stars of planetary nebulae. We present a study of the central stars of NGC 1514, BD+30°623, the spectrum of which shows features associated with a hot nebular progenitor as well as a possible A-type companion. Cross-correlation of high-resolution HERMES spectra against synthetic spectra shows the system to be a highly eccentric (e 0.5) double-lined binary with a period of 3300 days. Previous studies indicated that the cool component might be a horizontal branch star of mass 0.55 M⊙, but the observed radial velocity amplitudes rule out such a low mass. If we assume that the nebular symmetry axis and binary orbital plane are perpendicular, then the data are more consistent with a post-main-sequence star ascending towards the giant branch. We also present the continued monitoring of the central star of LoTr 5, HD 112313, which has now completed one full cycle, allowing the orbital period (P 2700 days) and eccentricity (e 0.3) to be derived. To date, the orbital periods of BD+30°623 and HD 112313 are the longest to have been measured spectroscopically in the central stars of planetary nebulae. Furthermore, these systems, along with BD+33°2642, comprise the only spectroscopic wide-binary central stars currently known. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The radial velocity data for both objects are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/L9
SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sana, H.; Le Bouquin, J.-B.; Duvert, G.
2014-11-01
Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperturemore » Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved, including the newly discovered pairs HD 168112 and CPD–47°2963. This lends strong support to the universality of the wind-wind collision scenario to explain the non-thermal emission from O-type stars.« less
Orbit of the mercury-manganese binary 41 Eridani
NASA Astrophysics Data System (ADS)
Hummel, C. A.; Schöller, M.; Duvert, G.; Hubrig, S.
2017-04-01
Context. Mercury-manganese (HgMn) stars are a class of slowly rotating chemically peculiar main-sequence late B-type stars. More than two-thirds of the HgMn stars are known to belong to spectroscopic binaries. Aims: By determining orbital solutions for binary HgMn stars, we will be able to obtain the masses for both components and the distance to the system. Consequently, we can establish the position of both components in the Hertzsprung-Russell diagram and confront the chemical peculiarities of the HgMn stars with their age and evolutionary history. Methods: We initiated a program to identify interferometric binaries in a sample of HgMn stars, using the PIONIER near-infrared interferometer at the VLTI on Cerro Paranal, Chile. For the detected systems, we intend to obtain full orbital solutions in conjunction with spectroscopic data. Results: The data obtained for the SB2 system 41 Eridani allowed the determination of the orbital elements with a period of just five days and a semi-major axis of under 2 mas. Including published radial velocity measurements, we derived almost identical masses of 3.17 ± 0.07 M⊙ for the primary and 3.07 ± 0.07 M⊙ for the secondary. The measured magnitude difference is less than 0.1 mag. The orbital parallax is 18.05 ± 0.17 mas, which is in good agreement with the Hipparcos trigonometric parallax of 18.33 ± 0.15 mas. The stellar diameters are resolved as well at 0.39 ± 0.03 mas. The spin rate is synchronized with the orbital rate. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.C-0111, 189.C-0644, 090.D-0291, and 090.D-0917.
Long-term Spectroscopic and Photometric Monitoring of Bright Interacting Algol-type Binary Stars
NASA Astrophysics Data System (ADS)
Reed, Phillip A.
2018-01-01
Binary stars have long been used as natural laboratories for studying such fundamental stellar properties as mass. Interacting binaries allow us to examine more complicated aspects such as mass flow between stars, accretion processes, magnetic fields, and stellar mergers. Algol-type interacting binary stars -- consisting of a cool giant or sub-giant donating mass to a much hotter, less evolved, and more massive main-sequence companion -- undergo steady mass transfer and have been used to measure mass transfer rates and to test stellar evolution theories. The method of back-projection Doppler tomography has also been applied to interacting Algols and has produced indirect velocity-space images of the accretion structures (gas streams, accretion disks, etc.) derived from spectroscopic observations of hydrogen and helium emission lines. The accretion structures in several Algol systems have actually been observed to change between disk-like states and stream-like states on timescales as short as several orbital cycles (Richards et al., 2014). Presented here are the first results from a project aimed at studying bright interacting Algol systems with simultaneous mid-resolution (11,000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlieder, Joshua E.; Skemer, Andrew J.; Hinz, Philip
2016-02-10
We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, K{sub s}-, and L′-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M{sub ⊙} and 0.64 ± 0.02 M{sub ⊙},more » respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits.« less
NASA Astrophysics Data System (ADS)
Gibson, Justus L.; Stencel, Robert E.; Ketzeback, William; Barentine, John; Coughlin, Jeffrey; Leadbeater, Robin; Saurage, Gabrelle
2018-06-01
Worldwide interest in the recent eclipse of epsilon Aurigae resulted in the generation of several extensive data sets, including high resolution spectroscopic monitoring. This lead to the discovery, among other things, of the existence of a mass transfer stream, seen notably during third contact. We explored spectroscopic facets of the mass transfer stream during third contact, using high resolution spectra obtained with the ARCES and TripleSpec instruments at Apache Point Observatory. One hundred and sixteen epochs of data were obtained between 2009 and 2012, and equivalent widths and line velocities measured for high versus low eccentricity accretion disk lines. These datasets also enable greater detail to be measured of the mid-eclipse enhancement of the He I 10830Å line, and the discovery of the P Cygni shape of the Pa-β line at third contact. We found evidence of higher speed material, associated with the mass transfer stream, persisting between third and fourth eclipse contacts. We visualized the disk and stream interaction using SHAPE software, and used CLOUDY software to estimate that the source of the enhanced He I 10830A absorption arises from a region with nH = 1011 cm-3 and temperature of 20,000 K, consistent with a mid-B type central star. Van Rensbergen binary star evolutionary models are somewhat consistent with the current binary parameters for their case of a 9 plus 8 solar mass initial binary, evolving into a 2.3 and 14.11 solar mass end product after 35 Myr. With these results, it is possible to make predictions which suggest that continued monitoring prior to the next eclipse (2036) will help resolve standing questions about the mass and age of this binary.
NASA Astrophysics Data System (ADS)
Runnoe, Jessie C.; Eracleous, Michael; Pennell, Alison; Mathes, Gavin; Boroson, Todd; Sigurðsson, Steinn; Bogdanović, Tamara; Halpern, Jules P.; Liu, Jia; Brown, Stephanie
2017-06-01
We have been spectroscopically monitoring 88 quasars selected to have broad Hβ emission lines offset from their systemic redshift by thousands of km s-1. By analogy with single-lined spectroscopic binary stars, we consider these quasars to be candidates for hosting supermassive black hole binaries (SBHBs). In this work, we present new radial velocity measurements, typically three to four per object over a time period of up to 12 yr in the observer's frame. In 29/88 of the SBHB candidates, no variability of the shape of the broad Hβ profile is observed, which allows us to make reliable measurements of radial velocity changes. Among these, we identify three objects that have displayed systematic and monotonic velocity changes by several hundred km s-1 and are prime targets for further monitoring. Because the periods of the hypothetical binaries are expected to be long, we cannot hope to observe many orbital cycles during our lifetimes. Instead, we seek to evaluate the credentials of the SBHB candidates by attempting to rule out the SBHB hypothesis. In this spirit, we present a method for placing a lower limit on the period, and thus the mass, of the SBHBs under the assumption that the velocity changes we observe are due to orbital motion. Given the duration of our monitoring campaign and the uncertainties in the radial velocities, we were able to place a lower limit on the total mass in the range 4.7 × 104-3.8 × 108 M⊙, which does not yet allow us to rule out the SBHB hypothesis for any candidates.
NASA Astrophysics Data System (ADS)
Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.
2018-05-01
The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.
WIYN Open Cluster Study. XXXVI. Spectroscopic Binary Orbits in NGC 188
2009-04-01
2000; Pleiades , Mermilliod et al. 1992; M67, Mathieu et al. 1990). Today, the advent of multi-object spectrographs permits surveys of larger stellar...open clusters (e.g., M67, Mathieu et al. (1990); Praesepe, Mermilliod et al. (1994); Pleiades , Bouvier et al. (1997); Hyades, Patience et al. (1998
The Influence of Mass Loss on the Eccentricity of Double Star Orbits
NASA Astrophysics Data System (ADS)
Docobo, J. A.; Prieto, C.; Ling, J. F.
In this comunication we study the behaviour of the eccentricity of double star orbits (visual and wide spectroscopic binaries) according to simplified laws of mass loss. Applications to the systems WDS 05245S0224 - HD 35411, WDS 05387S0236 - HD 37468 and WDS 06154S0902 - HD 43362 are included.
NASA Astrophysics Data System (ADS)
Lodieu, N.; Dobbie, P. D.; Deacon, N. R.; Hodgkin, S. T.; Hambly, N. C.; Jameson, R. F.
2007-09-01
We present the results of a deep wide-field near-infrared survey of 12 deg2 of the Pleiades conducted as part of the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Galactic Cluster Survey (GCS). We have extracted over 340 high-probability proper motion (PM) members down to 0.03 Msolar using a combination of UKIDSS photometry and PM measurements obtained by cross-correlating the GCS with data from the Two Micron All Sky Survey, the Isaac Newton Telescope and the Canada-France-Hawaii Telescope. Additionally, we have unearthed 73 new candidate brown dwarf (BD) members on the basis of five-band UKIDSS photometry alone. We have identified 23 substellar multiple system candidates out of 63 candidate BDs from the (Y - K, Y) and (J - K, J) colour-magnitude diagrams, yielding a binary frequency of 28-44 per cent in the 0.075-0.030 Msolar mass range. Our estimate is three times larger than the binary fractions reported from high-resolution imaging surveys of field ultracool dwarfs and Pleiades BDs. However, it is marginally consistent with our earlier `peculiar' photometric binary fraction of 50 +/- 10 per cent presented by Pinfield et al., in good agreement with the 32-45 per cent binary fraction derived from the recent Monte Carlo simulations of Maxted & Jeffries and compatible with the 26 +/- 10 per cent frequency recently estimated by Basri & Reiners. A tentative estimate of the mass ratios from photometry alone seems to support the hypothesis that binary BDs tend to reside in near equal-mass ratio systems. In addition, the recovery of four Pleiades members targeted by high-resolution imaging surveys for multiplicity studies suggests that half of the binary candidates may have separations below the resolution limit of the Hubble Space Telescope or current adaptive optics facilities at the distance of the Pleiades (a ~7 au). Finally, we have derived luminosity and mass functions from the sample of photometric candidates with membership probabilities. The mass function is well modelled by a lognormal peaking at 0.24Msolar and is in agreement with previous studies in the Pleiades. Based on observations made with the United Kingdom Infrared Telescope, operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council. E-mail: nlodieu@iac.es
Absolute Properties of the Eclipsing Binary Star BF Draconis
NASA Astrophysics Data System (ADS)
Lacy, Claud H. Sandberg; Torres, Guillermo; Fekel, Francis C.; Sabby, Jeffrey A.; Claret, Antonio
2012-06-01
BF Dra is now known to be an eccentric double-lined F6+F6 binary star with relatively deep (0.7 mag) partial eclipses. Previous studies of the system are improved with 7494 differential photometric observations from the URSA WebScope and 9700 from the NFO WebScope, 106 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope and the 1 m coudé-feed spectrometer at Kitt Peak National Observatory, and 31 accurate radial velocities from the CfA. Very accurate (better than 0.6%) masses and radii are determined from analysis of the two new light curves and four radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 2.72 Gyr and [Fe/H] = -0.17, and tidal theory correctly confirms that the orbit should still be eccentric. Our observations of BF Dra constrain the convective core overshooting parameter to be larger than about 0.13 Hp . We find, however, that standard tidal theory is unable to match the observed slow rotation rates of the components' surface layers.
On Orbital Elements of Extrasolar Planetary Candidates and Spectroscopic Binaries
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Black, D. C.
2001-01-01
We estimate probability densities of orbital elements, periods, and eccentricities, for the population of extrasolar planetary candidates (EPC) and, separately, for the population of spectroscopic binaries (SB) with solar-type primaries. We construct empirical cumulative distribution functions (CDFs) in order to infer probability distribution functions (PDFs) for orbital periods and eccentricities. We also derive a joint probability density for period-eccentricity pairs in each population. Comparison of respective distributions reveals that in all cases EPC and SB populations are, in the context of orbital elements, indistinguishable from each other to a high degree of statistical significance. Probability densities of orbital periods in both populations have P(exp -1) functional form, whereas the PDFs of eccentricities can he best characterized as a Gaussian with a mean of about 0.35 and standard deviation of about 0.2 turning into a flat distribution at small values of eccentricity. These remarkable similarities between EPC and SB must be taken into account by theories aimed at explaining the origin of extrasolar planetary candidates, and constitute an important clue us to their ultimate nature.
Contact binary stars. I - An X-ray survey
NASA Technical Reports Server (NTRS)
Cruddace, R. G.; Dupree, A. K.
1984-01-01
X-ray emission from a contact binary star was first detected by the HEAO 1 satellite in 1977. Spectroscopic observations of 44i Boo and VW Cep by IUE established the presence of high-temperature chromospheric and transition region emission lines in the spectra of these stars. The HEAO 1 and IUE results implied that the processes causing X-ray emission from VW Cep might be similar to those energizing the solar corona, and that X-ray emission might be a common occurrence among contact binary stars. A series of observations of these stars was, therefore, conducted with the aid of the HEAO 2 (Einstein) Observatory. The present investigation is concerned with the results of these observations, giving attention to their implications with respect to the nature of contact binary stars. The results are compared with similar HEAO 2 studies of coronal X-ray sources in the local region of the Galaxy, in the Hyades, and other rapidly rotating systems.
NASA Astrophysics Data System (ADS)
Mikołajewska, Joanna; Shara, Michael M.; Caldwell, Nelson; Iłkiewicz, Krystian; Zurek, David
2017-02-01
We present and discuss initial selection criteria and first results in M33 from a systematic search for extragalactic symbiotic stars. We show that the presence of diffuse ionized gas (DIG) emission can significantly contaminate the spectra of symbiotic star candidates. This important effect forces upon us a more stringent working definition of an extragalactic symbiotic star. We report the first detections and spectroscopic characterization of 12 symbiotic binaries in M33. We found that four of our systems contain carbon-rich giants. In another two of them, the giant seems to be a Zr-enhanced MS star, while the remaining six objects host M-type giants. The high number ratio of C to M giants in these binaries is consistent with the low metallicity of M33. The spatial and radial velocity distributions of these new symbiotic binaries are consistent with a wide range of progenitor star ages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.
2014-11-01
Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360,more » NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a cluster. Finally, rotational velocities were also determined and their values were compared with those already determined for field giant stars.« less
NASA Astrophysics Data System (ADS)
Brorby, M.; Kaaret, P.; Feng, H.
2015-04-01
We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.
Galactic Sources Detected in the NuSTAR Serendipitous Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsick, John A.; Clavel, Maïca; Chiu, Jeng-Lun
The Nuclear Spectroscopic Telescope Array (NuSTAR) provides an improvement in sensitivity at energies above 10 keV by two orders of magnitude over non-focusing satellites, making it possible to probe deeper into the Galaxy and universe. Lansbury and collaborators recently completed a catalog of 497 sources serendipitously detected in the 3–24 keV band using 13 deg{sup 2} of NuSTAR coverage. Here, we report on an optical and X-ray study of 16 Galactic sources in the catalog. We identify 8 of them as stars (but some or all could have binary companions), and use information from Gaia to report distances and X-ray luminositiesmore » for 3 of them. There are 4 CVs or CV candidates, and we argue that NuSTAR J233426–2343.9 is a relatively strong CV candidate based partly on an X-ray spectrum from XMM-Newton . NuSTAR J092418–3142.2, which is the brightest serendipitous source in the Lansbury catalog, and NuSTAR J073959–3147.8 are low-mass X-ray binary candidates, but it is also possible that these 2 sources are CVs. One of the sources is a known high-mass X-ray binary (HMXB), and NuSTAR J105008–5958.8 is a new HMXB candidate that has strong Balmer emission lines in its optical spectrum and a hard X-ray spectrum. We discuss the implications of finding these HMXBs for the surface density (log N –log S ) and luminosity function of Galactic HMXBs. We conclude that with the large fraction of unclassified sources in the Galactic plane detected by NuSTAR in the 8–24 keV band, there could be a significant population of low-luminosity HMXBs.« less
Spectroscopy of Hot Horizontal Branch Stars in Globular Clusters
NASA Astrophysics Data System (ADS)
Moni-Bidin, C. M.
2006-06-01
We will present our latest results on spectroscopy of hot horizontal branch stars in globular clusters. This class of stars still presents many puzzling features, and many aspects of their formation and evolution are still unclear. Extreme Horizontal Branch (EHB) stars, also known as Subdwarf B (sdB) stars, are post-He flash stars with a He-burning core and high effective temperature (T_{eff} ≥ 20000 K). They originate from stars of low initial mass that during their evolution have lost great part of their external envelope. Many channel for the formation of these stars have been studied in literature. The scenarios involving dynamical interactions inside close binary systems, deeply investigated by Han et al. (2003, MNRAS, 341, 669), have been recently preferred, since between field sdB stars many close binary systems have been detected. (Morales-Rueda et al. 2003, MNRAS, 338, 752). Maxted et al. (2001, MNRAS, 326, 1391) estimated that 69+/-9% of field sdB stars are close binary systems. Latest results indicates that also this scenario presents some problems (Lisker et al. 2005, A&A, 430, 223), and Napiwotzki et al. (2004) found a lower fraction of binaries among their sample (42%). Moni Bidin et al. (2005, A&A, submitted) recently showed that in globular cluster NGC6752 the binary fraction among EHB stars is sensibly lower than what observed among field sdBs, estimating an upper limit of 20%. This difference between field and cluster sdBs is quite surprising. We are performing further investigation of these stars extending our search for close binary systems to other two clusters with a rich population of EHB stars. This will allow us to tell if the results on NGC6752 indicate a pecular cluster or the lack of binaries is a common trend of EHB stars in globular clusters. Moreover, with a larger sample we will be able to better estimate the binary fraction, or an upper limit for it. With our contribution we are going to show our results on this investigation that at the moment is still a work in progress.
High-mass X-ray binary populations. 1: Galactic modeling
NASA Technical Reports Server (NTRS)
Dalton, William W.; Sarazin, Craig L.
1995-01-01
Modern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.
Absolute and geometric parameters of contact binary GW Cnc
NASA Astrophysics Data System (ADS)
Gürol, B.; Gökay, G.; Saral, G.; Gürsoytrak, S. H.; Cerit, S.; Terzioğlu, Z.
2016-07-01
We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system GW Cnc. We analyzed the photometric data obtained in 2010 and 2011 at Ankara University Observatory (AUO) and the spectroscopic data obtained in 2010 at TUBITAK National Observatory (TUG) by using the Wilson-Devinney (2013 revision) code to obtain the absolute and geometrical parameters. We derived masses and radii of the eclipsing system to be M1 = 0.257M⊙ , M2 = 0.971M⊙ , R1 = 0.526R⊙ and R2 = 0.961R⊙ with an orbital inclination i(∘) = 83.38 ± 0.25 and we determined the GW Cnc system to be a W-type W UMa over-contact binary with a mass ratio of q = 3.773 ± 0.007 .
PG 1316+678: A young pre-cataclysmic binary with weak reflection effects
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Sakhibullin, N. A.; Shimanskaya, N. N.; Spiridonova, O. I.; Irtuganov, E. N.
2013-03-01
The PG 1316+678 star is classified as a pre-cataclysmic binary, as is evidenced by its photometric and spectroscopic observations. Its orbital period is determined to be P orb = 3.3803d, which coincides with the photometric period. The intensities of the emission HI and HeI lines are shown to vary synchronously with the brightness of the object (Δ m V = 0.065 m , Δ m R = 0.08 m ). These variations arise as the UV radiation from the DAO white dwarf is reflected from the surface of the cold companion. The parameters of the binary are estimated and the time of its evolution after the common-envelope phase is determined to be t ≈ 240 000 years. Thus, PG 1316+678 is a young pre-cataclysmic NN Ser variable with the smallest known photometric reflection effect.
Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions
Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz
2014-01-01
We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217
Lithium-rich very metal-poor stars discovered with LAMOST and Subaru
NASA Astrophysics Data System (ADS)
Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang
2018-04-01
Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.
Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets
NASA Astrophysics Data System (ADS)
Whitehouse, Lewis J.; Farihi, J.; Green, P. J.; Wilson, T. G.; Subasavage, J. P.
2018-06-01
Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with ≈1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations,this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.
Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1
NASA Astrophysics Data System (ADS)
Mermilliod, J.-C.; Platais, I.; James, D. J.; Grenon, M.; Cargile, P. A.
2008-07-01
Context: The nearby open cluster Blanco 1 is of considerable astrophysical interest for formation and evolution studies of open clusters because it is the third highest Galactic latitude cluster known. It has been observed often, but so far no definitive and comprehensive membership determination is readily available. Aims: An observing programme was carried out to study the stellar population of Blanco 1, and especially the membership and binary frequency of the F5-K0 dwarfs. Methods: We obtained radial-velocities with the CORAVEL spectrograph in the field of Blanco 1 for a sample of 148 F-G-K candidate stars in the magnitude range 10 < V < 14. New proper motions and UBVI CCD photometric data from two extensive surveys were obtained independently and are used to establish reliable cluster membership assignments in concert with radial-velocity data. Results: The membership of 68 stars is confirmed on the basis of proper motion, radial velocity, and photometric criteria. Fourteen spectroscopic- and suspected binaries (2 SB2s, 9 SB1s, 3 SB?) have been discovered among the confirmed members. Thirteen additional stars are located above the main sequence or close to the binary ridge, with radial velocities and proper motions supporting their membership. These are probable binaries with wide separations. Nine binaries (7 SB1 and 2 SB2) were detected among the field stars. The spectroscopic binary frequency among members is 20% (14/68); however, the overall binary rate reaches 40% (27/68) if one includes the photometric binaries. The cluster mean heliocentric radial velocity is +5.53 ± 0.11 km s-1 based on the most reliable 49 members. The V sin i distribution is similar to that of the Pleiades, confirming the age similarities between the two clusters. Conclusions: This study clearly demonstrates that, in spite of the cluster's high Galactic latitude, three membership criteria - radial velocity, proper motion, and photometry - are necessary for performing a reliable membership selection. Furthermore, even with accurate and extensive data, ambiguous cases still remain. Based on observations collected with the Danish 1.54-m and the Swiss telescopes at the European Southern Observatory, La Silla, Chile, and with the old YALO 1-m telescope at the Cerro Tololo InterAmerican Observatory, Chile. Table [see full textsee full textsee full textsee full textsee full textsee full text] is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/95
Evidence of the presence of a Be circumstelar disk in the Be/X-ray binaries KS 1947+ 300 and Cep X-4
NASA Astrophysics Data System (ADS)
Ozbey-Arabaci, M.; Camero-Arranz, A.; Fabregat, J.; Ozcan, H. Bilal; Peris, V.
2014-06-01
We report on photometric and spectroscopic optical observations of the Be/X-ray binaries KS 1947+300 and Cep X-4, obtained with the TUG Faint Object Spectrograph and Camera (TFOSC) mounted on the focal plane of the 1.5-m Russian-Turkish Telescope (RTT150) at T & Uuml;B & #304TAK National Observatory (Antalya, Turkey) between 2014 June 18-20 (MJD 56826.933-56828.067), and with the spectrograph located at the 51-cm telescope of the Observatorio de Aras de los Olmos of the University of Valencia on 2014 June 3 (MJD 56811.097). ...
Chromospherically active stars. IV - HD 178450 = V478 Lyr: An early-type BY Draconis type binary
NASA Technical Reports Server (NTRS)
Fekel, Francis C.
1988-01-01
It is shown that the variable star HD 178450 = V478 Lyr is a chromospherically active G8 V single-lined spectroscopic binary with a period of 2.130514 days. This star is characterized by strong UV emission features and a filled-in H-alpha absorption line which is variable in strength. Classified as an early-type BY Draconis system, it is similar to the BY Dra star HD 175742 = V775 Her. The unseen secondary of HD 178450 has a mass of about 0.3 solar masses and is believed to be an M2-M3 dwarf.
Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536
NASA Technical Reports Server (NTRS)
McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael
2012-01-01
The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536
NASA Astrophysics Data System (ADS)
Aberasturi, Miriam
2015-11-01
Context: Two thirds of the stars in our galactic neighborhood (d < 10 pc) are M-dwarfs which also constitute the most common stellar objects in the Milky Way. This property, combined with their small stellar masses and radii, increases the likelihood of detecting terrestrial planets through radial velocity and transit techniques, making them very adequate targets for the exoplanet hunting projects. Nevertheless, M dwarfs have associated different observational difficulties. They are cool objects whose emission radiation peaks at infrared wavelengths and, thus, with a low surface brightness in the optical range. Also, the photometric variability as well as the significant chromospheric activity hinder the radial velocity and transit determinations. It is necessary, therefore, to carry out a detailed characterization of M-dwarfs before building a shortlist with the best possible candidates for exoplanet searches. Brown dwarfs (BDs) are self-gravitating objects that do not get enough mass to maintain a sufficiently high temperature in their core for stable hydrogen fusion. They represent the link between low-mass stars and giant planets. Due to their low temperatures, BDs emit significant flux at mid-infrared wavelength which makes this range very adequate to look for this type of objects. The Virtual Observatory (VO) is an international initiative designed to help the astronomical community in the exploitation of the multi-wavelength information that resides in data archives. In the last years the Spanish Virtual Observatory is conducting a number of projects focused on the study of substellar objects taking advantage of Virtual Observatory tools for an easy data access and analysis of large area surveys. This is the framework where this thesis has been carried out. This dissertation addresses three problems in the framework of low-mass stars and brown dwarfs, namely, the search for brown dwarf candidates crossmatching catalogues (Chapter 4), the search for nearby bright M dwarfs and the subsequent spectroscopic characterization (Chapter 5), and a study of binarity in mid to late-T brown dwarfs (Chapter 6); the first two topics use Virtual Observatory tools. Aims and methodology:In the first paper we carried out a search of brown dwarfs in the sky area in common to the WISE, 2MASS Point Source and SDSS catalogues. A VO-workflow with the criteria that must accomplish our candidates was built using STILTS. The workflow returned 138 sources that were visually inspected. For the six new candidates that passed the inspection, proper motions were calculated using the positions and the different observing epochs of the catalogues previously quoted. Effective temperatures were estimated using VOSA and spectral types and distances using appropriate photometric calibrations. In the second publication we conducted an all-sky photometric search by cross correlating the Carlsberg Meridian Catalogue (CMC14) and the 2MASS Point Source Catalogue with the aim of increasing the number of known, nearby M dwarfs that could be used as targets for exoplanet searches in general and CARMENES in particular. This VO search was combined with low-resolution spectroscopic followup of 27 objects using the IDS spectrograph at the Isaac Newton telescope at La Palma, as well as with an astrometric and photometric study. In the third paper we attempted to refine the multiplicity properties of T dwarfs studying the largest sample so far observed with high angular resolution imaging. We undertook two parallel programs using the Wide Field Camera 3 (WFC3) installed on the Hubble Space Telescope (HST). We used a PSF-fitting subtraction technique to reveal the presence of any close companion to the sources in our sample. Monte Carlo simulations were carried out to estimate the capability of WFC3 to detect close binaries in terms of angular separation and magnitude difference. Simulations were also used to determine the fraction of binaries that would have been detected around each source based on assumed separations, mass ratio distributions and orientations of the systems. Results: The main conclusion from this dissertation is that the Virtual Observatory has proved to be an excellent research methodology in the field of low mass stars and brown dwarfs. In particular, it allowed an efficient management of the queries to different catalogues and archives as well as the estimation of physical parameters through VO-tools. In the first publication we present the identification of 31 brown dwarf (25 known and 6 strong candidates not previously reported in the literature) identified in the sky area in common toWISE, 2MASS and SDSS. This is a remarkable number considering that 2MASS has been extensively searched for ultracool dwarfs and clearly show how new surveys and the use of VO tools can help to mine older surveys. The robustness of our methodology was confirmed with the spectroscopic confirmation of our candidate targets making it an ideal technique to identify brown dwarfs and, by extension, other rare objects. In the second paper, we show the potential of the VO and a purely photometric approach for finding new bright, nearby M dwarfs that escaped previous surveys mostly based on proper motions. We discover 24 new potential targets for exoplanet hunting (7 at less than 20 pc), 12 of which have been included in the CARMENES input catalogue of M dwarfs. We also identify three young very low-mass stars (M4-M5 spectral types) in the Taurus-Auriga region and a wide (110 AU) binary system. In the third paper we infer an upper limit for the binary fraction of >T5 dwarfs of <16 - < 25% depending of the underlying mass ratio distribution. This binary fraction is consistent with previous estimations. From this work we also conclude that theWFC3 is more sensitive to cool companions than otherHST instruments like NICMOS or WFPC2 but its lower angular resolution makes it unsuitable to detect tight brown dwarf binary systems.
Resonant Transneptunian Binaries: Evidence for Slow Migration of Neptune
NASA Technical Reports Server (NTRS)
Noll, Keith S.; Grundy, W. M.; Schlichting, H. E.; Murray-Clay, R. A.; Benecchi, S. B.
2012-01-01
As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2:1 at 47.7 AU, straddle the core repository of the physically distinct and binary-rich Cold Classicals, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 resonant object properties, with low inclination 2:1s having a high fraction of red binaries, mirroring that of the Cold Classicals while the 3:2 will would have fewer binaries. Rapid migration would generate a more homogeneous result. Resonant objects observed with HST show a higher rate of binaries in the 2:1 relative to the 3:2, significant at the 2cr level. This suggests slow Neptune migration over a large enough distance that the 2:1 swept through the Cold Classical region. Colors are available for only a fraction of these targets but a prevalence of red objects in outer Resonances has been reported. We report here on ongoing observations with HST in cycle 19 targeting all unobserved Resonants with observations that will measure color and search for binary companions using the WFC3.
Binary stars in the Galactic thick disc
NASA Astrophysics Data System (ADS)
Izzard, Robert G.; Preece, Holly; Jofre, Paula; Halabi, Ghina M.; Masseron, Thomas; Tout, Christopher A.
2018-01-01
The combination of asteroseismologically measured masses with abundances from detailed analyses of stellar atmospheres challenges our fundamental knowledge of stars and our ability to model them. Ancient red-giant stars in the Galactic thick disc are proving to be most troublesome in this regard. They are older than 5 Gyr, a lifetime corresponding to an initial stellar mass of about 1.2 M⊙. So why do the masses of a sizeable fraction of thick-disc stars exceed 1.3 M⊙, with some as massive as 2.3 M⊙? We answer this question by considering duplicity in the thick-disc stellar population using a binary population-nucleosynthesis model. We examine how mass transfer and merging affect the stellar mass distribution and surface abundances of carbon and nitrogen. We show that a few per cent of thick-disc stars can interact in binary star systems and become more massive than 1.3 M⊙. Of these stars, most are single because they are merged binaries. Some stars more massive than 1.3 M⊙ form in binaries by wind mass transfer. We compare our results to a sample of the APOKASC data set and find reasonable agreement except in the number of these thick-disc stars more massive than 1.3 M⊙. This problem is resolved by the use of a logarithmically flat orbital-period distribution and a large binary fraction.
Composite hot subdwarf binaries - I. The spectroscopically confirmed sdB sample
NASA Astrophysics Data System (ADS)
Vos, Joris; Németh, Péter; Vučković, Maja; Østensen, Roy; Parsons, Steven
2018-01-01
Hot subdwarf-B (sdB) stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts that these objects are circularized before the onset of Roche lobe overflow (RLOF). To increase our understanding of binary interaction processes during the RLOF phase, we started a long-term observing campaign to study wide sdB binaries. In this paper, we present a sample of composite binary sdBs, and the results of the spectral analysis of nine such systems. The grid search in stellar parameters (GSSP) code is used to derive atmospheric parameters for the cool companions. To cross-check our results and also to characterize the hot subdwarfs, we used the independent XTGRID code, which employs TLUSTY non-local thermodynamic equilibrium models to derive atmospheric parameters for the sdB component and PHOENIX synthetic spectra for the cool companions. The independent GSSP and XTGRID codes are found to show good agreement for three test systems that have atmospheric parameters available in the literature. Based on the rotational velocity of the companions, we make an estimate for the mass accreted during the RLOF phase and the minimum duration of that phase. We find that the mass transfer to the companion is minimal during the subdwarf formation.
Colliding Winds in Massive Binaries
NASA Astrophysics Data System (ADS)
Thaller, M. L.
1998-12-01
In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.
Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bédard, A.; Bergeron, P.; Fontaine, G., E-mail: bedard@astro.umontreal.ca, E-mail: bergeron@astro.umontreal.ca, E-mail: fontaine@astro.umontreal.ca
We present a detailed spectroscopic and photometric analysis of 219 DA and DB white dwarfs for which trigonometric parallax measurements are available. Our aim is to compare the physical parameters derived from the spectroscopic and photometric techniques, and then to test the theoretical mass–radius relation for white dwarfs using these results. The agreement between spectroscopic and photometric parameters is found to be excellent, especially for effective temperatures, showing that our model atmospheres and fitting procedures provide an accurate, internally consistent analysis. The values of surface gravity and solid angle obtained, respectively, from spectroscopy and photometry, are combined with parallax measurementsmore » in various ways to study the validity of the mass–radius relation from an empirical point of view. After a thorough examination of our results, we find that 73% and 92% of the white dwarfs are consistent within 1 σ and 2 σ confidence levels, respectively, with the predictions of the mass–radius relation, thus providing strong support to the theory of stellar degeneracy. Our analysis also allows us to identify 15 stars that are better interpreted in terms of unresolved double degenerate binaries. Atmospheric parameters for both components in these binary systems are obtained using a novel approach. We further identify a few white dwarfs that are possibly composed of an iron core rather than a carbon/oxygen core, since they are consistent with Fe-core evolutionary models.« less
A photometric and spectroscopic study of NSVS 14256825: the second sdOB+dM eclipsing binary
NASA Astrophysics Data System (ADS)
Almeida, L. A.; Jablonski, F.; Tello, J.; Rodrigues, C. V.
2012-06-01
We present an analysis of UBVRCICJH photometry and phase-resolved optical spectroscopy of NSVS 14256825, an HW Vir type binary. The members of this class consist of a hot subdwarf and a main-sequence low-mass star in a close orbit (Porb˜ 0.1 d). Using the primary-eclipse timings, we refine the ephemeris for the system, which has an orbital period of 0.110 37 d. From the spectroscopic data analysis, we derive the effective temperature, T1= 40 000 ± 500 K, the surface gravity, log g1= 5.50 ± 0.05, and the helium abundance, ?, for the hot component. Simultaneously modelling the photometric and spectroscopic data using the Wilson-Devinney code, we obtain the geometrical and physical parameters of NSVS 14256825. Using the fitted orbital inclination and mass ratio (i= 82°.5 ± 0°.3 and q=M2/M1= 0.260 ± 0.012, respectively), the components of the system have M1= 0.419 ± 0.070 M⊙, R1= 0.188 ± 0.010 R⊙, M2= 0.109 ± 0.023 M⊙ and R2= 0.162 ± 0.008 R⊙. From its spectral characteristics, the hot star is classified as a subdwarf OB (sdOB) star. Based on observations carried out at the Observatório do Pico dos Dias/Laboratório Nacional de Astrofísica (OPD/LNA) in Brazil.
Russell, Henry Norris (1877-1957)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Astronomer, born in Oyster Bay, NY, spent nearly all his life working at Princeton University. He spectroscopically studied eclipsing binary stars to determine the masses of their component stars. At first collaborating with the British astronomer Hinks at Cambridge, he started to measure stellar parallaxes and, plotting the absolute magnitudes of stars whose distance he had thus measured, agains...
Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael
Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html
NASA Technical Reports Server (NTRS)
Nordon, R.; Behar, E.; Drake, S. A.
2013-01-01
Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.
Constraining the Statistics of Population III Binaries
NASA Technical Reports Server (NTRS)
Stacy, Athena; Bromm, Volker
2012-01-01
We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.
Speckle Interferometry at SOAR in 2014
NASA Astrophysics Data System (ADS)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.; Mendez, Rene A.; Horch, Elliott P.
2015-08-01
The results of speckle interferometric observations at the Southern Astrophysical Research Telescope (SOAR) telescope in 2014 are given. A total of 1641 observations were taken, yielding 1636 measurements of 1218 resolved binary and multiple stars and 577 non-resolutions of 441 targets. We resolved for the first time 56 pairs, including some nearby astrometric or spectroscopic binaries and ten new subsystems in previously known visual binaries. The calibration of the data is checked by linear fits to the positions of 41 wide binaries observed at SOAR over several seasons. The typical calibration accuracy is 0.°1 in angle and 0.3% in pixel scale, while the measurement errors are on the order of 3 mas. The new data are used here to compute 194 binary star orbits, 148 of which are improvements on previous orbital solutions and 46 are first-time orbits. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
MULTIWAVELENGTH OBSERVATIONS OF THE RUNAWAY BINARY HD 15137
DOE Office of Scientific and Technical Information (OSTI.GOV)
McSwain, M. Virginia; Aragona, Christina; Marsh, Amber N.
2010-03-15
HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here, we present recent blue optical spectra of HD 15137 and derive a new orbital solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposedmore » compact companion in the system, and we rule out a quiescent neutron star (NS) in the propeller regime or a weakly accreting NS. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive NS in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.« less
NASA Technical Reports Server (NTRS)
Walker, A. B. C., Jr.
1975-01-01
Techniques for the study of the solar corona are reviewed as an introduction to a discussion of modifications required for the study of cosmic sources. Spectroscopic analysis of individual sources and the interstellar medium is considered. The latter was studied via analysis of its effect on the spectra of selected individual sources. The effects of various characteristics of the ISM, including the presence of grains, molecules, and ionization, are first discussed, and the development of ISM models is described. The expected spectral structure of individual cosmic sources is then reviewed with emphasis on supernovae remnants and binary X-ray sources. The observational and analytical requirements imposed by the characteristics of these sources are identified, and prospects for the analysis of abundances and the study of physical parameters within them are assessed. Prospects for the spectroscopic study of other classes of X-ray sources are also discussed.
White dwarf-main sequence binaries from LAMOST: the DR5 catalogue
NASA Astrophysics Data System (ADS)
Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.
2018-07-01
We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large sky Area Multi-Object fibre Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early-type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light-curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.
White dwarf-main sequence binaries from LAMOST: the DR5 catalogue
NASA Astrophysics Data System (ADS)
Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.
2018-03-01
We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically-selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.
De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C
2012-03-08
In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.
Physical Parameters of Components in Close Binary Systems. V
NASA Astrophysics Data System (ADS)
Zola, S.; Kreiner, J. M.; Zakrzewski, B.; Kjurkchieva, D. P.; Marchev, D. V.; Baran, A.; Rucinski, S. M.; Ogloza, W.; Siwak, M.; Koziel, D.; Drozdz, M.; Pokrzywka, B.
2005-12-01
The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a contact system. Its configuration is semi-detached with the secondary component filling its Roche lobe. The configuration of nine other systems is contact. Three systems (V776 Cas, V592 Per and OU Ser) have high (44-77%) and six (FU Dra, UV Lyn, BB Peg, EQ Tau, HN UMa and HT Vir) low or intermediate (8-32%) fill-out factors. The absolute physical parameters are derived.
High temperature plasma in beta Lyrae, observed from Copernicus
NASA Technical Reports Server (NTRS)
Kondo, Y.; Hack, M.; Hutchings, J. B.; Mccluskey, G. E., Jr.; Plavec, M.; Polidan, R. S.
1975-01-01
High-resolution UV spectrophotometry of the complex close binary system beta Lyrae was performed with a telescope spectrometer on board Copernicus. Observations were made at phases 0.0, 0.25, 0.5, and 0.75 with resolutions of 0.2 A (far-UV) and 0.4 A (mid-UV). The far-UV spectrum is completely dominated by emission lines indicating the existence of a high-temperature plasma in this binary. The spectrum of this object is unlike that of any other object observed from Copernicus. It is believed that this high-temperature plasma results from dynamic mass transfer taking place in the binary. The current results are compared with OAO-2 observations and other observational results. The possibility that the secondary component is a collapsed object is also discussed; the Copernicus observations are consistent with the hypothesis that the spectroscopically invisible secondary component is a black hole.
Evidence for Unresolved Exoplanet-hosting Binaries in Gaia DR2
NASA Astrophysics Data System (ADS)
Evans, Daniel F.
2018-05-01
This note describes an effort to detect additional stellar sources in known transiting exoplanet (TEP) systems, which are unresolved or barely resolved in the Gaia Data Release 2 (DR2) catalogue. The presence of multiple unresolved stars in photometric and spectroscopic observations of a transiting planetary system biases measurements of the planet's radius, mass, and atmospheric conditions. In addition to the effect on individual planetary systems, the presence of unresolved stars across the sample of known exoplanets biases our overall understanding of planetary systems, due to the systematic underestimation of both masses and radii. This work uses the Astrometric Goodness of Fit in the Along-Scan direction (GOF_AL) and the Astrometric Excess Noise as indicators of poorly-resolved binaries. Many known close binaries in the exoplanet host star sample have highly significant GOF_AL and Astrometric Excess Noise values, such as WASP-20AB with Astrometric Excess Noise significant at $4720\\sigma$ and GOF_AL=124.
A Spectroscopic Search for Leaking Lyman Continuum at Zeta Approximately 0.7
NASA Technical Reports Server (NTRS)
Bridge, Carrie R.; Teplitz, Harry I.; Siana, Brian; Scarlata, Claudia; Rudie, Gwen C.; Colbert, James; Ferguson, Henry C.; Brown, Thomas M.; Conselice, Christopher J.; Armus, Lee;
2010-01-01
We present the results of rest-frame, UV slitless spectroscopic observations of a sample of 32 z approx. 0.7 Lyman Break Galaxy (LBG) analogs in the COSMOS field. The spectroscopic search was performed with the Solar Blind Channel (SBC) on HST. While we find no direct detections of the Lyman Continuum we achieve individual limits (3sigma) of the observed non-ionizing UV to Lyman continuum flux density ratios, f(sub nu)(1500A)/f(sub nu)(830A) of 20 to 204 (median of 73.5) and 378.7 for the stack. Assuming an intrinsic Lyman Break of 3.4 and an optical depth of Lyman continuum photons along the line of sight to the galaxy of 85% we report an upper limit for the relative escape fraction in individual galaxies of 0.02 - 0.19 and a stacked 3sigma upper limit of 0.01. We find no indication of a relative escape fraction near unity as seen in some LBGs at z approx. 3. Our UV spectra achieve the deepest limits to date at any redshift on the escape fraction in individual sources. The contrast between these z approx. 0.7 low escape fraction LBG analogs with z approx. 3 LBGs suggests that either the processes conducive to high f(sub esc) are not being selected for in the z less than or approx.1 samples or the average escape fraction is decreasing from z approx. 3 to z approx. 1. We discuss possible mechanisms which could affect the escape of Lyman continuum photons
Multiplicity of the Galactic Senior Citizens: A High-resolution Search for Cool Subdwarf Companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed L.; Fuchs, Joshua T.
2015-05-01
Cool subdwarfs are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low-metallicity. Measuring their binary fraction and comparing it to solar-metallicity stars could give key insights into the star formation process early in the Milky Way’s history. However, because of their low luminosity and relative rarity in the solar neighborhood, binarity surveys of cool subdwarfs have suffered from small sample sizes and incompleteness. Previous surveys have suggested that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs, sensitive to angular separations (ρ ≥slant 0.″ 15) and contrast ratios ({Δ }{{m}i} ≤slant 6) invisible in past surveys. Of 344 target cool subdwarfs, 43 are in multiple systems, 19 of which are newly discovered, for a binary fraction of 12.5 ± 1.9%. We also discovered seven triple star systems for a triplet fraction of 2.0 ± 0.8%. Comparisons to similar surveys of solar-metallicity dwarf stars gives a ∼3σ disparity in luminosity between companion stars, with subdwarfs displaying a shortage of low-contrast companions. We also observe a lack of close subdwarf companions in comparison to similar-mass dwarf multiple systems.
Lungu, Radu P; Huckaby, Dale A
2008-07-21
An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.
Dielectric and Excess Properties of Glycols with Formamide Binary Mixtures at Different Temperatures
NASA Astrophysics Data System (ADS)
Navarkhele, V. V.
2018-07-01
Dielectric constant measurements of glycol-formamide binary solutions with various concentrations have been carried out at different temperatures. The dielectric measurement has been achieved at 100 MHz frequency using a sensor which is based on frequency domain reflectomery technique. The excess dielectric constant, Kirkwood correlation factor and Bruggeman factor has also been reported for the binary mixtures. The results show that the dielectric constant of the mixtures increases with increase in the volume fraction of formamide and decreases with increase in temperature. The study also confirms the presence of intermolecular interaction, hydrogen bonding and orientation of the dipoles in the binary mixtures.
Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe
2017-08-30
In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.
NASA Astrophysics Data System (ADS)
Lansbury, G. B.; Stern, D.; Aird, J.; Alexander, D. M.; Fuentes, C.; Harrison, F. A.; Treister, E.; Bauer, F. E.; Tomsick, J. A.; Baloković, M.; Del Moro, A.; Gandhi, P.; Ajello, M.; Annuar, A.; Ballantyne, D. R.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Forster, K.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Jiang, B.; Jun, H. D.; Koss, M.; Marchesi, S.; Melo, A. D.; Mullaney, J. R.; Noirot, G.; Schulze, S.; Walton, D. J.; Zappacosta, L.; Zhang, W. W.
2017-02-01
We present the first full catalog and science results for the Nuclear Spectroscopic Telescope Array (NuSTAR) serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide ≈20 Ms of effective exposure time over 331 fields, with an areal coverage of 13 deg2, and 497 sources detected in total over the 3-24 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from our extensive campaign of ground-based spectroscopic follow-up. We characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily composed of active galactic nuclei (AGNs), detected over a large range in redshift from z = 0.002 to 3.4 (median of < z> =0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from {log}({f}3-24{keV}/{erg} {{{s}}}-1 {{cm}}-2)≈ -14 to -11, and in rest-frame 10-40 keV luminosity, from {log}({L}10-40{keV}/{erg} {{{s}}}-1)≈ 39 to 46, with a median of 44.1. Approximately 79% of the NuSTAR sources have lower-energy (<10 keV) X-ray counterparts from XMM-Newton, Chandra, and Swift XRT. The mid-infrared (MIR) analysis, using WISE all-sky survey data, shows that MIR AGN color selections miss a large fraction of the NuSTAR-selected AGN population, from ≈15% at the highest luminosities ({L}{{X}}> {10}44 erg s-1) to ≈80% at the lowest luminosities ({L}{{X}}< {10}43 erg s-1). Our optical spectroscopic analysis finds that the observed fraction of optically obscured AGNs (I.e., the type 2 fraction) is {F}{Type2}={53}-15+14 % , for a well-defined subset of the 8-24 keV selected sample. This is higher, albeit at a low significance level, than the type 2 fraction measured for redshift- and luminosity-matched AGNs selected by <10 keV X-ray missions.
NASA Astrophysics Data System (ADS)
Lizarraga, Ion; Bou-Ali, M. Mounir; Santamaría, C.
2018-03-01
In this study, the thermodiffusion coefficient of n-dodecane/n-hexane binary mixture at 25 ∘C mean temperature was determined for several pressure conditions and mass fractions. The experimental technique used to determine the thermodiffusion coefficient was the thermograviational column of cylindrical configuration. In turn, thermophysical properties, such as density, thermal expansion, mass expansion and dynamic viscosity up to 10 MPa were also determined. The results obtained in this work showed a linear relation between the thermophysical properties and the pressure. Thermodiffusion coefficient values confirm a linear effect when the pressure increases. Additionally, a new correlation based on the thermodiffusion coefficient for n C12/n C6 binary mixture at 25 ∘C temperature for any mass fraction and pressures, which reproduces the data within the experimental error, was proposed.
THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav
2012-10-01
We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative techniquemore » that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types {<=} M7. Our results show that early-type M dwarfs ({<=}M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them indistinguishable from the inactive late-type population. We also show that magnetic strength, as measured by H{alpha}, is comparable between paired and field M dwarfs until a spectral type of M6/M7 where M dwarf activity for stars with close companions becomes much stronger. In addition, we present 37 very close candidate pairs with fast-moving orbits that display radial velocity changes over hour timescales.« less
The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs
NASA Astrophysics Data System (ADS)
Morgan, Dylan P.; West, Andrew A.; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M.
2012-10-01
We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types <= M7. Our results show that early-type M dwarfs (<=M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them indistinguishable from the inactive late-type population. We also show that magnetic strength, as measured by Hα, is comparable between paired and field M dwarfs until a spectral type of M6/M7 where M dwarf activity for stars with close companions becomes much stronger. In addition, we present 37 very close candidate pairs with fast-moving orbits that display radial velocity changes over hour timescales.
NASA Astrophysics Data System (ADS)
Tkachenko, Andrew
2017-10-01
The potential of the dynamical asteroseismology, the research area that builds upon the synergies between the asteroseismology and binary stars research fields, is discussed in this manuscript. We touch upon the following topics: i) the mass discrepancy observed in intermediate-to high-mass main-sequence and evolved binaries as well as in the low mass systems that are still in the pre-main sequence phase of their evolution; ii) the rotationally induced mixing in high-mass stars, in particular how the most recent theoretical predictions and spectroscopic findings compare to the results of asteroseismic investigations; iii) internal gravity waves and their potential role in the evolution of binary star systems and surface nitrogen enrichment in high-mass stars; iv) the tidal evolution theory, in particular how its predictions of spin-orbit synchronisation and orbital circularisation compare to the present-day high-quality observations; v) the tidally-induced pulsations and their role in the angular momentum transport within binary star systems; vi) the scaling relations between fundamental and seismic properties of stars across the entire HR-diagram.
SPECTROSCOPIC EVIDENCE FOR A 5.4 MINUTE ORBITAL PERIOD IN HM CANCRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roelofs, Gijs H. A.; Rau, Arne; Marsh, Tom R.
2010-03-10
HM Cancri is a candidate ultracompact binary white dwarf with an apparent orbital period of only 5.4 minutes, as suggested by X-ray and optical light-curve modulations on that period, and by the absence of longer-period variability. In this Letter, we present Keck-I spectroscopy which shows clear modulation of the helium emission lines in both radial velocity and amplitude on the 5.4 minute period and no other. The data strongly suggest that the binary is emitting He I 4471 from the irradiated face of the cooler, less massive star, and He II 4686 from a ring around the more massive star.more » From their relative radial velocities, we measure a mass ratio q = 0.50 {+-} 0.13. We conclude that the observed 5.4 minute period almost certainly represents the orbital period of an interacting binary white dwarf. We thus confirm that HM Cnc is the shortest period binary star known: a unique test for stellar evolution theory, and one of the strongest known sources of gravitational waves for LISA.« less
NASA Astrophysics Data System (ADS)
Khashaba, Pakinaz Y.; Ali, Hassan Refat H.; El-Wekil, Mohamed M.
2018-02-01
A simple and non-destructive FTIR method was used to determine certain proton pump inhibitors (PPIs) in binary and ternary mixtures. Proton pump inhibitors (PPIs); omeprazole (OMZ), esomeprazole (EZM), lansoprazole (LAN), pantoprazole sodium (PAN sodium) and rabeprazole sodium (RAB sodium) in binary mixture with domperidone (DOM) and ternary mixture of OMZ, clarithromycin (CLM) and tinidazole (TNZ) were determined in the solid-state by FTIR spectroscopy for the first time. The method was validated according to ICH-guidelines where linearity was ranged from 20 to 850 μg/g and 20-360 μg/g for PPIs and DOM, respectively in binary mixtures and 10-400, 100-8000 and 150-14,000 μg/g for OMZ, CLM and TNZ, respectively. Limits of detection were found to be 6-100 and 9-100 μg/g for PPIs and DOM, respectively and 4, 40 and 50 μg/g for OMZ, CLM and TNZ, respectively. The method was applied successfully for determination of the cited drugs in their respective pharmaceutical dosage forms.
Chirality recognition in the glycidol···propylene oxide complex: a rotational spectroscopic study.
Thomas, Javix; Sunahori, Fumie X; Borho, Nicole; Xu, Yunjie
2011-04-11
Chirality recognition in the hydrogen-bonded glycidol···propylene oxide complex has been studied by using rotational spectroscopy and ab initio calculations. An extensive conformational search has been performed for this binary adduct at the MP2/6-311++G(d,p) level of theory and a total of 28 homo- and heterochiral conformers were identified. The eight binary conformers, built of the two dominant glycidol monomeric conformers, g-G+ and g+G-, were predicted to be the most stable ones. Jet-cooled rotational spectra of six out of the eight conformers were observed and unambiguously assigned for the first time. The experimental stability ordering has been obtained and compared with the ab initio predictions. The relative stability of the two dominant glycidol monomeric conformers is reversed in some cases when binding to propylene oxide. The contributions of monomeric energy, deformation energy, and binary intermolecular interaction energy to the relative stability of the binary conformers are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faigler, S.; Mazeh, T.; Tal-Or, L.
We present seven newly discovered non-eclipsing short-period binary systems with low-mass companions, identified by the recently introduced BEER algorithm, applied to the publicly available 138-day photometric light curves obtained by the Kepler mission. The detection is based on the beaming effect (sometimes called Doppler boosting), which increases (decreases) the brightness of any light source approaching (receding from) the observer, enabling a prediction of the stellar Doppler radial-velocity (RV) modulation from its precise photometry. The BEER algorithm identifies the BEaming periodic modulation, with a combination of the well-known Ellipsoidal and Reflection/heating periodic effects, induced by short-period companions. The seven detections weremore » confirmed by spectroscopic RV follow-up observations, indicating minimum secondary masses in the range 0.07-0.4 M{sub Sun }. The binaries discovered establish for the first time the feasibility of the BEER algorithm as a new detection method for short-period non-eclipsing binaries, with the potential to detect in the near future non-transiting brown-dwarf secondaries, or even massive planets.« less
First Photometric Investigation of the Neglected EW-type Binary System V502 Her
NASA Astrophysics Data System (ADS)
Zhao, Ergang; Qian, Shengbang; Liao, Wenping; He, Jiajia; Shi, Xiangdong; Zhang, Jia
2018-04-01
V502 Her is a neglected EW-type binary, which has been known for more than 60 years. The first multi-color CCD photometric light curve and spectroscopic observations of contact binary V502 Her was obtained. Based on the LAMOST data, its spectrum can be found to be F5. Together with solutions of light curves by using the Wilson-Devinney code, it infers that V502 Her is an A-type W UMa contact binary system with the mass ratio of q = 0.313 and the filling factor of f = 38.1%. According to all minimum times from the literature and our observations, the orbital period was analyzed and a long-term increase with a periodic change (P 3 = 26.8 years) was computed. The orbital period increase may be caused by the mass transfer from a less-massive component to the more massive one, which indicates that V502 Her is in the thermal relaxation oscillation (TRO) controller stage, while the light-travel time effect (LTTE) through the presence of a cool third body may lead to the periodic variation.
VizieR Online Data Catalog: Observations of binary stars at the WIYN telescope (Horch+, 2017)
NASA Astrophysics Data System (ADS)
Horch, E. P.; Casetti-Dinescu, D. I.; Camarata, M. A.; Bidarian, A.; van Altena, W. F.; Sherry, W. H.; Everett, M. E.; Howell, S. B.; Ciardi, D. R.; Henry, T. J.; Nusdeo, D. A.; Winters, J. G.
2018-05-01
The observations were carried out over six runs at the WIYN telescope, specifically, 2010 September 17-21, 2010 October 23-26, 2011 June 11-16, 2011 September 7-11, 2011 December 10-11, and 2012 February 4-8. In each case, an observing list was constructed primarily from HDSs and Hipparcos suspected doubles (ESA 1997ESASP1200.....E), double-lined spectroscopic binary stars identified in the Geneva-Copenhagen spectroscopic survey (Nordstroem et al. 2004, Cat. V/117), and stars we have previously found to be double in our own program and reported in earlier papers in this series. For all observations here, the Differential Speckle Survey Instrument (DSSI) was used (Horch et al. 2009AJ....137.5057H). The instrument can mount to either of the Nasmyth ports of the WIYN telescope and takes speckle observations in two filters simultaneously. The DSSI observing program at WIYN began in 2008, and the instrument was upgraded to use two electron-multiplying CCD cameras in 2010 January. More recently, DSSI have also been used at Lowell Observatory's Discovery Channel Telescope (DCT), and at both the Gemini north and Gemini south telescopes. (3 data files).
Evolution of the symbiotic binary system AG Dranconis
NASA Technical Reports Server (NTRS)
Mikolajewska, Joanna; Kenyon, Scott J; Mikolajewski, Maciej; Garcia, Michael R.; Polidan, Ronald S.
1995-01-01
We present an analysis of new and archival photometric and spectroscopic observations of the symbiotic star AG Draconis. This binary has undergone several 1 - 3 mag optical and ultraviolet eruptions during the past 15 years. Our combination of optical and ultraviolet spectroscopic data allow a more complete analysis of this system than in previous papers. AG Dra is composed of a K-type bright giant M(sub g) approximately 1.5 solar mass) and a hot, compact star M(sub h approximatelly 0.4 - 0.6 solar mass) embedded in a dense, low metallicity nebula. The hot component undergoes occasional thermonuclear runaways that produce 2 - 3 mag optical/ultraviolet eruptions. During these eruptions, the hot component develops a low velocity wind that quenches x-ray emission from the underlying hot white dwarf. The photoionized nebula changes its volume by a factor of 5 throughout an eruptin cycle. The K bright giant occults low ionization emission lines during superior conjunctions at all outburst phases but does not occult high ionization lines in outburst (and perhaps quiescence). This geometry and the component masses suggest a system inclination of i approximately 30 deg - 45 deg.
Rosat detections of X-ray emission from young B-type stars
NASA Technical Reports Server (NTRS)
Schmitt, J. H. M. M.; Zinnecker, H.; Cruddace, R.; Harnden, F. R., Jr.
1993-01-01
We present first results of a series of pointings of the Rosat HRI at visual binaries consisting of a B-star with a later-type companion. The binaries selected for this study are very likely physical pairs. Dating of the B-type stars with respect to the zero-age main sequence, as well as spectroscopic observations of the late-type stars, provides evidence for the extreme youth of these systems with ages typically near or below 10 exp 8 yr. Surprisingly, the late-B component was in many cases detected as an X-ray source, in contrast to previous findings that X-ray emission among late-B field stars is rather uncommon.
A spectroscopic investigation of the eclipsing binary Epsilon Aurigae
NASA Technical Reports Server (NTRS)
Balachandran, Suchitra
1991-01-01
The objectives were to examine, in detail, the spectra of the eclipsing binary Epsilon Aurigae taken with the IUE satellite telescope during the 1982 to 1984 eclipse. All of the low resolution spectra were analyzed and UV light curves are presented. The primary findings are as follows: (1) a constant eclipse depth from 1600 A to longer wavelengths and a sharp drop in the eclipse depth from 1600 to 1200 A; (2) the absence of large amplitude fluctuations in the UV as expected from a Cepheid primary; and (3) equal ingress and egress times in contradiction to that interpreted from visible light curves. The effects of these findings on the eclipse geometry are being studied.
Ultraviolet observations of alpha Aurigae from Copernicus
NASA Technical Reports Server (NTRS)
Dupree, A. K.
1975-01-01
Emission lines of L-alpha (1215.67 A) and O VI (1031.94 A) were detected in the spectroscopic binary alpha Aur (Capella) with the Princeton experiment on Copernicus. Temperatures of the emitting regions are inferred to be in excess of 300,000 K. The temperature and emission measure are consistent with a variable source of soft X-rays. If the emission is attributed to the primary star (G5 III), the atmosphere is expanding with velocities of about 20-100 km/s. Such expansion can lead to material within the binary system. The density of interstellar hydrogen inferred from absorption of stellar L-alpha appears to be approximately 0.01 hydrogen atoms per cu cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mack, Claude E. III; Stassun, Keivan G.; De Lee, Nathan
2013-05-15
We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R {approx}< 30, 000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin i {approx} 50 M{sub Jup}) to a solar-type primary. At least three properties of this system allow it to masquerade as a singlemore » star with a very-low-mass companion: its large eccentricity (e {approx} 0.8), its relatively long period (P {approx} 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight ({omega} {approx} 189 Degree-Sign ). As a result of these properties, for {approx}95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e {approx} 0.3). Only during the {approx}5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of {approx}15 km s{sup -1} reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.« less
Optical gravitational lensing experiment: OGLE-1999-BUL-19 - the first multipeak parallax event
NASA Astrophysics Data System (ADS)
Smith, Martin C.; Mao, Shude; Woźniak, P.; Udalski, A.; Szymański, M.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Żebruń, K.
2002-10-01
We describe a highly unusual microlensing event, OGLE-1999-BUL-19. Unlike most standard microlensing events, this event exhibits multiple peaks in its light curve. The Einstein radius crossing time for this event is approximately 1 yr, which is unusually long. We show that the additional peaks in the light curve can be caused by the very small value for the relative transverse velocity of the lens projected on to the observer plane (). Since this value is significantly less than the speed of the orbit of the Earth around the Sun (v⊕~ 30km s-1), the motion of the Earth induces these multiple peaks in the light curve. This value for is the lowest velocity so far published and we believe that this is the first multiple-peak parallax event ever observed. We also found that the event can be somewhat better fitted by a rotating binary-source model, although this is to be expected since every parallax microlensing event can be exactly reproduced by a suitable binary-source model. A face-on rotating binary-lens model was also identified, but this provides a significantly worse fit. We conclude that the most likely cause for this multipeak behaviour is parallax microlensing rather than microlensing by a binary source. However, this event may be exhibiting a slight binary-source signature in addition to these parallax-induced multiple peaks. With spectroscopic observations it is possible to test this `parallax plus binary-source' hypothesis and (in the instance that the hypothesis turns out to be correct) to simultaneously fit both models and obtain a measurement of the lens mass. Furthermore, spectroscopic observations could also supply information regarding the lens properties, possibly providing another avenue for determining the lens mass. We also investigated the nature of the blending for this event, and found that the majority of the I-band blending is contributed by a source roughly aligned with the lensed source. This implies that most of the I-band blending is caused by light from the lens or a binary companion to the source. However, in the V band, there appears to be a second blended source 0.35 arcsec away from the lensed source. Hubble Space Telescope observations will be very useful for understanding the nature of the blends. We also suggest that a radial velocity survey of all parallax events will be very useful for further constraining the lensing kinematics and understanding the origins of these events and the excess of long events toward the bulge.
The Quadruple-lined, Doubly Eclipsing System V482 Persei
NASA Astrophysics Data System (ADS)
Torres, Guillermo; Sandberg Lacy, Claud H.; Fekel, Francis C.; Wolf, Marek; Muterspaugh, Matthew W.
2017-09-01
We report spectroscopic and differential photometric observations of the A-type system V482 Per, which reveal it to be a rare hierarchical quadruple system containing two eclipsing binaries. One binary has the previously known orbital period of 2.4 days and a circular orbit, and the other a period of 6 days, a slightly eccentric orbit (e = 0.11), and shallow eclipses only 2.3% deep. The two binaries revolve around their common center of mass in a highly elongated orbit (e = 0.85) with a period of 16.67 yr. Radial velocities are measured for all components from our quadruple-lined spectra and are combined with the light curves and measurements of times of minimum light for the 2.4 day binary to solve for the elements of the inner and outer orbits simultaneously. The line-of-sight inclination angles of the three orbits are similar, suggesting they may be close to coplanar. The available observations appear to indicate that the 6 day binary experiences significant retrograde apsidal motion in the amount of about 60 deg per century. We derive absolute masses for the four stars good to better than 1.5%, along with radii with formal errors of 1.1% and 3.5% for the 2.4 day binary and ˜9% for the 6 day binary. A comparison of these and other physical properties with current stellar evolution models gives excellent agreement for a metallicity of [{Fe}/{{H}}]=-0.15 and an age of 360 Myr.
Orbital Characteristics of the Subdwarf-B and F V Star Binary EC 20117-4014 (=V4640 Sgr)
NASA Astrophysics Data System (ADS)
Otani, T.; Oswalt, T. D.; Lynas-Gray, A. E.; Kilkenny, D.; Koen, C.; Amaral, M.; Jordan, R.
2018-06-01
Among the competing evolution theories for subdwarf-B (sdB) stars is the binary evolution scenario. EC 20117-4014 (=V4640 Sgr) is a spectroscopic binary system consisting of a pulsating sdB star and a late F main-sequence companion; however, the period and the orbit semimajor axes have not been precisely determined. This paper presents orbital characteristics of the EC 20117-4014 binary system using 20 years of photometric data. Periodic observed minus calculated (O–C) variations were detected in the two highest-amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating the binary system’s precise orbital period (P = 792.3 days) and the light-travel-time amplitude (A = 468.9 s). This binary shows no significant orbital eccentricity, and the upper limit of the eccentricity is 0.025 (using 3σ as an upper limit). This upper limit of the eccentricity is the lowest among all wide sdB binaries with known orbital parameters. This analysis indicated that the sdB is likely to have lost its hydrogen envelope through stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB stars. In addition to those results, the underlying pulsation period change obtained from the photometric data was \\dot{P} = 5.4 (±0.7) × 10‑14 d d‑1, which shows that the sdB is just before the end of the core helium-burning phase.
Wide binaries in Tycho-Gaia II: metallicities, abundances and prospects for chemical tagging
NASA Astrophysics Data System (ADS)
Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.
2018-02-01
From our recent catalogue based on the first Gaia data release (TGAS), we select wide binaries in which both stars have been observed by the Radial Velocity Experiment (RAVE) or the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Using RAVE and LAMOST metallicities and RAVE Mg, Al, Si, Ti and Fe abundances, we find that the differences in the metallicities and elemental abundances of components of wide binaries are consistent with being due to observational uncertainties, in agreement with previous results for smaller and more restricted samples. The metallicity and elemental abundance consistency between wide binary components presented in this work confirms their common origin and bolsters the status of wide binaries as 'mini-open clusters'. Furthermore, this is evident that wide binaries are effectively co-eval and co-chemical, supporting their use for, e.g. constraining age-activity-rotation relations, the initial-final mass relation for white dwarfs and M-dwarf metallicity indicators. Additionally, we demonstrate that the common proper motion, common parallax pairs in TGAS with the most extreme separations (s ≳ 0.1 pc) typically have inconsistent metallicities, radial velocities or both and are therefore likely to be predominantly comprised of random alignments of unassociated stars with similar astrometry, in agreement with our previous results. Finally, we propose that wide binaries form an ideal data set with which we can test chemical tagging as a method to identify stars of common origin, particularly because the stars in wide binaries span a wide range of metallicities, much wider than that spanned by nearby open clusters.
Pulsed Accretion in the T Tauri Binary TWA 3A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Herczeg, Gregory J.
TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolvemore » over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.« less
First Detection of Krypton and Xenon in a White Dwarf
NASA Astrophysics Data System (ADS)
Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.
2012-07-01
We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 Kr VI- VII and Xe VI- VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 ± 0.5 and log Xe = -4.2 ± 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and that the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell flash or a binary white dwarf merger.
VizieR Online Data Catalog: VFTS. O-type stellar content of 30 Dor (Walborn+, 2014)
NASA Astrophysics Data System (ADS)
Walborn, N. R.; Sana, H.; Simon-Diaz, S.; Maiz Apellaniz, J.; Taylor, W. D.; Evans, C. J.; Markova, N.; Lennon, D. J.; de Koter, A.
2014-06-01
Detailed spectral classifications are presented for 352 O-B0 stars in the VLT-FLAMES Tarantula Survey ESO Large Programme, of which 213 O-type are judged of sufficiently high quality for further morphological analysis. Among them, six subcategories of special interest are distinguished. (1) Several new examples of the earliest spectral types O2-O3 have been found, while a previously known example has been determined to belong to the nitrogen-rich ON2 class. (2) A group of extremely rapidly rotating main-sequence objects has been isolated, including the largest vsini values known, the spatial and radial-velocity distributions of which suggest ejection from the two principal ionizing clusters NGC 2070 and NGC 2060. (3) Several new examples of the evolved, rapidly rotating Onfp class show similar evidence, although at least some of them are spectroscopic binaries. (4) No fewer than 48 members of the Vz category, hypothesized to be on or near the zero-age main sequence, are found in this sample; in contrast to the rapid rotators, they are strongly concentrated to the ionizing clusters and a newly recognized region of current and recent star formation to the north, supporting their interpretation as very young objects, as do their relatively faint absolute magnitudes. (5) A surprisingly large fraction of the main-sequence spectra belong to the recently recognized V((fc)) class, with CIII emission lines of similar strength to the usual NIII in V((f)) spectra, although a comparable number of the latter are also present, as well as six objects with very high-quality data but no trace of either emission feature, presenting new challenges to physical interpretations. (6) Two mid-O Vz and three late-O giant/supergiant spectra with morphologically enhanced nitrogen lines have been detected. Absolute visual magnitudes have been derived for each star with individual extinction laws, and composite Hertzsprung-Russell diagrams provide evidence of the multiple generations present in this field. Spectroscopic binaries, resolved visual multiples, and possible associations with X-ray sources are noted. Astrophysical and dynamical analyses of this unique dataset underway will provide new insights into the evolution of massive stars and starburst clusters. (2 data files).
Bi-lobed Shape of Comet 67P from a Collapsed Binary
NASA Astrophysics Data System (ADS)
Nesvorný, David; Parker, Joel; Vokrouhlický, David
2018-06-01
The Rosetta spacecraft observations revealed that the nucleus of comet 67P/Churyumov–Gerasimenko consists of two similarly sized lobes connected by a narrow neck. Here, we evaluate the possibility that 67P is a collapsed binary. We assume that the progenitor of 67P was a binary and consider various physical mechanisms that could have brought the binary components together, including small-scale impacts and gravitational encounters with planets. We find that 67P could be a primordial body (i.e., not a collisional fragment) if the outer planetesimal disk lasted ≲10 Myr before it was dispersed by migrating Neptune. The probability of binary collapse by impact is ≃30% for tightly bound binaries. Most km-class binaries become collisionally dissolved. Roughly 10% of the surviving binaries later evolve to become contact binaries during the disk dispersal, when bodies suffer gravitational encounters with Neptune. Overall, the processes described in this work do not seem to be efficient enough to explain the large fraction (∼67%) of bi-lobed cometary nuclei inferred from spacecraft imaging.
SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhital, Saurav; West, Andrew A.; Schluns, Kyle J.
2015-08-15
We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability ofmore » chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.« less
Is the Young UY Auriga System a Triple?
NASA Astrophysics Data System (ADS)
Wittal, Matthew; Prato, Lisa A.; Schaefer, Gail; Ciardi, David R.; Thomas, Allen; Biddle, Lauren; Avilez, Ian; Muzzio, Ryan; Patience, Jennifer; Beichman, Charles
2017-01-01
In an effort to understand the nature of the young binary, UY Aur, we examined the variable behavior of the entire, unresolved 0.9 arcsecond system, as well as the behavior of the angularly resolved, individual A and B components. UY Aur is an approximately 2 Myr old, classical T Tauri in the Taurus-Auriga star forming region and is one of a handful of young systems to host a primordial circumbinary disk, as well as individual circumstellar disks. Using the the facility infrared, high-resolution NIRSPEC spectrograph behind the adaptive optics system at the 10-meter Keck II telescope, we observed a dramatic change in the spectra of UY Aur B between 2003 and 2010. We also identified flux variability in the individual components of 1—2 magnitudes, particularly in the secondary star, on the basis of historical photometry. Thermal dust and line emission observed with millimeter interferometry indicates complex dynamical behavior of the circumbinary and circumstellar dust and led Tang et al. (2014) to speculate that UY Aur B may itself be a binary. Our adaptive optics imaging with the Keck II telescope showed no evidence for a close companion to the B component, although the marked change in our spectra of this star suggest that it could be a spectroscopic binary. We are currently limited by the paucity of angularly resolved observations, both photometric and spectroscopic, hampering the interpretation of the data. High-cadence, angularly resolved spectroscopy and photometry will be required to confirm the potential higher-order multiplicity of this system. This research was supported in part by NSF grants AST-1461200 and AST-1313399.
Multiplicity among chemically peculiar stars. II. Cool magnetic Ap stars
NASA Astrophysics Data System (ADS)
Carrier, F.; North, P.; Udry, S.; Babel, J.
2002-10-01
We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are: HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars and for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. Based on observations collected at the Observatoire de Haute-Provence (CNRS), France. Tables 1 to 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/151 Appendix B is only available in electronic form at http://www.edpsciences.org
Detection of a Hot Subdwarf Companion to the Be Star FY Canis Majoris
NASA Astrophysics Data System (ADS)
Peters, Geraldine J.; Gies, Douglas R.; Grundstrom, Erika D.; McSwain, M. Virginia
2008-10-01
The rapid rotation of Be stars may be caused in some cases by past mass and angular momentum accretion in an interacting binary in which the mass donor is currently viewed as a small, hot subdwarf stripped of its outer envelope. Here we report on the spectroscopic detection of such a subdwarf in the Be binary system FY Canis Majoris from the analysis of data acquired by the IUE spacecraft and KPNO Coudé Feed Telescope over the course of 16 and 21 yr, respectively. We present a double-lined spectroscopic orbit for the binary based on radial velocities from the IUE spectra and use the orbital solutions with a Doppler tomography algorithm to reconstruct the components' UV spectra. The subdwarf is hot (Teff = 45 +/- 5 kK) and has a mass of about 1.3 M⊙ and a radius of about 0.6 R⊙. It contributes about 4% as much flux as the Be star does in the FUV. We also present observations of the Hα and He I λ6678 emission features that are formed in the circumstellar disk of the Be star. Orbital flux and velocity variations in the He I λ6678 profile indicate that much of the emission forms along the disk rim facing the hot subdwarf where the disk is probably heated by the incident radiation from the subdwarf. A study of the FUV infall shell lines discovered in the 1980s confirms their episodic presence but reveals that they tend to be found around both quadrature phases, unlike the pattern in Algol binaries. Phase-dependent variations in the UV N V doublet suggest the presence of a N-enhanced wind from the subdwarf and a possible shock-interaction region between the stars where the subdwarf's wind collides with the disk of the Be star.
VizieR Online Data Catalog: Radial velocities of K-M dwarfs (Sperauskas+, 2016)
NASA Astrophysics Data System (ADS)
Sperauskas, J.; Bartasiute, S.; Boyle, R. P.; Deveikis, V.; Raudeliunas, S.; Upgren, A. R.
2016-09-01
We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability. Of these, 776 stars are from the MCC sample and 173 stars are K-M dwarfs from the CNS4. The catalog consists of two parts: Table 2 lists the mean radial velocities, and Table 2a contains individual measurements. Our radial velocities agree with the best published standard stars to within 0.7km/s in precision. Combining these and supplementary radial-velocity data with Hipparcos/Tycho-2 astrometry (Table 4 summarizes input observational data) we calculated the space velocity components and parameters of the galactic orbits in a three-component model potential by Johnston K.V. et al. (1995ApJ...451..598J) for a total of 1088 K-M dwarfs (Table 5), that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. We identified 146 stars as possible candidate members of the classical moving groups and known or suspected subgroups (Table 7). We show that the distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane for nearby K-M dwarfs are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction (3%) of stars with the thick disk kinematics. (7 data files).
The brown dwarf kinematics project
NASA Astrophysics Data System (ADS)
Faherty, Jackie K.
2010-10-01
Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, S. E. de; Belczynski, K., E-mail: S.E.deMink@uva.nl, E-mail: kbelczyn@astrouw.edu.pl
The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor ofmore » 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.« less
Spectroscopic Investigation of TW Dra: Improved Stellar and System Parameters
NASA Astrophysics Data System (ADS)
Tkachenko, A.; Lehmann, H.; Mkrtichian, D.
2010-12-01
We investigate the Algol-type system TW Dra by means of the new computer program Shellspec07_inverse which is specially designed for the fine-tuning of stellar and system parameters of eclipsing binaries. We derive precise atmospheric and system parameters of TW Dra with an accuracy comparable to that expected from photometric data, and give a short comparison of our results with previous determinations.
2015-01-01
al. (2014), and of the Large Magellanic Cloud (LMC) Tarantula Nebula region by Sana et al. (2013b), demonstrate that the binary frequency may be »70...Monte-Carlo method to fit spectroscopic results for a large sample of O-type stars in the Tarantula Nebula region of the LMC, and they find a best fit
Establishing binarity amongst Galactic RV Tauri stars with a disc⋆
NASA Astrophysics Data System (ADS)
Manick, Rajeev; Van Winckel, Hans; Kamath, Devika; Hillen, Michel; Escorza, Ana
2017-01-01
Context. Over the last few decades it has become more evident that binarity is a prevalent phenomenon amongst RV Tauri stars with a disc. This study is a contribution to comprehend the role of binarity upon late stages of stellar evolution. Aims: In this paper we determine the binary status of six Galactic RV Tauri stars, namely DY Ori, EP Lyr, HP Lyr, IRAS 17038-4815, IRAS 09144-4933, and TW Cam, which are surrounded by a dusty disc. The radial velocities are contaminated by high-amplitude pulsations. We disentangle the pulsations from the orbital signal in order to determine accurate orbital parameters. We also place them on the HR diagram, thereby establishing their evolutionary nature. Methods: We used high-resolution spectroscopic time series obtained from the HERMES and CORALIE spectrographs mounted on the Flemish Mercator and Swiss Leonhard Euler Telescopes, respectively. An updated ASAS/AAVSO photometric time series is analysed to complement the spectroscopic pulsation search and to clean the radial velocities from the pulsations. The pulsation-cleaned orbits are fitted with a Keplerian model to determine the spectroscopic orbital parameters. We also calibrated a PLC relationship using type II cepheids in the LMC and apply the relation to our Galactic sample to obtain accurate distances and hence luminosities. Results: All six of the Galactic RV Tauri stars included in this study are binaries with orbital periods ranging between 650 and 1700 days and with eccentricities between 0.2 and 0.6. The mass functions range between 0.08 to 0.55 M⊙ which points to an unevolved low-mass companion. In the photometric time series we detect a long-term variation on the timescale of the orbital period for IRAS 17038-4815, IRAS 09144-4933, and TW Cam. Our derived stellar luminosities indicate that all except DY Ori and EP Lyr are post-AGB stars. DY Ori and EP Lyr are likely examples of the recently discovered dusty post-RGB stars. Conclusions: The orbital parameters strongly suggest that the evolution of these stars was interrupted by a strong phase of binary interaction during or even prior to the AGB. The observed eccentricities and long orbital periods among these stars provide a challenge to the standard theory of binary evolution. Based on observations made with the Flemish Mercator Telescope and the Swiss Leonhard Euler Telescope.Radial velocity tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A129
NASA Astrophysics Data System (ADS)
Garcés, A.; Catalán, S.; Ribas, I.
2011-07-01
Context. Stellar ages are extremely difficult to determine and often subject to large uncertainties, especially for field low-mass stars. We plan to carry out a calibration of the decrease in high-energy emissions of low-mass GKM stars with time, and therefore precise age determination is a key ingredient. The overall goal of our research is to study the time evolution of these high-energy emissions as an essential input to studying exoplanetary atmospheres. Aims: We propose to determine stellar ages with a methodology based on wide binaries. We are interested in systems composed of a low-mass star and a white dwarf (WD), where the latter serves as a stellar chronometer for the system. We aim at obtaining reliable ages for a sample of late-type stars older than 1 Gyr. Methods: We selected a sample of wide binaries composed by a DA type WD and a GKM companion. High signal-to-noise, low-resolution spectroscopic observations were obtained for most of the WD members of the sample. Atmospheric parameters were determined by fitting the spectroscopic data to appropiate WD models. The total ages of the systems were derived by using cooling sequences, an initial-final mass relationship and evolutionary tracks, to account for the progenitor life. Results: The spectroscopic observations have allowed us to determine ages for the binary systems using WDs as cosmochronometers. We obtained reliable ages for 27 stars between 1 and 5 Gyr, which is a range where age determination becomes difficult for field objects. Roughly half of these systems have cooling ages that contribute at least 30% the total age. We select those for further study since their age estimate should be less prone to systematic errors coming from the initial-final mass relationship. Conclusions: We have determined robust ages for a sizeable sample of GKM stars that can be subsequently used to study the time evolution of their emissions associated to stellar magnetic activity. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Based on observations made with the WHT (William Herschel Telescope) operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
New Insights into the Formation of the Blue Main Sequence in NGC 1850
NASA Astrophysics Data System (ADS)
Yang, Yujiao; Li, Chengyuan; Deng, Licai; de Grijs, Richard; Milone, Antonino P.
2018-06-01
Recent discoveries of bimodal main sequences (MSs) associated with young clusters (with ages ≲1 Gyr) in the Magellanic Clouds have drawn a lot of attention. One of the prevailing formation scenarios attributes these split MSs to a bimodal distribution in stellar rotation rates, with most stars belonging to a rapidly rotating population. In this scenario, only a small fraction of stars populating a secondary blue sequence are slowly or non-rotating stars. Here, we focus on the blue MS in the young cluster NGC 1850. We compare the cumulative number fraction of the observed blue-MS stars to that of the high-mass-ratio binary systems at different radii. The cumulative distributions of both populations exhibit a clear anti-correlation, characterized by a highly significant Pearson coefficient of ‑0.97. Our observations are consistent with the possibility that blue-MS stars are low-mass-ratio binaries, and therefore their dynamical disruption is still ongoing. High-mass-ratio binaries, on the other hand, are more centrally concentrated.
On the kinematics of a runaway Be star population
NASA Astrophysics Data System (ADS)
Boubert, D.; Evans, N. W.
2018-07-01
We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution from the first Gaia data release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5 per cent of the Be stars in our catalogue should be runaways. The remaining 82.5 per cent should be in binaries with subdwarfs, white dwarfs, or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4} per cent of the Be stars in our catalogue are runaways and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).
On the kinematics of a runaway Be star population
NASA Astrophysics Data System (ADS)
Boubert, D.; Evans, N. W.
2018-04-01
We explore the hypothesis that B type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution (TGAS) from the first Gaia Data Release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5% of the Be stars in our catalogue should be runaways. The remaining 82.5% should be in binaries with subdwarfs, white dwarfs or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4}% of the Be stars in our catalogue are runaways, and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).
Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures
NASA Astrophysics Data System (ADS)
Gerosa, Davide; O'Shaughnessy, Richard; Kesden, Michael; Berti, Emanuele; Sperhake, Ulrich
2014-06-01
If binary black holes form following the successive core collapses of sufficiently massive binary stars, precessional dynamics may align their spins, Smathvariant="bold">1 and Smathvariant="bold">2, and the orbital angular momentum L into a plane in which they jointly precess about the total angular momentum J. These spin orientations are known as spin-orbit resonances since S1, S2, and L all precess at the same frequency to maintain their planar configuration. Two families of such spin-orbit resonances exist, differentiated by whether the components of the two spins in the orbital plane are either aligned or antialigned. The fraction of binary black holes in each family is determined by the stellar evolution of their progenitors, so if gravitational-wave detectors could measure this fraction they could provide important insights into astrophysical formation scenarios for binary black holes. In this paper, we show that even under the conservative assumption that binary black holes are observed along the direction of J (where precession-induced modulations to the gravitational waveforms are minimized), the waveforms of many members of each resonant family can be distinguished from all members of the other family in events with signal-to-noise ratios ρ ≃10, typical of those expected for the first detections with Advanced LIGO and Virgo. We hope that our preliminary findings inspire a greater appreciation of the capability of gravitational-wave detectors to constrain stellar astrophysics and stimulate further studies of the distinguishability of spin-orbit resonant families in more expanded regions of binary black-hole parameter space.
Spectroscopic orbits of nearby solar-type dwarfs - II.
NASA Astrophysics Data System (ADS)
Gorynya, N. A.; Tokovinin, A.
2018-03-01
Several nearby solar-type dwarfs with variable radial velocity were monitored to find their spectroscopic orbits. First orbital elements of 15 binaries (HIP 12144, 17895, 27970, 32329, 38636, 39072, 40479, 43004, 73700, 79234, 84696, 92140, 88656, 104514, and 112222) are determined. The previously known orbits of HIP 5276, 21443, 28678, and 41214 are confirmed and updated. The orbital periods range from 2 d to 4 yr. There are eight hierarchical systems with additional distant companions among those 19 stars. The outer visual orbit of the triple system HIP 17895 is updated and the masses of all its components are estimated. We provide radial velocities of another 16 Hipparcos stars without orbital solutions, some of those with long periods or false claims of variability.
Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni
2014-12-04
In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.
Three-body affairs in the outer solar system
NASA Astrophysics Data System (ADS)
Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke
Recent observations have revealed an unexpectedly high binary fraction among the Trans-Neptunian Objects (TNOs) that populate the Kuiper Belt. The TNO binaries are strikingly different from asteroid binaries in four respects: their frequency is an order of magnitude larger, the mass ratio of their components is closer to unity, and their orbits are wider and highly eccentric. Two explanations have been proposed for their formation, one assuming large numbers of massive bodies, and one assuming large numbers of light bodies. We argue that both assumptions are unwarranted, and we show how TNO binaries can be produced from a modest number of intermediate-mass bodies of the type predicted by the gravitational instability theory for the formation of planetesimals. We start with a TNO binary population similar to the asteroid binary population, but subsequently modified by three-body exchange reactions, a process that is far more efficient in the Kuiper belt, because of the much smaller tidal perturbations by the Sun. Our mechanism can naturally account for all four characteristics that distinguish TNO binaries from main-belt asteroid binaries.
Sizing up the population of gamma-ray binaries
NASA Astrophysics Data System (ADS)
Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick
2017-12-01
Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.
A catalogue of chromospherically active binary stars (third edition)
NASA Astrophysics Data System (ADS)
Eker, Z.; Ak, N. Filiz; Bilir, S.; Doǧru, D.; Tüysüz, M.; Soydugan, E.; Bakış, H.; Uǧraş, B.; Soydugan, F.; Erdem, A.; Demircan, O.
2008-10-01
The catalogue of chromospherically active binaries (CABs) has been revised and updated. With 203 new identifications, the number of CAB stars is increased to 409. The catalogue is available in electronic format where each system has a number of lines (suborders) with a unique order number. The columns contain data of limited numbers of selected cross references, comments to explain peculiarities and the position of the binarity in case it belongs to a multiple system, classical identifications (RS Canum Venaticorum, BY Draconis), brightness and colours, photometric and spectroscopic data, a description of emission features (CaII H and K, Hα, ultraviolet, infrared), X-ray luminosity, radio flux, physical quantities and orbital information, where each basic entry is referenced so users can go to the original sources.
VizieR Online Data Catalog: Chromospherically Active Binaries. Third version (Eker+, 2008)
NASA Astrophysics Data System (ADS)
Eker, Z.; Filiz-Ak, N.; Bilir, S.; Dogru, D.; Tuysuz, M.; Soydugan, E.; Bakis, H.; Ugras, B.; Soydugan, F.; Erdem, A.; Demircan, O.
2008-06-01
Chromospherically Active Binaries (CAB) catalogue have been revised and updated. With 203 new identifications, the number of CAB stars is increased to 409. Catalogue is available in electronic format where each system has various number of lines (sub-orders) with a unique order number. Columns contain data of limited number of selected cross references, comments to explain peculiarities and position of the binarity in case it belongs to a multiple system, classical identifications (RS CVn, BY Dra), brightness and colours, photometric and spectroscopic data, description of emission features (Ca II H&K, Hα, UV, IR), X-Ray luminosity, radio flux, physical quantities and orbital information, where each basic entry are referenced so users can go original sources. (10 data files).
NASA Astrophysics Data System (ADS)
Fahed, R.; Moffat, A. F. J.; Zorec, J.; Eversberg, T.; Chené, A. N.; Alves, F.; Arnold, W.; Bergmann, T.; Corcoran, M. F.; Correia Viegas, N. G.; Dougherty, S. M.; Fernando, A.; Frémat, Y.; Gouveia Carreira, L. F.; Hunger, T.; Knapen, J. H.; Leadbeater, R.; Marques Dias, F.; Martayan, C.; Morel, T.; Pittard, J. M.; Pollock, A. M. T.; Rauw, G.; Reinecke, N.; Ribeiro, J.; Romeo, N.; Sánchez-Gallego, J. R.; Dos Santos, E. M.; Schanne, L.; Stahl, O.; Stober, Ba.; Stober, Be.; Vollmann, K.; Williams, P. M.
2011-11-01
We present the results from the spectroscopic monitoring of WR 140 (WC7pd + O5.5fc) during its latest periastron passage in 2009 January. The observational campaign consisted of a constructive collaboration between amateur and professional astronomers. It took place at six locations, including Teide Observatory, Observatoire de Haute Provence, Dominion Astrophysical Observatory and Observatoire du Mont Mégantic. WR 140 is known as the archetype of colliding-wind binaries and it has a relatively long period (?8 yr) and high eccentricity (?0.9). We provide updated values for the orbital parameters, new estimates for the WR and O star masses and new constraints on the mass-loss rates and colliding-wind geometry.
HD 143 418 - An Interacting Binary with a Subsynchronously Rotating Primary
NASA Astrophysics Data System (ADS)
Mikulášek, Z.; Zverko, J.; Žižňovský, J.; Krtička, J.; Iliev, I. Kh.; Kudryavtsev, D. O.; Gráf, T.; Zejda, M.
2010-12-01
HD 143418 is a non-eclipsing double-lined close binary with orbital period Porb=2.282520 d. The photometrically and spectroscopically dominant primary component is a normal A5V star in the middle of its stay on the main sequence with extremely slow, subsynchronous rotation (Prot being about 14 days!). Its photometric monitoring since 1982 revealed orbitally modulated variations with changing form and amplitude. The advanced principal component analysis (APCA) disentangling extract-ed a steady part of light curves obviously caused by the ellipticity of the primary. Seasonal components of the light curves may be related to an expected incidence of circumstellar matter ejected from the tidally spinning up primary component. A possible scenario of the synchronisation process is also briefly discussed.
Reevaluating Old Stellar Populations
NASA Astrophysics Data System (ADS)
Stanway, E. R.; Eldridge, J. J.
2018-05-01
Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.
Multiband Photometric and Spectroscopic Analysis of HV Cnc
NASA Astrophysics Data System (ADS)
Gökay, G.; Gürol, B.; Derman, E.
2013-11-01
In this paper, radial velocity and VI- and JHKS - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D) code and JHKS filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M ⊙, 0.52 M ⊙, 1.87 R ⊙, and 0.48 R ⊙, respectively. All results are compared with previously published literature values and discussed.
MULTIBAND PHOTOMETRIC AND SPECTROSCOPIC ANALYSIS OF HV Cnc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gökay, G.; Gürol, B.; Derman, E., E-mail: ggokay@science.ankara.edu.tr
2013-11-01
In this paper, radial velocity and VI- and JHK{sub S} - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D)more » code and JHK{sub S} filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M {sub ☉}, 0.52 M {sub ☉}, 1.87 R {sub ☉}, and 0.48 R {sub ☉}, respectively. All results are compared with previously published literature values and discussed.« less
Spectroscopic Instrumentation in Undergraduate Astronomy Laboratories
NASA Astrophysics Data System (ADS)
Ludovici, Dominic; Mutel, Robert Lucien; Lang, Cornelia C.
2017-01-01
We have designed and built two spectrographs for use in undergraduate astronomy laboratories at the University of Iowa. The first, a low cost (appx. $500) low resolution (R ~ 150 - 300) grating-prism (grism) spectrometer consists of five optical elements and is easily modified to other telescope optics. The grism spectrometer is designed to be used in a modified filter wheel. This type of spectrometer allows students to undertake projects requiring sensitive spectral measurements, such as determining the redshifts of quasars. The second instrument is a high resolution (R ~ 8000), moderate cost (appx. $5000) fiber fed echelle spectrometer. The echelle spectrometer will allow students to conduct Doppler measurements such as those used to study spectroscopic binaries. Both systems are designed to be used with robotic telescope systems. The availability of 3D printing enables both of these spectrographs to be constructed in hands-on instrumentation courses where students build and commission their own instruments. Additionally, these instruments enable introductory majors and non-majors laboratory students to gain experience conducting their own spectroscopic observations.
THE IMPACT OF SURFACE TEMPERATURE INHOMOGENEITIES ON QUIESCENT NEUTRON STAR RADIUS MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.
Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 inmore » the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roper, V.P.; Kobayashi, R.
1988-02-01
Infinite-dilution fugacity coefficients were obtained for the system fluorene/phenanthrene at thirteen temperatures by fitting total pressure across the entire mole fraction range by a computer routine. A thermodynamically consistent routine, that allowed for both positive and negative pressure deviations from the ideal values, was used to correlate data over the full mole fraction range from 0 to 1. The four-suffix Margules activity coefficient model without modification essentially served this purpose since total pressures and total pressure derivatives with respect to mole fraction were negligible compared to pressure measurement precision. The water/ethanol system and binary systems comprised of aniline, chlorobenzene, acetonitrilemore » and other polar compounds were fit for total pressure across the entire mole fraction range for binary Vapor-Liquid-Equilbria (VLE) using the rigorous, thermodynamically consistent Gibbs-Duhem Relation derived by Ibl and Dodge. Data correlation was performed using a computer least squares procedure. Infinite-dilution fugacity coefficients were obtained using a modified Margules activity coefficient model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...
2017-11-08
Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less
Population annealing simulations of a binary hard-sphere mixture
NASA Astrophysics Data System (ADS)
Callaham, Jared; Machta, Jonathan
2017-06-01
Population annealing is a sequential Monte Carlo scheme well suited to simulating equilibrium states of systems with rough free energy landscapes. Here we use population annealing to study a binary mixture of hard spheres. Population annealing is a parallel version of simulated annealing with an extra resampling step that ensures that a population of replicas of the system represents the equilibrium ensemble at every packing fraction in an annealing schedule. The algorithm and its equilibration properties are described, and results are presented for a glass-forming fluid composed of a 50/50 mixture of hard spheres with diameter ratio of 1.4:1. For this system, we obtain precise results for the equation of state in the glassy regime up to packing fractions φ ≈0.60 and study deviations from the Boublik-Mansoori-Carnahan-Starling-Leland equation of state. For higher packing fractions, the algorithm falls out of equilibrium and a free volume fit predicts jamming at packing fraction φ ≈0.667 . We conclude that population annealing is an effective tool for studying equilibrium glassy fluids and the jamming transition.
On the development and applications of automated searches for eclipsing binary stars
NASA Astrophysics Data System (ADS)
Devor, Jonathan
Eclipsing binary star systems provide the most accurate method of measuring both the masses and radii of stars. Moreover, they enable testing tidal synchronization and circularization theories, as well as constraining models of stellar structure and dynamics. With the recent availability of large-scale multi-epoch photometric datasets, we are able to study eclipsing binary stars en masse. In this thesis, we analyzed 185,445 light curves from ten TrES fields, and 218,699 light curves from the OGLE II bulge fields. In order to manage such large quantities of data, we developed a pipeline with which we systematically identified eclipsing binaries, solved for their geometric orientations, and then found their components' absolute properties. Following this analysis, we assembled catalogs of eclipsing binaries with their models, computed statistical distributions of their properties, and located rare cases for further follow-up. Of particular importance are low-mass eclipsing binaries, which are rare, yet critical for resolving the ongoing mass-radius discrepancy between theoretical models and observations. To this end, we have discovered over a dozen new low-mass eclipsing binary candidates, and spectroscopically confirmed the masses of five of them. One of these confirmed candidates, T-Lyr1-17236, is especially interesting because of its uniquely long orbital period. We examined T-Lyr1-17236 in detail and found that it is consistent with the magnetic disruption hypothesis for explaining the observed mass-radius discrepancy. Both the source code of our pipeline and the complete list of our candidates are freely available.
NASA Astrophysics Data System (ADS)
Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.
2017-06-01
EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.
On the nature of the symbiotic binary AX Persei
NASA Technical Reports Server (NTRS)
Mikolajewska, Joanna; Kenyon, Scott J.
1992-01-01
Photometric and spectroscopic observations of the symbiotic binary AX Persei are presented. This system contains a red giant that fills its tidal lobe and transfers material into an accretion disk surrounding a low-mass main-sequence star. The stellar masses - 1 solar mass for the red giant and about 0.4 solar mass for the companion - suggest AX Per is poised to enter a common envelope phase of evolution. The disk luminosity increases from L(disk) about 100 solar luminosity in quiescence to L(disk) about 5700 solar luminosity in outburst for a distance of d = 2.5 kpc. Except for visual maximum, high ionization permitted emission lines - such as He II - imply an EUV luminosity comparable to the disk luminosity. High-energy photons emitted by a hot boundary layer between the disk and central star ionize a surrounding nebula to produce this permitted line emission. High ionization forbidden lines form in an extended, shock-excited region well out of the binary's orbital plane and may be associated with mass loss from the disk.
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
NASA Astrophysics Data System (ADS)
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-04-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
NASA Astrophysics Data System (ADS)
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-07-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
Resonant Tidal Forcing in Close Binaries: Implications for CVs
NASA Astrophysics Data System (ADS)
Ford, K. E. Saavik; McKernan, Barry; Schwab, Elliana
2018-01-01
Resonant tidal forcing occurs when the tidal forcing frequency of a binary matches a quadrupolar oscillation mode of one of the binary members and energy is transferred from the orbit of the binary to the mode. Tidal locking permits ongoing resonant driving of modes even as binary orbital parameters change. At small binary separations during tidal lock, a significant fraction of binary orbital energy can be deposited quickly into a resonant mode and the binary decays faster than via the emission of gravitational radiation alone. Here we discuss some of the implications of resonant tidal forcing for the class of binaries known as Cataclysmic Variable (CV) stars. We show that resonant tidal forcing of the donor’s Roche lobe could explain the observed 2‑3hr period gap in CVs, assuming modest orbital eccentricities are allowed (eb ∼ 0.03), and can be complementary or an alternative to, existing models. Sudden collapse of the companion orbit, yielding a Type Ia supernova is disfavoured, since Hydrogen is not observed in Type Ia supernova spectra. Therefore, resonance must generally be truncated, probably via mass loss from the Roche lobe or orbital perturbation, ultimately producing a short period CV containing an ’overheated’ white dwarf.
Binary supersoft X-ray sources and the supernova Ia progenitor problem
NASA Astrophysics Data System (ADS)
Nelson, Thomas John
In this thesis I present a study of several binary supersoft X-ray sources in order to assess their properties and to determine whether they may be supernova Ia (SN Ia) progenitors. The first chapter is an introduction to the problem and the sources of interest. In the second and third chapters I present an X-ray spectroscopic study of the recurrent nova RS Ophiuchi (RS Oph) during and after its 2006 outburst, carried out with Chandra and XMM-Newton. I discuss the physical origins of the X-ray emission at each stage of the outburst and place the first direct constraints on the mass of the white dwarf, which is very close to the Chandrasekhar limit. I also show that the surface composition of the white dwarf during the supersoft phase is consistent with nuclear processed material, indicating that RS Oph retains mass after each outburst and is likely growing in mass with time, and is therefore a potential SN Ia progenitor. I discuss the lack of accretion signatures in the quiescent emission from RS Oph, which are at odds with the high frequency of nova outbursts, and explore the possibility that an alternative accretion model may account for the quiescent X-ray properties in the system. Finally, in the fourth chapter, I examine the supersoft X-ray source (SSS) population in the nearby galaxy M31 at X-ray, ultraviolet (UV) and optical wavelengths. I explore the long-term behavior of these objects, and find that a much smaller fraction are persistent or recurrent X-ray sources than in the Magellanic Clouds. I carry out a search for counterparts of the SSS using the Galactic Evolution Explorer (GALEX) satellite and the WIYN 3.5m telescope, and find that the majority of sources do not have any UV counterparts. For those that do, I find that the UV sources have properties consistent with young, massive stars in M31. I find indications that some SSS may be in high mass binaries. If these sources are nuclear burning white dwarfs, then they may be the progenitors of the SNe Ia that appear to be associated with recent star formation.
Merging black holes in non-spherical nuclear star clusters
NASA Astrophysics Data System (ADS)
Petrovich, Cristobal
2018-04-01
The Milky Way and a significant fraction of galaxies are observed to host a central Massive Black Hole (MBH) embedded in a non-spherical nuclear star cluster. I will discuss the orbital evolution of stellar binaries in these environments and argue that their merger rates are expected to be greatly enhanced when the effect from cluster potential is taken into account in the binary-MBH triple system. I will apply our results to compact-object binary mergers mediated by gravitational wave radiation and show that this merger channel can contribute significantly to the LIGO/Virgo detections.
A New Light Curve and Analysis of the Long Period Eclipsing Binary BF Draconis
NASA Astrophysics Data System (ADS)
Wolf, G. W.; Craig, L. E.; Caffey, J. F.
1999-01-01
The star BF Draconis was found to be an eclipsing binary by Strohmeier, Knigge and Ott (1962) and originally thought to be an Algol-type system with a period of 5.6 days. A spectrographic study by Imbert (1985) showed that the period was actually double this value and that the system consisted of two well-separated, almost-equal F-type stars in elliptical orbit. Diethelm, Wolf and Agerer (1993) later published a preliminary light curve of this system showing minima of unequal depth and width with a displaced secondary, confirming the elliptical orbit but disagreeing with Imbert on the specific orbital parameters. As a part of our long-term program of obtaining improved light curves of double-lined spectroscopic and eclipsing binaries, we have observed BF Draconis for the past four years using the 0.4 meter telescope at the Baker Observatory of Southwest Missouri State University. Complete light curves in the Cousins BVRI passbands have been obtained with our Photometrics CCD system, and a new model and orbital parameters for the binary have been determined using the Wilson-Devinney program. This research has been supported by NSF Grants AST-9315061 and AST-9605822 and NASA Grant NGT5-40060.
KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking
NASA Astrophysics Data System (ADS)
Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.
2018-02-01
We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.
Cataloging the Praesepe Cluster: Identifying Interlopers and Binary Systems
NASA Astrophysics Data System (ADS)
Lucey, Madeline R.; Gosnell, Natalie M.; Mann, Andrew; Douglas, Stephanie
2018-01-01
We present radial velocity measurements from an ongoing survey of the Praesepe open cluster using the WIYN 3.5m Telescope. Our target stars include 229 early-K to mid-M dwarfs with proper motion memberships that have been observed by the repurposed Kepler mission, K2. With this survey, we will provide a well-constrained membership list of the cluster. By removing interloping stars and determining the cluster binary frequency we can avoid systematic errors in our analysis of the K2 findings and more accurately determine exoplanet properties in the Praesepe cluster. Obtaining accurate exoplanet parameters in open clusters allows us to study the temporal dimension of exoplanet parameter space. We find Praesepe to have a mean radial velocity of 34.09 km/s and a velocity dispersion of 1.13 km/s, which is consistent with previous studies. We derive radial velocity membership probabilities for stars with ≥3 radial velocity measurements and compare against published membership probabilities. We also identify radial velocity variables and potential double-lined spectroscopic binaries. We plan to obtain more observations to determine the radial velocity membership of all the stars in our sample, as well as follow up on radial velocity variables to determine binary orbital solutions.
A Hidden Population of Hot Subdwarf Stars in Close Binaries
NASA Astrophysics Data System (ADS)
Wade, Richard A.; Clausen, Drew R.; Kopparapu, Ravi Kumar; O'Shaughnessy, Richard; Stark, M. A.; Walentosky, M. J.
2010-12-01
Observations to date preferentially find Galactic hot subdwarf (sdB/sdO) stars in binaries when the subdwarfs are more luminous than their relatively faint companions (G/K/M dwarfs, white dwarfs). As suggested by Han et al. [1], this selection bias may distort our perspective of the evolutionary channels that form hot subdwarfs in the galactic disk. A predicted and possibly more numerous population of binaries features a lower-mass, lower-luminosity, longer-lived hot subdwarf hiding in the glare from its companion: the subdwarf+A/early F binaries. Such systems may arise when mass transfer is initiated in the Hertzsprung gap; the A/F companion in some cases was ``created'' from a lower-mass star (i.e., it would be a blue straggler if seen in a cluster). A survey is underway at Penn State to identify hot subdwarfs paired with F stars, determine their properties, and establish their space density. The project makes use of ground and space archival data to identify these systems (from their UV excesses) and new spectroscopic observations to determine their orbital periods and other properties. Successful characterization of this group of close binaries should help to challenge, calibrate, or refine models of binary star evolution that are used in population synthesis studies, including the relative importance of the RLOF and common-envelope channels for the formation of hot subdwarfs. The motivation, methodology, and status of this search for hidden hot subdwarfs are presented in this contribution.
High-level magnetic activity nature of the eclipsing binary KIC 12418816
NASA Astrophysics Data System (ADS)
Dal, H. A.; Özdarcan, O.
2018-02-01
We present comprehensive spectroscopic and photometric analysis of the detached eclipsing binary KIC 12418816, which is composed of two very similar and young main-sequence stars of spectral type K0 on a circular orbit. Combining spectroscopic and photometric modelling, we find masses and radii of the components of 0.88 ± 0.06 M⊙ and 0.85 ± 0.02 R⊙ for the primary and 0.84 ± 0.05 M⊙ and 0.84 ± 0.02 R⊙ for the secondary. Both components exhibit narrow emission features superposed on the cores of the Ca II H and K lines, while H α and H β photospheric absoprtion is more completely infilled by broader emission. Very high precision Kepler photometry reveals remarkable sinusoidal light variation at out-of-eclipse phases, indicating strong spot activity, presumably on the surface of the secondary component. Spots on the secondary component appear to migrate towards decreasing orbital phase with a migration period of 0.72 ± 0.05 yr. Besides the sinusoidal variation, we detect 81 flares and find that both components possess flare activity. Our analysis shows that 25 flares out of 81 exhibit very high energies together with lower frequency, while the rest of them are very frequent but with lower energies.
Young Binaries and Early Stellar Evolution
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang
1996-07-01
Most main-sequence stars are members of binary or multiple systems. The same is true for pre-main-sequence (PMS) stars, as recent surveys have shown. Therefore studying star formation means to a large extent studying the formation of binary systems. Similarly, studying early stellar evolution primarily involves PMS binary systems. In this thesis I have studied the binary frequency among ROSAT selected T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association, and the evolutionary status of Hα-selected PMS binaries in the T associations of Chamaeleon, Lupus, and ρ Ophiuchi. The direct imaging and spectroscopic observations in the optical have been carried out under subarcsec seeing conditions at the ESO New Technology Telescope (NTT) at La Silla. Furthermore, high-spatial resolution images of selected PMS stars in the near infrared were obtained with the ESO adaptive optics system COME-ON+/ADONIS. Among 195 T Tauri stars observed using direct imaging 31 binaries could be identified, 12 of them with subarcsec separation. Based on statistical arguments alone I conclude that almost all of them are indeed physical (i.e. gravitationally bound) binary or multiple systems. Using astrometric measurements of some binaries I showed that the components of these binaries are common proper motion pairs, very likely in a gravitationally bound orbit around each other. The overall binary frequency among T Tauri stars with a range of separations between 120 and 1800 AU is in agreement with the binary frequency observed among main-sequence stars in the solar neighbourhood. However, within individual regions the spatial distribution of binaries is non-uniform. In particular, in Upper Scorpius, weak-line T Tauri stars in the vicinity of early type stars seem to be almost devoid of multiple systems, whereas in another area in Upper Scorpius half of all weak-line T Tauri stars have a companion in a range of separation between 0.''7 and 3.''0. For a sample of 14 spatially resolved PMS binaries (separations 0.''6 to 1.prime'7) located in the above mentioned T associations both photometric and spectroscopic information has been analyzed. All binaries (originally unresolved) were identified as PMS stars based on their strong Hα emission and their association with dark clouds. Using the spectral A index, which measures the strength of the CaH band at 697.5nm relative to the nearby continuum as a luminosity class indicator, I showed that the classical T Tauri stars in the sample tend to be close to luminosity class V. Eight out of the 14 pairs could be placed on an H--R diagram. When comparing with theoretical PMS evolutionary tracks the individual components of all pairs appear to be coeval within the observational errors. This result is similar to Hartigan et al. (1994) who found two thirds of the wider pairs with separations from 400 AU to 6000 AU to be coeval. However, unlike Hartigan et al.'s finding for the wider pairs, I find no non-coeval pairs. One of the presumed binaries in our sample (ESO Hα 281) turned out to be a likely chance projection with the ``primary'' showing neither Hα emission nor Li absorption. Finally, using adaptive optics at the ESO 3.6m telescope, diffraction-limited JHK images of the region around the Herbig AeBe star NX Pup were obtained. The close companion (sep. 0.''128) to NX Pup -- originally discovered by HST -- was clearly resolved and its JHK magnitudes were determined. A third object at a separation of 7.''0 from NX Pup was identified as a classical T Tauri star so that NX Pup may in fact form a hierarchical triple system. I discuss the evolutionary status of these stars and derive estimates for their spectral types, luminosities, masses, and ages. My conclusions are that binarity is established very early in stellar evolution, that the orbital parameters of wide binaries (a >= 120AU) remain virtually unchanged during their PMS evolution, and that the components of the wide binaries were formed at the same time --- perhaps either through collisional fragmentation or fragmentation of rotating filaments. (Copies of the thesis (written in German) and related pre-/reprints are available from the author upon request.)
New observations and new models of spin-orbit coupling in binary asteroids
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Naidu, Shantanu
2015-08-01
The YORP-induced rotational fission hypothesis is the leading candidate for explaining the formation of binaries, triples, and pairs among small (<20 km) asteroids (e.g., Margot et al, Asteroids IV, subm., 2015). Various evolutionary paths following rotational fission have been suggested, but many important questions remain about the evolutionary mechanisms and timescales. We test hypotheses about the evolution of binary asteroids by obtaining precise descriptions of the orbits and components of binary systems with radar and by examining the system dynamics with detailed numerical simulations. Predictions for component spin states and orbital precession rates can then be compared to observables in our data sets or in other data sets to elucidate the states of various systems and their likely evolutionary paths.Accurate simulations require knowledge of the masses, shapes, and spin states of individual binary components. Because radar observations can provide exquisite data sets spanning days with spatial resolutions at the decameter level, we can invert for the component shapes and measure spin states. We can also solve for the mutual orbit by fitting the observed separations between components. In addition, the superb (10e-7--10e-8) fractional uncertainties in range allow us to measure the reflex motions directly, allowing masses of individual components to be determined.We use recently published observations of the binary 2000 DP107 (Naidu et al. AJ, subm., 2015) and that of other systems to simulate the dynamics of components in well-characterized binary systems (Naidu and Margot, AJ 149, 80, 2015). We model the coupled spin and orbital motions of two rigid, ellipsoidal bodies under the influence of their mutual gravitational potential. We use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. The presence of chaotic regions may substantially increase spin synchronization timescales, delay BYORP-type evolution, extend the lifetime of binaries, and explain the observed fraction of asynchronous binaries.
Detection of spectroscopic binaries in the Gaia-ESO Survey
NASA Astrophysics Data System (ADS)
Van der Swaelmen, M.; Merle, T.; Van Eck, S.; Jorissen, A.
2017-12-01
The Gaia-ESO survey (GES) is a ground-based spectroscopic survey, complementing the Gaia mission, in order to obtain high accuracy radial velocities and chemical abundances for 10^5 stars. Thanks to the numerous spectra collected by the GES, the detection of spectroscopic multiple system candidates (SBn, n ≥ 2) is one of the science case that can be tackled. We developed at IAA (Institut d'Astronomie et d'Astrophysique) a novative automatic method to detect multiple components from the cross-correlation function (CCF) of spectra and applied it to the CCFs provided by the GES. Since the bulk of the Milky Way field targets has been observed in both HR10 and HR21 GIRAFFE settings, we are also able to compare the efficiency of our SB detection tool depending on the wavelength range. In particular, we show that HR21 leads to a less efficient detection compared to HR10. The presence of strong and/or saturated lines (Ca II triplet, Mg I line, Paschen lines) in the wavelength domain covered by HR21 hampers the computation of CCFs, which tend to be broadened compared to their HR10 counterpart. The main drawback is that the minimal detectable radial velocity difference is ˜ \\SI{60}km/s for HR21 while it is ˜ \\SI{25}km/s for HR10. A careful design of CCF masks (especially masking Ca triplet lines) can substantially improve the detectability rate of HR21. Since HR21 spectra are quite similar to the one produced by the RVS spectrograph of the Gaia mission, analysis of RVS spectra in the context of spectroscpic binaries can take adavantage of the lessons learned from the GES to maximize the detection rate.
The binary fraction of planetary nebula central stars - III. the promise of VPHAS+
NASA Astrophysics Data System (ADS)
Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.
2018-04-01
The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.
Lattice animals in diffusion limited binary colloidal system
NASA Astrophysics Data System (ADS)
Shireen, Zakiya; Babu, Sujin B.
2017-08-01
In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.
Hoffmann, S K; Goslar, J; Bregier-Jarzebowska, R; Gasowska, A; Zalewska, A; Lomozik, L
2017-12-01
The mode of interaction and thermodynamic stability of complexes formed in binary and ternary Cu(II)/ATP/triamines systems were studied using potentiometric and spectroscopic (NMR, EPR, UV-Vis) methods. It was found that in binary metal-free systems ATP/H x PA species are formed (PA: Spd=spermidine or 3,3-tri=1,7-diamino-4-azaheptane) where the phosphate groups from nucleotides are preferred negative centers and protonated amine groups of amines are positive centers of reaction. In the ternary systems Cu/ATP/H x (PA) as well as Cu/(ATP)(PA) species are formed. The type of the formed Cu(II) complexes depends on pH of the solution. For a low pH value the complexation appears between Cu(II) and ATP molecules via oxygen atoms of phosphate groups. For a very high pH value, where ATP is hydrolyzed, the Cu(II) ions are bound to the nitrogen atoms of polyamine molecules. We did not detect any direct coordination of the N7 nitrogen atom of adenosine to Cu(II) ions. It means that the CuN7 interaction is an indirect type and can be due to noncovalent interplay including water molecule. EPR studies were performed at glassy state (77K) after a fast freezing both for binary and ternary systems. The glassy state EPR spectra do not reflect species identified in titration studies indicating significant effect of rapid temperature decrease on equilibrium of Cu(II) complexes. We propose the molecular structure of all the studied complexes at the glassy state deduced from EPR and optical spectroscopy results. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Skarka, M.; Liška, J.; Dřevěný, R.; Guggenberger, E.; Sódor, Á.; Barnes, T. G.; Kolenberg, K.
2018-02-01
We present a comprehensive study of Z CVn, an RR Lyrae star that shows long-term cyclic variations of its pulsation period. A possible explanation suggested from the shape of the O-C diagram is the light travel-time effect, which we thoroughly examine. We used original photometric and spectroscopic measurements and investigated the period evolution using available maximum times spanning more than one century. If the binary hypothesis is valid, Z CVn orbits around a black hole with minimal mass of 56.5 M_{⊙} on a very wide (Porbit = 78.3 yr) and eccentric orbit (e = 0.63). We discuss the probability of the formation of a black hole-RR Lyrae pair, and, although we found it possible, there is no observational evidence of the black hole in the direction to Z CVn. However, the main objection against the binary hypothesis is the comparison of the systemic radial velocity curve model and spectroscopic observations that clearly show that Z CVn cannot be bound in such a binary. Therefore, the variations of pulsation period are likely intrinsic to the star. This finding represents a discovery/confirmation of a new type of cyclic period changes in RR Lyrae stars. By the analysis of our photometric data, we found that the Blazhko modulation with period of 22.931 d is strongly dominant in amplitude. The strength of the phase modulation varies and is currently almost undetectable. We also estimated photometric physical parameters of Z CVn and investigated their variations during the Blazhko cycle using the inverse Baade-Wesselink method.
Araucaria Project: Pulsating stars in binary systems and as distance indicators
NASA Astrophysics Data System (ADS)
Pilecki, Bogumił; Gieren, Wolfgang; Pietrzyński, Grzegorz; Smolec, Radosław
2017-09-01
Pulsating stars, like Cepheids or RR Lyrae stars, are ones of the most important distance indicators. They are also key objects for testing the predictions of stellar evolution and stellar pulsation theory. In the Araucaria Project we have studied these objects since 2002, measuring distances to the galaxies in the Local Group and beyond. In 2010 we have for the first time confirmed spectroscopically the existence of a classical Cepheid in an eclipsing binary system. This has opened an opportunity to study in great details and with high accuracy (better than 1%) the physical parameters of these very important objects. First dynamical mass determination (Mcep = 4.16 ± 0.03 M⊙) let us solve the long-standing mass discrepancy problem. Since then we have measured masses for 6 classical Cepheids in binary systems and determined projection factors for three of them. One of the analyzed systems was confirmed to consist of two first-overtone Cepheids. Type II Cepheids are recently becoming more important as distance indicators and astrophysics laboratory, although our knowledge of these stars is quite limited. Their evolutionary status is also not well understood and observational constraints are needed to confirm the current theories. We are presenting here our first results of the spectroscopic analysis of 4 of these systems. The masses of type II Cepheids seem consistent with the expected 0.5 - 0.6 M⊙. We also present first results of the fully modeled pulsator originally classified as peculiar W Vir star. The mass of this star is 1.51 ± 0.09 M⊙ and the p-factor 1.3 ± 0.03. It was eventually found not to belong to any typical Cepheid group.
Innocent Bystanders: Carbon Stars from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Green, Paul
2013-03-01
Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ~5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ~7% are giants. The dCs likely span absolute magnitudes Mi from ~6.5 to 10.5. "G-type" dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be "N"-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.
NASA Astrophysics Data System (ADS)
Bailey, John I.; Mateo, Mario; White, Russel J.; Shectman, Stephen A.; Crane, Jeffrey D.
2018-04-01
We present multi-epoch high-dispersion optical spectra obtained with the Michigan/Magellan Fibre System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141 Myr) and NGC 2422 (73 Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [α/Fe] and the line-of-sight rotation rate, vrsin (i), from these spectra. Our median RV precision of 80 m s-1 on individual epochs that span a temporal baseline of 1.1 yr enables us to investigate membership and stellar binarity, and to search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. In NGC 2516, we identified 81 RV members, 27 spectroscopic binaries (17 previously identified as photometric binaries) and 16 other stars that show significant RV variability after accounting for average stellar jitter at the 74 m s-1 level. In NGC 2422, we identify 57 members, 11 spectroscopic binaries and three other stars that show significant RV variability after accounting for an average jitter of 138 m s-1. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion-mass limits for our targets. We also report mean cluster metallicity, velocity and velocity dispersion based on our member targets. We identify 58 non-member stars as RV variables, 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.
LONG-TERM OPTICAL STUDIES OF THE BE/X-RAY BINARY RX J0440.9+4431/LS V+44 17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jingzhi; Zhang, Peng; Liu, Wei
2016-04-15
We present the spectroscopic and photometric observations on the Be/X-ray binary RX J0440.9+4431 from 2001 to 2014. The short-term and long-term variability of the Hα line profile indicates that one-armed global oscillations existed in the circumstellar disk. Several positive and negative correlations between the V-band brightness and the Hα intensity were found from the long-term photometric and spectroscopic observations. We suggest that the monotonic increase of the V-band brightness and the Hα brightness between our 2005 and 2007 observations might be the result of a continuous mass ejection from the central Be star, while the negative correlation in 2007–2010 should bemore » caused by the cessation of mass loss from the Be star just before the decline in V-band brightness began (around our 2007 observations). With the extension of the ejection material, the largest circumstellar disk during the last two decades has been observed in our 2010 observations with an equivalent width of approximately −12.88 Å, which corresponds to a circumstellar disk with a size of 12.9 times the radius of the central Be star. Three consecutive X-ray outbursts peaking around MJD 55293, 55444, and 55591 might be connected with the largest circumstellar disk around the Be star. We also use the orbital motion of the neutron star as a probe to constrain the structure of the circumstellar disk and estimate the eccentricity of the binary system to be ≥0.4. After three years of the Hα intensity decline after the X-ray outbursts, a new circumstellar disk was being formed around the Be star after our 2013 observations.« less
An extensive analysis of the triple W UMa type binary FI BOO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopoulou, P.-E.; Papageorgiou, A.
We present a detailed analysis of the interesting W UMa binary FI Boo in view of the spectroscopic signature of a third body through photometry, period variation, and a thorough investigation of solution uniqueness. We obtained new BVR{sub c}I{sub c} photometric data that, when combined with spectroscopic data, enable us to analyze the system FI Boo and determine its basic orbital and physical properties through PHOEBE, as well as the period variation by studying the times of the minima. This combined approach allows us to study the long-term period changes in the system for the first time in order tomore » investigate the presence of a third body and to check extensively the solution uniqueness and the uncertainties of derived parameters. Our modeling indicates that FI Boo is a W-type moderate (f = 50.15% ± 8.10%) overcontact binary with component masses of M {sub h} = 0.40 ± 0.05 M {sub ☉} and M {sub c} = 1.07 ± 0.05 M {sub ☉}, temperatures of T {sub h} = 5746 ± 33 K and T {sub c} = 5420 ± 56 K, and a third body, which may play an important role in the formation and evolution. The results were tested by heuristic scanning and parameter kicking to provide the consistent and reliable set of parameters that was used to obtain the initial masses of the progenitors (1.71 ± 0.10 M {sub ☉} and 0.63 ± 0.01 M {sub ☉}, respectively). We also investigated the evolutionary status of massive components with several sets of widely used isochrones.« less
Spectroscopic and photometric study of the eclipsing interacting binary V495 Centauri
NASA Astrophysics Data System (ADS)
Rosales Guzmán, J. A.; Mennickent, R. E.; Djurašević, G.; Araya, I.; Curé, M.
2018-05-01
Double Periodic Variables (DPV) are among the new enigmas of semidetached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of 33.492 ± 0.002 d and a long period of 1283 d. We find a cool evolved star of M2=0.91± 0.2 M_{⊙}, T2 = 6000 ± 250 K and R2=19.3 ± 0.5 R_{⊙} and a hot companion of M1= 5.76± 0.3 M_{⊙}, T1 = 16960 ± 400 K and R=4.5± 0.2 R_{⊙}. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension Rd= 40.2± 1.3 R_{⊙} contributing ˜11 per cent to the total luminosity of the system at the V band. The system is seen under inclination 84.8° ± 0.6° and it is at a distance d = 2092 ± 104.6 pc. The light-curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 per cent hotter than the surrounding disc material. The persistent V < R asymmetry of the Hα emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.
Orbital Solution for the Spectroscopic Binary in the GW Ori Hierarchical Triple
NASA Astrophysics Data System (ADS)
Prato, L.; Ruíz-Rodríguez, Dary; Wasserman, L. H.
2018-01-01
We present the first double-lined orbital solution for the close binary in the GW Ori triple system. Using 12 epochs of infrared spectroscopy, we detected the lines of both stars in the inner pair, previously known as single-lined only. Our preliminary infrared orbital solution has an eccentricity of e = 0.21 ± 0.10, a period of P = 241.15 ± 0.72 days, and a mass ratio of q = 0.66 ± 0.13. We find a larger semi-amplitude for the primary star, K1 = 6.57 ± 1.00 km s‑1, with an infrared-only solution compared to K1 = 4.41 ± 0.33 km s‑1 with optical data from the literature, likely the result of line blending and veiling in the optical. The component spectral types correspond to G3 and K0 stars, with v\\sin i values of 43 km s‑1 and 50 km s‑1, respectively. We obtained a flux ratio of α = 0.58 ± 0.14 in the H-band, allowing us to estimate individual masses of 3.2 and 2.7 M ⊙ for the primary and secondary, respectively, using evolutionary tracks. The tracks also yield a coeval age of 1 Myr for both components to within 1σ. GW Ori is surrounded by a circumbinary/circumtriple disk. A tertiary component has been detected in previous studies; however, we did not detect this component in our near-infrared spectra, probably the result of its relative faintness and blending in the absorption lines of these rapidly rotating stars. With these results, GW Ori joins the small number of classical T Tauri, double-lined spectroscopic binaries.
The early-type multiple system QZ Carinae
NASA Astrophysics Data System (ADS)
Mayer, P.; Lorenz, R.; Drechsel, H.; Abseim, A.
2001-02-01
We present an analysis of the early-type quadruple system QZ Car, consisting of an eclipsing and a non-eclipsing binary. The spectroscopic investigation is based on new high dispersion echelle and CAT/CES spectra of H and He lines. The elements for the orbit of the non-eclipsing pair could be refined. Lines of the brighter component of the eclipsing binary were detected in near-quadrature spectra, while signatures of the fainter component could be identified in only few spectra. Lines of the primary component of the non-eclipsing pair and of both components of the eclipsing pair were found to be variable in position and strength; in particular, the He ii 4686 emission line of the brighter eclipsing component is strongly variable. An ephemeris for the eclipsing binary QZ Car valid at present was derived Prim. Min. = hel. JD 2448687.16 + 5fd9991 * E. The relative orbit of the two binary constituents of the multiple system is discussed. In contrast to earlier investigations we found radial velocity changes of the systemic velocities of both binaries, which were used - together with an O-C analysis of the expected light-time effect - to derive approximate parameters of the mutual orbit of the two pairs. It is shown that this orbit and the distance to QZ Car can be further refined by minima timing and interferometry. Based on observations collected at the European Southern Observatory, La Silla, Chile.
PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prša, A.; Conroy, K. E.; Horvat, M.
The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but weremore » not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.« less
Kinematic Clues to OB Field Star Origins: Radial Velocities, Runaways, and Binaries
NASA Astrophysics Data System (ADS)
Januszewski, Helen; Castro, Norberto; Oey, Sally; Becker, Juliette; Kratter, Kaitlin M.; Mateo, Mario; Simón-Díaz, Sergio; Bjorkman, Jon E.; Bjorkman, Karen; Sigut, Aaron; Smullen, Rachel; M2FS Team
2018-01-01
Field OB stars are a crucial probe of star formation in extreme conditions. Properties of massive stars formed in relative isolation can distinguish between competing star formation theories, while the statistics of runaway stars allow an indirect test of the densest conditions in clusters. To address these questions, we have obtained multi-epoch, spectroscopic observations for a spatially complete sample of 48 OB field stars in the SMC Wing with the IMACS and M2FS multi-object spectrographs at the Magellan Telescopes. The observations span 3-6 epochs per star, with sampling frequency ranging from one day to about one year. From these spectra, we have calculated the radial velocities (RVs) and, in particular, the systemic velocities for binaries. Thus, we present the intrinsic RV distribution largely uncontaminated by binary motions. We estimate the runaway frequency, corresponding to the high velocity stars in our sample, and we also constrain the binary frequency. The binary frequency and fitted orbital parameters also place important constraints on star formation theories, as these properties drive the process of runaway ejection in clusters, and we discuss these properties as derived from our sample. This unique kinematic analysis of a high mass field star population thus provides a new look at the processes governing formation and interaction of stars in environments at extreme densities, from isolation to dense clusters.
Visibility of Active Galactic Nuclei in the Illustris Simulation
NASA Astrophysics Data System (ADS)
Hutchinson-Smith, Tenley; Kelley, Luke; Moreno, Jorge; Hernquist, Lars; Illustris Collaboration
2018-01-01
Active galactic nuclei (AGN) are the very bright, luminous regions surrounding supermassive black holes (SMBH) located at the centers of galaxies. Supermassive black holes are the source of AGN feedback, which occurs once the SMBH reaches a certain critical mass. Almost all large galaxies contain a SMBH, but SMBH binaries are extremely rare. Finding these binary systems are important because it can be a source of gravitational waves if the two SMBH collide. In order to study supermassive black holes, astronomers will often rely on the AGN’s light in order to locate them, but this can be difficult due to the extinction of light caused by the dust and gas surrounding the AGN. My research project focuses on determining the fraction of light we can observe from galactic centers using the Illustris simulation, one of the most advanced cosmological simulations of the universe which was created using a hydrodynamic code and consists of a moving mesh. Measuring the fraction of light observable from galactic centers will help us know what fraction of the time we can observe dual and binary AGN in different galaxies, which would also imply a binary SMBH system. In order to find how much light is being blocked or scattered by the gas and dust surrounding the AGN, we calculated the density of the gas and dust along the lines of sight. I present results including the density of gas along different lines of sight and how it correlates with the image of the galaxy. Future steps include taking an average of the column densities for all the galaxies in Illustris and studying them as a function of galaxy type (before merger, during merger, and post-merger), which will give us information on how this can also affect the AGN luminosity.
THEORETICAL AND EXPERIMENTAL ASPECTS OF ISOTOPIC FRACTIONATION.
O'Neil, James R.
1986-01-01
Essential to the interpretation of natural variations of light stable isotope ratios is knowledge of the magnitude and temperature dependence of isotopic fractionation factors between the common minerals and fluids. These fractionation factors are obtained in three ways: (1) Semi-empirical calculations using spectroscopic data and the methods of statistical mechanics. (2) Laboratory calibration studies. (3) Measurements of natural samples whose formation conditions are well-known or highly constrained. In this chapter methods (1) and (2) are evaluated and a review is given of the present state of knowledge of the theory of isotopic fractionation and the fraction that influence the isotopic properties of minerals.
Three-dimensional orbit and physical parameters of HD 6840
NASA Astrophysics Data System (ADS)
Wang, Xiao-Li; Ren, Shu-Lin; Fu, Yan-Ning
2016-02-01
HD 6840 is a double-lined visual binary with an orbital period of ˜7.5 years. By fitting the speckle interferometric measurements made by the 6 m BTA telescope and 3.5 m WIYN telescope, Balega et al. gave a preliminary astrometric orbital solution of the system in 2006. Recently, Griffin derived a precise spectroscopic orbital solution from radial velocities observed with OPH and Cambridge Coravel. However, due to the low precision of the determined orbital inclination, the derived component masses are not satisfying. By adding the newly collected astrometric data in the Fourth Catalog of Interferometric Measurements of Binary Stars, we give a three-dimensional orbit solution with high precision and derive the preliminary physical parameters of HD 6840 via a simultaneous fit including both astrometric and radial velocity measurements.
Line profile variability in the massive binary HD 152219
NASA Astrophysics Data System (ADS)
Sana, H.; Gosset, E.
2009-07-01
HD 152219 is a massive binary system with O9.5 III and B1-2 III/V components and a short orbital period of 4.2 d. In a previous work, we showed that the primary star (M_{prim}˜21 M_⊙) was presenting clear line profile variabilities (LPVs) that might be caused by nonradial pulsations (NRPs). In the present work, we report on an intensive spectroscopic monitoring, that aimed at unveiling the nature of the detected LPVs. Based on this new data set, we discard the NRPs and point out the Rossiter-McLaughlin effect as % being the cause of the observed LPVs. The upper limit derived on the amplitude of undetected NRPs, if any, is set at a couple of part per thousands of the continuum level.
Research of Precataclysmic Variables with Radius Excesses
NASA Astrophysics Data System (ADS)
Deminova, N. R.; Shimansky, V. V.; Borisov, N. V.; Gabdeev, M. M.; Shimanskaya, N. N.
2017-06-01
The results of spectroscopic observations of the pre-cataclysmic variable NSVS 14256825, which is a HW Vir binary system, were analyzed. The chemical composition is determined, the radial velocities and equivalent widths of a given star are measured. The fundamental parameters of the components were determined (R1 = 0.166 R⊙ , M2 = 0.100 M⊙ , R2 = 0.122 R⊙). It is shown that the secondary component has a mass close to the mass of brown dwarfs. A comparison of two close binary systems is made: HS 2333 + 3927 and NSVS 14256825. A radius-to-mass relationship for the secondary components of the studied pre-cataclysmic variables is constructed. It is concluded that an excess of radii relative to model predictions for MS stars is observed in virtually all systems.
A Study of Precataclysmic Binaries Through Theoretic Modeling of Light Curves and Spectra
NASA Astrophysics Data System (ADS)
Mitrofanova, A. A.; Shimansky, V. V.; Borisov, N. V.
2017-06-01
The article presents results of three pre-cataclysmic binaries (PN G068.1+11.0, TW Crv and RE J2013+4002) investigation. Spectroscopic and photometric observations were obtained on BTA and Zeiss-1000 of SAO RAS and on RTT-150. We used the modeling of light curves and spectra to determine the fundamental parameters for all three systems. The PN G068.1+11.0 parameters were obtained with the use of the evolutionary tracks for the nuclei of planetary nebulae of different masses. According to the results of the study, it was found that the secondary components of PN G068.1+11.0 and TW Crv have luminosity excess, but secondary component of RE J2013+4002 doesn't have one.
KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, H.; Borkovits, T.; Rappaport, S. A.
2016-03-01
KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. Frommore » the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.« less
Star Formation in a Complete Spectroscopic Survey of Galaxies
NASA Astrophysics Data System (ADS)
Carter, B. J.; Fabricant, D. G.; Geller, M. J.; Kurtz, M. J.; McLean, B.
2001-10-01
The 15R-North galaxy redshift survey is a uniform spectroscopic survey (S/N~10) covering the range 3650-7400 Å for 3149 galaxies with median redshift 0.05. The sample is 90% complete to R=15.4. The median slit covering fraction is 24% of the galaxy, apparently sufficient to minimize the effects of aperture bias on the EW(Hα). Forty-nine percent of the galaxies in the survey have one or more emission lines detected at >=2 σ. In agreement with previous surveys, the fraction of absorption-line galaxies increases steeply with galaxy luminosity. We use Hβ, [O III], Hα, and [N II] to discriminate between star-forming galaxies and AGNs. At least 20% of the galaxies are star-forming, at least 17% have AGN-like emission, and 12% have unclassifiable emission. The unclassified 12% may include a ``hybrid'' population of galaxies with both star formation and AGN activity. The AGN fraction increases steeply with luminosity; the fraction of star-forming galaxies decreases. We use the EW(Hα+[N II]) to estimate the Scalo birthrate parameter, b, the ratio of the current star formation rate to the time averaged star formation rate. The median birthrate parameter is inversely correlated with luminosity in agreement with the conclusions based on smaller samples (Kennicutt, Tamblyn, & Congdon). Because our survey is large, we identify 33 vigorously star-forming galaxies with b>3. We confirm the conclusion of Jansen, Franx, & Fabricant that EW([O II]) must be used with caution as a measure of current star formation. Finally, we examine the way galaxies of different spectroscopic type trace the large-scale galaxy distribution. As expected the absorption-line fraction decreases and the star-forming emission-line fraction increases as the galaxy density decreases. The AGN fraction is insensitive to the surrounding galaxy density; the unclassified fraction declines slowly as the density increases. For the star-forming galaxies, the EW(Hα) increases very slowly as the galaxy number density decreases. Whether a galaxy forms stars or not is strongly correlated with the surrounding galaxy density averaged over a scale of a few Mpc. This dependence reflects, in large part, the morphology-density relation. However, for galaxies forming stars, the stellar birthrate parameter is remarkably insensitive to the galaxy density. This conclusion suggests that the triggering of star formation occurs on a smaller spatial scale.
2001-04-10
for gas from the circumbinary disk to cross disk gaps in the...00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE Evidence for Residual Material in Accretion Disk Gaps : CO Fundamental Emission from the T Tauri...MATERIAL IN ACCRETION DISK GAPS 455 type of modulated, or pulsed, accretion predicted by Arty- mowicz & Lubow (1996) for an eccentric, equal mass
A Search for Companions to the Pulsating sdB Star EC 20117-4014
NASA Astrophysics Data System (ADS)
Otani, T.; Oswalt, T.; Amaral, M.; Jordan, R.
2017-03-01
EC 20117-4014 is known to be a spectroscopic binary system consisting of an sdB star and F5V star. It was monitored using the SARA-CT telescope in Cerro Tololo, Chile over several observing seasons. Periodic O-C variations were detected in the two highest amplitude pulsations in EC 20117-4014, permitting detection of the F5V companion, whose period and semimajor axis were previously unknown.
Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Shan, Yutong; Johnson, John A.; Morton, Timothy D.
2015-11-01
We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.
Selective Encaging of N2O in N2O-N2 Binary Gas Hydrates via Hydrate-Based Gas Separation.
Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho
2017-03-21
The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N 2 O-N 2 ) binary gas hydrates formed from N 2 O/N 2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N 2 O-N 2 binary gas hydrates is identified as the structure I (sI) hydrate. Raman spectra for the N 2 O-N 2 binary gas hydrate formed from N 2 O/N 2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N 2 O molecules occupy both large and small cages of the sI hydrate. In contrast, there is a single Raman band of N 2 O molecules for the N 2 O-N 2 binary gas hydrate formed from the N 2 O/N 2 (20/80 mol %) gas mixture, indicating that N 2 O molecules are trapped in only large cages of the sI hydrate. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N 2 O-N 2 binary gas hydrates in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N 2 O molecules rather than N 2 molecules in the hydrate cages, leading to a possible process for separating N 2 O from gas mixtures via hydrate formation. The phase equilibrium conditions, pseudo-pressure-composition (P-x) diagram, and gas storage capacity of N 2 O-N 2 binary gas hydrates are discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; McKeever, J.; Rawls, M. L.
2013-04-10
Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less
Xin, Hangshu; Ding, Xue; Zhang, Liyang; Sun, Fang; Wang, Xiaofan; Zhang, Yonggen
2017-05-24
The objectives of this study were to investigate (1) nutritive values and biodegradation characteristics and (2) mid-IR spectroscopic features within the regions associated with carbohydrate functional groups (including cellulosic component (CELC), structural carbohydrate (STCHO), and total carbohydrate (CHO)) in different morphological fractions of corn stover. Furthermore, correlation and regression analyses were also applied to determine the relationship between nutritional values and spectroscopic parameters. The results showed that different morphological sections of corn stover had different nutrient supplies, in situ biodegradation characteristics, and spectral structural features within carbohydrate regions. The stem rind and ear husk were both high in fibrous content, which led to the lowest effective degradabilities (ED) among these stalk fractions. The ED values of NDF were ranked ear husk > stem pith > leaf blade > leaf sheath > whole plant > stem rind. Intensities of peak height and area within carbohydrate regions were relatively more stable compared with spectral ratio profiles. Significant difference was found only in peak area intensity of CELC, which was at the highest level for stem rind, followed by stem pith, leaf sheath, whole plant, leaf blade, and ear husk. Correlation results showed that changes in some carbohydrate spectral ratios were highly associated with carbohydrate chemical profiles and in situ rumen degradation kinetics. Among the various carbohydrate molecular spectral parameters that were tested in multiple regression analysis, CHO height ratios, and area ratios of CELC:CHO and CELC:STCHO as well as CELC area were mostly sensitive to nutrient supply and biodegradation characteristics in different morphological fractions of corn stover.
First Detection of Krypton and Xenon in a White Dwarf
NASA Technical Reports Server (NTRS)
Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.
2012-01-01
We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.
The Impact of Binary Companions on Planetary Systems
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel
2018-01-01
The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.
VSOP: the variable star one-shot project. I. Project presentation and first data release
NASA Astrophysics Data System (ADS)
Dall, T. H.; Foellmi, C.; Pritchard, J.; Lo Curto, G.; Allende Prieto, C.; Bruntt, H.; Amado, P. J.; Arentoft, T.; Baes, M.; Depagne, E.; Fernandez, M.; Ivanov, V.; Koesterke, L.; Monaco, L.; O'Brien, K.; Sarro, L. M.; Saviane, I.; Scharwächter, J.; Schmidtobreick, L.; Schütz, O.; Seifahrt, A.; Selman, F.; Stefanon, M.; Sterzik, M.
2007-08-01
Context: About 500 new variable stars enter the General Catalogue of Variable Stars (GCVS) every year. Most of them however lack spectroscopic observations, which remains critical for a correct assignement of the variability type and for the understanding of the object. Aims: The Variable Star One-shot Project (VSOP) is aimed at (1) providing the variability type and spectral type of all unstudied variable stars, (2) process, publish, and make the data available as automatically as possible, and (3) generate serendipitous discoveries. This first paper describes the project itself, the acquisition of the data, the dataflow, the spectroscopic analysis and the on-line availability of the fully calibrated and reduced data. We also present the results on the 221 stars observed during the first semester of the project. Methods: We used the high-resolution echelle spectrographs HARPS and FEROS in the ESO La Silla Observatory (Chile) to survey known variable stars. Once reduced by the dedicated pipelines, the radial velocities are determined from cross correlation with synthetic template spectra, and the spectral types are determined by an automatic minimum distance matching to synthetic spectra, with traditional manual spectral typing cross-checks. The variability types are determined by manually evaluating the available light curves and the spectroscopy. In the future, a new automatic classifier, currently being developed by members of the VSOP team, based on these spectroscopic data and on the photometric classifier developed for the COROT and Gaia space missions, will be used. Results: We confirm or revise spectral types of 221 variable stars from the GCVS. We identify 26 previously unknown multiple systems, among them several visual binaries with spectroscopic binary individual components. We present new individual results for the multiple systems V349 Vel and BC Gru, for the composite spectrum star V4385 Sgr, for the T Tauri star V1045 Sco, and for DM Boo which we re-classify as a BY Draconis variable. The complete data release can be accessed via the VSOP web site. Based on data obtained at the La Silla Observatory, European Southern Observatory, under program ID 077.D-0085.
NASA Astrophysics Data System (ADS)
Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.
2014-06-01
We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.
Ultracool Dwarfs and their companions
NASA Astrophysics Data System (ADS)
Blake, Cullen H.
This thesis explores new techniques for making precise measurements of low-mass stars and brown dwarfs, collectively known as Ultracool Dwarfs (UCDs). These new techniques are directly applicable to the search for extrasolar planets and efforts to test theoretical models of stellar structure and evolution at the bottom of the main sequence. The first three chapters of this thesis describe the development and application of a new technique for making radial velocity measurements of UCDs at near infrared (NIR) wavelengths. The first chapter describes a pilot study that demonstrates a significant improvement over previous work on Doppler measurements in the NIR. Using this technique we have carried out a Doppler survey of 65 L dwarfs. The second chapter describes the discovery of a new spectroscopic binary that may be one of the most important for constraining theoretical models of UCDs. The third chapter describes the Doppler survey in detail and presents measurements of a new spectroscopic binary system that is an excellent candidate for a giant planetary companion to a mid-L dwarf. This chapter also includes a discussion of the of the rotation, space motions, and binarity of the L dwarfs in the survey sample. The fourth chapter describes efforts to obtain precise photometric measurements of UCDs with the Peters Automated Infrared Imaging Telescope (PAIRITEL). Using software scheduling and data reduction systems designed in part by the author, PAIRITEL gathered more than 10 6 seconds of observations of a sample of 20 UCDs. We investigate the limitations to ground-based infrared photometry and characterize the ability of a system like PAIRITEL to detect transits of UCDs by Earth-like planets. The fifth chapter explores the potential impact of future synoptic surveys on studies of UCDs. Surveys like Pan-STARRS and LSST will obtain a small number of high-quality observations of a large number of UCDs. Using data from the Sloan Digital Sky Survey, we demonstrate that such data can be used to reliably detect low-mass eclipsing binary stars. We present the discovery of a double- lined eclipsing binary system that allows us to directly measure the masses and radii of two M dwarfs.
A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis Harms.
Aldulaimi, Omar; Uche, Fidelia I; Hameed, Hamza; Mbye, Haddijatou; Ullah, Imran; Drijfhout, Falko; Claridge, Timothy D W; Horrocks, Paul; Li, Wen-Wu
2017-02-23
A decoction of the bark of Cylicodiscus gabunensis Harms is used as a traditional medicine in the treatment of malaria in Nigeria. This study aims to validate the antimalarial potency of this decoction in vitro against Plasmodium falciparum and define potential bioactive constituents within the C. gabunensis bark. A bioassay-guided separation and fractionation protocol was applied to C. gabunensis extracts, exploiting the use of a Malaria Sybr Green I Fluorescence assay method to monitor antiproliferative effects on parasites as well as define 50% inhibition concentrations. Spectroscopic techniques, including GC-MS, TOF LC-MS and 1 H NMR were used to identify phytochemicals present in bioactive fractions. Analogues of gallic acid were synthesized de novo to support the demonstration of the antimalarial action of phenolic acids identified in C. gabunensis bark. In vitro cytotoxicity of plant extracts, fractions and gallate analogues was evaluated against the HepG2 cell line. The antimalarial activity of ethanolic extracts of C. gabunensis bark was confirmed in vitro, with evidence for phenolic acids, primarily gallic acid and close analogues such as ethyl gallate, likely providing this effect. Further fractionation produced the most potent fraction with a 50% inhibitory concentration of 4.7µg/ml. Spectroscopic analysis, including 1 H NMR, LC-MS and GC-MS analysis of this fraction and its acid hydrolyzed products, indicated the presence of conjugates of gallic acid with oligosaccharides. The extracts/fractions and synthetic alkyl and alkenyl gallates showed moderate selectivity against P. falciparum. These results support the use of the bark of C. gabunensis as a traditional medicine in the treatment of human malaria, with phenolic acid oligosaccharide complexes evident in the most bioactive fractions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
The evolution of photoevaporating viscous discs in binaries
NASA Astrophysics Data System (ADS)
Rosotti, Giovanni P.; Clarke, Cathie J.
2018-02-01
A large fraction of stars are in binary systems, yet the evolution of protoplanetary discs in binaries has been little explored from the theoretical side. In this paper, we investigate the evolution of the discs surrounding the primary and secondary components of binary systems on the assumption that this is driven by photoevaporation induced by X-rays from the respective star. We show how for close enough separations (20-30 au for average X-ray luminosities) the tidal torque of the companion changes the qualitative behaviour of disc dispersal from inside out to outside in. Fewer transition discs created by photoevaporation are thus expected in binaries. We also demonstrate that in close binaries the reduction in viscous time leads to accelerated disc clearing around both components, consistent with unresolved observations. When looking at the differential disc evolution around the two components, in close binaries discs around the secondary clear first due to the shorter viscous time-scale associated with the smaller outer radius. In wide binaries instead the difference in photoevaporation rate makes the secondaries longer lived, though this is somewhat dependent on the assumed scaling of viscosity with stellar mass. We find that our models are broadly compatible with the growing sample of resolved observations of discs in binaries. We also predict that binaries have higher accretion rates than single stars for the same disc mass. Thus, binaries probably contribute to the observed scatter in the relationship between disc mass and accretion rate in young stars.
A 15.7-Minute AM CVn Binary Discovered in K2
NASA Astrophysics Data System (ADS)
Green, M. J.; Hermes, J. J.; Marsh, T. R.; Steeghs, D. T. H.; Bell, Keaton J.; Littlefair, S. P.; Parsons, S. G.; Dennihy, E.; Fuchs, J. T.; Reding, J. S.; Kaiser, B. C.; Ashley, R. P.; Breedt, E.; Dhillon, V. S.; Gentile Fusillo, N. P.; Kerry, P.; Sahman, D. I.
2018-04-01
We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-minute cadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 minutes makes this system the fourth-shortest period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 minutes, 16.1121 ± 0.0004 minutes and 664.82 ± 0.06 minutes, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1 = 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by LISA, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.
A 15.7-minAM CVn binary discovered in K2
NASA Astrophysics Data System (ADS)
Green, M. J.; Hermes, J. J.; Marsh, T. R.; Steeghs, D. T. H.; Bell, Keaton J.; Littlefair, S. P.; Parsons, S. G.; Dennihy, E.; Fuchs, J. T.; Reding, J. S.; Kaiser, B. C.; Ashley, R. P.; Breedt, E.; Dhillon, V. S.; Gentile Fusillo, N. P.; Kerry, P.; Sahman, D. I.
2018-07-01
We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.
NASA Astrophysics Data System (ADS)
Pablo, Herbert; Richardson, Noel D.; Moffat, Anthony F. J.; Corcoran, Michael; Shenar, Tomer; Benvenuto, Omar; Fuller, Jim; Nazé, Yaël; Hoffman, Jennifer L.; Miroshnichenko, Anatoly; Maíz Apellániz, Jesús; Evans, Nancy; Eversberg, Thomas; Gayley, Ken; Gull, Ted; Hamaguchi, Kenji; Hamann, Wolf-Rainer; Henrichs, Huib; Hole, Tabetha; Ignace, Richard; Iping, Rosina; Lauer, Jennifer; Leutenegger, Maurice; Lomax, Jamie; Nichols, Joy; Oskinova, Lida; Owocki, Stan; Pollock, Andy; Russell, Christopher M. P.; Waldron, Wayne; Buil, Christian; Garrel, Thierry; Graham, Keith; Heathcote, Bernard; Lemoult, Thierry; Li, Dong; Mauclaire, Benjamin; Potter, Mike; Ribeiro, Jose; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner
2015-08-01
We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system δ Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P\\gt 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.
Absolute parameters of detached binaries in the southern sky - III: HO Tel
NASA Astrophysics Data System (ADS)
Sürgit, D.; Erdem, A.; Engelbrecht, C. A.; van Heerden, H. P.; Manick, R.
2017-07-01
We present the first radial velocity analysis of the southern eclipsing binary star HO Tel, based on spectra obtained at the South African Astronomical Observatory in 2013. The orbital solution of this neglected binary gave the quite large spectroscopic mass ratio of 0.921(±0.005). The V light curve from the All Sky Automated Survey (ASAS) and Walraven five-colour (WULBV) photometric light curves (Spoelstra and Van Houten 1972) were solved simultaneously using the Wilson-Devinney code supplemented by the Monte Carlo search method. The final photometric model describes HO Tel as a detached binary star where both component stars fill about three-quarters of their Roche limiting lobes. The masses and radii were found to be 1.88(±0.04) M⊙, 2.28(±0.15) R⊙ and 1.73(±0.04) M⊙, 2.08(±0.16) R⊙ for the primary and secondary components of the system, respectively. The distance to HO Tel was calculated as 282(±30) pc, taking into account interstellar extinction. The evolution case of HO Tel was also examined. Both components of the system are evolved main-sequence stars with an age of approximately 1.1 Gy, when compared to Geneva theoretical evolution models.
Shapiro, Stuart L
2017-05-15
We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~10 52±1 erg s -1 . A similar result applies to their BH accretion rates upon jet launch, which is ~0.1-10 M ⊙ s -1 . We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB.
Shapiro, Stuart L.
2018-01-01
We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~1052±1 erg s−1. A similar result applies to their BH accretion rates upon jet launch, which is ~0.1–10 M⊙ s−1. We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB. PMID:29881790
NASA Astrophysics Data System (ADS)
Chen, Huipeng
Recent studies suggest that there are three phase fractions in semicrystalline polymers, the crystalline, the mobile amorphous and the rigid amorphous phases. Due to the distinct properties of the rigid amorphous fraction, RAF, it has been investigated for more than twenty years. In this thesis, a general method using quasi-isothermal temperature-modulated differential scaning calorimetry, DSC, is provided for the first time to obtain the temperature dependent RAF and the other two fractions, crystalline fraction and mobile amorphous fraction, MAF. For poly(ethylene terephthalate), PET, our results show RAF was vitrified during quasi-isothermal cooling after crystallization had been completed and became totally devitrified during quasi-isothermal heating before the start of melting. Several years after people initially discovered the existence of RAF, another issue arose relating to the physical location of RAF and mobile amorphous fraction, MAF, within a lamellar stack model. Two very different models to describe the location of RAF were proposed. In the Heterogeneous Stack Model, HET, RAF is located outside the lamellar stacks. In the Homogeneous Stack Model, HSM, RAF was located inside the lamellar stacks. To determine the lamellar structure of semicrystalline polymers comprising three phase, a general method is given in this thesis by using a combination of the DSC and small angle X-ray scattering, SAXS techniques. It has been applied to Nylon 6, isotactic polystyrene, iPS, and PET. It was found for all of these materials, the HSM model is correct to describe the lamellar structure. In addition to the determination of lamellar structures, this method can also provide the exact fraction of MAF inside and outside lamellar stacks for binary polymer blends. For binary polymer blends, MAF, normally is located partially inside and partially outside the lamellar stacks. However, the quantification of the MAF inside and outside the lamellar stacks has now been provided and is applied to the iPS/atactic polystyrene, aPS, blends. The fractions of MAF inside and outside the lamellar stacks were quantified for the first time. For A/B binary polymer blends, it has been reported that if B is already crystalline, the crystalline fraction would serve as a restriction on the subsequent growth of the crystallizable partner A, while amorphous fraction could be diffused from the crystalline growth front of the crystallizing A component. Considering the effect of RAF on binary blends, a new concept is provided: like the crystals, the RAF of one polymer component may inhibit the growth of crystals of the other blend partner. The non-isothermal crystallization of PET/poly(lactic acid), PLA, blends were investigated and the results confirmed the new concept is correct: PET forms a large amount of RAF and inhibits crystal formation in PLA. Then, we broadened the concept of RAF and investigated the RAF in recent 'hot' materials, polymer nanocomposites. It was found the fraction of RAF greatly increased with a small amount of multi-wall carbon nanotubes, MWCNT, loading in PET electrospun, ES, fibers. A general model is given for polymer ES fibers with MWCNTs: the addition of MWCNTs causes polymer chains in the ES fibers to become more extended, (ie, more stretched), resulting in more confinement of PET chains and an increase in the RAF.
WIYN OPEN CLUSTER STUDY. XLVIII. THE HARD-BINARY POPULATION OF NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu
2012-08-15
We present an in-depth study of the hard-binary population of the old (7 Gyr) open cluster NGC 188. Utilizing 85 spectroscopic binary orbits out of a complete sample of 129 detected binary members, we study the cluster binary frequency and the distributions of binary orbital elements among the main-sequence (MS), giant, and blue straggler (BS) populations. The results are derived from our ongoing radial velocity survey of the cluster, which spans in magnitude from the brightest stars in the cluster to V = 16.5 (about 1.1-0.9 M{sub Sun} ), and extends to a projected radius of 17 pc ({approx}13 coremore » radii). Our detectable binaries have periods ranging from a few days to of order 10{sup 4} days, and thus are hard binaries that dynamically power the cluster. The MS solar-type hard binaries in NGC 188 are nearly indistinguishable from similar binaries in the Galactic field. We observe a global solar-type MS hard-binary frequency in NGC 188 of 23% {+-} 2%, which when corrected for incompleteness results in a frequency of 29% {+-} 3% for binaries with periods less than 10{sup 4} days. For MS hard binaries in the cluster, we observe a log-period distribution that rises toward our detection limit, a roughly Gaussian eccentricity distribution centered on e = 0.35 (for binaries with periods longer than the circularization period), and a secondary-mass distribution that rises toward lower-mass companions. Importantly, the NGC 188 BS binaries show significantly different characteristics than the solar-type MS binaries in NGC 188. We observe a BS hard-binary frequency of 76% {+-} 19%, three times that of the MS. The excess of this binary frequency over the normal MS binary frequency is valid at the >99% confidence level. Furthermore, the BS binary eccentricity-log-period distribution is distinct from that of the MS at the 99% confidence level, with the majority of the BS binaries having periods of order 1000 days and lower eccentricities. The secondary-mass distribution for these long-period BS binaries is narrow and peaked with a mean value of about 0.5 M{sub Sun }. Predictions for mass-transfer products are most closely consistent with the binary properties of these NGC 188 BSs, which comprise two-thirds of the BS population. Additionally, we compare the NGC 188 binaries to those evolved within the sophisticated Hurley et al. (2005) N-body open cluster simulation. The MS hard-binary population predicted by the simulation is significantly different from the MS hard-binary population observed in NGC 188, in frequency and distributions of period and eccentricity. Many of these differences result from the adopted initial binary population, while others reflect on the physics used in the simulation (e.g., tidal circularization). Additional simulations with initial conditions that are better motivated by observations are necessary to properly investigate the dynamical evolution of a rich binary population in open clusters like NGC 188.« less
The Rotation of M Dwarfs Observed by the Apache Point Galactic Evolution Experiment
NASA Astrophysics Data System (ADS)
Gilhool, Steven H.; Blake, Cullen H.; Terrien, Ryan C.; Bender, Chad; Mahadevan, Suvrath; Deshpande, Rohit
2018-01-01
We present the results of a spectroscopic analysis of rotational velocities in 714 M-dwarf stars observed by the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template-fitting technique to estimate v\\sin i while simultaneously estimating {log}g, [{{M}}/{{H}}], and {T}{eff}. We conservatively estimate that our detection limit is 8 km s‑1. We compare our results to M-dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M4 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases where the measured v\\sin i and rotation period are physically inconsistent, requiring \\sin i> 1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M4 transition by a factor of ∼2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bimodal distribution in rotation that is seen in photometric surveys.
A Study of the Low Mass Binary Star Ross 614
NASA Astrophysics Data System (ADS)
Gatewood, G.; Han, I.; Tangren, W.
2001-12-01
We have combined photograph, MAP, interferometric, and spectroscopic data to determine the orbital characteristics and masses of the Ross 614 binary star system. Attention was first drawn to the star by Frank E. Ross (1927, AJ 37, 193) who noticed its high proper motion in a comparison of new plates with those taken at the Yerkes Observatory by E.E. Barnard. The Binary nature of the star was recognized from accelerations in the star's proper motion (D. Reuyl 1936, AJ 55, 236) and the mass of the companion was first estimated by combining measurements of McCormick and Sproul plates with a separation measured by Walter Baade at the Hale 5-m reflector (S.L. Lippincott 1955, AJ 60, 379). In her paper Lippincott notes the companion's significance as defining the lower end of the observational main sequence. Fifty six years later the star still holds that honor. With a wealth of new data spanning more than 3 additional orbits, we find her value of 0.08 solar masses to be within our error of our value.
Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingzhi; Ma, Bin; Hu, Yi
AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i -band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars ( δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassifiedmore » periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.« less
NASA Technical Reports Server (NTRS)
Saffer, Rex A.; Wade, Richard A.; Liebert, James; Green, Richard F.; Sion, Edward M.; Bechtold, J.; Foss, Diana; Kidder, K.
1993-01-01
Ultraviolet spectroscopy, optical spectroscopy, and spectrophotometry have been used to study the excess UV stars PG 0308 + 096 and PG 1026 + 002. Both objects are short-period binary systems, each containing a DA white dwarf star and a dM star. Orbital periods of approximately 0.284 day for PG 0308 + 096, and aproximately 0.597 day for PG 1026, have been found by spectroscopic analysis of the H-alpha emission line. Ly-alpha and Balmer line profile fitting were used to estimate the mass of white dwarf stars; mass estimates for the dM stars are based on their spectral types. The orbital inclinations are derived from these masses, the periods, and amplitudes of the H-alpha radial velocity curves. The equivalent width of the H-alpha emission line, in each binary system, varies with the orbital phase in such a manner as to imply that it arises, in large part at least, from the hemisphere of the M star that faces the white dwarf star.
The formation of Kuiper-belt binaries through exchange reactions.
Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke
2004-02-05
Recent observations have revealed that an unexpectedly high fraction--a few per cent--of the trans-Neptunian objects (TNOs) that inhabit the Kuiper belt are binaries. The components have roughly equal masses, with very eccentric orbits that are wider than a hundred times the radius of the primary. Standard theories of binary asteroid formation tend to produce close binaries with circular orbits, so two models have been proposed to explain the unique characteristics of the TNOs. Both models, however, require extreme assumptions regarding the size distribution of the TNOs. Here we report a mechanism that is capable of producing binary TNOs with the observed properties during the early stages of their formation and growth. The only required assumption is that the TNOs were initially formed through gravitational instabilities in the protoplanetary dust disk. The basis of the mechanism is an exchange reaction in which a binary whose primary component is much more massive than the secondary interacts with a third body, whose mass is comparable to that of the primary. The low-mass secondary component is ejected and replaced by the third body in a wide but eccentric orbit.
Very Massive Stars and the upper end of the IMF
NASA Astrophysics Data System (ADS)
Crowther, P.
2013-06-01
I discuss theoretical and observational evidence regarding the existence of Very Massive Stars (VMS) with initial masses significantly in excess of 100~Mo. Theoretical evidence includes consideration of the (classical) Eddington limit, while observational evidence involves efforts to interpret photometric and spectroscopic observations of the brightest stars in young, high mass clusters (R136a, Arches, NGC 3603), including new VLT/SINFONI and HST/STIS spectroscopy plus consideration of multiplicity (binaries and higher order systems).
HD 63021: An Ae Star with X-Ray Flux
NASA Astrophysics Data System (ADS)
Whelan, David G.; Labadie-Bartz, Jon; Chojnowski, S. Drew; Daglen, James; Hudson, Ken
2018-05-01
Balmer and Fe II (42) multiplet emission were discovered in a spectrum of HD 63021 on 10 April (UTC), 2018. Subsequent observations revealed variability in both photospheric absorption lines and Balmer line emission. In addition, it is an X-ray source, with a luminosity that is consistent with either a very strong stellar wind, or else the presence of a compact binary companion. Spectroscopic and photometric followup are planned to determine the nature of this source.
Preliminary orbital parallax catalog
NASA Technical Reports Server (NTRS)
Halliwell, M.
1981-01-01
The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.
1974-06-17
10-1 I1. Burning Rate Modifiers, D.R. Dillehay ............................. 11-1 12. Spectroscopic Analysis of Azide Decomposition Products for use...solid, and Pit that they ignite a short distance from the surface. Further- more, decomposition of sodium nitrate, which produces the gas to blow the...decreasing U the thermal conductivity of the basic binary. Class 2 compounds, con- sisting of nanganese oxides, catalyze the normal decomposition of
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-04-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.
Solvent effects on infrared spectra of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems
NASA Astrophysics Data System (ADS)
Liu, Qing; Wang, Xiao-yan; Zhang, Hui
2007-01-01
The infrared spectroscopy studies of the C 3 and C 20 carbonyl stretching vibrations ( υ(C dbnd O)) of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems were undertaken to investigate the solute-solvent interactions. With the mole fraction of CHC1 3 in the binary solvent mixtures increase, three types of C 3 and C 20 carbonyl stretching vibration band of progesterone are observed, respectively. The assignments of υ(C dbnd O) of progesterone are discussed in detail. In the CHCl 3-rich binary solvent systems or pure CHCl 3 solvent, two kinds of solute-solvent hydrogen bonding interactions coexist for C 20 C dbnd O. Comparisons are drawn for the solvent sensitivities of υ(C dbnd O) for acetophenone and 5α-androstan-3,17-dione, respectively.
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-07-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.
ABSOLUTE PROPERTIES OF THE HIGHLY ECCENTRIC, SOLAR-TYPE ECLIPSING BINARY HD 74057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, James R.; Henry, Gregory W.; Fekel, Francis C., E-mail: jim.sowell@physics.gatech.edu, E-mail: gregory.w.henry@gmail.com, E-mail: fekel@evans.tsuniv.edu
2012-01-15
We have obtained Stroemgren b and y differential photometric observations of the solar-type eclipsing binary HD 74057 plus follow-up high-resolution, red wavelength spectroscopic observations. The system has an orbital period of 31.2198 days, a high eccentricity of 0.47, and is seen almost exactly edge on with an inclination of 89.{sup 0}8. The two main-sequence G0 stars are nearly identical in all physical characteristics. We used the Wilson-Devinney program to obtain a simultaneous solution of our photometric and spectroscopic observations. The resulting masses of the components are M{sub 1} = 1.138 {+-} 0.003 M{sub Sun} and M{sub 2} = 1.131 {+-}more » 0.003 M{sub Sun }, and the radii are R{sub 1} = 1.064 {+-} 0.002 R{sub Sun} and R{sub 2} = 1.049 {+-} 0.002 R{sub Sun }. The effective temperatures are 5900 K (fixed) and 5843 K, and the iron abundance, [Fe/H], is estimated to be +0.07. A comparison with evolutionary tracks suggests that the system may be even more metal rich. The components rotate with periods of 8.4 days, significantly faster than the predicted pseudosynchronous period of 12.7 days. We see evidence that one or both components have cool spots. Both stars are close to the zero-age main sequence and are about 1.0 Gyr old.« less
The Spectroscopic Ages of Passive Galaxies in a z=1.62 Protocluster
NASA Astrophysics Data System (ADS)
Lee-Brown, Donald
2017-07-01
IRC 0218 is a protocluster at z = 1.62 with a wealth of observations that make it an ideal target for resolving the interplay between galaxy properties and environment at high redshift. We have used extremely deep HST spectroscopic data to derive unambiguous membership and stellar ages via the 4000 angstrom break for 14 members with stellar masses log(M) > 10.2. We find that at high stellar masses, log(M) > 10.85, the fraction of quiescent galaxies in the cluster is 2× higher than the field value. At lower stellar masses, the protocluster and field have consistent quiescent fractions. Despite this mass trend, we see no comparable relation between galaxy stellar age and mass for the quiescent members. Taken together, these results may reflect the impact of dry mergers on the protocluster galaxies. Alternately, the results may imply that the mass trend we observe in the IRC 0218 quiescent fraction was imprinted over a short timescale. This talk will place our results in the context of studies of other high redshift clusters and likely descendent environments at z = 1.
Observations and analysis of the contact binary H 235 in the open cluster NGC 752
NASA Astrophysics Data System (ADS)
Milone, E. F.; Stagg, C. R.; Sugars, B. A.; McVean, J. R.; Schiller, S. J.; Kallrath, J.; Bradstreet, D. H.
1995-01-01
The short-period variable star Heinemann 235 in the open cluster NGC 752 has been identified as a contact binary with a variable period of about 0 d 4118. BVRI light curves and radial velocity curves have been obtained and analyzed with enhanced versions of the Wilson-Devinney light curve program. We find that the system is best modeled as an A-type W UMa system, with a contact parameter of 0.21 +/- 0.11. The masses of the components are found to be 1.18 +/- 0.17 and 0.24 +/- 0.04 solar mass, with bolometric magnitudes of 3.60 +/- 0.10 and 5.21 +/- 0.13, for the hotter (6500 K, assumed) and cooler (6421 K) components, respectively, with Delta T=79 +/- 25 K. The distance to the binary is established at 381 +/- 17 pc. H235 becomes one of a relatively small number of open-cluster contact systems with detailed light curve analysis for which an age may be estimated. If it is coeval with the cluster, and with the detached eclipsing and double-lined spectroscopic binary H219 (DS And), H235 is approximately 1.8 Gyr old, and may provide a fiducial point for the evolution of contact systems. There is, however, evidence for dynamical evolution of the cluster and the likelihood of weak interactions over the age of the binary precludes the determination of its initial state with certainty.
NASA Astrophysics Data System (ADS)
Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.
2014-01-01
The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.