On the relative frequencies of spectroscopically normal and peculiar type Ia supernovae
NASA Technical Reports Server (NTRS)
Branch, David; Fisher, Adam; Nugent, Peter
1993-01-01
After defining what we mean by spectroscopically 'normal' and 'peculiar' Type Ia supernove, we report the results of an attempt to subclassify 84 SNe Ia either as normal or as like one of the recent, peculiar SNe Ia: 1991T, 1991bg, or 1986G. Only SNe 1957A and 1960H are found to have been certifiably abnormal, with SN 1957A; appearing to have been like SN 1991bg, and SN 1960H having been like SN 1991bg or SN 1988G; SNe 1971I and 1980I are under suspicion of having been like SN 1986G, and SN 1988G of having been like SN 1991T. Of the SNe Ia we have been able to classify either as normal or as peculiar, 89% (or 83%, counting those under suspicion as peculiar) are normal. Our main conclusion is that the observational sample of SNe Ia is strongly peaked at 'spectroscopically normal.' We further conclude that when arranged in the photometric sequence of Phillips (1993) SNe Ia also form a spectroscopic sequence, and that peculiar SNe Ia are over-represented in the Phillips sample.
Spectroscopic Classification of SN 2018gv with Keck I/LRIS
NASA Astrophysics Data System (ADS)
Siebert, M. R.; Dimitriadis, G.; Foley, R. J.
2018-01-01
We obtained spectroscopic observations of SN 2018gv with the LRIS spectrograph on the 10-m Keck I telescope on 2018 Jan 16 UT. The spectrum indicates that SN 2018gv is a very young, normal Type Ia supernova.
Supernova 2010ev: A reddened high velocity gradient type Ia supernova
NASA Astrophysics Data System (ADS)
Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.
2016-05-01
Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drout, M. R.; Soderberg, A. M.; Margutti, R.
We present extensive multi-wavelength observations of the extremely rapidly declining Type Ic supernova (SN Ic), SN 2005ek. Reaching a peak magnitude of M{sub R} = -17.3 and decaying by {approx}3 mag in the first 15 days post-maximum, SN 2005ek is among the fastest Type I supernovae observed to date. The spectra of SN 2005ek closely resemble those of normal SN Ic, but with an accelerated evolution. There is evidence for the onset of nebular features at only nine days post-maximum. Spectroscopic modeling reveals an ejecta mass of {approx}0.3 M{sub Sun} that is dominated by oxygen ({approx}80%), while the pseudo-bolometric lightmore » curve is consistent with an explosion powered by {approx}0.03 M{sub Sun} of radioactive {sup 56}Ni. Although previous rapidly evolving events (e.g., SN 1885A, SN 1939B, SN 2002bj, SN 2010X) were hypothesized to be produced by the detonation of a helium shell on a white dwarf, oxygen-dominated ejecta are difficult to reconcile with this proposed mechanism. We find that the properties of SN 2005ek are consistent with either the edge-lit double detonation of a low-mass white dwarf or the iron-core collapse of a massive star, stripped by binary interaction. However, if we assume that the strong spectroscopic similarity of SN 2005ek to other SNe Ic is an indication of a similar progenitor channel, then a white-dwarf progenitor becomes very improbable. SN 2005ek may be one of the lowest mass stripped-envelope core-collapse explosions ever observed. We find that the rate of such rapidly declining Type I events is at least 1%-3% of the normal SN Ia rate.« less
Photometric and Spectroscopic Observations of SN 2012dn, a Super-Chandra Candidate Type-Ia Supernova
NASA Astrophysics Data System (ADS)
Parrent, Jerod T.; Transient Factory, Palomar; Cumbres Observatory Global Telescope Network, Las
2013-01-01
Currently, there is no singular standard model picture of type-Ia supernovae (SNe Ia) with a parameter-space of predictions that overlap the observed, diverse array of SN Ia properties. The same can be said for the super-luminous versions of SNe Ia, those thought to originate from up to 2.4 solar mass progenitor systems. To make matters worse, we remain in the dark-ages of astronomy regarding the interpretation of their observed spectra. In short, line-blending due to resonant line-scattering alone prevents making clear the compositional makeup of the outermost ejected layers. Since simulations of violent merger and single degenerate scenarios are both able to roughly reproduce spectroscopic observations, the direct mapping of the ejecta via spectrum synthesis measurements is of high importance. For example, with the closest SN Ia to date, SN 2011fe, we were able to map (in velocity space) the composition of the outer layers of ejecta. We did this by evolving simple P-Cygni-blends of synthetic spectra over the course of the first month (post-explosion), with an average of 1.8 days between observations by which to compare. As a result, SN 2011fe gave a clearer picture of the compositional structure of a ''normal'' SN Ia. We now have another chance to put this measure of SN Ia diversity into practice with the discovery of a brighter than normal southern hemisphere object, SN 2012dn. Here we present g-, r-, and i-band photometric observations obtained at Faulkes Telescope South, as well as optical time-series spectra from Gemini-North, Gemini-South, SALT, and MMT facilities. With 19 spectroscopic observations spanning its first month, post-explosion, we are able to measure the relative velocities of the periodic table in the outermost layers of ejected material. This serves as a means for distinguishing the origin of SNe Ia and their various forms.
Spectroscopic Classification of SN2016igr as a Normal Type Ia Supernova
NASA Astrophysics Data System (ADS)
Bostroem, K. A.; Valenti, S.; Tartaglia, L.
2016-12-01
We report that a CCD spectrum (range 350-1050 nm) of SN2016igr was obtained on Dec 1, 5.95 UT, with the 3-m Shane reflector (+Kast) at Lick Observatory. We classified the event via cross-correlation with a library of supernova spectra using the "SuperNova IDentification" code (SNID; Blondin & Tonry 2007, Ap.J.
Late-time spectra and type Ia supernova models: New clues from the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Ruiz-Lapuente, P.; Kirshner, R. P.; Phillips, M. M.; Challis, P. M.; Schmidt, B. P.; Filippenko, A. V.; Wheeler, J. C.
1995-01-01
Calculated late-time spectra of two classical hydrodynamical models for Type Ia supernovae (deflagration model W7 of Nomoto, Thielemann, & Yokoi, and delayed detonation model DD4 of Woosley & Weaver) are compared with observations of SN 1992A and other spectroscopically normal SNe Ia. An important new piece of information is provided by observations done with the Hubble Space Telescope (HST) which cover the ultraviolet range at the nebular phase of a SN Ia: SN 1992A in NGC 1380. For the first time a picture of SN Ia emission from the ultraviolet through the optical is obtained at these phases. Predictions of the classical model (W7 and DD4) are compared with the observed spectrum of SN 1992A and with the optical spectra of SN 1989M in NGC 4579 and SN 1990N in NGC 4639 at similar epochs. The absolute B and V magnitudes of the models are also estimated at these late phases. Taken at face value the nebular spectra of these 'classical' models are more consistent with the long extragalactic distance scale, pointing to distances to NGC 4579 around 21 +/- 3 Mpc and a slightly larger distance, 22 +/- 3 Mpc, to NGC 4639, on the back side of the Virgo Cluster. However, the calculated Fe(+3) luminosity as predicted from the models exceeds the observed limit from the HST data of SN 1992A. Other differences in the ratios of the line intensities between calculated and observed spectra, show some disagreement with the observed spectra at the nebular phases. They may not be the best choice for spectroscopically normal SNe Ia, and their use as an independent calibration of the extragalactic distance scale should be viewed with caution.
Spectroscopic Classification of ASASSN-16cu as a Type Ia SN
NASA Astrophysics Data System (ADS)
Strader, Jay; Chomiuk, Laura; Shishkovsky, Laura
2016-03-01
We obtained an optical spectrum of ASASSN-16cu (ATel #8796) on UT March 29.37 with the Goodman Spectrograph on the SOAR telescope. Classification with SNID (Blondin and Tonry 2007, ApJ, 666, 1024) indicates ASASSN-16cu is a normal Type Ia SN observed at about 70 days after peak. The redshift is consistent with proposed host galaxy IC 4723 (z=0.011128, via NED).
Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals
NASA Astrophysics Data System (ADS)
Levcenko, S.; Hajdeu-Chicarosh, E.; Garcia-Llamas, E.; Caballero, R.; Serna, R.; Bodnar, I. V.; Victorov, I. A.; Guc, M.; Merino, J. M.; Pérez-Rodriguez, A.; Arushanov, E.; León, M.
2018-04-01
The linear optical properties of Cu2ZnSnS4 bulk poly-crystals have been investigated using spectroscopic ellipsometry in the range of 1.2-4.6 eV at room temperature. The characteristic features identified in the optical spectra are explained by using the Adachi analytical model for the interband transitions at the corresponding critical points in the Brillouin zone. The experimental data have been modeled over the entire spectral range taking into account the lowest E0 transition near the fundamental absorption edge and E1A and E1B higher energy interband transitions. In addition, the spectral dependences of the refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity values have been accurately determined and are provided since they are essential data for the design of Cu2ZnSnS4 based optoelectronic devices.
A luminous, blue progenitor system for the type Iax supernova 2012Z
NASA Astrophysics Data System (ADS)
McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Bildsten, Lars; Fong, Wen-Fai; Kirshner, Robert P.; Marion, G. H.; Riess, Adam G.; Stritzinger, Maximilian D.
2014-08-01
Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are `less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.
A luminous, blue progenitor system for the type Iax supernova 2012Z.
McCully, Curtis; Jha, Saurabh W; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D
2014-08-07
Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.
Asiago spectroscopic classification of ASAS-SN18ck, ASAS-SN18cp, ASAS-SN18cq and ASASSN-18cj
NASA Astrophysics Data System (ADS)
Tomasella, L.; Benetti, S.; Cappellaro, E.; Turatto, M.
2018-02-01
The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASAS-SN18ck, ASAS-SN18cp, ASAS-SN18cq and ASASSN-18cj, discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014, Atel #11178).
NASA Astrophysics Data System (ADS)
Cannizzaro, G.; Kuncarayakti, H.; Fraser, M.; Hamanowicz, A.; Jonker, P.; Kankare, E.; Kostrzewa-Rutkowska, Z.; Onori, F.; Wevers, T.; Wyrzykowski, L.; Galbany, L.
2018-03-01
The NOT Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of supernovae SN 2018aei and SN 2018aej, discovered by PanSTARSS Survey for Transients (ATel #11408).
Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj
NASA Astrophysics Data System (ADS)
Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon; Graham, Melissa L.; Yuk, Heechan; Hosseinzadeh, Griffin; Silverman, Jeffrey M.; Rui, Liming; Arbour, Ron; Foley, Ryan J.; Abolfathi, Bela; Abramson, Louis E.; Arcavi, Iair; Barth, Aaron J.; Bennert, Vardha N.; Brandel, Andrew P.; Cooper, Michael C.; Cosens, Maren; Fillingham, Sean P.; Fulton, Benjamin J.; Halevi, Goni; Howell, D. Andrew; Hsyu, Tiffany; Kelly, Patrick L.; Kumar, Sahana; Li, Linyi; Li, Wenxiong; Malkan, Matthew A.; Manzano-King, Christina; McCully, Curtis; Nugent, Peter E.; Pan, Yen-Chen; Pei, Liuyi; Scott, Bryan; Sexton, Remington Oliver; Shivvers, Isaac; Stahl, Benjamin; Treu, Tommaso; Valenti, Stefano; Vogler, H. Alexander; Walsh, Jonelle L.; Wang, Xiaofeng
2017-05-01
The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but the velocity of Si II λ6355 around peak brightness (˜12,600 {km} {{{s}}}-1) is a bit higher than that of typical normal SNe. The Si II λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ({M}B≈ -18.9+/- 0.2 mag), and it reaches a B-band maximum ˜16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na I D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the Si II line polarization is quite strong (˜0.9% ± 0.1%) at peak brightness.
Asiago spectroscopic classification of ASAS-SN18ao
NASA Astrophysics Data System (ADS)
Tomasella, L.; Benetti, S.; Cappellaro, E.; Turatto, M.
2018-01-01
The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASAS-SN18ao (aka AT2018gm, Atel #11178) discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014).
Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon
The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. In this study, we performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SNmore » 2016coj is a spectroscopically normal SN Ia, but the velocity of Si ii λ6355 around peak brightness (~12,600 kms -1) is a bit higher than that of typical normal SNe. The Si ii λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (M B≈ -18.9 ± 0.2 mag), and it reaches a B-band maximum ~16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na i D absorption lines in our low- and high-resolution spectra. Finally, the spectropolarimetric data exhibit weak polarization in the continuum, but the Si ii line polarization is quite strong (~0.9% ± 0.1%) at peak brightness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taddia, Francesco; Fremling, C.; Sollerman, J.
Type Ic supernovae (SNe Ic) arise from the core-collapse of H- (and He-) poor stars, which could either be single Wolf-Rayet (WR) stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak (~10-15 d), without any early (in the first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). Here, we have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess inmore » the optical light curves followed by a long (~30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic to be observed. Our aim is to determine the properties of this explosion and of its progenitor star. Methods. Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modeled with hydrodynamical and analytical models, with particular focus on the early emission. iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modeling of the bolometric properties reveals a large ejecta mass (~10 M ⊙) and strong 56Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended (≳500 R ⊙), low-mass (≳0.045 M ⊙) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. In conclusion, the large ejecta mass and the presence of H- and He-free extended material around the star suggest that the progenitor of iPTF15dtg was a massive (≳35 M ⊙) WR star that experienced strong mass loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu Yiping; Bolton, Adam S.; Dawson, Kyle S.
2012-04-15
We present a hierarchical Bayesian determination of the velocity-dispersion function of approximately 430,000 massive luminous red galaxies observed at relatively low spectroscopic signal-to-noise ratio (S/N {approx} 3-5 per 69 km s{sup -1}) by the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. We marginalize over spectroscopic redshift errors, and use the full velocity-dispersion likelihood function for each galaxy to make a self-consistent determination of the velocity-dispersion distribution parameters as a function of absolute magnitude and redshift, correcting as well for the effects of broadband magnitude errors on our binning. Parameterizing the distribution at each point inmore » the luminosity-redshift plane with a log-normal form, we detect significant evolution in the width of the distribution toward higher intrinsic scatter at higher redshifts. Using a subset of deep re-observations of BOSS galaxies, we demonstrate that our distribution-parameter estimates are unbiased regardless of spectroscopic S/N. We also show through simulation that our method introduces no systematic parameter bias with redshift. We highlight the advantage of the hierarchical Bayesian method over frequentist 'stacking' of spectra, and illustrate how our measured distribution parameters can be adopted as informative priors for velocity-dispersion measurements from individual noisy spectra.« less
Exploring the optical behaviour of a Type Iax supernova SN 2014dt
NASA Astrophysics Data System (ADS)
Singh, Mridweeka; Misra, Kuntal; Sahu, D. K.; Dastidar, Raya; Gangopadhyay, Anjasha; Bose, Subhash; Srivastav, Shubham; Anupama, G. C.; Chakradhari, N. K.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.
2018-02-01
We present optical photometric (up to ˜410 d since Bmax) and spectroscopic (up to ˜157 d since Bmax) observations of a Type Iax supernova (SN) 2014dt located in M61. SN 2014dt is one of the brightest and closest (D ˜ 20 Mpc) discovered Type Iax SN. It best matches the light-curve evolution of SN 2005hk and reaches a peak magnitude of MB ˜ -18.13 ± 0.04 mag with Δm15 ˜ 1.35 ± 0.06 mag. The early spectra of SN 2014dt are similar to other Type Iax SNe, whereas the nebular spectrum at 157 d is dominated by narrow emission features with less blending as compared to SNe 2008ge and 2012Z. The ejecta velocities are between 5000 and 1000 km s-1, which also confirms the low-energy budget of Type Iax SN 2014dt compared to normal Type Ia SNe. Using the peak bolometric luminosity of SN 2005hk, we estimate the 56Ni mass of ˜0.14 M⊙. The striking similarity between SN 2014dt and SN 2005hk implies that a comparable amount of 56Ni would have been synthesized in the explosion of SN 2014dt.
Two classes of fast-declining Type Ia supernovae
NASA Astrophysics Data System (ADS)
Dhawan, Suhail; Leibundgut, B.; Spyromilio, J.; Blondin, S.
2017-06-01
We aim to characterise a sample of fast-declining Type Ia supernovae (SN Ia) using their bolometric and near-infrared (NIR) properties. Based on these properties, we find that fast-declining SN Ia separate into two categories based on their bolometric and NIR properties. The peak bolometric luminosity (Lmax), the phase of the first maximum relative to the optical, the NIR peak luminosity, and the occurrence of a second maximum in the NIR distinguish a group of very faint SN Ia. Fast-declining supernovae show a large range of peak bolometric luminosities (Lmax differing by up to a factor of 8). All fast-declining SN Ia with Lmax < 0.3× 1043 erg s-1 are spectroscopically classified as 91bg-like and show only a single NIR peak. SNe with Lmax > 0.5× 1043 erg s-1 appear to smoothly connect to normal SN Ia. The total ejecta mass (Mej) values for SNe with enough late time data are ≲1 M⊙, indicating a sub-Chandrasekhar mass progenitor for these SNe.
Spectroscopic observation of SN2017gkk by NUTS (NOT Un-biased Transient Survey)
NASA Astrophysics Data System (ADS)
Onori, F.; Benetti, S.; Cappellaro, E.; Losada, Illa R.; Gafton, E.; NUTS Collaboration
2017-09-01
The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of supernova SN2017gkk (=MASTER OT J091344.71762842.5) in host galaxy NGC 2748.
Color Me Intrigued: The Discovery of iPTF 16fnm, an SN 2002cx-like Object
NASA Astrophysics Data System (ADS)
Miller, A. A.; Kasliwal, M. M.; Cao, Y.; Adams, S. M.; Goobar, A.; Knežević, S.; Laher, R. R.; Lunnan, R.; Masci, F. J.; Nugent, P. E.; Perley, D. A.; Petrushevska, T.; Quimby, R. M.; Rebbapragada, U. D.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.
2017-10-01
Modern wide-field, optical time-domain surveys must solve a basic optimization problem: maximize the number of transient discoveries or minimize the follow-up needed for the new discoveries. Here, we describe the Color Me Intrigued experiment, the first from the intermediate Palomar Transient Factory (iPTF) to search for transients simultaneously in the g PTF and R PTF bands. During the course of this experiment, we discovered iPTF 16fnm, a new member of the 02cx-like subclass of Type Ia supernovae (SNe). iPTF 16fnm peaked at {M}{g{PTF}}=-15.09+/- 0.17 {mag}, making it the second-least-luminous known SN Ia. iPTF 16fnm exhibits all the hallmarks of the 02cx-like class: (I) low luminosity at peak, (II) low ejecta velocities, and (III) a non-nebular spectrum several months after peak. Spectroscopically, iPTF 16fnm exhibits a striking resemblance to two other low-luminosity 02cx-like SNe: SN 2007qd and SN 2010ae. iPTF 16fnm and SN 2005hk decline at nearly the same rate, despite a 3 mag difference in brightness at peak. When considering the full subclass of 02cx-like SNe, we do not find evidence for a tight correlation between peak luminosity and decline rate in either the g‧ or r‧ band. We measure the relative rate of 02cx-like SNe to normal SNe Ia and find {r}{N02{cx}/{N}{Ia}}={33}-25+158 % . We further examine the g‧ - r‧ evolution of 02cx-like SNe and find that their unique color evolution can be used to separate them from 91bg-like and normal SNe Ia. This selection function will be especially important in the spectroscopically incomplete Zwicky Transient Facility/Large Synoptic Survey Telescope (LSST) era. Finally, we close by recommending that LSST periodically evaluate, and possibly update, its observing cadence to maximize transient science.
Spectroscopic Classifications of Optical Transients with the Lick Shane 3-m telescope
NASA Astrophysics Data System (ADS)
Dimitriadis, G.; Foley, R. J.
2018-05-01
We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane 3-m telescope. Targets were supplied by ATLAS, ASAS-SN, and the KEGS K2 SN search.
NASA Astrophysics Data System (ADS)
Lyman, J. D.; Taddia, F.; Stritzinger, M. D.; Galbany, L.; Leloudas, G.; Anderson, J. P.; Eldridge, J. J.; James, P. A.; Krühler, T.; Levan, A. J.; Pignata, G.; Stanway, E. R.
2018-01-01
SN 2002cx-like Type Ia supernovae (also known as SNe Iax) represent one of the most numerous peculiar SN classes. They differ from normal SNe Ia by having fainter peak magnitudes, faster decline rates and lower photospheric velocities, displaying a wide diversity in these properties. We present both integral-field and long-slit visual-wavelength spectroscopy of the host galaxies and explosion sites of SNe Iax to provide constraints on their progenitor formation scenarios. The SN Iax explosion-site metallicity distribution is similar to that of core-collapse SNe and metal poor compared to either normal SNe Ia or SN 1991T-like events. Fainter members, speculated to form distinctly from brighter SN Iax, are found at a range of metallicities, extending to very metal poor environments. Although the SN Iax explosion-sites' ages and star formation rates are comparatively older and less intense than the distribution of star-forming regions across their host galaxies, we confirm the presence of young stellar populations (SPs) at explosion environments for most SNe Iax, expanded here to a larger sample. Ages of the young SPs (several × 107 to 108 yr) are consistent with predictions for young thermonuclear and electron-capture SN progenitors. The lack of extremely young SPs at the explosion sites disfavours very massive progenitors such as Wolf-Rayet explosions with significant fallback. We find weak ionized gas in the only SN Iax host without obvious signs of star formation. The source of the ionization remains ambiguous but appears unlikely to be mainly due to young, massive stars.
iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor
Taddia, Francesco; Fremling, C.; Sollerman, J.; ...
2016-08-04
Type Ic supernovae (SNe Ic) arise from the core-collapse of H- (and He-) poor stars, which could either be single Wolf-Rayet (WR) stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak (~10-15 d), without any early (in the first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). Here, we have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess inmore » the optical light curves followed by a long (~30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic to be observed. Our aim is to determine the properties of this explosion and of its progenitor star. Methods. Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modeled with hydrodynamical and analytical models, with particular focus on the early emission. iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modeling of the bolometric properties reveals a large ejecta mass (~10 M ⊙) and strong 56Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended (≳500 R ⊙), low-mass (≳0.045 M ⊙) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. In conclusion, the large ejecta mass and the presence of H- and He-free extended material around the star suggest that the progenitor of iPTF15dtg was a massive (≳35 M ⊙) WR star that experienced strong mass loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Masayuki; Nogami, Daisaku; Maeda, Keiichi
We report photometric and spectroscopic observations of the nearby Type Ia Supernova (SN Ia) 2012ht from –15.8 days to +49.1 days after B-band maximum. The decline rate of the light curve is Δm {sub 15}(B) = 1.39 ± 0.05 mag, which is intermediate between normal and subluminous SNe Ia, and similar to that of the ''transitional'' Type Ia SN 2004eo. The spectral line profiles also closely resemble those of SN 2004eo. We were able to observe SN 2012ht at a very early phase, when it was still rising and was about three magnitudes fainter than at the peak. The rise time to the B-bandmore » maximum is estimated to be 17.6 ± 0.5 days and the time of the explosion is MJD 56277.98 ± 0.13. SN 2012ht is the first transitional SN Ia whose rise time is directly measured without using light curve templates, and the fifth SN Ia overall. This rise time is consistent with those of the other four SNe within the measurement error, even including the extremely early detection of SN 2013dy. The rising part of the light curve can be fitted by a quadratic function, and shows no sign of a shock-heating component due to the interaction of the ejecta with a companion star. The rise time is significantly longer than that inferred for subluminous SNe such as SN 1991bg, which suggests that a progenitor and/or explosion mechanism of transitional SNe Ia are more similar to normal SNe Ia rather than to subluminous SNe Ia.« less
Spectroscopic classification of SN 2017hro with NOT
NASA Astrophysics Data System (ADS)
Babooram, C.; Jormanainen, J.; Wagner, S.; Wierda, F.; Kuncarayakti, H.; Fedorets, G.; Dyrbye, S.
2017-11-01
We report the spectroscopic classification of supernova SN 2017hro (ATLAS17mwv) in host galaxy 2MASX J22161573+4003267. The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.6 nm) on 2017-11-01.8 UT. Survey Name | IAU Name | Discovery (UT) | Discovery mag | Observation (UT) | Redshift | Type | Phase | Notes ATLAS17mwv | SN 2017hro | 2017-10-28.3 | 18.765 | 2017-11-01.8 | 0.015 | II | around maximum | (1) (1) SN redshift is obtained from host emission lines and consistent with that derived from the SN spectrum.
Spectroscopic observation of SN 2017jzp and SN 2018bf by NUTS (NOT Un-biased Transient Survey)
NASA Astrophysics Data System (ADS)
Kuncarayakti, H.; Mattila, S.; Kotak, R.; Harmanen, J.; Reynolds, T.; Wyrzykowski, L.; Stritzinger, M.; Onori, F.; Somero, A.; Kangas, T.; Lundqvist, P.; Taddia, F.; Ergon, M.
2018-01-01
The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of SNe 2017jzp and 2018bf in host galaxies KUG 1326+679 and SDSS J225746.53+253833.5, respectively.
SN 2013ab: a normal Type IIP supernova in NGC 5669
NASA Astrophysics Data System (ADS)
Bose, Subhash; Valenti, Stefano; Misra, Kuntal; Pumo, Maria Letizia; Zampieri, Luca; Sand, David; Kumar, Brijesh; Pastorello, Andrea; Sutaria, Firoza; Maccarone, Thomas J.; Kumar, Brajesh; Graham, M. L.; Howell, D. Andrew; Ochner, Paolo; Chandola, H. C.; Pandey, Shashi B.
2015-07-01
We present densely sampled ultraviolet/optical photometric and low-resolution optical spectroscopic observations of the Type IIP supernova 2013ab in the nearby (˜24 Mpc) galaxy NGC 5669, from 2 to 190 d after explosion. Continuous photometric observations, with the cadence of typically a day to one week, were acquired with the 1-2 m class telescopes in the Las Cumbres Observatory Global Telescope network, ARIES telescopes in India and various other telescopes around the globe. The light curve and spectra suggest that the supernova (SN) is a normal Type IIP event with a plateau duration of ˜80 d with mid-plateau absolute visual magnitude of -16.7, although with a steeper decline during the plateau (0.92 mag 100 d-1 in V band) relative to other archetypal SNe of similar brightness. The velocity profile of SN 2013ab shows striking resemblance with those of SNe 1999em and 2012aw. Following the Rabinak & Waxman prescription, the initial temperature evolution of the SN emission allows us to estimate the progenitor radius to be ˜800 R⊙, indicating that the SN originated from a red supergiant star. The distance to the SN host galaxy is estimated to be 24.3 Mpc from expanding photosphere method. From our observations, we estimate that 0.064 M⊙ of 56Ni was synthesized in the explosion. General relativistic, radiation hydrodynamical modelling of the SN infers an explosion energy of 0.35 × 1051 erg, a progenitor mass (at the time of explosion) of ˜9 M⊙ and an initial radius of ˜600 R⊙.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer
We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our light curves show a rise of 0.8 mag within 2.5 hr. Power-law fits (f(t){proportional_to}(t - t{sub 0}) {sup n}) to these data constrain the explosion date to within one day. We cannot rule out a quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometricmore » evolution of PTF12gzk is slower than that of most SNe Ic. The high ejecta expansion velocities we measure ({approx}30, 000 km s{sup -1} derived from line minima four days after explosion) are similar to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) rather than to normal SN Ic velocities. Yet, this SN does not show the persistent broad lines that are typical of broad-lined SNe Ic. The host-galaxy characteristics are also consistent with GRB-SN hosts, and not with normal SN Ic hosts. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 M{sub Sun} and a large ((5-10) Multiplication-Sign 10{sup 51} erg) kinetic energy, the later being close to the regime of GRB-SN properties.« less
Spectroscopic observation of Gaia17dht and Gaia17diu by NUTS (NOT Un-biased Transient Survey)
NASA Astrophysics Data System (ADS)
Fraser, M.; Dyrbye, S.; Cappella, E.
2017-12-01
The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of Gaia17dht/SN2017izz and Gaia17diu/SN2017jdb (in host galaxies SDSS J145121.24+283521.6 and LEDA 2753585 respectively).
Spectroscopic Classifications of AT2017fqf as SN Ia and AT2017fqk as SN II
NASA Astrophysics Data System (ADS)
Tartaglia, Leonardo; Valenti, Stefano; Bostroem, K. Azalee; Yang, Sheng; Hosseinzadeh, G.
2017-07-01
We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane telescope. All observations were made on 2017 July 27 UT. Classifications were performed with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).
Alpha-like resonances in nuclei
NASA Astrophysics Data System (ADS)
Baran, V. V.; Delion, D. S.
2018-03-01
We investigate normal dipole oscillations in a system of protons, neutrons and α-particles within the Brink approach. We introduce an effective mass of α-clusters in terms of the spectroscopic factor. The Pauli exclusion principle is taken into account by using the Wildermuth rule. The ratio between alpha and giant resonance energy weighted sum rule (EWSR) is investigated for N = Z and N> Z systems. In both cases we notice an unexpected decrease of this ratio versus the increase of the spectroscopic factor. Due to this fact the possibility to experimentally detect α-like oscillations is enhanced in nuclei above 100Sn. The occurrence of the pygmy mode in N> Z systems decreases the EWSR for the α-like oscillations.
Spectroscopic classification of supernova SN 2018Z by NUTS (NOT Un-biased Transient Survey)
NASA Astrophysics Data System (ADS)
Kuncarayakti, H.; Mattila, S.; Kotak, R.; Harmanen, J.; Reynolds, T.; Pastorello, A.; Benetti, S.; Stritzinger, M.; Onori, F.; Somero, A.; Kangas, T.; Lundqvist, P.; Taddia, F.; Ergon, M.
2018-01-01
The NOT Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of supernova SN 2018Z in host galaxy SDSS J231809.76+212553.5 The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.6 nm) on 2018-01-09.9 UT. Survey Name | IAU Name | Discovery (UT) | Discovery mag | Observation (UT) | Redshift | Type | Phase | Notes PS18ao | SN 2018Z | 2018-01-01.2 | 19.96 | 2018-01-09.9 | 0.102 | Ia | post-maximum? | (1) (1) Redshift was derived from the SN and host absorption features.
NASA Astrophysics Data System (ADS)
Dong, Subo; Bose, Subhash; Stritzinger, M.; Holmbo, S.; Fraser, M.; Fedorets, G.
2017-10-01
The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of ATLAS17lcs (SN 2017guv) and ASASSN-17mq (AT 2017gvo) in host galaxies 2MASX J19132225-1648031 and CGCG 225-050, respectively.
NASA Astrophysics Data System (ADS)
Pastorello, Andrea; Benetti, Stefano; Cappellaro, Enrico; Terreran, Giacomo; Tomasella, Lina; Fedorets, Grigori; NUTS Collaboration
2017-07-01
The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) reports the spectroscopic classification of ASASSN-17io in the galaxy CGCG 316-010, along with the re classification of ATLAS17hpt (SN 2017faf), which was previously classified as a SLSN-I (ATel #10549).
Spectroscopic classification of SN 2018brz as a type Ia supernova before maximum
NASA Astrophysics Data System (ADS)
Galbany, Lluis; Lopez-Sanchez, Angel R.; Ascasibar, Yago; Fiegert, Kristin
2018-05-01
We report the spectroscopic classification of SN 2018brz (RA=08:33:22.27, DEC=-76:37:39.8) in an anonymous host galaxy. The candidate was discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN: Shappee et al. 2014) on UT 2018-05-15 at 16.5 mag. Observations were performed on the 4m Anglo-Australian Telescope at Siding Spring Observatory on 2018 May 19 9:15 UT, using Koala+AAOmega and Grisms 580V+1000R (3500-6000A and 6300-7300A).
SPECTROSCOPY OF HIGH-REDSHIFT SUPERNOVAE FROM THE ESSENCE PROJECT: THE FIRST FOUR YEARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, R. J.; Chornock, R.; Silverman, J. M.
We present the results of spectroscopic observations from the ESSENCE high-redshift supernova (SN) survey during its first four years of operation. This sample includes spectra of all SNe Ia whose light curves were presented by Miknaitis et al. and used in the cosmological analyses of Davis et al. and Wood-Vasey et al. The sample represents 273 hr of spectroscopic observations with 6.5-10 m class telescopes of objects detected and selected for spectroscopy by the ESSENCE team. We present 184 spectra of 156 objects. Combining this sample with that of Matheson et al., we have a total sample of 329 spectramore » of 274 objects. From this, we are able to spectroscopically classify 118 Type Ia SNe. As the survey has matured, the efficiency of classifying SNe Ia has remained constant while we have observed both higher-redshift SNe Ia and SNe Ia farther from maximum brightness. Examining the subsample of SNe Ia with host-galaxy redshifts shows that redshifts derived from only the SN Ia spectra are consistent with redshifts found from host-galaxy spectra. Moreover, the phases derived from only the SN Ia spectra are consistent with those derived from light-curve fits. By comparing our spectra to local templates, we find that the rate of objects similar to the overluminous SN 1991T and the underluminous SN 1991bg in our sample are consistent with that of the local sample. We do note, however, that we detect no object spectroscopically or photometrically similar to SN 1991bg. Although systematic effects could reduce the high-redshift rate we expect based on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less prevalent at high redshift.« less
Resonant photoemission spectroscopic studies of SnO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Chauhan, R. S.; Panchal, Gyanendra; Singh, C. P.; Dar, Tanveer A.; Phase, D. M.; Choudhary, R. J.
2017-09-01
We report the structural and electronic properties of single phase, polycrystalline rutile tetragonal SnO2 thin film grown on Si (100) substrate by pulsed laser deposition technique. X-ray photoelectron and resonant photoemission spectroscopic (RPES) studies divulge that Sn is present in 4+ (˜91%) valence state with a very small involvement of 2+ (˜9%) valence state at the surface. Valence band spectrum of the film shows prominent contribution due to the Sn4+ valence state. RPES measurements were performed in the Sn 4d→5p photo absorption region. This study shows that O-2p, Sn-5s, and Sn-5p partial density of states are the main contributions to the valence band of this material. The resonance behavior of these three contributions has been analyzed. Constant initial state versus photon energy plots suggest that the low binding energy feature at ˜2.8 eV results from the hybridization of the O-2p and mixed valence states of Sn, while remaining features at higher binding energies are due to the hybridization between O-2p (bonding) orbitals and Sn4+ valence state.
The Rise of SN 2014J in the Nearby Galaxy M 82
NASA Technical Reports Server (NTRS)
A.Goobar; Johansson, J.; Amanullah, R.; Cao, Y.; Perley, D.A.; Kasliwal, M. M.; Ferreti, R.; Nugent, P. E.; Harris, C.; Cenko, S. B.
2014-01-01
We report on the discovery of SN 2014J in the nearby galaxy M 82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova over a wide range of the electromagnetic spectrum. Optical, near-IR and mid-IR observations on the rising lightcurve, orchestrated by the intermediate Palomar Transient Factory (iPTF), show that SN 2014J is a spectroscopically normal Type Ia supernova, albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the lightcurve rise. Similarly to other highly reddened Type Ia supernovae, a low value of total-to-selective extinction, R (sub V) less than or approximately equal to 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from HST with special emphasis on the sources nearest to the SN location.
Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO
NASA Astrophysics Data System (ADS)
Maund, J. R.; Fraser, M.; Smartt, S. J.; Botticella, M. T.; Barbarino, C.; Childress, M.; Gal-Yam, A.; Inserra, C.; Pignata, G.; Reichart, D.; Schmidt, B.; Sollerman, J.; Taddia, F.; Tomasella, L.; Valenti, S.; Yaron, O.
2013-04-01
We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) and Advanced Camera for Surveys Wide Field Channel F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M_{r^' }}=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Hα absorption minimum of -11 700 km s-1 (at 1 d post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (<6 d). We derive a luminosity for the progenitor, in comparison with MARCS model spectral energy distributions, of log {L/L}_{⊙} = 5.15± 0.19, from which we infer an initial mass range of 14-22 M⊙. This is the first SN with an identified progenitor to be followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO).
Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen.
Gurlo, Alexander
2006-10-13
Tin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas-sensing effects on SnO(2) is not fully understood. The key step is the understanding of the electronic response of SnO(2) in the presence of background oxygen. For a long time, oxygen interaction with SnO(2) has been treated within the framework of the "ionosorption theory". The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for "ionosorbed" oxygen species. Neither superoxide ions O(2)(-), nor charged atomic oxygen O,(-) nor peroxide ions O(2)(2-) have been observed on SnO(2) under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead-end form of low-temperature oxygen adsorption on reduced metal oxide.
Spectroscopic classification of SN 2018bwp as a type Ia supernova a few weeks after peak brightness
NASA Astrophysics Data System (ADS)
Lopez-Sanchez, Angel R.; Galbany, Lluis; Ascasibar, Yago; Fiegert, Kristin; Barnes, Timothy; Cunningham, Casey; Cristiano, Tony; Dean, Sarah; Edwards, Robert; East, Nicholas; Franks, Karen; Hams, Julie; Higgins, Robert Ian; Hogan, Jennifer; Last, Rusel; Longmuir, Mark; McRae, Andrew; McElhinney, Neil; Miller, Rosie; Murphy, Chris; Quarrell, Christopher Daniel Andrew; O'Donnell, Gianna; Rochler, Michael; Roberts, Hayden; Robinson, Lyn; Soule, Stephan; Spillman, Natalie J.; Shelmerdine, Paul; Vassie, Robert; Vickers, Michael; Westwood, Jennifer A.; Smethurst, Rebecca J.; Lintott, Chris; Moller, Anais; Tucker, Brad; Armstrong, Patrick; Bray, Charles; Chang, Seo-Won; Onken, Chris; Ridden-Harper, Ryan; Taylor, Georgie; Ruiter, Ashley; Cox, Brian; Zemiro, Julia
2018-05-01
We report the spectroscopic classification of SN 2018bwp (RA=13:25:54.77, DEC=-37:14:12.05) in the galaxy 2MASX J13255427-3714139 . The candidate was discovered by the SkyMapper Transient (SMT) survey (Scalzo et al. 2017, PASA, 34:30) on UT 2018-05-04 09:50 UT at 19.1 mag in the r-band.
Spectroscopic classification of SN 2018bwq as a type Ia supernova a few days before maximum light.
NASA Astrophysics Data System (ADS)
Lopez-Sanchez, Angel R.; Galbany, Lluis; Ascasibar, Yago; Fiegert, Kristin; Burchat, Leigh; Long, Barb; Roberts, Hayden; Newling, Pip; Smethurst, Rebecca J.; Lintott, Chris; Moller, Anais; Tucker, Brad; Armstrong, Patrick; Bray, Charles; Chang, Seo-Won; Onken, Chris; Ridden-Harper, Ryan; Taylor, Georgie; Ruiter, Ashley; Cox, Brian; Zemiro, Julia
2018-05-01
We report the spectroscopic classification of SN 2018bwq (RA=21:29:11.76, DEC=-29:09:46.2) in the galaxy 2MASX J21291210-2909468. The candidate was discovered by the SkyMapper Transient (SMT) survey (Scalzo et al. 2017, PASA, 34:30) on UT 2018-05-13 15:34 UT at 19.32 mag in the r-band.
VizieR Online Data Catalog: Space telescope RM project. V. NGC5548 sp. monitoring (Pei+, 2017)
NASA Astrophysics Data System (ADS)
Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bonta, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, S. M.; Beatty, T. G.; Bigley, A.; Brown, J. E.; Brown, J. S.; Canalizo, G.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, M.; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, M.; Lochhaas, C.; Ma, Z.; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, A.; Mudd, D.; Sanchez, F. M.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, M. T.; Pizzella, A.; Poleski, R.; Runnoe, J.; Scott, B.; Schimoia, J. S.; Shappee, B. J.; Shivvers, I.; Simonian, G. V.; Siviero, A.; Somers, G.; Stevens, D. J.; Strauss, M. A.; Tayar, J.; Tejos, N.; Treu, T.; van Saders, J.; Vican, L.; Villanueva, S.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arevalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; de Lorenzo-Caceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, K.; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; Macinnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnulle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.
2017-10-01
Spectroscopic data were obtained from five telescopes: the McGraw-Hill 1.3m telescope at the MDM Observatory (4225-5775Å; median S/N=118), the Shane 3m telescope at the Lick Observatory (Kast Double Spectrograph: 3250-7920Å; median S/N=194), the 1.22m Galileo telescope at the Asiago Astrophysical Observatory (3250-7920Å; median S/N=160), the 3.5m telescope at Apache Point Observatory (APO; Dual Imaging Spectrograph: 4180-5400Å, median S/N =160), and the 2.3m telescope at the Wyoming Infrared Observatory (WIRO; 5599-4399Å; median S/N=217). The optical spectroscopic monitoring targeting NGC 5548 began on 2014 January 4 and continued through 2014 July 6 with approximately daily cadence. MDM contributed the largest number of spectra with 143 epochs. (1 data file).
NASA Astrophysics Data System (ADS)
Choi, S. G.; Park, J.-S.; Donohue, A. L.; Christensen, S. T.; To, B.; Beall, C.; Wei, S.-H.; Repins, I. L.
2015-11-01
Cu2ZnGeSe4 is of interest for the development of next-generation thin-film photovoltaic technologies. To understand its electronic structure and related fundamental optical properties, we perform first-principles calculations for three structural variations: kesterite, stannite, and primitive-mixed CuAu phases. The calculated data are compared with the room-temperature dielectric function ɛ =ɛ1+i ɛ2 spectrum of polycrystalline Cu2ZnGeSe4 determined by vacuum-ultraviolet spectroscopic ellipsometry in the photon-energy range of 0.7 to 9.0 eV. Ellipsometric data are modeled with the sum of eight Tauc-Lorentz oscillators, and the best-fit model yields the band-gap and Tauc-gap energies of 1.25 and 1.19 eV, respectively. A comparison of overall peak shapes and relative intensities between experimental spectra and the calculated ɛ data for three structural variations suggests that the sample may not have a pure (ordered) kesterite phase. The complex refractive index N =n +i k , normal-incidence reflectivity R , and absorption coefficients α are calculated from the modeled ɛ spectrum, which are also compared with those of Cu2ZnSnSe4 . The spectral features for Cu2ZnGeSe4 appear to be weaker and broader than those for Cu2ZnSnSe4 , which is possibly due to more structural imperfections presented in Cu2ZnGeSe4 than Cu2ZnSnSe4 .
The Data Release of the Sloan Digital Sky Survey-II Supernova Survey
NASA Astrophysics Data System (ADS)
Sako, Masao; Bassett, Bruce; Becker, Andrew C.; Brown, Peter J.; Campbell, Heather; Wolf, Rachel; Cinabro, David; D’Andrea, Chris B.; Dawson, Kyle S.; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Filippenko, Alexei V.; Fischer, John A.; Foley, Ryan J.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Goobar, Ariel; Gupta, Ravi R.; Hill, Gary J.; Hayden, Brian T.; Hlozek, Renée; Holtzman, Jon A.; Hopp, Ulrich; Jha, Saurabh W.; Kessler, Richard; Kollatschny, Wolfram; Leloudas, Giorgos; Marriner, John; Marshall, Jennifer L.; Miquel, Ramon; Morokuma, Tomoki; Mosher, Jennifer; Nichol, Robert C.; Nordin, Jakob; Olmstead, Matthew D.; Östman, Linda; Prieto, Jose L.; Richmond, Michael; Romani, Roger W.; Sollerman, Jesper; Stritzinger, Max; Schneider, Donald P.; Smith, Mathew; Wheeler, J. Craig; Yasuda, Naoki; Zheng, Chen
2018-06-01
This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r ≃ 22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically, using host galaxy redshift information when available. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1364 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 624 purely photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat ΛCDM cosmology, we determine Ω M = 0.315 ± 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7σ.
The curious case of SN 2011dn: A very peculiar type Ia supernova?
NASA Astrophysics Data System (ADS)
Rachubo, Alisa
Type Ia supernovae (SNe Ia) are excellent cosmological distance indicators due to the uniformity in their light curves, which led to the major discovery of the accelerated expansion of the universe. However, SNe Ia are not so uniform as one may expect, as there are many peculiar SNe Ia that exhibit differences in their photometric and spectroscopic behavior from normal SNe Ia. One of the goals of supernova cosmology today is to produce a cleaner sample of SNe Ia without these peculiar SNe Ia. Here we consider SN 2011dn, a peculiar SN Ia candidate. In 2011, Salvo, et al. carried out a preliminary analysis of a subset of the data prescribed here, and identified spectral and photometric peculiarities in this object's evolution that warranted further analysis. Here, we present a complete re-reduction and reanalysis of B, V,R, and I photometry of SN 2011dn obtained at Mount Laguna Observatory, spanning from 7 days before maximum light in B to 88 days past maximum light. In addition, we also consider total flux spectra from 9 days before maximum light to 4 days after maximum light, along with ultraviolet (UV) photometry obtained with the Swift telescope. From SN 2011dn's optical spectra, we find that SN 2011dn most closely resembles a SN 1991T-like type Ia supernova ('91T-like SN Ia). Such SNe Ia are typically more luminous than normal SNe Ia, and possess broader (i.e., they decline less rapidly than normal from maximum light) light curves. Their Deltam15(B) (drop in B magnitude 15 days after maximum light) are typically significantly less than the canonical value of 1.1, and can be as low as 0.8. In the earlier preliminary analysis, Salvo et al. measured a surprisingly high Deltam15(B) value for SN 2011dn, of ˜ 1.1. Since SN 2011dn was embedded in UGC 11501 (its host galaxy), however, it is possible that some of the light from the host galaxy was included in the photometric aperture, resulting in inaccurate photometric measurements. Here, in order to better isolate the supernova light from its host galaxy, we employ galaxy-subtraction techniques to generate more precise light curves. From these data, we obtain an updated Deltam15( B) value of 1.01 +/- 0.02, which suggests that SN 2011dn is indeed slightly overluminous compared to normal SNe Ia, but perhaps not as overluminous as '91T-like SNe Ia. However, despite this apparent resolution of the spectral and photometric conflict, we find SN 2011dn to still exhibit some unique features. For instance, its near-maximum and especially its post-maximum spectra exhibit an unusually weak Si II lambda6355 feature, even considering that '91T-like SNe Ia spectra tend to have shallow silicon features. Furthermore, we find that SN 2011dn exhibits some unusual UV-optical color evolution, though its early-time UV excess may be linked to unburned carbon in SN 2011dn's ejecta, as indicated by the C III lambda4649 feature in its pre-maximum spectra. Altogether, after a careful reanalysis of the spectral and photometric properties of SN 2011dn, we classify it as slightly overluminous, with '91T-like pre-maximum and near-maximum spectra, but exhibiting some atypical features. SN 2011dn is not as peculiar as anticipated, but still has some characteristics that are unique to it.
Strong near-infrared carbon in the Type Ia supernova iPTF13ebh
Hsiao, E. Y.; Burns, C. R.; Contreras, C.; ...
2015-05-22
We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though themore » optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.« less
Spectroscopic Classification of SN 2018bq (=ASASSN-18ac) as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Lin, Han; Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Xiao, Feng; Ren, Juanjuan; Zhang, Tianmeng; Zhang, Jujia
2018-01-01
We obtained an optical spectrum (range 510-860 nm) of SN 2018bq(=ASASSN-18ac), discovered by All Sky Automated Survey for Supernova(ASAS-SN), on UT 09.81 2018 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).
Wolf, Alexander; Reiher, Markus; Hess, Bernd Artur
2004-05-08
The first molecular calculations with the generalized Douglas-Kroll method up to fifth order in the external potential (DKH5) are presented. We study the spectroscopic parameters and electron affinity of the tin oxide molecule SnO and its anion SnO(-) applying nonrelativistic as well as relativistic calculations with higher orders of the DK approximation. In order to guarantee highly accurate results close to the basis set limit, an all-electron basis for Sn of at least quintuple-zeta quality has been constructed and optimized. All-electron CCSD(T) calculations of the potential energy curves of both SnO and SnO(-) reproduce the experimental values very well. Relative energies and valence properties are already well described with the established standard second-order approximation DKH2 and the higher-order corrections DKH3-DKH5 hardly affect these quantities. However, an accurate description of total energies and inner-shell properties requires superior relativistic schemes up to DKH5. (c) 2004 American Institute of Physics.
Spectroscopic properties of 130Sb, 132Te and 134I nuclei in 100-132Sn magic cores
NASA Astrophysics Data System (ADS)
Benrachi, Fatima; Khiter, Meriem; Laouet, Nadjet
2017-09-01
We have performed shell model calculations by means of Oxbash nuclear structure code using recent experimental single particle (spes) and single hole (shes) energies with valence space models above the 100sn and 132sn doubly magic cores. The two-body matrix elements (tbme) of original CD-Bonn realistic interaction are introduced after have been modified taking into account the three-body forces. We have focused our study on spectroscopic properties evaluation of 130Sb, 132Te and 134I nuclei, in particular their energy spectra, transition probabilities and moments have been determined. The getting spectra are in reasonable agreement with the experimental data.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Siebert, M. R.; Foley, R. J.; Pan, Y.-C.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-08-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by Shunsuke Nagata, POSS, and ASAS-SN.
Interaction of antitumor drug Sn(CH 3) 2Cl 2 with DNA and RNA
NASA Astrophysics Data System (ADS)
Nafisi, Shohreh; Sobhanmanesh, Amir; Esm-Hosseini, Majid; Alimoghaddam, Kamran; Tajmir-Riahi, Heidar Ali
2005-08-01
Sn(CH3)2Cl2 exerts its antitumor activity in a specific way. Unlike anticancer cis-Pt(NH3)2Cl2 drug which binds strongly to the nitrogen atoms of DNA bases, Sn(CH3)2Cl2 shows no major affinity towards base binding. Thus, the mechanism of action by which tinorganometallic compounds exert antitumor activity would be different from that of the cisplatin drug. The aim of this study was to examine the binding of Sn(CH3)2Cl2 with calf thymus DNA and yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentrations of DNA and RNA and various molar ratios of Sn(CH3)2Cl2/DNA (phosphate) and Sn(CH3)2Cl2/RNA of 1/40, 1/20, 1/10, 1/5. Fourier transform infrared (FTIR) and UV-visible difference spectroscopic methods were used to determine the Sn(CH3)2Cl2 binding mode, binding constant, sequence selectivity and structural variations of Sn(CH3)2Cl2/DNA and Sn(CH3)2Cl2/RNA complexes in aqueous solution. Sn(CH3)2Cl2 hydrolyzes in water to give Sn(CH3)2(OH)2 and [Sn(CH3)2(OH)(H2O)n]+ species. Spectroscopic evidence showed that interaction occurred mainly through (CH3)2Sn(IV) hydroxide and polynucleotide backbone phosphate group with overall binding constant of K(Sn(CH3)2Cl2-DNA)=1.47×105 M-1 and K(Sn(CH3)2Cl2-RNA)=7.33×105 M-1. Sn(CH3)2Cl2 induced no biopolymer conformational changes with DNA remaining in the B-family structure and RNA in A-conformation upon drug complexation.
Spectroscopic Classifications of Optical Transients with the Lick Shane telescope
NASA Astrophysics Data System (ADS)
Rojas-Bravo, C.; Xhakaj, E.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.
2017-07-01
We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane telescope. Targets were supplied by ASAS-SN, ATLAS, Gaia, and POSS.
Light Curve and Spectral Evolution of Type IIb Supernovae
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, Andrea; Sahu, Devendra Kumar; Singh, Mridweeka; Dastidar, raya; Anapuma, Gadiyara Chakrapani; Kumar, Brijesh; Pandey, Shashi Bhushan
2018-04-01
Stripped-Envelope Supernovae constitute the sub-class of core-collapse supernovae that strip off their outer hydrogen envelope due to high stellar winds or due to interaction with a binary companion where mass transfer occurs as a result of Roche lobe overflow. We present here the photometric and spectroscopic analysis of a member of this class : SN 2015as classified as a type IIb supernova. Light curve features are similar to those of SN 2011fu while spectroscopic features are quite similar to those of SN 2008ax and SN 2011dh. Early epoch spectra have been modelled with SYN++ which indicates a photospheric velocity of 8500 km sec-1 and temperature of 6500K. Spectroscopic lines show transitioning from H to He features confirming it to be a type IIb supernova. Prominent oxygen and calcium emission features are indicative of the asymmetry of the ejecta. We also estimate the signal to noise ratio of the 3.6m telescope data. This telescope is located at ARIES, Devasthal, Nainital at an altitude of 2450m. We also show the comparison plots of spectra taken with a 2m and 4m class telescopes to enlighten the importance of spectral features displayed by bigger diameter telescopes.
Host galaxies of type ia supernovae from the nearby supernova factory
NASA Astrophysics Data System (ADS)
Childress, Michael Joseph
Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of SNe Ia. Finally we revisit recent studies which found that the corrected brightnesses of SNe Ia (after application of the standard light curve width and color corrections) correlate with the masses of their host galaxies. We confirm this trend with host mass using SNfactory data, and for the first time confirm that an analogous trend exists with host metallicity. We then apply a spectroscopic standardization technique developed by SNfactory and show that this method significantly reduces the observed bias. In this Thesis we show that SN Ia host galaxies continue to provide key insight into SN Ia progenitors, and also illuminate possible biases in SN Ia brightness standardization techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sukgeun; Park, Ji-Sang; Donohue, Andrea
2015-11-19
Cu 2ZnGeSe 4 is of interest for the development of next-generation thin-film photovoltaic technologies. To understand its electronic structure and related fundamental optical properties, we perform first-principles calculations for three structural variations: kesterite, stannite, and primitive-mixed CuAu phases. The calculated data are compared with the room-temperature dielectric functionϵ=ϵ1+iϵ2 spectrum of polycrystalline Cu 2ZnGeSe 4 determined by vacuum-ultraviolet spectroscopic ellipsometry in the photon-energy range of 0.7 to 9.0 eV. Ellipsometric data are modeled with the sum of eight Tauc-Lorentz oscillators, and the best-fit model yields the band-gap and Tauc-gap energies of 1.25 and 1.19 eV, respectively. A comparison of overall peakmore » shapes and relative intensities between experimental spectra and the calculated ϵ data for three structural variations suggests that the sample may not have a pure (ordered) kesterite phase. We found that the complex refractive index N=n+ik, normal-incidence reflectivity R, and absorption coefficients α are calculated from the modeled ϵ spectrum, which are also compared with those of Cu 2ZnSnSe 4 . The spectral features for Cu 2ZnGeSe 4 appear to be weaker and broader than those for Cu 2ZnSnSe 4 , which is possibly due to more structural imperfections presented in Cu 2ZnGeSe 4 than Cu 2ZnSnSe 4 .« less
OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inserra, C.; Sim, S. A.; Smartt, S. J.
2015-01-20
We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M{sub I} ∼ –17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths <5000 Å. To date, this is the only reported SN showing Ti-dominated spectra. The data aremore » broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and ''double-detonation'' models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.« less
Asiago spectroscopic classification of ASASSN-18io
NASA Astrophysics Data System (ADS)
Granata, V.; Benetti, S.; Tomasella, L.; Cappellaro, E.; Turatto, M.
2018-04-01
The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASASSN-18io, discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014).
Spectroscopic Classifications of AT2016esx with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Siebert, M. R.; Coulter, D. A.; Foley, R. J.; Pan, Y.-C.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-08-01
We report a classification of ASASSN-16io = AT2016esx from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN).
VizieR Online Data Catalog: SN2009ip UBVRI, UVOT and JHK light curves (Fraser+, 2013)
NASA Astrophysics Data System (ADS)
Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.-T.; Bufano, F.; Childress, M.; Mattila, S.; Pastorello, A.; Smartt, S. J.; Turatto, M.; Yuan, F.; Anderson, J. P.; Bayliss, D. D. R.; Bauer, F. E.; Chen, T.-W.; Forster Buron, F.; Gal-Yam, A.; Haislip, J. B.; Knapic, C.; Le Guillou, L.; Marchi, S.; Mazzali, P.; Molinaro, M.; Moore, J. P.; Reichart, D.; Smareglia, R.; Smith, K. W.; Sternberg, A.; Sullivan, M.; Takats, K.; Tucker, B. E.; Valenti, S.; Yaron, O.; Young, D. R.; Zhou, G.
2014-11-01
Optical spectroscopic follow-up of SN 2009ip was chiefly obtained with the New Technology Telescope (NTT) + ESO Faint Object Spectrograph and Camera 2 (EFOSC2), as part of the Public European Southern Observatory (ESO) Spectroscopic Survey of Transient Objects (PESSTO). The PESSTO data were supplemented with data from the Telescopio Nazionale Galileo (TNG) + Device Optimized for the LOw RESolution (DOLORES), and the Australian National University (ANU) 2.3m telescope + Wide Field Spectrograph (WiFeS). (3 data files).
Short-wavelength out-of-band EUV emission from Sn laser-produced plasma
NASA Astrophysics Data System (ADS)
Torretti, F.; Schupp, R.; Kurilovich, D.; Bayerle, A.; Scheers, J.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.
2018-02-01
We present the results of spectroscopic measurements in the extreme ultraviolet regime (7-17 nm) of molten tin microdroplets illuminated by a high-intensity 3 J, 60 ns Nd:YAG laser pulse. The strong 13.5 nm emission from this laser-produced plasma (LPP) is of relevance for next-generation nanolithography machines. Here, we focus on the shorter wavelength features between 7 and 12 nm which have so far remained poorly investigated despite their diagnostic relevance. Using flexible atomic code calculations and local thermodynamic equilibrium arguments, we show that the line features in this region of the spectrum can be explained by transitions from high-lying configurations within the Sn{}8+-Sn{}15+ ions. The dominant transitions for all ions but Sn{}8+ are found to be electric-dipole transitions towards the n = 4 ground state from the core-excited configuration in which a 4p electron is promoted to the 5s subshell. Our results resolve some long-standing spectroscopic issues and provide reliable charge state identification for Sn LPP, which could be employed as a useful tool for diagnostic purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in
2015-01-15
Three new isostructural quaternary antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) have been synthesized by using alkali metal thiosulfate flux and structurally characterized by X-ray diffraction. Their structures contain A{sup +} ions around the [Sb{sub 2}Sn{sub 3}S{sub 10}]{sup 2−} chains, which are built from SbS{sub 3} pyramids, SnS{sub 6} octahedra and SnS{sub 4} tetrahedra. Raman and Mössbauer spectroscopic measurements corroborate the oxidation states and coordination environments of Sb(III) and Sn(IV). All three compounds are wide band gap semiconductors. Potassium compound undergoes partial exchange with strontium, cadmium and lead ions. - Graphical abstract: Syntheses, crystal structure, spectroscopic andmore » partial ion-exchange studies of new one-dimensional alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs) are described. - Highlights: • Syntheses of new alkali metal antimony(III) thiostannates(IV), A{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} (A=K, Rb, Cs). • Wide band gap semiconductors with one-dimensional structure. • Topotactic partial exchange of K{sup +} ions of K{sub 2}Sb{sub 2}Sn{sub 3}S{sub 10} with Sr{sup 2+}, Cd{sup 2+} and Pb{sup 2+} ions.« less
Spectroscopic classification of Gaia18adv by NUTS (NOT Un-biased Transient Survey)
NASA Astrophysics Data System (ADS)
Gall, C.; Benetti, S.; Wyrzykowski, L.; Stritzinger, M.; Holmbo, S.; Dong, S.; Siltala, Lauri; NUTS Collaboration
2018-01-01
The Nordic Optical Telescope (NOT) Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of Gaia18adv (SN2018hh) near the host galaxy SDSS J121341.37+282640.0.
Spectroscopic Classification of PS16ccj with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-05-01
We report the classification of PS16ccj from spectroscopic observation with KOSMOS on the Mayall telescope. The observation was made on 2016 May 05 UT. We classify PS16ccj as a SN Ia near maximum light.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2017-01-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN) and the ATLAS project (ATel #8680).
SALT spectroscopic classification of SN 2017erp as a type-Ia supernova well before maximum light
NASA Astrophysics Data System (ADS)
Jha, S. W.; Camacho, Y.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Skelton, R.
2017-06-01
We obtained SALT (+RSS) spectroscopy of SN 2017erp (discovered by K. Itagaki) on 2017 Jun 13.9 UT, covering the wavelength range 350-940 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2017erp is a type-Ia supernova before maximum light.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Kilpatrick, C. D.; Siebert, M. R.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-08-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST) and the All-Sky Automated Survey for Supernovae (ASAS-SN).
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-06-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST), All-Sky Automated Survey for Supernovae (ASAS-SN) and MASTER.
ePESSTO spectra and ATLAS photometry of SN2017iuk associated with GRB171205A
NASA Astrophysics Data System (ADS)
Prentice, S.; Mazzali, P.; Smartt, S. J.; Angus, C. R.; Firth, R. E.; Frohmaier, C.; Smith, M.; Barbarino, C.; Anderson, J.; Dennefeld, M.; Inserra, C.; Kankare, E.; Maguire, K.; Smartt, S. J.; Smith, K. W.; Sullivan, M.; Valenti, S.; Yaron, O.; Young, D.; Tonry, I. Manulis J.; Denneau, L.; Stalder, B.; Heinze, A.; Weiland, H.; Rest, A.; Fulton, M.; McBrien, O.
2017-12-01
ePESSTO, the extended Public ESO Spectroscopic Survey of Transient Objects, (see Smartt et al. 2015, A & A, 579, 40 http://www.pessto.org ), reports further spectral observations of SN 2017iuk, associated with GRB 171205A.
Spectroscopic observation of 5 SN candidates
NASA Astrophysics Data System (ADS)
Elias-Rosa, N.; Pursimo, T.; Korhonen, H.; Pastorello, A.; Derlopa, the NEON school PhD students S.; Marian, V.; Scognamiglio, D.; Szigeti, L.; Cabezas, M.; Fernandes, C. S.; McWhirter, P. R.; Zervas, K.
2017-09-01
We report the spectroscopic classification of SNe 2017gla, 2017glz, 2017gop, and 2017gqq, and the verification of SN2017gmr. The targets were supplied by the following surveys: ATLAS survey, see Tonry et al. (2011, PASP, 123, 58) and Tonry et al. (ATel #8680); Pan-STARRS Survey for Transients (Chambers et al. 2016, arXiv:1612.05560, and http://pswww.ifa.hawaii.edu ), the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/ ); and the D The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.4 nm FWHM).
Spectroscopic classification of SN 2018kv as a type Ia supernova
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Lu, Kaixing; Wang, Xiaofeng; Xu, Zhijian; Li, Wenxiong; Zhang, Tianmeng; Tan, Hanjie; Li, Zhitong; Song, Hao; University, Jun Mo (Tsinghua
2018-01-01
We obtained an optical spectrum (range 350-900 nm) of SN 2018kv, discovered by the Tsinghua-NAOC Transient Survey, on UT 2018 Jan. 26.9 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.
Spectroscopic Classification of SN 2017ixe as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Yu, Xiaoguang; Wang, Xiaofeng
2017-12-01
We obtained an optical spectrum (range 340-900 nm) of SN 2017ixe (PSP17G), discovered by XOSS, on UT Dec. 15.7 2017 with the Li-Jiang 2.4 m telescope (LJT + YFOSC) at Li-Jiang Observatory of Yunnan Observatories (YNAO).
Spectroscopic classification of SN 2018iq as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Lu, Kaixing; Wang, Xiaofeng
2018-01-01
We obtained an optical spectrum (range 350-900 nm) of SN 2018iq (=AT2017jzx), discovered by Koichi Itagaki, on UT 2018 Jan. 20.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.
Spectroscopic classification of SN2018afm and SN2018aik
NASA Astrophysics Data System (ADS)
Blagorodnova, Nadejda; Fremling, Christoffer; Neill, James D.; Walters, Richard; Cannella, Christopher B.; Kulkarni, Shrinivas R.
2018-03-01
We report the classification of the following bright transients. The spectra have been obtained with the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003).
ePESSTO reclassification of SN2018bsz as the lowest redshift SLSN to date
NASA Astrophysics Data System (ADS)
Anderson, J. P.; Dessart, Luc; Pessi, P.; Smartt, S. J.; Inserra, C.; Leloudas, G.; Roy, R.; Gal-Yam, A.; Tonry, J.; Denneau, L.; Heinze, A.; Weiland, H.; Rest, B. Stalder A.; Smith, K. W.; McBrien, O.; Young, D. R.; Wright, D. E.
2018-05-01
ePESSTO, the extended Public ESO Spectroscopic Survey for Transient Objects (see Smartt et al. 2015, A & A, 579, 40 http://www.pessto.org), reports a reclassification of SN2018bsz (RA=16:09:39.19, DEC=-32:03:45.2).
SN 2008in—Bridging the Gap between Normal and Faint Supernovae of Type IIP
NASA Astrophysics Data System (ADS)
Roy, Rupak; Kumar, Brijesh; Benetti, Stefano; Pastorello, Andrea; Yuan, Fang; Brown, Peter J.; Immler, Stefan; Fatkhullin, Timur A.; Moskvitin, Alexander S.; Maund, Justyn; Akerlof, Carl W.; Wheeler, J. Craig; Sokolov, Vladimir V.; Quimby, Rorbert M.; Bufano, Filomena; Kumar, Brajesh; Misra, Kuntal; Pandey, S. B.; Elias-Rosa, Nancy; Roming, Peter W. A.; Sagar, Ram
2011-08-01
We present optical photometric and low-resolution spectroscopic observations of the Type II plateau supernova (SN) 2008in, which occurred in the outskirts of the nearly face-on spiral galaxy M61. Photometric data in the X-ray, ultraviolet, and near-infrared bands have been used to characterize this event. The SN field was imaged with the ROTSE-IIIb optical telescope about seven days before the explosion. This allowed us to constrain the epoch of the shock breakout to JD = 2454825.6. The duration of the plateau phase, as derived from the photometric monitoring, was ~98 days. The spectra of SN 2008in show a striking resemblance to those of the archetypal low-luminosity IIP SNe 1997D and 1999br. A comparison of ejecta kinematics of SN 2008in with the hydrodynamical simulations of Type IIP SNe by Dessart et al. indicates that it is a less energetic event (~5 × 1050 erg). However, the light curve indicates that the production of radioactive 56Ni is significantly higher than that in the low-luminosity SNe. Adopting an interstellar absorption along the SN direction of AV ~ 0.3 mag and a distance of 13.2 Mpc, we estimated a synthesized 56Ni mass of ~0.015 M sun. Employing semi-analytical formulae derived by Litvinova and Nadezhin, we derived a pre-SN radius of ~126 R sun, an explosion energy of ~5.4 × 1050 erg, and a total ejected mass of ~16.7 M sun. The latter indicates that the zero-age main-sequence mass of the progenitor did not exceed 20 M sun. Considering the above properties of SN 2008in and its occurrence in a region of sub-solar metallicity ([O/H] ~ 8.44 dex), it is unlikely that fall-back of the ejecta onto a newly formed black hole occurred in SN 2008in. We therefore favor a low-energy explosion scenario of a relatively compact, moderate-mass progenitor star that generates a neutron star.
THE UNUSUAL TEMPORAL AND SPECTRAL EVOLUTION OF THE TYPE IIn SUPERNOVA 2011ht
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roming, P. W. A.; Bayless, A. J.; Pritchard, T. A.
2012-06-01
We present very early UV to optical photometric and spectroscopic observations of the peculiar Type IIn supernova (SN) 2011ht in UGC 5460. The UV observations of the rise to peak are only the second ever recorded for a Type IIn SN and are by far the most complete. The SN, first classified as an SN impostor, slowly rose to a peak of M{sub V} {approx} -17 in {approx}55 days. In contrast to the {approx}2 mag increase in the v-band light curve from the first observation until peak, the UV flux increased by >7 mag. The optical spectra are dominated bymore » strong, Balmer emission with narrow peaks (FWHM {approx} 600 km s{sup -1}), very broad asymmetric wings (FWHM {approx} 4200 km s{sup -1}), and blueshifted absorption ({approx}300 km s{sup -1}) superposed on a strong blue continuum. The UV spectra are dominated by Fe II, Mg II, Si II, and Si III absorption lines broadened by {approx}1500 km s{sup -1}. Merged X-ray observations reveal a L{sub 0.2-10} = (1.0 {+-} 0.2) Multiplication-Sign 10{sup 39} erg s{sup -1}. Some properties of SN 2011ht are similar to SN impostors, while others are comparable to Type IIn SNe. Early spectra showed features typical of luminous blue variables at maximum and during giant eruptions. However, the broad emission profiles coupled with the strong UV flux have not been observed in previous SN impostors. The absolute magnitude and energetics ({approx}2.5 Multiplication-Sign 10{sup 49} erg in the first 112 days) are reminiscent of normal Type IIn SN, but the spectra are of a dense wind. We suggest that the mechanism for creating this unusual profile could be a shock interacting with a shell of material that was ejected a year before the discovery of the SN.« less
Asiago spectroscopic classification of ASASSN-18fw and ASASSN-18ga
NASA Astrophysics Data System (ADS)
Ochner, P.; Benetti, S.; Tomasella, L.; Cappellaro, E.; Turatto, M.; Stanek, K. Z.
2018-03-01
The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASASSN-18fw and ASASSN-18ga, discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014).
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Downing, S.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-01-01
We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN), Catalina Real-Time Transient Survey (CRTS) and the CBAT Transient Object Followup Reports.
Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction
NASA Astrophysics Data System (ADS)
Bonnefille, Eric; Novio, Fernando; Gutmann, Torsten; Poteau, Romuald; Lecante, Pierre; Jumas, Jean-Claude; Philippot, Karine; Chaudret, Bruno
2014-07-01
Two series of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; Ru/PVP) or a ligand (bisdiphenylphosphinobutane; Ru/dppb) were reacted with tributyltin hydride [(n-C4H9)3SnH] leading to tin-decorated ruthenium nanoparticles, Ru/PVP/Sn and Ru/dppb/Sn. The Sn/Ru molar ratio was varied in order to study the influence of the surface tin content on the properties of these new nanoparticles, by comparison with Ru/PVP and Ru/dppb. Besides HRTEM and WAXS analyses, spectroscopic techniques (IR, NMR and Mössbauer) combined with theoretical calculations and a simple catalytic test (styrene hydrogenation) allowed us to evidence the formation of μ3-bridging ``SnR'' groups on the ruthenium surface as well as to rationalize their influence on surface chemistry and catalytic activity.Two series of ruthenium nanoparticles stabilized either by a polymer (polyvinylpyrrolidone; Ru/PVP) or a ligand (bisdiphenylphosphinobutane; Ru/dppb) were reacted with tributyltin hydride [(n-C4H9)3SnH] leading to tin-decorated ruthenium nanoparticles, Ru/PVP/Sn and Ru/dppb/Sn. The Sn/Ru molar ratio was varied in order to study the influence of the surface tin content on the properties of these new nanoparticles, by comparison with Ru/PVP and Ru/dppb. Besides HRTEM and WAXS analyses, spectroscopic techniques (IR, NMR and Mössbauer) combined with theoretical calculations and a simple catalytic test (styrene hydrogenation) allowed us to evidence the formation of μ3-bridging ``SnR'' groups on the ruthenium surface as well as to rationalize their influence on surface chemistry and catalytic activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00791c
NASA Astrophysics Data System (ADS)
Arjmand, Farukh; Sayeed, Fatima
2010-02-01
Heterobimetallic complexes C 6H 24N 4O 6CuSn 2Cl 63, C 6H 24N 4O 6ZnSn 2Cl 64 have been synthesized from their monometallic analogs C 6H 16N 4O 2CuCl 21, C 6H 16N 4O 2ZnCl 22, and were characterized by various spectroscopic and analytical methods. The complexes 1-4 reveal an octahedral geometry for both central metal ions Cu/Zn as well as for Sn metal ion. The interaction of complexes 1-4 with CT-DNA, were investigated by using absorption, emission, cyclic voltammetry, viscometry and DNA cleavage studies. The emission quenching of 3 and 4 by [Fe(CN) 6] 4- depressed greatly when bound to CT-DNA. The results of spectroscopic, viscometric and cyclic voltammetry of complexes 3 and 4 revealed electrostatic mode of binding of the complexes with CT-DNA. These results revealed that 4 bind more avidly in comparison to 3 with CT-DNA. Gel electrophoresis of DNA with complexes 3 and 4 demonstrated that the complexes exhibit excellent cleavage activity under physiological conditions.
Spectroscopic classification of SN 2018bsn as a type Ia supernova before the maximum
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Ye, Kai; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Mo, Jun; Tan, Hanjie; Zhang, Tianmeng
2018-05-01
We obtained an optical spectrum (range 350-890 nm) of SN 2018bsn, discovered by the Tsinghua-NAOC Transient Survey (TNTS), on UT May 17.7 2018 with the 2.4 m telescope (LJT + YFOSC) at Lijiang Observatory of Yunnan Observatories (YNAO).
Spectroscopic Classification of SN 2018bgc (=ATLAS18nvs) as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Lin, Han; Wang, Xiaofeng; Xiang, Danfeng; Rui, Liming; Hu, Lei; Hu, Maokai; Zhang, Xinhan; Li, Xue; Zhang, Tianmeng; Zhang, Jujia
2018-05-01
We obtained an optical spectrum (range 385-855 nm) of SN 2018bgc(=ATLAS18nvs), discovered by ATLAS, on UT May 08.60 2018 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venugopal, A.; Selvam, P.; Raja, V.S.
1997-10-01
Oxide films on Al and an Al-Sn alloy were analyzed by x-ray photoelectron spectroscopy (XPS) after immersion in 3.5% sodium chloride (NaCl) solution. Results showed Sn exhibited both Sn{sup 2+} and Sn{sup 4+} oxidation stats in the oxide film. It was proposed that incorporation of these cations in the film would result in generation of more anionic and cationic vacancies in aluminum oxide (Al{sub 2}O{sub 3}), leading to active dissolution of Al.
Spectroscopic identification of SNe 2004ds and SN 2004dt
NASA Astrophysics Data System (ADS)
Gal-Yam, Avishay
2004-08-01
A. Gal-Yam, D. Fox and S. Kulkarni, California Institute of Technology, report on red spectra (range 550-780 nm) obtained by Kulkarni and Fox on Aug. 13.5 UT at the 10-m Keck I telescope (+ LRIS). The spectrum of of SN 2004ds (IAUC #8386), shows a broad, well-developed P-Cyg H_alpha line and suggests that this is a type II supernova. The spectrum of SN 2004dt (IAUC #8386), shows the distinctive Si II 6100 absorption trough around 6100 Angstrom, indicating this is a young SN Ia.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2017-02-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN), the ATLAS project (ATel #8680), and the Pan-STARRS Survey for Transients (PSST).
Type Ia supernova rate studies from the SDSS-II Supernova Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilday, Benjamin
2008-08-01
The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less
Spectroscopic Classifications of Optical Transients with Keck I/LRIS
NASA Astrophysics Data System (ADS)
Foley, R. J.; Rojas-Bravo, C.
2018-05-01
We report the following classifications of optical transients from spectroscopic observations with LRIS on the Keck I 10-m telescope. Targets were supplied by the ASAS-SN and PSH. All observations were made on 2018 May 10 UT. Classifications were performed with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).
Asiago spectroscopic classification of 5 ASASSN SNe
NASA Astrophysics Data System (ADS)
Tomasella, L.; Benetti, S.; Cappellaro, E.; Turatto, M.
2018-04-01
The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASASSN-18ii,ASASSN-18it, ASASSN-18iv, ASASN-18iw, ASASSN-18iu discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014) (Atel #11178).
Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?
NASA Astrophysics Data System (ADS)
Tartaglia, L.
2015-02-01
Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.
Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartaglia, L.
2015-02-24
Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanismsmore » triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.« less
Supported Tetrahedral Oxo-Sn Catalyst: Single Site, Two Modes of Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beletskiy, Evgeny V.; Hou, Xianliang; Shen, Zhongliang
2016-03-17
Mild calcination in ozone of a (POSS)-Sn- (POSS) complex grafted on silica generated a heterogenized catalyst that mostly retained the tetrahedral coordination of its homogeneous precursor, as evidenced by spectroscopic characterizations using EXAFS, NMR, UV-vis, and DRIFT. The Sn centers are accessible and uniform and can be quantified by stoichiometric pyridine poisoning. This Sn-catalyst is active in hydride transfer reactions as a typical solid Lewis acid. However, the Sn centers can also create Brønsted acidity with alcohol by binding the alcohol strongly as alkoxide and transferring the hydroxyl H to the neighboring Sn-O-Si bond. The resulting acidic silanol is activemore » in epoxide ring opening and acetalization reactions.« less
Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Park, Hyunwoong; Choi, Wonyong; Kim, Sung Jin; Kim, Sun Jin; Choy, Jin-Ho
2005-08-11
We have synthesized new, efficient, visible light active photocatalysts through the incorporation of highly electronegative non-transition metal Pb or Sn ions into the perovskite lattice of Ba(In(1/3)Pb(1/3)M'(1/3))O3 (M = Sn, Pb; M' = Nb, Ta). X-ray diffraction, X-ray absorption spectroscopic, and energy dispersive spectroscopic microprobe analyses reveal that tetravalent Pb or Sn ions exist in the B-site of the perovskite lattice, along with In and Nb/Ta ions. According to diffuse UV-vis spectroscopic analysis, the Pb-containing quaternary metal oxides Ba(In(1/3)Pb(1/3)M'(1/3))O3 possess a much narrower band gap (E(g) approximately 1.48-1.50 eV) when compared to the ternary oxides Ba(In(1/2)M'(1/2))O3 (E(g) approximately 2.97-3.30 eV) and the Sn-containing Ba(In(1/3)Sn(1/3)M'(1/3))O3 derivatives (E(g) approximately 2.85-3.00 eV). Such a variation of band gap energy upon the substitution is attributable to the broadening of the conduction band caused by the dissimilar electronegativities of the B-site cations. In contrast to the ternary or the Sn-substituted quaternary compounds showing photocatalytic activity under UV-vis irradiation, the Ba(In(1/3)Pb(1/3)M'(1/3))O3 compounds induce an efficient photodegradation of 4-chlorophenol under visible light irradiation (lambda > 420 nm). The present results highlight that the substitution of electronegative non-transition metal cations can provide a very powerful way of developing efficient visible light harvesting photocatalysts through tuning of the band structure of a semiconductive metal oxide.
NASA Astrophysics Data System (ADS)
Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh
2012-05-01
A new chiral ligand scaffold L derived from (R)-2-amino-2-phenyl ethanol and diethyl oxalate was isolated and thoroughly characterized by various spectroscopic methods. The ligand L was allowed to react with CuCl2·2H2O and NiCl2·6H2O to achieve monometallic complexes 1 and 2, respectively. Subsequently modulation of 1 and 2 was carried out in the presence of SnCl4·5H2O to obtain heterobimetallic potential drug candidates 3 and 4 possessing (CuII/SnIV and NiII/SnIV) metallic cores, respectively and characterized by elemental analysis and spectroscopic data including 1H, 13C and 119Sn NMR in case of 3 and 4. In vitro DNA binding studies revealed that complex 3 avidly binds to DNA as quantified by Kb and Ksv values. Complex 3 exhibits a remarkable DNA cleavage activity (concentration dependent) with pBR322 DNA and the cleavage activity of 3 was significantly enhanced in the presence of activators and follows the order H2O2 > Asc > MPA > GSH. Complex 3 cleave pBR322 DNA via hydrolytic pathway and accessible to major groove of DNA.
OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release
NASA Astrophysics Data System (ADS)
Childress, M. J.; Lidman, C.; Davis, T. M.; Tucker, B. E.; Asorey, J.; Yuan, F.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bernard, S. R.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Glazebrook, K.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, R. R.; Gutierrez, G.; Hinton, S. R.; Hoormann, J. K.; James, D. J.; Kessler, R.; Kim, A. G.; King, A. L.; Kovacs, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lagattuta, D. J.; Lewis, G. F.; Li, T. S.; Lima, M.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Marriner, J.; March, M.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Moller, A.; Morganson, E.; Mould, J.; Mudd, D.; Muthukrishna, D.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Ostrovski, F.; Parkinson, D.; Plazas, A. A.; Reed, S. L.; Reil, K.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Seymour, N.; Sharp, R.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Sommer, N. E.; Spinka, H.; Suchyta, E.; Sullivan, M.; Swanson, M. E. C.; Tarle, G.; Uddin, S. A.; Walker, A. R.; Wester, W.; Zhang, B. R.
2017-11-01
We present results for the first three years of OzDES, a six year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multiyear baseline and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17 000 objects, including the redshifts of 2566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise ratio (S/N), magnitude and exposure time, finding that our redshift success rate increases significantly at a S/N of 2-3 per 1-Å bin. We also find that the change in S/N with exposure time closely matches the Poisson limit for stacked exposures as long as 10 h. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as (i.e. the 4-m Multi-Object Spectroscopic Telescope, the Subaru Prime Focus Spectrograph and the Maunakea Spectroscopic Explorer). This work marks the first OzDES data release, comprising 14 693 redshifts. OzDES is on target to obtain over 30 000 redshifts over the 6-yr duration of the survey, including a yield of approximately 5700 supernova host-galaxy redshifts.
Császár, Attila G; Furtenbacher, Tibor; Árendás, Péter
2016-11-17
Quantum mechanics builds large-scale graphs (networks): the vertices are the discrete energy levels the quantum system possesses, and the edges are the (quantum-mechanically allowed) transitions. Parts of the complete quantum mechanical networks can be probed experimentally via high-resolution, energy-resolved spectroscopic techniques. The complete rovibronic line list information for a given molecule can only be obtained through sophisticated quantum-chemical computations. Experiments as well as computations yield what we call spectroscopic networks (SN). First-principles SNs of even small, three to five atomic molecules can be huge, qualifying for the big data description. Besides helping to interpret high-resolution spectra, the network-theoretical view offers several ideas for improving the accuracy and robustness of the increasingly important information systems containing line-by-line spectroscopic data. For example, the smallest number of measurements necessary to perform to obtain the complete list of energy levels is given by the minimum-weight spanning tree of the SN and network clustering studies may call attention to "weakest links" of a spectroscopic database. A present-day application of spectroscopic networks is within the MARVEL (Measured Active Rotational-Vibrational Energy Levels) approach, whereby the transitions information on a measured SN is turned into experimental energy levels via a weighted linear least-squares refinement. MARVEL has been used successfully for 15 molecules and allowed to validate most of the transitions measured and come up with energy levels with well-defined and realistic uncertainties. Accurate knowledge of the energy levels with computed transition intensities allows the realistic prediction of spectra under many different circumstances, e.g., for widely different temperatures. Detailed knowledge of the energy level structure of a molecule coming from a MARVEL analysis is important for a considerable number of modeling efforts in chemistry, physics, and engineering.
Structural and spectroscopic study of mechanically synthesized SnO2 nanostructures
NASA Astrophysics Data System (ADS)
Vij, Ankush; Kumar, Ravi
2016-05-01
We report the single step synthesis of SnO2 nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO2 nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A1g Raman mode towards lower wave number, which is correlated with the nanostructure formation.
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Yu, Xiaoguang; Wang, Xiaofeng
2017-12-01
We obtained an optical spectrum (range 340-900 nm) of SN 2017ixg (ATLAS17nrq), discovered by ATLAS and TNTS, on UT Dec. 15.6 2017 with the Li-Jiang 2.4 m telescope (LJT + YFOSC) at Li-Jiang Observatory of Yunnan Observatories (YNAO).
NASA Astrophysics Data System (ADS)
Harmening, Thomas; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer
2010-02-01
The stannide EuRuSn 3 was synthesized by induction melting of the elements in a sealed tantalum tube in a water-cooled quartz glass sample chamber. The structure was refined on the basis of single crystal X-ray diffractometer data (LaRuSn 3 type, Pm3¯n, a = 976.0(1) pm, wR2 = 0.0399, 317 F2 values, and 13 variables). EuRuSn 3 shows modified Curie-Weiss behaviour in the temperature range 50-305 K with an experimental magnetic moment of 7.34(1) μB per formula unit. Thus, the europium atoms are not in a purely divalent state. Low field susceptibility measurement indicates a ferro- or ferrimagnetic ordering at TC = 11.2(2) K and magnetization measurements indicate EuRuSn 3 as a non-collinear ferro- or ferrimagnet. 151Eu Mössbauer spectroscopic measurements suggested one europium site to be static mixed valent with a Eu 2+/Eu 3+ ratio close to one and the other site purely divalent. This was supported by substituting the Eu 3+ atoms with Y 3+ in a sample with a composition of Eu 0.7Y 0.3RuSn 3 ( a = 971.24(8) pm, wR2 = 0.0485, 313 F2 values, 14 variables). The 119Sn Mössbauer spectra show a pronounced Gol'danskii-Karyagin effect in the paramagnetic range and a magnetic hyperfine field distribution at 4.2 K, due to the complex magnetic structure. The influence of the valence electron concentration on the europium valence was tested via Ru/Pd substitution. A EuRu 0.8Pd 0.2Sn 3 sample shows almost purely divalent europium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.
In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters)more » and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.« less
DAO Spectroscopic classification of SN 2017iuu = ATLAS17nnf
NASA Astrophysics Data System (ADS)
Balam, D. D.; Observatory, Dominion Astrophysical; Canada, National Research Council of; Thanjavur, K.; Hsiao, E.; Graham, M. L.
2017-12-01
D. D. Balam, Dominion Astrophysical Observatory, National Research Council of Canada, K. Thanjavur (University of Victoria), E. Hsiao, Florida State University and M. L. Graham (University of Washington) report that a spectrogram (range 390-710 nm, resolution 0.3 nm) of 2017iuu = ATLAS17nnf (J. Tonry, B. Stalder, L. Denneau, A. Heinze, H. Weiland (IfA, University of Hawaii), A. Rest (STScI), K.W. Smith, S. J. Smartt, M. Fulton, O. McBrien (Queen's University Belfast), obtained on Dec. 11.33 UT with the 1.82-m Plaskett Telescope of the National Research Council of Canada, shows it to be a normal type Ia supernova near maximum light.
NASA Astrophysics Data System (ADS)
Silverman, Jeffrey M.; Foley, Ryan J.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Barth, Aaron J.; Chornock, Ryan; Griffith, Christopher V.; Kong, Jason J.; Lee, Nicholas; Leonard, Douglas C.; Matheson, Thomas; Miller, Emily G.; Steele, Thea N.; Barris, Brian J.; Bloom, Joshua S.; Cobb, Bethany E.; Coil, Alison L.; Desroches, Louis-Benoit; Gates, Elinor L.; Ho, Luis C.; Jha, Saurabh W.; Kandrashoff, Michael T.; Li, Weidong; Mandel, Kaisey S.; Modjaz, Maryam; Moore, Matthew R.; Mostardi, Robin E.; Papenkova, Marina S.; Park, Sung; Perley, Daniel A.; Poznanski, Dovi; Reuter, Cassie A.; Scala, James; Serduke, Franklin J. D.; Shields, Joseph C.; Swift, Brandon J.; Tonry, John L.; Van Dyk, Schuyler D.; Wang, Xiaofeng; Wong, Diane S.
2012-09-01
In this first paper in a series, we present 1298 low-redshift (z ≲ 0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 to 2008 as part of the Berkeley Supernova Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10 400 Å, roughly twice as wide as spectra from most previously published data sets. We present our observing and reduction procedures, and we describe the resulting SN Database, which will be an online, public, searchable data base containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry), utilizing our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire data set, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our data set includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. The sheer size of the BSNIP data set and the consistency of our observation and reduction methods make this sample unique among all other published SN Ia data sets and complementary in many ways to the large, low-redshift SN Ia spectra presented by Matheson et al. and Blondin et al. In other BSNIP papers in this series, we use these data to examine the relationships between spectroscopic characteristics and various observables such as photometric and host-galaxy properties.
Spectroscopic Classification of SN 2018bek as a Young Type II Supernova
NASA Astrophysics Data System (ADS)
Xiang, Danfeng; Wang, Xiaofeng; Zhang, Kaicheng; Li, Wenxiong; DerKacy, James; Baron, Eddie; Brink, Thomas; Zheng, Weikang; Filippenko, Alex; Lin, Han; Rui, Liming; Hu, Lei; Hu, Maokai; Zhang, Tianmeng; Zhang, Jujia
2018-05-01
We obtained a few optical spectra of SN 2018bek,discovered by Jaroslaw Grzegorzek,on UT May 05-09 2018 with the 3.5m telescope (+Dual Imaging Spectrograph) at the Apache Point Observatory, the 2.16-m telescope(+BFOSC) at Xinglong Observatory of NAOC, and the Lick 3.0-m telescope (+Kast) at Lick Observatory.
Spectroscopic classification of PTSS-18ecg (SN 2018bhb) as a type Ia supernova around maximum
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Ding, Xu; Wang, Xiaofeng; Li, Wenxiong; Li, Bin; Xu, Zhijian; Tan, Hanjie; Zhao, Haibin; Wang, Lifan; Li, Zhitong
2018-05-01
We obtained an optical spectrum (range 350-890 nm) of PTSS-18ecg (SN 2018bhb), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT 2018 May 10.7 with the Li-Jiang 2.4 m telescope (LJT+YFOSC) at Li-Jiang Observatory of Yunnan Observatories.
NASA Astrophysics Data System (ADS)
D'Elia, Valerio
2015-08-01
Long duration gamma-ray bursts (GRBs) and broad-line, type Ic supernovae (SNe) are strongly connected. We aim at characterizing SN 2013dx, associated with GRB 130702A, through sensitive and extensive ground-based observational campaigns in the optical-IR band.We monitored the field of the Swift GRB 130702A (redshift z = 0.145) using the 8.2-m VLT, the 3.6-m TNG and the 0.6-m REM telescopes during the time interval between 4 and 40 days after the burst. Photometric and spectroscopic observations revealed the presence of the associated Type Ic SN 2013dx. Our multi-band photometry allowed the construction of a bolometric light curve.The bolometric light curve of SN 2013dx resembles that of 2003dh (associated with GRB 030329), but is ~ 10% faster and ~25% dimmer. From this we infer a synthesized 56Ni mass of ~0.3 solar masses. The multi-epoch optical spectroscopy shows that the SN 2013dx behavior is best matched by SN 1998bw, among the other well-known low-z SNe associated with GRBs and XRFs, and by SN 2010ah, an energetic Type Ic SN not associated with any GRB. The photospheric velocity of the ejected material declines from ~ 2.7 X10^4 km/s at 8 rest frame days from the explosion, to ~3.5X103 km/s at 40 days. These values are extremely close to those of SN1998bw and 2010ah. We deduce for SN 2013dx a kinetic energy of (32 +/- 9)X10^51 erg, and an ejected mass of 7 +/- 1 solar masses. This suggests that the progenitor of SN2013dx had a mass of ~25 solar masses, i.e., 15-20% less massive than that of SN 1998bw.Finally, we perfom a study of the SN 2013dx environment, through spectroscopy of the closeby galaxies. 9 out of the 14 inspected galaxies lie within 0.03 in redshift from z=0.145, indicating that the host of GRB 130702A/SN 2013dx belongs to a group of galaxies, an unprecedented finding for a GRB-associated SN and, to our knowledge, for long GRBs in general.
Premaximum observations of the type Ia SN 1990N
NASA Technical Reports Server (NTRS)
Leibundgut, Bruno; Kirshner, Robert P.; Filippenko, Alexei V.; Shields, Joseph C.; Foltz, Craig B.; Phillips, Mark M.; Sonneborn, George
1991-01-01
Spectroscopic and photometric observations of SN 1990N were obtained at ultraviolet and optical wavelengths, beginning 14 days before maximum light. The early observations reveal important differences from spectra of SN Ia's around maximum light. Photometry and spectroscopy obtained after maximum show that SN 1990N is a typical SN Ia and that most of the observed differences are due to the early epoch of the observations. The most significant characteristics are (1) the high velocities of Ca and Si up to 22,000 km/s; (2) the presence of Co and Fe 2 weeks before maximum; and (3) the more rapid increase in the UV flux compared to the optical. The most popular models for white dwarf deflagration that have provided the standard interpretation for SN Ia's at maximum light do not reproduce the high velocities of Ca II and Si II lines observed in SN 1990N.
VizieR Online Data Catalog: Abundances of LAMOST giants from APOGEE DR12 (Ho+, 2017)
NASA Astrophysics Data System (ADS)
Ho, A. Y. Q.; Ness, M. K.; Hogg, D. W.; Rix, H.-W.; Liu, C.; Yang, F.; Zhang, Y.; Hou, Y.; Wang, Y.
2017-09-01
The Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) is a low-resolution (R~1800) optical (3650-9000Å) spectroscopic survey. APOGEE is a high-resolution (R~22500), high-S/N (S/N~100), H-band (15200-16900Å) spectroscopic survey, part of the Sloan Digital Sky Survey III. Observations are conducted using a 300 fiber spectrograph on the 2.5m Sloan Telescope at the Apache Point Observatory (APO) in Sunspot, New Mexico (USA). (1 data file).
Structural and spectroscopic study of mechanically synthesized SnO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vij, Ankush, E-mail: vij-anx@yahoo.com; Kumar, Ravi; Presently at Beant College of Engineering and Technology, Gurdaspur-143521
2016-05-23
We report the single step synthesis of SnO{sub 2} nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO{sub 2} nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A{sub 1g} Raman mode towards lower wave number, which is correlated with the nanostructure formation.
Spectroscopic classification of Gaia16alf
NASA Astrophysics Data System (ADS)
Onori, F.; Fraser, M.; Jonker, P.; Wyrzykowski, L.; Blagorodnova, N.; Mattila, S.
2016-04-01
We report the spectroscopic classification of Gaia16alf, from medium resolution (R~1000; 330-990nm) spectra taken with the William Herschel Telescope + ISIS + R300B/R158R on the night of 2016 April 19. The spectrum is consistent with that of a Type Ia SN a few days before maximum light at a redshift of z=0.094.
NASA Astrophysics Data System (ADS)
Blagorodnova, N.; Adams, S.
2017-03-01
We report the classification of Gaia17apq and Gaia17apv (SN2017cao and SN2017cat), discovered by the Gaia ESA survey. The observations were performed on UT 2017-03-16 with the Double Spectrograph (DBSP; range 350-1000nm, spectral resolution R 4000) on Palomar 200-inch (P200) telescope.
Liebson, H J; Marrack, P; Kappler, J
1982-10-01
The concanavalin A- (Con A) stimulated supernatant of normal spleen cells (normal Con A SN) was shown to contain a set of helper factors sufficient to allow T cell- and macrophage- (M phi) depleted murine splenic B cells to produce a plaque-forming cell response to the antigen sheep red blood cells (SRBC). The activity of normal Con A SN could be reconstituted by a mixture of three helper factor preparations. The first was the interleukin 2- (IL 2) containing Con A SN of the T cell hybridoma, FS6-14.13. The second was a normal Con A SN depleted of IL 2 by extended culture with T cell blasts from which the 30,000 to 50,000 m.w. factors were isolated (interleukin X, IL X). The third was a SN either from the M phi tumor cell line P388D1 or from normal M phi taken from Corynebacterium parvum-immune mice. The combination of all three helper factor preparations was required to equal the activity of normal Con A SN; however, the M phi SN had the least overall effect. The M phi SN and IL 2 had to be added at the initiation of the culture period for a maximal effect, but the IL X preparation was most effective when added 24 hr after the initiation of culture. These results indicate that at least three nonspecific helper factors contribute to the helper activity in normal Con A SN.
NASA Astrophysics Data System (ADS)
Drout, M. R.; Milisavljevic, D.; Parrent, J.; Margutti, R.; Kamble, A.; Soderberg, A. M.; Challis, P.; Chornock, R.; Fong, W.; Frank, S.; Gehrels, N.; Graham, M. L.; Hsiao, E.; Itagaki, K.; Kasliwal, M.; Kirshner, R. P.; Macomb, D.; Marion, G. H.; Norris, J.; Phillips, M. M.
2016-04-01
We present extensive multiwavelength (radio to X-ray) observations of the Type Ib/c supernova (SN Ib/c) SN 2013ge from -13 to +457 days relative to maximum light, including a series of optical spectra and Swift UV-optical photometry beginning 2-4 days post-explosion. This data set makes SN 2013ge one of the best-observed normal SNe Ib/c at early times—when the light curve is particularly sensitive to the progenitor configuration and mixing of radioactive elements—and reveals two distinct light curve components in the UV bands. The first component rises over 4-5 days and is visible for the first week post-explosion. Spectra of the first component have blue continua and show a plethora of moderately high velocity (˜15,000 km s-1) but narrow (˜3500 km s-1) spectroscopic features, indicating that the line-forming region is restricted. The explosion parameters estimated for the bulk explosion ({M}{{ej}} ˜ 2-3 {M}⊙ ; {E}{{K}} ˜ (1-2) × 1051 erg) are standard for SNe Ib/c, and there is evidence for weak He features at early times—in an object that would have otherwise been classified as Type Ic. In addition, SN 2013ge exploded in a low-metallicity environment (˜0.5 {Z}⊙ ), and we have obtained some of the deepest radio and X-ray limits for an SN Ib/c to date, which constrain the progenitor mass-loss rate to be \\dot{M} < 4 × 10-6 {M}⊙ yr-1. We are left with two distinct progenitor scenarios for SN 2013ge, depending on our interpretation of the early emission. If the first component is cooling envelope emission, then the progenitor of SN 2013ge either possessed an extended (≳30 {R}⊙ ) envelope or ejected a portion of its envelope in the final ≲ 1 yr before core collapse. Alternatively, if the first component is due to outwardly mixed 56Ni, then our observations are consistent with the asymmetric ejection of a distinct clump of nickel-rich material at high velocities. Current models for the collision of an SN shock with a binary companion cannot reproduce both the timescale and luminosity of the early emission in SN 2013ge. Finally, the spectra of the first component of SN 2013ge are similar to those of the rapidly declining SN 2002bj.
NASA Technical Reports Server (NTRS)
Drout, M. R.; Milisavjlevic, D.; Parrent, J.; Margutti, R.; Kamble, A.; Soderberg, A.M.; Challis, P.; Chornock, P.; Fong, W.; Frank, S.;
2016-01-01
We present extensive multiwavelength (radio to X-ray) observations of the Type Ib/c supernova (SN Ib c) SN 2013ge from -13 to +457 days relative to maximum light, including a series of optical spectra and Swift UV-optical photometry beginning 2-4 days post-explosion. This data set makes SN 2013ge one of the best-observed normal SNe Ib/c at early times-when the light curve is particularly sensitive to the progenitor configuration and mixing of radioactive elements -and reveals two distinct light curve components in the UV bands. The first component rises over 4-5 days and is visible for the first week post-explosion. Spectra of the first component have blue continua and show a plethora of moderately high velocity (approximately 15,000 km/s) but narrow (approximately 3500 km/s)spectroscopic features, indicating that the line-forming region is restricted. The explosion parameters estimated for the bulk explosion (M(sub ej) approximately 23 solar mass; E(subK) approximately (1-2) x 10(exp 51) erg) are standard for SNe Ib/c, and there is evidence forweak He features at early times-in an object that would have otherwise been classified as Type Ic. In addition,SN 2013ge exploded in a low-metallicity environment (approximately 0.5 atomic mass), and we have obtained some of the deepest radio and X-ray limits for an SN Ib/c to date, which constrain the progenitor mass-loss rate to be M less than 4 x 10(exp -6) solar mass/yr. We are left with two distinct progenitor scenarios for SN 2013ge, depending on our interpretation of the early emission. If the first component is cooling envelope emission, then the progenitor of SN 2013ge either possessed an extended (greater than or approximately 30 solar radius) envelope or ejected a portion of its envelope in the final less than or approximately 1 yr before core collapse. Alternatively, if the first component is due to outwardly mixed Ni-56, then our observations are consistent with the asymmetric ejection of a distinct clump of nickel-rich material at high velocities. Current models for the collision of an SN shock with a binary companion cannot reproduce both the timescale and luminosity of the early emission in SN 2013ge. Finally, the spectra of the first component of SN 2013ge are similar to those of the rapidly declining SN 2002bj.
Microstructure and opto-electronic properties of Sn-rich Au-Sn diffusive solders
NASA Astrophysics Data System (ADS)
Rerek, T.; Skowronski, L.; Kobierski, M.; Naparty, M. K.; Derkowska-Zielinska, B.
2018-09-01
Microstructural and opto-electronic properties of Au ⧹ Sn and Sn ⧹ Au bilayers, obtained by sequential evaporating of metals on the Si substrate, were investigated by means of atomic force microscopy, X-ray diffraction and spectroscopic ellipsometry. Thicknesses of individual films were established to obtain the atomic ratio of Au:Sn atoms 1:1, 1:2 and 1:4, which were favor the formation of AuSn, AuSn2 and AuSn4, respectively. However, the produced intermatallic compounds were detected as AuSn and AuSn2. Additionally, the unbounded Sn was found. The sequence of deposition of Au and Sn films as well as their thickness strongly affect on the composition, microstructure, optical and electrical properties of the produced layers. The Au ⧹ Sn (Sn on the top) layers were more smooth than Sn ⧹ Au (Au on the top) films. Generally, the Au ⧹ Sn layers exhibit a better electrical and optical properties than Sn ⧹ Au films. The optical parameters: plasma energy, free-carrier damping, mean relaxation time of conduction electrons and optical resistivity were determined from the effective complex dielectric function of the formed Au, Sn and Au-Sn films. The optical resistivity values are in the range from 17.8 μΩ cm to 85.1 μΩ cm and from 29.6 μΩ cm to 113.3 μΩ cm for Au ⧹ Sn and Sn ⧹ Au layers, respectively.
NASA Astrophysics Data System (ADS)
Wang, He; Aoi, Nori; Takeuchi, Satoshi; Matsushita, Masafumi; Doornenbal, Pieter; Motobayashi, Tohru; Steppenbeck, David; Yoneda, Kenichiro; Baba, Hidetada; Dombrádi, Zsolt; Kobayashi, Kota; Kondo, Yosuke; Lee, Jenny; Liu, Hong-Na; Minakata, Ryogo; Nishimura, Daiki; Otsu, Hideaki; Sakurai, Hiroyoshi; Sohler, Dora; Sun, Ye-Lei; Tian, Zheng-Yang; Tanaka, Ryuki; Vajta, Zsolt; Yang, Zai-Hong; Yamamoto, Tetsuya; Ye, Yan-Lin; Yokoyama, Rin
2018-05-01
The neutron-rich nuclei 136Sn and 132Cd have been studied in the purpose of nuclear structure for the nuclei beyond the doubly-magic nucleus 132Sn. The 2+1 → 0+ gs transitions were identified for these two nuclei using in-beam γ-ray spectroscopy in coincidence with one- and two-proton removal reactions, respectively, at the RIKEN Radioactive Isotope Beam Factory. The 2+ 1 state in 136Sn is found to be similar to that for 134Sn indicating the seniority scheme may also hold for the heavy tin isotopes beyond N = 82. For 132Cd, the 2+ 1 state provides the first spectroscopic information in the even-even nuclei locating in the region "southeast" of 132Sn and the result is discussed in terms of proton-neutron configuration mixing. In both these two nuclei, it was found that the valence neutrons play an essential role in their low-lying excitations.
Influence of Sn doping in BaSnxTi1-xO3 ceramics on microstructural and dielectric properties
NASA Astrophysics Data System (ADS)
Ansari, Mohd. Azaj; Sreenivas, K.
2018-05-01
BaSnxTi1-x O3 solid solutions with varying Sn content (x = 0.00, 0.05, 0.15, 0.25) prepared by solid state reaction method have been studied for their structural and dielectric properties. X-ray diffraction and Raman spectroscopic analysis show composition induced modifications in the crystallographic structure, and with increasing Sn content the structure changes from tetragonal to cubic structure. The tetragonal distortion decreases with increasing Sn, and the structure becomes purely cubic for x =0.25. Changes in the structure are reflected in the temperature dependent dielectric properties. For increasing Sn content the peak dielectric constant is found to increase and the phase transition temperature (Tc) decreases to lower temperature. The purely cubic structure with x=0.25 shows a diffused phased transition.
Tobin, Peter; Clarke, Stephen; Seale, J Paul; Lee, Soon; Solomon, Michael; Aulds, Sally; Crawford, Michael; Gallagher, James; Eyers, Tony; Rivory, Laurent
2006-01-01
Aims Irinotecan (CPT-11) is a prodrug that is used to treat metastatic colorectal cancer. It is activated to the topoisomerase poison SN-38 by carboxylesterases. SN-38 is metabolized to its inactive glucuronide, SN-38 glucuronide. The aim of this study was to determine, the reactivation of SN-38 from SN-38 glucuronide by β-glucuronidase may represent a significant pathway of SN-38 formation. Methods The production of SN-38 from irinotecan and SN-38 glucuronide (2.4, 9.6 and 19.2 µm) was measured in homogenates of human colorectal tumour, and matched normal colon mucosa from 21 patients). Results The rate of conversion of irinotecan (9.6 µM) was lower in tumour tissue than matched normal colon mucosa samples (0.30 ± 0.14 pmol min−1 mg−1 protein and 0.77 ± 0.59 pmol min−1 mg−1 protein, respectively; P < 0.005). In contrast, no significant difference was observed in β-glucuronidase activity between tumour and matched normal colon samples (4.56 ± 6.9 pmol min−1 mg−1 protein and 3.62 ± 2.95 pmol min−1 mg−1 protein, respectively, using 9.6 µM SN-38 glucuronide; P > 0.05). β-Glucuronidase activity in tumour correlated to that observed in matched normal tissue (r2 > 0.23, P < 0.05), whereas this was not the case for carboxylesterase activity. At equal concentrations of irinotecan and SN-38 glucuronide, the rate of β-glucuronidase-mediated SN-38 production was higher than that formed from irinotecan in both tumour and normal tissue (P < 0.05). However, at concentrations that reflect the relative plasma concentrations observed in patients, the rate of SN-38 production via these two pathways was comparable. Conclusions Tumour β-glucuronidase may play a significant role in the exposure of tumours to SN-38 in vivo. PMID:16842384
Synthesis and characterization of Sn-doped hematite as visible light photocatalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Zhiqin; School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua 617000; Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn
2016-05-15
Highlights: • Sn-doped hematite nanoparticles are prepared by SCS in one step. • The Sn doping have the ability to inhibit particle growth of hematite. • Sn can enhance visible light harvesting and e{sup −}/h{sup +} separation. • Sn-doped hematite degrades MB under visible light effectively. • The products with 5 mol% Sn have the highest photocatalytic activity. - Abstract: Sn-doped hematite nanoparticles are prepared by solution combustion synthesis. The products are characterized with various analytical and spectroscopic techniques to determine their structural, morphological, light absorption and photocatalytic properties. The results reveal that all the samples consist of nanocrystalline hematitemore » with mesoporous structures, and Sn has the ability to inhibit the growth of hematite particle. Compared to pure hematite, the doped hematite samples with appropriate amount of Sn show better activities for degradation of methylene blue under visible light irradiation. The highest activity is observed for 5% Sn doped hematite and this product has long-term stability and no selectivity for dye degradation. The enhanced performance of 5% Sn doped hematite is ascribed to the smaller particle size, increased ability to absorb in visible light, efficient charge separation as well as improved e{sup −} transfer associated with the effects of appropriate amount of Sn doped sample.« less
The Story of Supernova “Refsdal” Told by Muse
NASA Astrophysics Data System (ADS)
Grillo, C.; Karman, W.; Suyu, S. H.; Rosati, P.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Caminha, G. B.; Halkola, A.; Rodney, S. A.; Gavazzi, R.; Caputi, K. I.
2016-05-01
We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” at redshift 1.489 were detected. Thanks to a Director's Discretionary Time program with the Very Large Telescope and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hr of total integration time on a single 1 arcmin2 target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to seven background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the Hubble Space Telescope (HST), we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the brightest cluster galaxy, and a set of 88 reliable multiple images associated with 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN “Refsdal.” We exploit this valuable information to build six detailed strong-lensing models, the best of which reproduces the observed positions of the multiple images with an rms offset of only 0.″26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN “Refsdal.” We find that its peak luminosity should occur between 2016 March and June and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST/WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN “Refsdal” host galaxy surface brightness distribution. We outline the road map toward even better strong-lensing models with a synergetic MUSE and HST effort. This work is based in large part on data collected at ESO VLT (prog.ID 294.A-5032) and NASA HST.
THE STORY OF SUPERNOVA “REFSDAL” TOLD BY MUSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grillo, C.; Karman, W.; Caputi, K. I.
2016-05-10
We present Multi Unit Spectroscopic Explorer (MUSE) observations in the core of the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” at redshift 1.489 were detected. Thanks to a Director's Discretionary Time program with the Very Large Telescope and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hr of total integration time on a single 1 arcmin{sup 2} target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to sevenmore » background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the Hubble Space Telescope ( HST ), we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the brightest cluster galaxy, and a set of 88 reliable multiple images associated with 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN “Refsdal.” We exploit this valuable information to build six detailed strong-lensing models, the best of which reproduces the observed positions of the multiple images with an rms offset of only 0.″26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN “Refsdal.” We find that its peak luminosity should occur between 2016 March and June and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST /WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN “Refsdal” host galaxy surface brightness distribution. We outline the road map toward even better strong-lensing models with a synergetic MUSE and HST effort.« less
Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Szeged, U.; Wheeler, J. C.
2018-02-01
An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.
Spectroscopic Classification of Nine Optical Transients with the 2.5-m du Pont Telescope
NASA Astrophysics Data System (ADS)
Bose, Subhash; Holoien, Tom; Prieto, Jose L.; Dong, Subo; Chen, P.; Stanek, K. Z.
2018-04-01
We report spectroscopic observations and classifications of optical transients using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory. Targets were discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN, Shappee et al. 2014) (ATel #11391, ATel #11343, ATel #11459), Gaia Alerts (http://gsaweb.ast.cam.ac.uk/alerts/alertsindex) and A. Rest et al. (for 2018agk).
Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)
NASA Astrophysics Data System (ADS)
Peters, Christina; Malz, Alex; Hlozek, Renée
2018-01-01
The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.
The Local Atomic Structure and Chemical Bonding in Sodium Tin Phases
Baggetto, Loic; Bridges, Craig A.; Jumas, Dr. Jean-Claude; ...
2014-09-25
To understand these electrochemically-derived materials we have reinvestigated the formation of Na-Sn alloys to identify all the phases which form when x ≥ 1 (NaxSn) and characterized the local bonding around the Sn atoms with X-ray diffraction, 119Sn M ssbauer spectroscopy, and X-ray absorption spectroscopies. The results from the well-defined crystallographic materials were compared to the spectroscopic measurements of the local Sn structures in the electrochemically prepared materials. The reinvestigation of the Na-Sn compounds yields a number of new results: (i) Na 7Sn 3 is a new thermodynamically-stable phase with a rhombohedral structure and R-3m space group; (ii) orthorhombic Namore » 9Sn 4 (Cmcm) has relatively slow formation kinetics suggesting why it does not form at room temperature during the electrochemical reaction; (iii) orthorhombic Na 14.78Sn 4 (Pnma), better described as Na 16-xSn 4, is Na-richer than cubic Na 15Sn 4 (I-43d). Characterization of electrochemically prepared Na-Sn alloys indicate that, at the exception of Na 7Sn 3 and Na 15Sn 4, different crystal structures than similar Na-Sn compositions prepared via classic solid state reactions are formed. These phases are composed of disordered structures characteristic of kinetic-driven solid-state amorphization reactions. In these structures, Sn coordinates in asymmetric environments, which differ significantly from the environments present in Na-Sn model compounds.« less
NASA Astrophysics Data System (ADS)
Matsuki, Nobuyuki; Fujiwara, Hiroyuki
2013-07-01
Nanometer-scale hydrogenated amorphous silicon (a-Si:H) layers formed on crystalline silicon (c-Si) with pyramid-shaped textures have been characterized by spectroscopic ellipsometry (SE) using a tilt angle measurement configuration, in an attempt to establish a nondestructive method for the structural characterization of the a-Si:H/c-Si heterojunction solar cells. By applying an a-Si:H dielectric function model developed recently, the thickness and SiH2 content of the a-Si:H layer have been determined even on the textured substrates. Furthermore, from the SE analysis incorporating the Drude model, the carrier properties of the In2O3:Sn layers in the textured solar-cell structure have been characterized.
Polyethylene glycol (PEG) assisted size-controlled SnO{sub 2} nanoparticles by sol-gel process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, P., E-mail: ptrip71@yahoo.com; Ahmed, Ateeq; Ali, Tinku
2016-05-23
Tetragonal phase tin oxide (SnO{sub 2}) nanoparticles have been synthesized by sol–gel method using SnCl{sub 4}.5H{sub 2}O and polyethylene glycol (PEG) of different concentration. The phase, size and purity of the final products are characterized by X-ray diffraction (XRD). The morphology is confirmed by scanning electron microscopy (SEM) analysis. There exists relationship between the concentration of PEG and particle size of SnO{sub 2} nanoparticles. Increase in concentration of PEG caused the reduction of particle size of tin oxide nanoparticles. The results suggest that the concentration of PEG plays a significant role in determining the size of SnO{sub 2} nanoparticles synthesizedmore » via this method. The optical property of the product has been explored by Ultraviolet (UV-visible) and Fourier Transform Infrared (FTIR) spectroscopic techniques.« less
NASA Astrophysics Data System (ADS)
Liang, Yuan-Chang; Zhong, Hua
2013-08-01
In-Sn-O nanostructures with rectangular cross-sectional rod-like, sword-like, and bowling pin-like morphologies were successfully synthesized through self-catalytic growth. Mixed metallic In and Sn powders were used as source materials, and no catalyst layer was pre-coated on the substrates. The distance between the substrate and the source materials affected the size of the Sn-rich alloy particles during crystal growth in a quartz tube. This caused In-Sn-O nanostructures with various morphologies to form. An X-ray photoelectron spectroscope and a transmittance electron microscope with an energy-dispersive X-ray spectrometer were used to investigate the elemental binding states and compositions of the as-synthesized nanostructures. The Sn doping and oxygen vacancies in the In2O3 crystals corresponded to the blue-green and yellow-orange emission bands of the nanostructures, respectively.
Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2
NASA Astrophysics Data System (ADS)
Holder, M.; Dedkov, Yu. S.; Kade, A.; Rosner, H.; Schnelle, W.; Leithe-Jasper, A.; Weihrich, R.; Molodtsov, S. L.
2009-05-01
Surface electronic structure of polycrystalline and single-crystalline samples of the half-metallic ferromagnet Co3Sn2S2 was studied by means of angle-resolved and core-level photoemissions. The experiments were performed in temperature regimes both above and below a Curie temperature of 176.9 K. The spectroscopic results are compared to local-spin density approximation band-structure calculations for the bulk samples. It is found that the surface sensitive experimental data are generally reproduced by the bulk computation suggesting that the theoretically predicted half-metallic properties of Co3Sn2S2 are retained at the surface.
Nath, Mala; Sulaxna; Song, Xueqing; Eng, George; Kumar, Ashok
2008-09-01
Some di- and triorganotin(IV) triazolates of general formula, R(4-n)SnLn (where n=2; R=Me, n-Bu and Ph; n=1; R=Me, n-Pr, n-Bu and Ph and HL=4-amino-3-methyl-1,2,4-triazole-5-thiol (HL-1); and 4-amino-3-ethyl-1,2,4-triazole-5-thiol (HL-2)) were synthesized by the reaction of R(4-n)SnCln with sodium salt of HL-1 and HL-2. The bonding and coordination behavior in these derivatives have been discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in the solid state. Their coordination behavior in solution is discussed by multinuclear (1H, 13C and 119Sn) NMR spectral studies. The IR and 119Sn Mössbauer spectroscopic studies indicate that the ligands, HL-1 and HL-2 act as a monoanionic bidentate ligand, coordinating through Sexo- and Nring. The distorted skew trapezoidal-bipyramidal and distorted trigonal bipyramidal geometries have been proposed for R2SnL2 and R3SnL, respectively, in the solid state. In vitro antimicrobial screening of some of the newly synthesized derivatives and of some di- and triorganotin(IV) derivatives of 3-amino-1,2,4-triazole-5-thiol (HL-3) and 5-amino-3H-1,3,4-thiadiazole-2-thiol (HL-4) along with two standard drugs such as fluconazole and ciprofloxacin have been carried out against the bacteria, viz. Staphylococcus aureus and Escherichia coli, and against some fungi, viz. Aspergillus fumigatus, Candida albicans, Candida albicans (ATCC 10231), Candida krusei (GO3) and Candida glabrata (HO5) by the filter paper disc method. The studied organotin(IV) compounds show mild antifungal activity as compared to that of fluconazole, however, they show almost insignificant activity against the studied Gram-positive (Staphylococcus aureas) and Gram-negative (Escherichia coli) bacteria as compared to that of standard drug, ciprofloxacin.
NASA Astrophysics Data System (ADS)
Marion, G. H.; Brown, Peter J.; Vinkó, Jozsef; Silverman, Jeffrey M.; Sand, David J.; Challis, Peter; Kirshner, Robert P.; Wheeler, J. Craig; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Camacho, Yssavo; Dhungana, Govinda; Foley, Ryan J.; Friedman, Andrew S.; Graham, Melissa L.; Howell, D. Andrew; Hsiao, Eric Y.; Irwin, Jonathan M.; Jha, Saurabh W.; Kehoe, Robert; Macri, Lucas M.; Maeda, Keiichi; Mandel, Kaisey; McCully, Curtis; Pandya, Viraj; Rines, Kenneth J.; Wilhelmy, Steven; Zheng, Weikang
2016-04-01
We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected {M}B=-19.62+/- 0.02 mag and {{Δ }}{m}15(B)=0.86+/- 0.02. Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = -10,500 km s-1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.
Zhu, Xiaolei
2007-01-01
Ground and excited states of mixed gallium stannide tetramers (Ga3Sn, Ga3Sn+, Ga3Sn-, GaSn3, GaSn3+, and GaSn3-) are investigated employing the complete active space self-consistent-field (CASSCF), density function theory (DFT), and the coupled-cluster single and double substitution (including triple excitations) (CCSD(T)) methods. The ground states of Ga3Sn, Ga3Sn+, and Ga3Sn- are found to be the 2A1, 3B1, and 1A1 states in C2v symmetry with a planar quadrilateral geometry, respectively. The ground states of GaSn3 and GaSn3- is predicted to be the 2A1 and 1A1 states in C2v point group with a planar quadrilateral structure, respectively, while the ground state of GaSn3+ is the 1A1 state with ideal triangular pyramid C3v geometry. Equilibrium geometries, vibrational frequencies, binding energies, electron affinities, ionization energies, and other properties of Ga3Sn and GaSn3 are computed and discussed. The anion photoelectron spectra of Ga3Sn- and GaSn3- are also predicted. It is interesting to find that the amount of charge transfer between Ga and Sn2 atoms in the 1A1 state of GaSn3+ greatly increases upon electron ionization from the 2A1 state of GaSn3, which may be caused by large geometry change. On the other hand, the results of the low-lying states of Ga3Sn and GaSn3 are compared with those of Ga3Si and GaSi3.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei
2007-01-01
Ground and excited states of mixed gallium stannide tetramers (Ga 3Sn, Ga 3Sn +, Ga 3Sn -, GaSn 3, GaSn 3+, and GaSn 3-) are investigated employing the complete active space self-consistent-field (CASSCF), density function theory (DFT), and the coupled-cluster single and double substitution (including triple excitations) (CCSD(T)) methods. The ground states of Ga 3Sn, Ga 3Sn +, and Ga 3Sn - are found to be the 2A 1, 3B 1, and 1A 1 states in C2v symmetry with a planar quadrilateral geometry, respectively. The ground states of GaSn 3 and GaSn 3- is predicted to be the 2A 1 and 1A 1 states in C2v point group with a planar quadrilateral structure, respectively, while the ground state of GaSn 3+ is the 1A 1 state with ideal triangular pyramid C3v geometry. Equilibrium geometries, vibrational frequencies, binding energies, electron affinities, ionization energies, and other properties of Ga 3Sn and GaSn 3 are computed and discussed. The anion photoelectron spectra of Ga 3Sn - and GaSn 3- are also predicted. It is interesting to find that the amount of charge transfer between Ga and Sn 2 atoms in the 1A 1 state of GaSn 3+ greatly increases upon electron ionization from the 2A 1 state of GaSn 3, which may be caused by large geometry change. On the other hand, the results of the low-lying states of Ga 3Sn and GaSn 3 are compared with those of Ga 3Si and GaSi 3.
NASA Astrophysics Data System (ADS)
D'Elia, V.; Pian, E.; Melandri, A.; D'Avanzo, P.; Della Valle, M.; Mazzali, P. A.; Piranomonte, S.; Tagliaferri, G.; Antonelli, L. A.; Bufano, F.; Covino, S.; Fugazza, D.; Malesani, D.; Møller, P.; Palazzi, E.
2015-05-01
Aims: Long-duration gamma-ray bursts (GRBs) and broad-line, type Ic supernovae (SNe) are strongly connected. We aim at characterizing SN 2013dx, which is associated with GRB 130702A, through a sensitive and extensive ground-based observational campaign in the optical-IR band. Methods: We monitored the field of the Swift GRB 130702A (redshift z = 0.145) using the 8.2 m VLT, the 3.6 m TNG and the 0.6 m REM telescopes during the time interval between 4 and 40 days after the burst. Photometric and spectroscopic observations revealed the associated type Ic SN 2013dx. Our multiband photometry allowed constructing a bolometric light curve. Results: The bolometric light curve of SN 2013dx resembles that of 2003dh (associated with GRB 030329), but is ~10% faster and ~25% dimmer. From this we infer a synthesized 56Ni mass of ~0.2 M⊙. The multi-epoch optical spectroscopy shows that the SN 2013dx behavior is best matched by SN 1998bw, among the other well-known low-redshift SNe associated with GRBs and XRFs, and by SN 2010ah, an energetic type Ic SN not associated with any GRB. The photospheric velocity of the ejected material declines from ~2.7 × 104 km s-1 at 8 rest frame days from the explosion, to ~3.5 × 103 km s-1 at 40 days. These values are extremely close to those of SN1998bw and 2010ah. We deduce for SN 2013dx a kinetic energy of ~35 × 1051 erg and an ejected mass of ~7 M⊙. This suggests that the progenitor of SN2013dx had a mass of ~25-30 M⊙, which is 15-20% less massive than that of SN 1998bw. Finally, we studied the SN 2013dx environment through spectroscopy of the closeby galaxies: 9 out of the 14 inspected galaxies lie within 0.03 in redshift from z = 0.145, indicating that the host of GRB 130702A/SN 2013dx belongs to a group of galaxies, an unprecedented finding for a GRB-associated SN and, to our knowledge, for long GRBs in general. Based on observations collected at the Italian 3.6-m Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Instituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias under program A27TAC 5, and at the European Southern Observatory, ESO, the VLT/Antu telescope, Paranal, Chile, proposal code: 291.D-5032(A).Appendix A is available in electronic form at http://www.aanda.org
The ASAS-SN Bright Supernova Catalog – II. 2015
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...
2017-01-16
Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
The ASAS-SN Bright Supernova Catalog – II. 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.
Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
Growing evidence that SNe Iax are not a one-parameter family. The case of PS1-12bwh
NASA Astrophysics Data System (ADS)
Magee, M. R.; Kotak, R.; Sim, S. A.; Wright, D.; Smartt, S. J.; Berger, E.; Chornock, R.; Foley, R. J.; Howell, D. A.; Kaiser, N.; Magnier, E. A.; Wainscoat, R.; Waters, C.
2017-05-01
In this study, we present observations of a type Iax supernova, PS1-12bwh, discovered during the Pan-STARRS1 3π-survey. Our analysis was driven by previously unseen pre-maximum, spectroscopic heterogeneity. While the light curve and post-maximum spectra of PS1-12bwh are virtually identical to those of the well-studied type Iax supernova, SN 2005hk, the -2 day spectrum of PS1-12bwh does not resemble SN 2005hk at a comparable epoch; instead, we found it to match a spectrum of SN 2005hk taken over a week earlier (-12 day). We are able to rule out the cause as being incorrect phasing, and argue that it is not consistent with orientation effects predicted by existing explosion simulations. To investigate the potential source of this difference, we performed radiative transfer modelling of both supernovae. We found that the pre-maximum spectrum of PS1-12bwh is well matched by a synthetic spectrum generated from a model with a lower density in the high velocity (≳6000 km s-1) ejecta than SN 2005hk. The observed differences between SN 2005hk and PS1-12bwh may therefore be attributed primarily to differences in the high velocity ejecta alone, while comparable densities for the lower velocity ejecta would explain the nearly identical post-maximum spectra. These two supernovae further highlight the diversity within the SNe Iax class, as well as the challenges in spectroscopically identifying and phasing these objects, especially at early epochs.
NASA Astrophysics Data System (ADS)
Botyánszki, János; Kasen, Daniel; Plewa, Tomasz
2018-01-01
The classic single-degenerate model for the progenitors of Type Ia supernova (SN Ia) predicts that the supernova ejecta should be enriched with solar-like abundance material stripped from the companion star. Spectroscopic observations of normal SNe Ia at late times, however, have not resulted in definite detection of hydrogen. In this Letter, we study line formation in SNe Ia at nebular times using non-LTE spectral modeling. We present, for the first time, multidimensional radiative transfer calculations of SNe Ia with stripped material mixed in the ejecta core, based on hydrodynamical simulations of ejecta–companion interaction. We find that interaction models with main-sequence companions produce significant Hα emission at late times, ruling out these types of binaries being viable progenitors of SNe Ia. We also predict significant He I line emission at optical and near-infrared wavelengths for both hydrogen-rich or helium-rich material, providing an additional observational probe of stripped ejecta. We produce models with reduced stripped masses and find a more stringent mass limit of M st ≲ 1 × 10‑4 M ⊙ of stripped companion material for SN 2011fe.
Supernova spectra below strong circumstellar interaction
NASA Astrophysics Data System (ADS)
Leloudas, G.; Hsiao, E. Y.; Johansson, J.; Maeda, K.; Moriya, T. J.; Nordin, J.; Petrushevska, T.; Silverman, J. M.; Sollerman, J.; Stritzinger, M. D.; Taddia, F.; Xu, D.
2015-02-01
We construct spectra of supernovae (SNe) interacting strongly with a circumstellar medium (CSM) by adding SN templates, a black-body continuum, and an emission-line spectrum. In a Monte Carlo simulation we vary a large number of parameters, such as the SN type, brightness and phase, the strength of the CSM interaction, the extinction, and the signal to noise ratio (S/N) of the observed spectrum. We generate more than 800 spectra, distribute them to ten different human classifiers, and study how the different simulation parameters affect the appearance of the spectra and their classification. The SNe IIn showing some structure over the continuum were characterized as "SNe IInS" to allow for a better quantification. We demonstrate that the flux ratio of the underlying SN to the continuum fV is the single most important parameter determining whether a spectrum can be classified correctly. Other parameters, such as extinction, S/N, and the width and strength of the emission lines, do not play a significant role. Thermonuclear SNe get progressively classified as Ia-CSM, IInS, and IIn as fV decreases. The transition between Ia-CSM and IInS occurs at fV ~ 0.2-0.3. It is therefore possible to determine that SNe Ia-CSM are found at the (un-extincted) magnitude range -19.5 >M> -21.6, in very good agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = -20.1. The literature sample of SNe Ia-CSM shows an association with 91T-like SNe Ia. Our experiment does not support that this association can be attributed to a luminosity bias (91T-like being brighter than normal events). We therefore conclude that this association has real physical origins and we propose that 91T-like explosions result from single degenerate progenitors that are responsible for the CSM. Despite the spectroscopic similarities between SNe Ibc and SNe Ia, the number of misclassifications between these types was very small in our simulation and mostly at low S/N. Combined with the SN luminosity function needed to reproduce the observed SN Ia-CSM luminosities, it is unlikely that SNe Ibc constitute an important contaminant within this sample. We show how Type II spectra transition to IIn and how the Hα profiles vary with fV. SNe IIn fainter than M = -17.2 are unable to mask SNe IIP brighter than M = -15. A more advanced simulation, including radiative transfer, shows that our simplified model is a good first order approximation. The spectra obtained are in good agreement with real data.
Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.
2017-09-01
An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.
Spectroscopic classification of three SNe Ia at Asiago
NASA Astrophysics Data System (ADS)
Tomasella, L.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Pastorello, A.; Tartaglia, L.; Terreran, G.; Turatto, M.
2015-06-01
The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of Gaia15agj in FGC 0955 discovered by Gaia satellite on 2015 Jun 03.05 UT (ATel #7615); ASASSN-15kx (ATel #7621) in PGC 068459 discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN) and PSN J14432601+5725412 (= MASTER OT J144326.01+572541.2) discovered by MASTER-Kislovodsk auto-detection system (ATel #7618).
Color Me Intrigued: the Discovery of iPTF 16fnm, a Supernova 2002cx-like Object
Miller, A. A.; Kasliwal, M. M.; Cao, Y.; ...
2017-10-12
Modern wide-field, optical time-domain surveys must solve a basic optimization problem: maximize the number of transient discoveries or minimize the follow-up needed for the new discoveries. Here, we describe the Color Me Intrigued experiment, the first from the intermediate Palomar Transient Factory (iPTF) to search for transients simultaneously in themore » $$g_\\mathrm{PTF}$$- and $$R_\\mathrm{PTF}$$-bands. During the course of this experiment we discovered iPTF$$\\,$$16fnm, a new member of the 02cx-like subclass of type Ia supernovae (SNe). iPTF$$\\,$$16fnm peaked at $$M_{g_\\mathrm{PTF}} = -15.09 \\pm 0.17 \\; \\mathrm{mag}$$, making it the second least-luminous known type Ia SN. iPTF 16fnm exhibits all the hallmarks of the 02cx-like class: (i) low luminosity at peak, (ii) low ejecta velocities, and (iii) a non-nebular spectra several months after peak. Spectroscopically, iPTF$$\\,$$16fnm exhibits a striking resemblence to 2 other low-luminosity 02cx-like SNe: SNe 2007qd and 2010ae. iPTF$$\\,$$16fnm and SN 2005hk decline at nearly the same rate, despite a 3 mag difference in brightness at peak. When considering the full subclass of 02cx-like SNe, we do not find evidence for a tight correlation between peak luminosity and decline rate in either the $g'$ or $r'$ band. We further examine the $g' - r'$ evolution of 02cx-like SNe and find that their unique color evolution can be used to separate them from 91bg-like and normal type Ia SNe. This selection function will be especially important in the spectroscopically incomplete Zwicky Transient Facility/Large Synoptic Survey Telescope era. We measure the relative rate of 02cx-like SNe to normal SNe Ia and find $$r_{N_{02cx}/N_{Ia}} = 25^{+75}_{-18.5}\\%$$. Finally, we close by recommending that LSST periodically evaluate, and possibly update, its observing cadence to maximize transient science.« less
Color Me Intrigued: the Discovery of iPTF 16fnm, a Supernova 2002cx-like Object
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. A.; Kasliwal, M. M.; Cao, Y.
Modern wide-field, optical time-domain surveys must solve a basic optimization problem: maximize the number of transient discoveries or minimize the follow-up needed for the new discoveries. Here, we describe the Color Me Intrigued experiment, the first from the intermediate Palomar Transient Factory (iPTF) to search for transients simultaneously in themore » $$g_\\mathrm{PTF}$$- and $$R_\\mathrm{PTF}$$-bands. During the course of this experiment we discovered iPTF$$\\,$$16fnm, a new member of the 02cx-like subclass of type Ia supernovae (SNe). iPTF$$\\,$$16fnm peaked at $$M_{g_\\mathrm{PTF}} = -15.09 \\pm 0.17 \\; \\mathrm{mag}$$, making it the second least-luminous known type Ia SN. iPTF 16fnm exhibits all the hallmarks of the 02cx-like class: (i) low luminosity at peak, (ii) low ejecta velocities, and (iii) a non-nebular spectra several months after peak. Spectroscopically, iPTF$$\\,$$16fnm exhibits a striking resemblence to 2 other low-luminosity 02cx-like SNe: SNe 2007qd and 2010ae. iPTF$$\\,$$16fnm and SN 2005hk decline at nearly the same rate, despite a 3 mag difference in brightness at peak. When considering the full subclass of 02cx-like SNe, we do not find evidence for a tight correlation between peak luminosity and decline rate in either the $g'$ or $r'$ band. We further examine the $g' - r'$ evolution of 02cx-like SNe and find that their unique color evolution can be used to separate them from 91bg-like and normal type Ia SNe. This selection function will be especially important in the spectroscopically incomplete Zwicky Transient Facility/Large Synoptic Survey Telescope era. We measure the relative rate of 02cx-like SNe to normal SNe Ia and find $$r_{N_{02cx}/N_{Ia}} = 25^{+75}_{-18.5}\\%$$. Finally, we close by recommending that LSST periodically evaluate, and possibly update, its observing cadence to maximize transient science.« less
Measuring Cosmological Parameters with Photometrically Classified Pan-STARRS Supernovae
NASA Astrophysics Data System (ADS)
Jones, David; Scolnic, Daniel; Riess, Adam; Rest, Armin; Kirshner, Robert; Berger, Edo; Kessler, Rick; Pan, Yen-Chen; Foley, Ryan; Chornock, Ryan; Ortega, Carolyn; Challis, Peter; Burgett, William; Chambers, Kenneth; Draper, Peter; Flewelling, Heather; Huber, Mark; Kaiser, Nick; Kudritzki, Rolf; Metcalfe, Nigel; Tonry, John; Wainscoat, Richard J.; Waters, Chris; Gall, E. E. E.; Kotak, Rubina; McCrum, Matt; Smartt, Stephen; Smith, Ken
2018-01-01
We use nearly 1,200 supernovae (SNe) from Pan-STARRS and ~200 low-z (z < 0.1) SNe Ia to measure cosmological parameters. Though most of these SNe lack spectroscopic classifications, in a previous paper we demonstrated that photometrically classified SNe can still be used to infer unbiased cosmological parameters by using a Bayesian methodology that marginalizes over core-collapse (CC) SN contamination. Our sample contains nearly twice as many SNe as the largest previous compilation of SNe Ia. Combining SNe with Cosmic Microwave Background (CMB) constraints from the Planck satellite, we measure the dark energy equation of state parameter w to be -0.986±0.058 (stat+sys). If we allow w to evolve with redshift as w(a) = w0 + wa(1-a), we find w0 = -0.923±0.148 and wa = -0.404±0.797. These results are consistent with measurements of cosmological parameters from the JLA and from a new analysis of 1049 spectroscopically confirmed SNe Ia (Scolnic et al. 2017). We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling the CC SN contamination, finding that none of these variants gives a w that differs by more than 1% from the baseline measurement. The systematic uncertainty on w due to marginalizing over the CC SN contamination, σwCC = 0.019, is approximately equal to the photometric calibration uncertainty and is lower than the systematic uncertainty in the SN\\,Ia dispersion model (σwdisp = 0.024). Our data provide one of the best current constraints on w, demonstrating that samples with ~5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework.
Structural, optical and thermal characterization of PVC/SnO2 nanocomposites
NASA Astrophysics Data System (ADS)
Taha, T. A.; Ismail, Z.; Elhawary, M. M.
2018-04-01
The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting Yuan-Sen; Conroy, Charlie; Cargile, Phillip
Understanding the evolution of the Milky Way calls for the precise abundance determination of many elements in many stars. A common perception is that deriving more than a few elemental abundances ([Fe/H], [ α /Fe], perhaps [C/H], [N/H]) requires medium-to-high spectral resolution, R ≳ 10,000, mostly to overcome the effects of line blending. In a recent work, we presented an efficient and practical way to model the full stellar spectrum, even when fitting a large number of stellar labels simultaneously. In this paper, we quantify to what precision the abundances of many different elements can be recovered, as a functionmore » of spectroscopic resolution and wavelength range. In the limit of perfect spectral models and spectral normalization, we show that the precision of elemental abundances is nearly independent of resolution, for a fixed exposure time and number of detector pixels; low-resolution spectra simply afford much higher S/N per pixel and generally larger wavelength range in a single setting. We also show that estimates of most stellar labels are not strongly correlated with one another once R ≳ 1000. Modest errors in the line-spread function, as well as small radial velocity errors, do not affect these conclusions, and data-driven models indicate that spectral (continuum) normalization can be achieved well enough in practice. These results, to be confirmed with an analysis of observed low-resolution data, open up new possibilities for the design of large spectroscopic stellar surveys and for the reanalysis of archival low-resolution data sets.« less
A Peculiar Subclass of Type Ia Supernovae a.k.a. Type Iax
NASA Astrophysics Data System (ADS)
Singh, Mridweeka; Misra, Kuntal; Sahu, Devendra Kumar; Dastidar, Raya; Gangopadhyay, Anjasha; Bose, Subhash; Srivastav, Shubham; Anapuma, Gadiyara Chakrapani; Chakradhari, Nand Kumar; Kumar, Brajesh; Kumar, Brijesh; Pandey, Shashi Bhushan
2018-04-01
We present optical photometric (upto ˜ 410 days since Bmax) and spectroscopic (upto ˜ 235 days since Bmax) observations of a type Iax supernova SN 2014dt located in M61. The broad band light curves follow a linear decline up to ˜ 100 days after which a significant flattening is seen in the late-time (beyond 150 days) light curves of SN 2014dt. SN 2014dt best matches the light curve evolution of SN 2005hk and reaches a peak magnitude of MB˜ -18.12±0.04 with ?m15˜ 1.35±0.06 mag. The earliest spectrum at ˜ 23 days is dominated by FeII and CoII lines with the absence of the Si II 6150 Å line. Using the peak bolometric luminosity we estimate a 56Ni mass of 0.14 M⊙ in the case of SN 2005hk and the striking similarity between SN 2014dt and SN 2005hk implies that a comparable amount of 56Ni would have been synthesized in the explosion of SN 2014dt. There are several explosion scenarios proposed for these peculiar events. Being one of the brightest and closest SN! , SN 2014dt is an ideal candidate for long term monitoring. Late phase observations are very essential to understand the progenitor system and the actual explosion scenario for these events.
NASA Astrophysics Data System (ADS)
Nath, Mala; Jairath, Ruchi; Eng, George; Song, Xueqing; Kumar, Ashok
2005-10-01
New diorganotin(IV) derivatives of the general formula R 2Sn(Umb) 2 (where R = n-Bu, n-Oct and Ph; Umb = umbelliferone anion) have been synthesized either by the reaction of R 2SnO with umbelliferone under azeotropic removel of water or by the reaction of R 2SnCl 2 with sodium salt of umbelliferone. Further, the adducts of the general formula R 2Sn(Umb) 2·phen (where R = n-Bu and n-Oct; phen = 1,10-phenanthroline) have also been synthesized by the interaction of R 2Sn(Umb) 2 with 1,10-phenanthroline. The bonding and coordination behavior in these derivatives are discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in solid state. Their coordination behavior in solution is discussed by the multinuclear ( 1H, 13C and 119Sn) NMR spectral studies. The Mössbauer and IR studies indicate that umbelliferone acts as a monoanionic bidentate ligand in R 2Sn(Umb) 2 coordinating through O(7) and O(1). A distorted octahedral geometry around tin has been proposed for R 2Sn(Umb) 2 as well as for R 2Sn(Umb) 2·phen in solid state. The newly synthesized derivatives have been tested for their anti-inflammatory and cardiovascular activities. The average LD 50 value >1000 mg kg -1 of these compounds indicates their safety margin.
The WFIRST Galaxy Survey Exposure Time Calculator
NASA Technical Reports Server (NTRS)
Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien
2013-01-01
This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.
The ASAS-SN bright supernova catalogue – I. 2013–2014
Holoien, T. W. -S.; Stanek, K. Z.; Kochanek, C. S.; ...
2016-09-12
We present basic statistics for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during its first year-and-a-half of operations, spanning 2013 and 2014. We also present the same information for all other bright (m V ≤ 17), spectroscopically confirmed supernovae discovered from 2014 May 1 through the end of 2014, providing a comparison to the ASAS-SN sample starting from the point where ASAS-SN became operational in both hemispheres. In addition, we present collected redshifts and near-UV through IR magnitudes, where available, for all host galaxies of the bright supernovae in both samples. This work represents a comprehensivemore » catalogue of bright supernovae and their hosts from multiple professional and amateur sources, allowing for population studies that were not previously possible because the all-sky emphasis of ASAS-SN redresses many previously existing biases. In particular, ASAS-SN systematically finds bright supernovae closer to the centres of host galaxies than either other professional surveys or amateurs, a remarkable result given ASAS-SN's poorer angular resolution. In conclusion, this is the first of a series of yearly papers on bright supernovae and their hosts that will be released by the ASAS-SN team.« less
Detection and characterization of the tin dihydride (SnH2 and SnD2) molecule in the gas phase
NASA Astrophysics Data System (ADS)
Smith, Tony C.; Clouthier, Dennis J.
2018-01-01
The SnH2 and SnD2 molecules have been detected for the first time in the gas phase by laser-induced fluorescence (LIF) and emission spectroscopic techniques through the à 1B1-X ˜ 1A1 electronic transition. These reactive species were prepared in a pulsed electric discharge jet using (CH3)4Sn or SnH4/SnD4 precursors diluted in high pressure argon. Transitions to the electronic excited state of the jet-cooled molecules were probed with LIF, and the ground state energy levels were measured from single rovibronic level emission spectra. The LIF spectrum of SnD2 afforded sufficient rotational structure to determine the ground and excited state geometries: r0″ = 1.768 Å, θ0″ = 91.0°, r0' = 1.729 Å, θ0' = 122.9°. All of the observed LIF bands show evidence of a rotational-level-dependent predissociation process which rapidly decreases the fluorescence yield and lifetime with increasing rotational angular momentum in each excited vibronic level. This behavior is analogous to that observed in SiH2 and GeH2 and is suggested to lead to the formation of ground state tin atoms and hydrogen molecules.
NASA Astrophysics Data System (ADS)
Pastorello, A.; Kochanek, C. S.; Fraser, M.; Dong, Subo; Elias-Rosa, N.; Filippenko, A. V.; Benetti, S.; Cappellaro, E.; Tomasella, L.; Drake, A. J.; Harmanen, J.; Reynolds, T.; Shappee, B. J.; Smartt, S. J.; Chambers, K. C.; Huber, M. E.; Smith, K.; Stanek, K. Z.; Christensen, E. J.; Denneau, L.; Djorgovski, S. G.; Flewelling, H.; Gall, C.; Gal-Yam, A.; Geier, S.; Heinze, A.; Holoien, T. W.-S.; Isern, J.; Kangas, T.; Kankare, E.; Koff, R. A.; Llapasset, J.-M.; Lowe, T. B.; Lundqvist, P.; Magnier, E. A.; Mattila, S.; Morales-Garoffolo, A.; Mutel, R.; Nicolas, J.; Ochner, P.; Ofek, E. O.; Prosperi, E.; Rest, A.; Sano, Y.; Stalder, B.; Stritzinger, M. D.; Taddia, F.; Terreran, G.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Weiland, H.; Willman, M.; Young, D. R.; Zheng, W.
2018-02-01
Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M(r) ~ -15.3 mag, while the second one (Event B) occurred over one month later and reached M(r) ~ -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is detectable several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of a SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. The similarity with SN 2005gl suggests that all members of this family may finally explode as genuine SNe, although the unequivocal detection of nucleosynthesised elements in their nebular spectra is still missing.
Structure and optical band gaps of (Ba,Sr)SnO{sub 3} films grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumann, Timo; Raghavan, Santosh; Ahadi, Kaveh
2016-09-15
Epitaxial growth of (Ba{sub x}Sr{sub 1−x})SnO{sub 3} films with 0 ≤ x ≤ 1 using molecular beam epitaxy is reported. It is shown that SrSnO{sub 3} films can be grown coherently strained on closely lattice and symmetry matched PrScO{sub 3} substrates. The evolution of the optical band gap as a function of composition is determined by spectroscopic ellipsometry. The direct band gap monotonously decreases with x from to 4.46 eV (x = 0) to 3.36 eV (x = 1). A large Burnstein-Moss shift is observed with La-doping of BaSnO{sub 3} films. The shift corresponds approximately to the increase in Fermi level and is consistent with the low conduction band mass.
The ASAS-SN bright supernova catalogue - III. 2016
NASA Astrophysics Data System (ADS)
Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.
2017-11-01
This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.
The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)
NASA Astrophysics Data System (ADS)
Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.
2018-04-01
The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.
Near-Infrared Spectroscopic Study of Supernova Ejecta and Supernova Dust in Cassiopeia A
NASA Astrophysics Data System (ADS)
Lee, Yong-Hyun; Koo, Bon-Chul; Moon, Dae-Sik; Lee, Jae-Joon; Burton, Michael G.
2016-06-01
We have carried out near-infrared (NIR) spectroscopic observations of the Cassiopeia A supernova (SN) remnant. We obtained medium-resolution, JHK (0.95 - 2.46 µm) spectra around the main ejecta shell. Using a clump-finding algorithm, we identified 63 'knots' in the two-dimensional dispersed images, and derived their spectroscopic properties. We first present the result of spectral classification of the knots using Principal Component (PC) Analysis. We found that the NIR spectral characteristics of the knots can be mostly (85%) represented by three PCs composed of different sets of emission lines: (1) recombination lines of H and He together with [N I] lines, (2) forbidden lines of Si, P, and S lines, and (3) forbidden Fe lines. The distribution of the knots in the PC planes matches well with the above spectral groups, and we classified the knots into the three corresponding groups, i.e., He-rich, S-rich, and Fe-rich knots. The kinematic and chemical properties of the former two groups match well with those of Quasi-Stationary Flocculi and Fast-Moving Knots known from optical studies. The Fe-rich knots show intermediate characteristics between the former two groups, and we suggest that they are the SN ejecta material from the innermost layer of the progenitor. We also present the results of extinction measurements using the flux ratios between the two NIR [Fe II] lines at 1.257 and 1.644 µm. We have found a clear correlation between the NIR extinction and the radial velocity of ejecta knots, indicating the presence of a large amount of SN dust inside and around the main ejecta shell. In a southern part of the ejecta shell, by analyzing the NIR extinction together with far-infrared thermal dust emission, we show that there are warm (˜100 K) and cool (˜40 K) SN dust components and that the former needs to be silicate grains while the latter, which is responsible for the observed NIR extinction, could be either small (.0.01 µm) Fe or large (&0.1 µm) Si grains. We suggest that the warm and cool dust components represent grain species produced in diffuse SN ejecta and in dense ejecta clumps, respectively
NASA Astrophysics Data System (ADS)
Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.
2017-11-01
ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.
NASA Astrophysics Data System (ADS)
Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.
2018-03-01
In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.
SN 2010ay is a Luminous and Broad-lined Type Ic Supernova within a Low-metallicity Host Galaxy
NASA Technical Reports Server (NTRS)
Sanders, N. E.; Soderberg, A. M.; Valenti, S.; Chomiuk, L.; Berger, E.; Smartt, S.; Hurley, K.; Barthelmy, S. D.; Chornock, R.; Foley, R. J.;
2011-01-01
We report on our serendipitous pre-discovery detection and detailed follow-up of the broad-lined Type Ic supernova SN2010ay at z approx 0.067 imaged by the Pan-STARRS1 3pi survey just approx 4 days after explosion. Combining our photometric observations with those available in the literature, we estimate the explosion date and the peak luminosity of the SN, M(sub R) approximately equals 20.2 mag, significantly brighter than known GRB-SNe and one of the most luminous SNe Ibc ever discovered. We measure the photospheric expansion velocity of the explosion from our spectroscopic follow-up observations, v(sub ph) approximately equals 19.2 X 10 (exp 3) km/s at approx 40 days after explosion. In comparison with other broad-lined SNe, the characteristic velocity of SN2010ay is 2 - 5 X higher and similar to the measurements for GRB-SNe at comparable epochs. Moreover the velocity declines two times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of Ni-56, M(sub Ni) = 0.9(+0.1/-0.1) solar mass. Our modeling of the light-curve points to a total ejecta mass, M(sub ej) approx 4.7 Solar Mass, and total kinetic energy, E(sub K,51) approximately equals 11. Thus the ratio of M(sub Ni) to M(sub ej) is at least twice as large for SN2010ay than in GRB-SNe and may indicate an additional energy reservoir. We also measure the metallicity (log(O/H) + 12 = 8.19) of the explosion site within the host galaxy using a high S/N optical spectrum. Our abundance measurement places this SN in the low-metallicity regime populated by GRB-SNe, and approx 0.2(0.5) dex lower than that typically measured for the host environments of normal (broad-lined) Ic supernovae. Despite striking similarities to the recent GRB-SN100316D/2010bh, we show that gamma-ray observations rule out an associated GRB with E(sub gamma) approx < 6 X 10(exp 48) erg (25-150 keV). Similarly, our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy, E approx > 10(exp 48) erg. These observations challenge the importance of progenitor metallicity for the production of a GRB, and suggest that other parameters also play a key role.
A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, Steven A.; Riess, Adam G.; Jones, David O.
2012-02-10
We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing amore » full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.« less
THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieto, Jose L.; Brimacombe, J.; Drake, A. J.
2013-02-01
Recent observations by Mauerhan et al. have shown the unprecedented transition of the previously identified luminous blue variable (LBV) and supernova (SN) impostor SN 2009ip to a real Type IIn SN explosion. We present {approx}100 optical R- and I-band photometric measurements of SN 2009ip obtained between UT 2012 September 23.6 and October 9.6, using 0.3-0.4 m aperture telescopes from the Coral Towers Observatory in Cairns, Australia. The light curves show well-defined phases, including very rapid brightening early on (0.5 mag in 6 hr observed during the night of September 24), a transition to a much slower rise between September 25more » and September 28, and a plateau/peak around October 7. These changes are coincident with the reported spectroscopic changes that most likely mark the start of a strong interaction between the fast SN ejecta and a dense circumstellar medium formed during the LBV eruptions observed in recent years. In the 16-day observing period, SN 2009ip brightened by 3.7 mag from I = 17.4 mag on September 23.6 (M{sub I} {approx_equal} -14.2) to I = 13.7 mag (M{sub I} {approx_equal} -17.9) on October 9.6, radiating {approx}3 Multiplication-Sign 10{sup 49} erg in the optical wavelength range. As of 2012 October 9.6, SN 2009ip is more luminous than most Type IIP SN and comparable to other Type IIn SN.« less
Classification of ASASSN-16ct as a Type Ia supernova near maximum
NASA Astrophysics Data System (ADS)
Piascik, A. S.; Steele, I. A.
2016-03-01
We conducted a spectroscopic observation of transient ASASSN-16ct (AT 2016aud) at 2016-03-10T04:38:37 UT. This transient was identified in ATel #8796 by the All Sky Automated Survey for SuperNovae (ASAS-SN).
NASA Astrophysics Data System (ADS)
Dessart, Luc; John Hillier, D.; Yoon, Sung-Chul; Waldman, Roni; Livne, Eli
2017-07-01
Using 1D, non-local thermodynamic equilibrium and time-dependent radiative transfer simulations, we study the ejecta properties required to match the early- and late-time photometric and spectroscopic properties of supernovae (SNe) associated with long-duration γ-ray bursts (LGRBs). Matching the short rise time, narrow light curve peak and extremely broad spectral lines of SN 1998bw requires a model with ≲3 M⊙ ejecta but a high explosion energy of a few 1052 erg and 0.5 M⊙ of 56Ni. The relatively high luminosity, presence of narrow spectral lines of intermediate mass elements, and low ionisation at the nebular stage, however, are matched with a more standard C-rich Wolf-Rayet (WR) star explosion, an ejecta of ≳10 M⊙, an explosion energy ≳1051 erg, and only 0.1 M⊙ of 56Ni. As the two models are mutually exclusive, the breaking of spherical symmetry is essential to match the early- and late-time photometric and spectroscopic properties of SN 1998bw. This conclusion confirms the notion that the ejecta of SN 1998bw is highly aspherical on large scales. More generally, with asphericity, the energetics and 56Ni masses of LGRB/SNe are reduced and their ejecta masses are increased, favouring a massive fast-rotating Wolf-Rayet star progenitor. Contrary to persisting claims in favour of the proto-magnetar model for LGRB/SNe, such progenitor/ejecta properties are compatible with collapsar formation. Ejecta properties of LGRB/SNe inferred from 1D radiative-transfer modelling are fundamentally flawed.
SN 2015as: a low-luminosity Type IIb supernova without an early light-curve peak
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, A.; Sahu, D. K.; Tomasella, L.; Tartaglia, L.; Singh, Mridweeka; Dastidar, Raya; Srivastav, S.; Ochner, P.; Brown, Peter J.; Anupama, G. C.; Benetti, S.; Cappellaro, E.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.
2018-05-01
We present results of the photometric (from 3 to 509 d post-explosion) and spectroscopic (up to 230 d post-explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The (B - V) colour evolution of SN 2015as closely resemble those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the B-band maximum about 22 d after the explosion, at an absolute magnitude of -16.82 ± 0.18 mag. At ˜75 d after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P Cygni features due to He I lines appear at around 30 d after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN 2015as, we estimate a 56Ni mass of ˜0.08 M⊙ and ejecta mass of 1.1-2.2 M⊙, which are similar to the values inferred for SN 2008ax. The quasi-bolometric analytical light-curve modelling suggests that the progenitor of SN 2015as has a modest mass (˜0.1 M⊙), a nearly compact (˜0.05 × 1013 cm) H envelope on top of a dense, compact (˜2 × 1011 cm) and a more massive (˜1.2 M⊙) He core. The analysis of the nebular phase spectra indicates that ˜0.44 M⊙ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main-sequence progenitor mass of ˜15 M⊙ or a Wolf-Rayet star of 20 M⊙.
2006-11-14
Spectroscopic Data- Observations Longslit spectra of SNLS SN candidates were taken at the Gemini telescopes with the Gemini Multi-Object Spectrograph [ GMOS ...typical i’ magnitudes ranged from 21.8 to 24.5), and required exposure times of 1 to 2 hours over two to four exposures. The GMOS R400 grating (400 lines...extra 360 seconds. The extra overhead time is often minimised by choosing a small nod distance, or by employing the Electronic N&S mode. The GMOS
NASA Technical Reports Server (NTRS)
Hoflich, P.; Khokhlov, A. M.; Wheeler, J. C.
1995-01-01
We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.
The ASAS-SN bright supernova catalogue – III. 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.
In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
The ASAS-SN bright supernova catalogue – III. 2016
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...
2017-08-18
In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blondin, S.; Matheson, T.; Kirshner, R. P.
2012-05-15
We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia asmore » a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II {lambda}6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from {approx}0 to {approx}400 km s{sup -1} day{sup -1} considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B - V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II {lambda}6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at {approx}4700 A and {Delta}m{sub 15}(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent on the kinetic energy of the explosion for most SNe Ia. Finally, we confirm the correlation of velocity shifts in some nebular lines with the intrinsic B - V color of SNe Ia at maximum light, although several outliers suggest a possible non-monotonic behavior for the largest blueshifts.« less
NASA Astrophysics Data System (ADS)
Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Kessler, R.; Rest, A.; Kirshner, R. P.; Berger, E.; Ortega, C. A.; Foley, R. J.; Chornock, R.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.
2017-07-01
The Pan-STARRS (PS1) Medium Deep Survey discovered over 5000 likely supernovae (SNe) but obtained spectral classifications for just 10% of its SN candidates. We measured spectroscopic host galaxy redshifts for 3147 of these likely SNe and estimate that ˜1000 are Type Ia SNe (SNe Ia) with light-curve quality sufficient for a cosmological analysis. We use these data with simulations to determine the impact of core-collapse SN (CC SN) contamination on measurements of the dark energy equation of state parameter, w. Using the method of Bayesian Estimation Applied to Multiple Species (BEAMS), distances to SNe Ia and the contaminating CC SN distribution are simultaneously determined. We test light-curve-based SN classification priors for BEAMS as well as a new classification method that relies upon host galaxy spectra and the association of SN type with host type. By testing several SN classification methods and CC SN parameterizations on large SN simulations, we estimate that CC SN contamination gives a systematic error on w ({σ }w{CC}) of 0.014, 29% of the statistical uncertainty. Our best method gives {σ }w{CC}=0.004, just 8% of the statistical uncertainty, but could be affected by incomplete knowledge of the CC SN distribution. This method determines the SALT2 color and shape coefficients, α and β, with ˜3% bias. However, we find that some variants require α and β to be fixed to known values for BEAMS to yield accurate measurements of w. Finally, the inferred abundance of bright CC SNe in our sample is greater than expected based on measured CC SN rates and luminosity functions.
T.D.S. spectroscopic databank for spherical tops: DOS version
NASA Astrophysics Data System (ADS)
Tyuterev, V. G.; Babikov, Yu. L.; Tashkun, S. A.; Perevalov, V. I.; Nikitin, A.; Champion, J.-P.; Wenger, C.; Pierre, C.; Pierre, G.; Hilico, J.-C.; Loete, M.
1994-10-01
T.D.S. (Traitement de Donnees Spectroscopiques or Tomsk-Dijon-Spectroscopy project) is a computer package concerned with high resolution spectroscopy of spherical top molecules like CH4, CF4, SiH4, SiF4, SnH4, GeH4, SF6, etc. T.D.S. contains information, fundamental spectroscopic data (energies, transition moments, spectroscopic constants) recovered from comprehensive modeling and simultaneous fitting of experimental spectra, and associated software written in C. The T.D.S. goal is to provide an access to all available information on vibration-rotation molecular states and transitions including various spectroscopic processes (Stark, Raman, etc.) under extended conditions based on extrapolations of laboratory measurements using validated theoretical models. Applications for T.D.S. may include: education/training in molecular physics, quantum chemistry, laser physics; spectroscopic applications (analysis, laser spectroscopy, atmospheric optics, optical standards, spectroscopic atlases); applications to environment studies and atmospheric physics (remote sensing); data supply for specific databases; and to photochemistry (laser excitation, multiphoton processes). The reported DOS-version is designed for IBM and compatible personal computers.
YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeting, Christoph; Eckert, Hellmut; Langer, Thorsten
2012-06-15
The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination andmore » additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.« less
NASA Astrophysics Data System (ADS)
Abdel Wahab, E. A.; Shaaban, Kh S.
2018-02-01
B2O3-SiO2-Na2O-Al2O3-TiO2 glasses modified by SnO2 have prepared and characterized by UV-spectroscopy before and after plasma treatment and by ultrasonic techniques. Makishima-Mackenzie Model has been applied to determine the elastic moduli of glasses. The density and the elastic moduli either determined from the ultrasonic or that computed according to the Makishima-Mackenzie model increase as the SnO2 concentration increases. The values of the optical band gap E g before and after plasma treatment, and refractive index have been determined. It was found that these parameters are sensitive to the increase of SnO2 content. The vibration temperature of nitrogen glow discharge has been calculated using Boltzmann plots of second positive system N2 (C3Πu) → (B3 Πg). The obtained results of vibration temperature decrease with increasing of gas pressure at different discharge currents.
Synthesis and characterization of binary ZnO-SnO2 (ZTO) thin films by e-beam evaporation technique
NASA Astrophysics Data System (ADS)
Bibi, Shagufta; Shah, A.; Mahmood, Arshad; Ali, Zahid; Raza, Qaisar; Aziz, Uzma; Haneef; Waheed, Abdul; Shah, Ziaullah
2018-04-01
The binary ZnO-SnO2 (ZTO) thin films with varying SnO2 concentrations (5, 10, 15, and 20 wt%) were grown on glass substrate by e-beam evaporation technique. The prepared ZTO films were annealed at 400 °C in air. These films were then characterized to investigate their structural, optical, and electrical properties as a function of SnO2 concentration. XRD analysis reveals that the crystallinity of the film decreases with the addition of SnO2 and it transforms to an amorphous structure at a composition of 40% SnO2 and 60% ZnO. Morphology of the films was examined by atomic force microscopy which points out that surface roughness of the films decreases with the increasing of SnO2 in the film. Optical properties such as optical transparency, band-gap energy, and optical constants of these films were examined by spectrophotometer and spectroscopic Ellipsometer. It was observed that the average optical transmission of mixed films improves with incorporation of SnO2. In addition, the band-gap energy of the films was determined to be in the range of 3.37-3.7 eV. Furthermore, it was found that the optical constants (n and k) decrease with the addition of SnO2. Similarly, it is observed that the electrical resistivity increases nonlinearly with the increase in SnO2 in ZnO-SnO2 thin films. However, it is noteworthy that the highest figure of merit (FOM) value, i.e., 55.87 × 10-5 Ω-1, is obtained for ZnO-SnO2 (ZTO) thin film with 40 wt% of SnO2 composition. Here, we suggest that ZnO-SnO2 (ZTO) thin film with composition of 60:40 wt% can be used as an efficient TCO film due to the improved transmission, and reduced RMS value and highest FOM value.
Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John
2009-07-06
The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.
Ge1-xSnx alloys synthesized by ion implantation and pulsed laser melting
NASA Astrophysics Data System (ADS)
Gao, Kun; Prucnal, S.; Huebner, R.; Baehtz, C.; Skorupa, I.; Wang, Yutian; Skorupa, W.; Helm, M.; Zhou, Shengqiang
2014-07-01
The tunable bandgap and the high carrier mobility of Ge1-xSnx alloys stimulate a large effort for bandgap and strain engineering for Ge based materials using silicon compatible technology. In this Letter, we present the fabrication of highly mismatched Ge1-xSnx alloys by ion implantation and pulsed laser melting with Sn concentration ranging from 0.5 at. % up to 1.5 at. %. According to the structural investigations, the formed Ge1-xSnx alloys are monocrystalline with high Sn-incorporation rate. The shrinkage of the bandgap of Ge1-xSnx alloys with increasing Sn content is proven by the red-shift of the E1 and E1 + Δ1 critical points in spectroscopic ellipsometry. Our investigation provides a chip technology compatible route to prepare high quality monocrystalline Ge1-xSnx alloys.
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Jeffries, R. D.; Lewis, J.; Koposov, S. E.; Sacco, G. G.; Randich, S.; Gilmore, G.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J. E.; Feltzing, S.; Ferguson, A. M. N.; Micela, G.; Neguerela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Hambly, N.; Irwin, M.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Walton, N.; Bayo, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.
2015-08-01
Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims: A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods: We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results: We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions: Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km s-1, dependent on instrumental configuration. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia- ESO Large Public Survey (188.B-3002).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A75
Spectroscopic Confirmation of Five Galaxy Clusters at z > 1.25 in the 2500 deg^2 SPT-SZ Survey
NASA Astrophysics Data System (ADS)
Khullar, Gourav; Bleem, Lindsey; Bayliss, Matthew; Gladders, Michael; South Pole Telescope (SPT) Collaboration
2018-06-01
We present spectroscopic confirmation of 5 galaxy clusters at 1.25 < z < 1.5, discovered in the 2500 deg2 South Pole Telescope Sunyaev-Zel’dovich (SPT-SZ) survey. These clusters, taken from a nearly redshift-independent mass-limited sample of clusters, have multi-wavelength follow-up imaging data from the X-ray to the near-IR, and currently form the most homogenous massive high-redshift cluster sample in existence. We briefly describe the analysis pipeline used on the low S/N spectra of these faint galaxies, and describing the multiple techniques used to extract robust redshifts from a combination of absorption-line (Ca II H&K doublet - λλ3934,3968Å) and emission-line ([OII] λλ3727,3729Å) spectral features. We present several ensemble analyses of cluster member galaxies that demonstrate the reliability of the measured redshifts. We also identify modest [OII] emission and pronounced CN and Hδ absorption in a composite stacked spectrum of 28 low S/N passive galaxy spectra with redshifts derived primarily from Ca II H&K features. This work increases the number of spectroscopically-confirmed SPT-SZ galaxy clusters at z > 1.25 from 2 to 7, further demonstrating the efficacy of SZ selection for the highest redshift massive clusters, and enabling further detailed study of these confirmed systems.
ASASSN-16fp (SN 2016coi): a transitional supernova between Type Ic and broad-lined Ic
NASA Astrophysics Data System (ADS)
Kumar, Brajesh; Singh, A.; Srivastav, S.; Sahu, D. K.; Anupama, G. C.
2018-01-01
We present results based on a well-sampled optical (UBVRI) and ultraviolet (Swift/UVOT) imaging, and low-resolution optical spectroscopic follow-up observations of the nearby Type Ic supernova (SN) ASASSN-16fp (SN 2016coi). The SN was monitored during the photospheric phase (-10 to +33 d with respect to the B-band maximum light). The rise to maximum light and early post-maximum decline of the light curves are slow. The peak absolute magnitude (MV = -17.7 ± 0.2 mag) of ASASSN-16fp is comparable with broad-lined Ic SN 2002ap, SN 2012ap and transitional Ic SN 2004aw but considerably fainter than the gamma-ray burst/X-ray flash associated SNe (e.g. SN 1998bw, 2006aj). Similar to the light curve, the spectral evolution is also slow. ASASSN-16fp shows distinct photospheric phase spectral lines along with the C II features. The expansion velocity of the ejecta near maximum light reached ∼16 000 km s-1 and settled to ∼8000 km s-1, ∼1 month post-maximum. Analytical modelling of the quasi-bolometric light curve of ASASSN-16fp suggests that ∼0.1 M⊙ 56Ni mass was synthesized in the explosion, with a kinetic energy of 6.9^{+1.5}_{-1.3} × 1051 erg and total ejected mass of ∼4.5 ± 0.3 M⊙.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in
Ten AInM′S{sub 4} (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS{sub 4}(1-β), RbInGeS{sub 4}(2), CsInGeS{sub 4}(3-β), TlInGeS{sub 4}(4-β), RbInSnS{sub 4}(8-β) and CsInSnS{sub 4}(9) compounds with three-dimensional BaGa{sub 2}S{sub 4} structure and CsInGeS{sub 4}(3-α) and TlInGeS{sub 4}(4-α) compounds with a layered TlInSiS{sub 4} structure have tetrahedral [InM′S{sub 4}]{sup −} frameworks. On the other hand, LiInSnS{sub 4}(5) with spinel structure and NaInSnS{sub 4}(6), KInSnS{sub 4}(7), RbInSnS{sub 4}(8-α) and TlInSnS{sub 4}(10) compounds with layered structuremore » have octahedral [InM′S{sub 4}]{sup −} frameworks. NaInSnS{sub 4}(6) and KInSnS{sub 4}(7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S{sub 4} compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo facile topotactic ion-exchange at room temperature.« less
Spectroscopic classification of SN 2018bxs as a type Ia supernova a few days before maximum
NASA Astrophysics Data System (ADS)
Wyatt, Samuel; Andrews, Jennifer; Sand, David; Smith, Nathan
2018-06-01
On UT 2018 May 25.3 we obtained an optical spectrum (range 370-800 nm) of AT2018bxs (=ATLAS18ppz), discovered by ATLAS (Tonry et al. 2011, PASP, 123, 58) with the 2.3m Bok telescope (+ Boller & Chivens spectrograph) on Kitt Peak, Arizona.
High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals
Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; ...
2016-01-01
Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less
NASA Astrophysics Data System (ADS)
Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh; Azam, Ameer
2010-05-01
A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. 119Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant Kb = 8.42 × 104 M - 1. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.
Effect of thickness on electrical properties of SILAR deposited SnS thin films
NASA Astrophysics Data System (ADS)
Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba
2016-03-01
Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.
PSN J11290437+1714095 is a Type Ia supernova (91T-like) near maximum light
NASA Astrophysics Data System (ADS)
Childress, M.; Owen, C.; Scalzo, R.; Yuan, F.; Schmidt, B.; Tucker, B.
2013-12-01
We report spectroscopic classification of PSN J11290437+1714095 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J11290437+1714095 was discovered by TAROT on 2013 Dec 11.09 at mag 15.9 in UGC 6483. A 20 minute spectrum of the SN on 2013 Dec 12.72 shows this to be a Type Ia supernova of the SN 1991T subclass near maximum light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krisciunas, Kevin; Marion, G. H.; Suntzeff, Nicholas B.
2009-12-15
We obtained optical photometry of SN 2003gs on 49 nights, from 2 to 494 days after T(B {sub max}). We also obtained near-IR photometry on 21 nights. SN 2003gs was the first fast declining Type Ia SN that has been well observed since SN 1999by. While it was subluminous in optical bands compared to more slowly declining Type Ia SNe, it was not subluminous at maximum light in the near-IR bands. There appears to be a bimodal distribution in the near-IR absolute magnitudes of Type Ia SNe at maximum light. Those that peak in the near-IR after T(B {sub max})more » are subluminous in the all bands. Those that peak in the near-IR prior to T(B {sub max}), such as SN 2003gs, have effectively the same near-IR absolute magnitudes at maximum light regardless of the decline rate {delta}m {sub 15}(B). Near-IR spectral evidence suggests that opacities in the outer layers of SN 2003gs are reduced much earlier than for normal Type Ia SNe. That may allow {gamma} rays that power the luminosity to escape more rapidly and accelerate the decline rate. This conclusion is consistent with the photometric behavior of SN 2003gs in the IR, which indicates a faster than normal decline from approximately normal peak brightness.« less
Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph
NASA Astrophysics Data System (ADS)
Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.
2018-01-01
The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.
iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger
NASA Astrophysics Data System (ADS)
Corsi, A.; Cenko, S. B.; Kasliwal, M. M.; Quimby, R.; Kulkarni, S. R.; Frail, D. A.; Goldstein, A. M.; Blagorodnova, N.; Connaughton, V.; Perley, D. A.; Singer, L. P.; Copperwheat, C. M.; Fremling, C.; Kupfer, T.; Piascik, A. S.; Steele, I. A.; Taddia, F.; Vedantham, H.; Kutyrev, A.; Palliyaguru, N. T.; Roberts, O.; Sollerman, J.; Troja, E.; Veilleux, S.
2017-09-01
We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r-band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ-rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.
iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corsi, A.; Palliyaguru, N. T.; Cenko, S. B.
We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G.more » Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Qian; Modjaz, Maryam; Bianco, Federica B.
Using the largest spectroscopic data set of stripped-envelope core-collapse supernovae (stripped SNe), we present a systematic investigation of spectral properties of Type IIb SNe (SNe IIb), Type Ib SNe (SNe Ib), and Type Ic SNe (SNe Ic). Prior studies have been based on individual objects or small samples. Here, we analyze 242 spectra of 14 SNe IIb, 262 spectra of 21 SNe Ib, and 207 spectra of 17 SNe Ic based on the stripped SN data set of Modjaz et al. and other published spectra of individual SNe. Each SN in our sample has a secure spectroscopic ID, a datemore » of V -band maximum light, and most have multiple spectra at different phases. We analyze these spectra as a function of subtype and phase in order to improve the SN identification scheme and constrain the progenitors of different kinds of stripped SNe. By comparing spectra of SNe IIb with those of SNe Ib, we find that the strength of H α can be used to quantitatively differentiate between these two subtypes at all epochs. Moreover, we find a continuum in observational properties between SNe IIb and Ib. We address the question of hidden He in SNe Ic by comparing our observations with predictions from various models that either include hidden He or in which He has been burnt. Our results favor the He-free progenitor models for SNe Ic. Finally, we construct continuum-divided average spectra as a function of subtype and phase to quantify the spectral diversity of the different types of stripped SNe.« less
Homologous compounds of type ARO3(ZnO)m in the system Ga-Sn-Zn-O
NASA Astrophysics Data System (ADS)
Eichhorn, Simon; Schmid, Herbert; Assenmacher, Wilfried; Mader, Werner
2017-02-01
Several members of hitherto unknown homologous compounds [Sn0.5Zn0.5]GaO3(ZnO)m (m=3-7) of the general formula ARO3(ZnO)m were prepared by solid state methods from the binary oxides in sealed Pt-tubes. UV-vis measurements confirm these compounds to be transparent oxides with an optical band gap in the UV region with Eg≈3 eV. Rietveld refinements on powder samples of [Sn0.5Zn0.5]GaO3(ZnO)m proved the compounds to be isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced statistically by Sn4+ and Zn2+ in equal amounts preserving an average charge of 3+. Additionally, the structure of [Sn0.5Zn0.5]GaO3(ZnO)3 has been determined from flux-grown single crystals by X-ray diffraction (R 3 ̅ m , Z=3, a=3.2387(7) Å, c=41.78(1) Å, 19 parameters, 201 independent reflections, R1=0.047, wR2=0.074). The compound [Sn0.5Zn0.5]GaO3(ZnO)3 is isostructural with InGaO3(ZnO)3. [Sn0.5Zn0.5]GaO3(ZnO)3 was furthermore analyzed by High Angle Annular Dark Field (HAADF) scanning TEM and EELS spectroscopic imaging, supporting the structure model derived from X-ray diffraction data.
Systematic shell-model study on spectroscopic properties from light to heavy nuclei
NASA Astrophysics Data System (ADS)
Yuan, Cenxi
2018-05-01
A systematic shell-model study is performed to study the spectroscopic properties from light to heavy nuclei, such as binding energies, energy levels, electromagnetic properties, and β decays. The importance of cross-shell excitation is shown in the spectroscopic properties of neutron-rich boron, carbon, nitrogen, and oxygen isotopes. A special case is presented for low-lying structure of 14C. The weakly bound effect of proton 1s1/2 orbit is necessary for the description of the mirror energy difference in the nuclei around A=20. Some possible isomers are predicted in the nuclei in the southeast region of 132Sn based on a newly suggested Hamiltonian. A preliminary study on the nuclei around 208Pb are given to show the ability of the shell model in the heavy nuclei.
Strain-induced optical band gap variation of SnO 2 films
Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas
2016-06-29
In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less
Confirmation of 5 SN in the Kepler/K2 C16 Field with Gemini
NASA Astrophysics Data System (ADS)
Margheim, S.; Tucker, B. E.; Garnavich, P. M.; Rest, A.; Narayan, G.; Smith, K. W.; Smartt, S.; Kasen, D.; Shaya, E.; Mushotzky, R.; Olling, R.; Villar, A.; Forster, F.; Zenteno, A.; James, D.; Smith, R. Chris
2018-01-01
We report new spectroscopic classifications by KEGS of supernova discovered by Pan-STARRS1 during a targeted search of the Kepler/K2 Campaign 16 field using the Gemini Multi-Object Spectrograph (GMOS) on both the Gemini North Observatory on Mauna Kea, and the Gemini South Observatory on Cerro Pachon.
Yu, Xiaofen; Wu, Qibai; Zhang, Haiyan; Zeng, Guoxun; Li, Wenwu; Qian, Yannan; Li, Yang; Yang, Guoqiang; Chen, Muyu
2017-01-01
With the rapid development of industry, heat removal and management is a major concern for any technology. Heat transfer plays a critically important role in many sectors of engineering; nowadays utilizing nanofluids is one of the relatively optimized techniques to enhance heat transfer. In the present work, a facile low-temperature solvothermal method was employed to fabricate the SnO2/reduced graphene oxide (rGO) nanocomposite. X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscope (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) have been performed to characterize the SnO2/rGO nanocomposite. Numerous ultrasmall SnO2 nanoparticles with average diameters of 3–5 nm were anchored on the surface of rGO, which contain partial hydrophilic functional groups. Water-based SnO2/rGO nanofluids were prepared with various weight concentrations by using an ultrasonic probe without adding any surfactants. The zeta potential was measured to investigate the stability of the as-prepared nanofluid which exhibited great dispersion stability after quiescence for 60 days. A thermal properties analyzer was employed to measure thermal conductivity of water-based SnO2/rGO nanofluids, and the results showed that the enhancement of thermal conductivity could reach up to 31% at 60 °C under the mass fraction of 0.1 wt %, compared to deionized water. PMID:29280972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, D.; Krühler, T.; Hjorth, J.
Long-duration gamma-ray bursts (GRBs) at z < 1 are found in most cases to be accompanied by bright, broad-lined Type Ic supernovae (SNe Ic-BL). The highest-energy GRBs are mostly located at higher redshifts, where the associated SNe are hard to detect observationally. Here, we present early and late observations of the optical counterpart of the very energetic GRB 130427A. Despite its moderate redshift, z = 0.3399 ± 0.0002, GRB 130427A is at the high end of the GRB energy distribution, with an isotropic-equivalent energy release of E{sub iso} ∼ 9.6 × 10{sup 53} erg, more than an order of magnitudemore » more energetic than other GRBs with spectroscopically confirmed SNe. In our dense photometric monitoring, we detect excess flux in the host-subtracted r-band light curve, consistent with that expected from an emerging SN, ∼0.2 mag fainter than the prototypical SN 1998bw. A spectrum obtained around the time of the SN peak (16.7 days after the GRB) reveals broad undulations typical of SNe Ic-BL, confirming the presence of an SN, designated SN 2013cq. The spectral shape and early peak time are similar to those of the high expansion velocity SN 2010bh associated with GRB 100316D. Our findings demonstrate that high-energy, long-duration GRBs, commonly detected at high redshift, can also be associated with SNe Ic-BL, pointing to a common progenitor mechanism.« less
The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae.
Mazzali, Paolo A; Valenti, Stefano; Della Valle, Massimo; Chincarini, Guido; Sauer, Daniel N; Benetti, Stefano; Pian, Elena; Piran, Tsvi; D'Elia, Valerio; Elias-Rosa, Nancy; Margutti, Raffaella; Pasotti, Francesco; Antonelli, L Angelo; Bufano, Filomena; Campana, Sergio; Cappellaro, Enrico; Covino, Stefano; D'Avanzo, Paolo; Fiore, Fabrizio; Fugazza, Dino; Gilmozzi, Roberto; Hunter, Deborah; Maguire, Kate; Maiorano, Elisabetta; Marziani, Paola; Masetti, Nicola; Mirabel, Felix; Navasardyan, Hripsime; Nomoto, Ken'ichi; Palazzi, Eliana; Pastorello, Andrea; Panagia, Nino; Pellizza, L J; Sari, Re'em; Smartt, Stephen; Tagliaferri, Gianpiero; Tanaka, Masaomi; Taubenberger, Stefan; Tominaga, Nozomu; Trundle, Carrie; Turatto, Massimo
2008-08-29
The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.
NASA Astrophysics Data System (ADS)
Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N.
2018-04-01
We present the measurement of the kinematic Sunyaev-Zel'dovich (kSZ) effect in Fourier space, rather than in real space. We measure the density-weighted pairwise kSZ power spectrum, the first use of this promising approach, by cross-correlating a cleaned cosmic microwave background (CMB) temperature map, which jointly uses both Planck Release 2 and Wilkinson Microwave Anisotropy Probe nine-year data, with the two galaxy samples, CMASS and LOWZ, derived from the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12. To estimate the CMB temperature distortion associated with each galaxy, we apply an aperture photometry filter. With the current data, we constrain the average optical depth τ multiplied by the ratio of the Hubble parameter at redshift z and the present day, E = H/H0; we find τE = (3.95 ± 1.62) × 10-5 for LOWZ, which corresponds to the statistical significance of S/N = 2.44, and τE = (1.25 ± 1.06) × 10-5 for CMASS, which is consistent with a null hypothesis of no signal. While this analysis results in the kSZ signals with only evidence for a detection, the combination of future CMB and spectroscopic galaxy surveys should enable precision measurements. We estimate that the combination of CMB-S4 and data from Dark Energy Spectroscopic Instrument should yield detections of the kSZ signal with S/N = 70-100, depending on the resolution of CMB-S4.
Optical and Near-Infrared Observations of SN 2013DX Associated with GRB 130702A
NASA Technical Reports Server (NTRS)
Toy, V. L.; Cenko, S. B.; Silverman, J. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Bersier, D.; Perley, D. A.; Margutti, R.; Bellm, E.;
2016-01-01
We present optical and near-infrared (NIR) light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be E(sub gamma, iso) = 6.4(+1.3/-1.0) x 10(exp 50) erg (1 keV to 10 MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed g'r'i'z' light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves approx. 20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined SNe Ic, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of approx. 21,000 km/s. We construct a quasi-bolometric (g'r'z'yJ) light curve for SN 2013dx, only the fifth GRB-associated SN with extensive NIR coverage and the third with a bolometric light curve extending beyond (Delta)t > 40 days. Together with the measured photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a Ni-56 mass of M(sub Ni) = 0.37+/- 0.01 Stellar Mass, an ejecta mass of M(sub ej) = 3.1+/- 0.1 Stellar Mass, and a kinetic energy of E(sub K) = (8.2+/- 0.43) x 10(exp 51) erg (statistical uncertainties only), consistent with previous GRB-associated supernovae. When considering the ensemble population of GRB-associated supernovae, we find no correlation between the mass of synthesized Ni-56 and high-energy properties, despite clear predictions from numerical simulations that M(sub Ni) should correlate with the degree of asymmetry. On the other hand, M(sub Ni) clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events.
NASA Astrophysics Data System (ADS)
Schmidt, Christian
2018-01-01
The speciation of tin and the solubility of cassiterite in H2O + HCl were determined at temperatures to 600 °C using in situ Raman spectroscopy. In addition, information on the fluid-melt partition of Sn was obtained at 700 °C and indicated a preference of the fluid only at HCl concentrations that are much higher than in fluids exsolved from natural felsic melts. Dissolution of cassiterite generally resulted in formation of Sn(IV) species unless reduced conditions were generated by hydrogen permeation or carbohydrates in the starting material. The prevalent aqueous Sn(IV) species was [SnCl4(H2O)2]0, with additional [SnCl3(H2O)3]+ and [SnCl5(H2O)]-. The only detectable Sn(II) species was very likely [Sn(II)Cl3]-. Cassiterite solubility increased with HCl concentration and was generally high in H2O+HCl fluids, with no strong dependencies on temperature, pressure, or the oxidation state of tin in the fluid. The Sn(IV) concentrations at 500 and 600 °C determined from the integrated ν1[Sn(IV)sbnd Cl] band intensity are in good agreement with literature data on the cassiterite solubility in H2O + HCl at oxygen fugacities along the hematite-magnetite buffer. The combined results from previous experimental studies and this study demonstrate that HCl molality is a crucial parameter for hydrothermal mobilization and transport of tin and for cassiterite precipitation, and that pH, pressure and temperature are less important. Current models on hydrothermal tin deposit formation need to be augmented to include Sn(IV)sbnd Cl complexes as significant tin-transporting species. Irrespective of the oxidation state of tin in the fluid, cassiterite precipitates due to reaction of the hydrothermal fluid with the wall rock (greisen or skarn formation), dilution (mixing with meteoric water) or a decrease in the HCl activity in the aqueous liquid by boiling. A redox reaction is only required for tin transported as Sn(II) to be converted to Sn(IV).
NASA Astrophysics Data System (ADS)
Banai, Rona Elinor
Herzenbergite tin (II) monosulfide (alpha-SnS) is of growing interest as a photovoltaic material because of its interesting optoelectronic properties and Earth abundance. It has several stable phases due to the dual valency of tin. As a layered material, alpha-SnS has the ability to form varying microstructure with differing properties. For this dissertation, films were RF sputtered from a SnS and SnS2 target to produce films with varying microstructure. Growth of high energy phases includin beta-SnS and amorphous SnS2 were possible through sputtering. Films of mixed or strained phase resulted from both targets. Pure phase alpha-SnS was made by annealing amorphous SnS2 films. Microstructure was measured using grazing incidence XRD and field emission SEM. The impact of microstructure was seen for both optical and electronic properties. Films were evaluated using spectroscopic ellipsometry as well as unpolarized UV-Vis transmission and reflection measurements. Optical modeling of the films is sufficient for developing models corresponding to specific microstructure, enabling it to be an inexpensive tool for studying the material. Absorption coefficient and band gap were also derived for these films. Films deposited with the SnS target had resistivity values up to 20,000 O-cm. Annealing of amorphous films deposited from the SnS2 target resulted in alpha-SnS films with much lower resistivity (<50 O-cm) values. This method for producing alpha-SnS offered better control of the phase, microstructure and therefore optoelectronic properties. While SnS films made from either target were typically p-type, sputtering of the SnS2 target with substrate heating resulted in n-type SnSx of a potentially new phase similar to SnS2 but with a 2:3 tin-to-sulfur ratio. Resistivity of those films typically ranged from 1 to 40 O-cm. Both p- and n-type films made from the SnS2 target had high carrier concentration of 10 17 to 1020 cm-3, but films had low Hall mobility such that conductivity type was not determined. Titanium, molybdenum, and aluminum contacts were tested for Ohmic and Schottky behavior using transmission line measurements. The complexity of its microstructure and flexibility in formation of varying phase and altered phase presents challenges to its use as a PV absorber.
Effect of pH on the electrical properties and conducting mechanism of SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Periathai, R. Sudha; Abarna, S.; Hirankumar, G.; Jeyakumaran, N.; Prithivikumaran, N.
2017-03-01
Semiconductor nanoparticles have attracted more interests because of their size-dependent optical and electrical properties.SnO2 is an oxygen-deficient n-type semiconductor with a wide band gap of 3.6 eV (300 K). It has many remarkable applications as sensors, catalysts, transparent conducting electrodes, anode material for rechargeable Li- ion batteries and optoelectronic devices. In the present work, the role of pH in determining the electrical and dielectric properties of SnO2 nanoparticles has been studied as a function of temperature ranging from Room temperature (RT) to 114 °C in the frequency range of 7 MHz to 50 mHz using impedance spectroscopic technique. The non linear behavior observed in the thermal dependence of the conductance of SnO2 nanoparticles is explained by means of the surface property of SnO2 nanoparticles where proton hopping mechanism is dealt with. Jonscher's power law has been fitted for the conductance spectra and the frequency exponent ("s" value) gives an insight about the ac conducting mechanism. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation.
Follow-up observations of SN 2010dn
NASA Astrophysics Data System (ADS)
Botticella, Maria Teresa; Kotak, Rubina; Meikle, Peter; Smartt, Stephen; Pastorello, Andrea; Benetti, Stefano
2010-06-01
A new intriguing transient, SN 2010dn in NGC 3184, was discovered ten days ago. The spectroscopic and photometric evolution make this transient similar to SN 2008S, the 2006 optical transient in M85 and the 2008 optical transient in NGC 300, members of a new class of transient events given the similar pre-explosion?and post-explosion properties. The nature of these transient is still debated?and our experience with SN 2008S proved that?Spitzer data are?invaluable to shed light on it providing a critical information in the understanding?the geometry of the circumstellar environment of these transients both for the dust enshrouded progenitor stars and after?their explosion. We would like to obtain a rapid follow-up of SN 2010dn with Spitzer to check if also this transient is producing an IR echo from substantial circumstellar material around the progenitor star. The modeling of the light echo will allow us to constrain the mass and?physical scale?of the circumstellar dust around this transient and as consequence to probe the mass loss history of the progenitor star. The proposed observations will be coordinated with an extensive optical follow up and?will be of interest to the broad scientific community. To obtain prompt observations after the discovery?is crucial.
Evidence for the Confinement of Magnetic Monopoles in Quantum Spin Ice.
Sarte, Paul Maximo; Aczel, Adam; Ehlers, Georg; Stock, Christopher; Gaulin, Bruce D; Mauws, Cole; Stone, Matthew B; Calder, Stuart; Nagler, Stephen; Hollett, Joshua; Zhou, Haidong; Gardner, Jason S; Attfield, J Paul; Wiebe, Christopher R
2017-09-25
Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids [Dirac 1931 Proc. Roy. Soc. A 133 60]. Despite decades of searches, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials [Castelnovo, Moessner & Sondhi 2008 Nature 326 411]. Here we report the detection of a hierarchy of unequally-spaced magnetic excitations via high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate Pr<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. These excitations are well-described by a simple model of monopole pairs bound by a linear potential [Coldea et al. Science 327 177] with an effective tension of 0.7(1) K/Angstrom. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate Pr<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. © 2017 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Rigby, J. R.; Bayliss, M. B.; Sharon, K.; Gladders, M. D.; Chisholm, J.; Dahle, H.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Kelson, D. D.
2018-03-01
We introduce Project MEGaSaURA: the Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N = 15 bright gravitationally lensed galaxies at redshifts of 1.68 < z < 3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200 < λ o < 8280 Å the average spectral resolving power is R = 3300. The median spectrum has a signal-to-noise ratio (S/N) = 21 per resolution element at 5000 Å. As such, the MEGaSaURA spectra have superior S/N and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.
NASA Astrophysics Data System (ADS)
Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.
2017-12-01
We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.
The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials
Xie, Hanhui; Wang, Heng; Fu, Chenguang; Liu, Yintu; Snyder, G. Jeffrey; Zhao, Xinbing; Zhu, Tiejun
2014-01-01
The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0×1019 to 2.3×1021 cm−3 by changing Sb dopant content. The optimized carrier concentration nH ≈ 3–4×1020 cm−2 results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features. PMID:25363573
NASA Astrophysics Data System (ADS)
Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup
2018-06-01
We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.
NASA Astrophysics Data System (ADS)
Nath, Mala; Jairath, Ruchi; Eng, George; Song, Xueqing; Kumar, Ashok
2005-12-01
New organotin(IV) complexes of the general formula R 3Sn(L) (where R = Me, n-Bu and HL = L-proline; R = Me, Ph and HL = trans-hydroxy- L-proline and L-glutamine) and R 2Sn(L) 2 (where R = n-Bu, Ph and HL = L-proline; R = Ph, HL = trans-hydroxy- L-proline) have been synthesized by the reaction of R nSnCl 4- n (where n = 2 or 3) with sodium salt of the amino acid (HL). n-Bu 2Sn(Pro) 2 was synthesized by the reaction of n-Bu 2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear ( 1H, 13C and 119Sn) NMR spectral studies. The 119Sn Mössbauer and IR studies indicate that L-proline and trans-hydroxy- L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy- L-proline, in which the carboxylate group acts as bidentate group. L-Glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD 50 values are >1000 mg kg -1.
Photometric Type Ia supernova surveys in narrow-band filters
NASA Astrophysics Data System (ADS)
Xavier, Henrique S.; Abramo, L. Raul; Sako, Masao; Benítez, Narciso; Calvão, Maurício O.; Ederoclite, Alessandro; Marín-Franch, Antonio; Molino, Alberto; Reis, Ribamar R. R.; Siffert, Beatriz B.; Sodré, Laerte.
2014-11-01
We study the characteristics of a narrow-band Type Ia supernova (SN) survey through simulations based on the upcoming Javalambre Physics of the accelerating Universe Astrophysical Survey. This unique survey has the capabilities of obtaining distances, redshifts and the SN type from a single experiment thereby circumventing the challenges faced by the resource-intensive spectroscopic follow-up observations. We analyse the flux measurements signal-to-noise ratio and bias, the SN typing performance, the ability to recover light-curve parameters given by the SALT2 model, the photometric redshift precision from Type Ia SN light curves and the effects of systematic errors on the data. We show that such a survey is not only feasible but may yield large Type Ia SN samples (up to 250 SNe at z < 0.5 per month of search) with low core-collapse contamination (˜1.5 per cent), good precision on the SALT2 parameters (average σ _{m_B}=0.063, σ _{x_1}=0.47 and σc = 0.040) and on the distance modulus (average σμ = 0.16, assuming an intrinsic scatter σint = 0.14), with identified systematic uncertainties σsys ≲ 0.10σstat. Moreover, the filters are narrow enough to detect most spectral features and obtain excellent photometric redshift precision of σz = 0.005, apart from ˜2 per cent of outliers. We also present a few strategies for optimizing the survey's outcome. Together with the detailed host galaxy information, narrow-band surveys can be very valuable for the study of SN rates, spectral feature relations, intrinsic colour variations and correlations between SN and host galaxy properties, all of which are important information for SN cosmological applications.
SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.
Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna
2011-02-04
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.
Experimental infection of pregnant goats with swine fever virus.
Shimizu, M; Kumagai, T
1989-07-01
Thirteen pregnant goats were inoculated intravenously with the ALD strain of virulent swine fever (SF) virus on Days 64-84 of gestation. Dams showed transient and mild viremia, and produced high serum neutralizing (SN) antibody after inoculation. Six inoculated dams were reared until parturition occurred and bore six apparently normal, one apparently normal but dead, one mummified and three edematous kids. Neutralizing antibody was demonstrated in the pre-colostral sera obtained from all normal kids, but no SF virus was isolated from any of them. The other seven dams were killed on post-inoculation days (PID) 5-61, and fetuses, placenta and amnion were tested for the virus and SN antibody. All fetuses of five dams examined within PID 40 were positive for SF virus, but negative for SN antibody. SF virus was also isolated from one of three fetuses examined on PID 61. Conversely, the other two fetuses examined on PID 61 were negative for SF virus, but positive for SN antibody. Furthermore, SF virus was isolated from the placenta and amnion of all the dams.
High-field specific heats of A15 V3Si and Nb3Sn
NASA Astrophysics Data System (ADS)
Stewart, G. R.; Brandt, B. L.
1984-04-01
In order to further understand the anomalous behavior of the specific heat of Nb3Sn in an 18-T magnetic field discovered by Stewart, Cort, and Webb
NASA Astrophysics Data System (ADS)
Scolnic, D. M.; Jones, D. O.; Rest, A.; Pan, Y. C.; Chornock, R.; Foley, R. J.; Huber, M. E.; Kessler, R.; Narayan, G.; Riess, A. G.; Rodney, S.; Berger, E.; Brout, D. J.; Challis, P. J.; Drout, M.; Finkbeiner, D.; Lunnan, R.; Kirshner, R. P.; Sanders, N. E.; Schlafly, E.; Smartt, S.; Stubbs, C. W.; Tonry, J.; Wood-Vasey, W. M.; Foley, M.; Hand, J.; Johnson, E.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Bresolin, F.; Gall, E.; Kotak, R.; McCrum, M.; Smith, K. W.
2018-06-01
We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 < z < 2.3, which we call the “Pantheon Sample.” When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find {{{Ω }}}m=0.307+/- 0.012 and w=-1.026+/- 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H 0 measurements, the analysis yields the most precise measurement of dark energy to date: {w}0=-1.007+/- 0.089 and {w}a=-0.222+/- 0.407 for the {w}0{w}aCDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2× in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.
Pershina, V; Anton, J; Fricke, B
2007-10-07
Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M=Ge, Sn, Pb, and element 114, and MM'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties-atomization energies D(e), vibrational frequencies omega(e), and bond lengths R(e), as a function of MM', are similar for compounds of Ge, Sn, Pb, and element 114, except for D(e) of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(MM')atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np(1/2)(M) AOs. Overall, D(e) of the element 114 dimers are about 1 eV smaller and R(e) are about 0.2 a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p(1/2)(114) AO. On the basis of the calculated D(e) for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150 kJ/mol smaller than those of Pb.
The Type Ia Supernova Rate at z~0.5 from the Supernova Legacy Survey
NASA Astrophysics Data System (ADS)
Neill, J. D.; Sullivan, M.; Balam, D.; Pritchet, C. J.; Howell, D. A.; Perrett, K.; Astier, P.; Aubourg, E.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Gonçalves, A. C.; Hardin, D.; Kowalski, M.; Lidman, C.; Lusset, V.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Schlegel, D.; Tao, C.
2006-09-01
We present a measurement of the distant Type Ia supernova (SN Ia) rate derived from the first 2 yr of the Canada-France-Hawaii Telescope Supernova Legacy Survey. We observed four 1deg×1deg fields with a typical temporal frequency of <Δt>~4 observer-frame days over time spans of 158-211 days per season for each field, with breaks during the full Moon. We used 8-10 m class telescopes for spectroscopic follow-up to confirm our candidates and determine their redshifts. Our starting sample consists of 73 spectroscopically verified SNe Ia in the redshift range 0.2
VizieR Online Data Catalog: Photometry/spectroscopic measurements for KA1858+4850 (Pei+, 2014)
NASA Astrophysics Data System (ADS)
Pei, L.; Barth, A. J.; Aldering, G. S.; Briley, M. M.; Carroll, C. J.; Carson, D. J.; Cenko, S. B.; Clubb, K. I.; Cohen, D. P.; Cucchiara, A.; Desjardins, T. D.; Edelson, R.; Fang, J. J.; Fedrow, J. M.; Filippenko, A. V.; Fox, O. D.; Furniss, A.; Gates, E. L.; Gregg, M.; Gustafson, S.; Horst, J. C.; Joner, M. D.; Kelly, P. L.; Lacy, M.; Laney, C. D.; Leonard, D. C.; Li, W.; Malkan, M. A.; Margon, B.; Neeleman, M.; Nguyen, M. L.; Prochaska, J. X.; Ross, N. R.; Sand, D. J.; Searcy, K. J.; Shivvers, I. S.; Silverman, J. M.; Smith, G. H.; Suzuki, N.; Smith, K. L.; Tytler, D.; Werk, J. K.; Worseck, G.
2017-05-01
We employed the Lick Observatory 3 m Shane telescope with the Kast Spectrograph and five other ground-based telescopes to spectroscopically and photometrically monitor KA1858+4850 from 2012 February to November. Reverberation mapping requires a continuum light curve with high sampling cadence and S/N. To achieve this, we obtained V-band images from ground-based telescopes and used aperture photometry to construct a light curve for KA1858+4850 that has nearly nightly sampling for a span of 290 days. For several reasons, we chose to use the V-band light curve rather than the Kepler light curve for reverberation measurements. (2 data files).
Self-amplification of nigral degeneration in Parkinson's disease: a hypothesis.
Ionov, Ilya D
2008-12-01
This review analyzes current evidence regarding possible mechanisms of nigral damage in idiopathic Parkinson's disease (iPD). In normal brain, a specific interplay among the blood-brain barrier (BBB), substantia nigra (SN), and locus coeruleus (LC) creates the condition for a self-accelerating damage to the SN. Three vicious circles involving SN-BBB, LC-SN-BBB, and histamine-BBB-SN interactions are described. In iPD, a self-accelerating loss of nigral cells can be triggered by brain hypoperfusion and by an increased blood histamine level. iPD-associated factors such as decreased CSF levels of substance P, somatostatin, and glutamate can aggravate the vicious-circle-induced damage to the SN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Lígia P. de; Chaves, Rodrigo O. G.; Malachias, Angelo
2016-06-28
Hematite (α-Fe{sub 2}O{sub 3}) thin films were prepared by sol-gel route and investigated for application in H{sub 2} generation by photo-assisted water splitting. The photoelectrochemical (PEC) performance was shown to increase significantly for films deposited on SnO{sub 2}:F/glass subjected to high temperature (T) annealing (>750 °C). Strong correlation was found between photogenerated current, donor concentration, and Sn concentration as determined by Mott-Schottky analysis and X-ray photoelectron spectroscopy. The effects of thermal annealing and Sn addition in the resulting microstructure and optical properties of hematite films deposited on fused silica substrates were determined by a combination of structural characterization techniques and spectroscopicmore » ellipsometry. Thermal annealing (>600 °C) induces a higher optical absorption that is associated directly to film densification and grain growth; however, it promotes no changes in the energy positions of the main Fe{sub 2}O{sub 3} electronic transitions. The band gap energy was found to be 2.21 eV and independent of microstructure and of Sn concentration for all studied films. On the other hand, Sn can be incorporated in the Fe{sub 2}O{sub 3} lattice for concentration up to Sn/Fe ∼2%, leading to an increase in energy split of the main absorption peak, attributed to a distortion of the Fe{sub 2}O{sub 3} lattice. For higher concentrations, Sn incorporation leads to a reduction in absorption, associated with higher porosity and the formation of a secondary Sn-rich phase. In summary, the variation in the optical properties induced by thermal annealing and Sn addition cannot account for the order of magnitude increase of the current density generated by photoanodes annealed at high T (>750 °C); thus, it is concluded that the major contribution for the enhanced PEC performance comes from improved electronic properties induced by the n-type doping caused by Sn diffusion from the SnO{sub 2}:F substrate.« less
NASA Astrophysics Data System (ADS)
Jahir Khan, Mohammad; Qayyum, Shariq; Alam, Fahad; Husain, Qayyum
2011-11-01
Proteins adsorbed on nanoparticles (NPs) are being used in biotechnology, biosensors and drug delivery. However, understanding the effect of NPs on the structure of proteins is still in a nascent state. In the present paper tin oxide (SnO2) NPs were synthesized by the reaction of SnCl4·5H2O in methanol via the sol-gel method and characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The binding of these SnO2-NPs with α-amylase was investigated by using UV-vis, fluorescence and circular dichroism (CD) spectroscopic techniques. A strong quenching of tryptophan fluorescence intensity in α-amylase was observed due to formation of a ground state complex with SnO2-NPs. Far-UV CD spectra showed that the secondary structure of α-amylase was changed in the presence of NPs. The Michaelis-Menten constant (Km), was found to be 26.96 and 28.45 mg ml - 1, while Vmax was 4.173 and 3.116 mg ml - 1 min - 1 for free and NP-bound enzyme, respectively.
NASA Astrophysics Data System (ADS)
Bajjou, O.; Bakour, A.; Khenfouch, M.; Baitoul, M.; Mothudi, B.; Maaza, M.; Faulques, E.
2018-02-01
Composites of graphene oxide (GO) functionalized with Sn(V) tetrakis (4-pyridyl)porphyrin (SnTPyP2+) and meso-tetrakis(4-phenylsulfonic acid)porphyrin (H4TPPS4 2- ) were prepared at different pH values.Successful synthesis of water-soluble stable suspension of GO-SnTPyP2+ and GO-H4TPPS4 2-was confirmed using various spectroscopic techniques, including scanning electronic microscopy (SEM), Raman spectroscopy, and ultraviolet-visible (UV-Vis) absorption. Variation of the pH was found to strongly influence the optical properties of the GO-SnTPyP2+ and GO-H4TPPS4 2-composites, as demonstrated by the UV-Vis absorption results. Steady-state photoluminescence (PL) and time-resolved PL (TRPL) results for both composites showed PL quenching and decrease in the exciton mean lifetime, suggesting strong excited-state interactions between the different components. Moreover, charge carrier dynamics study revealed that insertion of GO into both porphyrin derivatives led to faster mean lifetime for excitons with a slight advantage in the case of the cationic porphyrin-GO composite, making it a better choice for charge separation applications thanks to the higher efficiency of charge/energy transfer interactions.
LSD-based analysis of high-resolution stellar spectra
NASA Astrophysics Data System (ADS)
Tsymbal, V.; Tkachenko, A.; Van, Reeth T.
2014-11-01
We present a generalization of the method of least-squares deconvolution (LSD), a powerful tool for extracting high S/N average line profiles from stellar spectra. The generalization of the method is effected by extending it towards the multiprofile LSD and by introducing the possibility to correct the line strengths from the initial mask. We illustrate the new approach by two examples: (a) the detection of astroseismic signatures from low S/N spectra of single stars, and (b) disentangling spectra of multiple stellar objects. The analysis is applied to spectra obtained with 2-m class telescopes in the course of spectroscopic ground-based support for space missions such as CoRoT and Kepler. Usually, rather high S/N is required, so smaller telescopes can only compete successfully with more advanced ones when one can apply a technique that enables a remarkable increase in the S/N of the spectra which they observe. Since the LSD profiles have a potential for reconstruction what is common in all the spectral profiles, it should have a particular practical application to faint stars observed with 2-m class telescopes and whose spectra show remarkable LPVs.
Using PS1 and Type Ia Supernovae To Make Most Precise Measurement of Dark Energy To Date
NASA Astrophysics Data System (ADS)
Scolnic, Daniel; Pan-STARRS
2018-01-01
I will review recent results that present optical light curves, redshifts, and classifications for 361 spectroscopically confirmed Type Ia supernovae (SNeIa) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. I will go over improvements to the PS1 SN photometry, astrometry and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combined distances of PS1 SNe with distance estimates of SNIa from SDSS, SNLS, various low-z and HST samples to form the largest combined sample of SN Ia consisting of a total of ~1050 SN Ia ranging from 0.01 < z < 2.3, which we call the ‘Pantheon Sample’. Photometric calibration uncertainties have long dominated the systematic error budget of every major analysis of cosmological parameters with SNIa. Using the PS1 relative calibration, we have reduced these calibration systematics to the point where they are similar in magnitude to the other major sources of known systematic uncertainties: the nature of the intrinsic scatter of SNIa and modeling of selection effects. I will present measurements of dark energy which are now the most precise measurements of dark energy to date.
Pourbaix Diagrams at Elevated Temperatures A Study of Zinc and Tin
NASA Astrophysics Data System (ADS)
Palazhchenko, Olga
Metals in industrial settings such as power plants are often subjected to high temperature and pressure aqueous environments, where failure to control corrosion compromises worker and environment safety. For instance, zircaloy (1.2-1.7 wt.% Sn) fuel rods are exposed to aqueous 250-310 °C coolant in CANDU reactors. The Pourbaix (EH-pH) diagram is a plot of electrochemical potential versus pH, which shows the domains of various metal species and by inference, corrosion susceptibility. Elevated temperature data for tin +II and tin +IV species were obtained using solid-aqueous phase equilibria with the respective oxides, in a batch vessel with
Observations of Sk-69 deg 203 and the interstellar extinction towards SN 1987A
NASA Technical Reports Server (NTRS)
Fitzpatrick, Edward L.; Walborn, Nolan R.
1990-01-01
Optical and UV spectroscopic observations of the Large Magellanic Cloud (LMC) star Sk-69 deg 203 are discussed. The optical data reveal Sk-69 deg 203 to be a BO.7 Ia supergiant with a moderate nitrogen enhancement, and its UV spectrum is consistent with this classification. UV interstellar extinction curves were constructed for the star using, as flux standards, two lightly reddened LMS supergiants, which bracket Sk-69 deg 203's spectral type. The resultant extinction curves are consistent with the extinction law derived previously for the 30 Doradus region, and the results for Sk-69 deg 203 suggest that the general 30 Doradus extinction law is appropriate for dereddening the observed fluxes of SN 1987A. Published H I 21 observations place SN 1987A in a region with a strong E-W gradient in the total hydrogen content. Comparison with the H I column density implied by the reddening indicates that the supernova is imbedded approximately in the middle of the main H I complex.
Balas, Vasilios I.; Hadjikakou, Sotiris K.; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Light, Mark E.; Hursthouse, Mike; Metsios, Apostolos K.; Karkabounas, Spyros
2008-01-01
A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin. PMID:18401456
Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser
NASA Astrophysics Data System (ADS)
Burdt, Russell A.; Yuspeh, Sam; Sequoia, Kevin L.; Tao, Yezheng; Tillack, Mark S.; Najmabadi, Farrokh
2009-08-01
The ablation depth in planar Sn targets irradiated with a pulsed 1064 nm laser was investigated over laser intensities from 3×1011 to 2×1012 W/cm2. The ablation depth was measured by irradiating a thin layer of Sn evaporated onto a Si wafer, and looking for signatures of Si ions in the expanding plasma with spectroscopic and particle diagnostics. It was found that ablation depth scales with laser intensity to the (5/9)th power, which is consistent with analytical models of steady-state laser ablation, as well as empirical formulae from previous studies of mass ablation rate in overlapping parameter space. In addition, the scaling of mass ablation rate with atomic number of the target as given by empirical formulae in previous studies using targets such as C and Al, are shown to remain valid for the higher atomic number of the target (Z =50) used in these experiments.
Zhang, Hongying; Mao, Xinguo; Wang, Chengshe; Jing, Ruilian
2010-01-01
Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways. PMID:21209856
Supernova 2010as: The Lowest-velocity Member of a Family of Flat-velocity Type IIb Supernovae
NASA Astrophysics Data System (ADS)
Folatelli, Gastón; Bersten, Melina C.; Kuncarayakti, Hanindyo; Olivares Estay, Felipe; Anderson, Joseph P.; Holmbo, Simon; Maeda, Keiichi; Morrell, Nidia; Nomoto, Ken'ichi; Pignata, Giuliano; Stritzinger, Maximilian; Contreras, Carlos; Förster, Francisco; Hamuy, Mario; Phillips, Mark M.; Prieto, José Luis; Valenti, Stefano; Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny; Greiner, Jochen; Updike, Adria; Haislip, Joshua B.; LaCluyze, Aaron P.; Moore, Justin P.; Reichart, Daniel E.
2014-09-01
We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name "flat-velocity Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s-1 for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M ⊙. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor. This paper includes data gathered with the following facilities in Chile: the 6.5 m Magellan Telescopes located at Las Campanas Observatory, the Gemini Observatory, Cerro Pachón (Gemini Program GS-2008B-Q-56), and the European Organisation for Astronomical Research in the Southern Hemisphere (ESO Programmes 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526). We have also used data from the ESO Science Archive Facility under request number gfolatelli74580 and from the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
A facile way to control phase of tin selenide flakes by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Wang, Zhigang; Pang, Fei
2018-06-01
Although two-dimensional (2D) tin selenides are attracting intense attentions, studies on its phase transition are still relatively few. Here we report a facile way to control the phase growth of tin selenide flakes on mica and SiO2/Si by only adjusting nominal Sn:Se ratio, which refers to the amount of loaded SnO2 and Se precursors. High normal Sn:Se ratio induced SnSe flakes, conversely SnSe2 flakes formed. It could be used as a practical guide to selectively synthesize pure phase of single crystalline 2D layered chalcogenide materials similar to tin selenides.
Xu, Xianglan; Liu, Fang; Tian, Jinshu; Peng, Honggen; Liu, Wenming; Fang, Xiuzhong; Zhang, Ning; Wang, Xiang
2017-06-20
To investigate the dispersion behaviour of composite oxides on supports, and to obtain better supports for Pd for CO oxidation, a series of Y 2 Sn 2 O 7 /Al 2 O 3 composite oxides with different Y 2 Sn 2 O 7 loadings were prepared by a deposition-precipitation method. XRD and X-ray photoelectron spectroscopic extrapolation methods revealed that, similar to single-component metal oxides, composite oxides can also disperse spontaneously on support surfaces to form a monolayer with a certain capacity. The monolayer dispersion capacity/threshold for Y 2 Sn 2 O 7 on the surface of γ-Al 2 O 3 is 0.109 mmol per 100 m 2 γ-Al 2 O 3 , corresponding to 7.2 wt % Y 2 Sn 2 O 7 loading. This is the first work to demonstrate monolayer dispersion of a composite oxide on a support. After combining Y 2 Sn 2 O 7 with γ-Al 2 O 3 , active oxygen species can be introduced onto the catalyst surfaces. Thus, the interaction between Pd and the support is strengthened, the dispersion of Pd is improved in comparison with the single-component Y 2 Sn 2 O 7 support, and a synergistic effect is induced between Pd and the composite support, which is beneficial to catalyst activity. By tuning the γ-Al 2 O 3 surface with different amounts of pyrochlore Y 2 Sn 2 O 7 , CO oxidation activity on 1 % Pd/Y 2 Sn 2 O 7 /Al 2 O 3 was improved. These findings may provide new insights into the design and preparation of effective supported noble metal catalysts with lower contents of noble metals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Search for Thermal X-ray Features from the Crab nebula with Hitomi Soft X-ray Spectrometer
NASA Astrophysics Data System (ADS)
Tsujimoto, M.; Mori, K.; Lee, S.; Yamaguchi, H.; Tominaga, N.; Moriya, T.; Sato, T.; Bamba, A.
2017-10-01
The Crab nebula originates from a core-collapse SN in 1054. It has an anomalously low observed ejecta mass for a Fe-core collapse SN. Intensive searches were made for an undetected massive shell to solve this discrepancy. An alternative idea is that the SN1054 is an electron-capture (EC) explosion with a lower explosion energy than Fe-core collapse SNe. In the X-rays, imaging searches were performed for the plasma emission from the shell in the Crab outskirts. However, the extreme brightness hampers access to its vicinity. We used spectroscopic technique using the X-ray micro-calorimeter onboard Hitomi. We searched for the emission or absorption features by the thermal plasma and set a new limit. We re-evaluated the existing data to claim that the X-ray plasma mass is < 1 M_{⊙} for a wide range of assumed parameters. We further performed hydrodynamic simulation for two SN models (Fe core versus EC) under two environments (uniform ISM versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the environment has a low density of <0.03 cm^{-3} (Fe core) or <0.1 cm^{-3} (EC) for the uniform density, or <10^{14} g cm^{-1} for the wind density parameter for the wind environment.
2010-03-01
Iodide or Cesium Iodide are the benchmarks for ease of use and quick identification of isotope species. This research aims to explore Cesium Bromide doped...oxidation states of 3+, 4+, 5+ and 6+ were used to identify the Pu pollution in the Rocky Flats area. The identification of the Pu4+ oxidation state...point was causing the normalization of the spectra to be much higher than what it should be. The XANES structures lineup showing the Sn in the CsSnBr3
The Type Ia Supernova Rate and Delay-Time Distribution
NASA Astrophysics Data System (ADS)
Graur, Or
2013-11-01
The nature of the progenitor stellar systems of thermonuclear, or Type Ia, supernovae (SNe Ia) remains unknown. Unlike core-collapse (CC) SNe, which have been successfully linked, at least partially, to various types of massive stars, the progenitors of SNe Ia are to date undetected in pre-explosion images and the nature of these progenitors can only be probed using indirect methods. In this thesis, I present three SN surveys aimed at measuring the rates at which SNe Ia explode at different times throughout the Universe's history and in different types of galaxies. I use these rates to re-construct the SN Ia delay-time distribution (DTD), a function that connects between the star-formation history (SFH) of a specific stellar environment and its SN Ia rate, and I use it to constrain different progenitor models. In Chapter 1, I provide a brief introduction of the field. This is followed, in Chapter 2, by a description of the Subaru Deep Field (SDF) SN Survey. Over a period of three years between 2005-2008, the SDF was observed on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i', and z' bands. In this survey, I discover 150 SNe out to redshift z ~ 2, including 27 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. The SN Ia rate measurements from this sample are consistent with those derived from the Hubble Space Telescope (HST) GOODS sample, but the overall uncertainty of the 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50%. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD is a power law of the form Psi(t) ~ t^beta, with index beta = -1.1 ± 0.1 (statistical) ± 0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we map the cosmic history of iron accumulation and predict that the mean present-day cosmic iron abundance is in the range Z_Fe = (0.09-0.37) Z_Fe,solar. Most SNe have been discovered in dedicated imaging surveys and have been classified by means of follow-up spectroscopy. However, it is also possible to combine the discovery and classification stages by means of a spectroscopic SN survey. In Chapter 3, I develop a method to detect SN spectra buried in galaxy spectra acquired by large-scale spectroscopic galaxy surveys. Applying this procedure to the ~700,000 galaxy spectra in the 7th Data Release of the Sloan Digital Sky Survey (SDSS) that have SFHs derived with the VErsatile SPectral Analysis code (VESPA), I detect 90 SNe Ia and 10 Type II SNe. I use the SN Ia sample to measure SN Ia rates per unit stellar mass and confirm, at the median redshift of the sample, z = 0.1, the inverse dependence on galaxy mass of the SN Ia rate per unit mass, previously reported by Li et al. (2011a) for a local sample. I further confirm, following Kistler et al. (2013), that this relation can be explained by the combination of galaxy "downsizing" and a power-law DTD with an index of -1. Finally, I use the SN sample, combined with the individual galaxy SFHs, to derive the late component of the DTD, finding a value consistent with previous derivations. Chapter 4 presents the near-final SN sample and SN Ia rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on HST, we image 25 galaxy clusters and blank fields of galaxies. I report a sample of 22 SNe discovered in the blank fields around 20 of the 25 galaxy clusters. Of these, 11 are classified as SNe Ia, including four SNe Ia at redshifts z > 1.2. I measure volumetric SN Ia rates out to redshift z = 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates I measure in Chapter 2 and with those from the HST/GOODS survey. Together with the most accurate and precise measurements at redshifts z < 1, they result in a best-fitting power-law DTD with an index of -0.93 +0.05(0.11) -0.06(0.12) (statistical) +0.12 -0.08 (systematic). The results of Chapters 2-4, summarized in Chapter 5, join other recent evidence suggestive of the double-degenerate progenitor scenario. A power-law DTD with an index of ~-1 can be explained by the gravitational merger of two carbon-oxygen white dwarfs. However, this form of the DTD does not necessarily exclude other progenitor scenarios or the possibility that there is more than one SN Ia production channel. In Chapter 5, I describe ongoing and future work that addresses this problem. Specifically, it may be possible to infer the existence of multiple production channels by studying the prompt component of the DTD. This can be achieved either by measuring volumetric SN Ia rates at higher redshifts than presented here, or by measuring SN Ia rates per unit mass in low-mass, dwarf galaxies. I present an initial sample of four SNe Ia discovered among ~52,000 SDSS galaxy spectra using the procedure developed in Chapter 3. The rate measured with this sample is not accurate enough to distinguish between DTD models, but it shows that with a larger galaxy sample, such as is being acquired by future iterations of the SDSS, such distinction will be possible. Finally, I show in Chapter 5 initial results from a program to obtain spectroscopic redshifts for the SN host galaxies in Chapter 2 with the highest photometric-based redshifts. This will eventually reduce the systematic error in the high-redshift SN Ia rate.
SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium
NASA Astrophysics Data System (ADS)
Kuncarayakti, Hanindyo; Maeda, Keiichi; Ashall, Christopher J.; Prentice, Simon J.; Mattila, Seppo; Kankare, Erkki; Fransson, Claes; Lundqvist, Peter; Pastorello, Andrea; Leloudas, Giorgos; Anderson, Joseph P.; Benetti, Stefano; Bersten, Melina C.; Cappellaro, Enrico; Cartier, Régis; Denneau, Larry; Della Valle, Massimo; Elias-Rosa, Nancy; Folatelli, Gastón; Fraser, Morgan; Galbany, Lluís; Gall, Christa; Gal-Yam, Avishay; Gutiérrez, Claudia P.; Hamanowicz, Aleksandra; Heinze, Ari; Inserra, Cosimo; Kangas, Tuomas; Mazzali, Paolo; Melandri, Andrea; Pignata, Giuliano; Rest, Armin; Reynolds, Thomas; Roy, Rupak; Smartt, Stephen J.; Smith, Ken W.; Sollerman, Jesper; Somero, Auni; Stalder, Brian; Stritzinger, Maximilian; Taddia, Francesco; Tomasella, Lina; Tonry, John; Weiland, Henry; Young, David R.
2018-02-01
SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around {M}g=-17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, \\dot{M}∼ 0.02{({ε }{{H}α }/0.01)}-1 ({v}{wind}/500 km s‑1) ({v}{shock}/10,000 km s‑1)‑3 M ⊙ yr‑1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935, 197.D-1075. Based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council.
SALT Spectroscopic classification of ASASSN-18lp as a dwarf nova
NASA Astrophysics Data System (ADS)
Buckley, D. A. H.; Gromadzki, M.; Dong, Subo; Stanek, K. Z.
2018-06-01
ASASSN-18lp (AT 2018cex) was discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014) on UT 2018-06-05.24 at g 16 mag. It was observed with the Southern African Large Telescope (SALT) using the Robert Stobie Spectrograph on UT 2018-06-05.75 UT (HJD 2458275.2561) employing the PG300 lines/mm grating.
NASA Astrophysics Data System (ADS)
Stritzinger, M. D.; Valenti, S.; Hoeflich, P.; Baron, E.; Phillips, M. M.; Taddia, F.; Foley, R. J.; Hsiao, E. Y.; Jha, S. W.; McCully, C.; Pandya, V.; Simon, J. D.; Benetti, S.; Brown, P. J.; Burns, C. R.; Campillay, A.; Contreras, C.; Förster, F.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pignata, G.
2015-01-01
We present ultraviolet through near-infrared (NIR) broadband photometry, and visual-wavelength and NIR spectroscopy of the Type Iax supernova (SN) 2012Z. The data set consists of both early- and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopically classified SN Iax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced ~0.3 M⊙ of 56Ni, ejected about a Chandrasekhar mass of material, and had an explosion energy of ~1051 erg, making it one of the brightest (MB = -18.3 mag) and most energetic SN Iax yet observed. The late phase (+269d) NIRspectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially from all supernova types. Constraints from the distribution of intermediate mass elements, e.g., silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the 56Ni is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of 56Ni during the deflagration burning phase and little (or no) 56Ni during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the intermediate mass elements is a product of the subsequent denotation phase. The fact that the SNe Iax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of 56Ni production during the early subsonic phase of expansion. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Program 088.D-0222, 184.D-1152), the Magellan 6.5 m telescopes at Las Campanas Observatory, and the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias; also partially based on observations made with the Southern African Large Telescope (SALT), and the W. M. Keck Observatory located on the summit of Mauna Kea.Appendix A and Tables 1-5 are available in electronic form at http://www.aanda.orgFITS files of the reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A2
The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory
NASA Technical Reports Server (NTRS)
Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.
2013-01-01
We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.
Synthesis, Characterization and Photocatalytic Activity of Ag+ - and Sn2+ -Doped KTi0.5 Te1.5 O6.
Guje, Ravinder; Gundeboina, Ravi; Reddy, Jitta Raju; Veldurthi, Naveen Kumar; Kurra, Sreenu; Vithal, Muga
2016-03-01
In this study, the photocatalytic dye degradation efficiency of KTi 0.5 Te 1.5 O 6 synthesized through solid-state method was enhanced by cation (Ag + /Sn +2 ) doping at potassium site via ion exchange method. As prepared materials were characterized by XRD, SEM-EDS, IR, TGA and UV-Vis Diffuse reflectance spectroscopic (DRS) techniques. All the compounds were crystallized in cubic lattice with Fd3¯m space group. The bandgap energies of parent, Ag + - and Sn +2 -doped KTi 0.5 Te 1.5 O 6 materials obtained from DRS profiles were found to be 2.96, 2.55 and 2.40 eV, respectively. Photocatalytic efficiency of parent, Ag + - and Sn +2 -doped materials was evaluated against the degradation of methylene blue (MB) and methyl violet (MV) dyes under visible light irradiation. The Sn +2 -doped KTi 0.5 Te 1.5 O 6 showed higher activity toward the degradation of both MB and MV dyes and its higher activity is ascribed to the lower bandgap energy compared to the parent and Ag + -doped KTi 0.5 Te 1.5 O 6 . The mechanistic degradation pathway of methylene blue (MB) was studied in the presence of Sn 2+ -doped KTi 0.5 Te 1.5 O 6 . Quenching experiments were performed to know the participation of holes, super oxide and hydroxyl radicals in the dye degradation process. The stability and reusability of the catalysts were studied. © 2015 The American Society of Photobiology.
Interleukin-induced increase in Ia expression by normal mouse B cells.
Roehm, N W; Leibson, H J; Zlotnik, A; Kappler, J; Marrack, P; Cambier, J C
1984-09-01
The constitutive culture supernatant (SN) of the macrophage tumor line P388D1 (P388 SN) and the concanavalin A (Con A)-induced culture supernatant of the T cell hybridoma FS6-14.13 (FS6 Con A SN) were shown to contain nonspecific factors capable of inducing increased Ia expression by normal resting B cells in a dose-dependent manner. In six consecutive experiments the relative increase in Ia expression induced by P388 SN was 4.9 +/- 0.9, with FS6 Con A SN 10.7 +/- 1.5, and with a combination of both preparations 13.0 +/- 1.7. This increase in Ia expression was observed to occur in virtually all the B cells, reaching maximum levels within 24 h of culture. The interleukin-induced increase in B cell Ia expression occurred in the absence of ancillary signals provided by ligand-receptor Ig cross-linking and despite the fact that virtually all the control B cells, cultured in the absence of factors, remained in G0. These results suggest that functional receptors for at least some interleukins are expressed on normal resting B cells and their effects can be manifest in the absence of additional activating signals. The increased Ia expression induced by the nonspecific factor preparations was shown to be correlated with enhanced antigen-presenting capacity by the B cells to T cell hybridomas. The nature of the interleukins responsible for these effects remains to be definitively determined, however, the activity of FS6 Con A SN was shown to correlate with B cell growth factor activity and increased B cell Ia expression was not observed using interleukin 2 (IL-2) or interferon-gamma, prepared by recombinant DNA technology.
Repairing Nanoparticle Surface Defects.
Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter
2017-10-23
Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra
Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic andmore » a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.« less
NASA Astrophysics Data System (ADS)
Qin, Hai-Yan; Wang, Wei-Li; Wei, Bing-Bo
2009-11-01
The rapid dendritic growth of primary Ni3Sn phase in undercooled Ni-30.9%Sn-5%Ge alloy is investigated by using the glass fluxing technique. The dendritic growth velocity of Ni3Sn compound is measured as a function of undercooling, and a velocity of 2.47 m/s is achieved at the maximum undercooling of 251 K (0.17TL). The addition of the Ge element reduces its growth velocity as compared with the binary Ni75Sn25 alloy. During rapid solidification, the Ni3Sn compound behaves like a normal solid solution and it displays a morphological transition of “coarse dendrite-equiaxed grain-vermicular structure" with the increase of undercooling. Significant solute trapping of Ge atoms occurs in the whole undercooling range.
Host galaxy identification for supernova surveys
Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; ...
2016-11-08
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations withinmore » their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less
Photometric classification and redshift estimation of LSST Supernovae
NASA Astrophysics Data System (ADS)
Dai, Mi; Kuhlmann, Steve; Wang, Yun; Kovacs, Eve
2018-07-01
Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopically following up all the SNe. We investigate the performance of an SN classifier that uses SN colours to classify LSST SNe with the Random Forest classification algorithm. Our classifier results in an area-under-the-curve of 0.98 which represents excellent classification. We are able to obtain a photometric SN sample containing 99 per cent SNe Ia by choosing a probability threshold. We estimate the photometric redshifts (photo-z) of SNe in our sample by fitting the SN light curves using the SALT2 model with nested sampling. We obtain a mean bias (⟨zphot - zspec⟩) of 0.012 with σ (z_phot-z_spec/1+z_spec) = 0.0294 without using a host-galaxy photo-z prior, and a mean bias (⟨zphot - zspec⟩) of 0.0017 with σ (z_phot-z_spec/1+z_spec) = 0.0116 using a host-galaxy photo-z prior. Assuming a flat ΛCDM model with Ωm = 0.3, we obtain Ωm of 0.305 ± 0.008 (statistical errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter σint = 0.11) derived using our methodology without using host-galaxy photo-z prior. Our method will help boost the power of SNe from the LSST as cosmological probes.
HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within theirmore » host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less
Host galaxy identification for supernova surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations withinmore » their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less
HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within theirmore » host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.« less
SALT Spectroscopic classification of ASASSN-18lw as a dwarf nova
NASA Astrophysics Data System (ADS)
Buckley, D. A. H.; Gromadzki, M.; Dong, Subo; Stanek, K. Z.
2018-06-01
ASASSN-18lw (AT 2018cgo; RA: 19:28:50.74 Dec: -19:32:54.02) was discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014) on 2018 June 5.92 UT. It was observed with the Southern African Large Telescope (SALT) using the Robert Stobie Spectrograph on 2018 June 10.92 UT (HJD 2458280.4297) employing the PG300 lines/mm grating.
Ordinary and extraordinary dielectric functions of rutile SnO{sub 2} up to 20 eV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feneberg, Martin, E-mail: martin.feneberg@ovgu.de; Lidig, Christian; Lange, Karsten
2014-06-09
Spectroscopic ellipsometry at room temperature is applied in order to determine the ordinary (ε{sub ⊥}) and extraordinary (ε{sub ∥}) dielectric functions (DFs) of rutile SnO{sub 2} corresponding to electric field (E) polarization perpendicular (E⊥c) and parallel (E∥c) to the optical axis (c), respectively. Strong anisotropic behavior is found for the full spectral range from 0.5 up to 20 eV. The onsets of strong absorption are found at 4.28 eV and 5.42 eV for E⊥c and E∥c, respectively. A dipole-forbidden band gap at (3.59 ± 0.2) eV at room temperature is found by line shape fits to the imaginary parts of the DFs. Further high-energy transitionsmore » are resolved. Their accurate energy values are obtained by fitting the second derivatives of the DFs. Comparison to published DFs calculated by ab-initio theory demonstrates that the electron-hole interaction in SnO{sub 2} is strong and has to be included for interpretation.« less
Supernova Cosmology in the Big Data Era
NASA Astrophysics Data System (ADS)
Kessler, Richard
Here we describe large "Big Data" Supernova (SN) Ia surveys, past and present, used to make precision measurements of cosmological parameters that describe the expansion history of the universe. In particular, we focus on surveys designed to measure the dark energy equation of state parameter w and its dependence on cosmic time. These large surveys have at least four photometric bands, and they use a rolling search strategy in which the same instrument is used for both discovery and photometric follow-up observations. These surveys include the Supernova Legacy Survey (SNLS), Sloan Digital Sky Survey II (SDSS-II), Pan-STARRS 1 (PS1), Dark Energy Survey (DES), and Large Synoptic Survey Telescope (LSST). We discuss the development of how systematic uncertainties are evaluated, and how methods to reduce them play a major role is designing new surveys. The key systematic effects that we discuss are (1) calibration, measuring the telescope efficiency in each filter band, (2) biases from a magnitude-limited survey and from the analysis, and (3) photometric SN classification for current surveys that don't have enough resources to spectroscopically confirm each SN candidate.
Slow-Speed Supernovae from the Palomar Transient Factory: Two Channels
NASA Technical Reports Server (NTRS)
White, Christopher J.; Kasliwal, Mansi M.; Nugent, Peter E.; Gal-Yam, Avishay; Howell, D. Andrew; Sullivan, Mark; Goobar, Ariel; Piro, Anthony L.; Kulkarni, Shrinivas R.; Bloom, Joshua S.;
2014-01-01
Since the discovery of the unusual prototype SN 2002cx, the eponymous class of low-velocity, hydrogen-poor supernovae has grown to include at most another two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 hydrogen-poor supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: The "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to the \\SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that these transients comprise 5.6+17 -3:7% (90% confidence) of all SNe Ia, lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.
Slow-speed Supernovae from the Palomar Transient Factory: Two Channels
NASA Astrophysics Data System (ADS)
White, Christopher J.; Kasliwal, Mansi M.; Nugent, Peter E.; Gal-Yam, Avishay; Howell, D. Andrew; Sullivan, Mark; Goobar, Ariel; Piro, Anthony L.; Bloom, Joshua S.; Kulkarni, Shrinivas R.; Laher, Russ R.; Masci, Frank; Ofek, Eran O.; Surace, Jason; Ben-Ami, Sagi; Cao, Yi; Cenko, S. Bradley; Hook, Isobel M.; Jönsson, Jakob; Matheson, Thomas; Sternberg, Assaf; Quimby, Robert M.; Yaron, Ofer
2015-01-01
Since the discovery of the unusual prototype SN 2002cx, the eponymous class of Type I (hydrogen-poor) supernovae with low ejecta speeds has grown to include approximately two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 Type I supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover, we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to "SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that the occurrence rate of these transients relative to Type Ia supernovae is 5.6-3.8+22% (90% confidence), lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.
Sangami, G; Dharmaraj, N
2012-11-01
Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.
What is the origin of concentration quenching of Cu+ luminescence in glass?
NASA Astrophysics Data System (ADS)
Jiménez, José A.
2016-10-01
Monovalent copper-doped luminescent glasses are attractive materials for white light-emitting devices, photonic waveguides, and solar spectral conversion in photovoltaic cells. However, the occurrence of concentration quenching in such is not fully understood at present. In this work, calcium-phosphate glasses with high concentrations of luminescent Cu+ ions have been prepared by a simple melt-quench method via CuO and SnO co-doping. The aim is to elucidate the origin of concentration quenching of Cu+ light emission. A spectroscopic characterization was carried out by optical absorption and photoluminescence (PL) spectroscopy including emission decay dynamics. The concentrations of both CuO and SnO dopants were varied as 5, 10 and 15 mol%. Monovalent copper content is estimated in the CuO/SnO-containing glasses following the assessment of the concentration dependence of Cu2+ absorption in the visible for CuO singly-doped glasses. Contrary to the conventionally acknowledged direct Cu+→Cu2+ transfer, the data supports a Cu+-Cu+ energy migration channel at the origin of the PL quenching.
NASA Astrophysics Data System (ADS)
Brown, Jeffrey A.; Wallerstein, George; Zucker, Daniel
1997-07-01
We have performed a spectroscopic abundance analysis of two stars each in the anomalously young globular clusters Rup 106 and Pal 12. We find [Fe/H] =~ -1.45 for Rup 106 and -1.0 for Pal 12. The abundance ratios in both clusters are peculiar in comparison to other globulars: the alpha -elements are not enhanced over the solar ratio. We find that oxygen in Rup 106 is also relatively low, with [O/Fe] =~ 0.0 - +0.1. The similarity of the ratio of the alpha-elements to iron to the solar ratio shows that species contributed by supernovae of type Ia have ``caught up" with species produced by SN II's. The similar contributions of the alpha - and Fe-peak species to disk stars shows that age, not metallicity, is the determining factor in the ratio of SN II/SN Ia nucleosynthesis. Galactic enrichment models show that these abundance ratios can be understood as being the result of these two clusters coming from an environment with multiple discontinuous star formation events.
Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya
2013-07-01
A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.
How specific Raman spectroscopic models are: a comparative study between different cancers
NASA Astrophysics Data System (ADS)
Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali
2010-02-01
Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.
PESSTO: The Public ESO Spectroscopic Survey of Transient Objects
NASA Astrophysics Data System (ADS)
Smartt, S. J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D. R.; Sullivan, M.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Pastorello, A.; Smareglia, R.; Smith, K. W.; Taubenberger, S.; Yaron, O.
2013-12-01
PESSTO, which began in April 2012 as one of two ESO public spectroscopic surveys, uses the EFOSC2 and SOFI instruments on the New Technology Telescope during ten nights a month for nine months of the year. Transients for PESSTO follow-up are provided by dedicated large-field 1-2-metre telescope imaging surveys. In its first year PESSTO classified 263 optical transients, publicly released the reduced spectra within 12 hours of the end of the night and identified 33 supernovae (SNe) for dedicated follow-up campaigns. Nine papers have been published or submitted on the topics of supernova progenitors, the origins of type ia SNe, the uncertain nature of faint optical transients and superluminous supernovae, and a definitive public dataset on a most intriguing supernova, the infamous SN2009ip.
Toward an efficient Photometric Supernova Classifier
NASA Astrophysics Data System (ADS)
McClain, Bradley
2018-01-01
The Sloan Digital Sky Survey Supernova Survey (SDSS) discovered more than 1,000 Type Ia Supernovae, yet less than half of these have spectroscopic measurements. As wide-field imaging telescopes such as The Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) discover more supernovae, the need for accurate and computationally cheap photometric classifiers increases. My goal is to use a photometric classification algorithm based on Sncosmo, a python library for supernova cosmology analysis, to reclassify previously identified Hubble SN and other non-spectroscopically confirmed surveys. My results will be compared to other photometric classifiers such as PSNID and STARDUST. In the near future, I expect to have the algorithm validated with simulated data, optimized for efficiency, and applied with high performance computing to real data.
VizieR Online Data Catalog: Astrometry and photometry of nearby white dwarfs (Limoges+, 2013)
NASA Astrophysics Data System (ADS)
Limoges, M.-M.; Lepine, S.; Bergeron, P.
2014-06-01
Optical spectra have been obtained with the Steward Observatory 2.3m telescope and the B&C spectrograph on 2009 May, 2009 Nov, 2010 July, with the NOAO Mayall 4m telescope and the RC spectrograph on 2009 Aug, 2010 Mar, 2010 Oct, and with the NOAO 2.1m and the Goldcam spectrograph on 2009 Dec, 2010 May. The adopted configurations allow a spectral coverage of λλ3800-5600 and λλ3800-6700, at an intermediate resolution of ~6ÅFWHM. Spectra were first obtained at low signal-to-noise ratio (S/N ~25). As a result of our spectroscopic observations, 193 newly identified white dwarfs from the SUPERBLINK catalog have been spectroscopically confirmed (Tables 3 and 4). (3 data files).
Adaptive template generation for amyloid PET using a deep learning approach.
Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung
2018-05-11
Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.
Asymmetry in the Outburst of SN 1987A Detected Using Light Echo Spectroscopy
NASA Astrophysics Data System (ADS)
Sinnott, B.; Welch, D. L.; Rest, A.; Sutherland, P. G.; Bergmann, M.
2013-04-01
We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine structure in the Hα line as a smooth function of position angle on the near-circular light echo rings. Hα profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted Hα emission and a red knee. This fine structure is reminiscent of the "Bochum event" originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from symmetry in the Hα line is observed at position angles 16° and 186°, consistent with the major axis of the expanding elongated ejecta. The asymmetry signature observed in the Hα line smoothly diminishes as a function of viewing angle away from the poles of the elongated ejecta. We propose an asymmetric two-sided distribution of 56Ni most dominant in the southern far quadrant of SN 1987A as the most probable explanation of the observed light echo spectra. This is evidence that the asymmetry of high-velocity 56Ni in the first few hundred days after explosion is correlated to the geometry of the ejecta some 25 years later.
NASA Astrophysics Data System (ADS)
Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Rest, A.; Kirshner, R. P.; Berger, E.; Kessler, R.; Pan, Y.-C.; Foley, R. J.; Chornock, R.; Ortega, C. A.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Tonry, J.; Wainscoat, R. J.; Waters, C.; Gall, E. E. E.; Kotak, R.; McCrum, M.; Smartt, S. J.; Smith, K. W.
2018-04-01
We use 1169 Pan-STARRS supernovae (SNe) and 195 low-z (z < 0.1) SNe Ia to measure cosmological parameters. Though most Pan-STARRS SNe lack spectroscopic classifications, in a previous paper we demonstrated that photometrically classified SNe can be used to infer unbiased cosmological parameters by using a Bayesian methodology that marginalizes over core-collapse (CC) SN contamination. Our sample contains nearly twice as many SNe as the largest previous SN Ia compilation. Combining SNe with cosmic microwave background (CMB) constraints from Planck, we measure the dark energy equation-of-state parameter w to be ‑0.989 ± 0.057 (stat+sys). If w evolves with redshift as w(a) = w 0 + w a (1 ‑ a), we find w 0 = ‑0.912 ± 0.149 and w a = ‑0.513 ± 0.826. These results are consistent with cosmological parameters from the Joint Light-curve Analysis and the Pantheon sample. We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling CC SN contamination, finding that no variant gives a w differing by more than 2% from the baseline measurement. The systematic uncertainty on w due to marginalizing over CC SN contamination, {σ }wCC}=0.012, is the third-smallest source of systematic uncertainty in this work. We find limited (1.6σ) evidence for evolution of the SN color-luminosity relation with redshift, a possible systematic that could constitute a significant uncertainty in future high-z analyses. Our data provide one of the best current constraints on w, demonstrating that samples with ∼5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework.
Spectral Classification of MASTER J221505.32+101812.6
NASA Astrophysics Data System (ADS)
Silverman, J. M.; Cohen, D. P.; Filippenko, A. V.
2012-06-01
We report that inspection of a CCD spectrum (range 340-1000 nm), obtained on June 27.4 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that MASTER J221505.32+101812.6 (ATel #4213) is a Type Ia supernova (SN Ia). Cross-correlation with a library of SN spectra using the "SuperNova IDentification" code (SNID; Blondin & Tonry 2007, Ap.J. 666, 1024) indicates that the object is a normal SN Ia near maximum brightness at a redshift of 0.090.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundarraj, Shenbagamoorthy, E-mail: sundarrajbu09@gmail.com; Thangam, Ramar; Department of Virology, King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, TN
2014-03-15
Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA{sub 2}α activity, arachidonic acid release and cell proliferation were considerablymore » reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models.« less
Pham, Thach; Du, Wei; Tran, Huong; Margetis, Joe; Tolle, John; Sun, Greg; Soref, Richard A; Naseem, Hameed A; Li, Baohua; Yu, Shui-Qing
2016-03-07
Normal-incidence Ge 1-x Sn x photodiode detectors with Sn compositions of 7 and 10% have been demonstrated. Such detectors were based on Ge/Ge 1-x Sn x /Ge double heterostructures grown directly on a Si substrate via a chemical vapor deposition system. A temperature-dependence study of these detectors was conducted using both electrical and optical characterizations from 300 to 77 K. Spectral response up to 2.6 µm was achieved for a 10% Sn device at room temperature. The peak responsivity and specific detectivity (D*) were measured to be 0.3 A/W and 4 × 10 9 cmHz 1/2 W -1 at 1.55 µm, respectively. The spectral D* of a 7% Sn device at 77 K was only one order-of-magnitude lower than that of an extended-InGaAs photodiode operating in the same wavelength range, indicating the promising future of GeSn-based photodetectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabritchnyi, Pavel B., E-mail: pf_1404@yahoo.fr; Afanasov, Mikhail I.; Mezhuev, Evgeny M.
2016-03-15
In order to develop the {sup 119}Sn Mössbauer spectroscopic probe technique to study magnetically ordered materials, three Ca-substituted yttrium chromites, i.e. Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}, Y{sub 0.9}Ca{sub 0.1}Cr{sub 0.9}Ti{sub 0.1}O{sub 3} and Y{sub 0.8}Ca{sub 0.2}Cr{sub 0.8}Ti{sub 0.2}O{sub 3}, doped with 0.3 atom-% Sn{sup 4+}, were for the first time investigated. {sup 119}Sn Mössbauer spectra, recorded at 4.2 K, have allowed, through analysis of the magnetic hyperfine field values, probed by {sup 119}Sn nuclei, to gain insight into the local magnetically active surrounding of different Sn{sup 4+} ions. In all of these compounds, partial segregation of Sn{sup 4+} ions is revealed.more » In the case of Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}, neither highly oxidized Cr{sup 4+} nor Cr{sup 6+} species, expected to compensate for the Ca{sup 2+} positive charge deficit, is found in the vicinity of the {sup 119}Sn{sup 4+} probe. In the case of both studied Ti-containing chromites, {sup 119}Sn Mössbauer spectra have provided the original indirect evidence for the statistical distribution of Cr{sup 3+} and Ti{sup 4+} ions over the octahedral sites and permitted characterization of the occurring associates of Sn{sup 4+}. - Graphical abstract: Two kinds of Sn{sup 4+} associates allowing {sup 119}Sn Mössbauer spectra of tin-doped Y{sub 0.9}Ca{sub 0.1}Cr{sub 0.9}Ti{sub 0.1}O{sub 3} and Y{sub 0.8}Ca{sub 0.2}Cr{sub 0.8}Ti{sub 0.2}O{sub 3} to be accounted for. - Highlights: • {sup 119}Sn probe is tested as a source of information on the B-sublattice of AF perovskites. • Neither Cr{sup 3+} nor Cr{sup 6+} is detected nearby {sup 119}Sn{sup 4+} ions in Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}. • Cr{sup 3+} and Ti{sup 4+} are found to be randomly distributed in Y{sub 1−x}Ca{sub x}Cr{sub 1−x}Ti{sub x}O{sub 3} (x=0.1 or 0.2). • Sn{sup 4+} dopant segregations are revealed in all of the studied materials.« less
Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration
NASA Astrophysics Data System (ADS)
Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan
2018-02-01
Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.
Emergent fuzzy geometry and fuzzy physics in four dimensions
NASA Astrophysics Data System (ADS)
Ydri, Badis; Rouag, Ahlam; Ramda, Khaled
2017-03-01
A detailed Monte Carlo calculation of the phase diagram of bosonic mass-deformed IKKT Yang-Mills matrix models in three and six dimensions with quartic mass deformations is given. Background emergent fuzzy geometries in two and four dimensions are observed with a fluctuation given by a noncommutative U (1) gauge theory very weakly coupled to normal scalar fields. The geometry, which is determined dynamically, is given by the fuzzy spheres SN2 and SN2 × SN2 respectively. The three and six matrix models are effectively in the same universality class. For example, in two dimensions the geometry is completely stable, whereas in four dimensions the geometry is stable only in the limit M ⟶ ∞, where M is the mass of the normal fluctuations. The behaviors of the eigenvalue distribution in the two theories are also different. We also sketch how we can obtain a stable fuzzy four-sphere SN2 × SN2 in the large N limit for all values of M as well as models of topology change in which the transition between spheres of different dimensions is observed. The stable fuzzy spheres in two and four dimensions act precisely as regulators which is the original goal of fuzzy geometry and fuzzy physics. Fuzzy physics and fuzzy field theory on these spaces are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talwar, R.; Kay, B. P.; Mitchell, A. J.
The nu 0h(9/2) and nu 0i(13/2) strength at Xe-137, a single neutron outside the N = 82 shell closure, has been determined using the Xe-136(alpha, He-3)Xe-137 reaction carried out at 100 MeV. We confirm the recent observation of the second 13/2(+) state and reassess previous data on the 9/2(-) states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at Sn-133.
Studying Nuclear Structure at the extremes with S3
NASA Astrophysics Data System (ADS)
Piot, Julien
2018-05-01
The in-depth study of the regions of Superheavy elements and the proton drip line around 100Sn are two major challenges of today's Nuclear Physics. Performing detailed spectroscopic studies on these nuclei requires a significant improvement of our detection capabilities. The Super-Separator-Spectrometer S3 is part of the SPIRAL2 facility at GANIL. Its aim is to use the high stable beam currents provided by the new LINAC to reach rare isotopes by fusion-evaporation.
Garza-Ortiz, Ariadna; Camacho-Camacho, Carlos; Sainz-Espuñes, Teresita; Rojas-Oviedo, Irma; Gutiérrez-Lucas, Luis Raúl; Gutierrez Carrillo, Atilano; Vera Ramirez, Marco A.
2013-01-01
Five novel tin Schiff base complexes with histidine analogues (derived from the condensation reaction between L-histidine and 3,5-di-tert-butyl-2-hydroxybenzaldehyde) have been synthesized and characterized. Characterization has been completed by IR and high-resolution mass spectroscopy, 1D and 2D solution NMR (1H, 13C and 119Sn), as well as solid state 119Sn NMR. The spectroscopic evidence shows two types of structures: a trigonal bipyramidal stereochemistry with the tin atom coordinated to five donating atoms (two oxygen atoms, one nitrogen atom, and two carbon atoms belonging to the alkyl moieties), where one molecule of ligand is coordinated in a three dentate fashion. The second structure is spectroscopically described as a tetrahedral tin complex with four donating atoms (one oxygen atom coordinated to the metal and three carbon atoms belonging to the alkyl or aryl substituents), with one molecule of ligand attached. The antimicrobial activity of the tin compounds has been tested against the growth of bacteria in vitro to assess their bactericidal properties. While pentacoordinated compounds 1, 2, and 3 are described as moderate effective to noneffective drugs against both Gram-positive and Gram-negative bacteria, tetracoordinated tin(IV) compounds 4 and 5 are considered as moderate effective and most effective compounds, respectively, against the methicillin-resistant Staphylococcus aureus strains (Gram-positive). PMID:23864839
VizieR Online Data Catalog: SNe type II from CSP-I, SDSS-II, and SNLS (de Jaeger+, 2017)
NASA Astrophysics Data System (ADS)
de Jaeger, T.; Gonzalez-Gaitan, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutierrez, C. P.; Hook, I. M.; Howell, D. A.; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.
2017-10-01
The CSP-I (Carnegie Supernova Project-I) had guaranteed access to ~300 nights per year between 2004 and 2009 on the Swope 1m and du Pont 2.5m telescopes at the Las Campanas Observatory (LCO). This observation time allowed the CSP-I to obtain optical-band light curves for 67 SNe II. From the CSP-I sample, we remove six outliers. The SDSS-II SN Survey operated for three years, from 2005 September to 2007 November. Using the 2.5m telescope at the Apache Point Observatory in New Mexico. This survey observed about 80 spectroscopically confirmed core-collapse SNe but the main driver of this project was the study of SNe Ia, involving the acquisition of only one or two spectra per SNe II. The total SDSS-II SN sample is composed of 16 spectroscopically confirmed SNe II. The SNLS (Supernova Legacy Survey) was designed to discover SNe and to obtain photometric follow-up using the MegaCam imager on the 3.6m Canada-France-Hawaii Telescope. The observation strategy consisted of obtaining images of the same field every four nights over five years (between 2003 and 2008); thus, in total more than 470 nights were allocated to this project. The total SNLS sample is composed of 28 SNeII. See section 2 for further explanations on the data sample. (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shappee, B. J.; Piro, A. L.; Holoien, T. W. -S.
On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just ~2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (more » $${\\rm{\\Delta }}{m}_{15}(B)=0.80\\pm 0.05$$), a B-band maximum at 2457015.82 ± 0.03, a rise time of $${16.94}_{-0.10}^{+0.11}$$ days, and moderate host-galaxy extinction ($$E{(B-V)}_{\\mathrm{host}}=0.33\\pm 0.06$$). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of $$\\mu =30.8\\pm 0.2$$, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Lastly, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 $${R}_{\\odot }$$.« less
FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code
NASA Astrophysics Data System (ADS)
Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya
2017-12-01
We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1
Preclinical studies of photodynamic therapy of intracranial tissues
NASA Astrophysics Data System (ADS)
Lilge, Lothar D.; Sepers, Marja; Park, Jane; O'Carroll, Cindy; Pournazari, Poupak; Prosper, Joe; Wilson, Brian C.
1997-05-01
The applicability and limitations of the photodynamic threshold model were investigated for an intracranial tumor (VX2) and normal brain tissues in a rabbit model. Photodynamic threshold values for four different photosensitizers, i.e., Photofrin, 5(delta) -aminolaevulinic acid (5(delta) -ALA) induced Protoporphyrin IX (PPIX), Tin Ethyl Etiopurpurin (SnET2), and chloroaluminum phthalocyanine (AlClPc), were determined based on measured light fluence distributions, macroscopic photosensitizer concentration in various brain structures, and histologically determined extent of tissue necrosis following PDT. For Photofrin, AlClPc, and SnET2, normal brain displayed a significantly lower threshold value than VX2 tumor. For 5(delta) -ALA induced PPIX and SnET2 no or very little white matter damage, equalling to very high or infinite threshold values, was observed. Additionally, the latter two photosensitizers showed significantly lower uptake in white matter compared to other brain structures and VX2 tumor. Normal brain structures lacking a blood- brain-barrier, such as the choroid plexus and the meninges, showed high photosensitizer uptake for all photosensitizers, and, hence, are at risk when exposed to light. Results to date suggest that the photodynamic threshold values iares valid for white matter, cortex and VX2 tumor. For clinical PDT of intracranial neoplasms 5(delta) -ALA induced PPIX and SnET2 appear to be the most promising for selective tumor necrosis.However, the photosensitizer concentration in each normal brain structure and the fluence distribution throughout the treatment volume and adjacent tissues at risk must be monitored to maximize the selectivity of PDT for intracranial tumors.
Search for thermal X-ray features from the Crab nebula with the Hitomi soft X-ray spectrometer
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sato, Toshiki; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Tominaga, Nozomu; Moriya, Takashi J.
2018-03-01
The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 AD. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core-collapse SN. Intensive searches have been made for a massive shell that solves this discrepancy, but none has been detected. An alternative idea is that SN 1054 is an electron-capture (EC) explosion with a lower explosion energy by an order of magnitude than Fe-core-collapse SNe. X-ray imaging searches were performed for the plasma emission from the shell in the Crab outskirts to set a stringent upper limit on the X-ray emitting mass. However, the extreme brightness of the source hampers access to its vicinity. We thus employed spectroscopic technique using the X-ray micro-calorimeter on board the Hitomi satellite. By exploiting its superb energy resolution, we set an upper limit for emission or absorption features from as yet undetected thermal plasma in the 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data. By assembling these results, a new upper limit was obtained for the X-ray plasma mass of ≲ 1 M⊙ for a wide range of assumed shell radius, size, and plasma temperature values both in and out of collisional equilibrium. To compare with the observation, we further performed hydrodynamic simulations of the Crab SNR for two SN models (Fe-core versus EC) under two SN environments (uniform interstellar medium versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the SN environment has a low density of ≲ 0.03 cm-3 (Fe core) or ≲ 0.1 cm-3 (EC) for the uniform density, or a progenitor wind density somewhat less than that provided by a mass loss rate of 10-5 M⊙ yr-1 at 20 km s-1 for the wind environment.
SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae
NASA Astrophysics Data System (ADS)
Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.
2018-05-01
We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.
NASA Astrophysics Data System (ADS)
Groh, Jose H.
2014-12-01
We present the first quantitative spectroscopic modeling of an early-time supernova (SN) that interacts with its progenitor wind. Using the radiative transfer code CMFGEN, we investigate the recently reported 15.5 h post-explosion spectrum of the type IIb SN 2013cu. We are able to directly measure the chemical abundances of a SN progenitor and find a relatively H-rich wind, with H and He abundances (by mass) of X = 0.46 ± 0.2 and Y = 0.52 ± 0.2, respectively. The wind is enhanced in N and depleted in C relative to solar values (mass fractions of 8.2 × 10-3 and 1.0 × 10-5, respectively). We obtain that a slow, dense wind or circumstellar medium surrounds the precursor at the pre-SN stage, with a wind terminal velocity vwind ≲ 100 km s-1 and mass-loss rate of Ṁ ≃ 3 × 10-3 (vwind/ 100 km s-1) M⊙ yr-1. These values are lower than previous analytical estimates, although Ṁ/υ∞ is consistent with previous work. We also compute a CMFGEN model to constrain the progenitor spectral type; the high Ṁ and low vwind imply that the star had an effective temperature of ≃ 8000 K immediately before the SN explosion. Our models suggest that the progenitor was either an unstable luminous blue variable or a yellow hypergiant undergoing an eruptive phase, and rule out a Wolf-Rayet star. We classify the post-explosion spectra at 15.5 h as XWN5(h) and advocate for the use of the prefix "X" (eXplosion) to avoid confusion between post-explosion, non-stellar spectra, and those of massive stars. We show that the XWN spectrum results from the ionization of the progenitor wind after the SN, and that the progenitor spectral type is significantly different from the early post-explosion spectral type owing to the huge differences in the ionization structure before and after the SN event. We find the following temporal evolution: LBV/YHG → XWN5(h) → SN IIb. Future early-time spectroscopy in the UV will further constrain the properties of SN precursors, such as their metallicities.
Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS)
NASA Astrophysics Data System (ADS)
Botticella, M. T.; Riello, M.; Cappellaro, E.; Benetti, S.; Altavilla, G.; Pastorello, A.; Turatto, M.; Greggio, L.; Patat, F.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.
2008-02-01
Aims:To measure the supernova (SN) rates at intermediate redshift we performed a search, the Southern inTermediate Redshift ESO Supernova Search (STRESS). Unlike most of the current high redshift SN searches, this survey was specifically designed to estimate the rate for both type Ia and core collapse (CC) SNe. Methods: We counted the SNe discovered in a selected galaxy sample measuring SN rate per unit blue band luminosity. Our analysis is based on a sample of 43 000 galaxies and on 25 spectroscopically confirmed SNe plus 64 selected SN candidates. Our approach is aimed at obtaining a direct comparison of the high redshift and local rates and at investigating the dependence of the rates on specific galaxy properties, most notably their colour. Results: The type Ia SN rate, at mean redshift z=0.3, is 0.22+0.10 +0.16-0.08 -0.14 h702 SNu, while the CC SN rate, at z=0.21, is 0.82+0.31 +0.30-0.24 -0.26 h702 SNu. The quoted errors are the statistical and systematic uncertainties. Conclusions: With respect to the local value, the CC SN rate at z=0.2 is higher by a factor of 2, whereas the type Ia SN rate remains almost constant. This implies that a significant fraction of SN Ia progenitors has a lifetime longer than 2{-}3 Gyr. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. SN rates per unit volume were found to be consistent with other measurements showing a steeper evolution with redshift for CC SNe than SNe Ia. We have exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations. We conclude that in order to constrain the mass range of CC SN progenitors and SN Ia progenitor models it is necessary to reduce the uncertainties in the cosmic SFH. In addition it is important to apply a consistent dust extinction correction both to SF and to CC SN rate and to measure the SN Ia rate in star forming and in passively evolving galaxies over a wide redshift range. Based on observations collected at the European Southern Observatory, using the 2.2 m MPG/ESO telescope on the La Silla (ESO Programmes 62.H-0833, 63.H-0322, 64.H-0390, 67.D-0422, 68.D-0273, 69.D-0453, 72.D-0670, 72.D-0745, 73.D-0670, 74.A-9008, 75.D-0662) and using Very Large Telescope on the Cerro Paranal (ESO Programme 74.D-0714). Table [see full textsee full textsee full text], Figs. [see full textsee full textsee full text]-[see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org
Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M
2014-01-24
In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
SNhunt151: an explosive event inside a dense cocoon
NASA Astrophysics Data System (ADS)
Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A.; Howerton, S. C.; Valenti, S.; Kankare, E.; Drake, A. J.; Djorgovski, S. G.; Tomasella, L.; Tartaglia, L.; Kangas, T.; Ochner, P.; Filippenko, A. V.; Ciabattari, F.; Geier, S.; Howell, D. A.; Isern, J.; Leonini, S.; Pignata, G.; Turatto, M.
2018-04-01
SNhunt151 was initially classified as a supernova (SN) impostor (nonterminal outburst of a massive star). It exhibited a slow increase in luminosity, lasting about 450 d, followed by a major brightening that reaches MV ≈ -18 mag. No source is detected to MV ≳ -13 mag in archival images at the position of SNhunt151 before the slow rise. Low-to-mid-resolution optical spectra obtained during the pronounced brightening show very little evolution, being dominated at all times by multicomponent Balmer emission lines, a signature of interaction between the material ejected in the new outburst and the pre-existing circumstellar medium. We also analysed mid-infrared images from the Spitzer Space Telescope, detecting a source at the transient position in 2014 and 2015. Overall, SNhunt151 is spectroscopically a Type IIn SN, somewhat similar to SN 2009ip. However, there are also some differences, such as a slow pre-discovery rise, a relatively broad light-curve peak showing a longer rise time (˜50 d), and a slower decline, along with a negligible change in the temperature around the peak (T ≤ 104 K). We suggest that SNhunt151 is the result of an outburst, or an SN explosion, within a dense circumstellar nebula, similar to those embedding some luminous blue variables like η Carinae and originating from past mass-loss events.
The Late-Time Evolution of SN 2002hh
NASA Astrophysics Data System (ADS)
Clayton, G. C.; Welch, D. L.
2005-12-01
We present new spectroscopic and photometric observations of the interesting Type II-P supernova, SN 2002hh, in NGC 6946. Gemini/GMOS-N has been used to acquire visible spectra and also g'r'i' photometry covering 5 epochs between August 2004 and October 2005, following the evolution of the supernova from 650 to 1050 d since its initial explosion. Supernova spectra obtained 3 years after outburst are rare. In addition, data have been obtained at several epochs in the JHK bands using the Steward 90" with the 256x256 imager and with Gemini/NIRI. Dust emission from SN 2002hh has been detected at mid-infrared wavelengths by SST/IRAC and confirmed by higher angular resolution Gemini/Michelle observations (Barlow et al. 2005, ApJ, 627, L113). There is a pre-existing optically thick dust shell having a mass of ˜0.1 Msun, suggesting a massive M supergiant or luminous blue variable precursor. However, the formation of new dust in the ejecta of SN 2002hh has not been ruled out. The IR emission from any such new dust would be swamped by the emission from the existing circumstellar dust. The new data, presented here, are being used to investigate the late-time evolution of SN 2002hh and whether new dust has been formed in its ejecta. In particular, we are looking for changes in the H-alpha emission line profiles and for variations in brightness due to changes in the extinction and emission due to dust. This study is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
Photometric classification and redshift estimation of LSST Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Mi; Kuhlmann, Steve; Wang, Yun
Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopically following up all the SNe. We investigate the performance of an SN classifier that uses SN colours to classify LSST SNe with the Random Forest classification algorithm. Our classifier results in an area-under-the-curve of 0.98 which represents excellent classification. We are able to obtain a photometric SN sample containing 99 percent SNe Ia by choosing a probability threshold. We estimate the photometric redshifts (photo-z)more » of SNe in our sample by fitting the SN light curves using the SALT2 model with nested sampling. We obtain a mean bias (⟨zphot - zspec⟩) of 0.012 with σ(z phot -z spec 1+z spec )=0.0294 σ(zphot-zspec1+zspec)=0.0294 without using a host-galaxy photo-z prior, and a mean bias (⟨zphot - zspec⟩) of 0.0017 with σ(z phot -z spec 1+z spec )=0.0116 σ(zphot-zspec1+zspec)=0.0116 using a host-galaxy photo-z prior. Assuming a flat ΛCDM model with Ωm = 0.3, we obtain Ωm of 0.305 ± 0.008 (statistical errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter σint = 0.11) derived using our methodology without using host-galaxy photo-z prior. Our method will help boost the power of SNe from the LSST as cosmological probes.« less
Lee, Kuan-Ting; Lu, Yu-Jen; Mi, Fwu-Long; Burnouf, Thierry; Wei, Yi-Ting; Chiu, Shao-Chieh; Chuang, Er-Yuan; Lu, Shih-Yuan
2017-01-18
Heterogeneous Fenton reactions have been proven to be an effective and promising selective cancer cell treatment method. The key working mechanism for this method to achieve the critical therapeutic selectivity however remains unclear. In this study, we proposed and demonstrated for the first time the critical role played by catalase in realizing the therapeutic selectivity for the heterogeneous Fenton reaction-driven cancer cell treatment. The heterogeneous Fenton reaction, with the lattice ferric ions of the solid catalyst capable of converting H 2 O 2 to highly reactive hydroxyl radicals, can effectively eradicate cancer cells. In this study, SnFe 2 O 4 nanocrystals, a recently discovered outstanding heterogeneous Fenton catalyst, were applied for selective killing of lung cancer cells. The SnFe 2 O 4 nanocrystals, internalized into the cancer cells, can effectively convert endogenous H 2 O 2 into highly reactive hydroxyl radicals to invoke an intensive cytotoxic effect on the cancer cells. On the other hand, catalase, present at a significantly higher concentration in normal cells than in cancer cells, remarkably can impede the apoptotic cell death induced by the internalized SnFe 2 O 4 nanocrystals. According to the results obtained from the in vitro cytotoxicity study, the relevant oxidative attacks were effectively suppressed by the presence of normal physiological levels of catalase. The SnFe 2 O 4 nanocrystals were thus proved to effect apoptotic cancer cell death through the heterogeneous Fenton reaction and were benign to cells possessing normal physiological levels of catalase. The catalase modulation of the involved heterogeneous Fenton reaction plays the key role in achieving selective cancer cell eradication for the heterogeneous Fenton reaction-driven cancer cell treatment.
NASA Technical Reports Server (NTRS)
Gies, Douglas R.; Wiggs, Michael S.
1991-01-01
AO Cas, a short-period, double-lined spectroscopic binary, is studied as part of a search for spectroscopic evidence of colliding stellar winds in binary systems of O-type stars. High S/N ratio spectra of the H-alpha and He I 6678-A line profiles are presented, and their orbital-phase-related variations are examined in order to derive the location and motions of high-density circumstellar gas in the system. These profile variations are compared with those observed in the UV stellar wind lines in IUE archival spectra. IUE spectra are also used to derive a system mass ratio by constructing cross-correlation functions of a single-lined phase spectrum with each of the other spectra. The resulting mass ratio is consistent with the rotational line broadening of the primary star, if the primary is rotating synchronously with the binary system. The best-fit models were found to have an inclination of 61.1 deg + or - 3.0 deg and have a primary which is close to filling its critical Roche lobe.
Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions
NASA Astrophysics Data System (ADS)
Penton, Steven V.
2010-07-01
COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).
NASA Astrophysics Data System (ADS)
Howell, D. A.; Sullivan, M.; Perrett, K.; Bronder, T. J.; Hook, I. M.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Guy, J.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Knop, R.; McMahon, R. G.; Perlmutter, S.; Walton, N. A.
2005-12-01
We present new techniques for improving the efficiency of supernova (SN) classification at high redshift using 64 candidates observed at Gemini North and South during the first year of the Supernova Legacy Survey (SNLS). The SNLS is an ongoing 5 year project with the goal of measuring the equation of state of dark energy by discovering and following over 700 high-redshift SNe Ia using data from the Canada-France-Hawaii Telescope Legacy Survey. We achieve an improvement in the SN Ia spectroscopic confirmation rate: at Gemini 71% of candidates are now confirmed as SNe Ia, compared to 54% using the methods of previous surveys. This is despite the comparatively high redshift of this sample, in which the median SN Ia redshift is z=0.81 (0.155<=z<=1.01). These improvements were realized because we use the unprecedented color coverage and light curve sampling of the SNLS to predict whether a candidate is a SN Ia and to estimate its redshift, before obtaining a spectrum, using a new technique called the ``SN photo-z.'' In addition, we have improved techniques for galaxy subtraction and SN template χ2 fitting, allowing us to identify candidates even when they are only 15% as bright as the host galaxy. The largest impediment to SN identification is found to be host galaxy contamination of the spectrum-when the SN was at least as bright as the underlying host galaxy the target was identified more than 90% of the time. However, even SNe in bright host galaxies can be easily identified in good seeing conditions. When the image quality was better than 0.55", the candidate was identified 88% of the time. Over the 5 year course of the survey, using the selection techniques presented here, we will be able to add ~170 more confirmed SNe Ia than would be possible using previous methods. APC, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. DSM/DAPNIA, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.
NASA Astrophysics Data System (ADS)
Zhang, Haiyan; Li, Liuqing; Li, Zhaopeng; Zhong, Weihao; Liao, Haiyang; Li, Zhenghui
2018-06-01
Constructing hollow structure and nano-sized SnO2 particles are two normal strategies to improve lithium storage performance of SnO2-based electrode. But it is still challengeable to fabricate ultrasmall SnO2 embedded in carbon hollow sphere in a controllable way. Herein, we have synthesized a kind of SnO2@carbon hollow sphere via a confined Friedel-Crafts crosslinking of a novel metal-organic compound (triphenyltin chloride, named Sn-Ph) on the surface of SiO2 template. The as-prepared SnO2@carbon hollow sphere has 10 nm-sized SnO2 particles embedded in amorphous carbon wall. Furthermore, 100, 200 and 400 nm-sized SnO2@carbon hollow spheres can be obtained by regulating the size of SiO2 template. When they are applied in lithium-ion batteries, the carbon structure can act as barriers to protect SnO2 particles from pulverization, and hollow core stores electrolyte and very small SnO2 particles of 10 nm shorten the diffusion distance of lithium ions. Thus, SnO2@carbon hollow sphere presents superior electrochemical performance. The first discharge and charge capacities reach 1378.5 and 507.3 mAh g-1 respectively, and 100 cycles later, its capacity remains 501.2 mAh g-1, indicating a capacity retention of 98.8% (C100th/C2nd).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, H.; Seon, B.K.
1987-05-01
In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Asciticmore » and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment.« less
Lewis, R N; McElhaney, R N
1993-01-01
The mixed interdigitated gel phases of unlabeled, specifically 13C = O-labeled, and specifically chain-perdeuterated samples of 1-O-eicosanoyl, 2-O-lauroyl phosphatidylcholine and 1-O-decanoyl, 2-O-docosanoyl phosphatidylcholine were studied by infrared spectroscopy. Our results suggest that at the liquid-crystalline/gel phase transition temperatures of these lipids, there is a greater redistribution in the populations of free and hydrogen-bonded ester carbonyl groups than is commonly observed with symmetric chain n-saturated diacyl phosphatidylcholines. The formation of the mixed interdigitated gel phase coincides with the appearance of a marked asymmetry in the contours of the C = O stretching band, a process which becomes more pronounced as the temperature is reduced. This asymmetry is ascribed to the emergence of a predominant lipid population consisting of free sn1- and hydrogen-bonded (hydrated) sn2-ester carbonyl groups. This suggests that the region of the mixed interdigitated bilayer polar/apolar interface near to the sn1-ester carbonyl group is less hydrated than is the case with the noninterdigitated gel-phase bilayers formed by normal symmetric chain phosphatidylcholines. In the methylene deformation region of the spectrum, the unlabeled lipids exhibit a pronounced splitting of the CH2 scissoring bands. This splitting is significantly attenuated when the short chains are perdeuterated and collapses completely upon perdeuteration of the long chains, irrespective of whether the long (or short) chains are esterified to the sn1 or sn2 positions of the glycerol backbone. These results are consistent with a global hydrocarbon chain packing motif in which the zigzag planes of the hydrocarbon chains are perpendicular to each other and the sites occupied by long chains are twice as numerous as those occupied by short chains. The experimental support for this chain-packing motif enabled more detailed considerations of the possible ways in which these lipid molecules are assembled in the mixed interdigitated gel phase. Generally, our results are compatible with a previously proposed model in which the mixed interdigitated gel phase is an assembly of repeat units which consists of two phosphatidylcholine molecules forming a triple-chain structure with the long chains traversing the bilayer and with the methyl termini of the shorter chains opposed at the bilayer center. Our data also suggest that the packing format which is most consistent with our results and previously published work is one in which the hydrocarbon chains of each repeat unit are parallel to each other with the repeat units themselves being perpendicularly packed. PMID:8298016
Spectroscopic Classification of ASASSN-13dn
NASA Astrophysics Data System (ADS)
Martini, P.; Elias, J.; Points, S.; Prieto, J. L.; Shappee, B. J.; Stanek, K. Z.; Kochanek, C. S.; Holoien, T. W.-S.; Jencson, J.; Basu, U.; Beacom, J. F.; Szczygiel, D.; Pojmanski, G.; Brimacombe, J.; Bersier, D.
2013-12-01
We obtained optical spectra of ASASSN-13dn (ATel #5665). The candidate was confirmed with the new KOSMOS instrument (Kitt Peak Ohio State Multi-Object Spectrograph), which is presently being commissioned at the KPNO 4-m Mayall telescope. Observations were obtained with both the blue and red VPH grisms (50 min each) for a combined wavelength range of 380nm to 965nm at R ~ 2000. The spectrum of ASASSN-13dn is characteristic of a Type II SN at the redshift of its host galaxy (z=0.023).
High-j neutron excitations outside 136Xe
NASA Astrophysics Data System (ADS)
Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.
2017-08-01
The ν 0 h9 /2 and ν 0 i13 /2 strength at 137Xe, a single neutron outside the N =82 shell closure, has been determined using the 136Xe(α ,3He)137Xe reaction carried out at 100 MeV. We confirm the recent observation of the second 13 /2+ state and reassess previous data on the 9 /2- states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at 133Sn.
Classification of PSN J12015272-1852183 as a young type Ic SN
NASA Astrophysics Data System (ADS)
Harutyunyan, A.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Tomasella, L.; Ochner, P.; Turatto, M.
2013-06-01
We report the spectroscopic classification (range 335-785 nm; resolution 1.5 nm) of PSN J12015272-1852183 discovered by the CHASE project on June 22.12 UT. The spectrogram obtained on June 23.88 UT with the TNG Telescope (+Dolores), shows that this is a type-Ic supernova. A good match is found with the type-Ic supernova 1994I (Millard et al 1999, ApJ 527, 746) at about six days before maximum light.
Optical photometry and low-resolution spectroscopy of the SN 2014J
NASA Astrophysics Data System (ADS)
Gonzalez Hernandez, Jonay I.; Genova-Santos, Ricardo; Rubiño-Martin, Jose Alberto; Ruiz-Lapuente, Pilar
2014-02-01
We have obtained low-resolution spectroscopic data and broadband (g,r,i,z) photometric images at the 4.2m-WHT equipped with the instrument ACAM at the Observatorio del Roque de los Muchachos (La Palma, Spain) on approximately January 28.13 UT. A preliminary analysis of these spectra show the strong Si II (6355A) line moving at ~12600 km/s, and CII (6580A) and SII (5468A) at ~13700km/s and 12150 km/s, respectively.
Duan, Yichen; Pirolli, Laurent; Teplyakov, Andrew V.
2016-01-01
The poisoning of H2S sensing material based on the mixture of acid-treated carbon nanotubes, CuO and SnO2 was investigated by exposing the material to high doses of H2S (1% in volume) and following the changes spectroscopically. The presence of metal sulfides (CuS and SnS2), sulfates and thiols was confirmed on the surface of this material as the result of H2S poisoning. Further study revealed that leaving this material in air for extended period of time led to reoxidation of metal sulfides back to metal oxides. The formation of thiols and sulfates directly on carbon nanotubes is not reversible under these conditions; however, the extent of the overall surface reaction in this case is substantially lower than that for the composite material. PMID:27812240
NASA Astrophysics Data System (ADS)
Hayden, Brian; Aldering, Gregory; Amanullah, Rahman; Barbary, Kyle; Bohringer, Hans; Boone, Kyle Robert; Brodwin, Mark; Cunha, Carlos; Currie, Miles; Deustua, Susana; Dixon, Samantha; Eisenhardt, Peter; Fassbender, Rene; Fruchter, Andrew; Gladders, Michael; Gonzalez, Anthony; Goobar, Ariel; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hook, Isobel; Huang, Xiaosheng; Huterer, Dragan; Jee, Myungkook James; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Luther, Kyle; Meyers, Joshua; Muzzin, Adam; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Richard, Johan; Rosati, Piero; Rozo, Eduardo; Rubin, David; Ruiz-Lapuente, Pilar; Rykoff, Eli; Santos, Joana; Myers Saunders, Clare; Sofiatti, Caroline; Spadafora, Anthony L.; Stanford, Spencer; Stern, Daniel; Suzuki, Nao; Webb, Tracy; Wechsler, Risa; Williams, Steven; Willis, Jon; Wilson, Gillian; Yen, Mike
2018-01-01
The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. We present the status of the ongoing blinded cosmology analysis, demonstrating substantial improvement to the uncertainty on the Dark Energy density above z~1. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.8, which is the highest spectroscopic redshift SN Ia currently known.
Duan, Yichen; Pirolli, Laurent; Teplyakov, Andrew V
2016-11-01
The poisoning of H 2 S sensing material based on the mixture of acid-treated carbon nanotubes, CuO and SnO 2 was investigated by exposing the material to high doses of H 2 S (1% in volume) and following the changes spectroscopically. The presence of metal sulfides (CuS and SnS 2 ), sulfates and thiols was confirmed on the surface of this material as the result of H 2 S poisoning. Further study revealed that leaving this material in air for extended period of time led to reoxidation of metal sulfides back to metal oxides. The formation of thiols and sulfates directly on carbon nanotubes is not reversible under these conditions; however, the extent of the overall surface reaction in this case is substantially lower than that for the composite material.
Kinetics of photo-activated charge carriers in Sn:CdS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patidar, Manju Mishra, E-mail: manjumishra.iuc@gmail.com; Gorli, V. R.; Gangrade, Mohan
2016-05-23
Kinetics of the photo-activated charge carriers has been investigated in Tin substituted Cadmium Sulphide, Cd{sub 1-x}Sn{sub x}S (x=0, 0.05, 0.10 and 0.15), thin films prepared by spray pyrolysis. X-Ray Diffraction shows an increase in strain that resulted in the decreased crystallite size upon Sn substitution. At the first sight, the photo current characteristics show a quenching effect on Sn substitution. However, survival of persistent photocurrents is seen even up to 15% of Sn substitution. Transient photo current decay could be explained with a 2τ relaxation model. CdS normally has an n-type character and the Sn doping expected to inject holemore » carriers. The two fold increase in τ{sub 1}, increase in activation energy and the decrease in photocurrents upon Sn substitution point towards a band gap cleaning scenario that include compensation and associated carrier injection dynamics. In addition Atomic Force Microscopy shows a drastic change in microstructure that modulates the carrier dynamics as a whole.« less
NASA Astrophysics Data System (ADS)
Da Silva, L. B. S.; Rodrigues, C. A.; Oliveira, N. F., Jr.; Bormio-Nunes, C.; Rodrigues, D., Jr.
2010-11-01
Since the discovery of Nb3Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb3Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb3Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb3Sn wires reported up to now.
Nucleophilic substitution at silicon (SN2@Si) via a central reaction barrier.
Bento, A Patrícia; Bickelhaupt, F Matthias
2007-03-16
It is textbook knowledge that nucleophilic substitution at carbon (SN2@C) proceeds via a central reaction barrier which disappears in the corresponding nucleophilic substitution reaction at silicon (SN2@Si). Here, we address the question why the central barrier disappears from SN2@C to SN2@Si despite the fact that these processes are isostructural and isoelectronic. To this end, we have explored and analyzed the potential energy surfaces (PES) of various Cl-+CR3Cl (R=H, CH3) and Cl-+SiR3Cl model reactions (R=H, CH3, C2H5, and OCH3). Our results show that the nature of the SN2 reaction barrier is in essence steric, but that it can be modulated by electronic factors. Thus, simply by increasing the steric demand of the substituents R around the silicon atom, the SN2@Si mechanism changes from its regular single-well PES (with a stable intermediate transition complex, TC), via a triple-well PES (with a pre- and a post-TS before and after the central TC), to a double-well PES (with a TS; R=OCH3), which is normally encountered for SN2@C reactions.
The g factor of the 21+ state in 126Sn
NASA Astrophysics Data System (ADS)
Kumbartzki, G. J.; Benczer-Koller, N.; Torres, D. A.; Gürdal, G.; Gross, C. J.; Galindo-Uribarri, A.; Bingham, C.; Stone, N.; Stuchberry, A. E.; Speidel, K.-H.
2011-10-01
In the quest to develop the necessary tools and gather experience in using the transient field technique to measure g factors of low-lying short-lived nuclear states in radioactive beam experiments, the 126Sn (t1/2 = 2 . 3 .105 years) will be measured at the HRIBF, ORNL. Each radioactive beam experiment presents its own set of problems and challenges due to the radioactive background from the beam and beam contaminants and their life times, and the low beam intensity. This experiment is a test with a very long lived, nearly stable beam. The target is designed to stop the reaction products in the backing of the target but to allow the bulk of the beam to pass through and stop in a foil placed between the target and the particle detector. This foil can be changed in the course of the experiment, should it become too radioactive. The experiment is scheduled to run in July 2011. Success or failure will provide a wealth of information on working in different radioactive environments and will extend the spectroscopic information on g factors of 21+states in Sn isotopes. The transient field measurement will provide the sign of the g factor.
NASA Technical Reports Server (NTRS)
Walker, E. S.; Mazzali, P. A.; Pian, E.; Hurley, K.; Arcavi, I.; Cenko, S. B.; Gal-Yam, A.; Horesh, A.; Kasliwal, M.; Poznanski, D.;
2014-01-01
We present optical photometry and spectroscopy of the broad-lined Type Ic supernova (SN Ic-BL) PTF10qts, which was discovered as part of the Palomar Transient Factory. The supernova was located in a dwarf galaxy of magnitude r = 21.1 at a redshift z = 0.0907.We find that the R-band light curve is a poor proxy for bolometric data and use photometric and spectroscopic data to construct and constrain the bolometric light curve. The derived bolometric magnitude at maximum light is Mbol = -18.51 +/- 0.2 mag, comparable to that of SN1998bw (Mbol = -18.7 mag) which was associated with a gamma-ray burst (GRB). PTF10qts is one of the most luminous SN Ic-BL observed without an accompanying GRB. We estimate the physical parameters of the explosion using data from our programme of follow-up observations, finding that it produced a larger mass of radioactive nickel compared to other SNeIc-BL with similar inferred ejecta masses and kinetic energies. The progenitor of the event was likely a approximately 20 solar mass star.
Fourth COS FUV Lifetime Position: Cross-Dispersion Profiles, Flux, and Flat-Field Calibration
NASA Astrophysics Data System (ADS)
Rafelski, Marc
2016-10-01
Obtain observations of spectrophotometric white dwarf standard stars at all cenwaves (excepting G130M/1055 and G130M/1096) and FP-POS to determine flux calibrations to S/N>30 and concurrently, the 1-D L- and P-flat templates, and 2-D cross-dispersion profiles required for improved extraction, at LP4. This program ties the spectroscopic sensitivity monitoring at LP4 with that at LP3, in case rapid evolution of gain at LP4 is discovered in coordination with program 14854. The main requirements for this program are S/N 50/resel, which is driven by two requirements: (1) for high S/N 2-D spectral profiles which are calculated by scaling Program 12806 profiles and requiring that profile contours can be located such that flux errors are less than 1-2%, and (2) for the flat fielding of pixel-to-pixel variations (p-flats). WD 0308-565 is the primary target for this program due to its status as a flux standard and TDS target. GD 71 is used to more efficiently calibrate Segment A in the G160M modes.
SN2005da: A Spectroscopic and Photometric Analysis of a Peculiar Type Ic Supernova
NASA Astrophysics Data System (ADS)
Williamson, Jacob
2017-12-01
Core collapse supernovae are an important class of objects in stellar evolution research as they are the final life stage of high mass stars. Supernovae in general are classified into several spectral types; this paper explores SN 2005da, classified as a Type Ic, meaning it lacks hydrogen and helium lines. The supernova was originally classified as a broad-lined Type Ic (Type Ic-BL), with expansion velocities near maximum light greater than or approximately equal to 15000 km/s. However, some of the elements present in the spectrum, namely carbon and oxygen, have narrower lines (FWHM approximately equal to 2300 km/s) than other elements, indicating an interaction with a previously ejected envelope. The supernova is also found to have a decay time, with a change in magnitude over 15 days following maximum light of about 1.4 magnitudes, that is significantly faster than typical Type Ic or Ic-BL. This is more akin to a rarer object type known as a Type Ibn, although it lacks the characteristic narrow helium lines of this type. Therefore, SN 2005da appears to be unlike known examples of Type Ic supernovae.
NASA Technical Reports Server (NTRS)
Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.
2012-01-01
Silicate grains are the most abundant condensate around O-rich evolved stars, including red giants, supernovae (SNe) and binary systems. These grains have been identified in abundance in primitive meteorites and interplanetary dust particles [1,2]. Astronomical observations of the silicate spectroscopic features around circumstellar disks indicate that most silicates are amorphous olivine-like grains, though some sources show a large crystalline portion [3]. Fewer astronomical observations of SN and nova silicates exist, but amorphous Mg-rich grains predominate [4,5]. The laboratory analysis of presolar silicates by transmission electron microscopy (TEM) offers more details on the structure and chemistry of individual grains. These studies provide information on the physical and chemical conditions of the parent stellar atmosphere during grain condensation. Moreover, be-cause silicates are susceptible to secondary alteration, processing events succeeding condensation can be traced. Thus far, similar microstructures have been observed for silicates that condensed in SN outflows and in the envelopes of asymptotic giant branch (AGB) stars, but not as many of the comparatively rare SN grains have been analyzed. Here we examine the mineralogies of two presolar silicate grains having different origins.
NASA Astrophysics Data System (ADS)
Ryu, Jae Hyeon; Baek, Geun-Woo; Kim, Seung Yeob; Kwon, Hyuck-In; Jin, Sung Hun
2018-07-01
In this letter, spray-coated single walled carbon nanotubes (SWNTs) as one of alternative electrodes in SnO thin-film transistors are demonstrated for emerging electronic applications. Herein, the device architecture of SnO TFTs with a polymer etch stop layer (SU-8) enables the selective etching of SWNTs in a desired region without the detrimental effects of SnO channel layers. Moreover, SnO TFTs with SWNT electrodes as substitutes successfully demonstrate decent width normalized electrical contact properties (∼1.49 kΩ cm), field effect mobility (∼0.69 cm2 V‑1 s‑1), sub-threshold slope (∼0.4 V dec‑1), and current on–off ratio (I on/I off ∼ 3.5 × 103). Systematic temperature dependency measurements elucidate that SnO channel transports with an activation energy within several tens of meV, together with decent contact resistance as compared to that of conventional Ni electrodes.
Do supernovae of type 1 paly a role in cosmic-ray production?
NASA Technical Reports Server (NTRS)
Shapiro, M. M.
1985-01-01
A model of cosmic-ray origin is suggested which aims to account for some salient features of the composition. Relative to solar abundances, the Galactic cosmic rays (GCR) are deficient in hydrogen and helim (H and He) by an order of magnitude when the two compositions are normalized at iron. Our conjectural model implicates supernovae of Type I (SN-I) as sources of some of the GCR. SN-I occur approximately as often as SN-II, through their genesis is thought to be different. Recent studies of nucleosynthesis in SN-I based on accreting white dwarfs, find that the elements from Si to Fe are produced copiously. On the other hand, SN-I are virtually devoid of hydrogen, and upper limits deduced for He are low. If SN-I contribute significantly to the pool of GCR by injecting energetic particles into the interstellar medium (ISM), then this could explain why the resulting GCR is relatively deficient in H and He. A test of the model is proposed, and difficulties are discussed.
Distinct properties of the triplet pair state from singlet fission
Trinh, M. Tuan; Pinkard, Andrew; Pun, Andrew B.; Sanders, Samuel N.; Kumarasamy, Elango; Sfeir, Matthew Y.; Campos, Luis M.; Roy, Xavier; Zhu, X.-Y.
2017-01-01
Singlet fission, the conversion of a singlet exciton (S1) to two triplets (2 × T1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state 1(TT). Despite extensive research, the nature of the 1(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound 1(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to 1(TT)→Sn and S1→Sn′ transitions; Sn and Sn′ likely come from the antisymmetric and symmetric linear combinations, respectively, of the S2 state localized on each pentacene unit in the dimer molecule. The 1(TT)→Sn transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound 1(TT) state also shows chemical reactivity that is distinctively different from that of an individual T1 state. Using an electron-accepting iron oxide molecular cluster [Fe8O4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T1 in pentacene but not from the tightly bound 1(TT) state. Thus, reducing intertriplet electronic coupling in 1(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission. PMID:28740866
Hu, Min; Zhang, Zhenwei; Luo, Chenkun; Qiao, Xiuqing
2017-12-01
In this paper, hierarchical Ag-decorated SnO 2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH 4 ) as a model reaction. Time-dependent experiments indicated that the hierarchical microspheres assembled from SnO 2 and Ag nanoparticles can be formed when the react time is less than 10 h. With the increase of hydrothermal time, SnO 2 nanoparticles will self-assemble into SnO 2 nanosheets and Ag nanoparticles decorated SnO 2 nanosheets were obtained. When evaluated as catalyst, the obtained Ag-decorated SnO 2 microsphere prepared for 36 h exhibited excellent catalytic performance with normalized rate constant (κ nor ) of 6.20 min -1 g -1 L, which is much better than that of some previous reported catalysts. Moreover, this Ag-decorated SnO 2 microsphere demonstrates good reusability after the first five cycles. In addition, we speculate the formation mechanism of the hierarchical Ag-decorated SnO 2 microsphere and discussed the possible origin of the excellent catalytic activity.
Multiepoch Spectropolarimetry of SN 2011fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milne, Peter A.; Williams, G. Grant; Smith, Paul S.
2017-01-20
We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behaviormore » is more common in subluminous SNe Ia than in normal events, such as SN 2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ 4600–5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si ii λ 6355 Å absorption line. This is common for SNe Ia, but for SN 2011fe the polarization of this feature increases after maximum light, whereas for other SNe Ia, that polarization feature was strongest before maximum light.« less
Wang, J; Zhou, Y J; Yu, J; Gu, J
2017-03-07
Objective: To analyze the relationship between directional preponderance (DP), spontaneous nystagmus(SN) and vestibular disorders, and to investigate the significance of DP in directing peripheral vestibular function in patients with vertigo. Methods: This was a retrospective analysis of 394 cases diagnosed with peripheral vestibular disease accompanied by vertigo from March 2012 to June 2014 in the Outpatient Department of the Eye & ENT Hospital of Fudan University. Results of static and dynamic posture equilibrium tests, SN, unilateral weakness(UW), and DP in videonystagmography(VNG) were analyzed and compared. Results: The mean interval time between the last vertigo attack and examination in patients with SN or DP in caloric test were 4.4 d and 7.3 d respectively, and those without SN or DP were 18.3 d and 17.5 d respectively. The patients were divided into two groups according to DP results of caloric test. DP-normal group had 203 cases and DP-abnormal group had 191 cases. Spontaneous nystagmus was presented in 44 cases in the DP-normal group (21.67%) and four in the DP-abnormal group (2.09%). A significant difference was found between the two groups (χ 2 =35.27, P =0.000). Deficiency of vestibular function was noted in 165 cases in the DP-normal group (81.28%) and 123 (64.40%) in the DP-abnormal group in static and dynamic posture equilibrium tests. The difference between the two groups was statistically significant (χ 2 =14.26, P =0.000). Conclusion: Compared with DP-normal patients, DP-abnormal patients are more likely to have spontaneous nystagmus and balance disorders due to vestibular dysfunction.
Gliszczyńska, Anna; Niezgoda, Natalia; Gładkowski, Witold; Czarnecka, Marta; Świtalska, Marta; Wietrzyk, Joanna
2016-01-01
The synthesis of novel phosphatidylcholines with geranic and citronellic acids in sn-1 and sn-2 positions is described. The structured phospholipids were obtained in high yields (59–87%) and evaluated in vitro for their cytotoxic activity against several cancer cell lines of different origin: MV4-11, A-549, MCF-7, LOVO, LOVO/DX, HepG2 and also towards non-cancer cell line BALB/3T3 (normal mice fibroblasts). The phosphatidylcholines modified with monoterpene acid showed a significantly higher antiproliferative activity than free monoterpene acids. The highest activity was observed for the terpene-phospholipids containing the isoprenoid acids in sn-1 position of phosphatidylcholine and palmitic acid in sn-2. PMID:27310666
Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.
2013-01-01
The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heringer, E.; Kerkwijk, M. H. van; Sim, S. A.
2017-09-01
Type Ia supernovae (SNe Ia) are generally agreed to arise from thermonuclear explosions of carbon–oxygen white dwarfs. The actual path to explosion, however, remains elusive, with numerous plausible parent systems and explosion mechanisms suggested. Observationally, SNe Ia have multiple subclasses, distinguished by their light curves and spectra. This raises the question of whether these indicate that multiple mechanisms occur in nature or that explosions have a large but continuous range of physical properties. We revisit the idea that normal and 91bg-like SNe can be understood as part of a spectral sequence in which changes in temperature dominate. Specifically, we findmore » that a single ejecta structure is sufficient to provide reasonable fits of both the normal SN Ia SN 2011fe and the 91bg-like SN 2005bl, provided that the luminosity and thus temperature of the ejecta are adjusted appropriately. This suggests that the outer layers of the ejecta are similar, thus providing some support for a common explosion mechanism. Our spectral sequence also helps to shed light on the conditions under which carbon can be detected in premaximum SN Ia spectra—we find that emission from iron can “fill in” the carbon trough in cool SNe Ia. This may indicate that the outer layers of the ejecta of events in which carbon is detected are relatively metal-poor compared to events in which carbon is not detected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Kanatzidis, Mercouri G.
2016-04-01
This article reports two new Hf-rich intermetallics synthesized using Sn flux: Hf 3Fe 4Sn 4 and Hf 9Fe 4-xSn 10+x. Hf 3Fe 4Sn 4 adopts an ordered variant the Hf 3Cu 8 structure type in orthorhombic space group Pnma with unit cell edges of a=8.1143(5) Å, b=8.8466(5) Å, and c=10.6069(6) Å. Hf 9Fe 4-xSn 10+x, on the other hand, adopts a new structure type in Cmc21 with unit cell edges of a=5.6458(3) Å, b=35.796(2) Å, and c=8.88725(9) Å for x=0. It exhibits a small amount of phase width in which Sn substitutes on one of the Fe sites. Both structuresmore » are fully three-dimensional and are characterized by pseudo one- and two-dimensional networks of Fe–Fe homoatomic bonding. Hf 9Fe 4-xSn 10+x exhibits antiferromagnetic order at TN=46(2) K and its electrical transport behavior indicates that it is a normal metal with phonon-dictated resistivity. Hf 3Fe 4Sn 4 is also an antiferromagnet with a rather high ordering temperature of TN=373(5) K. Single crystal resistivity measurements indicate that Hf 3Fe 4Sn 4 behaves as a Fermi liquid at low temperatures, indicating strong electron correlation.« less
Defect-free high Sn-content GeSn on insulator grown by rapid melting growth.
Liu, Zhi; Cong, Hui; Yang, Fan; Li, Chuanbo; Zheng, Jun; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming
2016-12-12
GeSn is an attractive semiconductor material for Si-based photonics. However, large lattice mismatch between GeSn and Si and the low solubility of Sn in Ge limit its development. In order to obtain high Sn-content GeSn on Si, it is normally grown at low temperature, which would lead to inevitable dislocations. Here, we reported a single-crystal defect-free graded GeSn on insulator (GSOI) stripes laterally grown by rapid melting growth (RMG). The Sn-content reaches to 14.2% at the end of the GSOI stripe. Transmission electron microscopy observation shows the GSOI stripe without stacking fault and dislocations. P-channel pseudo metal-oxide-semiconductor field effect transistors (MOSFETs) and metal-semiconductor-metal (MSM) Schottky junction photodetectors were fabricated on these GSOIs. Good transistor performance with a low field peak hole mobility of 402 cm 2 /Vs is obtained, which indicates a high-quality of this GSOI structure. Strong near-infrared and short-wave infrared optical absorption of the MSM photodetectors at 1550 nm and 2000 nm were observed. Owing to high Sn-content and defect-free, responsivity of 236 mA/W@-1.5 V is achieved at 1550 nm wavelength. In addition, responsivity reaches 154 mA/W@-1.5 V at 2000 nm with the optical absorption layer only 200 nm-thick, which is the highest value reported for GeSn junction photodetectors until now.
Defect-free high Sn-content GeSn on insulator grown by rapid melting growth
Liu, Zhi; Cong, Hui; Yang, Fan; Li, Chuanbo; Zheng, Jun; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming
2016-01-01
GeSn is an attractive semiconductor material for Si-based photonics. However, large lattice mismatch between GeSn and Si and the low solubility of Sn in Ge limit its development. In order to obtain high Sn-content GeSn on Si, it is normally grown at low temperature, which would lead to inevitable dislocations. Here, we reported a single-crystal defect-free graded GeSn on insulator (GSOI) stripes laterally grown by rapid melting growth (RMG). The Sn-content reaches to 14.2% at the end of the GSOI stripe. Transmission electron microscopy observation shows the GSOI stripe without stacking fault and dislocations. P-channel pseudo metal-oxide-semiconductor field effect transistors (MOSFETs) and metal-semiconductor-metal (MSM) Schottky junction photodetectors were fabricated on these GSOIs. Good transistor performance with a low field peak hole mobility of 402 cm2/Vs is obtained, which indicates a high-quality of this GSOI structure. Strong near-infrared and short-wave infrared optical absorption of the MSM photodetectors at 1550 nm and 2000 nm were observed. Owing to high Sn-content and defect-free, responsivity of 236 mA/W@-1.5 V is achieved at 1550 nm wavelength. In addition, responsivity reaches 154 mA/W@-1.5 V at 2000 nm with the optical absorption layer only 200 nm-thick, which is the highest value reported for GeSn junction photodetectors until now. PMID:27941825
Defect-free high Sn-content GeSn on insulator grown by rapid melting growth
NASA Astrophysics Data System (ADS)
Liu, Zhi; Cong, Hui; Yang, Fan; Li, Chuanbo; Zheng, Jun; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming
2016-12-01
GeSn is an attractive semiconductor material for Si-based photonics. However, large lattice mismatch between GeSn and Si and the low solubility of Sn in Ge limit its development. In order to obtain high Sn-content GeSn on Si, it is normally grown at low temperature, which would lead to inevitable dislocations. Here, we reported a single-crystal defect-free graded GeSn on insulator (GSOI) stripes laterally grown by rapid melting growth (RMG). The Sn-content reaches to 14.2% at the end of the GSOI stripe. Transmission electron microscopy observation shows the GSOI stripe without stacking fault and dislocations. P-channel pseudo metal-oxide-semiconductor field effect transistors (MOSFETs) and metal-semiconductor-metal (MSM) Schottky junction photodetectors were fabricated on these GSOIs. Good transistor performance with a low field peak hole mobility of 402 cm2/Vs is obtained, which indicates a high-quality of this GSOI structure. Strong near-infrared and short-wave infrared optical absorption of the MSM photodetectors at 1550 nm and 2000 nm were observed. Owing to high Sn-content and defect-free, responsivity of 236 mA/W@-1.5 V is achieved at 1550 nm wavelength. In addition, responsivity reaches 154 mA/W@-1.5 V at 2000 nm with the optical absorption layer only 200 nm-thick, which is the highest value reported for GeSn junction photodetectors until now.
Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei
2015-12-01
Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow absorbers and peaks at υ ≈ 1500 km s-1. This peak velocity is lower than the value of 2000 km s-1 found in statistical analysis of C iv absorbers.
Development of X-ray spectroscopic polarimetry with bent Si crystals and CFRP substrate
NASA Astrophysics Data System (ADS)
Iizuka, Ryo; Izumiya, Takanori; Tsuboi, Yohko
2016-07-01
The light from celestial objects includes four important quantities; images, time variation, energy spectrum, and polarization. In the field of X-ray astronomy, the capabilities of the former three have remarkably developed. On the other hand, the progress for the polarimetry is considerably delayed because of technical difficulties. In order to make a breakthrough in the field of X-ray polarimetry, we have developed a new type of optics for X-ray polarimetry. The system is collecting Bragg crystal with large area and very high sensitivity for the polarization dedicated to Fe-K lines. We adopt the 400 re ection of Si(100) crystals with high sensitivity for the polarization around Fe-K lines (6 7 keV), and bent the crystals with the wide X-ray band and high S/N ratio. Furthermore, to install small area of CCD to non-focal plane, it also has the spectroscopic capability with the better resolution than that of general X-ray CCD. Our previous development was to bent Si crystals to the cylindrical shape of circle and parabola with the DLC deposition. However, for the better optics for the X-ray polarimetry, the shape should be the paraboloid of revolution to collect X-rays with high S/N ratio. We searched for the method to bent the Si crystals to the shape of the paraboloid of revolution. We devised the method to mold the crystal and the CFRP substrate simultaneously pushed to the sophisticated foundation with the paraboloid of revolution. We developed the prototype of about 8 inch in radius of one-quater size. The crystals was also bent in the circumferential direction. Therefore, the image capability examined with optical parallel beam is 0.6 degree. In this thesis, we discussed the new design for X-ray spectroscopic polarimetry, the evaluation of image capability.
Faraday effect in Sn2P2S6 crystals.
Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav
2008-11-10
We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.
The Fast Evolution of SN 2010bh Associated with XRF 100316D
NASA Technical Reports Server (NTRS)
Olivares E., F.; Greiner, J.; Schady, P.; Rau, A.; Klose, S.; Kruhler, T.; Afonso, P. M. J.; Updike, A. C.; Nardini, M.; Filgas, R.;
2012-01-01
The first observational evidence of a connection between supernovae (SNe) and gamma-ray bursts (GRBs) was found about a decade ago. Since then, only half a dozen spectroscopically confirmed associations have been discovered and XRF 1003160 associated with the type-Ic SN 20lObh is among the latest. Aims. We constrain the progenitor radius, the host-galaxy extinction, and the physical parameters of the explosion of XRF l00316D/SN 20lObh at z 0.059. We study the SN brightness and colours in the context of GRB-SNe. Methods. We began observations with the Gamma-Ray burst Optical and Near-infrared Detector (GROND) 12 hours after the GRB trigger and continued until 80 days after the burst. GROND provided excellent photometric data in six filter bands covering a wavelength range from approximately 350 to 1800 nm, significantly expanding the pre-existing data set for this event. Combining GROND and Swift data, the early broad-band spectral energy distribution (SED) is modelled with a blackbody and afterglow component attenuated by dust and gas absorption. The temperature and radius evolution of the thermal component are analysed and combined with earlier measurements available from the literature. Templates of SN 1998bw are fitted to the SN itself to directly compare the lightcurve properties. Finally, a two-component parametrized model is fitted to the quasi-bolometric light curve. which delivers physical parameters of the explosion. Results. The best-fit models to the broad-band SEDs imply moderate reddening along the line of sight through the host galaxy (A(sub v.host = 1.2 +/- 0.1 mag). Furthermore, the parameters of the blackbody component reveal a cooling envelope at an apparent initial radius of 7 x 10(exp 11) cm, which is compatible with a dense wind surrounding a Wolf-Rayet star. A multicolor comparison shows that SN 2010bh is 60 - 70% as bright as SN 1998bw. Reaching maximum brightness at 8 - 9 days after the burst in the blue bands, SN 20lObh proves to be the most rapidly evolving GRB-SNe to date. Modelling of the quasi-bolometric light curve yields M(sub Ni) = 0.21 +/- 0.03 solar M and M(sub ej) = 2.6 +/- 0.2 solar M, typical of values within the GRB-SN population. The kinetic energy is E(sub k) = (2.4 +/- 0.7) x 10(exp 52) erg, which is making this SN the second most energetic GRB-SN after SN 1998bw. Conclusions. This supernova has one of the earliest peaks ever recorded and thereafter fades more rapidly than other GRB-SNe, hypernovae, or typical type-Ic SNe. This could be explained by a thin envelope expanding at very high velocities, which is therefore unable to retain the gamma-rays that would prolong the duration of the SN event.
NASA Astrophysics Data System (ADS)
Masi, G.; Chiavari, C.; Avila, J.; Esvan, J.; Raffo, S.; Bignozzi, M. C.; Asensio, M. C.; Robbiola, L.; Martini, C.
2016-03-01
Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au-Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (<200 nm) using high energy and lateral resolution synchrotron radiation photoemission (HR-SRPES) of core levels and valence band after conventional characterisation of the samples by Glow Discharge optical Emission Spectroscopy (GD-OES) and conventional X-ray photoelectron spectroscopy (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of chemical imaging using HR-SRPES to study artworks have been investigated on representative replicas.
Tartaglia, L.; Pastorello, A.; Sullivan, M.; ...
2016-03-23
Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartaglia, L.; Pastorello, A.; Sullivan, M.
Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less
Stark widths and shifts for spectral lines of Sn IV
NASA Astrophysics Data System (ADS)
de Andrés-García, I.; Alonso-Medina, A.; Colón, C.
2016-01-01
In this paper, we present theoretical Stark widths and shifts calculated corresponding to 66 spectral lines of Sn IV. We use the Griem semi-empirical approach and the COWAN computer code. For the intermediate coupling calculations, the standard method of least-squares fitting from experimental energy levels was used. Data are presented for an electron density of 1017 cm-3 and temperatures T = 1.1-5.0 (104 K). The matrix elements used in these calculations have been determined from 34 configurations of Sn IV: 4d10ns(n = 5-10), 4d10nd(n = 5-8), 4d95s2, 4d95p2, 4d95s5d, 4d85s5p2 and 4d105g for even parity and 4d10np(n = 5-8), 4d10nf (n = 4-6), 4d95snp(n = 5-8), 4d85s25p and 4d95snf (n = 4-10) for odd parity. Also, in order to test the matrix elements used in our calculations, we present calculated values of radiative lifetimes of 14 levels of Sn IV. There is good agreement between our calculations and the experimental radiative lifetimes obtained from the bibliography. The spectral lines of Sn IV are observed in UV spectra of HD 149499 B obtained with the Far Ultraviolet Spectroscopic Explorer, the Goddard High Resolution Spectrograph and the International Ultraviolet Explorer. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. Also our values of Stark broadening parameters have been compared with the data available in the bibliography.
Margutti, R.; Milisavljevic, D.; Soderberg, A. M.; ...
2013-12-10
The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. We present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E ~ 10 50 erg for an ejecta mass ~0.5 M⊙) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitormore » star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at ~5 × 10 14 cm with M ~ 0.1 M⊙, ejected by the precursor outburst ~40 days before the major explosion. Here, we interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. This modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. In future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.« less
SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase
NASA Astrophysics Data System (ADS)
Barbarino, C.; Dall'Ora, M.; Botticella, M. T.; Della Valle, M.; Zampieri, L.; Maund, J. R.; Pumo, M. L.; Jerkstrand, A.; Benetti, S.; Elias-Rosa, N.; Fraser, M.; Gal-Yam, A.; Hamuy, M.; Inserra, C.; Knapic, C.; LaCluyze, A. P.; Molinaro, M.; Ochner, P.; Pastorello, A.; Pignata, G.; Reichart, D. E.; Ries, C.; Riffeser, A.; Schmidt, B.; Schmidt, M.; Smareglia, R.; Smartt, S. J.; Smith, K.; Sollerman, J.; Sullivan, M.; Tomasella, L.; Turatto, M.; Valenti, S.; Yaron, O.; Young, D.
2015-04-01
We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 × 1042 erg s-1 and duration ˜90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(56Ni) = 0.040 ± 0.015 M⊙ from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M⊙, an initial progenitor radius of 1.6 × 1013 cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M⊙ was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators.
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Smith, M.; Galbany, L.; D'Andrea, C. B.; González-Gaitán, S.; Jarvis, M. J.; Kessler, R.; Kovacs, E.; Lidman, C. Nichol, R. C.; Papadopoulos, A.; Sako, M.; Sullivan, M.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kim, A. G.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Miquel, R.; Nugent, P.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Thomas, R. C.; Walker, A. R.; DES Collaboration
2017-10-01
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ˜10 Gyr) and peaking at MAB = -22.3 ± 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400-3500 Å) properties of the SN, finding velocity of the C III feature changes by ˜5600 km s- 1 over 14 d around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5^{+3.6}_{-2.4} × 109 M⊙, which is more massive than the typical SLSN-I host galaxy.
VizieR Online Data Catalog: SDSS/BOSS/TDSS CIV BAL quasars (Grier+, 2016)
NASA Astrophysics Data System (ADS)
Grier, C. J.; Brandt, W. N.; Hall, P. B.; Trump, J. R.; Filiz, Ak N.; Anderson, S. F.; Green, P. J.; Schneider, D. P.; Sun, M.; Vivek, M.; Beatty, T. G.; Brownstein, J. R.; Roman-Lopes, A.
2016-08-01
We began with the 2005 targets from the BAL catalog of Gibson et al. (2009, J/ApJ/692/758), which were observed by SDSS and targeted for additional observations with Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein et al. 2011AJ....142...72E; Dawson et al. 2013AJ....145...10D) and Time Domain Spectroscopic Survey (TDSS; Morganson et al. 2015ApJ...806..244M). We then searched for BOSS and TDSS observations of these targets as of 2015 June 30, identifying 172 targets that were observed by all three surveys. We restricted the redshift range of our sample to 1.5
Pan, Y. -C.; Foley, R. J.; Smith, M.; ...
2017-06-13
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically con rmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1:861 (a lookback time of 10 Gyr) and peaking at MAB = -22:3 0:1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400{3500 A) properties of the SN, nding velocity of the Ciii feature changes by 5600kms -1 over 14 days around maximum light. We nd the host galaxy of DES15E2mlf has a stellar massmore » of 3:5+3:6 -2:4 109 M , which is more massive than the typical SLSN-I host galaxy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y. -C.; Foley, R. J.; Smith, M.
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically con rmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1:861 (a lookback time of 10 Gyr) and peaking at MAB = -22:3 0:1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400{3500 A) properties of the SN, nding velocity of the Ciii feature changes by 5600kms -1 over 14 days around maximum light. We nd the host galaxy of DES15E2mlf has a stellar massmore » of 3:5+3:6 -2:4 109 M , which is more massive than the typical SLSN-I host galaxy.« less
Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets
NASA Technical Reports Server (NTRS)
Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.
2010-01-01
With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets
VizieR Online Data Catalog: ESSENCE 6yr spectroscopic follow-up (Narayan+, 2016)
NASA Astrophysics Data System (ADS)
Narayan, G.; Rest, A.; Tucker, B. E.; Foley, R. J.; Wood-Vasey, W. M.; Challis, P.; Stubbs, C.; Kirshner, R. P.; Aguilera, C.; Becker, A. C.; Blondin, S.; Clocchiatti, A.; Covarrubias, R.; Damke, G.; Davis, T. M.; Filippenko, A. V.; Ganeshalingam, M.; Garg, A.; Garnavich, P. M.; Hicken, M.; Jha, S. W.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miknaitis, G.; Pignata, G.; Prieto, J. L.; Riess, A. G.; Schmidt, B. P.; Silverman, J. M.; Smith, R. C.; Sollerman, J.; Spyromilio, J.; Suntzeff, N. B.; Tonry, J. L.; Zenteno, A.
2016-10-01
The SN Ia search was carried out on the CTIO 4m Blanco telescope over 197 half-nights in dark and graytime between September and January from 2002 to 2008. Science images were obtained using the MOSAIC II camera through two primary filters (denoted R and I) similar to Cousins RC and IC. The field of view of the system is 0.36deg2 on the sky. See section 2 for further details and subdirectory "lcs" available on the FTP. We obtained spectroscopic follow up for the selected ESSENCE objects using a range of facilities including the Blue Channel spectrograph on the MMT; IMACS on Baade and LDSS2 and LDSS3 on Clay at the Las Campanas Observatory; GMOS on Gemini North and South; FORS1 on the 8m Very Large Telescope (VLT); and LRIS, ESI and DEIMOS at the W. M. Keck Observatory. (2 data files).
NASA Technical Reports Server (NTRS)
Miller, M. D.
1980-01-01
Lead salt diode lasers are being used increasingly as tunable sources of monochromatic infrared radiation in a variety of spectroscopic systems. These devices are particularly useful, both in the laboratory and in the field, because of their high spectral brightness (compared to thermal sources) and wide spectral coverage (compared to line-tunable gas lasers). While the primary commercial application of these lasers has been for ultrahigh resolution laboratory spectroscopy, there are numerous systems applications, including laser absorbtion pollution monitors and laser heterodyne radiometers, for which diode lasers have great potential utility. Problem areas related to the wider use of these components are identified. Among these are total tuning range, mode control, and high fabrication cost. A fabrication technique which specifically addresses the problems of tuning range and cost, and which also has potential application for mode control, is reported.
Zecca, Luigi; Stroppolo, Antonella; Gatti, Alberto; Tampellini, Davide; Toscani, Marco; Gallorini, Mario; Giaveri, Giuseppe; Arosio, Paolo; Santambrogio, Paolo; Fariello, Ruggero G.; Karatekin, Erdem; Kleinman, Mark H.; Turro, Nicholas; Hornykiewicz, Oleh; Zucca, Fabio A.
2004-01-01
In this study, a comparative analysis of metal-related neuronal vulnerability was performed in two brainstem nuclei, the locus coeruleus (LC) and substantia nigra (SN), known targets of the etiological noxae in Parkinson's disease and related disorders. LC and SN pars compacta neurons both degenerate in Parkinson's disease and other Parkinsonisms; however, LC neurons are comparatively less affected and with a variable degree of involvement. In this study, iron, copper, and their major molecular forms like ferritins, ceruloplasmin, neuromelanin (NM), manganese-superoxide dismutase (SOD), and copper/zinc-SOD were measured in LC and SN of normal subjects at different ages. Iron content in LC was much lower than that in SN, and the ratio heavy-chain ferritin/iron in LC was higher than in the SN. The NM concentration was similar in LC and SN, but the iron content in NM of LC was much lower than SN. In both regions, heavy- and light-chain ferritins were present only in glia and were not detectable in neurons. These data suggest that in LC neurons, the iron mobilization and toxicity is lower than that in SN and is efficiently buffered by NM. The bigger damage occurring in SN could be related to the higher content of iron. Ferritins accomplish the same function of buffering iron in glial cells. Ceruloplasmin levels were similar in LC and SN, but copper was higher in LC. However, the copper content in NM of LC was higher than that of SN, indicating a higher copper mobilization in LC neurons. Manganese-SOD and copper/zinc-SOD had similar age trend in LC and SN. These results may explain at least one of the reasons underlying lower vulnerability of LC compared to SN in Parkinsonian syndromes. PMID:15210960
Super-luminous Type II supernovae powered by magnetars
NASA Astrophysics Data System (ADS)
Dessart, Luc; Audit, Edouard
2018-05-01
Magnetar power is believed to be at the origin of numerous super-luminous supernovae (SNe) of Type Ic, arising from compact, hydrogen-deficient, Wolf-Rayet type stars. Here, we investigate the properties that magnetar power would have on standard-energy SNe associated with 15-20 M⊙ supergiant stars, either red (RSG; extended) or blue (BSG; more compact). We have used a combination of Eulerian gray radiation-hydrodynamics and non-LTE steady-state radiative transfer to study their dynamical, photometric, and spectroscopic properties. Adopting magnetar fields of 1, 3.5, 7 × 1014 G and rotational energies of 0.4, 1, and 3 × 1051 erg, we produce bolometric light curves with a broad maximum covering 50-150 d and a magnitude of 1043-1044 erg s-1. The spectra at maximum light are analogous to those of standard SNe II-P but bluer. Although the magnetar energy is channelled in equal proportion between SN kinetic energy and SN luminosity, the latter may be boosted by a factor of 10-100 compared to a standard SN II. This influence breaks the observed relation between brightness and ejecta expansion rate of standard Type II SNe. Magnetar energy injection also delays recombination and may even cause re-ionization, with a reversal in photospheric temperature and velocity. Depositing the magnetar energy in a narrow mass shell at the ejecta base leads to the formation of a dense shell at a few 1000 km s-1, which causes a light-curve bump at the end of the photospheric phase. Depositing this energy over a broad range of mass in the inner ejecta, to mimic the effect of multi-dimensional fluid instabilities, prevents the formation of a dense shell and produces an earlier-rising and smoother light curve. The magnetar influence on the SN radiation is generally not visible prior to 20-30 d, during which one may discern a BSG from a RSG progenitor. We propose a magnetar model for the super-luminous Type II SN OGLE-SN14-073.
NASA Technical Reports Server (NTRS)
Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.;
2014-01-01
We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.
Post-maximum Near-infrared Spectra of SN 2014J: A Search for Interaction Signatures
NASA Astrophysics Data System (ADS)
Sand, D. J.; Hsiao, E. Y.; Banerjee, D. P. K.; Marion, G. H.; Diamond, T. R.; Joshi, V.; Parrent, J. T.; Phillips, M. M.; Stritzinger, M. D.; Venkataraman, V.
2016-05-01
We present near-infrared (NIR) spectroscopic and photometric observations of the nearby Type Ia SN 2014J. The 17 NIR spectra span epochs from +15.3 to +92.5 days after B-band maximum light, while the {{JHK}}s photometry include epochs from -10 to +71 days. These data are used to constrain the progenitor system of SN 2014J utilizing the Paβ line, following recent suggestions that this phase period and the NIR in particular are excellent for constraining the amount of swept-up hydrogen-rich material associated with a non-degenerate companion star. We find no evidence for Paβ emission lines in our post-maximum spectra, with a rough hydrogen mass limit of ≲ 0.1 M ⊙, which is consistent with previous limits in SN 2014J from late-time optical spectra of the Hα line. Nonetheless, the growing data set of high-quality NIR spectra holds the promise of very useful hydrogen constraints. Based on observations obtained at the Gemini Observatory under program GN-2014A-Q-8 (PI: Sand). Gemini is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).
NASA Astrophysics Data System (ADS)
Masi, G.; Balbo, A.; Esvan, J.; Monticelli, C.; Avila, J.; Robbiola, L.; Bernardi, E.; Bignozzi, M. C.; Asensio, M. C.; Martini, C.; Chiavari, C.
2018-03-01
Application of a protective coating is the most widely used conservation treatment for outdoor bronzes (cast Cu-Sn-Zn-Pb-Sb alloys). However, improving coating protectiveness requires detailed knowledge of the coating/substrate chemical bonding. This is particularly the case for 3-mercapto-propyl-trimethoxy-silane (PropS-SH) applied on bronze, exhibiting a good protective behaviour in outdoor simulated conditions. The present work deals with X-Ray Photoelectron Spectroscopy (XPS) and Electron Microscopy (FEG-SEM + FIB (Focused Ion Beam)) characterization of a thin PropS-SH film on bronze. In particular, in order to better understand the influence of alloying elements on coating performance, PropS-SH was studied first on pure Cu and Sn substrates then on bronzes with increasing alloy additions: Cu8Sn as well as a quinary Cu-Sn-Zn-Pb-Sb bronze. Moreover, considering the real application of this coating on historical bronze substrates, previously artificially aged ("patinated") bronze samples were prepared and a comparison between bare and "patinated" quinary bronzes was performed. In the case of coated quinary bronze, the free surface of samples was analysed by High Resolution Photoelectron Spectroscopy using Synchrotron Radiation (HR-SRPES) at ANTARES (Synchrotron SOLEIL), which offers a higher energy and lateral resolution. By compiling complementary spectroscopic and imaging information, a deeper insight into the interactions between the protective coating and the bronze substrate was achieved.
NASA Astrophysics Data System (ADS)
Rodney, Steven A.; Patel, Brandon; Scolnic, Daniel; Foley, Ryan J.; Molino, Alberto; Brammer, Gabriel; Jauzac, Mathilde; Bradač, Maruša; Broadhurst, Tom; Coe, Dan; Diego, Jose M.; Graur, Or; Hjorth, Jens; Hoag, Austin; Jha, Saurabh W.; Johnson, Traci L.; Kelly, Patrick; Lam, Daniel; McCully, Curtis; Medezinski, Elinor; Meneghetti, Massimo; Merten, Julian; Richard, Johan; Riess, Adam; Sharon, Keren; Strolger, Louis-Gregory; Treu, Tommaso; Wang, Xin; Williams, Liliya L. R.; Zitrin, Adi
2015-09-01
SN HFF14Tom is a Type Ia SN discovered at z=1.3457+/- 0.0001 behind the galaxy cluster Abell 2744 (z = 0.308). In a cosmology-independent analysis, we find that HFF14Tom is 0.77 ± 0.15 mag brighter than unlensed Type Ia SNe at similar redshift, implying a lensing magnification of {μ }{obs}=2.03+/- 0.29. This observed magnification provides a rare opportunity for a direct empirical test of galaxy cluster lens models. Here we test 17 lens models, 13 of which were generated before the SN magnification was known, qualifying as pure “blind tests.” The models are collectively fairly accurate: 8 of the models deliver median magnifications that are consistent with the measured μ to within 1σ. However, there is a subtle systematic bias: the significant disagreements all involve models overpredicting the magnification. We evaluate possible causes for this mild bias, and find no single physical or methodological explanation to account for it. We do find that model accuracy can be improved to some extent with stringent quality cuts on multiply imaged systems, such as requiring that a large fraction have spectroscopic redshifts. In addition to testing model accuracies as we have done here, Type Ia SN magnifications could also be used as inputs for future lens models of Abell 2744 and other clusters, providing valuable constraints in regions where traditional strong- and weak-lensing information is unavailable.
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae
NASA Astrophysics Data System (ADS)
Stringfellow, Guy; Gvaramadze, Vasilii V.
2014-08-01
Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.
SUPERCONDUCTIVITY IN METALS AND ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry, W.H.; Cody, G.D.; Cooper, J.L.
1962-01-01
Methods were developed for the measurement of the interphase energy in superconductors. A description of the method is given along with preliminary results on thin foils and films of Sn. Measurements were made of the thermal contact resistance (Kaptiza resistance) between various solids and liquid He. These measurements were made in the normal and superconducting states for Pb, Sn, and In, and for the insulator sapphire. Measurements were made of the transition temperatures in the system (Nb, Ta, V)/sub 3/Sn. The transition temperatures range from 2.8 to 18 deg K and can be related to a simple mass and volumemore » dependence. A new method of preparation of Nb/sub 3/Sn was developed and is described in detail. With this method it is possible to prepare crystalline Nb/ sub 3/Sn and to deposit films of Nb/sub 3/SN in various geometries. The application of this technique to the continuous deposition of Nb/sub 3/Sn on wire is described, and some superconducting properties of this wire are given. Alloying experiments were raade and results indicate ambiguities in the electron- to-atom ratio ascribed to various elements. Resistance measurements on sintered and nonsintered specimens of Nb/sub 3/Sn reveal a resistance anomaly near 100 deg K. (auth)« less
NASA Astrophysics Data System (ADS)
Tran, Tuan Thien
The germanium-tin (Ge1-xSnx) material system is expected to be a direct bandgap group IV semiconductor at a Sn content of 6.5-11 at.%. Hence there has been much interest in preparing such alloys since they are compatible with silicon and they raise the possibility of integrating photonics functionality into silicon circuitry. However, the maximum solid solubility of Sn in Ge is around 0.5 at.% and non-equilibrium deposition techniques such as molecular beam epitaxy or chemical vapour deposition have been used to achieve the desired high Sn concentrations. In this PhD work, the combination of ion implantation and pulsed laser melting (PLM) is demonstrated to be an alternative promising method to produce a highly Sn concentrated alloy with good crystal quality. In initial studies, it was shown that 100 keV Sn implants followed by PLM produced high quality alloys with up to 6.2 at.%Sn but above these Sn concentrations the crystal quality was poor. The structural properties of the ≤6.2 at.% alloys such as soluble Sn concentration, strain distribution and crystal quality have been characterised by Rutherford backscattering spectrometry (RBS), Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The optical properties and electronic band structure have been studied by spectroscopic ellipsometry. The introduction of substitutional Sn into Ge is shown to either induce a splitting between light and heavy hole subbands or lower the conduction band at the Gamma valley. However, at higher implant doses needed to achieve >6.2 at.% Sn, ion-beam-induced porosity in Ge starts to occur, which drastically reduces the retained amount of the implanted Sn and such microstructure also hinders good crystallisation of the material during PLM. To solve this problem, it was shown that a nanometer thick SiO2 layer deposited on the Ge substrate prior to the implantation can largely eliminate the formation of porosity. This capping SiO2 layer also helps to increase the retained Sn concentration up to 15 at.% after implantation, as well as significantly improving the crystal quality of the Ge-Sn layer after PLM. With the use of the capping layer, a good quality Ge-Sn layer with 9 at.% Sn has been achieved using Sn implants at an energy of 120 keV. However, the thin film alloys produced by 100 keV or 120 keV Sn implantation and PLM are shown to contain compressive strain as a result of the large lattice mismatch between Ge and high Sn content alloys. Such strain compromises the tendency towards a direct bandgap material and hence strain relaxation is highly desirable. A thermal stability study showed that the thin film strained material is metastable up to 400°C, but thereafter Sn comes out of solution and diffuses to the material surface. To investigate a possible pathway to the synthesis of strain-relaxed material, a higher Sn implant energy of 350 keV was used to produce thicker alloy layers. XRD/reciprocal space mapping showed that this thicker alloy material is largely relaxed after PLM, which is beneficial for the direct band gap transition and solves the trade-off between higher Sn concentration and compressive strain. However, RBS indicates a sub-surface band of disorder which suggested a possible mechanism for the strain relaxation. Indeed, TEM examination of such material showed the material relaxed via the generation of non-equilibrium threading defects. Despite such defects, a PL study of this relaxed material found photon emission at a wavelength of 2150 nm for 6-9 at.% Sn alloys. However, the intensity of the emission was variable across different Sn content alloys, presumably as a result of the threading defects. A possible pathway to removing such defects is given that may enable both photodetectors and lasers to be fabricated at wavelengths above 2mum.
Experimental and Theoretical Investigations on Intermediate Band in Doped Nano-SnS2
NASA Astrophysics Data System (ADS)
Heiba, Zein K.; Mohamed, Mohamed Bakr; Abdel Kader, M. H.
2018-03-01
Nano-SnS2 and Sn0.75 X 0.25S2 (X = Cr, Fe, Y) have been prepared by thermolysis method. Phase analysis of x-ray diffraction data confirmed the single-phase nature of all prepared samples, with some residual carbon contributing to the background. Rietveld refinement revealed high anisotropy in crystallite size, signifying a cylindrical structure for the particle shape, as confirmed by transmission electron microscopy. The refined occupancies obtained for the doped cations were found to be smaller than the nominal target doping ratio (25%). Fourier-transform infrared spectra showed presence of Sn-S bond in all samples. The energy was found to be 3.42 eV, 3.33 eV, 2.1 eV and 3.14 eV, and 3.62 eV for undoped SnS2 and when doped with Cr, Fe, and Y, respectively. Density functional theory calculations illustrated that Fe-doped SnS2 has two bandgaps [normal and intermediate (IB) bands]. Meanwhile, Sn0.75Fe0.25S2 sample showed anti-Stokes and an extra photoluminescence peak related to the newly created intermediate band (IB) inside the energy gap. On the other hand, pure SnS2 and Sn0.75 X 0.25S2 (X = Cr, Y) samples emitted four photoluminescence subspectra in ultraviolet, violet, and blue regions.
The salience network in the apathy of late-life depression.
Yuen, Genevieve S; Gunning-Dixon, Faith M; Hoptman, Matthew J; AbdelMalak, Bassem; McGovern, Amanda R; Seirup, Joanna K; Alexopoulos, George S
2014-11-01
Apathy is prevalent in late-life depression and predicts poor response to antidepressants, chronicity of depression, disability, and greater burden to caregivers. However, little is known about its neurobiology. Salience processing provides motivational context to stimuli. The aim of this study was to examine the salience network (SN) resting-state functional connectivity (rsFC) pattern in elderly depressed subjects with and without apathy. Resting-state functional MRI data were collected from 16 non-demented, non-MCI, elderly depressed subjects and 10 normal elderly subjects who were psychotropic-free for at least 2 weeks. The depressed group included 7 elderly, depressed subjects with high comorbid apathy and 9 with low apathy. We analyzed the rsFC patterns of the right anterior insular cortex (rAI), a primary node of the SN. Relative to non-apathetic depressed elderly, depressed elderly subjects with high apathy had decreased rsFC of the rAI to dorsal anterior cingulate and to subcortical/limbic components of the SN. Depressed elderly subjects with high apathy also exhibited increased rsFC of the rAI to right dorsolateral prefrontal cortex and right posterior cingulate cortex when compared to non-apathetic depressed elderly. Elderly depressed subjects with high apathy display decreased intrinsic rsFC of the SN and an altered pattern of SN rsFC to the right DLPFC node of the central executive network when compared to elderly non-apathetic depressed and normal, elderly subjects. These results suggest a unique biological signature of the apathy of late-life depression and may implicate a role for the rAI and SN in motivated behavior. Copyright © 2014 John Wiley & Sons, Ltd.
Mapping Calcium Rich Ejecta in Two Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Fesen, Robert
2016-10-01
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao
2016-04-20
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties frommore » the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.« less
Heavy Element Abundances in NGC 5846
NASA Technical Reports Server (NTRS)
Jones, Christine
2000-01-01
In this paper we analyze the diffuse X-ray coronae surrounding the elliptical galaxy NGC 5846, combining measurements from two observatories, ROSAT and the Advanced Satellite for Cosmology and Astrophysics. We map the gas temperature distribution and find a central cool region within an approximately isothermal gas halo extending to a radius of about 50 kpc and evidence for a temperature decrease at larger radii. With a radially falling temperature profile, the total mass converges to (9.6 +/- 1.0) x 10(exp 12) solar mass at 230 kpc radius. This corresponds to a total mass to blue light ratio of 53 +/- 5 solar mass/solar luminosity. As in other early type galaxies, the gas mass is only a few percent of the total mass. Using the spectroscopic measurements, we also derive radial distributions for the heavy elements silicon and iron and find that the abundances of both decrease with galaxy radius. The mass ratio of Si to Fe lies between the theoretical predictions for element production in SN Ia and SN II, suggesting an important role for SN Ia, as well as SN II, for gas enrichment in ellipticals. Using the 2 SN la yield of Si, we set an upper limit of 0.012 h(sup 2, sub 50) solar neutrino units (SNU) for the SN Ia rate at radii >50 kpc, which is independent of possible uncertainties in the iron L-shell modeling. We compare our observations with the theoretical predictions for the chemical evolution of ellipticals. We conclude that the metal content in stars, if explained by the star formation duration, requires a significant decline in the duration of star formation with galaxy radius, ranging from 1 Gyr at the center to 0.01 Gyr at 100 kpc radius. Alternatively, the decline in metallicity with galaxy radius may be caused by a similar drop with radius in the efficiency of star formation. Based on the Si and Fe measurements presented in this paper, we conclude that the latter scenario is preferred unless a dependence of the SN Ia rate on stellar metallicity is invoked.
Tugcu, Volkan; Ilbey, Yusuf Ozlem; Mutlu, Bircan; Tasci, Ali Ihsan
2010-08-01
Laparoendoscopic single-site surgery (LESS), an attempt to further enhance the cosmetic benefits of minimally invasive surgery while minimizing the potential morbidity associated with multiple incisions, has been developed recently. Our aim was to compare LESS simple nephrectomy (LESS-SN) and conventional transperitoneal laparoscopic simple nephrectomy (CTL-SN). In this randomized study that was conducted between December 2008 and September 2009, 27 patients who needed simple nephrectomy were randomized to either LESS-SN or CTL-SN. All procedures in both groups were performed by the first author, who is experienced in laparoscopic surgery. Patient characteristics, perioperative details, and time to return to work were recorded. Postoperative evaluation of pain and use of analgesic medication were recorded. There was no difference in median operative time (117.5 vs 114 min, P = 0.52), blood loss (50.71 vs 47.15 mL, P = 0.60), transfusion rates (0% for both), and hospitalization time (2.07 vs 2.11 days, P = 0.74) between the LESS-SN and CTL-SN groups. Time to return to normal activities was shorter in the LESS-SN group compared with the CTL-SN group (10.7 vs 13.5 days, P = 0.001). Both the visual analogue scale and the postoperative use of analgesics were significantly lower during postoperative days 1, 2, and 3 in patients who underwent LESS-SN, compared with patients who underwent CTL-SN. There were no intraoperative or postoperative complications in both groups. Compared with CTL-SN, LESS-SN was more expensive, but all patients undergoing LESS-SN were very pleased with the cosmetic outcome (no visible scars). The early experience described in this study suggests that LESS-SN is a safe and effective alternative to CTL-SN that provides surgeons with a minimally invasive surgical option and the ability to hide the surgical incision within the umbilicus; however, a larger series is necessary to confirm these findings and to determine if there are any benefits in pain, recovery, or cosmesis.
An electron tunneling study of superconductivity in amorphous Sn(sub 1-x)Cu(sub x) thin films
NASA Technical Reports Server (NTRS)
Naugle, D. G.; Watson, P. W., III; Rathnayaka, K. D. D.
1995-01-01
The amorphous phase of Sn would have a superconducting transition temperature near 8 K, much higher than that of crystalline Sn with T(sub c) = 3.5 K. To obtain the amorphous phase, however, it is necessary to use a Sn alloy, usually Cu, and quench condense the alloy films onto a liquid He temperature substrate. Alloying with Cu reduces the superconducting transition temperature almost linearly with Cu concentration with an extrapolation of T(sub c) to zero for x = 0.85. Analysis of the tunneling characteristics between a normal metal electrode with an insulating barrier and superconducting amorphous Sn-Cu films provides detailed information on the changes in the electron-phonon coupling which determines T(sub c) in these alloys. The change from very strong electron-phonon coupling to weak-coupling with the increase in Cu content of amorphous Sn-Cu alloys for the range 0.08 is less than or equal to x is less than or equal to 0.41 is presented and discussed in terms of theories of electron-phonon coupling in disordered metals.
Forced Ion Migration for Chalcogenide Phase Change Memory Device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A (Inventor)
2013-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.
Forced ion migration for chalcogenide phase change memory device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A. (Inventor)
2011-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.
Forced ion migration for chalcogenide phase change memory device
NASA Technical Reports Server (NTRS)
Campbell, Kristy A. (Inventor)
2012-01-01
Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.
DOT National Transportation Integrated Search
1977-07-01
The altitude tolerance of 10 spirometrically impaired (SI) general aviation pilots with an average forced midexpiratory flow (FEF sub 25-75%) value of 65.1 percent was compared to that of 10 spirometrically normal (SN) pilots. Cardiorespiratory param...
Studies of fission fragment yields via high-resolution γ-ray spectroscopy
NASA Astrophysics Data System (ADS)
Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.
2018-03-01
Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.
Zhang, Y; Li, D D; Chen, X W
2017-06-20
Objective: Case-control study analysis of the speech discrimination of unilateral microtia and external auditory canal atresia patients with normal hearing subjects in quiet and noisy environment. To understand the speech recognition results of patients with unilateral external auditory canal atresia and provide scientific basis for clinical early intervention. Method: Twenty patients with unilateral congenital microtia malformation combined external auditory canal atresia, 20 age matched normal subjects as control group. All subjects used Mandarin speech audiometry material, to test the speech discrimination scores (SDS) in quiet and noisy environment in sound field. Result: There's no significant difference of speech discrimination scores under the condition of quiet between two groups. There's a statistically significant difference when the speech signal in the affected side and noise in the nomalside (single syllable, double syllable, statements; S/N=0 and S/N=-10) ( P <0.05). There's no significant difference of speech discrimination scores when the speech signal in the nomalside and noise in the affected side. There's a statistically significant difference in condition of the signal and noise in the same side when used one-syllable word recognition (S/N=0 and S/N=-5) ( P <0.05), while double syllable word and statement has no statistically significant difference ( P >0.05). Conclusion: The speech discrimination scores of unilateral congenital microtia malformation patients with external auditory canal atresia under the condition of noise is lower than the normal subjects. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
NASA Astrophysics Data System (ADS)
Das, Bidyut B.; Glassman, Wenling S.; Alfano, Robert R.; Cleary, Joseph; Prudente, R.; Celmer, Edward J.; Lubicz, Stephanie
1991-06-01
Malignant breast tumors can be separated from benign and normal tissues using uv-fluorescence spectroscopic technique. Using the same method one can also distinguish cancerous tissues from noncancerous ones in case of cervix, uterus and ovary.
High-pressure high-temperature crystal growth of equiatomic rare earth stannides RENiSn and REPdSn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heymann, Gunter; Heying, Birgit; Rodewald, Ute Ch.
2016-04-15
The two series of equiatomic rare earth (RE) stannides RENiSn and REPdSn were systematically studied with respect to high-pressure modifications. The normal-pressure (NP) low-temperature (LT) modifications were synthesized by arc-melting and subsequently treated under high-pressure (P{sub max}=11.5 GPa) and high-temperature (T{sub max}=1570 K) conditions in a Walker-type multi-anvil press. The pressure and temperature conditions were systematically varied in order to improve the crystallization conditions. The new ZrNiAl-type high-pressure modifications HP-RENiSn (RE=Sc, Y, La, Gd–Lu) and HP-REPdSn (RE=Y, Sm–Dy) were obtained in 80 mg quantities, several of them in X-ray pure form. Some of the REPdSn stannides with the heavy raremore » earth elements show high-temperature (HT) modifications. The structures of HP-ScNiSn, HP-GdNiSn, HP-DyNiSn (both ZrNiAl-type), NP-YbNiSn, and HT-ErPdSn (both TiNiSi-type) were refined from single crystal diffractometer data, indicating full ordering of the transition metal and tin sites. TiNiSi-type NP-EuPdSn transforms to MgZn{sub 2}-type HP-EuPdSn: P6{sub 3}/mmc, a=588.5(2), c=917.0(3) pm, wR2=0.0769, 211 F{sup 2} values, 11 variables. The structure refinement indicated statistical occupancy of the palladium and tin sites on the tetrahedral network. The X-ray pure high-pressure phases were studied with respect to their magnetic properties. HP-YPdSn is a Pauli paramagnet. The susceptibility data of HP-TbNiSn, HP-DyNiSn, HP-GdPdSn, and HP-TbPdSn show experimental magnetic moments close to the free ion values of RE{sup 3+} and antiferromagnetic ordering at low temperature with the highest Néel temperature of 15.8 K for HP-TbPdSn. HP-SmPdSn shows the typical Van Vleck type behavior along with antiferromagnetic ordering at T{sub N}=5.1 K. HP-EuPdSn shows divalent europium and antiferromagnetic ordering at 8.9 K followed by a spin reorientation at 5.7 K. - Graphical abstract: Packing of the polyhedra in the high-pressure phase of EuPdSn. - Highlights: • High-pressure phases of the stannides RENiSn and REPdSn. • Crystal growth conditions. • Pressure- and temperature-driven phase transitions. • Magnetic properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, P.; Yamanaka, M.; Itoh, R.
2013-04-20
We present a study of SN 2009js in NGC 918. Multi-band Kanata optical photometry covering the first {approx}120 days shows the source to be a Type IIP SN. Reddening is dominated by that due to our Galaxy. One-year-post-explosion photometry with the New Technology Telescope and a Subaru optical spectrum 16 days post-discovery both imply a good match with the well-studied subluminous SN 2005cs. The plateau-phase luminosity of SN 2009js and its plateau duration are more similar to the intermediate luminosity IIP SN 2008in. Thus, SN 2009js shares characteristics with both subluminous and intermediate luminosity supernovae (SNe). Its radioactive tail luminositymore » lies between SN 2005cs and SN 2008in, whereas its quasi-bolometric luminosity decline from peak to plateau (quantified by a newly defined parameter {Delta}logL, which measures adiabatic cooling following shock breakout) is much smaller than both the others'. We estimate the ejected mass of {sup 56}Ni to be low ({approx}0.007 M{sub Sun }). The SN explosion energy appears to have been small, similar to that of SN 2005cs. SN 2009js is the first subluminous SN IIP to be studied in the mid-infrared. It was serendipitously caught by Spitzer at very early times. In addition, it was detected by WISE 105 days later with a significant 4.6 {mu}m flux excess above the photosphere. The infrared excess luminosity relative to the photosphere is clearly smaller than that of SN 2004dj, which has been extensively studied in the mid-infrared. The excess may be tentatively assigned to heated dust with mass {approx}3 Multiplication-Sign 10{sup -5} M{sub Sun }, or to CO fundamental emission as a precursor to dust formation.« less
A giant outburst two years before the core-collapse of a massive star.
Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L
2007-06-14
The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.
VizieR Online Data Catalog: Abundances of metal-poor star HD 94028 (Roederer+, 2016)
NASA Astrophysics Data System (ADS)
Roederer, I. U.; Karakas, A. I.; Pignatari, M.; Herwig, F.
2016-06-01
We use two NUV spectroscopic data sets of HD 94028 available in the Mikulski Archive for Space Telescopes. These observations were made using STIS on board the HST. One spectrum (data sets O5CN01-03, GO-8197, PI. Duncan) has very high spectral resolution (R~110000). This spectrum covers ~1885-2147Å with signal-to-noise ratios (S/N)35/1 per pixel near 2140Å. The other spectrum (data sets O56D06-07, GO-7402, PI. Peterson) has high spectral resolution (R~30000). This spectrum covers 2280-3117Å with S/N ranging from ~20 near 2300Å to ~40 near 3100Å. Roederer et al. (2014, J/AJ/147/136) derived abundances from an optical spectrum of HD 94028 taken using the Robert G. Tull Coude Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, Texas. We rederive abundances from this spectrum. We also use an optical spectrum taken with the Ultraviolet and Visual Echelle Spectrograph (UVES) on the Very Large Telescope (VLT) Kueyen at Cerro Paranal, Chile. We obtained this spectrum from the ESO Science Archive. This spectrum covers 3050-3860Å at R~37000 with S/N ranging from ~40 near 3200Å to ~130 near 3800Å. (3 data files).
Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun
2015-01-01
As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105
SN-38 loaded polymeric micelles to enhance cancer therapy
NASA Astrophysics Data System (ADS)
Gu, Quanrong; Xing, James Z.; Huang, Min; He, Chuan; Chen, Jie
2012-05-01
7-Ethyl-10-hydroxycamptothecin (SN-38) loaded poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic F-108) and poly(ethylene glycol)-block-poly(ɛ-caprolactone) (PEG-b-PCL) nanoparticles were successfully prepared by a modified film hydration method and characterized by scanning electric microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). Satisfactory drug loading of 20.73 ± 0.66% and a high encapsulation efficiency of 83.83 ± 1.32% were achieved. The SN-38 nanoparticles (SN-38 NPs) can completely disperse into a phosphate buffered saline (PBS) medium to produce a clear aqueous suspension that remains stable for up to three days. Total drug releases were 67.91% and 91.09% after 24 h in a PBS or fetal bovine serum (FBS) medium. Half maximal inhibitory concentration (IC50) tests of SN-38 and SN-38 NPs on A549 lung cells produced results of 200.0 ± 14.9 ng ml-1 and 80.0 ± 4.6 ng ml-1, respectively. Similarly, IC50 tests of SN-38 and SN-38 NPs on MCF-7 breast cells yielded results of 16.0 ± 0.7 ng ml-1 and 8.0 ± 0.5 ng ml-1, respectively. These in vitro IC50 studies show significant (p < 0.01) enhancement of the SN-38 NP drug efficiency in killing cancer cells in comparison to the free drug SN-38 control. All the materials used for this nanoformulation are approved by the US FDA, with the virtue of extremely low toxicity to normal cells.
Selecting AGN through Variability in SN Datasets
NASA Astrophysics Data System (ADS)
Boutsia, K.; Leibundgut, B.; Trevese, D.; Vagnetti, F.
2010-07-01
Variability is a main property of Active Galactic Nuclei (AGN) and it was adopted as a selection criterion using multi epoch surveys conducted for the detection of supernovae (SNe). We have used two SN datasets. First we selected the AXAF field of the STRESS project, centered in the Chandra Deep Field South where, besides the deep X-ray surveys also various optical catalogs exist. Our method yielded 132 variable AGN candidates. We then extended our method including the dataset of the ESSENCE project that has been active for 6 years, producing high quality light curves in the R and I bands. We obtained a sample of ˜4800 variable sources, down to R=22, in the whole 12 deg2 ESSENCE field. Among them, a subsample of ˜500 high priority AGN candidates was created using as secondary criterion the shape of the structure function. In a pilot spectroscopic run we have confirmed the AGN nature for nearly all of our candidates.
SnO2/Pt Thin Film Laser Ablated Gas Sensor Array
Shahrokh Abadi, Mohammad Hadi; Hamidon, Mohd Nizar; Shaari, Abdul Halim; Abdullah, Norhafizah; Wagiran, Rahman
2011-01-01
A gas sensor array was developed in a 10 × 10 mm2 space using Screen Printing and Pulse Laser Ablation Deposition (PLAD) techniques. Heater, electrode, and an insulator interlayer were printed using the screen printing method on an alumina substrate, while tin oxide and platinum films, as sensing and catalyst layers, were deposited on the electrode at room temperature using the PLAD method, respectively. To ablate SnO2 and Pt targets, depositions were achieved by using a 1,064 nm Nd-YAG laser, with a power of 0.7 J/s, at different deposition times of 2, 5 and 10 min, in an atmosphere containing 0.04 mbar (4 kPa) of O2. A range of spectroscopic diffraction and real space imaging techniques, SEM, EDX, XRD, and AFM were used in order to characterize the surface morphology, structure, and composition of the films. Measurement on the array shows sensitivity to some solvent and wood smoke can be achieved with short response and recovery times. PMID:22164041
The Experimental Evidence in Support of Glycosylation Mechanisms at the SN1-SN2 Interface.
Adero, Philip Ouma; Amarasekara, Harsha; Wen, Peng; Bohé, Luis; Crich, David
2018-05-30
A critical review of the state-of-the-art evidence in support of the mechanisms of glycosylation reactions is provided. Factors affecting the stability of putative oxocarbenium ions as intermediates at the S N 1 end of the mechanistic continuum are first surveyed before the evidence, spectroscopic and indirect, for the existence of such species on the time scale of glycosylation reactions is presented. Current models for diastereoselectivity in nucleophilic attack on oxocarbenium ions are then described. Evidence in support of the intermediacy of activated covalent glycosyl donors is reviewed, before the influences of the structure of the nucleophile, of the solvent, of temperature, and of donor-acceptor hydrogen bonding on the mechanism of glycosylation reactions are surveyed. Studies on the kinetics of glycosylation reactions and the use of kinetic isotope effects for the determination of transition-state structure are presented, before computational models are finally surveyed. The review concludes with a critical appraisal of the state of the art.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Masayuki; Nakaoka, Tatsuya; Kawabata, Miho
We present the early-phase spectra and the light curves of the broad-lined (BL) supernova (SN) 2016coi from t = 7 to 67 days after the estimated explosion date. This SN was initially reported as a BL Type SN Ic (SN Ic-BL). However, we found that spectra up to t = 12 days exhibited the He i λ 5876, λ 6678, and λ 7065 absorption lines. We show that the smoothed and blueshifted spectra of normal SNe Ib are remarkably similar to the observed spectrum of SN 2016coi. The line velocities of SN 2016coi were similar to those of SNe Ic-BLmore » and significantly faster than those of SNe Ib. Analyses of the line velocity and light curve suggest that the kinetic energy and the total ejecta mass of SN 2016coi are similar to those of SNe Ic-BL. Together with BL SNe 2009bb and 2012ap, for which the detection of He i was also reported, these SNe could be transitional objects between SNe Ic-BL and SNe Ib, and be classified as BL Type “Ib” SNe (SNe “Ib”-BL). Our work demonstrates the diversity of the outermost layer in BL SNe, which should be related to the variety of the evolutionary paths.« less
The Type IIb Supernova 2013df and its Cool Supergiant Progenitor
NASA Technical Reports Server (NTRS)
VanDyk, Schuyler D.; Zeng, Weikang; Fox, Ori D.; Cenko, S. Bradley; Clubb, Kelsey I.; Filippenko, Alexei; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Kelly, Patrick L.;
2014-01-01
We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type II b, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni-56 (is approximately less than 0.06M) was synthesized in the SN 2013df explosion than was the case for the SNe II b 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013dfis estimated to be A(sub V) = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope(HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T(sub eff) = 4250+/-100 K and a bolometric luminosity L(sub bol) =10(exp 4.94+/-0.06) Solar Luminosity. This leads to an effective radius Reff = 545+/-65 Solar Radius. The star likely had an initial mass in the range of 13-17Solar Mass; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.
Breakup effects on alpha spectroscopic factors of 16O
NASA Astrophysics Data System (ADS)
Adhikari, S.; Basu, C.; Sugathan, P.; Jhinghan, A.; Behera, B. R.; Saneesh, N.; Kaur, G.; Thakur, M.; Mahajan, R.; Dubey, R.; Mitra, A. K.
2017-01-01
The triton angular distribution for the 12C(7Li,t)16O* reaction is measured at 20 MeV, populating discrete states of 16O. Continuum discretized coupled reaction channel calculations are used to to extract the alpha spectroscopic properties of 16O states instead of the distorted wave born approximation theory to include the effects of breakup on the transfer process. The alpha reduced width, spectroscopic factors and the asymptotic normalization constant (ANC) of 16O states are extracted. The error in the spectroscopic factor is about 35% and in that of the ANC about 27%.
Frontoparietal cognitive control of verbal memory recall in Alzheimer's disease.
Dhanjal, Novraj S; Wise, Richard J S
2014-08-01
Episodic memory retrieval is reliant upon cognitive control systems, of which 2 have been identified with functional neuroimaging: a cingulo-opercular salience network (SN) and a frontoparietal executive network (EN). In Alzheimer's disease (AD), pathology is distributed throughout higher-order cortices. The hypotheses were that this frontoparietal pathology would impair activity associated with verbal memory recall; and that central cholinesterase inhibition (ChI) would modulate this, improving memory recall. Functional magnetic resonance imaging was used to study normal participants and 2 patient groups: mild cognitive impairment (MCI) and AD. Activity within the EN and SN was observed during free recall of previously heard sentences, and related to measures of recall accuracy. In normal subjects, trials with reduced recall were associated with greater activity in both the SN and EN. Better recall was associated with greater activity in medial regions of the default mode network. By comparison, AD patients showed attenuated responses in both the SN and EN compared with either controls or MCI patients, even after recall performance was matched between groups. Following ChI, AD patients showed no modulation of activity within the SN, but increased activity within the EN. There was also enhanced activity within regions associated with episodic and semantic memory during less successful recall, requiring greater cognitive control. The results indicate that in AD, impaired responses of cognitive control networks during verbal memory recall are partly responsible for reduced recall performance. One action of symptom-modifying treatment is partially to reverse the abnormal function of frontoparietal cognitive control and temporal lobe memory networks. © 2014 American Neurological Association.
Shappee, B. J.; Piro, A. L.; Holoien, T. W. -S.; ...
2016-07-27
On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just ~2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (more » $${\\rm{\\Delta }}{m}_{15}(B)=0.80\\pm 0.05$$), a B-band maximum at 2457015.82 ± 0.03, a rise time of $${16.94}_{-0.10}^{+0.11}$$ days, and moderate host-galaxy extinction ($$E{(B-V)}_{\\mathrm{host}}=0.33\\pm 0.06$$). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of $$\\mu =30.8\\pm 0.2$$, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Lastly, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 $${R}_{\\odot }$$.« less
Galaxy evolution in the densest environments: HST imaging
NASA Astrophysics Data System (ADS)
Jorgensen, Inger
2013-10-01
We propose to process in a consistent fashion all available HST/ACS and WFC3 imaging of seven rich clusters of galaxies at z=1.2-1.6. The clusters are part of our larger project aimed at constraining models for galaxy evolution in dense environments from observations of stellar populations in rich z=1.2-2 galaxy clusters. The main objective is to establish the star formation {SF} history and structural evolution over this epoch during which large changes in SF rates and galaxy structure are expected to take place in cluster galaxies.The observational data required to meet our main objective are deep HST imaging and high S/N spectroscopy of individual cluster members. The HST imaging already exists for the seven rich clusters at z=1.2-1.6 included in this archive proposal. However, the data have not been consistently processed to derive colors, magnitudes, sizes and morphological parameters for all potential cluster members bright enough to be suitable for spectroscopic observations with 8-m class telescopes. We propose to carry out this processing and make all derived parameters publicly available. We will use the parameters derived from the HST imaging to {1} study the structural evolution of the galaxies, {2} select clusters and galaxies for spectroscopic observations, and {3} use the photometry and spectroscopy together for a unified analysis aimed at the SF history and structural changes. The analysis will also utilize data from the Gemini/HST Cluster Galaxy Project, which covers rich clusters at z=0.2-1.0 and for which we have similar HST imaging and high S/N spectroscopy available.
NASA Technical Reports Server (NTRS)
Petre, Robert; Okada, Kyoko; Mihara, Tatehiro; Makishima, Kazuo; Colbert, Edward J. M.
1994-01-01
We present preliminary results of our analysis of the Advanced Satellite for Cosmology and Astrophysics (ASCA) PV phase observation of the nearby spiral galaxy NGC 1313. ASCA cleanly resolves the three previously known luminous sources, one of which is the very luminous supernova, SN 1978k. The spectrum of SN 1978k is described by either a power law with a photon index gamma approximately 2.2 or a thermal model with temperature kT approximately 3.0 keV and abundances Z approximately 0.2 Z(sun). There is no evidence for strong line emission from it or from the other two sources. The spectrum of SN 1978k arises either in shocked gas in extreme departure from ionization equilibrium or from synchrotron processes associated with a newborn pulsar. A second source, near the galactic center, is well-fit by a power-law with a photon index of approximately 1.8. It is possibly an active nucleus-like source, but physically displaced from the optical nucleus of the galaxy. The spectrum of the third source, located 8 kpc south of the nucleus, along with the absence of an optical counterpart, suggests that it is a low mass X-ray binary; but its high X-ray luminosity clouds this interpretation. This observation demonstrates the ability of ASCA to perform effective broad band spectroscopic measurements of sources at a 2-10 keV flux level of 5 x 10(exp -13) erg cm(exp -2) s(exp -1).
An Analysis of the Peculiar Type IIn Supernova 1995N
NASA Astrophysics Data System (ADS)
Baird, M. D.; Garnavich, P. M.; Schlegel, E. M.; Challis, P. M.; Kirshner, R. P.
1998-12-01
SN 1995N is a peculiar type IIn supernova. Spectroscopic and photometric data for this analysis were gathered between May 10, 1995 (two days after discovery) and July 18, 1998. A total of twenty two photometric images and eight spectra were obtained at the FLWO and MMTO. The photometric data show a broad maximum at R=17.0 occurred in late October, 1995, followed by a very slow decline at a rate of 2.39 millimag-day(-1) for R and 1.37 millimag-day(-1) for V. The R decay rate corresponds to a half life of 315 days, which is much longer than that of (56) Co. The spectra show broad hydrogen (1500 km/s FWHM) and oxygen (10000 km/s FWZI) emission features along with many unresolved emission lines. Some of the more interesting narrow lines identified correspond to high ionization states for iron such as Fe VII and Fe X which indicate temperatures as high as 10(6) degrees K. These high ionization states, the X-ray detection by Lewin et al. (1996, IAUC 6445) and the slow photometric decay suggest that SN 1995N is powered by a shock propagating through a dense circumstellar environment. From the earliest observations the energy output appears dominated by the interaction and not by radioactivity, implying that the progenitor exploded well before the discovery of SN 1995N. The situation may be similar to SN 1987A, where the rise in emission from a circumstellar interaction is only now beginning and is expected to peak some 15 years after the supernova explosion.
Type II Supernova Light Curves and Spectra from the CfA
NASA Astrophysics Data System (ADS)
Hicken, Malcolm; Friedman, Andrew S.; Blondin, Stephane; Challis, Peter; Berlind, Perry; Calkins, Mike; Esquerdo, Gil; Matheson, Thomas; Modjaz, Maryam; Rest, Armin; Kirshner, Robert P.
2017-11-01
We present multiband photometry of 60 spectroscopically confirmed supernovae (SNe): 39 SNe II/IIP, 19 IIn, 1 IIb, and 1 that was originally classified as a IIn but later as a Ibn. Of these, 46 have only optical photometry, 6 have only near-infrared (NIR) photometry, and 8 have both optical and NIR. The median redshift of the sample is 0.016. We also present 195 optical spectra for 48 of the 60 SN. There are 26 optical and 2 NIR light curves of SNe II/IIP with redshifts z> 0.01, some of which may give rise to useful distances for cosmological applications. All photometry was obtained between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the 1.2 m and 1.3 m PAIRITEL telescopes for the optical and NIR, respectively. Each SN was observed in a subset of the u\\prime {UBVRIr}\\prime I\\prime {{JHK}}s bands. There are a total of 2932 optical and 816 NIR light curve points. Optical spectra were obtained using the FLWO 1.5 m Tillinghast telescope with the FAST spectrograph and the MMT Telescope with the Blue Channel Spectrograph. Our photometry is in reasonable agreement with select samples from the literature: two-thirds of our star sequences have average V offsets within ±0.02 mag and roughly three-quarters of our light curves have average differences within ±0.04 mag. The data from this work and the literature will provide insight into SN II explosions, help with developing methods for photometric SN classification, and contribute to their use as cosmological distance indicators.
NASA Astrophysics Data System (ADS)
Gouravajhala, S.; Guinan, E. F.; Strolger, L.; Gott, A.
2012-06-01
(Abstract only) We report on the preliminary multi-wavelength photometry and spectroscopy of SN 2011fe, a bright, new Type-Ia supernova (SN Ia) that occurred in the spiral galaxy M101 (Pinwheel Galaxy). One of the closest and brightest SN Ia in the last forty years, the supernova was discovered on August 24, 2011, by the Palomar Transient Factory during the star's initial rapid rise (Nugent et al. 2011). SN Iae occur in binary systems in which a degenerate white dwarf component accretes mass from its companion star (or undergoes a merger with another white dwarf), overcomes the Chandrasekhar limit, and deflagrates in a spectacular explosion. The peak brightnesses of most SN Iae are remarkably similar. This allows SN Iae to be used as accurate cosmic distance indicators and thus they are crucial to understanding cosmology, dark energy, and inflation. SN 2011fe is being extensively observed over a wide range of wavelengths by both amateur and professional astronomers (including several AAVSO members). The UBVRI photometric observations discussed here are being carried out with the 1.3-meter Robotically Controlled Telescope (RCT) located at Kitt Peak National Observatory. The RCT data show a peak apparent magnitude of mV (max) ~ +10.0 mag, in agreement with other measures. Using the M 101 distance modulus of (mV - MV)0 = 29.04 (~21 million LY) as determined by Shappee and Stanek (2011), and assuming interstellar reddening of AV = 0.03 (from E(B-V) = 0.008) toward the objects in SN 2011fe's neighborhood, we estimate the absolute magnitude in the V band of SN 2011fe to be MV = -19.07 mag, which appears to be slightly under-luminous than the SN Iae average of
TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, W. W.; Leahy, D. A., E-mail: tww@bao.ac.cn
The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. Thismore » new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.« less
NASA Astrophysics Data System (ADS)
Graur, O.; Poznanski, D.; Maoz, D.; Yasuda, N.; Totani, T.; Fukugita, M.; Filippenko, A. V.; Foley, R. J.; Silverman, J. M.; Gal-Yam, A.; Horesh, A.; Jannuzi, B. T.
2011-10-01
The Type Ia supernova (SN Ia) rate, when compared to the cosmic star formation history (SFH), can be used to derive the delay-time distribution (DTD; the hypothetical SN Ia rate versus time following a brief burst of star formation) of SNe Ia, which can distinguish among progenitor models. We present the results of a supernova (SN) survey in the Subaru Deep Field (SDF). Over a period of 3 years, we have observed the SDF on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i'and z' bands. We have discovered 150 SNe out to redshift z≈ 2. Using 11 photometric bands from the observer-frame far-ultraviolet to the near-infrared, we derive photometric redshifts for the SN host galaxies (for 24 we also have spectroscopic redshifts). This information is combined with the SN photometry to determine the type and redshift distribution of the SN sample. Our final sample includes 28 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. As our survey is largely insensitive to core-collapse SNe (CC SNe) at z > 1, most of the events found in this range are likely SNe Ia. Our SN Ia rate measurements are consistent with those derived from the Hubble Space Telescope (HST) Great Observatories Origins Deep Survey (GOODS) sample, but the overall uncertainty of our 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50 per cent. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD (with a reduced χ2= 0.7) is a power law of the form Ψ(t) ∝tβ, with index β=-1.1 ± 0.1 (statistical) ±0.17 (systematic). This result is consistent with other recent DTD measurements at various redshifts and environments, and is in agreement with a generic prediction of the double-degenerate progenitor scenario for SNe Ia. Most single-degenerate models predict different DTDs. By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we predict that the mean present-day cosmic iron abundance is in the range ZFe= (0.09-0.37) ZFe, ⊙. We further predict that the high-z SN searches now beginning with HST will discover 2-11 SNe Ia at z > 2.
Basu Baul, Tushar S; Kehie, Pelesakuo; Duthie, Andrew; Guchhait, Nikhil; Raviprakash, Nune; Mokhamatam, Raveendra B; Manna, Sunil K; Armata, Nerina; Scopelliti, Michelangelo; Wang, Ruimin; Englert, Ulli
2017-03-01
Five new organotin(IV) complexes of compositions [Me 2 SnL 1 ] (1), [Me 2 SnL 2 ] n (2), [Me 2 SnL 3 ] (3), [Ph 3 SnL 1 H] n (4) and [Ph 3 SnL 3 H] (5) (where L 1 =(2S)-2-((E)-((Z)-4-hydroxypent-3-en-2-ylidene)amino)-3-(1H-indol-3-yl)propanoate, L 2 =(2S)-(E)-2-((2-hydroxybenzylidene)amino)-3-(1H-indol-3-yl)propanoate and L 3 =(2S)-(E)-2-((1-(2-hydroxyphenyl)ethylidene)amino)-3-(1H-indol-3-yl)propanoate were synthesized and spectroscopically characterized. The crystal structures of 1-4 were determined. For the dimethyltin derivative 2, a polymeric chain structure was observed as a result of a long Sn∙∙∙O contact involving the exocyclic carbonyl oxygen-atom from the tridentate ligand of a neighboring Sn-complex unit. The tin atom in this complex has a distorted octahedral coordination geometry, in which the long Sn-O bond is almost trans to the tridentate ligand nitrogen-atom. In contrast, the dimethyltin(IV) complexes 1 and 3 displayed discrete monomeric structures where the tin atom has distorted trigonal-bipyramidal geometry with the two coordinating L oxygen atoms defining the axial positions. On the other hand, 4 is a chain polymer in the solid state. The ligand-bridged Sn atoms adopt a trans-Ph 3 SnO 2 trigonal-bipyramidal configuration with equatorial phenyl groups. A carboxylato oxygen atom from one and the hydroxyl oxygen of the successive ligand in the chain occupy the axial positions. The solution structures were predicted by the use of 119 Sn NMR chemical shifts. The photophysical properties of the complexes were investigated in the solid and in solution. The triphenyltin(IV) compound 4 was tested in detail ex vivo against A375 (human melanoma) cell line, exhibiting an IC 50 value of 261nM to induce cell death as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay without significant alteration of cytolysis as determined by lactate dehydrogenase (LDH) assay. Compound 4-mediated potent cell death was also determined by Live and Dead assay and caspase-mediated cleavage of poly-ADP ribose polymerase (PARP). Potent cell death activity was not observed in primary cells, like blood-derived peripheral mononuclear cells (PBMC). Compound 4 inhibited the diphenyl hexatriene (DPH) binding to cells and decreased the micro viscosity in a dose-dependent manner. Additionally, the ability of 4 and cyclodextrin (CD) to interact was determined by molecular modelling. Copyright © 2016 Elsevier Inc. All rights reserved.
Fatigue behavior of porous biomaterials manufactured using selective laser melting.
Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A
2013-12-01
Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.
Astronomy in Denver: The polarization evolution of the luminous Type Ib SN 2012au
NASA Astrophysics Data System (ADS)
Hoffman, Jennifer L.; DeKlotz, Sophia; Cooper, Kevin; Slay, Hannah; Williams, George Grant; Supernova Spectropolarimetry Project (SNSPOL)
2018-06-01
We present an analysis of the spectropolarimetric behavior of the Type Ib SN 2012au over the first 315 days of its evolution. Our data were obtained by the Supernova Spectropolarimetry Project using the CCD Imaging/Spectropolarimeter (SPOL) at the 61" Kuiper, the 90" Bok, and the 6.5-m MMT telescopes. SN 2012au was a very energetic, luminous, and slowly evolving event that may represent an intermediate case between normal core-collapse supernovae and the enigmatic superluminous supernovae. Strong, time-variable line polarization signatures, particularly in the He Il λ5876 line, support previous hypotheses of an asymmetric explosion and allow us to trace detailed structures within the supernova ejecta as they change over time. We compare the polarimetric evolution of the continuum and emission lines in SN 2012au and compare its behavior with that of other bright and polarimetrically variable supernovae.
Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.
Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne
2015-06-23
The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
[The discrimination of mono-syllable words in noise in listeners with normal hearing].
Yoshida, M; Sagara, T; Nagano, M; Korenaga, K; Makishima, K
1992-02-01
The discrimination of mono-syllable words (67S word-list) pronounced by a male and a female speaker was investigated in noise in 39 normal hearing subjects. The subjects listened to the test words at a constant level of 62 dB together with white or weighted noise in four S/N conditions. By processing the data with logit transformation, S/N-discrimination curves were presumed for each combination of a speech material and a noise. Regardless of the type of noise, the discrimination scores for the female voice started to decrease gradually at a S/N ratio of +10 dB, and reached 10 to 20% at-10 dB. For the male voice in white noise, the discrimination curve was similar to those for the female voice. On the contrary, the discrimination score for the male voice in weighted noise declined rapidly from a S/N ratio of +5 dB, and went below 10% at -5 dB. The discrimination curves seem to be shaped by the interrelations between the spectrum of the speech material and that of the noise.
Banerjee, Abhirup; Maji, Pradipta
2015-12-01
The segmentation of brain MR images into different tissue classes is an important task for automatic image analysis technique, particularly due to the presence of intensity inhomogeneity artifact in MR images. In this regard, this paper presents a novel approach for simultaneous segmentation and bias field correction in brain MR images. It integrates judiciously the concept of rough sets and the merit of a novel probability distribution, called stomped normal (SN) distribution. The intensity distribution of a tissue class is represented by SN distribution, where each tissue class consists of a crisp lower approximation and a probabilistic boundary region. The intensity distribution of brain MR image is modeled as a mixture of finite number of SN distributions and one uniform distribution. The proposed method incorporates both the expectation-maximization and hidden Markov random field frameworks to provide an accurate and robust segmentation. The performance of the proposed approach, along with a comparison with related methods, is demonstrated on a set of synthetic and real brain MR images for different bias fields and noise levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taddia, F.; Sollerman, J.; Fremling, C.
The aim is to study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods. Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analyticmore » models. Results. The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until ~50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at ~20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (M ej = 7.8 M ⊙ ), He-poor star characterized by a double-peaked 56 Ni distribution, a total 56 Ni mass of 0.59 M ⊙ , and an explosion energy of 2.2 × 10 51 erg. Alternatively, a normal SN Ib/c explosion (M( 56Ni) = 0.11 M ⊙ , E K = 0.2 × 10 51 erg, M ej = 1 M ⊙ ) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 10 14 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R ⊙ is obtained. Conclusions. We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass (~85 M ⊙) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward.« less
NASA Astrophysics Data System (ADS)
Graur, Or; Bianco, Federica B.; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Smith, Nathan
2017-03-01
In Paper I of this series, we showed that the ratio between stripped-envelope (SE) supernova (SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses ≲ {10}10 {M}⊙ . Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. All of these transients were recently reclassified by us in Shivvers et al. We find that the relative rates of some types of SNe differ between low- and high-mass galaxies: SNe Ib and Ic are underrepresented by a factor of ˜3 in low-mass galaxies. These galaxies also contain the only examples of SN 1987A-like SNe in the sample and host about nine times as many SN impostors. Normal SNe Ia seem to be ˜30% more common in low-mass galaxies, making these galaxies better sources for homogeneous SN Ia cosmology samples. The relative rates of SNe IIb are consistent in both low- and high-mass galaxies. The same is true for broad-line SNe Ic, although our sample includes only two such objects. The results presented here are in tension with a similar analysis from the Palomar Transient Factory, especially as regards SNe IIb.
Pharmacokinetics and distribution of SN 28049, a novel DNA binding anticancer agent, in mice.
Lukka, Pradeep B; Paxton, James W; Kestell, Philip; Baguley, Bruce C
2010-05-01
N-[2-(Dimethylamino)ethyl]-2,6-dimethyl-1-oxo-1,2-dihydrobenzo[b]-1,6-naphthyridine-4-carboxamide (SN 28049) is a potent DNA binding topoisomerase II poison that shows excellent antitumour activity in a colon-38 murine tumour model in comparison to standard topoisomerase II poisons. We report here the preclinical pharmacokinetics of SN 28049. C57 Bl/6 mice (n = 3 per time point) were treated with a single i.v., i.p. or p.o. administration (8.9 mg/kg). Plasma and tissue samples were analysed using a validated LC/MS method utilizing a homologue as an internal standard. The assay range was 0.062-2.5 microM with a quantitation limit of 0.062 microM and a detection limit of 0.025 microM. Acceptable intra- and inter-assay accuracy (95-105%) and precision (<6.5% RSD) were achieved. Following i.v. administration, SN 28049 demonstrated 2-compartment model kinetics with a volume of distribution of 42.3 +/- 4.1 l/kg, a plasma clearance of 12.1 +/- 0.5 l/h per kg and distribution and elimination half-lives of 0.15 +/- 0.02 and 2.8 +/- 0.2 h (mean +/- SE), respectively. For all administration routes, SN 28049 concentrations in normal tissues (brain, heart, liver, lung, and kidney) were 12- to 120-fold higher than those in plasma, but half-lives and mean residence times were similar. The i.p. and p.o. bioavailabilities were 83.1 +/- 1.5 and 54.5 +/- 1.1%, respectively. In the tumour tissue, elimination half-life (9.1 +/- 0.7 h) and the mean residence time (18.2 +/- 0.7 h) were significantly (P < 0.001) longer than those of plasma and normal tissues. The tumour area under the concentration-time curve (AUC) (1,316 +/- 66 microM h) was also 693-fold greater than the plasma AUC, and considerably higher (approximately 5-fold) than any other tissue examined, indicating selective uptake and retention of SN 28049 in the tumour. We conclude that SN 28049's high tumour exposure and long tumour retention time is likely to contribute to its high antitumour activity in vivo.
The effects of glycogen synthase kinase-3beta in serotonin neurons.
Zhou, Wenjun; Chen, Ligong; Paul, Jodi; Yang, Sufen; Li, Fuzeng; Sampson, Karen; Woodgett, Jim R; Beaulieu, Jean Martin; Gamble, Karen L; Li, Xiaohua
2012-01-01
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.
NASA Astrophysics Data System (ADS)
Taubenberger, S.; Benetti, S.; Childress, M.; Pakmor, R.; Hachinger, S.; Mazzali, P. A.; Stanishev, V.; Elias-Rosa, N.; Agnoletto, I.; Bufano, F.; Ergon, M.; Harutyunyan, A.; Inserra, C.; Kankare, E.; Kromer, M.; Navasardyan, H.; Nicolas, J.; Pastorello, A.; Prosperi, E.; Salgado, F.; Sollerman, J.; Stritzinger, M.; Turatto, M.; Valenti, S.; Hillebrandt, W.
2011-04-01
Extended optical and near-IR observations reveal that SN 2009dc shares a number of similarities with normal Type Ia supernovae (SNe Ia), but is clearly overluminous, with a (pseudo-bolometric) peak luminosity of log (L) = 43.47 (erg s-1). Its light curves decline slowly over half a year after maximum light [Δm15(B)true= 0.71], and the early-time near-IR light curves show secondary maxima, although the minima between the first and the second peaks are not very pronounced. The bluer bands exhibit an enhanced fading after ˜200 d, which might be caused by dust formation or an unexpectedly early IR catastrophe. The spectra of SN 2009dc are dominated by intermediate-mass elements and unburned material at early times, and by iron-group elements at late phases. Strong C II lines are present until ˜2 weeks past maximum, which is unprecedented in thermonuclear SNe. The ejecta velocities are significantly lower than in normal and even subluminous SNe Ia. No signatures of interaction with a circumstellar medium (CSM) are found in the spectra. Assuming that the light curves are powered by radioactive decay, analytic modelling suggests that SN 2009dc produced ˜1.8 M⊙ of 56Ni assuming the smallest possible rise time of 22 d. Together with a derived total ejecta mass of ˜2.8 M⊙, this confirms that SN 2009dc is a member of the class of possible super-Chandrasekhar-mass SNe Ia similar to SNe 2003fg, 2006gz and 2007if. A study of the hosts of SN 2009dc and other superluminous SNe Ia reveals a tendency of these SNe to explode in low-mass galaxies. A low metallicity of the progenitor may therefore be an important prerequisite for producing superluminous SNe Ia. We discuss a number of possible explosion scenarios, ranging from super-Chandrasekhar-mass white-dwarf progenitors over dynamical white-dwarf mergers and Type I? SNe to a core-collapse origin of the explosion. None of the models seems capable of explaining all properties of SN 2009dc, so that the true nature of this SN and its peers remains nebulous. Based on observations at ESO La Silla, Prog. 083.D-0970 and 184.D-1140 and ESO Paranal, Prog. 083.D-0728.
Parcellation of the human substantia nigra based on anatomical connectivity to the striatum☆
Chowdhury, Rumana; Lambert, Christian; Dolan, Raymond J.; Düzel, Emrah
2013-01-01
Substantia nigra/ventral tegmental area (SN/VTA) subregions, defined by dopaminergic projections to the striatum, are differentially affected by health (e.g. normal aging) and disease (e.g. Parkinson's disease). This may have an impact on reward processing which relies on dopaminergic regions and circuits. We acquired diffusion tensor imaging (DTI) with probabilistic tractography in 30 healthy older adults to determine whether subregions of the SN/VTA could be delineated based on anatomical connectivity to the striatum. We found that a dorsomedial region of the SN/VTA preferentially connected to the ventral striatum whereas a more ventrolateral region connected to the dorsal striatum. These SN/VTA subregions could be characterised by differences in quantitative structural imaging parameters, suggesting different underlying tissue properties. We also observed that these connectivity patterns differentially mapped onto reward dependence personality trait. We show that tractography can be used to parcellate the SN/VTA into anatomically plausible and behaviourally meaningful compartments, an approach that may help future studies to provide a more fine-grained synopsis of pathological changes in the dopaminergic midbrain and their functional impact. PMID:23684858
The Massive Progenitor of the Type II-linear Supernova 2009kr
NASA Astrophysics Data System (ADS)
Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li, Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Boden, Andrew F.; Kasliwal, Mansi M.; Vinkó, József; Cuillandre, Jean-Charles; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Foley, Ryan J.
2010-05-01
We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (~26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ~18-24 M sun. This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN. Based in part on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 05-26555; the 6.5 m Magellan Clay Telescope located at Las Campanas Observatory, Chile; various telescopes at Lick Observatory; the 1.3 m PAIRITEL on Mt. Hopkins; the SMARTS Consortium 1.3 m telescope located at Cerro Tololo Inter-American Observatory (CTIO), Chile; the 3.6 m Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii; and the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, with generous financial support from the W. M. Keck Foundation.
Classification of PSN J13505285-3017097 as an old Type Ia SN with WiFeS
NASA Astrophysics Data System (ADS)
Childress, M.; Scalzo, R.; Tucker, B.; Yuan, F.; Schmidt, B.; Klotz, A.; Conseil, E.
2013-06-01
We report spectroscopic classification of PSN J13505285-3017097 with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3500-9800 A, 1 A resolution). PSN J13505285-3017097 was discovered by Conseil on 2013 May 02.22 at mag 18.4 on TAROT images, and photometric follow up shows the light curve peaks in brightness at mag 16 on 2013 May 15.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Nicholas R.; Sun, Huaxing; Sharma, Kashish
2016-09-15
Thermal atomic layer etching (ALE) of crystalline aluminum nitride (AlN) films was demonstrated using sequential, self-limiting reactions with hydrogen fluoride (HF) and tin(II) acetylacetonate [Sn(acac){sub 2}] as the reactants. Film thicknesses were monitored versus number of ALE reaction cycles at 275 °C using in situ spectroscopic ellipsometry (SE). A low etch rate of ∼0.07 Å/cycle was measured during etching of the first 40 Å of the film. This small etch rate corresponded with the AlO{sub x}N{sub y} layer on the AlN film. The etch rate then increased to ∼0.36 Å/cycle for the pure AlN films. In situ SE experiments established the HF and Sn(acac){submore » 2} exposures that were necessary for self-limiting surface reactions. In the proposed reaction mechanism for thermal AlN ALE, HF fluorinates the AlN film and produces an AlF{sub 3} layer on the surface. The metal precursor, Sn(acac){sub 2}, then accepts fluorine from the AlF{sub 3} layer and transfers an acac ligand to the AlF{sub 3} layer in a ligand-exchange reaction. The possible volatile etch products are SnF(acac) and either Al(acac){sub 3} or AlF(acac){sub 2}. Adding a H{sub 2} plasma exposure after each Sn(acac){sub 2} exposure dramatically increased the AlN etch rate from 0.36 to 1.96 Å/cycle. This enhanced etch rate is believed to result from the ability of the H{sub 2} plasma to remove acac surface species that may limit the AlN etch rate. The active agent from the H{sub 2} plasma is either hydrogen radicals or radiation. Adding an Ar plasma exposure after each Sn(acac){sub 2} exposure increased the AlN etch rate from 0.36 to 0.66 Å/cycle. This enhanced etch rate is attributed to either ions or radiation from the Ar plasma that may also lead to the desorption of acac surface species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Kanatzidis, Mercouri G., E-mail: m-kanatzidis@northwestern.edu; Materials Science Division, Argonne National Laboratory
This article reports two new Hf-rich intermetallics synthesized using Sn flux: Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}. Hf{sub 3}Fe{sub 4}Sn{sub 4} adopts an ordered variant the Hf{sub 3}Cu{sub 8} structure type in orthorhombic space group Pnma with unit cell edges of a=8.1143(5) Å, b=8.8466(5) Å, and c=10.6069(6) Å. Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}, on the other hand, adopts a new structure type in Cmc2{sub 1} with unit cell edges of a=5.6458(3) Å, b=35.796(2) Å, and c=8.88725(9) Å for x=0. It exhibits a small amount of phase width in which Sn substitutes on one of the Fe sites. Bothmore » structures are fully three-dimensional and are characterized by pseudo one- and two-dimensional networks of Fe–Fe homoatomic bonding. Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} exhibits antiferromagnetic order at T{sub N}=46(2) K and its electrical transport behavior indicates that it is a normal metal with phonon-dictated resistivity. Hf{sub 3}Fe{sub 4}Sn{sub 4} is also an antiferromagnet with a rather high ordering temperature of T{sub N}=373(5) K. Single crystal resistivity measurements indicate that Hf{sub 3}Fe{sub 4}Sn{sub 4} behaves as a Fermi liquid at low temperatures, indicating strong electron correlation. - Graphical abstract: Slightly different growth conditions in Sn flux produce two new intermetallic compounds: Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}. - Highlights: • Single crystals of both Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} were grown using Sn flux. • The crystal structures were determined using single crystal X-ray diffraction. • The Fe moments in Hf{sub 3}Fe{sub 4}Sn{sub 4} display AFM order below T{sub N}=373 K. • The Fe moments in Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} display AFM order below T{sub N}=46 K.« less
Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.
Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki
2016-09-01
To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.
Nowacki, Joyce; Lee, Hung-Chang; Lien, Reyin; Cheng, Shao-Wen; Li, Sung-Tse; Yao, Manjiang; Northington, Robert; Jan, Ingrid; Mutungi, Gisella
2014-11-05
Formula-fed (FF) infants often have harder stools and higher stool concentrations of fatty acid soaps compared to breastfed infants. Feeding high sn-2 palmitate or the prebiotic oligofructose (OF) may soften stools, reduce stool soaps, and decrease fecal calcium loss. We investigated the effect of high sn-2 palmitate alone and in combination with OF on stool palmitate soap, total soap and calcium concentrations, stool consistency, gastrointestinal (GI) tolerance, anthropometrics, and hydration in FF infants. This double-blind trial randomized 165 healthy term infants 25-45 days old to receive Control formula (n = 54), formula containing high sn-2 palmitate (sn-2; n = 56), or formula containing high sn-2 palmitate plus 3 g/L OF (sn-2+OF; n = 55). A non-randomized human milk (HM)-fed group was also included (n = 55). The primary endpoint, stool composition, was determined after 28 days of feeding, and was assessed using ANOVA accompanied by pairwise comparisons. Stool consistency, GI tolerance and hydration were assessed at baseline, day 14 (GI tolerance only) and day 28. Infants fed sn-2 had lower stool palmitate soaps compared to Control (P = 0.0028); while those fed sn-2+OF had reduced stool palmitate soaps compared to both Control and sn-2 (both P < 0.0001). Stool total soaps and calcium were lower in the sn-2+OF group than either Control (P < 0.0001) or sn-2 (P < 0.0001). The HM-fed group had lower stool palmitate soaps, total soaps and calcium (P < 0.0001 for each comparison) than all FF groups. The stool consistency score of the sn-2+OF group was lower than Control and sn-2 (P < 0.0001), but higher than the HM-fed group (P < 0.0001). GI tolerance was similar and anthropometric z-scores were <0.2 SD from the WHO growth standards in all groups, while urinary hydration markers were within normal range for all FF infants. Increasing sn-2 palmitate in infant formula reduces stool palmitate soaps. A combination of high sn-2 palmitate and OF reduces stool palmitate soaps, total soaps and calcium, while promoting softer stools. This study was registered on http://www.clinicaltrials.gov: number NCT02031003.
NASA Astrophysics Data System (ADS)
Son, Ho-Young; Kim, Ilho; Lee, Soon-Bok; Jung, Gi-Jo; Park, Byung-Jin; Paik, Kyung-Wook
2009-01-01
A thick Cu column based double-bump flip chip structure is one of the promising alternatives for fine pitch flip chip applications. In this study, the thermal cycling (T/C) reliability of Cu/SnAg double-bump flip chip assemblies was investigated, and the failure mechanism was analyzed through the correlation of T/C test and the finite element analysis (FEA) results. After 1000 thermal cycles, T/C failures occurred at some Cu/SnAg bumps located at the edge and corner of chips. Scanning acoustic microscope analysis and scanning electron microscope observations indicated that the failure site was the Cu column/Si chip interface. It was identified by a FEA where the maximum stress concentration was located during T/C. During T/C, the Al pad between the Si chip and a Cu column bump was displaced due to thermomechanical stress. Based on the low cycle fatigue model, the accumulation of equivalent plastic strain resulted in thermal fatigue deformation of the Cu column bumps and ultimately reduced the thermal cycling lifetime. The maximum equivalent plastic strains of some bumps at the chip edge increased with an increased number of thermal cycles. However, equivalent plastic strains of the inner bumps did not increase regardless of the number of thermal cycles. In addition, the z-directional normal plastic strain ɛ22 was determined to be compressive and was a dominant component causing the plastic deformation of Cu/SnAg double bumps. As the number of thermal cycles increased, normal plastic strains in the perpendicular direction to the Si chip and shear strains were accumulated on the Cu column bumps at the chip edge at low temperature region. Thus it was found that the Al pad at the Si chip/Cu column interface underwent thermal fatigue deformation by compressive normal strain and the contact loss by displacement failure of the Al pad, the main T/C failure mode of the Cu/SnAg flip chip assembly, then occurred at the Si chip/Cu column interface shear strain deformation during T/C.
NASA Astrophysics Data System (ADS)
Bose, Subhash; Dong, Subo; Pastorello, A.; Filippenko, Alexei V.; Kochanek, C. S.; Mauerhan, Jon; Romero-Cañizales, C.; Brink, Thomas G.; Chen, Ping; Prieto, J. L.; Post, R.; Ashall, Christopher; Grupe, Dirk; Tomasella, L.; Benetti, Stefano; Shappee, B. J.; Stanek, K. Z.; Cai, Zheng; Falco, E.; Lundqvist, Peter; Mattila, Seppo; Mutel, Robert; Ochner, Paolo; Pooley, David; Stritzinger, M. D.; Villanueva, S., Jr.; Zheng, WeiKang; Beswick, R. J.; Brown, Peter J.; Cappellaro, E.; Davis, Scott; Fraser, Morgan; de Jaeger, Thomas; Elias-Rosa, N.; Gall, C.; Gaudi, B. Scott; Herczeg, Gregory J.; Hestenes, Julia; Holoien, T. W.-S.; Hosseinzadeh, Griffin; Hsiao, E. Y.; Hu, Shaoming; Jaejin, Shin; Jeffers, Ben; Koff, R. A.; Kumar, Sahana; Kurtenkov, Alexander; Lau, Marie Wingyee; Prentice, Simon; Reynolds, T.; Rudy, Richard J.; Shahbandeh, Melissa; Somero, Auni; Stassun, Keivan G.; Thompson, Todd A.; Valenti, Stefano; Woo, Jong-Hak; Yunus, Sameen
2018-01-01
Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = ‑21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with <5.4 × 1026 erg s‑1 Hz‑1 at 10 GHz, which is almost a factor of 40 better than previous upper limits and one of the few measured at an early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.
Field Red Horizontal Branch Star Chemical Compositions from High Resolution Infrared Spectra
NASA Astrophysics Data System (ADS)
Sneden, Chris; Afsar, Melike; Bozkurt, Zeynep; Bocek-Topcu, Gamze; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; Kidder, Benjamin; McLane, Jacob
2017-06-01
We have observed three field red horizontal branch stars with the Immersion Grating Infrared Spectrograph (IGRINS). The high resolution (R~45000) high signal-to-noise (S/N > 200) spectra obtained with IGRINS cover the complete H-band (1.50-1.80 micron) and K-band (1.90-2.45 micron). We analyzed hundreds of lines of the ubiquitous OH, CN, and CO molecular bands, and found more than 80 lines of atomic species that were useful for abundance work. A combination of good laboratory transition probabilities (when available) and ones derived from reverse solar analyses were employed. Our transition data were checked through studies of the Arcturus Atlas spectrum. We derived abundances from synthetic spectra instead of from equivalent widths. With IGRINS data we were able to extract metallicities and abundance ratios for more than 20 elements, including several not detectable or poorly represented in optical wavelength regions. Our abundances from IGRINS spectra are in excellent accord with those derived from optical spectrum studies. These results are directly applicable to calibrations of results from lower-resolution and/or S/N infrared spectral surveys. IGRINS observations will give high reolution spectroscopic access to heavily obscured normal red giants and other cool stars with unusual element mixes.This work used the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF; grant AST-1229522), of the University of Texas at Austin, and of the Korean GMT Project of KASI. Our project also has been supported by NSF grants AST~1211585 and AST~1616040, by the University of Texas Rex G. Baker, Jr. Centennial Research Endowment, and by The Scientific and Technological Research Council of Turkey (TUBITAK, project No. 112T929).
The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star
NASA Technical Reports Server (NTRS)
Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Valenti, S.; Arcavi, I.; Ben-Ami, S.; Cao, Y.; Cenko, S. B.; Filippenko, A. V.;
2014-01-01
Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g'r'i'z') and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 solar mass and the radioactive nickel mass to be 0.05 solar mass. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r'-band luminosity is not consistent with predictions based on the expected oxygen nucleosynthesis in very massive stars. Conclusions. We find that our bolometric light curve of iPTF13bvn is not consistent with the previously proposed single massive WR-star progenitor scenario. The total ejecta mass and, in particular, the late-time oxygen emission are both significantly lower than what would be expected from a single WR progenitor with a main-sequence mass of at least 30 solar mass.
NASA Astrophysics Data System (ADS)
Husain, Ahmad; Nami, Shahab A. A.; Siddiqi, K. S.
2010-04-01
A mononuclear precursor complex, [(CH 3) 2Sn(tpdtc)] and several of its heterobimetallic derivatives of the type, [(CH 3) 2Sn(tpdtc)]MCl 2 have been synthesized by the simple addition reaction of transition metal chlorides, MCl 2· nH 2O where tpdtc = tetraethylenepentamine bis(dithiocarbamate) anion, M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II). The synthesized complexes have been systematically characterized by the physicochemical and spectroscopic techniques. A square-pyramidal geometry has been proposed for all the transition metal atoms with chloride ions occupying the axial while the three nitrogen atoms occupying the equatorial positions. A symmetrical bidentate coordination has been observed for the dithiocarbamato moiety leading to the formation of 18 member cavity. The thermal studies reveal that the mononuclear complex decomposes in three stages while its heterobimetallic analog exhibits a simple two-stage profile. The conductivity measurement data (1 mmol solution) implies a non-electrolytic behavior for all the complexes as evident by their low conductivity values obtained at room temperature. The heterobimetallic complexes have also been tested against the bacterial ( Escherichia coli and Pseudomonas aeruginosa) and antifungal strains ( Aspergillus niger and Fusarium oxysporum). All the complexes were found to be active against the test organisms and maximum activity was found for [(CH 3) 2Sn(tpdtc)]CuCl 2 complex.
Cosmic-ray abundances of Sn, Te, Xe, and Ba nuclei measured on HEAO 3
NASA Technical Reports Server (NTRS)
Binns, W. R.; Israel, M. H.; Klarmann, J.; Fickle, R. K.; Waddington, C. J.; Garrard, T. L.; Krombel, K. E.; Stone, E. C.
1983-01-01
The results of an analysis of HEAO 3 Heavy Nuclei Experimental data covering 440 days of observations of Sn-Ba nuclei in cosmic rays are reported. The particles were detected by a Cernkov counter, and a Z-squared ceiling was calculated to normalize the histograms produced. The observed large abundance of Sn and Ba relative to other elements in the region of interest indicated a predominance of the s-process in the source of the particles. When account was taken of first ionization potential effects, the data indicated that the material could be solar system in origin. A source dominated by the r-process nucleosynthesis was ruled out at the 0.93 confidence level.
Upstream kinases of plant SnRKs are involved in salt stress tolerance.
Barajas-Lopez, Juan de Dios; Moreno, Jose Ramon; Gamez-Arjona, Francisco M; Pardo, Jose M; Punkkinen, Matleena; Zhu, Jian-Kang; Quintero, Francisco J; Fujii, Hiroaki
2018-01-01
Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jialin; Wang, Fang; Shen, Yali
2014-08-15
Zinc tellurostannates [(Zn(teta)){sub 2}(μ-1κ:2κ-SnTe{sub 4})] (1), [(Zn(teta)){sub 3}(μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4})]I{sub 2} (2), [(Zn(tren)){sub 2}(μ-1κ:2κ-Sn{sub 2}Te{sub 6})] (3), and [Zn(dien){sub 2}]{sub 4}(Sn{sub 2}Te{sub 6}){sub 1.75}(Sn{sub 2}Te{sub 8}){sub 0.25}·dien (4) were prepared by the reactions of Zn, Sn, and Te with iodine ion assistant in teta and dien. The tetrahedral [SnTe{sub 4}]{sup 4−} anion coordinates to two [Zn(teta)]{sup 2+} units as a bidentate μ-1κ:2κ-SnTe{sub 4} ligand to form the neutral complex 1. It coordinates to three [Zn(teta)]{sup 2+} units with a tridentate μ{sub 3}-1κ:2κ:3κ coordination modes, generating a complex cation [(Zn(teta)){sub 3}(μ{sub 3}-1κ:2κ:3κ- SnTe{sub 4})]{sup 2+} in 2. In 3, the [Sn{submore » 2}Te{sub 6}]{sup 4−} anion joins two [Zn(tren)]{sup 2+}cations with the trans terminal Te atoms, forming neutral complex 3. The μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands to TM centers in 1–3 have not been observed before. Compound 4 contains a normal [Sn{sub 2}Te{sub 6}]{sup 4−} and an abnormal [(Sn{sub 2}Te{sub 6}){sub 0.75}(Sn{sub 2}Te{sub 8}){sub 0.25}]{sup 4−} anions. Compounds 1–4 exhibit narrow band gaps in the range of 1.47–1.98 eV, and a distinct red-shift of the band gaps is observed from 4 to 1−3. - Graphical abstract: Zinc tellurostannates were prepared with iodine ion assistant in polyamines, and first μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands TM centers were obtained. - Highlights: • Zinc-tellurostannates were first prepared with iodine ion assistant. • Novel μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands were obtained. • The Zinc tellurostannates exhibit optical bandgaps between 1.47 and 1.98 eV.« less
A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls
NASA Astrophysics Data System (ADS)
Dessart, Luc
2018-02-01
Transient surveys have recently revealed the existence of H-rich super-luminous supernovae (SLSN; e.g., iPTF14hls, OGLE-SN14-073) that are characterized by an exceptionally high time-integrated bolometric luminosity, a sustained blue optical color, and Doppler-broadened H I lines at all times. Here, I investigate the effect that a magnetar (with an initial rotational energy of 4 × 1050 erg and field strength of 7 × 1013 G) would have on the properties of a typical Type II supernova (SN) ejecta (mass of 13.35 M⊙, kinetic energy of 1.32 × 1051 erg, 0.077 M⊙ of 56Ni) produced by the terminal explosion of an H-rich blue supergiant star. I present a non-local thermodynamic equilibrium time-dependent radiative transfer simulation of the resulting photometric and spectroscopic evolution from 1 d until 600 d after explosion. With the magnetar power, the model luminosity and brightness are enhanced, the ejecta is hotter and more ionized everywhere, and the spectrum formation region is much more extended. This magnetar-powered SN ejecta reproduces most of the observed properties of SLSN iPTF14hls, including the sustained brightness of ‑18 mag in the R band, the blue optical color, and the broad H I lines for 600 d. The non-extreme magnetar properties, combined with the standard Type II SN ejecta properties, offer an interesting alternative to the pair-unstable super-massive star model recently proposed, which involves a highly energetic and super-massive ejecta. Hence, such Type II SLSNe may differ from standard Type II SNe exclusively through the influence of a magnetar.
Holoien, Thomas W. -S.; Kochanek, C. S.; Prieto, J. L.; ...
2015-11-25
In this paper, we present ground-based and Swift photometric and spectroscopic observations of the candidate tidal disruption event (TDE) ASASSN-14li, found at the centre of PGC 043234 (d ≃ 90 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source had a peak bolometric luminosity of L ≃ 10 44 erg s -1 and a total integrated energy of E ≃ 7 × 10 50 erg radiated over the ~6 months of observations presented. The UV/optical emission of the source is well fitted by a blackbody with roughly constant temperature of T ~ 35 000 K, while the luminositymore » declines by roughly a factor of 16 over this time. The optical/UV luminosity decline is broadly consistent with an exponential decline, L∝e -t/t0, with t 0 ≃ 60 d. ASASSN-14li also exhibits soft X-ray emission comparable in luminosity to the optical and UV emission but declining at a slower rate, and the X-ray emission now dominates. Spectra of the source show broad Balmer and helium lines in emission as well as strong blue continuum emission at all epochs. Finally, we use the discoveries of ASASSN-14li and ASASSN-14ae to estimate the TDE rate implied by ASAS-SN, finding an average rate of r ≃ 4.1 × 10 -5 yr -1 per galaxy with a 90 per cent confidence interval of (2.2–17.0) × 10 -5 yr -1 per galaxy. ASAS-SN found roughly 1 TDE for every 70 Type Ia supernovae in 2014, a rate that is much higher than that of other surveys.« less
NASA Astrophysics Data System (ADS)
Holoien, T. W.-S.; Kochanek, C. S.; Prieto, J. L.; Stanek, K. Z.; Dong, Subo; Shappee, B. J.; Grupe, D.; Brown, J. S.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Danilet, A. B.; Falco, E.; Guo, Z.; Jose, J.; Herczeg, G. J.; Long, F.; Pojmanski, G.; Simonian, G. V.; Szczygieł, D. M.; Thompson, T. A.; Thorstensen, J. R.; Wagner, R. M.; Woźniak, P. R.
2016-01-01
We present ground-based and Swift photometric and spectroscopic observations of the candidate tidal disruption event (TDE) ASASSN-14li, found at the centre of PGC 043234 (d ≃ 90 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source had a peak bolometric luminosity of L ≃ 1044 erg s-1 and a total integrated energy of E ≃ 7 × 1050 erg radiated over the ˜6 months of observations presented. The UV/optical emission of the source is well fitted by a blackbody with roughly constant temperature of T ˜ 35 000 K, while the luminosity declines by roughly a factor of 16 over this time. The optical/UV luminosity decline is broadly consistent with an exponential decline, L∝ e^{-t/t_0}, with t0 ≃ 60 d. ASASSN-14li also exhibits soft X-ray emission comparable in luminosity to the optical and UV emission but declining at a slower rate, and the X-ray emission now dominates. Spectra of the source show broad Balmer and helium lines in emission as well as strong blue continuum emission at all epochs. We use the discoveries of ASASSN-14li and ASASSN-14ae to estimate the TDE rate implied by ASAS-SN, finding an average rate of r ≃ 4.1 × 10-5 yr-1 per galaxy with a 90 per cent confidence interval of (2.2-17.0) × 10-5 yr-1 per galaxy. ASAS-SN found roughly 1 TDE for every 70 Type Ia supernovae in 2014, a rate that is much higher than that of other surveys.
Proximity-induced superconductivity in all-silicon superconductor /normal-metal junctions
NASA Astrophysics Data System (ADS)
Chiodi, F.; Duvauchelle, J.-E.; Marcenat, C.; Débarre, D.; Lefloch, F.
2017-07-01
We have realized laser-doped all-silicon superconducting (S)/normal metal (N) bilayers of tunable thickness and dopant concentration. We observed a strong reduction of the bilayers' critical temperature when increasing the normal metal thickness, a signature of the highly transparent S/N interface associated to the epitaxial sharp laser doping profile. We extracted the interface resistance by fitting with the linearized Usadel equations, demonstrating a reduction of 1 order of magnitude from previous superconductor/doped Si interfaces. In this well-controlled crystalline system we exploited the low-resistance S/N interfaces to elaborate all-silicon lateral SNS junctions with long-range proximity effect. Their dc transport properties, such as the critical and retrapping currents, could be well understood in the diffusive regime. Furthermore, this work led to the estimation of important parameters in ultradoped superconducting Si, such as the Fermi velocity, the coherence length, or the electron-phonon coupling constant, fundamental to conceive all-silicon superconducting electronics.
Avila, Eudes Thiago Pereira; da Rosa Lima, Thiago; Tibana, Ramires Alsamir; de Almeida, Paula Caroline; Fraga, Géssica Alves; de Souza Sena, Mariana; Corona, Luiz Felipe Petusk; Navalta, James Wilfred; Rezaei, Sajjad; Ghayomzadeh, Morteza; Damazo, Amílcar Sabino; Prestes, Jonato; Voltarelli, Fabrício Azevedo
2018-02-13
Isolated whey protein (IWP) can decrease body fat compared with other protein sources. The present study verified the effects of high protein diet (HD) containing IWP on several parameters of rats subjected to resistance training (RT). Thirty-two male Wistar rats (60 days of age) were separated into four groups (n = 8/group): sedentary normoproteic (IWP 14%; SN); sedentary hyperproteic (IWP 35%; SH); trained normoproteic (IWP 14%; TN), and trained hyperproteic (WPI 35%; TH). Relative tissue/organ weight (g): perirenal and retroperitoneal adipose tissues were lower in SH and TH compared with SN (no difference to TN); omental and subcutaneous adipose tissues were higher in SN compared with SH. Epididymal adipose tissue was higher in SN compared with other groups. Heart weight was higher in TH compared with TN and SN, but not SH; kidney and liver higher in TH and SH compared with SN and TN; gastrocnemius lower in SN compared with other groups; soleus higher in SH in relation to other groups. The triglycerides levels (mg/dL) was reduced in the TH groups compared with SH, TN, and SN. There were no changes both in the concentrations of adiponectin and leptin and in the protein expression of GLUT-4 and p70 s6k . HD containing WPI improved body composition, increased the weight of the heart, kidneys, liver and gastrocnemius and soleus muscles; however, this diet maintained the normal histomorphology of muscle and liver and, when associated with RT, reduced the serum levels of triglycerides. Copyright © 2018 Elsevier Inc. All rights reserved.
Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light
Hosseinzadeh, Griffin; Arcavi, Iair; Valenti, Stefano; ...
2017-02-16
Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the classmore » as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. Here, we find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day -1 during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Finally, together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.« less
Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinzadeh, Griffin; Arcavi, Iair; McCully, Curtis
2017-02-20
Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the classmore » as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day{sup −1} during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.« less
NASA Astrophysics Data System (ADS)
Taddia, F.; Sollerman, J.; Fremling, C.; Karamehmetoglu, E.; Quimby, R. M.; Gal-Yam, A.; Yaron, O.; Kasliwal, M. M.; Kulkarni, S. R.; Nugent, P. E.; Smadja, G.; Tao, C.
2018-01-01
Aims: We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods: Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results: The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until 50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at 20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (Mej = 7.8 M⊙), He-poor star characterized by a double-peaked 56Ni distribution, a total 56Ni mass of 0.59 M⊙, and an explosion energy of 2.2 × 1051 erg. Alternatively, a normal SN Ib/c explosion (M(56Ni) = 0.11 M⊙, EK = 0.2 × 1051 erg, Mej = 1 M⊙) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 1014 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R⊙ is obtained. Conclusions: We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass ( 85 M⊙) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward. Photometric tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A106
Spectral models for early time SN 2011fe observations
NASA Astrophysics Data System (ADS)
Baron, E.; Hoeflich, P.; Friesen, Brian; Sullivan, M.; Hsiao, E.; Ellis, R. S.; Gal-Yam, A.; Howell, D. A.; Nugent, P. E.; Dominguez, I.; Krisciunas, K.; Phillips, M. M.; Suntzeff, N.; Wang, L.; Thomas, R. C.
2015-12-01
We use observed UV through near-IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal Type Ia supernovae (SNe Ia) and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metallicity of Z⊙/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed-detonation model with a transition density that has been fit to other Branch-normal SNe Ia. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ≈0.1 M⊙ than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colours due to variations in the progenitor metallicity, which suggests that colours are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.
NASA Astrophysics Data System (ADS)
Ladani, Leila; Razmi, Jafar
2012-03-01
Continuous miniaturization of microelectronic devices has led the industry to develop interconnects on the order of a few microns for advanced superhigh-density and three-dimensional integrated circuits (3D ICs). At this scale, interconnects that conventionally consist of solder material will completely transform to intermetallic compounds (IMCs) such as Cu6Sn5. IMCs are brittle, unlike conventional solder materials that are ductile in nature; therefore, IMCs do not experience large amounts of plasticity or creep before failure. IMCs have not been fully characterized, and their mechanical and thermomechanical reliability is questioned. This study presents experimental efforts to characterize such material. Sn-based microbonds are fabricated in a controlled environment to assure complete transformation of the bonds to Cu6Sn5 IMC. Microstructural analysis including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) is utilized to determine the IMC material composition and degree of copper diffusion into the bond area. Specimens are fabricated with different bond thicknesses and in different configurations for various tests. Normal strength of the bonds is measured utilizing double cantilever beam and peeling tests. Shear tests are conducted to quantify the shear strength of the material. Four-point bending tests are conducted to measure the fracture toughness and critical energy release rate. Bonds are fabricated in different sizes, and the size effect is investigated. The shear strength, normal strength, critical energy release rate, and effect of bond size on bond strength are reported.
NASA Technical Reports Server (NTRS)
Hoflich, Peter; Khokhlov, A.; Wheeler, C.
1995-01-01
We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Kaukler, W. F.
1986-01-01
Five hypermonotectic Al-In-Sn compositions were directionally solidified in a Bridgman-type furnace at normal gravity and during aircraft low-gravity maneuvers. The tendency of the Al-30In alloy to form an indium-rich band at the start of unidirectional growth (SUG) made it difficult to study the integration of L sub 2 into the solidification interface. Hypermonotectic compositions closer to monotectic slightly hypermonotectic caused only a partial band on L sub 2 to form at SUG and allowed the study of such variables as gravity, composition, and monotectic dome height on integration of excess L sub 2 into the solid plus L sub 2 interface. It was found that formation of aligned composite structures for the Al-In-Sn system is not only a function of G and R but also of the degree to which the composition varies from monotectic. Most of the aligned fibrous structures formed from hypermonotectic Al-In-Sn had spacings that were of the order of irregular fibrous structures reported for on monotectic Al-In-Sn. The spacings for the large fibers and aligned globules found for ground and low-gravity processed Al-In-18-Sn-22, respectively, were significantly larger than the others measured and were of the order expected for cell spacings under the growth conditions utilized. It was found that the integration into the solidification front of excess L sub 2 in low gravity was a function of the Sn composition of the alloy.
Investigation of physical and mechanical properties of (BaSnO3)x(Bi,Pb)-2223 composite
NASA Astrophysics Data System (ADS)
Habanjar, K.; Barakat, M. M. E.; Awad, R.
2017-07-01
The effect of BaSnO3 nanoparticles addition on the structural and mechanical properties of (Bi,Pb)-2223 superconducting phase by means of X-rays diffraction analysis (XRD), scanning electron microscope (SEM), electrical resistance and Vickers microhardness measurement was studied. BaSnO3 nanomaterial and (BaSnO3)x(Bi,Pb)-2223 superconducting samples were prepared using co-precipitation method and standard solid-state reaction techniques, respectively. From XRD data, the addition of BaSnO3 into (Bi,Pb)-2223 phase does not affect the tetragonal structure and the lattice parameters. SEM images indicate that the microstructure of (Bi,Pb)-2223 was enhanced by adding BaSnO3 nanoparticles by filling its pores and voids. The superconducting transition temperature Tc as well as the critical transport current density Jc, estimated from electrical resistivity measurements, are increased up to x = 0.5 wt%, then decreased with further increase in x. Vickers microhardness measurements Hv were carried out at room temperature as a function of applied. The experimental Hv results were analysed in view of Meyer’s law, Hays and Kendall (HK) approach, elastic/plastic deformation (EPD) and proportional specimen resistance (PSR). All samples exhibit normal indentation size effect (ISE), in addition to that, the analysis shows that the Hays and Kendall model is the most suitable one to describe the load independent microhardness for (BaSnO3)x(Bi,Pb)-2223 superconducting samples.
Anisotropic attosecond charge carrier dynamics and layer decoupling in quasi-2D layered SnS 2
Eads, Calley N.; Bandak, Dmytro; Neupane, Mahesh R.; ...
2017-11-08
Strong quantum confinement effects lead to striking new physics in two-dimensional materials such as graphene or transition metal dichalcogenides. While spectroscopic fingerprints of such quantum confinement have been demonstrated widely, the consequences for carrier dynamics are at present less clear, particularly on ultrafast timescales. This is important for tailoring, probing, and understanding spin and electron dynamics in layered and two-dimensional materials even in cases where the desired bandgap engineering has been achieved. Here in this paper we show by means of core–hole clock spectroscopy that SnS 2 exhibits spindependent attosecond charge delocalization times (τ deloc) for carriers confined within amore » layer, τ deloc < 400 as, whereas interlayer charge delocalization is dynamically quenched in excess of a factor of 10, τ deloc > 2.7 fs. These layer decoupling dynamics are a direct consequence of strongly anisotropic screening established within attoseconds, and demonstrate that important two-dimensional characteristics are also present in bulk crystals of van der Waalslayered materials, at least on ultrafast timescales.« less
Liu, Jingling; Shahid, Muhammad; Ko, Young-Seon; Kim, Eunchul; Ahn, Tae Kyu; Park, Jong Hyeok; Kwon, Young-Uk
2013-06-28
In this paper, we report the porosity and heterojunction effects of hematite (α-Fe2O3) on the photoelectrochemical (PEC) water splitting properties. The worm-like mesoporous hematite thin films (MHFs) with a pore size of ~9 nm and a wall thickness of ~5 nm were successfully obtained through the self-assembly process. MHFs formed on FTO showed much better PEC properties than those of nonporous hematite thin films (NP-HF) owing to the suppression of charge recombination. The PEC data of MHFs under front and back illumination conditions indicated that the porous structure allows the diffusion of electrolyte deep inside the MHF increasing the number of holes to be utilized in the water oxidation reaction. A heterojunction structure was formed by introducing a thin layer of SnO2 (~15 nm in thickness) between the MHF and FTO for a dramatically enhanced PEC response, which is attributed to the efficient electron transfer. Our spectroscopic and electrochemical data show that the SnO2 layer functions as an efficient electron transmitter, but does not affect the recombination kinetics of MHFs.
Sly, Krystal L; Conboy, John C
2017-06-01
A novel application of second harmonic correlation spectroscopy (SHCS) for the direct determination of molecular adsorption and desorption kinetics to a surface is discussed in detail. The surface-specific nature of second harmonic generation (SHG) provides an efficient means to determine the kinetic rates of adsorption and desorption of molecular species to an interface without interference from bulk diffusion, which is a significant limitation of fluorescence correlation spectroscopy (FCS). The underlying principles of SHCS for the determination of surface binding kinetics are presented, including the role of optical coherence and optical heterodyne mixing. These properties of SHCS are extremely advantageous and lead to an increase in the signal-to-noise (S/N) of the correlation data, increasing the sensitivity of the technique. The influence of experimental parameters, including the uniformity of the TEM00 laser beam, the overall photon flux, and collection time are also discussed, and are shown to significantly affect the S/N of the correlation data. Second harmonic correlation spectroscopy is a powerful, surface-specific, and label-free alternative to other correlation spectroscopic methods for examining surface binding kinetics.
Synthetic Pn and Sn phases and the frequency dependence of Q of oceanic lithosphere
NASA Astrophysics Data System (ADS)
Sereno, Thomas J., Jr.; Orcutt, John A.
1987-04-01
The oceanic lithosphere is an extremely efficient waveguide for high-frequency seismic energy. In particular, the propagation of the regional to teleseismic oceanic Pn and Sn phases is largely controlled by properties of the oceanic plates. The shallow velocity gradient in the sub-Moho lithosphere results in a nearly linear travel time curve for these oceanic phases and an onset velocity near the material velocity of the uppermost mantle. The confinement of Pn/Sn to the lithosphere imposes a constraint on the maximum range that a normally refracted wave can be observed. The rapid disappearance of Sn and the discontinuous drop in Pn/Sn group velocity beyond a critical distance, dependent upon the local thickness of the lithosphere, are interpreted as a shadowing effect of the low Q asthenosphere. Wave number integration was used to compute complete synthetic seismograms for a model of oceanic lithosphere. The results were compared to data collected during the 1983 Ngendei Seismic Experiment in the southwest Pacific. The Pn/Sn coda is successfully modeled as a sum of leaky organ-pipe modes in the sediment layer and oceanic water column. While scattering is present to some degree, it is not required to explain the long duration and complicated nature of the Pn/Sn wave trains. The presence of extremely high frequencies in Pn/Sn phases and the greater efficiency of Sn than Pn propagation are interpreted in terms of an absorption band rheology. A shorter high-frequency relaxation time for P waves than for S waves results in a rheology with the property that Qα > Qβ at low frequency while Qβ > Qα at high frequency, consistent with the teleseismic Pn/Sn observations. The absorption band model is to viewed as only an approximation to the true frequency dependence of Q in the oceanic lithosphere for which analytic expressions for the material dispersion have been developed.
Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice.
Iyer, Lalitha; Ramírez, Jacqueline; Shepard, Dale R; Bingham, Christopher M; Hossfeld, Dieter-Kurt; Ratain, Mark J; Mayer, Ulrich
2002-04-01
The extensive and unpredictable biliary excretion of CPT-11 and its metabolites, SN-38 and SN-38 glucuronide (SN-38G) may contribute to the wide interpatient variability reported in the disposition and gastrointestinal toxicity of CPT-11. We studied the role of P-glycoprotein (P-gp) in in vivo biliary excretion of CPT-11, SN-38 and SN-38G in mice lacking mdr1-type P-gp [ mdr1a/1b(-/-)] in the presence of the multidrug resistance (MDR) reversal agent, PSC833. Wild-type (Wt) and mdr1a/1b(-/-) mice ( n=3 or 4) were treated intragastrically with PSC833 (50 mg/kg) or vehicle 2 h prior to i.v. CPT-11 dosing (10 mg/kg), and bile samples were collected. P-gp was found to play an important role in CPT-11 biliary excretion, as there was a significant (40%, P<0.05) decrease in its biliary recovery in 90 min in mdr1a/1b(-/-) mice (6.6+/-0.6% dose) compared with Wt mice (11+/-1.2%). This also implied a major role of other undetermined non-P-gp-mediated mechanism(s) for hepatic transport of CPT-11, which was inhibited by PSC833 (1.8+/-0.8% with PSC833, 6.6+/-0.6% without PSC833) in mdr1a/1b(-/-) mice. SN-38 and SN-38G biliary transport was unchanged in mice lacking P-gp after vehicle treatment, indicating a lack of P-gp mediation in their transport. PSC833 significantly reduced (56-89%) SN-38 and SN-38G biliary transport in Wt and mdr1a/1b(-/-) mice, suggesting that PSC833 may be a candidate to modulate biliary excretion of SN-38 with potential use in reducing CPT-11 toxicity.
NASA Astrophysics Data System (ADS)
Yamanaka, Masayuki; Maeda, Keiichi; Tanaka, Masaomi; Tominaga, Nozomu; Kawabata, Koji S.; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Ueno, Issei; Akitaya, Hiroshi; Nagayama, Takahiro; Takahashi, Jun; Honda, Satoshi; Omodaka, Toshihiro; Miyanoshita, Ryo; Nagao, Takashi; Watanabe, Makoto; Isogai, Mizuki; Arai, Akira; Itoh, Ryosuke; Ui, Takahiro; Uemura, Makoto; Yoshida, Michitoshi; Hanayama, Hidekazu; Kuroda, Daisuke; Ukita, Nobuharu; Yanagisawa, Kenshi; Izumiura, Hideyuki; Saito, Yoshihiko; Masumoto, Kazunari; Ono, Rikako; Noguchi, Ryo; Matsumoto, Katsura; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Sekiguchi, Kazuhiro
2016-10-01
We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from -11 to +140 d after the date of its B-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTER ToO (Optical and Infrared Synergetic Telescopes for Education and Research Target of Opportunity) program. The NIR light curves and color evolutions up to 35 days after the B-band maximum provided an excellent match with those of another SC SN 2009dc, providing further support to the nature of SN 2012dn as an SC SN. We found that SN 2012dn exhibited strong excesses in the NIR wavelengths from 30 d after the B-band maximum. The H- and Ks-band light curves exhibited much later maximum dates at 40 and 70 d after the B-band maximum, respectively, compared with those of normal SNe Ia. The H- and Ks-band light curves subtracted by those of SN 2009dc displayed plateaued evolutions, indicating an NIR echo from the surrounding dust. The distance to the inner boundary of the dust shell is limited to 4.8-6.4 × 10-2 pc. No emission lines were found in its early phase spectra, suggesting that the ejecta-circumstellar material interaction could not occur. On the other hand, we found no signature that strongly supports the scenario of dust formation. The mass-loss rate of the pre-explosion system is estimated to be 10-6-10-5 M⊙ yr-1, assuming that the wind velocity of the system is 10-100 km s-1, which suggests that the progenitor of SN 2012dn could be a recurrent nova system. We conclude that the progenitor of this SC SN could be explained by the single-degenerate scenario.
Olaru, Alexandra M; Burt, Alister; Rayner, Peter J; Hart, Sam J; Whitwood, Adrian C; Green, Gary G R; Duckett, Simon B
2016-12-13
The hyperpolarisation of the 119 Sn and 29 Si nuclei in 5-(tributylstannyl)pyrimidine (A Sn ) and 5-(trimethylsilyl)pyrimidine (B Si ) is achieved through their reaction with [IrCl(COD)(IMes)] (1a) or [IrCl(COD)(SIMes)] (1b) and parahydrogen via the SABRE process. 1a exhibits superior activity in both cases. The two inequivalent pyrimidine proton environments of A Sn readily yielded signal enhancements totalling ∼2300-fold in its 1 H NMR spectrum at a field strength of 9.4 T, with the corresponding 119 Sn signal being 700 times stronger than normal. In contrast, B Si produced analogous 1 H signal gains of ∼2400-fold and a 29 Si signal that could be detected with a signal to noise ratio of 200 in a single scan. These sensitivity improvements allow NMR detection within seconds using micromole amounts of substrate and illustrate the analytical potential of this approach for high-sensitivity screening. Furthermore, after extended reaction times, a series of novel iridium trimers of general form [Ir(H) 2 Cl(NHC)(μ-pyrimidine-κN:κN')] 3 precipitate from these solutions whose identity was confirmed crystallographically for B Si .
In situ studies of ion irradiated inverse spinel compound magnesium stannate (Mg 2SnO 4)
NASA Astrophysics Data System (ADS)
Xu, P.; Tang, M.; Nino, J. C.
2009-06-01
Magnesium stannate spinel (Mg 2SnO 4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr 2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg 2SnO 4 was achieved at an ion dose of 5 × 10 19 Kr ions/m 2 at 50 K and 10 20 Kr ions/m 2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr 2+ ions in Mg 2SnO 4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg 2SnO 4 was finally compared with normal spinel MgAl 2O 4.
Investigation of the fracture mechanism in Ti-5Al-2.5Sn at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Vanstone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.
1977-01-01
The influence of microstructure on the fracture mechanism and plane-strain fracture toughness of Ti-5Al-2.5Sn was studied through the use of fractography and metallographic sectioning techniques. One-inch thick plates of extra low interstitial (ELI) and normal interstitial Ti-5Al-2.5Sn were mill annealed at 815 C followed by either air or furnace cooling. These variations in composition and cooling rate resulted in differences in the volume fraction and internal structure of the iron-stabilized phase, and in the crystallographic texture and ordering of the alpha matrix. The tensile properties of these plates were determined at 20 K, 77 K, and 295 K. The air-cooled ELI plate was the toughest material evaluated.
Nonuniformity of diffusing capacity from small alveolar gas samples is increased in smokers.
Cotton, D J; Mink, J T; Graham, B L
1998-01-01
Although centrilobular emphysema, and small airway, interstitial and alveoli inflammation can be detected pathologically in the lungs of smokers with relatively well preserved lung function, these changes are difficult to assess using available physiological tests. Because submaximal single breath washout (SBWSM) manoeuvres improve the detection of abnormalities in ventilation inhomogeneity in the lung periphery in smokers compared with traditional vital capacity manoeuvres, SBWSM manoeuvres were used in this study to measure temporal differences in diffusing capacity using a rapid response carbon monoxide analyzer. To determine whether abnormalities in the lung periphery can be detected in smokers with normal forced expired volumes in 1 s using the three-equation diffusing capacity (DLcoSB-3EQ) among small alveolar gas samples and whether the abnormalities correlate with increases in peripheral ventilation inhomogeneity. Cross-sectional study in 21 smokers and 21 nonsmokers all with normal forced exhaled flow rates. Both smokers and nonsmokers performed SBWSM manoeuvres consisting of slow inhalation of test gas from functional residual capacity to one-half inspiratory capacity with either 0 or 10 s of breath holding and slow exhalation to residual volume (RV). They also performed conventional vital capacity single breath (SBWVC) manoeuvres consisting of slow inhalation of test gas from RV to total lung capacity and, without breath holding, slow exhalation to RV. DLcoSB-3EQ was calculated from the total alveolar gas sample. DLcoSB-3EQ was also calculated from four equal sequential, simulated aliquots of the total alveolar gas sample. DLcoSB-3EQ values from the four alveolar samples were normalized by expressing each as a percentge of DLcoSB-3EQ from the entire alveolar gas sample. An index of variation (DI) among the small-sample DLcoSB-3EQ values was correlated with the normalized phase III helium slope (Sn) and the mixing efficiency (Emix). For SBWSM, DI was increased in smokers at 0 s of breath holding compared with nonsmokers, and correlated with age, smoking pack-years and Sn. The decrease in DI with breath holding was greater in smokers and correlated with the change in Sn with breath holding. For SBWVC manoeuvres, there were no differences due to smoking in Sn or Emix, but DI was increased in smokers and correlated with age and smoking pack-years, but not with Sn. For SBWSM manoeuvres the increase in DI in smokers correlated with breath hold time-dependent increases in Sn, suggesting that the changes in DI reflected the same structural alterations that caused increases in peripheral ventilation inhomogeneity. For SBWVC manoeuvres, the increase in DI in smokers was not associated with changes in ventilation inhomogeneity, suggesting that the effect of smoking on DI during this manoeuvre was due to smoke-related changes in alveolar capillary diffusion, rather than due solely to alterations in the distribution of ventilation.
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Ryabchikova, T.; Landstreet, J. D.; Weiss, W. W.
2004-06-01
We describe an analysis of the time-resolved measurements of the surface magnetic field in the roAp star γEqu. We have obtained a high-resolution and high signal-to-noise (S/N) spectroscopic time series, and the magnetic field was determined using Zeeman-resolved profiles of the FeII 6149.25 Åand FeI 6173.34 Ålines. Contrary to recent reports, we do not find any evidence of magnetic variability with pulsation phase, and derive an upper limit of 5-10 G for pulsational modulation of the surface magnetic field in γEqu.
The Mysterious Transient ROTSE3 J115649.1+542726 is an Extremely Luminous Type II SN at z = 0.21
NASA Astrophysics Data System (ADS)
Chornock, R.; Miller, A. A.; Perley, D. A.; Bloom, J. S.
2008-08-01
We report on further spectroscopic observations of the transient ROTSE3 J115649.1+542726 discovered by Yuan et al. (ATEL #1515) and followed up by several groups (ATEL #1524, ATEL #1576, ATEL #1578, and ATEL #1593). We observed the object for 840 s using the Low-Resolution Imaging Spectrometer (LRIS; Oke et al. 1995) on the Keck I 10-m telescope on 2008 Aug 3.25 UT. Our initial observations of this object (ATEL #1576) showed a blue and largely featureless spectrum, but at later epochs several unidentified weak spectral features appeared (ATEL #1576 and ATEL #1593).
VizieR Online Data Catalog: DIBs in APOGEE telluric standard star spectra (Elyajouri+, 2017)
NASA Astrophysics Data System (ADS)
Elyajouri, M.; Lallement, R.; Monreal-Ibero, A.; Capitanio, L.; Cox, N. L. J.
2017-04-01
A subset of ~60 target stars from the APOGEE TSS list described in Sect. 3 has been observed in the visible with NARVAL, the spectropolarimeter of the Bernard Lyot telescope (2m) at Pic du Midi observatory, used in high-resolution spectroscopic mode (R~=80000). For all data the signal-to-noise ratio (S/N) is between 50 and 100. Two targets were observed twice in order check the estimated uncertainties. An additional subset of five targets was observed with the SOPHIE spectrograph at the 1.93m telescope of the Haute-Provence Observatory at a resolving power R~=39000. (1 data file).
NASA Astrophysics Data System (ADS)
Hirsch, J. E.
2018-05-01
Since the discovery of the Meissner effect, the superconductor to normal (S-N) phase transition in the presence of a magnetic field is understood to be a first-order phase transformation that is reversible under ideal conditions and obeys the laws of thermodynamics. The reverse (N-S) transition is the Meissner effect. This implies in particular that the kinetic energy of the supercurrent is not dissipated as Joule heat in the process where the superconductor becomes normal and the supercurrent stops. In this paper, we analyze the entropy generation and the momentum transfer between the supercurrent and the body in the S-N transition and the N-S transition as described by the conventional theory of superconductivity. We find that it is not possible to explain the transition in a way that is consistent with the laws of thermodynamics unless the momentum transfer between the supercurrent and the body occurs with zero entropy generation, for which the conventional theory of superconductivity provides no mechanism. Instead, we point out that the alternative theory of hole superconductivity does not encounter such difficulties.
NASA Technical Reports Server (NTRS)
Saha, A.; Sandage, Allan; Labhardt, Lukas; Schwengeler, Hans; Tammann, G. A.; Panagia, N.; Macchetto, F. D.
1995-01-01
Observations of the Hubble Space Telescope (HST) between 1993 May 31 and 1993 July 19 in 20 epochs in the F555W passband and five epochs in the F785LP passband have led to the discovery of 14 Cepheids in the Amorphous galaxy NGC 5253. The apparent V distance modulus is (m-M)(sub AV) = 28.08 +/- 0.10 determined from the 12 Cepheids with normal amplitudes. The distance modulus using the F785LP data is consistent with the V value to within the errors. Five methods used to determine the internal reddening are consistent with zero differential reddening, accurate to a level of E(B-V) less than 0.05 mag, over the region occupied by Cepheids and the two supernovae (SNe) produced by NGC 5253. The apparent magnitudes at maximum for the two SNe in NGC 5253 are adopted as B(sub max) = 8.33 +/- 0.2 mag for SN 1895B, and B(sub max) = 8.56 +/- 0.1 and V(sub max) = 8.60 +/- 0.1 for SN 1972E which is a prototype SN of Type Ia. The apparent magnitude system used by Walker (1923) for SN 1859B has been corrected to the modern B scale and zero point to determine its adopted B(sub max) value.
On the fluctuations of sums of independent random variables.
Feller, W
1969-07-01
If X(1), X(2),... are independent random variables with zero expectation and finite variances, the cumulative sums S(n) are, on the average, of the order of magnitude S(n), where S(n) (2) = E(S(n) (2)). The occasional maxima of the ratios S(n)/S(n) are surprisingly large and the problem is to estimate the extent of their probable fluctuations.Specifically, let S(n) (*) = (S(n) - b(n))/a(n), where {a(n)} and {b(n)}, two numerical sequences. For any interval I, denote by p(I) the probability that the event S(n) (*) epsilon I occurs for infinitely many n. Under mild conditions on {a(n)} and {b(n)}, it is shown that p(I) equals 0 or 1 according as a certain series converges or diverges. To obtain the upper limit of S(n)/a(n), one has to set b(n) = +/- epsilon a(n), but finer results are obtained with smaller b(n). No assumptions concerning the under-lying distributions are made; the criteria explain structurally which features of {X(n)} affect the fluctuations, but for concrete results something about P{S(n)>a(n)} must be known. For example, a complete solution is possible when the X(n) are normal, replacing the classical law of the iterated logarithm. Further concrete estimates may be obtained by combining the new criteria with some recently developed limit theorems.
High signal-to-noise spectral characterization of the planetary-mass object HD 106906 b
NASA Astrophysics Data System (ADS)
Daemgen, Sebastian; Todorov, Kamen; Quanz, Sascha P.; Meyer, Michael R.; Mordasini, Christoph; Marleau, Gabriel-Dominique; Fortney, Jonathan J.
2017-12-01
Context. Directly imaged planets are ideal candidates for spectroscopic characterization of their atmospheres. The angular separations that are typically close to their host stars, however, reduce the achievable contrast and thus signal-to-noise ratios (S/N). Aims: We spectroscopically characterize the atmosphere of HD 106906 b, which is a young low-mass companion near the deuterium burning limit. The wide separation from its host star of 7.1'' makes it an ideal candidate for high S/N and high-resolution spectroscopy. We aim to derive new constraints on the spectral type, effective temperature, and luminosity of HD 106906 b and also to provide a high S/N template spectrum for future characterization of extrasolar planets. Methods: We obtained 1.1-2.5 μm integral field spectroscopy with the VLT/SINFONI instrument with a spectral resolution of R ≈ 2000-4000. New estimates of the parameters of HD 106906 b are derived by analyzing spectral features, comparing the extracted spectra to spectral catalogs of other low-mass objects, and fitting with theoretical isochrones. Results: We identify several spectral absorption lines that are consistent with a low mass for HD 106906 b. We derive a new spectral type of L1.5 ± 1.0, which is one subclass earlier than previous estimates. Through comparison with other young low-mass objects, this translates to a luminosity of log(L/L⊙) = -3.65 ± 0.08 and an effective temperature of Teff = 1820 ± 240 K. Our new mass estimates range between M = 11.9-0.8+1.7 MJup (hot start) and M = 14.0-0.5+0.2 MJup (cold start). These limits take into account a possibly finite formation time, i.e., HD 106906 b is allowed to be 0-3 Myr younger than its host star. We exclude accretion onto HD 106906 b at rates Ṁ > 4.8 × 10-10 MJup yr-1 based on the fact that we observe no hydrogen (Paschen-β, Brackett-γ) emission. This is indicative of little or no circumplanetary gas. With our new observations, HD 106906 b is the planetary-mass object with one of the highest S/N spectra yet. We make the spectrum available for future comparison with data from existing and next-generation (e.g., ELT and JWST) spectrographs. Fully reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A71Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 094.C-0672(A).
Size effects in electrical and magnetic properties of quasi-one-dimensional tin wires in asbestos
NASA Astrophysics Data System (ADS)
Chernyaev, A. V.; Shamshur, D. V.; Fokin, A. V.; Kalmykov, A. E.; Kumzerov, Yu. A.; Sorokin, L. M.; Parfen'ev, R. V.; Lashkul, A.
2016-03-01
Bulk composites have been prepared based on one-dimensional fibers of natural chrisothil-asbestos with various internal diameters ( d = 6-2.5 nm) filled with tin. The electrical and magnetic properties of quasi-one-dimensional Sn wires have been studied at low temperatures. The electrical properties have been measured at T = 300 K at a pressure P = 10 kbar. It has been found that the superconducting (SC) characteristics of the nanocomposites (critical temperature T c and critical magnetic field H c) increase as the Sn filament diameter decreases. The temperature spreading of the resistive SC transition also increases as the Sn filament diameter decreases, which is explained by the SC order parameter fluctuations. The size effects (the increase in critical temperature T c and transition width Δ T c) in Sn nanofilaments are well described by the independent Aslamazov-Larkin and Langer-Ambegaokara fluctuation theories, which makes it possible to find the dependence of T c of the diffuse SC transition on the nanowire diameter. Using the temperature and magnetic-field dependences of the magnetic moment M( T, H), it has been found that the superconductor-normal metal phase diagram of the Sn-asbestos nanocomposite has a wider region of the SC state in T and H as compared to the data for bulk Sn. The magnetic properties of chrisotil-asbestos fibers unfilled with Sn have been studied. It has been found that the Curie law is fulfilled and that the superparamagnetism is absent in such samples. The obtained results indicate the absence of magnetically ordered impurities (magnetite) in the chrisotil-asbestos matrix, which allowed one to not consider the problem of the interaction of the magnetic subsystem of the asbestos matrix and the superconducting subsystem of Sn nanowires.
Miller, A. A.; Cao, Y.; Piro, A. L.; ...
2018-01-11
Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is when the SN could have first been detected by our survey, occurred onlymore » $$0.15\\pm_{0.07}^{0.15}$$ days before our first detection. In the $$\\sim$$24 hr after discovery, iPTF 16abc rose by $$\\sim$$2 mag, featuring a near-linear rise in flux for $$\\gtrsim$$3 days. Early spectra show strong C II absorption, which disappears after $$\\sim$$7 days. Unlike the extensivelyobserved SN Ia SN 2011fe, the $$(B-V)_0$$ colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. Finally, in the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.« less
Howe, Daniel K.; Gaji, Rajshekhar Y.; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby
2005-01-01
Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s). PMID:15664946
Howe, Daniel K; Gaji, Rajshekhar Y; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby
2005-02-01
Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. A.; Cao, Y.; Piro, A. L.
Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is when the SN could have first been detected by our survey, occurred onlymore » $$0.15\\pm_{0.07}^{0.15}$$ days before our first detection. In the $$\\sim$$24 hr after discovery, iPTF 16abc rose by $$\\sim$$2 mag, featuring a near-linear rise in flux for $$\\gtrsim$$3 days. Early spectra show strong C II absorption, which disappears after $$\\sim$$7 days. Unlike the extensivelyobserved SN Ia SN 2011fe, the $$(B-V)_0$$ colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. Finally, in the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.« less
Rösel-Hillgärtner, Tanja Dorothe; Hung, Lee-Hsueh; Khrameeva, Ekaterina; Le Querrec, Patrick; Gelfand, Mikhail S.; Bindereif, Albrecht
2013-01-01
The U1 small nuclear ribonucleoprotein (snRNP)-specific U1C protein participates in 5′ splice site recognition and regulation of pre-mRNA splicing. Based on an RNA-Seq analysis in HeLa cells after U1C knockdown, we found a conserved, intra-U1 snRNP cross-regulation that links U1C and U1-70K expression through alternative splicing and U1 snRNP assembly. To investigate the underlying regulatory mechanism, we combined mutational minigene analysis, in vivo splice-site blocking by antisense morpholinos, and in vitro binding experiments. Alternative splicing of U1-70K pre-mRNA creates the normal (exons 7–8) and a non-productive mRNA isoform, whose balance is determined by U1C protein levels. The non-productive isoform is generated through a U1C-dependent alternative 3′ splice site, which requires an adjacent cluster of regulatory 5′ splice sites and binding of intact U1 snRNPs. As a result of nonsense-mediated decay (NMD) of the non-productive isoform, U1-70K mRNA and protein levels are down-regulated, and U1C incorporation into the U1 snRNP is impaired. U1-70K/U1C-deficient particles are assembled, shifting the alternative splicing balance back towards productive U1-70K splicing, and restoring assembly of intact U1 snRNPs. Taken together, we established a novel feedback regulation that controls U1-70K/U1C homeostasis and ensures correct U1 snRNP assembly and function. PMID:24146627
SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Fang; Wang, Xiaofeng; Chen, Juncheng
2015-07-01
We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M{sub V} ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of {sup 56}Ni is estimated as 0.02 ± 0.01 M{sub ⊙} from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar tomore » that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v{sub Fe} {sub ii} ∼ 4600 km s{sup −1} at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of {sup 56}Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10{sup 51} erg, the radius of the progenitor as ∼600 R{sub ⊙}, and the ejected mass as ∼10.6 M{sub ⊙}. These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M{sub ⊙} immediately before the explosion.« less
Suda, Yukari; Kuzumaki, Naoko; Narita, Michiko; Hamada, Yusuke; Shibasaki, Masahiro; Tanaka, Kenichi; Tamura, Hideki; Kawamura, Takashi; Kondo, Takashige; Yamanaka, Akihiro; Narita, Minoru
2018-02-19
Ghrelin plays roles in a wide range of central functions by activating the growth hormone secretagogue receptor (GHSR). This receptor has recently been found in the substantia nigra (SN) to control dopamine (DA)-related physiological functions. The dysregulation of DA neurons in the SN pars compacta (SNc) and the consequent depletion of striatal DA are known to underlie the motor deficits observed in Parkinson's disease (PD). In the present study, we further investigated the role of the SN-ghrelin system in motor function under the stereotaxic injection of AAV-CMV-FLEX-diphtheria toxin A (DTA) into the SN of dopamine transporter (DAT)-Cre (DAT SN ::DTA) mice to expunge DA neurons of the SNc. First, we confirmed the dominant expression of GHSR1a, which is a functional GHSR, in tyrosine hydroxylase (TH)-positive DA neurons in the SNc of control mice. In DAT SN ::DTA mice, we clearly observed motor dysfunction using several behavioral tests. An immunohistochemical study revealed a dramatic loss of TH-positive DA neurons in the SNc and DAT-labeled axon terminals in the striatum, and an absence of mRNAs for TH and DAT in the SN of DAT SN ::DTA mice. The mRNA level of GHSR1a was drastically decreased in the SN of these mice. In normal mice, we also found the mRNA expression of GHSR1a within GABAergic neurons in the SN pars reticulata (SNr). Under these conditions, a single injection of ghrelin into the SN failed to improve the motor deficits caused by ablation of the nigrostriatal DA network using DAT SN ::DTA mice, whereas intra-SN injection of ghrelin suppressed the motor dysfunction caused by the administration of haloperidol, which is associated with the transient inhibition of DA transmission. These findings suggest that phasic activation of the SNc-ghrelin system could improve the dysregulation of nigrostriatal DA transmission related to the initial stage of PD, but not the motor deficits under the depletion of nigrostriatal DA. Although GHSRs are found in non-DA cells of the SNr, GHSRs on DA neurons in the SNc may play a crucial role in motor function. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Rachel C.; D’Andrea, Chris B.; Gupta, Ravi R.
2016-04-20
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopicallyconfirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric hostgalaxy properties from themore » SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6σ significance of a non-zero linear slope. We also recover correlations between HR and hostgalaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.« less
Bello, Babatunde; Zhang, Xueyan; Liu, Chuanliang; Yang, Zhaoen; Yang, Zuoren; Wang, Qianhua; Zhao, Ge; Li, Fuguang
2014-01-01
The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic Arabidopsis. We further elucidated the function of this gene in transgenic cotton using virus-induced gene silencing (VIGS) techniques. We hypothesized that GhSnRK2 participates in the stress signaling pathway and elucidated its role in enhancing stress tolerance in plants via various stress-related pathways and stress-responsive genes. We determined that the subcellular localization of the GhSnRK2-green fluorescent protein (GFP) was localized in the nuclei and cytoplasm. In contrast to wild-type plants, transgenic plants overexpressing GhSnRK2 exhibited increased tolerance to drought, cold, abscisic acid and salt stresses, suggesting that GhSnRK2 acts as a positive regulator in response to cold and drought stresses. Plants overexpressing GhSnRK2 displayed evidence of reduced water loss, turgor regulation, elevated relative water content, biomass, and proline accumulation. qRT-PCR analysis of GhSnRK2 expression suggested that this gene may function in diverse tissues. Under normal and stress conditions, the expression levels of stress-inducible genes, such as AtRD29A, AtRD29B, AtP5CS1, AtABI3, AtCBF1, and AtABI5, were increased in the GhSnRK2-overexpressing plants compared to the wild-type plants. GhSnRK2 gene silencing alleviated drought tolerance in cotton plants, indicating that VIGS technique can certainly be used as an effective means to examine gene function by knocking down the expression of distinctly expressed genes. The results of this study suggested that the GhSnRK2 gene, when incorporated into Arabidopsis, functions in positive responses to drought stress and in low temperature tolerance. PMID:25393623
NASA Astrophysics Data System (ADS)
Barros, J.; Roy, P.; Appadoo, D.; Naughton, D. Mc; Robertson, E.; Manceron, L.
2013-06-01
In storage rings, short electron bunches can produce an intense THz radiation called Coherent Synchrotron Radiation (CSR). The flux of this emission between 250 and 750 GHz (in the mW range, up the 10000 times the regular synchrotron emission) is very advantageous for broad band absorption spectroscopy, using interferometric techniques. This source is, however, inherently difficult to stabilize, and intensity fluctuations lead to artifacts on the FT-based measurements, which strongly limit the use of CSR in particular for high-resolution measurements. At SOLEIL however, by screening different currents and bunch lengths, we defined stable CSR conditions for which the signal-to-noise ratio (S/N) allows for measurements at high resolution. Moreover, we developed an artifact correction system, based on a simultaneous detection of the input and the output signals of the interferometer, which allows to further improve the S/N. For this purpose, the optics and electronics of two bolometers were matched. The stable CSR combined with this ingenious technique allowed us to record for the first time high-resolution FT spectra in the sub-THz range, with a S/N of 100 in a few hours. This enables many applications such as broadband rotational spectra in the THz range, studies of molecules with low frequency torsional modes, absolute intensities determinations, or studies of unstable species. Results obtained on Propynal illustrate these possibilities and enabled to improve significantly the ground state spectroscopic constants.
Kokulnathan, Thangavelu; Kumar, Jeyaraj Vinoth; Chen, Shen-Ming; Karthik, Raj; Elangovan, Arumugam; Muthuraj, Velluchamy
2018-06-01
In the modern world, the contamination of ecosystem by human and veterinary pharmaceutical drugs through the metabolic excretion, improper disposal/industrial waste has been subjected to a hot issue. Therefore, exploitation of exclusive structured material and reliable technique is a necessary task to the precise detection of drugs. With this regards, we made an effort for the fabrication of novel one-dimensional (1D) stannous tungstate nanorods (β-SnW NRs) via simple sonochemical approach and used as an electrochemical sensor for the detection of antipsychotic drug chlorpromazine (CPZ) for the first time. The crystallographic structure, surface topology, elemental compositions and their distributions and ionic states were enquired by different spectroscopic techniques such as XRD, FTIR, SEM, EDS, elemental mapping and XPS analysis. The developed β-SnW NRs/GCE sensor exhibits a rapid and sensitive electrochemical response towards CPZ sensing with wide linear response range (0.01-457 µM), high sensitivity (2.487 µA µM -1 cm -2 ), low detection limit (0.003 µM) and excellent selectivity. Besides, the as-proposed electrochemical sensor was successfully applied to real sample analysis in commercial CPZ drug and biological fluids and the acquired recovery results are quite satisfactory. The proposed sonochemical method for the preparation of β-SnW NRs is low cost, very simple, fast and efficient for sensor applications. Copyright © 2018 Elsevier B.V. All rights reserved.
The First Reported Infrared Emission from the SN1006 Remnant
NASA Technical Reports Server (NTRS)
Winkler, P. Frank; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Long, Knox S.; Raymond, John C.; Reynolds, Stephen P.
2012-01-01
We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 m image from MIPS clearly shows faint filamentary emission along the northwest rim of the remnant shell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 m emission traces the Balmer filaments almost perfectly, but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lowera relic effect from an earlier epoch when the shock was encountering a lower densitybut higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the IRS instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium is lower than that expected for the Galactic ISM-as has also been observed in the analysis of IR emission from other SNRs but whose cause remains unclear. As with other SNIa remnants, SN1006 shows no evidence for dust grain formation in the supernova ejecta.
Bright high z SnIa: A challenge for ΛCDM
NASA Astrophysics Data System (ADS)
Perivolaropoulos, L.; Shafieloo, A.
2009-06-01
It has recently been pointed out by Kowalski et. al. [Astrophys. J. 686, 749 (2008).ASJOAB0004-637X10.1086/589937] that there is “an unexpected brightness of the SnIa data at z>1.” We quantify this statement by constructing a new statistic which is applicable directly on the type Ia supernova (SnIa) distance moduli. This statistic is designed to pick up systematic brightness trends of SnIa data points with respect to a best fit cosmological model at high redshifts. It is based on binning the normalized differences between the SnIa distance moduli and the corresponding best fit values in the context of a specific cosmological model (e.g. ΛCDM). These differences are normalized by the standard errors of the observed distance moduli. We then focus on the highest redshift bin and extend its size toward lower redshifts until the binned normalized difference (BND) changes sign (crosses 0) at a redshift zc (bin size Nc). The bin size Nc of this crossing (the statistical variable) is then compared with the corresponding crossing bin size Nmc for Monte Carlo data realizations based on the best fit model. We find that the crossing bin size Nc obtained from the Union08 and Gold06 data with respect to the best fit ΛCDM model is anomalously large compared to Nmc of the corresponding Monte Carlo data sets obtained from the best fit ΛCDM in each case. In particular, only 2.2% of the Monte Carlo ΛCDM data sets are consistent with the Gold06 value of Nc while the corresponding probability for the Union08 value of Nc is 5.3%. Thus, according to this statistic, the probability that the high redshift brightness bias of the Union08 and Gold06 data sets is realized in the context of a (w0,w1)=(-1,0) model (ΛCDM cosmology) is less than 6%. The corresponding realization probability in the context of a (w0,w1)=(-1.4,2) model is more than 30% for both the Union08 and the Gold06 data sets indicating a much better consistency for this model with respect to the BND statistic.
Neutron spectroscopic study of crystal field excitations in Tb 2Ti 2O 7 and Tb 2Sn 2O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Fritsch, Katharina; Hao, Z.
2014-04-01
We present time-of-flight inelastic neutron scattering measurements at low temperature on powder samples of the magnetic pyrochlore oxides Tb 2Ti 2O 7 and Tb 2Sn 2O 7. These two materials possess related, but different ground states, with Tb 2Sn 2O 7 displaying "soft" spin ice order below T N approx 0.87 K, while Tb 2Ti 2O 7 enters a hybrid, glassy-spin ice state below T g approx 0.2 K. Our neutron measurements, performed at T = 1.5 K and 30 K, probe the crystal field states associated with the J = 6 states of Tb 3+ within the appropriate Fd3-barmmore » pyrochlore environment. These crystal field states determine the size and anisotropy of the Tb 3+ magnetic moment in each material's ground state, information that is an essential starting point for any description of the low temperature phase behavior and spin dynamics in Tb 2Ti 2O 7 and Tb 2Sn 2O 7. While these two materials have much in common, the cubic stanate lattice is expanded compared to the cubic titanate lattice. As our measurements show, this translates into a factor of approx 2 increase in the crystal field bandwidth of the 2J +1 = 13 states in Tb 2Ti 2O 7 compared with Tb 2Sn 2O 7. Our results are consistent with previous measurements on crystal field states in Tb 2Sn 2O 7, wherein the ground state doublet corresponds primarily to mJ = {vert_bar}+-5> and the first excited state doublet to mJ = {vert_bar}+-4>. In contrast, our results on Tb 2Ti 2O 7 differ markedly from earlier studies, showing that the ground state doublet corresponds to a significant mixture of mJ = {vert_bar}+-5>, mJ = {vert_bar}+-4> and mJ = {vert_bar}+-2>, while the first excited state doublet corresponds to a mixture of mJ = {vert_bar}+-4>, mJ = {vert_bar}+-5> and mJ = {vert_bar}+-1>. We discuss these results in the context of proposed mechanisms for the failure of Tb 2Ti 2O 7 to develop conventional long range order down to 50 mK.« less
SN IA in the IR: RAISIN A progress report
NASA Astrophysics Data System (ADS)
Kirshner, Robert P.; The RAISIN TEAM
2014-01-01
SN Ia have proven to be a powerful tool for cosmology. Near-IR observations of SN Ia promise even better results because the supernovae are more nearly standard candles at those wavelengths and absorption by dust is diminished by a factor of 4 compared to rest-frame B-band observations. Near IR observations of cosmologically-distant SN Ia discovered with PanSTARRS are underway using the infrared camera on the Hubble Space Telescope (GO-13046). These targets are discovered in the difference images created in the CfA/JHU pipeline, confirmed spectroscopically at the MMT, Magellan, Gemini, or Keck, and inserted in a non-disruptive way into the HST observing schedule for WFC3-IR. We have observed over 20 SN Ia in the range 0.2 < z < 0.5 during Cycle 21 and this is a progress report on the analysis. The final results require a repeat observation after the supernova has faded. Those will be completed in 2014, but we have a sufficient sample of objects for which the supernova is well separated from the host galaxy to illustrate the power of this technique. Preliminary analysis shows HST data can reduce the uncertainty in the distance to each supernova by a factor or 2. Sufficiently large supernova samples have been gathered at all redshifts so that statistical errors in interesting parameters (like the dark energy equation-of-state index (1 +w)), have been driven down to the same level as the systematic errors (about 7%). Further progress is limited by our ability to master the systematic errors. These include the correction for luminosity based on the light curve shape and the correction based on intrinsic color and reddening by dust. Since SN IA behave better in the IR in both these ways, there is reason to expect that this approach will be effective in driving down the systematic errors over time. If we are diligent in building up the size of the sample that is observed in the rest-frame infrared, we can expect more certain knowledge of the properties of dark energy. Unsolved problems include constructing precise K-corrections and firming up the fundamental photometric system in y, J, H, and K, but this approach seems a promising one for the HST era now, JWST soon, and WFIRST in good time.
Sharma, Kripa; Joshi, S. C.
2000-01-01
Synthetic, spectroscopic and antimicrobial aspects of some fertility inhibitor heterobimetallic complexes have been carried out. These heterobimetallic chelates [M(C5H5N3)2M2'(R)4]Cl2 (M = Pd or Pt and M' = Si, Sn, Ti and Zr) have been successfully synthesinzed via the reaction of M(C5H7N3)2Cl2 with group four or fourteen dichlorides in 1:2 stoichiometric proportions. The products were characterized by elemental analyses, molecular weight determinations, magnetic susceptibility measurements, conductance, and IR multinuclear NMR and electronic spectral studies. A square planar geometry has been suggested for all the complexes with the help of spectral data. Conductivity data strongly suggest that chlorine atoms are ionic in nature due to which complexes behave as electrolytes. All the complexes have been evaluated for their antmicrobial effects on different species of pathogenic fungi and bacteria. The testicular sperm density, testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemical parameters of reproductive organs have been examined and discussed. PMID:18475932
Spectral models for early time SN 2011fe observations
Baron, E.; Hoeflich, P.; Friesen, Brian; ...
2015-10-13
We use observed UV through near-IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal Type Ia supernovae (SNe Ia) and to examine its individual peculiarities. As a benchmark, we use a delayed-detonationmodel with a progenitormetallicity of Z ⊙/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed-detonation model withmore » a transition density that has been fit to other Branch-normal SNe Ia. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ≈0.1 M ⊙ than does the model. We discuss several explanations for the discrepancies. Lastly, we examine variations in both the spectral energy distribution and in the colours due to variations in the progenitor metallicity, which suggests that colours are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. Here we do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.« less
Meteorological drought patterns and climate change for the island of Crete
NASA Astrophysics Data System (ADS)
Koutroulis, Aristeidis G.; Vrohidou, Aggeliki K.; Tsanis, Ioannis K.; Jacob, Daniela
2010-05-01
A new index, named SN-SPI (Spatially Normalized-Standardized Precipitation Index), has been developed for assessing meteorological droughts. The SN-SPI is a variant index to SPI (Standardized Precipitation Index) and is based on the probability of precipitation at different time scales, but it is spatially normalized for improved assessment of drought severity. Results of this index incorporate the spatial distribution of precipitation and produces improved drought warnings. This index is applied in the island of Crete (Greece) and the drought results are compared to the ones of SPI. A 30-year long average monthly precipitation dataset from 130 watersheds of the island is used by the above indices for drought classification in terms of its duration and intensity. Bias adjusted monthly precipitation estimates from REMO regional climate model used to quantify the influence of global warming to drought conditions over the period 2010 - 2100. Results based on both indices from 3 basins in west, central and east part of the island show that: a) the extreme drought periods are the same (5%-7% of time) but the intensities based on SN-SPI are lower, b) the area covered by extreme droughts is 25% and 80% based on the SN-SPI and SPI respectively, c) more than half of the area of Crete is experiencing drought conditions during 46% of the 1973-2004 period and 7%, 63% and 92% for 2010-2040, 2040-2070 and 2070-2100 respectively and d) extremely dry conditions will cover 5% of the island for the future 90-year period.
Consequences of Early Conductive Hearing Loss on Long-Term Binaural Processing.
Graydon, Kelley; Rance, Gary; Dowell, Richard; Van Dun, Bram
The aim of the study was to investigate the long-term effects of early conductive hearing loss on binaural processing in school-age children. One hundred and eighteen children participated in the study, 82 children with a documented history of conductive hearing loss associated with otitis media and 36 controls who had documented histories showing no evidence of otitis media or conductive hearing loss. All children were demonstrated to have normal-hearing acuity and middle ear function at the time of assessment. The Listening in Spatialized Noise Sentence (LiSN-S) task and the masking level difference (MLD) task were used as the two different measures of binaural interaction ability. Children with a history of conductive hearing loss performed significantly poorer than controls on all LiSN-S conditions relying on binaural cues (DV90, p = <0.001 and SV90, p = 0.003). No significant difference was found between the groups in listening conditions without binaural cues. Fifteen children with a conductive hearing loss history (18%) showed results consistent with a spatial processing disorder. No significant difference was observed between the conductive hearing loss group and the controls on the MLD task. Furthermore, no correlations were found between LiSN-S and MLD. Results show a relationship between early conductive hearing loss and listening deficits that persist once hearing has returned to normal. Results also suggest that the two binaural interaction tasks (LiSN-S and MLD) may be measuring binaural processing at different levels. Findings highlight the need for a screening measure of functional listening ability in children with a history of early otitis media.
Avila, M. L.; Baby, L. T.; Belarge, J.; ...
2018-01-22
In this work, data for the 13C( 6Li,t) 16O reaction, obtained in inverse kinematics at a 13C incident energy of 7.72 MeV, are presented. A distorted wave Born approximation (DWBA) analysis was used to extract spectroscopic factors and asymptotic normalization coefficients (ANCs) for the < 16O | 13C + 3He> overlaps, subject to the assumption of a fixed < 6Li | 3He + 3H> overlap. The variation of the extracted spectroscopic factors and ANCs as a function of various inputs to the DWBA calculations was explored. The extracted ANCs were found to vary as a cubic function of the radiusmore » of the potential well binding the transferred 3He to the 13C core while the spectroscopic factors varied as a quartic function of the radius. Finally, the ANC values could be determined to within a factor of two for this system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avila, M. L.; Baby, L. T.; Belarge, J.
In this work, data for the 13C( 6Li,t) 16O reaction, obtained in inverse kinematics at a 13C incident energy of 7.72 MeV, are presented. A distorted wave Born approximation (DWBA) analysis was used to extract spectroscopic factors and asymptotic normalization coefficients (ANCs) for the < 16O | 13C + 3He> overlaps, subject to the assumption of a fixed < 6Li | 3He + 3H> overlap. The variation of the extracted spectroscopic factors and ANCs as a function of various inputs to the DWBA calculations was explored. The extracted ANCs were found to vary as a cubic function of the radiusmore » of the potential well binding the transferred 3He to the 13C core while the spectroscopic factors varied as a quartic function of the radius. Finally, the ANC values could be determined to within a factor of two for this system.« less
Sub-Coulomb 3He transfer and its use to extract three-particle asymptotic normalization coefficients
NASA Astrophysics Data System (ADS)
Avila, M. L.; Baby, L. T.; Belarge, J.; Keeley, N.; Kemper, K. W.; Koshchiy, E.; Kuchera, A. N.; Rogachev, G. V.; Rusek, K.; Santiago-Gonzalez, D.
2018-01-01
Data for the 13C(6Li,t )16O reaction, obtained in inverse kinematics at a 13C incident energy of 7.72 MeV, are presented. A distorted wave Born approximation (DWBA) analysis was used to extract spectroscopic factors and asymptotic normalization coefficients (ANCs) for the 〈" close="〉6Li∣3He +3H 〉">16O∣13C +3He overlaps, subject to the assumption of a fixed
NASA Astrophysics Data System (ADS)
Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed
2015-04-01
We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.
NASA Astrophysics Data System (ADS)
Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng
2018-01-01
We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)< 0.001. In total, 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low S/N galaxies with our post-processing and visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).
Takemitsu, M; Arahata, K; Nonaka, I
1990-10-01
The most ideal therapeutic trial on Duchenne muscular dystrophy (DMD) is a transfer of normal myoblasts into dystrophic muscle which has been attempted on animal models in several institutes. In the process of muscle regeneration, the transferred normal myoblasts are expected to incorporate into the regenerating fibers in host dystrophic mouse. To know the capacity of muscle regeneration in dystrophic muscle, we compared the regenerating process of the normal muscle with that of the dystrophic muscle after myonecrosis induced by 0.25% bupivacaine hydrochloride (BPVC) chronologically. In the present study, C57BL/10ScSn-mdx (mdx) mouse was used as an animal model of DMD and C57BL/10ScSn (B10) mouse as a control. There was no definite difference in the behavior of muscle fiber regeneration between normal and dystrophic muscles. The dystrophic muscle regenerated rapidly at the similar tempo to the normal as to their size and fiber type differentiation. The variation in fiber size diameter of dystrophic muscle, however, was more obvious than that of normal. To promote successful myoblast transfer from B10 mouse into dystrophic mdx mouse at higher ratio, cultured normal myoblasts were transferred into the regenerating dystrophic muscle on the first and the second day after myonecrosis induced by BPVC. Two weeks after the myoblast injection, the muscles were examined with immunohistochemical stain using anti dystrophin antibody. Although dystrophin-positive fibers appeared in dystrophic muscle, the positive fibers were unexpectedly small in number (3.86 +/- 1.50%).(ABSTRACT TRUNCATED AT 250 WORDS)
EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, G. H.; Vinkó, J.; Sand, D. J.
2015-01-01
We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and 23 NIR spectra were obtained from 10 days before (–10d) to 10 days after (+10d) the time of maximum B-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify C I λ1.0693 in the NIR spectra. Mg II lines with high oscillator strengths have higher initial velocities than other Mg II lines. We show that the velocity differences canmore » be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show that it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for O I, Mg II, Si II, S II, Ca II, and Fe II suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from –10d to +29d, in the UBVRIJH and K{sub s} bands. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using R{sub V} = 1.46, which is consistent with previous studies, SNooPy finds that A{sub V} = 1.80 for E(B – V){sub host} = 1.23 ± 0.06 mag. The maximum B-band brightness of –19.19 ± 0.10 mag was reached on February 1.74 UT ± 0.13 days and the supernova has a decline parameter, Δm {sub 15}, of 1.12 ± 0.02 mag.« less
Silver aids healing in the sterile skin wound: experimental studies in the laboratory rat.
Lansdown, A B; Sampson, B; Laupattarakasem, P; Vuttivirojana, A
1997-11-01
Incisional wounds 15 mm long were induced surgically in the back skin of young adult Wistar rats. They were sutured and used as an experimental model in the therapeutic evaluation of daily applications of 0.5 mL of silver nitrate (SN) at 0.01, 0.1 or 1.0% w/v aqueous solution, or 0.5 g silver sulphadiazine (SSD) over a 10-day period. Control wounds received deionized water only. The silver preparations were not toxic but SN did stain the hair and superficial layers of the stratum corneum. The wounds remained microbiologically clean. Wounds exposed to SN (0.1 or 1.0%) or SSD healed more rapidly than controls. From about the fourth day of treatment, we noted a more rapid exteriorization of sutures, improved wound closure and an earlier loss of scabs and wound debris. Silver treatment appeared to reduce the inflammatory and granulation tissue phases of healing and enhance epidermal repair. Silver from SN was deposited as silver sulphide in extrafollicular hair shafts and superficial aspects of the skin and wound debris but not at deeper levels. Silver uptake was four-fold higher in damaged skin than in intact tissue. SSD was absorbed by intact and wounded skin but the silver did not precipitate as silver sulphide and its localization in the tissue is not known. Uptake of silver from SN or SSD was associated with changes in the concentrations of zinc and calcium in the skin. Zinc levels were depressed during the inflammatory and proliferative phases of healing and then increased. Zinc concentrations had normalized by 10 days when wound healing was achieved. Calcium levels remained higher than normal throughout the observation period. The mechanism of action of silver in advancing wound healing in the rat is unclear. Its ability to reduce the inflammatory and granulation phases of healing, and to invoke metallothionein production and influence metal ion binding are possibly important.
Predictive spectroscopy and chemical imaging based on novel optical systems
NASA Astrophysics Data System (ADS)
Nelson, Matthew Paul
1998-10-01
This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first-order spectroscopic images, bivariate first-order spectroscopic images, and multivariate first-order spectroscopic images of the temporal development of laser-induced plumes are presented and interpreted. Reconstructed chemical images generated using bivariate and trivariate wavelength techniques, bimodal and trimodal PCA methods, and bimodal and trimodal ITTFA approaches are also included.
NASA Astrophysics Data System (ADS)
Maguire, K.; Sullivan, M.; Ellis, R. S.; Nugent, P. E.; Howell, D. A.; Gal-Yam, A.; Cooke, J.; Mazzali, P.; Pan, Y.-C.; Dilday, B.; Thomas, R. C.; Arcavi, I.; Ben-Ami, S.; Bersier, D.; Bianco, F. B.; Fulton, B. J.; Hook, I.; Horesh, A.; Hsiao, E.; James, P. A.; Podsiadlowski, P.; Walker, E. S.; Yaron, O.; Kasliwal, M. M.; Laher, R. R.; Law, N. M.; Ofek, E. O.; Poznanski, D.; Surace, J.
2012-11-01
We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 Å) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models rather than improving the use of SNe Ia as cosmological probes.
Left Behind: A Bound Remnant from a White Dwarf Supernova?
NASA Astrophysics Data System (ADS)
Jha, Saurabh
2017-08-01
Type Ia supernovae (SN Ia) have enormous importance to cosmology and astrophysics, but their progenitors and explosion mechanisms are not understood in detail. Recently, observations and theoretical models have suggested that not all thermonuclear white-dwarf supernova explosions are normal SN Ia. In particular, type Iax supernovae (peculiar cousins to SN Ia), are thought to be exploding white dwarfs that are not completely disrupted, leaving behind a bound remnant. In deep and serendipitous HST pre-explosion data, we have discovered a luminous, blue progenitor system for the type Iax SN 2012Z in NGC 1309, which we interpret as a helium-star donor to the exploding white dwarf. HST observations of SN 2012Z in 2016, when the supernova light was expected to have faded away, still show a source at the location, as expected in our model where the pre-explosion flux was coming from the companion. However, the 2016 data also show a surprise: an excess flux compared to the progenitor system. Our proposed observations here will help unravel the mystery of that excess flux: is it from the bound ex-white dwarf remnant? Or is it from the shocked companion star that has been bombarded by supernova ejecta? Either of these possibilities would provide key new evidence as to the nature of these white dwarf supernovae.
Abbas, Chiara; Singer, Florian; Yammine, Sophie; Casaulta, Carmen; Latzin, Philipp
2013-12-01
We studied the ability of 4 single-breath gas washout (SBW) tests to measure immediate effects of airway clearance in children with CF. 25 children aged 4-16 years with CF performed pulmonary function tests to assess short-term variability at baseline and response to routine airway clearance. Tidal helium and sulfur hexafluoride (double-tracer gas: DTG) SBW, tidal capnography, tidal and vital capacity nitrogen (N2) SBW and spirometry were applied. We analyzed the gasses' phase III slope (SnIII--normalized for tidal volume) and FEV1 from spirometry. SnIII from tidal DTG-SBW, SnIII from vital capacity N2-SBW, and FEV1 improved significantly after airway clearance. From these tests, individual change of SnIII from tidal DTG-SBW and FEV1 exceeded short-term variability in 10 and 6 children. With the tidal DTG-SBW, an easy and promising test for peripheral gas mixing efficiency, immediate pulmonary function response to airway clearance can be assessed in CF children. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
SMN is essential for the biogenesis of U7 snRNP and 3′-end formation of histone mRNAs
Tisdale, Sarah; Lotti, Francesco; Saieva, Luciano; Van Meerbeke, James P.; Crawford, Thomas O.; Sumner, Charlotte J.; Mentis, George Z.; Pellizzoni, Livio
2013-01-01
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the survival motor neuron (SMN) protein. SMN mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) and possibly other RNPs. Here we investigated SMN requirement for the biogenesis and function of U7—an snRNP specialized in the 3′-end formation of replication-dependent histone mRNAs that normally are not polyadenylated. We show that SMN deficiency impairs U7 snRNP assembly and decreases U7 levels in mammalian cells. The SMN-dependent U7 reduction affects endonucleolytic cleavage of histone mRNAs leading to abnormal accumulation of 3′-extended and polyadenylated transcripts, followed by downstream changes in histone gene expression. Importantly, SMN deficiency induces defects of histone mRNA 3′-end formation in both SMA mice and human patients. These findings demonstrate that SMN is essential for U7 biogenesis and histone mRNA processing in vivo, and identify a novel RNA pathway disrupted in SMA. PMID:24332368
Electronic state and superconductivity of YBa2Cu3-xO7-y (M=Al,Zn and Sn) systems
NASA Technical Reports Server (NTRS)
Zhao, Y.; Zhang, Q. R.; Zhang, H.
1990-01-01
A series of YBa2Cu(3-x)MxO(7-y) (M=Al,Zn and Sn) single phase samples were prepared, and the measurements of the crystal structure, oxygen content, electric resistivity, thermoelectric power, Mossbauer spectrum, XPS and superconductivity were performed. The experimental results of X ray powder diffraction, Mossbauer spectrum and oxygen content show that the Zn(2+) and the Al(3+) occupy the Cu(2) site in Cu-O planes and the Cu(1) site in Cu-O chains respectively, but the Sn(4+) occupies both the Cu(1) sites. As regards the properties in superconducting state, both the Zn(2+) and the Al(3+) depress T(sub c) strongly, but the Sn(4+) does not. As for the electronic transport properties in normal state, the system doped by Al(3+) displays a rapid increase of resistivity and some electron localization-like effects, and the thermoelectric power enhances obviously; the series contained Zn(2+) almost shows no changes of electric resistivity but the sign of the thermoelectric power is reversed. Other results are given and briefly discussed.
Canine treatment with SnET2 for photodynamic therapy
NASA Astrophysics Data System (ADS)
Frazier, Donita L.; Milligan, Andrew J.; Vo-Dinh, Tuan; Morgan, Alan R.; Overholt, Bergein F.
1990-07-01
Photodynamic therapy is a treatment technique that utilizes the photoactived species of a drug to destroy tumor tissue. To be successful, the drug must localize in tumor tissue preferentially over normal tissue and must be activated by light of a specific wavelength. Currently the only drug to be approved for clinical use is Heinatoporphyrin Derivative (HpD) although a series of new drugs are being developed for use in the near future. One of the drugs belongs to a class called purpurins which display absorp-' tions between 630-711 nm. Along with several other investigators, we are currently exploring the characteristics of a specific purpurin (SnET2) in normal and tumorous canine tissue. The use of this compound has demonstrated increased tumor control rates in spontaneous dog tumors. Preliminary pharmacokinetic studies have been performed on 6 normal beagle dogs. SnET2 (2 mg/kg) was injected intravenously over 10 minutes and blood was collected at 5, 15, 30, 45 minutes and at 1, 2, 4, 8, 12 and 24 hours following administration for determination of drug concentration and calculation of pharinacokinetic parameters. Skin biopsies were collected at 1, 4, 8, 12 and 24 hours. Dogs were euthanized at 24 hours and tissues (liver, kidney muscle, esophagus, stomach, duodenum, jejunum, ileura, colon, adrenal gland, thyroid, heart, lung, urinary bladder, prostate, pancreas, eye, brain) were collected for drug raeasurement. Drug was shown to persist in liver and kidney for a prolonged period of time coiapared to other tissues. Knowledge of the pharmacokinetic properties of the drug will greatly add to the ability to treat patients with effective protocols.
Superconducting properties of Pb-Sn-In alloys directionally solidified aboard Skylab
NASA Technical Reports Server (NTRS)
Anderson, W. T., Jr.; Reger, J. L.
1975-01-01
Superconducting alloys of Pb-Sn-In were directionally solidified in the absence of gravity-induced convection and segregation by processing in a near weightless condition aboard Skylab. Lead-rich and tin-rich lamellar structures were obtained with both high and low G/R (temperature gradient/solidification rate) samples processed at 0-g and at 1-g in a ground-based laboratory. Thinner, higher density lamellae were found with the 0-g specimens. Magnetization curves at 4.2 K showed hysteresis effects with large areas under the curves indicating magnetic flux pinning by the normal state tin-rich phase.
Ushakou, Dzmitryi V; Tomin, Vladimir I
2018-06-07
We report spectroscopic properties of 3-hydroxyflavone (3-HF) and 4'-N,N-dimethylamino-3-hydroxyflavone (DMA3HF) in acetonitrile and ethyl acetate at different temperatures in the range from 10 °C to about 67 °C. These compounds are characterized by excited-state intramolecular proton transfer (ESIPT) which leads to occurrence of two forms of these molecules. For this reason their fluorescence spectra have two bands which correspond to emission of normal and photoproduct (tautomer) forms. The correlation between ratio of integrated intensity of these two bands and inverse absolute temperature (the Arrhenius plot) have been applied to estimate energetic properties, such as difference between energy levels of excited states as well ground states for normal and tautomer forms for each molecule. Copyright © 2018 Elsevier B.V. All rights reserved.
Pansini, Vittorio; Monnet, Aurélien; Salleron, Julia; Hardouin, Pierre; Cortet, Bernard; Cotten, Anne
2014-02-01
To evaluate in a healthy population normal spectroscopic fat content (FC) values of the hip bone marrow and to assess the influence of age and sex on bone marrow conversion. Eighty volunteers (40 men; 40 women; ages: 20-60 years; divided into four consecutive groups) underwent acetabulum, femoral head, femoral neck, greater trochanter, and diaphysis localized (1) H MR spectroscopy. FC values of each anatomical site were obtained according to the following formula: Fat content = CH2 /(CH2 + Water)*100. To assess bone marrow conversion, a spectroscopic conversion index (SCI) was calculated as FC neck/FC greater trochanter. FC values showed a gradient as follows: greater trochanter > femoral head > femoral neck > diaphysis > acetabulum in every age group both in men and in women. SCI increased with age both in men and women, showing lower values in women for every age group. We obtained normal spectroscopic FC values from different areas of the hip, according to age and sex. These values may be used as reference values to evaluate, by the means of (1) H MR spectroscopy, pathological conditions affecting hip bone marrow. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Meenan, B. J.; Brown, N. M. D.; Wilson, J. W.
1994-03-01
A PdCl 2/SnCl 2 metallisation catalyst system, of the type used to activate non-conducting surfaces for electroless metal deposition, has been characterised by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The substrate is a barium titanate (BaTiO 3)-based electroactive ceramic of the type used in the fabrication of multilayer ceramic capacitors (MLCC). The treatment of the substrate surface with the PdCl 2/SnCl 2 "sensitiser" solution leads to the adsorption of catalytically inactive compounds of palladium and tin. Subsequent treatment of this surface with an "accelerator" solution removes excess oxides, hydroxides and salts of tin thereby leaving the active catalyst species, Pd xSn y, on the surface. Such sites, on exposure to the appropriete electroless plating bath, are then responsible for the metal deposition. In this study, the chemical state and relative quantities of the various surface species present after each of the processing stages have been determined by XPS. The surface roughness of the substrate results in less of the tin compounds present thereon being removed on washing the catalysed surface in the accelerator solution than normally reported for such systems, thereby affecting the measured Pd: Sn ratio. SEM studies show that the accelerator solution treatment generates crystalline areas, which may be a result of coagulation of the Pd xSn y particles present, in the otherwise amorphous catalyst coating.
Peters, Sarah K; Dunlop, Katharine; Downar, Jonathan
2016-01-01
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network's associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN's cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders.
NASA Astrophysics Data System (ADS)
Spieker, M.; Petkov, P.; Litvinova, E.; Müller-Gatermann, C.; Pickstone, S. G.; Prill, S.; Scholz, P.; Zilges, A.
2018-05-01
Background: The semimagic Sn (Z =50 ) isotopes have been subject to many nuclear-structure studies. Signatures of shape coexistence have been observed and attributed to two-proton-two-hole (2p-2h) excitations across the Z =50 shell closure. In addition, many low-lying nuclear-structure features have been observed which have effectively constrained theoretical models in the past. One example are so-called quadrupole-octupole coupled states (QOC) caused by the coupling of the collective quadrupole and octupole phonons. Purpose: Proton-scattering experiments followed by the coincident spectroscopy of γ rays have been performed at the Institute for Nuclear Physics of the University of Cologne to excite low-spin states in 112Sn and 114Sn to determine their lifetimes and extract reduced transition strengths B (Π L ) . Methods: The combined spectroscopy setup SONIC@HORUS has been used to detect the scattered protons and the emitted γ rays of excited states in coincidence. The novel (p ,p'γ ) Doppler-shift attenuation (DSA) coincidence technique was employed to measure sub-ps nuclear level lifetimes. Results: Seventy-four (74) level lifetimes τ of states with J =0 -6 were determined. In addition, branching ratios were deduced which allowed the investigation of the intruder configuration in both nuclei. Here, s d IBM-2 mixing calculations were added which support the coexistence of the two configurations. Furthermore, members of the expected QOC quintuplet are proposed in 114Sn for the first time. The 1- candidate in 114Sn fits perfectly into the systematics observed for the other stable Sn isotopes. Conclusions: The E 2 transition strengths observed for the low-spin members of the so-called intruder band support the existence of shape coexistence in Sn,114112. The collectivity in this configuration is comparable to the one observed in the Pd nuclei, i.e., the 0p-4h nuclei. Strong mixing between the 0+ states of the normal and intruder configuration might be observed in 114Sn. The general existence of QOC states in Sn,114112 is supported by the observation of QOC candidates with J ≠1 .
VizieR Online Data Catalog: Spectra of 12 ON stars (Martins+, 2015)
NASA Astrophysics Data System (ADS)
Martins, F.; Simon-Diaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N.; Bouret, J.-C.; Barba, R.
2015-05-01
Normalized optical spectra of the twelve stars analyzed in the paper. Each file contains two columns: the first one gives the wavelength (in Å); the second one gives the normalized flux. The spectroscopic data were collected from a number of archives and unpublished material. (2 data files).
VizieR Online Data Catalog: Absorption velocities for 21 super-luminous SNe Ic (Liu+, 2017)
NASA Astrophysics Data System (ADS)
Liu, Y.-Q.; Modjaz, M.; Bianco, F. B.
2018-04-01
We have collected the spectra of all available super-luminous supernovae (SLSNe) Ic that have a date of maximum light published before April of 2016. These SLSNe Ic were mainly discovered and observed by the All-Sky Automated Survey for Supernovae (ASAS-SN), the Catalina Real-Time Transient Survey, the Dark Energy Survey (DES), the Hubble Space Telescope Cluster Supernova Survey, the Pan-STARRS1 Medium Deep Survey (PS1), the Public ESO Spectroscopic Survey of Transient Objects (PESSTO), the Intermediate Palomar Transient Factory (iPTF) as well as the Palomar Transient Factory (PTF), and the Supernova Legacy Survey (SNLS). See table 1. (2 data files).
COBALAMIN- AND COBAMIDE-DEPENDENT METHYLTRANSFERASES
Matthews, Rowena G.; Koutmos, Markos; Datta, Supratim
2008-01-01
Methyltransferases that employ cobalamin cofactors, or their analogues the cobamides, as intermediates in catalysis of methyl transfer play vital roles in energy generation in anaerobic unicellular organisms. In a broader range of organisms they are involved in the conversion of homocysteine to methionine. Although the individual methyl transfer reactions catalyzed are simple SN2 displacements, the required change in coordination at the cobalt of the cobalamin or cobamide cofactors and the lability of the reduced Co+1 intermediates introduces the necessity for complex conformational changes during the catalytic cycle. Recent spectroscopic and structural studies on several of these methyltransferases have helped to reveal the strategies by which these conformational changes are facilitated and controlled. PMID:19059104
PSN J02455988-0734270 in NGC 1084 is a young type II-P SN
NASA Astrophysics Data System (ADS)
Childress, M.; Scalzo, R.; Yuan, F.; Schmidt, B.
2012-08-01
We report the spectroscopic classification of the optical transient PSN J02455988-0734270 in NGC 1084 (disc. 2012-08-11.039 by B. Monard) based on an optical spectrum taken with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3600-10000, 1A resolution). The transient spectrum was compared to supernova spectral templates using SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) indicating it to be a supernova of type II-P at a very young age, perhaps only a few days after explosion.
SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events
NASA Astrophysics Data System (ADS)
Tomasella, L.; Cappellaro, E.; Pumo, M. L.; Jerkstrand, A.; Benetti, S.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Pastorello, A.; Turatto, M.; Anderson, J. P.; Galbany, L.; Gutiérrez, C. P.; Kankare, E.; Pignata, G.; Terreran, G.; Valenti, S.; Barbarino, C.; Bauer, F. E.; Botticella, M. T.; Chen, T.-W.; Gal-Yam, A.; Harutyunyan, A.; Howell, D. A.; Maguire, K.; Morales Garoffolo, A.; Ochner, P.; Smartt, S. J.; Schulze, S.; Young, D. R.; Zampieri, L.
2018-04-01
We present 1 yr of optical and near-infrared photometry and spectroscopy of the Type IIP SNe 2013K and 2013am. Both objects are affected by significant extinction, due to their location in dusty regions of their respective host galaxies, ESO 009-10 and NGC 3623 (M65). From the photospheric to nebular phases, these objects display spectra congruent with those of underluminous Type IIP SNe (i.e. the archetypal SNe 1997D or 2005cs), showing low photospheric velocities (˜2 × 103 km s-1 at 50 d) together with features arising from Ba II that are particularly prominent in faint SNe IIP. The peak V-band magnitudes of SN 2013K (-15.6 mag) and SN 2013am (-16.2 mag) are fainter than standard-luminosity Type IIP SNe. The ejected nickel masses are 0.012 ± 0.010 and 0.015 ± 0.006 M⊙ for SN 2013K and SN 2013am, respectively. The physical properties of the progenitors at the time of explosion are derived through hydrodynamical modelling. Fitting the bolometric curves, the expansion velocity and the temperature evolution, we infer total ejected masses of 12 and 11.5 M⊙, pre-SN radii of ˜460 and ˜360 R⊙, and explosion energies of 0.34 foe and 0.40 foe for SN 2013K and SN 2013am. Late time spectra are used to estimate the progenitor masses from the strength of nebular emission lines, which turn out to be consistent with red supergiant progenitors of ˜15 M⊙. For both SNe, a low-energy explosion of a moderate-mass red supergiant star is therefore the favoured scenario.
NASA Astrophysics Data System (ADS)
Miller, A. A.; Cao, Y.; Piro, A. L.; Blagorodnova, N.; Bue, B. D.; Cenko, S. B.; Dhawan, S.; Ferretti, R.; Fox, O. D.; Fremling, C.; Goobar, A.; Howell, D. A.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Lunnan, R.; Masci, F. J.; McCully, C.; Nugent, P. E.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.
2018-01-01
Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15{+/- }0.070.15 days before our first detection. In the ∼24 hr after discovery, iPTF 16abc rose by ∼2 mag, featuring a near-linear rise in flux for ≳ 3 days. Early spectra show strong C II absorption, which disappears after ∼7 days. Unlike the extensively observed Type Ia SN 2011fe, the {(B-V)}0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.
Studies on bronze pre-monetary signs found in Dobroudja using XRF and micro-PIXE
NASA Astrophysics Data System (ADS)
Constantinescu, B.; Cristea-Stan, D.; Talmatchi, G.; Ceccato, D.
2016-03-01
We performed compositional analyses on 180 Scythian-type arrowheads and pre-monetary signs using XRF method and on 60 small fragments of such items (approx. 100 microns diameter), sampling being performed on previously corrosion-cleaned areas on their surface, using micro-PIXE. The items are found in Dobroudja, Istros-Histria region. The most relevant for numismatists result is that for each finding place the same type of alloy was used both for fighting arrowheads and for pre-monetary signs. Our analyses revealed three types of alloys: Cu-Sn-Pb ("normal" bronze), Cu-Sn-Mn-Pb and Cu-Sn-Sb-Pb. The presence of antimony suggests the use of fahlore-type poly-metals deposits, most probably from Caucasus Mountains. The problem of ancient bronze containing manganese is more complicated; an explanation could be the use of manganese oxides as flux necessary to smelt oxidized ores.
Transport phenomena of growth-in-gel zeolite crystallization in microgravity
NASA Technical Reports Server (NTRS)
Zhang, H.; Ostrach, S.; Kamotani, Y.
1993-01-01
Secondary nucleation (SN) due to crystal sedimentation has been believed to be one of the major effects that causes smaller sizes of final zeolite crystals. The present investigation indicates that, in a reactor, this gravity-induced SN occurs only within a white opaque column termed the gel portion. Under normal gravity this portion shrinks to the bottom of the hydrothermal reactor, leaving a clear portion of solution at the top, due to depletion of the flocculated gel particles. Solution phase nucleation and crystallization is assumed and a correlation for the shrinkage is therefore derived, which shows good agreement with experimental observations. A non-dimensional parameter is suggested as a criterion for the occurrence of SN. Based on the parameter whether or not microgravity is beneficial to zeolite growth is discussed. Also, the growth mechanism and the transport phenomena in the absence of gravity are discussed.
Impedance Measurement of a Gamma-Ray TES Calorimeter with a Bulk Sn Absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akamatsu, H.; Ishisaki, Y.; Hoshino, A.
2009-12-16
We performed complex impedance measurements with a Ti/Au-based gamma-ray TES calorimeter with a bulk Sn absorber. Excellent energy resolution of 38.4{+-}0.9eV at 60 keV was observed. The impedance of the calorimeter can be well explained by a two-body thermal model. We investigated the behavior of the parameters of the calorimeter during the superconducting-to-normal transition. We confirmed that C and G{sub a} are in good agreement with the predicted values. We performed a noise analysis and found several excess noise components, as well as internal thermal fluctuation noise (ITFN) term due to the thermal conductance between the Sn absorber and themore » Ti/Au TES. Dominanting the noise is an excess noise having a similar frequency dependence to the phonon noise and the ITFN noise.« less
Baniecki, John D.; Yamazaki, Takashi; Ricinschi, Dan; Van Overmeere, Quentin; Aso, Hiroyuki; Miyata, Yusuke; Yamada, Hiroaki; Fujimura, Norifumi; Maran, Ronald; Anazawa, Toshihisa; Valanoor, Nagarajan; Imanaka, Yoshihiko
2017-01-01
The valence band (VB) electronic structure and VB alignments at heterointerfaces of strained epitaxial stannate ASnO3 (A=Ca, Sr, and Ba) thin films are characterized using in situ X-ray and ultraviolet photoelectron spectroscopies, with band gaps evaluated using spectroscopic ellipsometry. Scanning transmission electron microscopy with geometric phase analysis is used to resolve strain at atomic resolution. The VB electronic structure is strain state dependent in a manner that correlated with a directional change in Sn-O bond lengths with strain. However, VB offsets are found not to vary significantly with strain, which resulted in ascribing most of the difference in band alignment, due to a change in the band gaps with strain, to the conduction band edge. Our results reveal significant strain tuning of conduction band offsets using epitaxial buffer layers, with strain-induced offset differences as large as 0.6 eV possible for SrSnO3. Such large conduction band offset tunability through elastic strain control may provide a pathway to minimize the loss of charge confinement in 2-dimensional electron gases and enhance the performance of photoelectrochemical stannate-based devices. PMID:28195149
NASA Astrophysics Data System (ADS)
Pentak, Danuta
2014-03-01
The interactions between etoposide, cytarabine and 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine bilayers were studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). These techniques have proven to be a very powerful tool in studying the structure and dynamics of phospholipid bilayers. In particular, DSC can provide information on the phase transition temperature and cooperativity of the lipid molecules in the absence and presence of the drug. Vibrational spectroscopy is well suited to the study of drug-lipid interactions, since it allows for an investigation of the conformation of phospholipid molecules at different levels in lipid bilayers and follows structural changes that occur during the gel to liquid-crystalline phase transition. NMR supported the determination of the main phase transition temperatures (TC) of 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). The main phase transition temperature (TC) determined by 1H NMR is comparable with values obtained by DSC for all studied liposomes. The location of cytarabine and etoposide in liposomes was also determined by NMR. Atomic force microscopy (AFM) images, acquired immediately after sample deposition on a mica surface, revealed the spherical shape of lipid vesicles.
NASA Technical Reports Server (NTRS)
Fox, Ori D.; Chevalier, Roger A.; Dwek, Eli; Skrutskie, Michael F.; Sugerman, Ben E. K.; Leisenring, Jarron M.
2010-01-01
This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of approx. 5 x 10(exp -4) Solar Mass and originates from newly formed dust in the ejecta, continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell approx. 0.01 - 0.05 Solar Mass by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 micro P Cygni profile indicates a progenitor eruption likely formed this dust shell approx.100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star. Subject
The Influence of Host Galaxies in Type Ia Supernova Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uddin, Syed A.; Mould, Jeremy; Lidman, Chris
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We studymore » the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.« less
NASA Astrophysics Data System (ADS)
Raddi, R.; Hollands, M. A.; Koester, D.; Gänsicke, B. T.; Gentile Fusillo, N. P.; Hermes, J. J.; Townsley, D. M.
2018-05-01
The recently discovered hypervelocity white dwarf LP 40‑365 (aka GD 492) has been suggested as the outcome of the failed disruption of a white dwarf in a subluminous Type Ia supernova (SN Ia). We present new observations confirming GD 492 as a single star with unique spectral features. Our spectroscopic analysis suggests that a helium-dominated atmosphere, with ≃33% neon and 2% oxygen by mass, can reproduce most of the observed properties of this highly unusual star. Although our atmospheric model contrasts with the previous analysis in terms of dominant atmospheric species, we confirm that the atmosphere of GD 492 is strongly hydrogen deficient, {log}({{H}}/{He})< -5, and displays traces of 11 other α and iron-group elements (with sulfur, chromium, manganese, and titanium as new detections), indicating nuclear processing of carbon and silicon. We measure a manganese-to-iron ratio seven times larger than solar. While the observed abundances of GD 492 do not fully match any predicted nuclear yields of a partially burned supernova remnant, the manganese excess strongly favors a link with a single-degenerate SN Ia event over alternative scenarios.
The Influence of Host Galaxies in Type Ia Supernova Cosmology
NASA Astrophysics Data System (ADS)
Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Zhang, Bonnie R.
2017-10-01
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5σ), and decline more rapidly in massive hosts (significance >9σ) and in hosts with low specific star formation rates (significance >8σ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter (σ int = 0.08 ± 0.01) in luminosity after standardization.
Spectral Observations and Analyses of Low-Redshift Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Silverman, Jeffrey Michael
The explosive deaths of stars, known as a supernovae (SNe), have been critical to our understanding of the Universe for centuries. An introduction to SNe, their importance in astronomy, and how we observe them is given in Chapter 1. In the second Chapter, I present the full BSNIP sample which consists of 1298 low-redshift (z ≤ 0.2) optical spectra of 582 SNe Ia observed from 1989 through the end of 2008. I describe our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilizing my newly constructed set of SNID spectral templates. These templates allow me to accurately spectroscopically classify the entire BSNIP dataset, and by doing so I am able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, the BSNIP dataset includes spectra of nearly 90 spectroscopically peculiar SNe Ia. I also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. I present measurements of spectral features of 432 low-redshift ( z < 0.1) optical spectra within 20 d of maximum brightness of 261 SNe Ia from the BSNIP sample in the third Chapter. I describe in detail my method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, I attempt to measure expansion velocities, (pseudo-)equivalent widths (pEWs), spectral feature depths, and fluxes at the center and endpoints of each of nine major spectral feature complexes. A sanity check of the consistency of the measurements is performed using the BSNIP data (as well as a separate spectral dataset). I investigate how velocity and pEW evolve with time and how they correlate with each other. Various spectral classification schemes are employed and quantitative spectral differences among the subclasses are investigated. Several ratios of pEW values are calculated and studied. Furthermore, SNe Ia that show strong evidence for interaction with circumstellar material or an aspherical explosion are found to have the largest near-maximum expansion velocities and pEWs, possibly linking extreme values of spectral observables with specific progenitor or explosion scenarios. The fourth Chapter of this Thesis presents comparisons of spectral feature measurements to photometric properties of 115 low-redshift (z < 0.1) SNe Ia with optical spectra within 5 d of maximum brightness. The spectral data come from the BSNIP sample described in Chapter 2, and the photometric data come mainly from the Lick Observatory Supernova Search (LOSS) and are published by Ganeshalingam et al. (2010). The spectral measurements come from BSNIP II (Chapter 3 of this Thesis) and the light-curve fits and photometric parameters can be found in Ganeshalingam et al. (in preparation). A variety of previously proposed correlations between spectral and photometric parameters are investigated using the large and self-consistent BSNIP dataset. We also use a combination of light-curve parameters (specifically the SALT2 stretch and color parameters x1 and c) and spectral measurements to calculate distance moduli. The residuals from these models is then compared to the standard model which only uses light-curve stretch and color. The pEW of Si II lambda4000 is found to be a good indicator of light-curve width and the pEWs of the Mg II and Fe II complexes are relatively good proxies for color. Chapter 5 presents and analyzes optical photometry and spectra of the extremely luminous and slowly evolving Type Ia SN 2009dc, and offers evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus had a SC white dwarf (WD) progenitor. I calculate a lower limit to the peak bolometric luminosity of ˜2.4x1043 erg s-1, though the actual value is likely almost 40% larger. The high luminosity and low expansion velocities of SN 2009dc lead to a derived WD progenitor mass of more than 2 MSun and a 56Ni mass of about 1.4--1.7 MSun. I propose that the host galaxy of SN 2009dc underwent a gravitational interaction with a neighboring galaxy in the relatively recent past. This may have led to a sudden burst of star formation which could have produced the SC WD progenitor of SN 2009dc and likely turned the neighboring galaxy into a "post-starburst galaxy." (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baron, E.; Hoeflich, P.; Krisciunas, K.
We present a study of the peculiar Type Ia supernova 2001ay (SN 2001ay). The defining features of its peculiarity are high velocity, broad lines, and a fast rising light curve, combined with the slowest known rate of decline. It is one magnitude dimmer than would be predicted from its observed {Delta}m{sub 15}, and shows broad spectral features. We base our analysis on detailed calculations for the explosion, light curves, and spectra. We demonstrate that consistency is key for both validating the models and probing the underlying physics. We show that this SN can be understood within the physics underlying themore » {Delta}m{sub 15} relation, and in the framework of pulsating delayed detonation models originating from a Chandrasekhar mass, M{sub Ch}, white dwarf, but with a progenitor core composed of 80% carbon. We suggest a possible scenario for stellar evolution which leads to such a progenitor. We show that the unusual light curve decline can be understood with the same physics as has been used to understand the {Delta}m{sub 15} relation for normal SNe Ia. The decline relation can be explained by a combination of the temperature dependence of the opacity and excess or deficit of the peak luminosity, {alpha}, measured relative to the instantaneous rate of radiative decay energy generation. What differentiates SN 2001ay from normal SNe Ia is a higher explosion energy which leads to a shift of the {sup 56}Ni distribution toward higher velocity and {alpha} < 1. This result is responsible for the fast rise and slow decline. We define a class of SN 2001ay-like SNe Ia, which will show an anti-Phillips relation.« less
Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.; ...
2018-05-18
We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epoch of B-band maximum (more » $${t}_{{B}_{\\max }}$$). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ~2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56 Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred < 22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ >1800) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca ii and Si ii absorption features, and a nearly constant photospheric velocity of the Si ii λ6355 line at ~12,000 km s -1 that began ~5 days before $${t}_{{B}_{\\max }}$$. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.« less
Light curves and spectra from a thermonuclear explosion of a white dwarf merger
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rossum, Daniel R.; Kashyap, Rahul; Fisher, Robert
Double-degenerate (DD) mergers of carbon–oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). But, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. We utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1more » $${M}_{\\odot }$$ from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. Finally, we discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.
We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epoch of B-band maximum (more » $${t}_{{B}_{\\max }}$$). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ~2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56 Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred < 22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ >1800) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca ii and Si ii absorption features, and a nearly constant photospheric velocity of the Si ii λ6355 line at ~12,000 km s -1 that began ~5 days before $${t}_{{B}_{\\max }}$$. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.« less