Innovative Technology-Based Interventions for Autism Spectrum Disorders: A Meta-Analysis
ERIC Educational Resources Information Center
Grynszpan, Ouriel; Weiss, Patrice L.; Perez-Diaz, Fernando; Gal, Eynat
2014-01-01
This article reports the results of a meta-analysis of technology-based intervention studies for children with autism spectrum disorders. We conducted a systematic review of research that used a pre-post design to assess innovative technology interventions, including computer programs, virtual reality, and robotics. The selected studies provided…
Innovative technology-based interventions for autism spectrum disorders: a meta-analysis.
Grynszpan, Ouriel; Weiss, Patrice L Tamar; Perez-Diaz, Fernando; Gal, Eynat
2014-05-01
This article reports the results of a meta-analysis of technology-based intervention studies for children with autism spectrum disorders. We conducted a systematic review of research that used a pre-post design to assess innovative technology interventions, including computer programs, virtual reality, and robotics. The selected studies provided interventions via a desktop computer, interactive DVD, shared active surface, and virtual reality. None employed robotics. The results provide evidence for the overall effectiveness of technology-based training. The overall mean effect size for posttests of controlled studies of children with autism spectrum disorders who received technology-based interventions was significantly different from zero and approached the medium magnitude, d = 0.47 (confidence interval: 0.08-0.86). The influence of age and IQ was not significant. Differences in training procedures are discussed in the light of the negative correlation that was found between the intervention durations and the studies' effect sizes. The results of this meta-analysis provide support for the continuing development, evaluation, and clinical usage of technology-based intervention for individuals with autism spectrum disorders.
[Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].
Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling
2011-04-01
The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.
Structural and optical properties of NiFe2O4 synthesized via green technology
NASA Astrophysics Data System (ADS)
Patel, S.; Saleem, M.; Varshney, Dinesh
2018-05-01
The nanoparticles of NiFe2O4 were successfully synthesized via green technology using banana peel extract as the catalyst as well as the medium for reaction technique is reported. Analysis of X-ray diffraction spectrum revealed the cubic structure for the prepared spinel ferrite samples crystallized into cubic spinel structure with the space group Fd3m. The Retvield refinement was carried out which obeyed the results obtained from the XRD spectrum analysis of the sample. Raman spectrum provided confirmation for the spinel structure formation and five active Raman modes were observed. Since the optical band-gap value shows inverse response to the crystallite size, The UV-Vis spectrum study confirmed dual but reduced band-gap value.
[Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].
Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun
2015-07-01
There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.
[Research of Identify Spatial Object Using Spectrum Analysis Technique].
Song, Wei; Feng, Shi-qi; Shi, Jing; Xu, Rong; Wang, Gong-chang; Li, Bin-yu; Liu, Yu; Li, Shuang; Cao Rui; Cai, Hong-xing; Zhang, Xi-he; Tan, Yong
2015-06-01
The high precision scattering spectrum of spatial fragment with the minimum brightness of 4.2 and the resolution of 0.5 nm has been observed using spectrum detection technology on the ground. The obvious differences for different types of objects are obtained by the normalizing and discrete rate analysis of the spectral data. Each of normalized multi-frame scattering spectral line shape for rocket debris is identical. However, that is different for lapsed satellites. The discrete rate of the single frame spectrum of normalized space debris for rocket debris ranges from 0.978% to 3.067%, and the difference of oscillation and average value is small. The discrete rate for lapsed satellites ranges from 3.118 4% to 19.472 7%, and the difference of oscillation and average value relatively large. The reason is that the composition of rocket debris is single, while that of the lapsed satellites is complex. Therefore, the spectrum detection technology on the ground can be used to the classification of the spatial fragment.
An illustrative analysis of technological alternatives for satellite communications
NASA Technical Reports Server (NTRS)
Metcalfe, M. R.; Cazalet, E. G.; North, D. W.
1979-01-01
The demand for satellite communications services in the domestic market is discussed. Two approaches to increasing system capacity are the expansion of service into frequencies presently allocated but not used for satellite communications, and the development of technologies that provide a greater level of service within the currently used frequency bands. The development of economic models and analytic techniques for evaluating capacity expansion alternatives such as these are presented. The satellite orbit spectrum problem, and also outlines of some suitable analytic approaches are examined. Illustrative analysis of domestic communications satellite technology options for providing increased levels of service are also examined. The analysis illustrates the use of probabilities and decision trees in analyzing alternatives, and provides insight into the important aspects of the orbit spectrum problem that would warrant inclusion in a larger scale analysis.
NASA Astrophysics Data System (ADS)
Wang, Xing; Sun, Wenliang; Guo, Min; Li, Minjiao; Li, Wan
2018-01-01
The research object of this paper is fine particles in typical region. The construction of component spectrum bank is based on the technology of online source apportionment, then the result of the apportionment is utilized to verify the effectiveness of fine particles component spectrum bank and which also act as the matching basis of online source apportionment receptor sample. On the next, the particle source of air pollution is carried through the matching diagnosis empirical research by utilizing online source apportionment technology, to provide technical support for the cause analysis and treatment of heavy pollution weather.
Lung, For-Wey; Chiang, Tung-Liang; Lin, Shio-Jean; Lee, Meng-Chih; Shu, Bih-Ching
2018-04-01
The use of assisted reproduction technology has increased over the last two decades. Autism spectrum disorders and assisted reproduction technology share many risk factors. However, previous studies on the association between autism spectrum disorders and assisted reproduction technology have shown inconsistent results. The purpose of this study was to investigate the association between assisted reproduction technology and autism spectrum disorder diagnosis in a national birth cohort database. Furthermore, the results from the assisted reproduction technology and autism spectrum disorder propensity score matching exact matched datasets were compared. For this study, the 6- and 66-month Taiwan Birth Cohort Study datasets were used (N = 20,095). In all, 744 families were propensity score matching exact matched and selected as the assisted reproduction technology sample (ratio of assisted reproduction technology to controls: 1:2) and 415 families as the autism spectrum disorder sample (ratio of autism spectrum disorder to controls: 1:4). Using a national birth cohort dataset, controlling for the confounding factors of assisted reproduction technology conception and autism spectrum disorder diagnosis, both assisted reproduction technology and autism spectrum disorder propensity score matching matched datasets showed the same results of no association between assisted reproduction technology and autism spectrum disorder. Further study on the detailed information regarding the processes and methods of assisted reproduction technology may provide us with more information on the association between assisted reproduction technology and autism spectrum disorder.
Individual Autonomy, Law, and Technology: Should Soft Determinism Guide Legal Analysis?
ERIC Educational Resources Information Center
Cockfield, Arthur J.
2010-01-01
How one thinks about the relationship between individual autonomy (sometimes referred to as individual willpower or human agency) and technology can influence the way legal thinkers develop policy at the intersection of law and technology. Perspectives that fall toward the "machines control us" end of the spectrum may support more interventionist…
ERIC Educational Resources Information Center
Crystal, Enid
This report describes an application of the Instructional Systems Design (ISD) process to a product knowledge training project for Spectrum Healthcare Solutions, Inc., including the steps and substeps in the phases of analysis, design, development, implementation, and evaluation. The training project was designed to address the need for increased…
75 FR 81558 - Promoting More Efficient Use of Spectrum Through Dynamic Spectrum Use Technologies
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... wireless innovation to ensure that the promise of dynamic spectrum access technologies can be fully... intensive and efficient use of the radio spectrum, and the potential that these technological innovations have for enabling more effective management of spectrum. DATES: Comments must be filed on or before...
[Laser induced fluorescence spectrum characteristics of common edible oil and fried cooking oil].
Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Chen, He; Guo, Pan; Ge, Xian-ying; Gao, Li-lei
2013-09-01
In order to detect the trench oil the authors built a trench oil rapid detection system based on laser induced fluorescence detection technology. This system used 355 nm laser as excitation light source. The authors collected the fluorescence spectrum of a variety of edible oil and fried cooking oil (a kind of trench oil) and then set up a fluorescence spectrum database by taking advantage of the trench oil detection system It was found that the fluorescence characteristics of fried cooking oil and common edible oil were obviously different. Then it could easily realize the oil recognition and trench oil rapid detection by using principal component analysis and BP neural network, and the overall recognition rate could reach as high as 97.5%. Experiments showed that laser induced fluorescence spectrum technology was fast, non-contact, and highly sensitive. Combined with BP neural network, it would become a new technique to detect the trench oil.
Undergraduates, Technology, and Social Connections
ERIC Educational Resources Information Center
Palmer, Betsy; Boniek, Susan; Turner, Elena; Lovell, Elyse D'nn
2014-01-01
The purpose of this study was to examine the spectrum of undergraduate students' social interactions and related technological tools. Qualitative methods were used for this phenomenological study exploring 35 in-person interviews, with horizonalization in an open coding system secured by in-depth analysis which revealed nuanced themes and…
On Transform Domain Communication Systems under Spectrum Sensing Mismatch: A Deterministic Analysis.
Jin, Chuanxue; Hu, Su; Huang, Yixuan; Luo, Qu; Huang, Dan; Li, Yi; Gao, Yuan; Cheng, Shaochi
2017-07-08
Towards the era of mobile Internet and the Internet of Things (IoT), numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, traditional wireless communication technologies are facing challenges both in terms of the increasing shortage of spectrum resources and massive multiple access. The transform-domain communication system (TDCS) is considered as an alternative multiple access system, where 5G and mobile IoT are mainly focused. However, previous studies about TDCS are under the assumption that the transceiver has the global spectrum information, without the consideration of spectrum sensing mismatch (SSM). In this paper, we present the deterministic analysis of TDCS systems under arbitrary given spectrum sensing scenarios, especially the influence of the SSM pattern to the signal to noise ratio (SNR) performance. Simulation results show that arbitrary SSM pattern can lead to inferior bit error rate (BER) performance.
On Transform Domain Communication Systems under Spectrum Sensing Mismatch: A Deterministic Analysis
Jin, Chuanxue; Hu, Su; Huang, Yixuan; Luo, Qu; Huang, Dan; Li, Yi; Cheng, Shaochi
2017-01-01
Towards the era of mobile Internet and the Internet of Things (IoT), numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, traditional wireless communication technologies are facing challenges both in terms of the increasing shortage of spectrum resources and massive multiple access. The transform-domain communication system (TDCS) is considered as an alternative multiple access system, where 5G and mobile IoT are mainly focused. However, previous studies about TDCS are under the assumption that the transceiver has the global spectrum information, without the consideration of spectrum sensing mismatch (SSM). In this paper, we present the deterministic analysis of TDCS systems under arbitrary given spectrum sensing scenarios, especially the influence of the SSM pattern to the signal to noise ratio (SNR) performance. Simulation results show that arbitrary SSM pattern can lead to inferior bit error rate (BER) performance. PMID:28698477
NREL Spectrum of Clean Energy Innovation (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-09-01
This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment.more » Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.« less
Federal Research and Development Funding: FY2011
2011-03-25
malignancies, and will undertake complete genome sequencing and analysis of 300 autism spectrum disorder cases. In support of the National Nanotechnology...clinical trials by 2016. NIH’s HIV/AIDS research portfolio, covering the spectrum from basic viral research to vaccine development trials, would...cancer, heart disease, and autism , particularly over $1 billion in research applying the technology produced by the Human Genome Project.42 Table 9
Laser induced fluorescence spectrum analysis of OH from photo-dissociation of water in gas phase
NASA Astrophysics Data System (ADS)
Li, Guohua; Ye, Jingfeng; Zhang, Zhengrong; Wang, Sheng; Hu, Zhiyun; Zhao, Xinyan
2017-05-01
The OH can be generated from photo-dissociation of water in the gas phase, and the generated OH has served in tagging velocimetry using the time-flight method. The hydroxyl tagging mechanism has the advantages of non-seeding, kindly flow following character, but its application in the reaction region is limited for the fluorescence interference from nascent OH. In this paper, we explored the laser induced fluorescence spectrum of OH both from burning and photodissociation. A photo-dissociation laser induced fluorescence (PD-LIF) system with optical multichannel analysis instrument (OMA) for spectrum analysis was developed. Based on multichannel mechanism, the LIF spectrum of OH from photo-dissociation and burning were acquired simultaneously. The temporal spectrum profiles of dissociation OH both in flame and air were taken by varying the pump-probe delay. The normalized emission spectrum in flame showed a process of rotational relaxation while in air the spectrum was almost not changed. The fluorescence intensity was precisely proportional to the base states population, so we can get certain states that the OH from dissociation was predominant from the fluorescence intensity ratio of OH. This result can be further utilized for hydroxyl tagging velocimetry technology (HTV) which was less affected by burning OH.
ERIC Educational Resources Information Center
Lung, For-Wey; Chiang, Tung-Liang; Lin, Shio-Jean; Lee, Meng-Chih; Shu, Bih-Ching
2018-01-01
The use of assisted reproduction technology has increased over the last two decades. Autism spectrum disorders and assisted reproduction technology share many risk factors. However, previous studies on the association between autism spectrum disorders and assisted reproduction technology have shown inconsistent results. The purpose of this study…
Federal Research and Development Funding: FY2011
2010-12-07
sequencing and analysis of 300 autism spectrum disorder cases. In support of the National Nanotechnology Initiative, NIH is requesting an increase of...research portfolio, covering the spectrum from basic viral research to vaccine development trials, would increase 3.2% to about $3.2 billion in FY2011...highlighted examples of research in cancer, heart disease, and autism , particularly over $1 billion in research applying the technology produced by the
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
NASA Astrophysics Data System (ADS)
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks.
Anwar, Asim; Seet, Boon-Chong; Ding, Zhiguo
2018-02-08
Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however, can be seriously hampered by the spectrum available to the sheer number of sensors for communication. To support the communication needs of UWSNs without requiring more spectrum resources, the power-domain non-orthogonal multiple access (NOMA) technique originally proposed for 5th Generation (5G) cellular networks is investigated for UWSNs for the first time in this paper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensed spectrum where sensors also experience cross-technology interferences from other devices sharing the same spectrum. In this paper, we model the interferences from various sources at the sensors using stochastic geometry framework. To evaluate the performance, we derive a theorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMA users is performed. Based on the derived outage probability, we evaluate the average link throughput and energy consumption efficiency of NOMA against conventional orthogonal multiple access (OMA) technique in UWSNs. Further, the required computational complexity for the NOMA users is presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... this important step forward. Submitted by the National Science Foundation for the National Coordination... NATIONAL SCIENCE FOUNDATION Toward Innovative Spectrum-Sharing Technologies: Wireless Spectrum.... Suzanne H. Plimpton, Reports Clearance Officer, National Science Foundation. [FR Doc. 2012-16804 Filed 7-9...
Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli
2017-09-12
Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.
Liu, Wei; Kulin, Merima; Kazaz, Tarik; De Poorter, Eli
2017-01-01
Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals’ modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI’s probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access. PMID:28895879
Detection of latent fingerprints by ultraviolet spectral imaging
NASA Astrophysics Data System (ADS)
Huang, Wei; Xu, Xiaojing; Wang, Guiqiang
2013-12-01
Spectral imaging technology research is becoming more popular in the field of forensic science. Ultraviolet spectral imaging technology is an especial part of the full spectrum of imaging technology. This paper finished the experiment contents of the ultraviolet spectrum imaging method and image acquisition system based on ultraviolet spectral imaging technology. Ultraviolet spectral imaging experiments explores a wide variety of ultraviolet reflectance spectra of the object material curve and its ultraviolet spectrum of imaging modalities, can not only gives a reference for choosing ultraviolet wavelength to show the object surface potential traces of substances, but also gives important data for the ultraviolet spectrum of imaging technology development.
Can Automated Facial Expression Analysis Show Differences Between Autism and Typical Functioning?
Borsos, Zsófia; Gyori, Miklos
2017-01-01
Exploratory analyses of emotional expressions using a commercially available facial expression recognition software are reported, from the context of a serious game for screening purposes. Our results are based on a comparative analysis of two matched groups of kindergarten-age children (high-functioning children with autism spectrum condition: n=13; typically developing children: n=13). Results indicate that this technology has the potential to identify autism-specific emotion expression features, and may play a role in affective diagnostic and assistive technologies.
On the Hilbert-Huang Transform Data Processing System Development
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Flatley, Thomas P.; Huang, Norden E.; Cornwell, Evette; Smith, Darell
2003-01-01
One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The Fourier view of nonlinear mechanics that had existed for a long time, and the associated FFT (fairly recent development), carry strong a-priori assumptions about the source data, such as linearity and of being stationary. Natural phenomena measurements are essentially nonlinear and nonstationary. A very recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT) proposes a novel approach to the solution for the nonlinear class of spectrum analysis problems. Using the Empirical Mode Decomposition (EMD) followed by the Hilbert Transform of the empirical decomposition data (HT), the HHT allows spectrum analysis of nonlinear and nonstationary data by using an engineering a-posteriori data processing, based on the EMD algorithm. This results in a non-constrained decomposition of a source real value data vector into a finite set of Intrinsic Mode Functions (IMF) that can be further analyzed for spectrum interpretation by the classical Hilbert Transform. This paper describes phase one of the development of a new engineering tool, the HHT Data Processing System (HHTDPS). The HHTDPS allows applying the "T to a data vector in a fashion similar to the heritage FFT. It is a generic, low cost, high performance personal computer (PC) based system that implements the HHT computational algorithms in a user friendly, file driven environment. This paper also presents a quantitative analysis for a complex waveform data sample, a summary of technology commercialization efforts and the lessons learned from this new technology development.
United States Military Academy: 25 Years of Enlightening Research. 2012 Program Review
2012-01-01
is being used in agriculture to quickly assess produce for disease and ripeness. The technology has been incorporated into microscopes to conduct... disease and ripeness. The technology has been incorporated into microscopes to conduct micro analysis on chemical composition of pharmaceuticals...and electronically. The Optical spectrum analyzer (OSA) and Fabry -Perot interferometer (left inset) show a pure 150MHz tone with no extraneous
Moving beyond Technological Determinism and Autonomy to Face Our Responsibilities
ERIC Educational Resources Information Center
Vanderburg, Willem H.
2012-01-01
This article shows that technological neutrality, determinism, and autonomy correspond to parts of a spectrum of possible historical relations between societies and their technologies. The spectrum of relations is based on the recognition that as we change technology, technology simultaneously changes us. This reinterpretation compels us to face…
Wright, Scott D; D'Astous, Valerie; Wright, Cheryl A; Diener, Marissa L
2012-01-01
This study of grandparent-grandchild relationships was embedded in the context of technology workshops offered for young children on the autism spectrum. The purpose of this research was to examine the perspectives of six involved grandparents regarding their social interactions with their grandchildren in the context of this shared technology experience. Content analysis of transcribed focus group sessions with the grandparents indicated two key themes: expectations were reframed and communication bridges were built through shared interests. Grandparents perceived that their grandchildren learned technological skills, and increased their social interactions with peers, family members (parents, siblings), and grandparents themselves. The positive experience the grandparents perceived their grandchildren to have in the program gave them hope for future educational and employment opportunities for their grandchildren. The grandparents also indicated that the shared interests in the computer program facilitated communication opportunities with their grandchildren, with other grandparents of grandchildren with ASD, and with their adult sons and daughters.
Li, Feng; Li, Wen-Xia; Zhao, Guo-Liang; Tang, Shi-Jun; Li, Xue-Jiao; Wu, Hong-Mei
2014-10-01
A series of 354 polyester-cotton blend fabrics were studied by the near-infrared spectra (NIRS) technology, and a NIR qualitative analysis model for different spectral characteristics was established by partial least squares (PLS) method combined with qualitative identification coefficient. There were two types of spectrum for dying polyester-cotton blend fabrics: normal spectrum and slash spectrum. The slash spectrum loses its spectral characteristics, which are effected by the samples' dyes, pigments, matting agents and other chemical additives. It was in low recognition rate when the model was established by the total sample set, so the samples were divided into two types of sets: normal spectrum sample set and slash spectrum sample set, and two NIR qualitative analysis models were established respectively. After the of models were established the model's spectral region, pretreatment methods and factors were optimized based on the validation results, and the robustness and reliability of the model can be improved lately. The results showed that the model recognition rate was improved greatly when they were established respectively, the recognition rate reached up to 99% when the two models were verified by the internal validation. RC (relation coefficient of calibration) values of the normal spectrum model and slash spectrum model were 0.991 and 0.991 respectively, RP (relation coefficient of prediction) values of them were 0.983 and 0.984 respectively, SEC (standard error of calibration) values of them were 0.887 and 0.453 respectively, SEP (standard error of prediction) values of them were 1.131 and 0.573 respectively. A series of 150 bounds samples reached used to verify the normal spectrum model and slash spectrum model and the recognition rate reached up to 91.33% and 88.00% respectively. It showed that the NIR qualitative analysis model can be used for identification in the recycle site for the polyester-cotton blend fabrics.
[Analysis of salivary protease spectrum in chronic periodontitis].
Qian, Li; Xuedong, Zhou; Yaping, Fan; Tengyu, Yang; Songtao, Wu; Yu, Yu; Jiao, Chen; Ping, Zhang; Yun, Feng
2017-02-01
This study aimed to investigate the difference in salivary protease expression in patients with chronic periodontitis and normal individuals. The stimulating saliva in patients with chronic periodontitis and normal individuals were collected. Protein chip technology was adapted to analyze salivary protease spectrum. Among the 34 proteases in the chip, disintegrin and metalloproteinase (ADAM)8, matrix metalloproteinase (MMP)-8, MMP-12, neprilysin/CD10, and uridylyl phosphate adenosine/urokinase showed a significantly increased concentration in the saliva of chronic periodontitis patients compared with those in the saliva of normal individuals (P<0.01). By contrast, the concentrations of ADAM9, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)1, ADAMTS13, cathepsin B, E, L, V, X/Z/P, kallikrein 6, 7, 11, 13, MMP-9, proteinase 3, presenilin-1, and proprotein convertase 9 sharply decreased (P<0.05). The results demonstrated that protease spectrum in the saliva of chronic periodontitis patients and normal individuals significantly differed. Analysis of salivary protease spectrum is a potential clinical method to examine, diagnose, and monitor chronic periodontitis.
78 FR 64200 - Innovative Spectrum Sharing Technology Day Event
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... Spectrum Sharing Technology Day Event AGENCY: National Telecommunications and Information Administration, U.S. Department of Commerce; National Institute of Standards and Technology, U.S. Department of...) and the National Institute of Standards and Technology (NIST), with the support of the National...
Augmentative and alternative communication supports for adults with autism spectrum disorders.
Trembath, David; Iacono, Teresa; Lyon, Katie; West, Denise; Johnson, Hilary
2014-11-01
Many adults with autism spectrum disorders have complex communication needs and may benefit from the use of augmentative and alternative communication. However, there is a lack of research examining the specific communication needs of these adults, let alone the outcomes of interventions aimed at addressing them. The aim of this study was to explore the views and experiences of support workers and family members regarding the outcomes of providing low-technology communication aids to adults with autism spectrum disorders. The participants were six support workers and two family members of six men and women with autism spectrum disorders, who had received low-technology communication aids. Using semi-structured, in-depth interviews and following thematic analysis, the results revealed strong support for, and the potential benefits of, augmentative and alternative communication for both adults with autism spectrum disorders and their communication partners. The results also revealed inconsistencies in the actions taken to support the use of the prescribed augmentative and alternative communication systems, pointing to the clinical need to address common barriers to the provision of augmentative and alternative communication support. These barriers include organisational practices and limitations in the knowledge and skills of key stakeholders, as well as problematic attitudes. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).
NASA Technical Reports Server (NTRS)
Ha, Tri T.; Pratt, Timothy
1989-01-01
The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel.
Analysis of Over-the-Horizon Tactical Communications in an Immature Theater
2014-06-13
frequency bands, capacity, costs, and mobility, the research examines both alternate portions of the electromagnetic spectrum and rising technologies...IMMATURE THEATER, by Major Samuel Eugene Sinclair, 75 pages. This qualitative research in the field of over-the-horizon (OTH) voice communications
Mesoscopic Perovskite Light-Emitting Diodes.
Palma, Alessandro Lorenzo; Cinà, Lucio; Busby, Yan; Marsella, Andrea; Agresti, Antonio; Pescetelli, Sara; Pireaux, Jean-Jacques; Di Carlo, Aldo
2016-10-03
Solution-processed hybrid bromide perovskite light-emitting-diodes (PLEDs) represent an attractive alternative technology that would allow overcoming the well-known severe efficiency drop in the green spectrum related to conventional LEDs technologies. In this work, we report on the development and characterization of PLEDs fabricated using, for the first time, a mesostructured layout. Stability of PLEDs is a critical issue; remarkably, mesostructured PLEDs devices tested in ambient conditions and without encapsulation showed a lifetime well-above what previously reported with a planar heterojunction layout. Moreover, mesostructured PLEDs measured under full operative conditions showed a remarkably narrow emission spectrum, even lower than what is typically obtained by nitride- or phosphide-based green LEDs. A dynamic analysis has shown fast rise and fall times, demonstrating the suitability of PLEDs for display applications. Combined electrical and advanced structural analyses (Raman, XPS depth profiling, and ToF-SIMS 3D analysis) have been performed to elucidate the degradation mechanism, the results of which are mainly related to the degradation of the hole-transporting material (HTM) and to the perovskite-HTM interface.
[Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].
Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou
2014-08-01
In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).
Spectral data analysis of rock and mineral in Hatu Western Junggar Region, Xinjiang
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Zhou, Kefa; Zhang, Nannan; Wang, Jinlin
2014-11-01
Mineral resources are important material basis for the survival and development of human society. The development of hyperspectral remote sensing technology, which has made direct identification of minerals or mineral aggregates become possible, paves a new way for the application of remote sensing geology. The West Junggar region is located Xinjiang west verge of Junggar, with ore-forming geological conditions be richly endowed by nature and huge prospecting potentiality. The area has very good outcrop exposure with almost no vegetation cover, which is a natural test new method of remote sensing geological exploration. The characteristic of rock and mineral spectrum is not only the physical base of geological remote sensing technical application but also the base of the quantificational analysis of geological remote sensing, and the study of reflectance spectrum is the main content in the basic research of remote sensing. In this study, we collected the outdoor and indoor reflectance spectrum of rocks and minerals by using a spectroradiometer (ASD FieldSpec FR, ASD, USA), which band extent varied from 350 to 2,500 nm. Basin on a great deal of spectral data for different kinds of rocks and minerals, we have analyzed the spectrum characteristics and change of seven typical mineral rocks. According to the actual conditions, we analyzed the data noise characteristic of the spectrum and got rid of the noise. Meanwhile, continuum removed technology was used to remove the environmental background influence. Finally, in order to take full advantage of multi-spectrum data, ground information is absolutely necessary, and it is important to build a representative spectral library. We build the spectral library of rocks and minerals in Hatu, which can be used for features investigation, mineral classification, mineral mapping and geological prospecting in Hatu Western Junggar region by remote sensing. The result of this research will be significant to the research of accelerating Western Junggar mineral exploration.
Monolithic optical link in silicon-on-insulator CMOS technology.
Dutta, Satadal; Agarwal, Vishal; Hueting, Raymond J E; Schmitz, Jurriaan; Annema, Anne-Johan
2017-03-06
This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n+p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation. Optical coupling in both avalanche-mode and forward-mode operation of the LED are analyzed for various designs and bias conditions. From both DC and pulsed transient measurements, it is further shown that heating in the avalanche-mode LED leads to a slow thermal coupling to the PD with time constants in the ms range. An integrated heat sink in the same technology leads to a ∼ 6 times reduction in the change in PD junction temperature per unit electrical power dissipated in the avalanche-mode LED. The analysis paves way for wide-spectrum optical links integrated in smart power technologies.
Technology use as a support tool by secondary students with autism.
Hedges, Susan H; Odom, Samuel L; Hume, Kara; Sam, Ann
2018-01-01
The purpose of this study was to examine how secondary students with autism spectrum disorder use technology in supportive ways. In this self-report survey study, 472 adolescents with autism spectrum disorder enrolled in high school described the forms of technology they use and purposes for which they use it. Students reported the benefits as well as barriers to technology use at school. They reported using technology in school and home settings in a variety of supportive ways such as increasing their independence, reducing their anxiety, and increasing their social opportunities. Findings suggest that practitioners may benefit from learning how to integrate technology as an instructional and support tool for their students with autism spectrum disorder. Recommendations for future research are provided.
Li, Jian-Xun; Li, Xiao-Ying; Chang, Qiao-Ying; Li, Yan; Jin, Ling-He; Pang, Guo-Fang; Fan, Chun-Lin
2018-05-03
Because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, and fast acquisition rates, GC-quadrupole-time-of-flight MS (GC-Q-TOF/MS) has become a powerful tool for pesticide residue analysis. In this study, a TOF accurate mass database and Q-TOF spectrum library of 439 pesticides were established, and the parameters of the TOF database were optimized. Through solid-phase extraction (SPE), whereby pesticides are extracted from fruit and vegetable substrates by using 40 mL 1% acetic acid in acetonitrile (v/v), purified by the Carbon/NH₂ SPE cartridge, and finally detected by GC-Q-TOF/MS, the rapid analysis of 439 pesticides in fruits and vegetables can be achieved. The methodology verification results show that more than 70 and 91% of pesticides, spiked in fruits and vegetables with concentrations of 10 and 100 μg/kg, respectively, saw recoveries that conform to the European Commission's criterion of between 70 and 120% with RSD ≤20%. Eighty-one percent of pesticides have screening detection limits lower than 10 μg/kg, which makes this a reliable analysis technology for the monitoring of pesticide residues in fruits and vegetables. This technology was further validated for its characteristics of high precision, high speed, and high throughput through successful detection of 9817 samples during 2013-2015.
ERIC Educational Resources Information Center
Cardon, Teresa A.; Wilcox, M. Jeanne; Campbell, Philippa H.
2011-01-01
The purpose was to examine how caregivers of infants and toddlers with autism spectrum disorder view their daily activities/routines and in what way, if any, assistive technology (AT) acts as a support. A total of 134 families who reported their child's disability as autism spectrum disorder/pervasive developmental disorder completed a survey…
Incorporating deep learning into the analysis of diverse livestock data
USDA-ARS?s Scientific Manuscript database
Technological advances in high-throughput phenotyping and multiple omics fields have led to an explosion in the volume of data across the whole spectrum of biology, allowing researchers to integrate data of different types to inform hypotheses and expand the scope of their research questions. Howeve...
Study on movable fluid of low permeability reservoir with NMR technology
NASA Astrophysics Data System (ADS)
Wang, Hongqian; Li, Yajun; Gong, Houjian; Dong, Mingzhe
2018-03-01
Fluid mobility is an important factor affecting the development of low permeability reservoirs. The fluid mobility of 4 core samples obtained from the Shahejie group of Dongying Sag(China) is conducted using the nuclear magnetic resonance analysis technique. The main part of NMR T2 spectrum usually has two form: unimodal and bimodal. When the main part of T2 spectrum is bimodal, water in large pores flows out firstly, while water in small pores can't flow until the centrifugal force is large enough. When the main part of T2 spectrum is unimodal, the water in small pores is easier to flow out. The movable fluid percentage is mainly affected by the pore distribution, permeability and porosity.
Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander
2015-01-01
Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.
Pesticide Manufacturers, Formulators, Producers, and Registrants
International Apollo Industries, Inc. (see Apollo Technologies, Inc.) Apollo Technologies, Inc. Applied Products, Inc.) SPECKoZ, Inc. Spectrum Brands (aka Spectrum Group) Speer Products, Inc. (see Apollo
ERIC Educational Resources Information Center
Shane, Howard C.; Laubscher, Emily H.; Schlosser, Ralf W.; Flynn, Suzanne; Sorce, James F.; Abramson, Jennifer
2012-01-01
The burgeoning role of technology in society has provided opportunities for the development of new means of communication for individuals with Autism Spectrum Disorders (ASD). This paper offers an organizational framework for describing traditional and emerging augmentative and alternative communication (AAC) technology, and highlights how tools…
Advanced General Aviation Turbine Engine (GATE) study
NASA Technical Reports Server (NTRS)
Smith, R.; Benstein, E. H.
1979-01-01
The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.
[The application of wavelet analysis of remote detection of pollution clouds].
Zhang, J; Jiang, F
2001-08-01
The discrete wavelet transform (DWT) is used to analyse the spectra of pollution clouds in complicated environment and extract the small-features. The DWT is a time-frequency analysis technology, which detects the subtle small changes in the target spectrum. The results show that the DWT is a quite effective method to extract features of target-cloud and improve the reliability of monitoring alarm system.
Defence Technology Strategy for the Demands of the 21st Century
2006-10-01
understanding of human capability in the CBM role. Ownership of the intellectual property behind algorithms may be sovereign10, but implementation will...synchronisation schemes. · coding schemes. · modulation techniques. · access schemes. · smart spectrum usage . · low probability of intercept. · implementation...modulation techniques; access schemes; smart spectrum usage ; low probability of intercept Spectrum and bandwidth management · cross layer technologies to
ERIC Educational Resources Information Center
Hillier, Ashleigh; Greher, Gena; Queenan, Alexa; Marshall, Savannah; Kopec, Justin
2016-01-01
The use of technology in music education is gaining momentum, although very little work has focused on students with disabilities. Our "SoundScape" programme addressed this gap through implementing a technology-based music programme for adolescents and young adults with autism spectrum disorders (ASD). Programme participants met on a…
Technology-Aided Interventions and Instruction for Adolescents with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Odom, Samuel L.; Thompson, Julie L.; Hedges, Susan; Boyd, Brian A.; Dykstra, Jessica R.; Duda, Michelle A.; Szidon, Kathrine L.; Smith, Leann E.; Bord, Aimee
2015-01-01
The use of technology in intervention and instruction for adolescents with autism spectrum disorder (ASD) is increasing at a striking rate. The purpose of this paper is to examine the research literature underlying the use of technology in interventions and instruction for high school students with ASD. In this paper, authors propose a theoretical…
The Uses of Cognitive Training Technologies in the Treatment of Autism Spectrum Disorders
ERIC Educational Resources Information Center
Wass, Sam V.; Porayska-Pomsta, Kaska
2014-01-01
In this review, we focus on research that has used technology to provide cognitive training--i.e. to improve performance on some measurable aspect of behaviour--in individuals with autism spectrum disorders. We review technology-enhanced interventions that target three different cognitive domains: (a) emotion and face recognition, (b) language and…
Technology Use as a Support Tool by Secondary Students with Autism
ERIC Educational Resources Information Center
Hedges, Susan H.; Odom, Samuel L.; Hume, Kara; Sam, Ann
2018-01-01
The purpose of this study was to examine how secondary students with autism spectrum disorder use technology in supportive ways. In this self-report survey study, 472 adolescents with autism spectrum disorder enrolled in high school described the forms of technology they use and purposes for which they use it. Students reported the benefits as…
3 CFR - Expanding America's Leadership in Wireless Innovation
Code of Federal Regulations, 2014 CFR
2014-01-01
... results from the Networking and Information Technology Research and Development Program, shall publish an... in research, development, testing, and evaluation of technologies to enhance spectrum sharing and... templates governing the following: research, development, testing, and evaluation of spectrum sharing...
Effective approach to spectroscopy and spectral analysis techniques using Matlab
NASA Astrophysics Data System (ADS)
Li, Xiang; Lv, Yong
2017-08-01
With the development of electronic information, computer and network, modern education technology has entered new era, which would give a great impact on teaching process. Spectroscopy and spectral analysis is an elective course for Optoelectronic Information Science and engineering. The teaching objective of this course is to master the basic concepts and principles of spectroscopy, spectral analysis and testing of basic technical means. Then, let the students learn the principle and technology of the spectrum to study the structure and state of the material and the developing process of the technology. MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, Based on the teaching practice, this paper summarizes the new situation of applying Matlab to the teaching of spectroscopy. This would be suitable for most of the current school multimedia assisted teaching
[The analysis of the bipolarity features in students of arts and the students of technology].
Siwek, Marcin; Dudek, Dominika; Arciszewska, Aleksandra; Filar, Dorota; Rybicka, Monika; Cieciora, Anna; Pilecki, Maciej Wojciech
2013-01-01
The aim of the research was to assess the prevalence of the bipolar spectrum features among students of a variety of faculties, by dividing them arbitrarily into 'art' or 'technology' cohorts. 120 subjects were examined, including 57 students of arts, and 63 students of technology. The tools used included a basic socio-demographic questionnaire and the Hirschfeld Mood Disorder Questionnaire (MDQ). The bipolar spectrum features (as identified by the MDQ responses) were significantly more prevalent among the students of arts, as compared to the students of technology (28.2% vs. 4.8%, p < or = 0.001; OR = 7.8; CI 95%: 2.13-28.51; p < 0.01). Moreover, in comparison to the students of technology, the students of arts were more likely to: 1) report mood patterns of intermittent 'highs' and 'lows' (49.1% vs. 15.9%, p < or = 0.0001; OR = 5.11; CI 95%: 2.18-11.99; p < or = 0.001); 2) seek for psychiatric or psychological support (12.3% vs. 1.5%; p < or = 0.05; OR = 5.2; CI 95%: 1.79-15.21; p < or = 0.01); 3) have a history of utilisation of psychotropic medications (31% vs. 7.9%, p < or = 0.001; OR = 8.7; CI 95%: 1.03-72.9; p < or = 0.05). They were also more likely to use psychoactive substances (other than alcohol). The considerable prevalence of the bipolarity features (as measured by the MDQ), combined with higher prevalence of intermittent periods of elevated or depressed mood, higher likelihood of seeking for psychiatric or psychological treatment, and higher prevalence of using psychoactive medications/substances in the cohort of the students of arts indicate a significant association between artistic talents and creativity, and the bipolar spectrum disorders.
ERIC Educational Resources Information Center
Mintz, Joseph; Branch, Corinne; March, Caty; Lerman, Stephen
2012-01-01
Of late there has been growing interest in the potential of technology to support children with Autistic Spectrum Disorders (ASD) with social and life skills. There has also been a burgeoning interest in the potential use of mobile technology in the classroom and in the use of such technology to support children with ASD. Building on these…
Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui
2010-03-01
Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.
Tools for Rapid Understanding of Malware Code
2015-05-07
cloaking techniques. We used three malware detectors, covering a wide spectrum of detection technologies, for our experiments: VirusTotal, an online ...Analysis and Manipulation ( SCAM ), 2014. [9] Babak Yadegari, Brian Johannesmeyer, Benjamin Whitely, and Saumya Debray. A generic approach to automatic...and Manipulation ( SCAM ), 2014. [9] Babak Yadegari, Brian Johannesmeyer, Benjamin Whitely, and Saumya Debray. A generic approach to automatic
2010-03-01
communications have become a staple of modern society, promoted by newer technologies such as netbooks and smartphones . The boom of wireless...69 4.2.2 TTH Analysis vs . Simulation ........................................................................... 75 4.2.4 Effects of...Total node receive range, both radios in same channel ................................... 54 Figure 21: Probability of initial beacon reception vs
NASA Astrophysics Data System (ADS)
Montanes Rodriguez, P.; Palle, E.; Goode, P.; Koonin, S.; Hickey, J.; Qiu, J.; Yurchysyn, V.
The Earthshine project, was run by California Institute of Technology (Caltech) between 1993 and 1995. Since 1998, it has been a collaborative effort between Caltech and Big Bear Solar Observatory (BBSO)/New Jersey Institute of Technology (NJIT). Our primary goal is the precise determination of a global and absolutely calibrated Earth's albedo and its synoptic, seasonal, and annual variability; as well as the measurement and investigation of the resolved reflected spectrum of the integrated Earth in the infrared region. The absorption in the infrared region, mainly due to rotational and vibrational transitions of the molecules, show the absorption bands of various telluric and solar components allowing the analysis of the Earth's spectrum such as it would be observed from the outer space. In this paper we present preliminary results of spectroscopic observations, made at Palomar Observatory with the 60-inch telescope's echelle spectrograph. They targeted the visible and near infrared region of the electromagnetic spectrum, and were performed in the spectral range (< 1μm) of the bands of Oxygen A, Oxygen B, water and Hydrogen alpha (H). The first three are typically terrestrial molecular bands. The fourth line, H, is a solar line, used mainly for spectral calibration.
Han, Bangxing; Peng, Huasheng; Yan, Hui
2016-01-01
Mugua is a common Chinese herbal medicine. There are three main medicinal origin places in China, Xuancheng City Anhui Province, Qijiang District Chongqing City, Yichang City, Hubei Province, and suitable for food origin places Linyi City Shandong Province. To construct a qualitative analytical method to identify the origin of medicinal Mugua by near infrared spectroscopy (NIRS). Partial least squares discriminant analysis (PLSDA) model was established after the Mugua derived from five different origins were preprocessed by the original spectrum. Moreover, the hierarchical cluster analysis was performed. The result showed that PLSDA model was established. According to the relationship of the origins-related important score and wavenumber, and K-mean cluster analysis, the Muguas derived from different origins were effectively identified. NIRS technology can quickly and accurately identify the origin of Mugua, provide a new method and technology for the identification of Chinese medicinal materials. After preprocessed by D1+autoscale, more peaks were increased in the preprocessed Mugua in the near infrared spectrumFive latent variable scores could reflect the information related to the origin place of MuguaOrigins of Mugua were well-distinguished according to K. mean value clustering analysis. Abbreviations used: TCM: Traditional Chinese Medicine, NIRS: Near infrared spectroscopy, SG: Savitzky-Golay smoothness, D1: First derivative, D2: Second derivative, SNV: Standard normal variable transformation, MSC: Multiplicative scatter correction, PLSDA: Partial least squares discriminant analysis, LV: Latent variable, VIP scores: Important score.
An excitation wavelength-scanning spectral imaging system for preclinical imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul
2008-02-01
Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the excitation-scanning imager to other spectral and fluorescence imaging technologies. The effectiveness of the hyperspectral imager was tested by imaging and analysis of mice with injected fluorescent dyes. Finally, a discussion of the optimization of spectral fluorescence imagers is given, relating the effects of filter quality on fluorescence images collected and the analysis outcome.
A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings
Fu, Jihua; Wang, Xu; Wei, Tao; Wei, Meng; Shen, Yang
2017-01-01
Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements. Two CCBGs are introduced into the geodetic strainmeter: one serves as a sensor to measure the strain applied on it, and the other acts as a reference to detect environmental noises. By integrating the sensor and reference signals in a mixer, the environmental noises are minimized and a lower mixed frequency is obtained. The lower mixed frequency allows for measurements to be taken with a portable spectrum analyzer, rather than an expensive spectrum analyzer or a vector network analyzer (VNA). Analysis of laboratory experiments shows that the strain can be measured by the CCBG sensor, and the portable spectrum analyzer can make measurements with the accuracy similar to the expensive spectrum analyzer, whose relative error to the spectrum analyzer R3272 is less than ±0.4%. The outputs of the geodetic strainmeter show a linear relationship with the strains that the CCBG sensor experienced. The measured sensitivity of the geodetic strainmeter is about −0.082 kHz/με; it can cover a large dynamic measuring range up to 2%, and its nonlinear errors can be less than 5.3%. PMID:28417925
A Cost-Effective Geodetic Strainmeter Based on Dual Coaxial Cable Bragg Gratings.
Fu, Jihua; Wang, Xu; Wei, Tao; Wei, Meng; Shen, Yang
2017-04-12
Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as global positioning system (GPS), interferometric synthetic aperture radar (InSAR), borehole and laser strainmeters, are costly and limited in their temporal or spatial resolutions. Here we present a new type of strainmeters based on the coaxial cable Bragg grating (CCBG) sensing technology that provides cost-effective strain measurements. Two CCBGs are introduced into the geodetic strainmeter: one serves as a sensor to measure the strain applied on it, and the other acts as a reference to detect environmental noises. By integrating the sensor and reference signals in a mixer, the environmental noises are minimized and a lower mixed frequency is obtained. The lower mixed frequency allows for measurements to be taken with a portable spectrum analyzer, rather than an expensive spectrum analyzer or a vector network analyzer (VNA). Analysis of laboratory experiments shows that the strain can be measured by the CCBG sensor, and the portable spectrum analyzer can make measurements with the accuracy similar to the expensive spectrum analyzer, whose relative error to the spectrum analyzer R3272 is less than ±0.4%. The outputs of the geodetic strainmeter show a linear relationship with the strains that the CCBG sensor experienced. The measured sensitivity of the geodetic strainmeter is about -0.082 kHz/με; it can cover a large dynamic measuring range up to 2%, and its nonlinear errors can be less than 5.3%.
A frequency standard via spectrum analysis and direct digital synthesis
NASA Astrophysics Data System (ADS)
Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong
2014-11-01
We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.
Advanced technology airfoil research, volume 1, part 2
NASA Technical Reports Server (NTRS)
1978-01-01
This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
Application of Mobility Spectrum Analysis to Modern Multi-layered IR Device Material
NASA Astrophysics Data System (ADS)
Brown, Alexander Earl
Modern detector materials used for infrared (IR) imaging purposes contain complex multi-layered architectures, making more robust characterization techniques necessary. In order to determine mutli-carrier transport properties in the presence of mixed conduction, variable-field Hall characterization can be performed and then analyzed using mobility spectrum analysis to extract parameters of interest. Transport parameters are expected to aid in modeling and simulation of materials and can be used in optimization of particular problem areas. The performances of infrared devices ultimately depend on transport mechanisms, so an accurate determination becomes paramount. This work focuses on the characterization of two materials at the forefront of IR detectors; incumbent, tried and true, HgCdTe technologies and emergent III-V based superlattice structures holding much promise for future detector purposes. Ex-situ doped long-wave planar devices and in-situ doped mid-wave dual-layer heterojunctions (P+/n architecture) HgCdTe structures are explored with regards to substrate choice, namely lattice-matched CdZnTe and lattice-mismatched Si or GaAs. A detailed study of scattering mechanisms reveal that growth on lattice-mismatched substrates leads to dislocation scattering limited mobility at low temperature, correlating with extrinsically limited minority carrier lifetime and excesses diode tunneling current, resulting in overall lower performance. Mobility spectrum analysis proves to be an effective diagnostic on performance as well as providing insight in surface, substrate-interface, and minority carrier transport. Two main issues limiting performance of III-V based superlattices are addressed; high residual doping backgrounds and surface passivation. Mobility spectrum analysis proves to be a reliable method of determining background doping levels. Modest improvements are obtained via post-growth thermal annealing, but results suggest future efforts should be placed upon growth improvements. Passivation efforts using charged electret dielectric show promise but further refinements would be needed. Thiol passivation is identified as a successful passivant of Be-doped p-type InAs/GaSb long-wave absorbers using mobility spectrum analysis, correlating with fabricated device dark current. Mobility spectrum analysis demonstrates it will be indispensable in future development of III-V material.
PROSPECT - A precision oscillation and spectrum experiment
NASA Astrophysics Data System (ADS)
Langford, T. J.; PROSPECT Collaboration
2015-08-01
Segmented antineutrino detectors placed near a compact research reactor provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. Close proximity to a reactor combined with minimal overburden yield a high background environment that must be managed through shielding and detector technology. PROSPECT is a new experimental effort to detect reactor antineutrinos from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, managed by UT Battelle for the U.S. Department of Energy. The detector will use novel lithium-loaded liquid scintillator capable of neutron/gamma pulse shape discrimination and neutron capture tagging. These enhancements improve the ability to identify neutrino inverse-beta decays (IBD) and reject background events in analysis. Results from these efforts will be covered along with their implications for an oscillation search and a precision spectrum measurement.
ERIC Educational Resources Information Center
Mintz, Joseph
2013-01-01
Of late there has been growing interest in the potential of technology to support children with Autism Spectrum Disorders (ASD) with social and life skills. There has also been a burgeoning interest in the potential use of mobile technology in the classroom and in the use of such technology to support children with ASD. Building on these…
Research on the applications of space technology
NASA Technical Reports Server (NTRS)
1979-01-01
Communication satellites and technology transfer are discussed in seven individual reports. Topics cover: (1) NASA'S technological alternatives assuming that the orbit-spectrum resource will continue to be allocated to communication satellite service providers at zero price; (2) the economic aspects of orbit-spectrum allocation; (3) the cost structure of local distribution systems for satellite communication; (4) the economic basis for national science and technology policy; (5) the economics of the household economy; (6) government patent policy; and (7) screening and evaluation in information dissemination.
Tomato seeds maturity detection system based on chlorophyll fluorescence
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun
2016-10-01
Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.
Achieving Efficient Spectrum Usage in Passive and Active Sensing
NASA Astrophysics Data System (ADS)
Wang, Huaiyi
Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.
Detection and classification of concealed weapons using a magnetometer-based portal
NASA Astrophysics Data System (ADS)
Kotter, Dale K.; Roybal, Lyle G.; Polk, Robert E.
2002-08-01
A concealed weapons detection technology was developed through the support of the National Institute of Justice (NIJ) to provide a non intrusive means for rapid detection, location, and archiving of data (including visual) of potential suspects and weapon threats. This technology, developed by the Idaho National Engineering and Environmental Laboratory (INEEL), has been applied in a portal style weapons detection system using passive magnetic sensors as its basis. This paper will report on enhancements to the weapon detection system to enable weapon classification and to discriminate threats from non-threats. Advanced signal processing algorithms were used to analyze the magnetic spectrum generated when a person passes through a portal. These algorithms analyzed multiple variables including variance in the magnetic signature from random weapon placement and/or orientation. They perform pattern recognition and calculate the probability that the collected magnetic signature correlates to a known database of weapon versus non-weapon responses. Neural networks were used to further discriminate weapon type and identify controlled electronic items such as cell phones and pagers. False alarms were further reduced by analyzing the magnetic detector response by using a Joint Time Frequency Analysis digital signal processing technique. The frequency components and power spectrum for a given sensor response were derived. This unique fingerprint provided additional information to aid in signal analysis. This technology has the potential to produce major improvements in weapon detection and classification.
Lahiri, Uttama; Trewyn, Adam; Warren, Zachary; Sarkar, Nilanjan
2011-01-01
Children with Autism Spectrum Disorder are often characterized by deficits in social communication skills. While evidence suggests that intensive individualized interventions can improve aspects of core deficits in Autism Spectrum Disorder, at present numerous potent barriers exist related to accessing and implementing such interventions. Researchers are increasingly employing technology to develop more accessible, quantifiable, and individualized intervention tools to address core vulnerabilities related to autism. The present study describes the development and preliminary application of a Virtual Reality technology aimed at facilitating improvements in social communication skills for adolescents with autism. We present preliminary data from the usability study of this technological application for six adolescents with autism and discuss potential future development and application of adaptive Virtual Reality technology within an intervention framework.
47 CFR 27.1214 - EBS spectrum leasing arrangements and grandfathered leases.
Code of Federal Regulations, 2010 CFR
2010-10-01
... not employ channel loading technology. (3) The licensee may shift its requisite EBS educational usage... educational use requirements in light of changes in educational needs, technology, and other relevant factors... Educational Broadband Service § 27.1214 EBS spectrum leasing arrangements and grandfathered leases. (a) A...
Autistic Spectrum Disorder and Assistive Technology: Action Research Case Study of Reading Supports
ERIC Educational Resources Information Center
Lindsey, Pam
2012-01-01
This descriptive action research experience with case study procedures examined the use of best practices paired with assistive technologies as interventions to individualize fiction reading instruction for a high-functioning elementary student, JB (pseudonym), diagnosed with autistic spectrum disorder. JB's instructional, reading goals were to…
ERIC Educational Resources Information Center
Zheng, Zhi; Warren, Zachary; Weitlauf, Amy; Fu, Qiang; Zhao, Huan; Swanson, Amy; Sarkar, Nilanjan
2016-01-01
Researchers are increasingly attempting to develop and apply innovative technological platforms for early detection and intervention of autism spectrum disorder (ASD). This pilot study designed and evaluated a novel technologically-mediated intelligent learning environment with relevance to early social orienting skills. The environment was…
Roller Bearing Health Monitoring Using CPLE Frequency Analysis Method
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi; Jones, Jess H.
2007-01-01
This paper describes a unique vibration signature analysis technique Coherence Phase Line Enhancer (CPLE) Frequency Analysis - for roller bearing health monitoring. Defects of roller bearing (e.g. wear, foreign debris, crack in bearing supporting structure, etc.) can cause small bearing characteristic frequency shifts due to minor changes in bearing geometry. Such frequency shifts are often too small to detect by the conventional Power Spectral Density (PSD) due to its frequency bandwidth limitation. This Coherent Phase Line Enhancer technology has been evolving over the last few years and has culminated in the introduction of a new and novel frequency spectrum which is fully described in this paper. This CPLE technology uses a "key phasor" or speed probe as a preprocessor for this analysis. With the aid of this key phasor, this CPLE technology can develop a two dimensional frequency spectrum that preserves both amplitude and phase that is not normally obtained using conventional frequency analysis. This two-dimensional frequency transformation results in several newly defined spectral functions; i. e. CPLE-PSD, CPLE-Coherence and the CPLE-Frequency. This paper uses this CPLE frequency analysis to detect subtle, low level bearing related signals in the High Pressure Fuel Pump (HPFP) of the Space Shuttle Main Engine (SSME). For many rotating machinery applications, a key phasor is an essential measurement that is used in the detection of bearing related signatures. There are times however, when a key phasor is not available; i. e. during flight of any of the SSME turbopumps or on the SSME High Pressure Oxygen Turbopump (HPOTP) where no speed probe is present. In this case, the CPLE analysis approach can still be achieved using a novel Pseudo Key Phasor (PKP) technique to reconstruct a 1/Rev PKP signal directly from external vibration measurements. This paper develops this Pseudo Key Phasor technique and applies it to the SSME vibration data.
NASA Astrophysics Data System (ADS)
Domínguez, César; Besson, Pierre
2014-09-01
The sensitivity of four different CPV module technologies to most operating conditions relevant to CPV systems has been studied, namely DNI, spectrum, cell and lens temperature and clearness of the sky. In order to isolate the influence of a single operation parameter, the analysis of long-term outdoor monitoring data is required. The effect of lens temperature on cell current has been found to vary greatly between modules due to the different optical architectures studied. Maximum sensitivity is found for silicone-on-glass primary lenses. The VOC thermal coefficient was found to vary between module technologies, probably due to differences in maximum local effective concentration.
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; McCracken, Mary; Blackorby, Jose
2013-01-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of…
Assisted Reproductive Technology and Risk for Autism Spectrum Disorder
ERIC Educational Resources Information Center
Zachor, Ditza A.; Itzchak, E. Ben
2011-01-01
Epidemiologic studies on maternal and pregnancy risk factors for autism spectrum disorder (ASD), including use of assisted reproductive technology (ART), found conflicting results. This study included the following aims: to assess frequencies of ART in a large ASD group; to examine confounding birth and familial risk factors in the ASD with ART…
ERIC Educational Resources Information Center
Wright, Scott D.; D'Astous, Valerie; Wright, Cheryl A.; Diener, Marissa L.
2012-01-01
This study of grandparent-grandchild relationships was embedded in the context of technology workshops offered for young children on the autism spectrum. The purpose of this research was to examine the perspectives of six involved grandparents regarding their social interactions with their grandchildren in the context of this shared technology…
ERIC Educational Resources Information Center
Wei, Xin; Christiano, Elizabeth R.; Yu, Jennifer W.; Blackorby, Jose; Shattuck, Paul; Newman, Lynn A.
2014-01-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of…
Quantitative real-time single particle analysis of virions.
Heider, Susanne; Metzner, Christoph
2014-08-01
Providing information about single virus particles has for a long time been mainly the domain of electron microscopy. More recently, technologies have been developed-or adapted from other fields, such as nanotechnology-to allow for the real-time quantification of physical virion particles, while supplying additional information such as particle diameter concomitantly. These technologies have progressed to the stage of commercialization increasing the speed of viral titer measurements from hours to minutes, thus providing a significant advantage for many aspects of virology research and biotechnology applications. Additional advantages lie in the broad spectrum of virus species that may be measured and the possibility to determine the ratio of infectious to total particles. A series of disadvantages remain associated with these technologies, such as a low specificity for viral particles. In this review we will discuss these technologies by comparing four systems for real-time single virus particle analysis and quantification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Analysis on the optical aberration effect on spectral resolution of coded aperture spectroscopy
NASA Astrophysics Data System (ADS)
Hao, Peng; Chi, Mingbo; Wu, Yihui
2017-10-01
The coded aperture spectrometer can achieve high throughput and high spectral resolution by replacing the traditional single slit with two-dimensional array slits manufactured by MEMS technology. However, the sampling accuracy of coding spectrum image will be distorted due to the existence of system aberrations, machining error, fixing errors and so on, resulting in the declined spectral resolution. The influence factor of the spectral resolution come from the decode error, the spectral resolution of each column, and the column spectrum offset correction. For the Czerny-Turner spectrometer, the spectral resolution of each column most depend on the astigmatism, in this coded aperture spectroscopy, the uncorrected astigmatism does result in degraded performance. Some methods must be used to reduce or remove the limiting astigmatism. The curvature of field and the spectral curvature can be result in the spectrum revision errors.
Social aspects of automation: Some critical insights
NASA Astrophysics Data System (ADS)
Nouzil, Ibrahim; Raza, Ali; Pervaiz, Salman
2017-09-01
Sustainable development has been recognized globally as one of the major driving forces towards the current technological innovations. To achieve sustainable development and attain its associated goals, it is very important to properly address its concerns in different aspects of technological innovations. Several industrial sectors have enjoyed productivity and economic gains due to advent of automation technology. It is important to characterize sustainability for the automation technology. Sustainability is key factor that will determine the future of our neighbours in time and it must be tightly wrapped around the double-edged sword of technology. In this study, different impacts of automation have been addressed using the ‘Circles of Sustainability’ approach as a framework, covering economic, political, cultural and ecological aspects and their implications. A systematic literature review of automation technology from its inception is outlined and plotted against its many outcomes covering a broad spectrum. The study is more focused towards the social aspects of the automation technology. The study also reviews literature to analyse the employment deficiency as one end of the social impact spectrum. On the other end of the spectrum, benefits to society through technological advancements, such as the Internet of Things (IoT) coupled with automation are presented.
Linear MALDI-ToF simultaneous spectrum deconvolution and baseline removal.
Picaud, Vincent; Giovannelli, Jean-Francois; Truntzer, Caroline; Charrier, Jean-Philippe; Giremus, Audrey; Grangeat, Pierre; Mercier, Catherine
2018-04-05
Thanks to a reasonable cost and simple sample preparation procedure, linear MALDI-ToF spectrometry is a growing technology for clinical microbiology. With appropriate spectrum databases, this technology can be used for early identification of pathogens in body fluids. However, due to the low resolution of linear MALDI-ToF instruments, robust and accurate peak picking remains a challenging task. In this context we propose a new peak extraction algorithm from raw spectrum. With this method the spectrum baseline and spectrum peaks are processed jointly. The approach relies on an additive model constituted by a smooth baseline part plus a sparse peak list convolved with a known peak shape. The model is then fitted under a Gaussian noise model. The proposed method is well suited to process low resolution spectra with important baseline and unresolved peaks. We developed a new peak deconvolution procedure. The paper describes the method derivation and discusses some of its interpretations. The algorithm is then described in a pseudo-code form where the required optimization procedure is detailed. For synthetic data the method is compared to a more conventional approach. The new method reduces artifacts caused by the usual two-steps procedure, baseline removal then peak extraction. Finally some results on real linear MALDI-ToF spectra are provided. We introduced a new method for peak picking, where peak deconvolution and baseline computation are performed jointly. On simulated data we showed that this global approach performs better than a classical one where baseline and peaks are processed sequentially. A dedicated experiment has been conducted on real spectra. In this study a collection of spectra of spiked proteins were acquired and then analyzed. Better performances of the proposed method, in term of accuracy and reproductibility, have been observed and validated by an extended statistical analysis.
A Requirements-Driven Optimization Method for Acoustic Treatment Design
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
2016-01-01
Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.
Photodetector based on carbon nanotubes
NASA Astrophysics Data System (ADS)
Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.
2015-09-01
Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.
The application of UV multispectral technology in extract trace evdidence
NASA Astrophysics Data System (ADS)
Guo, Jingjing; Xu, Xiaojing; Li, Zhihui; Xu, Lei; Xie, Lanchi
2015-11-01
Multispectral imaging is becoming more and more important in the field of examination of material evidence, especially the ultraviolet spectral imaging. Fingerprints development, questioned document detection, trace evidence examination-all can used of it. This paper introduce a UV multispectral equipment which was developed by BITU & IFSC, it can extract trace evidence-extract fingerprints. The result showed that this technology can develop latent sweat-sebum mixed fingerprint on photo and ID card blood fingerprint on steel hold. We used the UV spectrum data analysis system to make the UV spectral image clear to identify and analyse.
Research in space commercialization, technology transfer and communications, vol. 2
NASA Technical Reports Server (NTRS)
Dunn, D. A.; Agnew, C. E.
1983-01-01
Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.
ERIC Educational Resources Information Center
Ennis-Cole, Demetria; Parkman, Cheryl
2012-01-01
Autism is a Spectrum of Disorders (ASD) that affects 1 in 88 children. The issues and decisions parents face are almost insurmountable depending on the child's diagnosis, available interventions, the knowledge of parents, proximity to professionals and interventions, financial resources, and the individual needs of the child. There is no cure for…
ERIC Educational Resources Information Center
Knight, Victoria; McKissick, Bethany R.; Saunders, Alicia
2013-01-01
A comprehensive review of the literature was conducted for articles published between 1993 and 2012 to determine the degree to which technology-based interventions can be considered an evidence-based practice to teach academic skills to individuals with Autism Spectrum Disorder (ASD). Criteria developed by Horner et al. ("Except Child"…
ERIC Educational Resources Information Center
Bauminger-Zviely, Nirit; Eden, Sigal; Zancanaro, Massimo; Weiss, Patrice L.; Gal, Eynat
2013-01-01
This study examined the effectiveness of a school-based, collaborative technology intervention combined with cognitive behavioral therapy to teach the concepts of social collaboration and social conversation to children with high-functioning autism spectrum disorders ("n" = 22) as well as to enhance their actual social engagement…
Characterization of bone microstructure using photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Feng, Ting; Kozloff, Kenneth M.; Xu, Guan; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding
2015-03-01
Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and deterioration in microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic signals from the bone. Modeling and numerical simulation of photoacoustic signals and their frequency-domain analysis were performed on trabecular bones with different mineral densities. The resulting quasilinear photoacoustic spectra were fit by linear regression, from which spectral parameter slope can be quantified. The modeling demonstrates that, at an optical wavelength of 685 nm, bone specimens with lower mineral densities have higher slope. Preliminary experiment on osteoporosis rat tibia bones with different mineral contents has also been conducted. The finding from the experiment has a good agreement with the modeling, both demonstrating that the frequency-domain analysis of photoacoustic signals can provide objective assessment of bone microstructure and deterioration. Considering that photoacoustic measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and noncalcified tissues, this new technology holds unique potential for clinical translation.
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
NASA Astrophysics Data System (ADS)
Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman
2017-10-01
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
[Fiat Lux. May be no more true in cytometry! Go to mass and spectrum but still stay classic].
Idziorek, Thierry; Cazareth, Julie; Blanc, Catherine; Jouy, Nathalie; Bourdely, Pierre; Corneau, Aurélien
2018-05-01
The last decade has been an era of accelerated technological progress for flow cytometry. New technologies have been developed such as mass cytometry in which standard fluorochromes have been replaced by lanthanide-based non-radioactive metals and by spectral cytometry that measures the complete fluorescence spectrum. In this review, we schematically describe conventional, mass and spectral cytometry and present the plus and minus of each technology. © 2018 médecine/sciences – Inserm.
Analysis of normal and diseased liver tissue using auto-fluorescence and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Li, Xiaozhou; Jia, Chunde; Lin, Junxiu; Kang, Youping
2003-12-01
In this paper, laser induced human serum Raman spectra of liver cancer are measured. The spectra differences in serum from normal people and liver cancer patients are analyzed. For the typical spectrum of normal serum, there are three sharp Raman peaks and relative intensity of Raman peaks excited by 514.5 nm is higher than that excited by 488.0 nm. However, for the Raman spectrum of liver cancer serum there are no peaks or very weak Raman peaks at the same positions. Results from more than two hundred case measurements show that clinical diagnostic accuracy is 92.86%. And then, the liver fibrosis and liver cirrhosis are studied applying the technology of LIF. To liver cirrhosis, the shape of Raman peak is similar to normal and fluorescence spectrum is similar to that of liver cancer from statistic data. The experiment indicates that there is notable fluorescence difference between the abnormal and normal liver tissue and have blue shift in fluorescence peak. These results have important reference values to explore the method of laser spectrum diagnosis.
Wan, Jianbo; Li, Changming; Li, Shaopin; Kong, Lingyi; Wang, Yitao
2005-10-01
To establish a method for qualitative analysis of saponins from Panax notoginseng using pressurized solvent extraction coupled with LC-ESI-MS. The PSE technology was applied to the process of extraction for Panax notoginseng, and the negative ion detection and multiple reaction monitoring model were used. The saponins were investigated based on total ion chromatogram (TIC) and MRM chromatogram. According to the fragment character of saponins, the molecular weight and their structures could be identified. The method can be used for qualitative analysis of saponins from Panax notoginseng.
Re-engineering the process of medical imaging physics and technology education and training.
Sprawls, Perry
2005-09-01
The extensive availability of digital technology provides an opportunity for enhancing both the effectiveness and efficiency of virtually all functions in the process of medical imaging physics and technology education and training. This includes degree granting academic programs within institutions and a wide spectrum of continuing education lifelong learning activities. Full achievement of the advantages of technology-enhanced education (e-learning, etc.) requires an analysis of specific educational activities with respect to desired outcomes and learning objectives. This is followed by the development of strategies and resources that are based on established educational principles. The impact of contemporary technology comes from its ability to place learners into enriched learning environments. The full advantage of a re-engineered and implemented educational process involves changing attitudes and functions of learning facilitators (teachers) and resource allocation and sharing both within and among institutions.
State-of-the-Art of Virtual Reality Technologies for Children on the Autism Spectrum
ERIC Educational Resources Information Center
Parsons, Sarah; Cobb, Sue
2011-01-01
In the past decade there has been a rapid advance in the use of virtual reality (VR) technologies for leisure, training and education. VR is argued to offer particular benefits for children on the autism spectrum, chiefly because it can offer simulations of authentic real-world situations in a carefully controlled and safe environment. Given the…
ERIC Educational Resources Information Center
Shimada, Takafumi; Kitamoto, Atsushi; Todokoro, Ayako; Ishii-Takahashi, Ayaka; Kuwabara, Hitoshi; Kim, Soo-Yung; Watanabe, Kei-ichiro; Minowa, Iwao; Someya, Toshikazu; Ohtsu, Hiroshi; Osuga, Yutaka; Kano, Yukiko; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Tsukasa
2012-01-01
We investigated whether advanced parental age and assisted reproductive technology (ART) are risk factors in autism spectrum disorders (ASDs), attention deficit hyperactivity disorder (ADHD), and Tourette syndrome (TS). Clinical charts of Japanese outpatients with ASD (n = 552), ADHD (n = 87), and TS (n = 123) were reviewed. Parental age of…
ERIC Educational Resources Information Center
Ploog, Bertram O.; Scharf, Alexa; Nelson, DeShawn; Brooks, Patricia J.
2013-01-01
Major advances in multimedia computer technology over the past decades have made sophisticated computer games readily available to the public. This, combined with the observation that most children, including those with autism spectrum disorders (ASD), show an affinity to computers, has led researchers to recognize the potential of computer…
Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device
NASA Astrophysics Data System (ADS)
Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben
2015-02-01
The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.
NASA Astrophysics Data System (ADS)
The present conference on the development status of communications systems in the context of electronic warfare gives attention to topics in spread spectrum code acquisition, digital speech technology, fiber-optics communications, free space optical communications, the networking of HF systems, and applications and evaluation methods for digital speech. Also treated are issues in local area network system design, coding techniques and applications, technology applications for HF systems, receiver technologies, software development status, channel simultion/prediction methods, C3 networking spread spectrum networks, the improvement of communication efficiency and reliability through technical control methods, mobile radio systems, and adaptive antenna arrays. Finally, communications system cost analyses, spread spectrum performance, voice and image coding, switched networks, and microwave GaAs ICs, are considered.
NASA Astrophysics Data System (ADS)
Chaudhuri, Rajarshi Roy; Dutta, Kaustav; Saha, Archisman
With advent of various communication technologies one can access the whole world at one go. The impact of internet on our day to day life has been so extensive that it is impossible to think of a day without it. It has become a fundamental requirement in our daily lives. Survey reports show that nearly 46 % of homes throughout the world have access to the internet. And the percentage is growing each day. With such a high demand there has been a looming Radio Frequency spectrum crisis, which paved the way of the invention of a new technology:-LI-FI. LI-FI, acronym of light fidelity, is a new wireless technology which has the ability to provide high speed internet connection within localized environment. Till today we are familiar with WI-FI which uses radio spectrum for communication. Even though it gives a speed of nearly 150 Mbps (as per IEEE802.11n), it isn't sufficient to satisfy all users. On the other hand LI-FI uses spectrum which comprises a wide range of frequencies, from the infrared through visible, down to the ultraviolet spectrum for communication which has the ability to produce a theoretical speed of 10 Gbps. It is not only confined to light-emitting diode (LED) or laser technology or to any specific receiving technique, LI-FI is a framework for all those technologies which provides new ways to all present as well as future services or applications.
Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS
Engen, John R.
2009-01-01
synopsis Recent technological advances hydrogen exchange MS have led to improvements in the technique’s ability to analyze the shape and movements of proteins. John Engen of Northeastern University gives a much needed update on the field. The cover, created by Engen, shows proteins “swimming” in an H2O/D2O solution with a sample mass spectrum in the background. PMID:19788312
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of all NASA airfoil research, conducted both in-house and under grant and contract, as well as a broad spectrum of airfoil research outside of NASA is presented. Emphasis is placed on the development of computational aerodynamic codes for airfoil analysis and design, the development of experimental facilities and test techniques, and all types of airfoil applications.
Noninvasive blood pressure measurement scheme based on optical fiber sensor
NASA Astrophysics Data System (ADS)
Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan
2016-10-01
Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.
The science of visual analysis at extreme scale
NASA Astrophysics Data System (ADS)
Nowell, Lucy T.
2011-01-01
Driven by market forces and spanning the full spectrum of computational devices, computer architectures are changing in ways that present tremendous opportunities and challenges for data analysis and visual analytic technologies. Leadership-class high performance computing system will have as many as a million cores by 2020 and support 10 billion-way concurrency, while laptop computers are expected to have as many as 1,000 cores by 2015. At the same time, data of all types are increasing exponentially and automated analytic methods are essential for all disciplines. Many existing analytic technologies do not scale to make full use of current platforms and fewer still are likely to scale to the systems that will be operational by the end of this decade. Furthermore, on the new architectures and for data at extreme scales, validating the accuracy and effectiveness of analytic methods, including visual analysis, will be increasingly important.
NASA Astrophysics Data System (ADS)
Papers are presented on local area networks; formal methods for communication protocols; computer simulation of communication systems; spread spectrum and coded communications; tropical radio propagation; VLSI for communications; strategies for increasing software productivity; multiple access communications; advanced communication satellite technologies; and spread spectrum systems. Topics discussed include Space Station communication and tracking development and design; transmission networks; modulation; data communications; computer network protocols and performance; and coding and synchronization. Consideration is given to free space optical communications systems; VSAT communication networks; network topology design; advances in adaptive filtering echo cancellation and adaptive equalization; advanced signal processing for satellite communications; the elements, design, and analysis of fiber-optic networks; and advances in digital microwave systems.
ERIC Educational Resources Information Center
Ip, Horace H. S.; Lai, Candy Hoi-Yan; Wong, Simpson W. L.; Tsui, Jenny K. Y.; Li, Richard Chen; Lau, Kate Shuk-Ying; Chan, Dorothy F. Y.
2017-01-01
Previous research has illustrated the unique benefits of three-dimensional (3-D) Virtual Reality (VR) technology in Autism Spectrum Disorder (ASD) children. This study examined the use of 3-D VR technology as an assessment tool in ASD children, and further compared its use to two-dimensional (2-D) tasks. Additionally, we aimed to examine…
ERIC Educational Resources Information Center
Asaro-Saddler, Kristie; Knox, Haley Muir; Meredith, Holly; Akhmedjanova, Diana
2015-01-01
Writing is an important content area that pervades all subject areas and is required for post-school success, yet many students with autism spectrum disorders (ASD) often struggle in written expression. In this article we discuss the characteristics of students with ASD that make writing difficult, and the strengths, such as the use of technology,…
Shane, Howard C; Laubscher, Emily H; Schlosser, Ralf W; Flynn, Suzanne; Sorce, James F; Abramson, Jennifer
2012-06-01
The burgeoning role of technology in society has provided opportunities for the development of new means of communication for individuals with Autism Spectrum Disorders (ASD). This paper offers an organizational framework for describing traditional and emerging augmentative and alternative communication (AAC) technology, and highlights how tools within this framework can support a visual approach to everyday communication and improve language instruction. The growing adoption of handheld media devices along with applications acquired via a consumer-oriented delivery model suggests a potential paradigm shift in AAC for people with ASD.
Recognition of edible oil by using BP neural network and laser induced fluorescence spectrum
NASA Astrophysics Data System (ADS)
Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Guo, Pan; Chen, He; Zhang, Hong-yan; Liu, Xiao-hua; Wang, Yuan; Bu, Zhi-chao
2013-09-01
In order to accomplish recognition of the different edible oil we set up a laser induced fluorescence spectrum system in the laboratory based on Laser induced fluorescence spectrum technology, and then collect the fluorescence spectrum of different edible oil by using that system. Based on this, we set up a fluorescence spectrum database of different cooking oil. It is clear that there are three main peak position of different edible oil from fluorescence spectrum chart. Although the peak positions of all cooking oil were almost the same, the relative intensity of different edible oils was totally different. So it could easily accomplish that oil recognition could take advantage of the difference of relative intensity. Feature invariants were extracted from the spectrum data, which were chosen from the fluorescence spectrum database randomly, before distinguishing different cooking oil. Then back propagation (BP) neural network was established and trained by the chosen data from the spectrum database. On that basis real experiment data was identified by BP neural network. It was found that the overall recognition rate could reach as high as 83.2%. Experiments showed that the laser induced fluorescence spectrum of different cooking oil was very different from each other, which could be used to accomplish the oil recognition. Laser induced fluorescence spectrum technology, combined BP neural network,was fast, high sensitivity, non-contact, and high recognition rate. It could become a new technique to accomplish the edible oil recognition and quality detection.
Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping
2013-12-01
Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment under vacuum environment.
NASA Astrophysics Data System (ADS)
Gan, Ruting; Guo, Zhenning; Lin, Jieben
2015-09-01
To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua
2009-09-01
With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.
Zhu, Chun-Sheng; Lin, Zhi-Jian; Xiao, Ming-Liang; Niu, Hong-Juan; Zhang, Bing
2016-03-01
Since the chromatographic fingerprint was introduced, it has been accepted by many countries to assess the quality and authenticity of Chinese herbal medicine (CHM). However, solely using the chromatographic fingerprint to assay numerous chemicals is not suitable for the assessment of the whole internal quality and pharmacodynamics of CHM. Consequently, it is necessary to develop a rational approach to connecting the chromatographic fingerprint with effective components to assess the internal quality of CHM. For this purpose, a spectrum-effect relationship theory was proposed and accepted as a new method for the assessment of CHM because of its potential use to screen effective components from CHM. In this paper, we systematically reviewed the application of the spectrum-effect relationship theory in the research of CHM, including research mentality, different chromatographic analysis techniques, data processing technologies, and structure determination. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Chiang, I-Tsun; Chen, Mei-Li
2011-01-01
The purpose of this study was to employ complexity theory as a theoretical framework and technology to facilitate the development of a life-long learning model for non-working time in the interdependent homes for adults with Autism Spectrum Disorders (ASD). A "Shining Star Sustainable Action Project" of the ROC Foundation for Autistic…
ERIC Educational Resources Information Center
Mowling, Claire M.; Menear, Kristi; Dennen, Ayla; Fittipaldi-Wert, Jeanine
2018-01-01
The use of technology has proven to be a successful tool for enhancing the learning of children with disabilities. One example is the use of video-recorded social story movies as interventions for children with an autism spectrum disorder (ASD). Through the use of electronic devices such as iPads, iPods and tablets, social stories are brought to…
Common hyperspectral image database design
NASA Astrophysics Data System (ADS)
Tian, Lixun; Liao, Ningfang; Chai, Ali
2009-11-01
This paper is to introduce Common hyperspectral image database with a demand-oriented Database design method (CHIDB), which comprehensively set ground-based spectra, standardized hyperspectral cube, spectral analysis together to meet some applications. The paper presents an integrated approach to retrieving spectral and spatial patterns from remotely sensed imagery using state-of-the-art data mining and advanced database technologies, some data mining ideas and functions were associated into CHIDB to make it more suitable to serve in agriculture, geological and environmental areas. A broad range of data from multiple regions of the electromagnetic spectrum is supported, including ultraviolet, visible, near-infrared, thermal infrared, and fluorescence. CHIDB is based on dotnet framework and designed by MVC architecture including five main functional modules: Data importer/exporter, Image/spectrum Viewer, Data Processor, Parameter Extractor, and On-line Analyzer. The original data were all stored in SQL server2008 for efficient search, query and update, and some advance Spectral image data Processing technology are used such as Parallel processing in C#; Finally an application case is presented in agricultural disease detecting area.
Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.
2010-03-09
this study, we explore the carriage rates and disease associations of adenovirus, enterovirus , rhinovirus, Streptococcus pneumoniae, Haemophilus...correlation with illness. Among the samples tested, only pathogens associated with FRI, such as adenovirus 4 and enterovirus 68, revealed strong temporal...In this study, RPM technology was used to explore the distribution of, and associations between, HAdV, picorna- viruses (HRV and human enterovirus [HEV
Use hyperspectral remote sensing technique to monitoring pine wood nomatode disease preliminary
NASA Astrophysics Data System (ADS)
Qin, Lin; Wang, Xianghong; Jiang, Jing; Yang, Xianchang; Ke, Daiyan; Li, Hongqun; Wang, Dingyi
2016-10-01
The pine wilt disease is a devastating disease of pine trees. In China, the first discoveries of the pine wilt disease on 1982 at Dr. Sun Yat-sen's Mausoleum in Nanjing. It occurred an area of 77000 hm2 in 2005, More than 1540000 pine trees deaths in the year. Many districts of Chongqing in Three Gorges Reservoir have different degrees of pine wilt disease occurrence. It is a serious threat to the ecological environment of the reservoir area. Use unmanned airship to carry high spectrum remote sensing monitoring technology to develop the study on pine wood nematode disease early diagnosis and early warning and forecasting in this study. The hyper spectral data and the digital orthophoto map data of Fuling District Yongsheng Forestry had been achieved In September 2015. Using digital image processing technology to deal with the digital orthophoto map, the number of disease tree and its distribution is automatic identified. Hyper spectral remote sensing data is processed by the spectrum comparison algorithm, and the number and distribution of disease pine trees are also obtained. Two results are compared, the distribution area of disease pine trees are basically the same, indicating that using low air remote sensing technology to monitor the pine wood nematode distribution is successful. From the results we can see that the hyper spectral data analysis results more accurate and less affected by environmental factors than digital orthophoto map analysis results, and more environment variable can be extracted, so the hyper spectral data study is future development direction.
National Center for Advancing Translational Sciences
... Models Core Technologies Clinical Innovation Clinical and Translational Science Awards Program Rare Diseases Clinical Research Network Patient ... to our monthly e-newsletter. About Translation Translational Science Spectrum Explore the full spectrum of translational science, ...
2012-02-06
Event Interface Custom ASCII JSS Client Y (Spectrum) 3.2 8 IT Infrastructure Performance Data/Vulnerability Assessment eHealth , Spectrum NSM...monitoring of infrastructure servers.) The Concord product line. Concord products ( eHealth and Spectrum) can provide both real-time and historical...Network and Systems Management (NSM) • Unicenter Asset Management • Spectrum • eHealth • Centennial Discovery Table 12 summarizes the the role of
2014-03-27
Technology (AFIT). Research at AFIT investigates the use of DSA for both civilian and military applications while advancing technology in the area of radio...other military platforms is vital for successful operations. Twelve core functions comprise the US Air Force: Nuclear Deterrence Operations, Special...problems. This Air Force report discusses “Frequency Agile Spectrum Utilization”, a sub-topic of DSA, as a potential capability area [3]. Military
Hess, Kristen L; Morrier, Michael J; Heflin, L Juane; Ivey, Michelle L
2008-05-01
The Autism Treatment Survey was developed to identify strategies used in education of children with autism spectrum disorders (ASD) in Georgia. Respondents of the web-based survey included a representative sample of 185 teachers across the state, reporting on 226 children with ASD in grades preschool-12th. The top five strategies being used in Georgia (Gentle Teaching, sensory integration, cognitive behavioral modification, assistive technology, and Social Stories) are recognized as lacking a scientific basis for implementation. Analysis revealed the choice of strategies varied by grade level and classroom type (e.g., general education, special education). Results highlight clear implications for preservice and inservice educator training, and the need for continued research to document evidence-based strategy use in public schools for students with ASD.
Photoluminescent properties of complex metal oxide nanopowders for gas sensing
NASA Astrophysics Data System (ADS)
Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.
2018-03-01
This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.
PINS Spectrum Identification Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.J. Caffrey
2012-03-01
The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectralmore » analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.« less
Methods for Human Dehydration Measurement
NASA Astrophysics Data System (ADS)
Trenz, Florian; Weigel, Robert; Hagelauer, Amelie
2018-03-01
The aim of this article is to give a broad overview of current methods for the identification and quantification of the human dehydration level. Starting off from most common clinical setups, including vital parameters and general patients' appearance, more quantifiable results from chemical laboratory and electromagnetic measurement methods will be reviewed. Different analysis methods throughout the electromagnetic spectrum, ranging from direct current (DC) conductivity measurements up to neutron activation analysis (NAA), are discussed on the base of published results. Finally, promising technologies, which allow for an integration of a dehydration assessment system in a compact and portable way, will be spotted.
NASA Astrophysics Data System (ADS)
Gong, X.; Wu, Q.
2017-12-01
Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.
Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.
The study of active tectonic based on hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.
2017-12-01
As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.
A Satellite-Based Infrastructure Providing Broadband IP Services on Board High Speed Trains
NASA Astrophysics Data System (ADS)
Feltrin, Eros; Weller, Elisabeth
After the earlier technologies that offered satellite mobile services for civil and military applications, today’s specific antenna design, modulation techniques and most powerful new generation satellites also allow a good level of performance to be achieved on-board high speed modes of transport such as aircraft and trains. This paper reports the Eutelsat’s experience in the developing and deploying architecture based on a spread spectrum system in order to provide broadband connectivity on board of high speed trains. After introducing the adopted technologies, the architecture and the constraints, some results obtained from analysis, testing and measuring of the availability of the service are reported and commented upon.
NASA Technical Reports Server (NTRS)
1996-01-01
Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.
The uses of cognitive training technologies in the treatment of autism spectrum disorders.
Wass, Sam V; Porayska-Pomsta, Kaska
2014-11-01
In this review, we focus on research that has used technology to provide cognitive training - i.e. to improve performance on some measurable aspect of behaviour - in individuals with autism spectrum disorders. We review technology-enhanced interventions that target three different cognitive domains: (a) emotion and face recognition, (b) language and literacy, and (c) social skills. The interventions reviewed allow for interaction through different modes, including point-and-click and eye-gaze contingent software, and are delivered through diverse implementations, including virtual reality and robotics. In each case, we examine the evidence of the degree of post-training improvement observed following the intervention, including evidence of transfer to altered behaviour in ecologically valid contexts. We conclude that a number of technological interventions have found that observed improvements within the computerised training paradigm fail to generalise to altered behaviour in more naturalistic settings, which may result from problems that people with autism spectrum disorders experience in generalising and extrapolating knowledge. However, we also point to several promising findings in this area. We discuss possible directions for future work. © The Author(s) 2013.
Mobile technologies and the holistic management of chronic diseases.
Mirza, Farhaan; Norris, Tony; Stockdale, Rosemary
2008-12-01
Ageing populations and unhealthy lifestyles have led to some chronic conditions such as diabetes and heart disease reaching epidemic proportions in many developed nations. This paper explores the potential of mobile technologies to improve this situation. The pervasive nature of these technologies can contribute holistically across the whole spectrum of chronic care ranging from public information access and awareness, through monitoring and treatment of chronic disease, to support for patient carers. A related study to determine the perceptions of healthcare providers to m-health confirmed the view that attitudes were likely to be more important barriers to progress than technology. A key finding concerned the importance of seamless and integrated m-health processes across the spectrum of chronic disease management.
Liu, Xu; Jia, Shi-qiang; Wang, Chun-ying; Liu, Zhe; Gu, Jian-cheng; Zhai, Wei; Li, Shao-ming; Zhang, Xiao-dong; Zhu, De-hai; Huang, Hua-jun; An, Dong
2015-09-01
This paper explored the relationship among genetic distances, NIR spectra distances and NIR-based identification model performance of the seeds of maize inbred lines. Using 3 groups (total 15 pairs) of maize inbred lines whose genetic distaches are different as experimental materials, we calculates the genetic distance between these seeds with SSR markers and uses Euclidean distance between distributed center points of maize NIR spectrum in the PCA space as the distances of NIR spectrum. BPR method is used to build identification model of inbred lines and the identification accuracy is used as a measure of model identification performance. The results showed that, the correlation of genetic distance and spectra distancesis 0.9868, and it has a correlation of 0.9110 with the identification accuracy, which is highly correlated. This means near-Infrared spectrum of seedscan reflect genetic relationship of maize inbred lines. The smaller the genetic distance, the smaller the distance of spectrum, the poorer ability of model to identify. In practical application, near infrared spectrum analysis technology has the potential to be used to analyze maize inbred genetic relations, contributing much to genetic breeding, identification of species, purity sorting and so on. What's more, when creating a NIR-based identification model, the impact of the maize inbred lines which have closer genetic relationship should be fully considered.
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Green, Lawrence L.
1999-01-01
A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.
2017-05-08
electromagnetic ( EM ) spectrum, cyberspace, and air domain access and dependencies. Access to space-based assets is necessary to provide and share C2ISR...the EM spectrum for communications is necessary for many of the same reasons we need space capabilities, but this spectrum is under threat from...emerging electronic warfare technologies. Both LOS and BLOS radio frequency (RF) communications require access to the EM spectrum for sharing critical
A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image
NASA Astrophysics Data System (ADS)
Su, Junying
2011-11-01
A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.
Integrating diverse databases into an unified analysis framework: a Galaxy approach
Blankenberg, Daniel; Coraor, Nathan; Von Kuster, Gregory; Taylor, James; Nekrutenko, Anton
2011-01-01
Recent technological advances have lead to the ability to generate large amounts of data for model and non-model organisms. Whereas, in the past, there have been a relatively small number of central repositories that serve genomic data, an increasing number of distinct specialized data repositories and resources have been established. Here, we describe a generic approach that provides for the integration of a diverse spectrum of data resources into a unified analysis framework, Galaxy (http://usegalaxy.org). This approach allows the simplified coupling of external data resources with the data analysis tools available to Galaxy users, while leveraging the native data mining facilities of the external data resources. Database URL: http://usegalaxy.org PMID:21531983
Computer-Aided Recognition of Facial Attributes for Fetal Alcohol Spectrum Disorders.
Valentine, Matthew; Bihm, Dustin C J; Wolf, Lior; Hoyme, H Eugene; May, Philip A; Buckley, David; Kalberg, Wendy; Abdul-Rahman, Omar A
2017-12-01
To compare the detection of facial attributes by computer-based facial recognition software of 2-D images against standard, manual examination in fetal alcohol spectrum disorders (FASD). Participants were gathered from the Fetal Alcohol Syndrome Epidemiology Research database. Standard frontal and oblique photographs of children were obtained during a manual, in-person dysmorphology assessment. Images were submitted for facial analysis conducted by the facial dysmorphology novel analysis technology (an automated system), which assesses ratios of measurements between various facial landmarks to determine the presence of dysmorphic features. Manual blinded dysmorphology assessments were compared with those obtained via the computer-aided system. Areas under the curve values for individual receiver-operating characteristic curves revealed the computer-aided system (0.88 ± 0.02) to be comparable to the manual method (0.86 ± 0.03) in detecting patients with FASD. Interestingly, cases of alcohol-related neurodevelopmental disorder (ARND) were identified more efficiently by the computer-aided system (0.84 ± 0.07) in comparison to the manual method (0.74 ± 0.04). A facial gestalt analysis of patients with ARND also identified more generalized facial findings compared to the cardinal facial features seen in more severe forms of FASD. We found there was an increased diagnostic accuracy for ARND via our computer-aided method. As this category has been historically difficult to diagnose, we believe our experiment demonstrates that facial dysmorphology novel analysis technology can potentially improve ARND diagnosis by introducing a standardized metric for recognizing FASD-associated facial anomalies. Earlier recognition of these patients will lead to earlier intervention with improved patient outcomes. Copyright © 2017 by the American Academy of Pediatrics.
Motion correction for improved estimation of heart rate using a visual spectrum camera
NASA Astrophysics Data System (ADS)
Tarbox, Elizabeth A.; Rios, Christian; Kaur, Balvinder; Meyer, Shaun; Hirt, Lauren; Tran, Vy; Scott, Kaitlyn; Ikonomidou, Vasiliki
2017-05-01
Heart rate measurement using a visual spectrum recording of the face has drawn interest over the last few years as a technology that can have various health and security applications. In our previous work, we have shown that it is possible to estimate the heart beat timing accurately enough to perform heart rate variability analysis for contactless stress detection. However, a major confounding factor in this approach is the presence of movement, which can interfere with the measurements. To mitigate the effects of movement, in this work we propose the use of face detection and tracking based on the Karhunen-Loewe algorithm in order to counteract measurement errors introduced by normal subject motion, as expected during a common seated conversation setting. We analyze the requirements on image acquisition for the algorithm to work, and its performance under different ranges of motion, changes of distance to the camera, as well and the effect of illumination changes due to different positioning with respect to light sources on the acquired signal. Our results suggest that the effect of face tracking on visual-spectrum based cardiac signal estimation depends on the amplitude of the motion. While for larger-scale conversation-induced motion it can significantly improve estimation accuracy, with smaller-scale movements, such as the ones caused by breathing or talking without major movement errors in facial tracking may interfere with signal estimation. Overall, employing facial tracking is a crucial step in adapting this technology to real-life situations with satisfactory results.
NASA Astrophysics Data System (ADS)
Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.
2015-06-01
Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted absorption in the a-Si thin-film using advanced thin-film metrology methods, including spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The resulting analysis identifies a fundamental mechanism contributing to this absorption and a method for minimizing and accounting for the unwanted absorption in the thin-film such that the exact optical response function can be achieved.
Roll-Pettersson, Lise; Ala'i-Rosales, Shahla
2009-06-01
Although the incidence of autism spectrum disorders is increasing worldwide, there is a shortage of professionals trained to provide effective interventions. The article describes an advanced university course in Applied Behaviour Analysis (ABA) and autism tailored to meet the needs of Swedish professionals from multiple disciplines. The course implemented both blended-learning technologies (web, telecommunication, and in vivo) and guided-design (problem-solving) exercises to promote the scientist-practitioner model. Overall, students advanced their skills related to identifying extant scientific literature, choosing appropriate single-subject design evaluation methods, and critically analysing the effects of attempted interventions. Students rated the course as having high social validity and predicted the course content would positively affect their professional practice. The relevance of the course and future directions are discussed in the context of meeting the global need for effective autism intervention professionals.
Creation of security engineering programs by the Southwest Surety Institute
NASA Astrophysics Data System (ADS)
Romero, Van D.; Rogers, Bradley; Winfree, Tim; Walsh, Dan; Garcia, Mary Lynn
1998-12-01
The Southwest Surety Institute includes Arizona State University (ASU), Louisiana State University (LSU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL). The universities currently offer a full spectrum of post-secondary programs in security system design and evaluation, including an undergraduate minor, a graduate program, and continuing education programs. The programs are based on the methodology developed at Sandia National Laboratories over the past 25 years to protect critical nuclear assets. The programs combine basic concepts and principles from business, criminal justice, and technology to create an integrated performance-based approach to security system design and analysis. Existing university capabilities in criminal justice (NMSU), explosives testing and technology (NM Tech and LSU), and engineering technology (ASU) are leveraged to provide unique science-based programs that will emphasize the use of performance measures and computer analysis tools to prove the effectiveness of proposed systems in the design phase. Facility managers may then balance increased protection against the cost of implementation and risk mitigation, thereby enabling effective business decisions. Applications expected to benefit from these programs include corrections, law enforcement, counter-terrorism, critical infrastructure protection, financial and medical care fraud, industrial security, and border security.
NASA Technical Reports Server (NTRS)
Haggerty, J. J.
1986-01-01
Mainline NASA programs, whose challenging objectives necessitate advances across a diverse scientific/technological spectrum are summarized. A representative selection of spinoff products and processes are presented and the NASA technology from which these transfers are derived, are described. The mechanisms NASA employs to foster technology utilization and stimulate interest among prospective users of the technology are detailed.
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
Using Video Modeling and Mobile Technology to Teach Social Skills
ERIC Educational Resources Information Center
Haydon, Todd; Musti-Rao, Shobana; McCune, Ashley; Clouse, Diane E.; McCoy, Dacia M.; Kalra, Hilary D.; Hawkins, Renee O.
2017-01-01
There has been growing interest in the field of education regarding the use of technology in classrooms to improve student outcomes. Specifically, researchers have demonstrated positive outcomes for using mobile technology with students with autism spectrum disorder (ASD). Fewer studies have used mobile technology with students with emotional and…
[Study on the surface-enhanced Raman spectrum of trimethoprim].
Zhang, Jin-zhi; Wang, Yuan
2003-02-01
A new method is given in this paper to study the spectra of trimethoprim by using the surface-enhanced Raman spectrum (SERS) technology and the highly efficient thin layer chromatography (TLC) dissociation technology. The results of SERS indicate that the main vibrant spectral band can be obtained by TLC in the samples of about 6 micrograms. The expansion and contraction of pyrimidine ring can be obviously increased and the molecule information can be exactly presented under the action of silver particles.
Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo
2015-10-01
To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.
Introduction to Eye-Opening Technology: The Electromagnetic Spectrum.
ERIC Educational Resources Information Center
Smith, Denise; Eisenhamer, Bonnie; DeVore, Edna; Bianchi, Luciana
2003-01-01
Provides classroom activities centered around how the electromagnetic spectrum yields vital insights about the evolution of the universe. Activities targeted for grade levels 6-12 illustrate the importance of light and color in space exploration. Includes a poster. (Author/SOE)
INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1997-04-01
This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.
1982-11-01
34phase history" of the scattering points, which, through analysis by optical or digital transforms, yields the wavenumber spectrum. There is as yet no...of the instrument should be em- phasized. Parker characterizes surface-mounted sensors as visual, electrical, acoustic, float, optical , radar, and...the additional feature of being less susceptible to contamination than the optical lens of a laser. For cases in which the measurement of wave
Comparative study on fluorescence spectra of Chinese medicine north and south isatis root granules
NASA Astrophysics Data System (ADS)
Liang, Lan; He, Qing; Chen, Zhenqiang; Zhu, Siqi
2016-03-01
Since the spectral imaging technology emerged, it has gained a lot of application achievements in the military field, precision agriculture and biomedical science. When the fluorescence spectrum imaging first applied to the detection of the feature resource of Chinese herbal medicine, the characteristics of holistic and ambiguity made it a new approach to the traditional Chinese medicine testing. In this paper, we applied this method to study the Chinese medicine north and south isatis root granules by comparing their fluorescence spectra. Using cluster analysis, the results showed that the north and south Banlangen can not be divided by ascription. And these indicate that there is a large difference in the quality of Banlangen granules on the market, and fluorescence spectrum imaging method can be used in monitoring the quality of radix isatidis granules.
EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansonetti, Craig J.; Nave, Gillian
2014-08-01
We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d {sup 4}({sup 5} D)5g, 3d {sup 4}({sup 5} D)6g, and 3d {sup 4}({sup 5}D)6h configurations, we derive an improvedmore » ionization energy of 132971.02 ± 0.12 cm{sup –1} (16.486305 ± 0.000015 eV)« less
NASA Astrophysics Data System (ADS)
Bogdanov, Valery L.; Boyce-Jacino, Michael
1999-05-01
Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.
NASA Astrophysics Data System (ADS)
Jiang, Shan; Wang, Fang; Shen, Luming; Liao, Guiping; Wang, Lin
2017-03-01
Spectrum technology has been widely used in crop non-destructive testing diagnosis for crop information acquisition. Since spectrum covers a wide range of bands, it is of critical importance to extract the sensitive bands. In this paper, we propose a methodology to extract the sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis. Our obtained sensitive bands are relatively robust in the range of 534 nm-574 nm. Further, by using the multifractal parameter (Hurst exponent) of the extracted sensitive bands, we propose a prediction model to forecast the Soil and plant analyzer development values ((SPAD), often used as a parameter to indicate the chlorophyll content) and an identification model to distinguish the different planting patterns. Three vegetation indices (VIs) based on previous work are used for comparison. Three evaluation indicators, namely, the root mean square error, the correlation coefficient, and the relative error employed in the SPAD values prediction model all demonstrate that our Hurst exponent has the best performance. Four rapeseed compound planting factors, namely, seeding method, planting density, fertilizer type, and weed control method are considered in the identification model. The Youden indices calculated by the random decision forest method and the K-nearest neighbor method show that our Hurst exponent is superior to other three Vis, and their combination for the factor of seeding method. In addition, there is no significant difference among the five features for other three planting factors. This interesting finding suggests that the transplanting and the direct seeding would make a big difference in the growth of rapeseed.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Newman, Richard L.; Crider, Dennis A.; Klyde, David H.; Foster, John V.; Groff, Loren
2016-01-01
Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes. LOC can result from a wide spectrum of precursors (or hazards), often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and the validation process must provide a means of assessing system effectiveness and coverage of these hazards. This paper provides a detailed description of a methodology for analyzing LOC as a dynamics and control problem for the purpose of developing effective technology solutions. The paper includes a definition of LOC based on several recent publications, a detailed description of a refined LOC accident analysis process that is illustrated via selected example cases, and a description of planned follow-on activities for identifying future potential LOC risks and the development of LOC test scenarios. Some preliminary considerations for LOC of Unmanned Aircraft Systems (UAS) and for their safe integration into the National Airspace System (NAS) are also discussed.
Chen, Xiao-li; Morewane, M B; Xue, Xu-zhang; Guo, Wen-zhong; Wang, Li-chun
2015-02-01
Dandelion (Taraxacum mongolicum) was hydroponically cultured in a completely enclosed plant factory, in which fluorescence and LED emitting spectra of different bands were used as the sole light source for plant growth. Effects of spectral component on the growth of dandelion were studied and the contents of ten inorganic elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu and B in dandelion were analyzed by ICP-AES technology. The results showed that: (1) Under the condition of similar photosynthetic active radiation (PAR), single R or combined spectrums of FLRB were beneficial for biomass accumulation, while single B was the contrary; (2) Macroelements content ratio in Taraxacum mongolicum grown under FLwas K:Ca:P:Mg : Na=79.74:32.39:24.32:10.55:1.00, microelements content ratio was Fe:Mn:B:Zn:Cu = 9.28:9.71:3.82:2.08:1.00; (3) Red light (peak at 660 nm) could promote the absorptions of Ca, Fe, Mn, Zn, while absorption of Cu was not closely related to spectral conditions; (4) Thehighest accumulation of Ca, Na, Mn and Zn were obtained in aerial parts of Taraxacum mongolicum plants grown under pure red spectrum R, while the accumulation of the rest six elements reached the highest level under the mixed spectrum FLRB.
Direct RF A-O Processor Spectrum Analyzer.
1981-08-01
The primary objective was to develop and demonstrate design approach, along with the associated processing technologies, for a wideband acousto optic Bragg...cell spectrum analyzer. The signal processor used to demonstrate feasibility of the technical approach consisted of two bulk wave acousto optic deflectors
Introduction to Satellite Communications Technology for NREN
NASA Technical Reports Server (NTRS)
Stone, Thom
2004-01-01
NREN requirements for development of seamless nomadic networks necessitates that NREN staff have a working knowledge of basic satellite technology. This paper addresses the components required for a satellite-based communications system, applications, technology trends, orbits, and spectrum, and hopefully will afford the reader an end-to-end picture of this important technology.
Future Work. Myths and Realities No. 11.
ERIC Educational Resources Information Center
Kerka, Sandra
In many of the stories foretelling the future of work, technology is assumed to be the irresistible driver of change. Both ends of the spectrum are foreseen: either technology will create new jobs and transform existing work to higher skill levels, or technology, especially information technology, will destroy jobs or degrade them into less…
A Statistical Physics Perspective to Understand Social Visual Attention in Autism Spectrum Disorder.
Liberati, Alessio; Fadda, Roberta; Doneddu, Giuseppe; Congiu, Sara; Javarone, Marco A; Striano, Tricia; Chessa, Alessandro
2017-08-01
This study investigated social visual attention in children with Autism Spectrum Disorder (ASD) and with typical development (TD) in the light of Brockmann and Geisel's model of visual attention. The probability distribution of gaze movements and clustering of gaze points, registered with eye-tracking technology, was studied during a free visual exploration of a gaze stimulus. A data-driven analysis of the distribution of eye movements was chosen to overcome any possible methodological problems related to the subjective expectations of the experimenters about the informative contents of the image in addition to a computational model to simulate group differences. Analysis of the eye-tracking data indicated that the scanpaths of children with TD and ASD were characterized by eye movements geometrically equivalent to Lévy flights. Children with ASD showed a higher frequency of long saccadic amplitudes compared with controls. A clustering analysis revealed a greater dispersion of eye movements for these children. Modeling of the results indicated higher values of the model parameter modulating the dispersion of eye movements for children with ASD. Together, the experimental results and the model point to a greater dispersion of gaze points in ASD.
NASA's Mobile and Telecom Antenna Development at JPL
NASA Technical Reports Server (NTRS)
Huang, John
1997-01-01
Chartered by NASA to develop and demonstrate enabling technologies for mobile and satellite telecommuniation systems, JPL has developed various antenna technologies throughout the microwave spectrum in the past two decades.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1992-01-01
Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.
Spectrum and orbit conservation as a factor in future mobile satellite system design
NASA Technical Reports Server (NTRS)
Bowen, Robert R.
1990-01-01
Access to the radio spectrum and geostationary orbit is essential to current and future mobile satellite systems. This access is difficult to obtain for current systems, and may be even more so for larger future systems. In this environment, satellite systems that minimize the amount of spectrum orbit resource required to meet a specific traffic requirement are essential. Several spectrum conservation techniques are discussed, some of which are complementary to designing the system at minimum cost. All may need to be implemented to the limits of technological feasibility if network growth is not to be constrained because of the lack of available spectrum-orbit resource.
Injection Locking Techniques for Spectrum Analysis
NASA Astrophysics Data System (ADS)
Gathma, Timothy D.; Buckwalter, James F.
2011-04-01
Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.
Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang
2017-01-16
Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.
Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odsuren, M.; Khuukhenkhuu, G.
2011-06-28
Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fastmore » neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.« less
Virtual Education: Guidelines for Using Games Technology
ERIC Educational Resources Information Center
Schofield, Damian
2014-01-01
Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online virtual environments. This technology has been used to generate a range of interactive Virtual Reality (VR) learning environments across a spectrum of…
ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative
VLSI Technology for Cognitive Radio
NASA Astrophysics Data System (ADS)
VIJAYALAKSHMI, B.; SIDDAIAH, P.
2017-08-01
One of the most challenging tasks of cognitive radio is the efficiency in the spectrum sensing scheme to overcome the spectrum scarcity problem. The popular and widely used spectrum sensing technique is the energy detection scheme as it is very simple and doesn’t require any previous information related to the signal. We propose one such approach which is an optimised spectrum sensing scheme with reduced filter structure. The optimisation is done in terms of area and power performance of the spectrum. The simulations of the VLSI structure of the optimised flexible spectrum is done using verilog coding by using the XILINX ISE software. Our method produces performance with 13% reduction in area and 66% reduction in power consumption in comparison to the flexible spectrum sensing scheme. All the results are tabulated and comparisons are made. A new scheme for optimised and effective spectrum sensing opens up with our model.
The Humanities in an Era of New Technology: Variations on a Theme.
ERIC Educational Resources Information Center
Shaw, Ruth G.
The terms "humanities" and "new technology" have a broad spectrum of meanings, which often imply a tension between two somewhat incompatible concepts. If one views humanities as the general learning that should be in the possession of all human beings and new technology as the convergence of two or more sophisticated technologies in expansive and…
MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data
Hartler, Jürgen; Thallinger, Gerhard G; Stocker, Gernot; Sturn, Alexander; Burkard, Thomas R; Körner, Erik; Rader, Robert; Schmidt, Andreas; Mechtler, Karl; Trajanoski, Zlatko
2007-01-01
Background The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches. Results We have developed the MAss SPECTRometry Analysis System (MASPECTRAS), a platform for management and analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental Data Repository (PEDRo) relational database schema and follows the guidelines of the Proteomics Standards Initiative (PSI). Analysis modules include: 1) import and parsing of the results from the search engines SEQUEST, Mascot, Spectrum Mill, X! Tandem, and OMSSA; 2) peptide validation, 3) clustering of proteins based on Markov Clustering and multiple alignments; and 4) quantification using the Automated Statistical Analysis of Protein Abundance Ratios algorithm (ASAPRatio). The system provides customizable data retrieval and visualization tools, as well as export to PRoteomics IDEntifications public repository (PRIDE). MASPECTRAS is freely available at Conclusion Given the unique features and the flexibility due to the use of standard software technology, our platform represents significant advance and could be of great interest to the proteomics community. PMID:17567892
Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks
NASA Astrophysics Data System (ADS)
Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie
2015-12-01
Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.
Information integration in health care organizations: The case of a European health system.
Calciolari, Stefano; Buccoliero, Luca
2010-01-01
Information system integration is an important dimension of a company's information system maturity and plays a relevant role in meeting information needs and accountability targets. However, no generalizable evidence exists about whether and how the main integrating technologies influence information system integration in health care organizations. This study examined how integrating technologies are adopted in public health care organizations and chief information officers' (CIOs) perceptions about their influence on information system integration. We used primary data on integrating technologies' adoption and CIOs' perception regarding information system integration in public health care organizations. Analysis of variance (ANOVA) and multinomial logistic regression were used to examine the relationship between CIOs' perception about information system integration and the adopted technologies. Data from 90 health care organizations were available for analyses. Integrating technologies are relatively diffused in public health care organizations, and CIOs seem to shape information system toward integrated architectures. There is a significant positive (although modest, .3) correlation between the number of integrating technologies adopted and the CIO's satisfaction with them. However, regression analysis suggests that organizations covering a broader spectrum of these technologies are less likely to have their CIO reporting main problems concerning integration in the administrative area of the information system compared with the clinical area and where the two areas overlap. Integrating technologies are associated with less perceived problems in the information system administrative area rather than in other areas. Because CIOs play the role of information resource allocators, by influencing information system toward integrated architecture, health care organization leaders should foster cooperation between CIOs and medical staff to enhance information system integration.
NASA Astrophysics Data System (ADS)
Salge, T.; Goran, D.
2010-12-01
SDD systems have become state of the art technology in the field of EDS. The main characteristic of the SDDs is their extremely high pulse load capacity of up to 750,000 counts per second at good energy resolution (<123 eV Mn-Kα, <46 eV C-Kα at 100,000 counts per seconds). These properties in conjunction with electron backscatter diffraction (EBSD) technique and modern data processing allows not only high speed mapping but also hyperspectral analysis. Here, a database is created that contains an EDS spectrum and/or EBSD pattern for each pixel of the SEM image setting the stage for innovative analysis options: The Maximum Pixel Spectrum function [1] synthesizes a spectrum out of the EDS database, consisting of the highest count level found in each spectrum channel. Here, (trace) elements which occur in only one pixel can be detected qualitatively. Areas of similar EDS composition can be made visible with Autophase, a spectroscopic phase detection system. In cases where the crystallographic phase assessment by EBSD is problematic due to pattern similarity, the EDS signal can be used as additional information for phase separation. This paper presents geoscience applications with the QUANTAX system with EDS SDD and EBSD detector using the options described above: (1) Drill core analysis of a Chicxulub impact ejecta sequence from the K/Pg boundary at ODP leg 207 [2] using fast, high resolution element maps. (2) Detection of monazite in granite by the Maximum Pixel Spectrum function. (3) Distribution of elements with overlapping peaks by deconvolution at the example of rare earth elements in zoned monazite. (4) Spectroscopic phase analysis of a sulfate-carbonate-dominated impact matrix at borehole UNAM-7 from the Chicxulub impact crater [3]. (5) EBSD studies with examples of iron meteorites and impact-induced, recrystallized carbonate melts [4]. In addition, continuing technological advances require the elemental analysis of increasingly smaller structures in many fields, including geosciences. It will be demonstrated that using low accelerating voltages, the element distribution of structures at the nanoscale in bulk samples can be displayed in a short time due to optimized signal processing and solid angle. Peaks composed of contributions from several overlapping elements e.g. N-K (392 eV) and Ti-Ll (395 eV) can be deconvolved [6] using an improved atomic database with 250 additional L, M and N lines below 4 keV. Improved light element quantification allows the standardless quantification of features at the nanoscale such as rutile grains 200-500 nm in size. References: [1] Bright D S. & Newbury D. E. (2004) Journal of Microscopy 216:186-193. [2] Schulte P. et al. (2010) Science 327: 1214-1218. [3] Salge T. (2007) PhD thesis: 130p. http://edoc.huberlin.de/docviews/abstract.php?lang=ger&id=27753. [4] Deutsch A. et al. MAPS 45: A45. [6] Tunckan O. (2010) Joining ceramics using capacitor discharge technique and determination of metal ceramic interface reactions, PhD thesis, Anadolu University, Eskisehir, Turkey. Acknowledgements: We thank P. Schulte, A. Deutsch, ODP, L. Hecht, A. Kearsley, J. Urrutria-Fucugauchi, O. Tunckan and S. Turan for generously providing the samples.
Maglogiannis, Vasilis; Naudts, Dries; Shahid, Adnan; Giannoulis, Spilios; Laermans, Eric; Moerman, Ingrid
2017-08-31
On the road towards 5G, a proliferation of Heterogeneous Networks (HetNets) is expected. Sensor networks are of great importance in this new wireless era, as they allow interaction with the environment. Additionally, the establishment of the Internet of Things (IoT) has incredibly increased the number of interconnected devices and consequently the already massive wirelessly transmitted traffic. The exponential growth of wireless traffic is pushing the wireless community to investigate solutions that maximally exploit the available spectrum. Recently, 3rd Generation Partnership Project (3GPP) announced standards that permit the operation of Long Term Evolution (LTE) in the unlicensed spectrum in addition to the exclusive use of the licensed spectrum owned by a mobile operator. Alternatively, leading wireless technology developers examine standalone LTE operation in the unlicensed spectrum without any involvement of a mobile operator. In this article, we present a classification of different techniques that can be applied on co-located LTE and Wi-Fi networks. Up to today, Wi-Fi is the most widely-used wireless technology in the unlicensed spectrum. A review of the current state of the art further reveals the lack of cooperation schemes among co-located networks that can lead to more optimal usage of the available spectrum. This article fills this gap in the literature by conceptually describing different classes of cooperation between LTE and Wi-Fi. For each class, we provide a detailed presentation of possible cooperation techniques that can provide spectral efficiency in a fair manner.
Cooperation Techniques between LTE in Unlicensed Spectrum and Wi-Fi towards Fair Spectral Efficiency
Naudts, Dries; Shahid, Adnan; Giannoulis, Spilios; Laermans, Eric
2017-01-01
On the road towards 5G, a proliferation of Heterogeneous Networks (HetNets) is expected. Sensor networks are of great importance in this new wireless era, as they allow interaction with the environment. Additionally, the establishment of the Internet of Things (IoT) has incredibly increased the number of interconnected devices and consequently the already massive wirelessly transmitted traffic. The exponential growth of wireless traffic is pushing the wireless community to investigate solutions that maximally exploit the available spectrum. Recently, 3rd Generation Partnership Project (3GPP) announced standards that permit the operation of Long Term Evolution (LTE) in the unlicensed spectrum in addition to the exclusive use of the licensed spectrum owned by a mobile operator. Alternatively, leading wireless technology developers examine standalone LTE operation in the unlicensed spectrum without any involvement of a mobile operator. In this article, we present a classification of different techniques that can be applied on co-located LTE and Wi-Fi networks. Up to today, Wi-Fi is the most widely-used wireless technology in the unlicensed spectrum. A review of the current state of the art further reveals the lack of cooperation schemes among co-located networks that can lead to more optimal usage of the available spectrum. This article fills this gap in the literature by conceptually describing different classes of cooperation between LTE and Wi-Fi. For each class, we provide a detailed presentation of possible cooperation techniques that can provide spectral efficiency in a fair manner. PMID:28858243
Genetics of autism spectrum disorders.
Kumar, Ravinesh A; Christian, Susan L
2009-05-01
Autism spectrum disorders (ASDs) are a clinically complex group of childhood disorders that have firm evidence of an underlying genetic etiology. Many techniques have been used to characterize the genetic bases of ASDs. Linkage studies have identified several replicated susceptibility loci, including 2q24-2q31, 7q, and 17q11-17q21. Association studies and mutation analysis of candidate genes have implicated the synaptic genes NRXN1, NLGN3, NLGN4, SHANK3, and CNTNAP2 in ASDs. Traditional cytogenetic approaches highlight the high frequency of large chromosomal abnormalities (3%-7% of patients), including the most frequently observed maternal 15q11-13 duplications (1%-3% of patients). Newly developed techniques include high-resolution DNA microarray technologies, which have discovered formerly undetectable submicroscopic copy number variants, and genomewide association studies, which allow simultaneous detection of multiple genes associated with ASDs. Although great progress has been made in autism genetics, the molecular bases of most ASDs remains enigmatic.
Analysis and control of the vibration of doubly fed wind turbine
NASA Astrophysics Data System (ADS)
Yu, Manye; Lin, Ying
2017-01-01
The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.
ERIC Educational Resources Information Center
Petrina, Stephen; Volk, Kenneth; Kim, Soowook
2004-01-01
What do we know about technology and rights? This article provides a fairly comprehensive overview of current issues regarding this topic. We explore and analyse a wide spectrum of rights that are challenged in this current era of technological convergence. We use the United States Bill of Rights as an example of the vulnerability of legal…
A Virtual Education: Guidelines for Using Games Technology
ERIC Educational Resources Information Center
Schofield, Damian
2014-01-01
Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online vir-tual environments. This technology has been used to generate a range of interactive Virtual Real-ity (VR) learning environments across a spectrum of…
ETV works in partnership with recognized standards and testing organizations and stakeholder groups consisting of regulators, buyers, and vendor organizations, with the full participation of individual technology developers. The program evaluates the performance of innovative
Determining Studies Conducted upon Individuals with Autism Spectrum Disorder Using High-Tech Devices
ERIC Educational Resources Information Center
Eliçin, Özge; Kaya, Ali
2017-01-01
This study explores 67 experimental research articles written about children with Autism Spectrum Disorder using high-tech devices. The studies in this research were accessed through EBSCO, Academic Search Complete, ERIC, and Uludag University online search engines using keywords such as "autism and technology", "autism and…
Exploring Surfaces of Nanomaterials - MIT Spectrum
Topics About Search for: Search Massachusetts Institute of Technology Yang Shao-Horn is tackling the inspired by them to work here." Learn More Yang Shao-Horn Topics battery Energy Materials Science Latest Stories Spectrum Issues Topics About Popular Latest MIT Campaign for a Better World MIT Campaign
Billeci, Lucia; Tonacci, Alessandro; Tartarisco, Gennaro; Narzisi, Antonio; Di Palma, Simone; Corda, Daniele; Baldus, Giovanni; Cruciani, Federico; Anzalone, Salvatore M.; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo
2016-01-01
Autism Spectrum Disorders (ASD) are associated with physiological abnormalities, which are likely to contribute to the core symptoms of the condition. Wearable technologies can provide data in a semi-naturalistic setting, overcoming the limitations given by the constrained situations in which physiological signals are usually acquired. In this study an integrated system based on wearable technologies for the acquisition and analysis of neurophysiological and autonomic parameters during treatment is proposed and an application on five children with ASD is presented. Signals were acquired during a therapeutic session based on an imitation protocol in ASD children. Data were analyzed with the aim of extracting quantitative EEG (QEEG) features from EEG signals as well as heart rate and heart rate variability (HRV) from ECG. The system allowed evidencing changes in neurophysiological and autonomic response from the state of disengagement to the state of engagement of the children, evidencing a cognitive involvement in the children in the tasks proposed. The high grade of acceptability of the monitoring platform is promising for further development and implementation of the tool. In particular if the results of this feasibility study would be confirmed in a larger sample of subjects, the system proposed could be adopted in more naturalistic paradigms that allow real world stimuli to be incorporated into EEG/psychophysiological studies for the monitoring of the effect of the treatment and for the implementation of more individualized therapeutic programs. PMID:27445652
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Subcommittee on Telecommunications and Finance.
The testimony responds to H.R. 707, a bill to identify 200 megahertz of electromagnetic spectrum for allocation to private and non-federal government users. The witnesses address how the spectrum can be used to deliver new products and services to all Americans; how additional radio spectrum is needed to keep America competitive; how wireless…
Fast Fourier Transform Spectral Analysis Program
NASA Technical Reports Server (NTRS)
Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.
1969-01-01
Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.
Spectrum of Transient ASASSN-13at
NASA Astrophysics Data System (ADS)
Garnavich, Peter; Deal, Shanel
2013-06-01
We observed the transient ASASSN-13at (ATEL 5168) on June 28.3 (UT) with the Vatican Advanced Technology Telescope (VATT) and VATTSPEC instrument. The resulting spectrum covers the wavelength range between 365 nm and 750 nm with a resolution of 1100. The spectrum of ASASSN-13at shows a blue continuum with strong Balmer absorption lines. Helium absorption at 447 nm and 588 nm is also seen. Blue-shifted emission lines are visible within the Halpha and Hbeta absorption features.
Characterization of Kevlar Using Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Washer, Glenn; Brooks, Thomas; Saulsberry, Regor
2007-01-01
This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.
Secure Network-Centric Aviation Communication (SNAC)
NASA Technical Reports Server (NTRS)
Nelson, Paul H.; Muha, Mark A.; Sheehe, Charles J.
2017-01-01
The existing National Airspace System (NAS) communications capabilities are largely unsecured, are not designed for efficient use of spectrum and collectively are not capable of servicing the future needs of the NAS with the inclusion of new operators in Unmanned Aviation Systems (UAS) or On Demand Mobility (ODM). SNAC will provide a ubiquitous secure, network-based communications architecture that will provide new service capabilities and allow for the migration of current communications to SNAC over time. The necessary change in communication technologies to digital domains will allow for the adoption of security mechanisms, sharing of link technologies, large increase in spectrum utilization, new forms of resilience and redundancy and the possibly of spectrum reuse. SNAC consists of a long term open architectural approach with increasingly capable designs used to steer research and development and enable operating capabilities that run in parallel with current NAS systems.
[Spectral navigation technology and its application in positioning the fruits of fruit trees].
Yu, Xiao-Lei; Zhao, Zhi-Min
2010-03-01
An innovative technology of spectral navigation is presented in the present paper. This new method adopts reflectance spectra of fruits, leaves and branches as one of the key navigation parameters and positions the fruits of fruit trees relying on the diversity of spectral characteristics. The research results show that the distinct smoothness as effect is available in the spectrum of leaves of fruit trees. On the other hand, gradual increasing as the trend is an important feature in the spectrum of branches of fruit trees while the spectrum of fruit fluctuates. In addition, the peak diversity of reflectance rate between fruits and leaves of fruit trees is reached at 850 nm of wavelength. So the limit value can be designed at this wavelength in order to distinguish fruits and leaves. The method introduced here can not only quickly distinguish fruits, leaves and branches, but also avoid the effects of surroundings. Compared with the traditional navigation systems based on machine vision, there are still some special and unique features in the field of positioning the fruits of fruit trees using spectral navigation technology.
Technology needs for high speed rotorcraft (3)
NASA Technical Reports Server (NTRS)
Detore, Jack; Conway, Scott
1991-01-01
The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.
Keck/HIRES Spectroscopy of V838 Monocerotis in October 2005
NASA Astrophysics Data System (ADS)
Kamiński, T.; Schmidt, M.; Tylenda, R.; Konacki, M.; Gromadzki, M.
2009-05-01
V838 Monocerotis (V838 Mon) erupted at the beginning of 2002 becoming an extremely luminous star with L sime 106 L sun. Among various scenarios proposed to explain the nature of the outburst, the most promising is a stellar merger event. In this paper, we investigate the observational properties of the star and its surroundings in the post outburst phase. We have obtained a high-resolution optical spectrum of V838 Mon in 2005 October using the Keck I telescope. We have identified numerous atomic features and molecular bands present in the spectrum and provided an atlas of those features. In order to improve the spectrum interpretation, we have performed simple modeling of the molecular bands. Our analysis indicates that the spectrum is dominated by molecular absorption features arising in photospheric regions with temperatures of ~2400 K and in colder outer layers, where the temperature decreases to ~500 K. A number of resonance lines of neutral alkali metals are observed to show P Cygni profiles. Particularly interesting are numerous prominent emission lines of [Fe II]. All of them show practically the same profile, which can be well described by a Lorentzian profile. In the blue part of the spectrum, photospheric signatures of the B-type companion are easily seen. We have fitted the observed spectrum with a synthetic one and the obtained parameters are consistent with the B3V type. We have also estimated radial and rotational velocities of the companion. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Cubic GaN quantum dots embedded in zinc-blende AlN microdisks
NASA Astrophysics Data System (ADS)
Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.
2013-09-01
Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.
Terahertz Technology: A Boon to Tablet Analysis
Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.
2009-01-01
The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288
The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2002-01-01
The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.
Ganz, Jennifer B; Morin, Kristi L; Foster, Margaret J; Vannest, Kimberly J; Genç Tosun, Derya; Gregori, Emily V; Gerow, Stephanie L
2017-12-01
The use of mobile technology is ubiquitous in modern society and is rapidly increasing in novel use. The use of mobile devices and software applications ("apps") as augmentative and alternative communication (AAC) is rapidly expanding in the community, and this is also reflected in the research literature. This article reports the social-communication outcome results of a meta-analysis of single-case experimental research on the use of high-tech AAC, including mobile devices, by individuals with intellectual and developmental disabilities, including autism spectrum disorder. Following inclusion determination, and excluding studies with poor design quality, raw data from 24 publications were extracted and included 89 A-B phase contrasts. Tau-U nonparametric, non-overlap effect size was used to aggregate the results across all studies for an omnibus and moderator analyses. Kendall's S was calculated for confidence intervals, p-values, and standard error. The omnibus analysis indicated overall low to moderate positive effects on social-communication outcomes for high-tech AAC use by individuals with intellectual and developmental disabilities.
Autism spectrum disorders in the era of mobile technologies: impact on caregivers.
Allen, Anna A; Shane, Howard C
2014-04-01
This paper explores possible connections among existing literature on parental stress, augmentative and alternative communication (AAC), and use of mobile technology for persons with autism spectrum disorder (ASD). A narrative review of the literature. Parental support contributes to positive outcomes for children who use AAC. Parents identify communication as a high priority, but describe the process as challenging. AAC is often used with children with ASD, a population in which parental stress is especially high. Though there is research evidence that mobile technology is a promising tool for individuals with ASD, potentially misleading media anecdotes exist, and the effects on parental expectations and stress remain unstudied questions. Increased understanding of the connections in these research areas should help clarify the potential impact of mobile technologies on parental stress level, help to define appropriate future research directions, and contribute to development of appropriate caregiver training.
Terahertz technology and applications
NASA Technical Reports Server (NTRS)
Siegel, P.
2002-01-01
Despite great scientific interest since at least the 1920's, the THz frequency range remains on e of the least tapped regions of the electromagnetic spectrum. Sandwiched between traditional microwave and optical technologies where there is a limited atmospheric propagation path, little commercial emphasis has been placed on THz systems. This has, perhaps fortunately, preserved some unique science and applications for tomorrow's technologies. For over 25 years the sole niche for THz technology has been in the high resolution spectroscopy and remote sensing areas where heterodyne and Fourier transform techniques have allowed astronomers, chemists, Earth, planetary and space scientists to measure, catalog and map thermal emission lines for a wide variety of lightweight molecules. As it turns out, no where else in the electromagnetic spectrum do we receive so much information about these chemical species. In fact, the universe is bathed in THz energy, most of it going unnoticed and undetected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, Andrew Scott; Bennett, D. A.; Croce, Mark Philip
In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to closemore » the performance gap between NDA and DA methods to address the needs of nuclear facilities.« less
[Application of near-infrared spectroscopy to agriculture and food analysis].
Wang, Duo-jia; Zhou, Xiang-yang; Jin, Tong-ming; Hu, Xiang-na; Zhong, Jiao-e; Wu, Qi-tang
2004-04-01
Near-Infrared Spectroscopy (NIRS) is the most rapidly developing and the most noticeable spectrographic technique in the 90's (the last century). Its principle and characteristics were explained in this paper, and the development of NIRS instrumentation, the methodology of spectrum pre-processing, as well as the chemical metrology were also introduced. The anthors mainly summarized the applications to agriculture and food, especially in-line analysis methods, which have been used in production procedure by fiber optics. The authors analyzed the NIRS application status in China, and made the first proposal to establish information sharing mode between central database and end-user by using network technology and concentrating valuable resources.
NASA Astrophysics Data System (ADS)
Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.
2018-03-01
Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
... Comment Request: Autism Spectrum Disorder Research Portfolio Analysis SUMMARY: In compliance with the... the proposed project, contact: The Office of Autism Research Coordination, NIMH, NIH, Neuroscience.... Proposed Collection: Autism Spectrum Disorder (ASD) Research Portfolio Analysis, 0925--NEW--National...
Tunable solid-state lasers - An emerging technology for remote sensing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Allario, Frank
1988-01-01
The present development status and prospective (1990s) performance-improvement evaluation of tunable solid-state laser technology notes recent trends toward spectrum coverage over the 0.20-14.0 microns range, in addition to dramatic increases in efficiency, service life, and reliability. It is judged that the Ti:Al2O3 laser and the AgGaSe2 optical parametric oscillator pumped by a Ho:YAG laser could cover the near-IR and mid-IR regions of the spectrum. Laser diodes operating at 0.78 microns should provide an excellent pump for a Ho:YAG laser.
NASA's Commercial Communication Technology Program
NASA Technical Reports Server (NTRS)
Bagwell, James W.
1998-01-01
Various issues associated with "NASA's Commercial Communication Technology Program" are presented in viewgraph form. Specific topics include: 1) Coordination/Integration of government program; 2) Achievement of seamless interoperable satellite and terrestrial networks; 3) Establishment of program to enhance Satcom professional and technical workforce; 4) Precompetitive technology development; and 5) Effective utilization of spectrum and orbit assets.
47 CFR 51.231 - Provision of information on advanced services deployment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rejection; and (3) Information with respect to the number of loops using advanced services technology within... incumbent LEC information on the type of technology that the requesting carrier seeks to deploy. (1) Where... spectral density (PSD) mask, it also must provide Spectrum Class information for the technology. (2) Where...
Comment on Technology-Based Intervention Research for Individuals on the Autism Spectrum
ERIC Educational Resources Information Center
McCleery, Joseph P.
2015-01-01
The purpose of this letter to the editor is to comment on several review papers recently published in the current "Journal of Autism and Developmental Disorders, Special Issue on Technology: Software, Robotics, and Translational Science." These reviews address a variety of aspects relating to technology-aided intervention and instruction…
NASA Technical Reports Server (NTRS)
Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)
1986-01-01
The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.
Karagiannidis, A; Perkoulidis, G
2009-04-01
This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.
Plugged In: Electronics Use in Youth and Young Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
MacMullin, Jennifer A.; Lunsky, Yona; Weiss, Jonathan A.
2016-01-01
Although electronic technology currently plays an integral role for most youth, there are growing concerns of its excessive and compulsive use. This study documents patterns and impact of electronics use in individuals with autism spectrum disorder compared to typically developing peers. Participants included 172 parents of typically developing…
An Exploratory Study Using Science eTexts with Students with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Knight, Victoria F.; Wood, Charles L.; Spooner, Fred; Browder, Diane M.; O'Brien, Christopher P.
2015-01-01
Supported electronic text (eText), or text altered to provide support, may promote comprehension of science content for students with disabilities. According to the Center for Applied Special Technology, Book Builder™ uses supported eText to promote reading for meaning for all students. Students with autism spectrum disorder experience difficulty…
Social Benefits of a Tangible User Interface for Children with Autistic Spectrum Conditions
ERIC Educational Resources Information Center
Farr, William; Yuill, Nicola; Raffle, Hayes
2010-01-01
Tangible user interfaces (TUIs) embed computer technology in graspable objects. This study assessed the potential of Topobo, a construction toy with programmable movement, to support social interaction in children with Autistic Spectrum Conditions (ASC). Groups of either typically developing (TD) children or those with ASC had group play sessions…
Teaching Students with Autism Spectrum Disorders: Technology, Curriculum, and Common Sense
ERIC Educational Resources Information Center
Ennis-Cole, Demetria
2012-01-01
Autism is a spectrum of disorders which comprises Asperger's Syndrome, Pervasive Developmental Delay-Not Otherwise Specified (PDD-NOS), Rett's Syndrome, Childhood Disintegrative Disorder, and Autistic Disorder. It affects 1 in 110 children (Center for Disease Control and Prevention, [CDC], 2011), and it is a complex neurological disorder that is…
Online Wiki Collaboration by Teachers of Students with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Kilham, Chris
2009-01-01
A shared understanding of autism spectrum disorders (ASD) and a coordinated approach to teaching diagnosed students is essential because of the complex learning needs of this cohort. This research examines the ways in which special educators used wiki technology to create a working document and to share and develop their perspectives about…
Towards Mitigating Heterogeneous Wireless Interference in Spectrum Bands with Unlicensed Access
ERIC Educational Resources Information Center
Nychis, George P.
2013-01-01
In the past two decades, we have seen an unprecedented rise in unlicensed wireless devices and applications of wireless technology. To meet various application constraints, we continually customize the radios and their protocols to the application domain which has led to significant diversity in spectrum use. Unfortunately, this diversity (coupled…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-02-25
There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.
None
2018-05-11
There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.
Research of mine water source identification based on LIF technology
NASA Astrophysics Data System (ADS)
Zhou, Mengran; Yan, Pengcheng
2016-09-01
According to the problem that traditional chemical methods to the mine water source identification takes a long time, put forward a method for rapid source identification system of mine water inrush based on the technology of laser induced fluorescence (LIF). Emphatically analyzes the basic principle of LIF technology. The hardware composition of LIF system are analyzed and the related modules were selected. Through the fluorescence experiment with the water samples of coal mine in the LIF system, fluorescence spectra of water samples are got. Traditional water source identification mainly according to the ion concentration representative of the water, but it is hard to analysis the ion concentration of the water from the fluorescence spectra. This paper proposes a simple and practical method of rapid identification of water by fluorescence spectrum, which measure the space distance between unknown water samples and standard samples, and then based on the clustering analysis, the category of the unknown water sample can be get. Water source identification for unknown samples verified the reliability of the LIF system, and solve the problem that the current coal mine can't have a better real-time and online monitoring on water inrush, which is of great significance for coal mine safety in production.
Cascade laser applications: trends and challenges
NASA Astrophysics Data System (ADS)
d'Humières, B.; Margoto, Éric; Fazilleau, Yves
2016-03-01
When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.
Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang
2012-06-01
Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
2011-05-26
Phillip Stallcup with Agilent Technologies in Huntsville, Ala., talks with NASA employees Leslie Ladner (l) and Kelly Sullivan about spectrum analyzers and other test equipment during the Stennis Technology Expo on May 26. The expo was hosted by NASA Solutions for Enterprise-Wide Procurement and featured various exhibitors demonstrating the latest in a range of technologies, such as training equipment, secure data storage, video networks, distance learning and data management.
Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua
2014-10-01
The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.
1988-10-01
A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.
Barteneva, Natasha S; Vorobjev, Ivan A
2018-01-01
In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.
Lamp of adjustable spectrum for photographic usage
NASA Astrophysics Data System (ADS)
Mazikowski, Adam; Feldzensztajn, Mateusz
2017-08-01
Photography is a unique rapidly growing interdisciplinary field encompassing aspects of science, art and technology. Expectations of photographers are steadily increasing with the development of technology. One of the areas playing a crucial role in photography is lighting. Consequently, several types of light sources for photographic use have been developed. The ongoing research in this field concentrates on lamps with tunable CCT (Correlated Color Temperature). In this paper, we present a lamp, which emission spectrum can be tailored without affecting the output luminous ux. Intended for photographic uses, the lamp is based on an integrating sphere and a selection of LEDs. As the LED drivers, DC-DC converters controlled by a Raspberry PI were applied. Design process, including the selection of LED wavelengths, is presented. Output characteristics of the lamp were measured using the setup containing the spectrometer. The results of these experiments show good agreement with the spectrum set on the microcomputer.
NASA Astrophysics Data System (ADS)
Horvath, Denis; Gazda, Juraj; Brutovsky, Branislav
Evolutionary species and quasispecies models provide the universal and flexible basis for a large-scale description of the dynamics of evolutionary systems, which can be built conceived as a constraint satisfaction dynamics. It represents a general framework to design and study many novel, technologically contemporary models and their variants. Here, we apply the classical quasispecies concept to model the emerging dynamic spectrum access (DSA) markets. The theory describes the mechanisms of mimetic transfer, competitive interactions between socioeconomic strata of the end-users, their perception of the utility and inter-operator switching in the variable technological environments of the operators offering the wireless spectrum services. The algorithmization and numerical modeling demonstrate the long-term evolutionary socioeconomic changes which reflect the end-user preferences and results of the majorization of their irrational decisions in the same manner as the prevailing tendencies which are embodied in the efficient market hypothesis.
Narayanan, Ram M; Pooler, Richard K; Martone, Anthony F; Gallagher, Kyle A; Sherbondy, Kelly D
2018-02-22
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE).
Pooler, Richard K.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.
2018-01-01
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE). PMID:29470448
A novel method for single bacteria identification by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Schultz, Emmanuelle; Simon, Anne-Catherine; Strola, Samy Andrea; Perenon, Rémi; Espagnon, Isabelle; Allier, Cédric; Claustre, Patricia; Jary, Dorothée.; Dinten, Jean-Marc
2014-03-01
In this paper we present results on single bacteria rapid identification obtained with a low-cost and compact Raman spectrometer. At present, we demonstrate that a 1 minute procedure, including the localization of single bacterium, is sufficient to acquire comprehensive Raman spectrum in the range of 600 to 3300 cm-1. Localization and detection of single bacteria is performed by means of lensfree imaging over a large field of view of 24 mm2. An excitation source of 532 nm and 30 mW illuminates single bacteria to collect Raman signal into a Tornado Spectral Systems prototype spectrometer (HTVS technology). The acquisition time to record a single bacterium spectrum is as low as 10 s owing to the high light throughput of this spectrometer. The spectra processing features different steps for cosmic spikes removal, background subtraction, and gain normalization to correct the residual inducted fluorescence and substrate fluctuations. This allows obtaining a fine chemical fingerprint analysis. We have recorded a total of 1200 spectra over 7 bacterial species (E. coli, Bacillus species, S. epidermis, M. luteus, S. marcescens). The analysis of this database results in a high classification score of almost 90 %. Hence we can conclude that our setup enables automatic recognition of bacteria species among 7 different species. The speed and the sensitivity (<30 minutes for localization and spectra collection of 30 single bacteria) of our Raman spectrometer pave the way for high-throughput and non-destructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic and environmental applications.
Improving Reliability of Spectrum Analysis for Software Quality Requirements Using TCM
NASA Astrophysics Data System (ADS)
Kaiya, Haruhiko; Tanigawa, Masaaki; Suzuki, Shunichi; Sato, Tomonori; Osada, Akira; Kaijiri, Kenji
Quality requirements are scattered over a requirements specification, thus it is hard to measure and trace such quality requirements to validate the specification against stakeholders' needs. We proposed a technique called “spectrum analysis for quality requirements” which enabled analysts to sort a requirements specification to measure and track quality requirements in the specification. In the same way as a spectrum in optics, a quality spectrum of a specification shows a quantitative feature of the specification with respect to quality. Therefore, we can compare a specification of a system to another one with respect to quality. As a result, we can validate such a specification because we can check whether the specification has common quality features and know its specific features against specifications of existing similar systems. However, our first spectrum analysis for quality requirements required a lot of effort and knowledge of a problem domain and it was hard to reuse such knowledge to reduce the effort. We thus introduce domain knowledge called term-characteristic map (TCM) to reuse the knowledge for our quality spectrum analysis. Through several experiments, we evaluate our spectrum analysis, and main finding are as follows. First, we confirmed specifications of similar systems have similar quality spectra. Second, results of spectrum analysis using TCM are objective, i.e., different analysts can generate almost the same spectra when they analyze the same specification.
NASA Astrophysics Data System (ADS)
Raj, Baldev; Venkatraman, B.
2013-01-01
Life cycle management involves a seamless integration of materials, design, analysis, production, manufacturing, and degradation plus, a wide variety of disciplines relating to surveillance and characterisation with adequate feedback and control. Science and technology of non-destructive evaluation (NDE) links all these domains and disciplines together in a seamless and robust manner. A number of research programs on NDE science and technology have evolved during the last four decades world over including the one at Indira Gandhi Centre for Atomic Research, Kalpakkam, initiated and nurtured by the first author. Many engineering and technology challenges pertaining to fast spectrum reactors have been successfully solved by this Centre through development of innovative sensors, procedures and coupled with strong basic science and modeling approaches. These technologies have also been selectively applied in gaining insights of human health and cultural heritage. This paper highlights some of the innovative NDE sensors and techniques developed in the field of electromagnetic NDE and their successful applications. A few interesting case studies pertaining to NDE in heritage and healthcare using acoustic and thermal methods are also presented.
Comparison of RF spectrum prediction methods for dynamic spectrum access
NASA Astrophysics Data System (ADS)
Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.
2017-05-01
Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.
Toward a New Technology of Mental Health Care.
ERIC Educational Resources Information Center
Loeb, Martin B.; Mueller, B. Jeanne
A new technology, which the authors see developing in the mental health field, is viewed as a consequence of urbanism with its varied societal manifestations. A major part of this technology is the ability to invent special social prostheses and to assemble them into a spectrum of services which represent various levels of intervention: (1)…
ERIC Educational Resources Information Center
Skoretz, Yvonne; Childress, Ronald
2013-01-01
The purpose of this program evaluation was to determine the impact of a school-based, job-embedded professional development program on elementary and middle school teacher efficacy for technology integration. Participant bi-weekly journal postings were analyzed using Grappling's "Technology and Learning Spectrum" (Porter, 2001) to…
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer; Shattuck, Paul; Blackorby, Jose
2017-01-01
Previous studies suggest that individuals with an Autism Spectrum Disorder (ASD) are more likely than other disability groups and the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. However, the field knows little about which factors influenced the STEM pipeline between high school and…
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; Blackorby, Jose
2017-01-01
Previous studies suggest that individuals with an autism spectrum disorder (ASD) are more likely than other disability groups and the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. However, the field knows little about which factors influence the STEM pipeline between high school and…
ERIC Educational Resources Information Center
Matson, Johnny L.; Fodstad, Jill C.
2009-01-01
Food selectivity and other feeding problems are endemic in children with autism spectrum disorders (ASD). Additionally, many of the challenging behaviors which fall into this category are idiosyncratic to ASD. A technology is beginning to emerge regarding methods to lessen and effectively treat these issues which, if unchecked, can result in poor…
ERIC Educational Resources Information Center
Murphy, Maureen Kendrick
2010-01-01
In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…
ERIC Educational Resources Information Center
Yakubova, Gulnoza; Hughes, Elizabeth M.; Shinaberry, Megan
2016-01-01
The purpose of this study was to determine the effectiveness of a video modeling intervention with concrete-representational-abstract instructional sequence in teaching mathematics concepts to students with autism spectrum disorder (ASD). A multiple baseline across skills design of single-case experimental methodology was used to determine the…
ERIC Educational Resources Information Center
Mechling, Linda C.
2011-01-01
Use of portable electronic devices by persons with moderate intellectual disabilities and autism spectrum disorders is gaining increased research attention. The purpose of this review was to synthesize twenty-first century literature (2000-2010) focusing on these technologies. Twenty-one studies were identified which evaluated use of: (a) handheld…
ERIC Educational Resources Information Center
Smith, Bethany
2012-01-01
The need for promoting scientific literacy for all students has been the focus of recent education reform resulting in the rise of the Science Technology, Engineering, and Mathematics movement. For students with Autism Spectrum Disorders and intellectual disability, this need for scientific literacy is further complicated by the need for…
Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach
ERIC Educational Resources Information Center
Costescu, Cristina A.; Vanderborght, Bram; David, Daniel O.
2015-01-01
Children with autism spectrum disorder (ASD) engage in highly perseverative and inflexible behaviours. Technological tools, such as robots, received increased attention as social reinforces and/or assisting tools for improving the performance of children with ASD. The aim of our study is to investigate the role of the robotic toy Keepon in a…
Design and Use of Interactive Social Stories for Children with Autism Spectrum Disorder (ASD)
ERIC Educational Resources Information Center
Sani-Bozkurt, Sunagul; Vuran, Sezgin; Akbulut, Yavuz
2017-01-01
The current study aimed to design technology-supported interactive social stories to teach social skills to children with autism spectrum disorder (ASD). A design-based research was implemented with children with ASD along with the participation of their mothers, teachers, peers and field experts. An iterative remediation process was followed…
Yan, Zhan-Ke; Zhang, Hong-Jian; Ying, Yi-Bin
2007-11-01
The quality concern of food and agricultural products has become more and more significant. The related technologies for nondestructive measurement or quality control of food products have been the focus of many researches. Terahertz (THz) radiation, or THz wave, the least explored region of the spectrum, is the electromagnetic wave that lies between mid-infrared and microwave radiation, which has very important research and application values. THz spectroscopy and THz imaging technique are the two main applications of THz wave. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. Recently, THz technology has gained a lot of attention of researchers in various fields from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In the present paper, the properties of THz wave and its uniqueness in sensing and imaging applications were discussed. The most recent researches on THz technology used in food quality control and agricultural products inspection were summarized. The prospect of this novel technology in agriculture and food industry was also discussed.
Research on synchronization technology of frequency hopping communication system
NASA Astrophysics Data System (ADS)
Zhao, Xiangwu; Quan, Houde; Cui, Peizhang
2018-05-01
Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.
A Study on Spectral Signature Analysis of Wetland Vegetation Based on Ground Imaging Spectrum Data
NASA Astrophysics Data System (ADS)
Ling, Chengxing; Liu, Hua; Ju, Hongbo; Zhang, Huaiqing; You, Jia; Li, Weina
2017-10-01
The objective of this study was to verify the application of imaging spectrometer in wetland vegetation remote sensing monitoring, based on analysis of wetland vegetation spectral features. Spectral information of Carex vegetation spectral data under different water environment was collected bySOC710VP and ASD FieldSpec 3; Meanwhile, the chlorophyll contents of wheat leaves were tested in the lab. A total 9 typical vegetation indices were calculated by using two instruments’ data which were spectral values from 400nm to 1000 nm. Then features between the same vegetation indices and soil water contents for two applications were analyzed and compared. The results showed that there were same spectrum curve trends of Carex vegetation (soil moisture content of 51%, 32%, 14% and three regional comparative analysis)reflectance between SOC710VP and ASD FieldSpec 3, including the two reflectance peak of 550nm and 730 nm, two reflectance valley of 690 nm and 970nm, and continuous near infrared reflectance platform. However, The two also have a very clear distinction: (1) The reflection spectra of SOC710VP leaves of Carex Carex leaf spectra in the three soil moisture environment values are greater than ASD FieldSpec 3 collected value; (2) The SOC710VP reflectivity curve does not have the smooth curve of the original spectrum measured by the ASD FieldSpec 3, the amplitude of fluctuation is bigger, and it is more obvious in the near infrared band. It is concluded that SOC710VP spectral data are reliable, with the image features, spectral curve features reliable. It has great potential in the research of hyperspectral remote sensing technology in the development of wetland near earth, remote sensing monitoring of wetland resources.
Quantification of tissue texture with photoacoustic spectrum analysis
NASA Astrophysics Data System (ADS)
Wang, Xueding; Xu, Guan; Meng, Zhuo-Xian; Lin, Jiandie; Carson, Paul
2014-05-01
Photoacoustic (PA) imaging is an emerging technology that could map the functional contrasts in deep biological tissues in high resolution by "listening" to the laser induced thermoelastic waves. Almost all of the current studies in PA imaging are focused on the intensity of the PA signals as an indication of the optical absorbance of the biological tissues. Our group has for the first time demonstrated that the frequency domain power distribution of the broadband PA signals encode the texture information within the regions-of-interest (ROI). Following the similar method of ultrasound spectral analysis (USSA), photoacoustic spectrum analysis (PASA) could evaluate the relative concentrations and, more importantly, the dimensions of microstructures of the optically absorbing materials in biological tissues, including lipid, collagen, water and hemoglobin. By providing valuable insights into tissue pathology, PASA should benefit basic research and clinical management of many diseases, and may help achieve eventual "noninvasive biopsy". In this work, taking advantage of the optical absorption contrasts contributed by lipid and hemoglobin at 1200-nm and 532-nm wavelengths respectively, we investigated the capability of PASA in identifying histological changes corresponding to fat accumulation livers through the study on ex vivo and in situ mouse models. The PA signals from the mouse livers were acquired using our PA and US dual-modality imaging system, and analyzed in the frequency domain. After quantifying the power spectrum by fitting it to a first order model, three spectral parameters, including the intercept, the midband fit and the slope, were extracted and used to differentiate fatty livers from normal livers. The comparison between the PASA parameters from the normal and the fatty livers supports our hypotheses that PASA can quantitatively identify the microstructure changes in liver tissues for differentiating normal and fatty livers.
Jin, Lu; Li, Li; Li, Xin-xia; Yang, Ting; Kong, Bin; Xu, Ping-ping
2011-02-01
The paper is to report the development of an optic-fiber sensing technology method to analyze metronidazole tablets rapidly. In this fiber-optic sensing system, the light from source delivering to probe can be dipped into simple-handling sample solution, absorbed by the solution and reflected to the fiber-optic and detected in the detection system at last. Then the drug content can be shown in the screen from the ultraviolet absorption spectra and the consistency between that obtained by this method and that in China Pharmacopoeia can be compared. With regard to data processing, a new method is explored to identify the authenticity of drugs using the similarity between the sample map and the standard pattern by full ultraviolet spectrum. The results indicate that ultraviolet spectra of tablets can be obtained from this technology and the determination results showed no significant difference as compared with the method in China Pharmacopoeia (P > 0.05), and the similarity can be a parameter to identify the authenticity of drugs.
Environment Tied to Successful Learning.
ERIC Educational Resources Information Center
Cash, Carol S.; And Others
1997-01-01
Technology available to schools includes a broad spectrum of voice, data and video equipment. Planners need to consider the following subsystems individually and collectively: (1) technology-based products; (2) communications and power distribution to support the equipment; and (3) ergonomics, lighting, acoustics, environmental controls, and…
DOT National Transportation Integrated Search
1977-01-01
Auto production and operation consume energy, material, capital and labor resources. Numerous substitution possibilities exist within and between resource sectors, corresponding to the broad spectrum of potential design technologies. Alternative auto...
Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination
NASA Astrophysics Data System (ADS)
Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo
2016-06-01
Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.
Chan, Steven; Hwang, Tiffany; Wong, Alice; Bauer, Amy M.
2017-01-01
Mobile health (mHealth), telemedicine and other technology-based services facilitate mental health service delivery and may be considered part of an e-mental health (eMH) spectrum of care. Web- and Internet-based resources provide a great opportunity for the public, patients, healthcare providers and others to improve wellness, practice prevention and reduce suffering from illnesses. Mobile apps offer portability for access anytime/anywhere, are inexpensive versus traditional desktop computers, and have additional features (e.g., context-aware interventions and sensors with real-time feedback. This paper discusses mobile mental health (mMH) options, as part of a broader framework of eMH options. The evidence-based literature shows that many people have an openness to technology as a way to help themselves, change behaviors and engage additional clinical services. Studies show that traditional video-based synchronous telepsychiatry (TP) is as good as in-person service, but mHealth outcomes have been rarely, directly compared to in-person and other eMH care options. Similarly, technology options added to in-person care or combined with others have not been evaluated nor linked with specific goals and desired outcomes. Skills and competencies for clinicians are needed for mHealth, social media and other new technologies in the eMH spectrum, in addition to research by randomized trials and study of health service delivery models with an emphasis on effectiveness. PMID:28894744
Multi-carrier modulation analysis and WCP-COQAM proposal
NASA Astrophysics Data System (ADS)
Lin, Hao; Siohan, Pierre
2014-12-01
In the vision towards future radio systems, where access to information and sharing of data is to be available anywhere and anytime to anyone for anything, a wide variety of applications and services are therefore envisioned. This naturally calls for a more flexible system to support. Moreover, the demand for drastically increased data traffic, as well as the fact of spectrum scarcity, would eventually force future spectrum access to a more dynamic fashion. For addressing the challenges, a powerful and flexible physical layer technology must be prepared, which naturally brings us to the question whether the legacy of the OFDM system can still fit in this context. In fact, during the past years, extensive research effort has been made in this area and several enhanced alternatives have been reported in the literature. Nevertheless, up to date, all of the proposed schemes have advantages and disadvantages. In this paper, we give a detailed analysis on these well-known schemes from different aspects and point out their open issues. Then, we propose a new scheme that aims to maximally overcome the identified drawbacks of its predecessors while still trying to keep their advantages. Simulation results illustrate the improvement achieved by our proposal.
Collision management utilizing CCD and remote sensing technology
NASA Technical Reports Server (NTRS)
Mcdaniel, Harvey E., Jr.
1995-01-01
With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).
Zheng, Zhi; Warren, Zachary; Weitlauf, Amy; Fu, Qiang; Zhao, Huan; Swanson, Amy; Sarkar, Nilanjan
2016-11-01
Researchers are increasingly attempting to develop and apply innovative technological platforms for early detection and intervention of autism spectrum disorder (ASD). This pilot study designed and evaluated a novel technologically-mediated intelligent learning environment with relevance to early social orienting skills. The environment was endowed with the capacity to administer social orienting cues and adaptively respond to autonomous real-time measurement of performance (i.e., non-contact gaze measurement). We evaluated the system with both toddlers with ASD (n = 8) as well as typically developing infants (n = 8). Children in both groups were able to ultimately respond accurately to social prompts delivered by the technological system. Results also indicated that the system was capable of attracting and pushing toward correct performance autonomously without user intervention.
NASA Astrophysics Data System (ADS)
Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan
2018-02-01
In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.
White paper on science operations
NASA Technical Reports Server (NTRS)
Schreier, Ethan J.
1991-01-01
Major changes are taking place in the way astronomy gets done. There are continuing advances in observational capabilities across the frequency spectrum, involving both ground-based and space-based facilities. There is also very rapid evolution of relevant computing and data management technologies. However, although the new technologies are filtering in to the astronomy community, and astronomers are looking at their computing needs in new ways, there is little coordination or coherent policy. Furthermore, although there is great awareness of the evolving technologies in the arena of operations, much of the existing operations infrastructure is ill-suited to take advantage of them. Astronomy, especially space astronomy, has often been at the cutting edge of computer use in data reduction and image analysis, but has been somewhat removed from advanced applications in operations, which have tended to be implemented by industry rather than by the end-user scientists. The purpose of this paper is threefold. First, we briefly review the background and general status of astronomy-related computing. Second, we make recommendations in three areas: data analysis; operations (directed primarily to NASA-related activities); and issues of management and policy, believing that these must be addressed to enable technological progress and to proceed through the next decade. Finally, we recommend specific NASA-related work as part of the Astrotech-21 plans, to enable better science operations in the operations of the Great Observatories and in the lunar outpost era.
Optical perception for detection of cutaneous T-cell lymphoma by multi-spectral imaging
NASA Astrophysics Data System (ADS)
Hsiao, Yu-Ping; Wang, Hsiang-Chen; Chen, Shih-Hua; Tsai, Chung-Hung; Yang, Jen-Hung
2014-12-01
In this study, the spectrum of each picture element of the patient’s skin image was obtained by multi-spectral imaging technology. Spectra of normal or pathological skin were collected from 15 patients. Principal component analysis and principal component scores of skin spectra were employed to distinguish the spectral characteristics with different diseases. Finally, skin regions with suspected cutaneous T-cell lymphoma (CTCL) lesions were successfully predicted by evaluation and classification of the spectra of pathological skin. The sensitivity and specificity of this technique were 89.65% and 95.18% after the analysis of about 109 patients. The probability of atopic dermatitis and psoriasis patients misinterpreted as CTCL were 5.56% and 4.54%, respectively.
ERIC Educational Resources Information Center
Rubin, Philip A.
If the Corporation for Public Broadcasting (CPB) is eventually to serve all citizens with public radio and television, technological and regulatory innovation will be required. Service to rural America and service to specific groups within urban areas cannot be accomplished within the limits of existing technology and existing spectrum allocation…
ERIC Educational Resources Information Center
Shic, Frederick; Smith, Daniel; Horsburgh, Brian; Hollander, Eric; Rehg, James M.; Goodwin, Matthew
2015-01-01
A gap exists between the expanding space of technological innovations to aid those affected by autism spectrum disorders, and the actual impact of those technologies on daily lives. This gap can be addressed through a very practical path of commercialization. However, the path from a technological innovation to a commercially viable product is…
NASA's mobile satellite communications program; ground and space segment technologies
NASA Technical Reports Server (NTRS)
Naderi, F.; Weber, W. J.; Knouse, G. H.
1984-01-01
This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.
Isolated heart models: cardiovascular system studies and technological advances.
Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo
2015-07-01
Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.
Fuel Property Determination of Biodiesel-Diesel Blends By Terahertz Spectrum
NASA Astrophysics Data System (ADS)
Zhao, Hui; Zhao, Kun; Bao, Rima
2012-05-01
The frequency-dependent absorption characteristics of biodiesel and its blends with conventional diesel fuel have been researched in the spectral range of 0.2-1.5 THz by the terahertz time-domain spectroscopy (THz-TDS). The absorption coefficient presented a regular increasing with biodiesel content. A nonlinear multivariate model that correlating cetane number and solidifying point of bio-diesel blends with absorption coefficient has been established, making the quantitative analysis of fuel properties simple. The results made the cetane number and solidifying point prediction possible by THz-TDS technology and indicated a bright future in practical application.
Alternatives for NASTRAN maintenance, modification and dissemination
NASA Technical Reports Server (NTRS)
Schaeffer, H. G.
1977-01-01
Various alternatives to direct NASA support of the program are considered ranging from no support at one end of the spectrum to subsidizing a non profit user's group at the other. Of all the alternatives that are developed, the user group appears to be most viable. NASA's past and future roles in the development of computerized technology are also considered. The need for an institute for computational analysis is identified and NASA's possible involvement is described. The goals of the proposed institute and research funds to support an activity that has the potential of a much larger impact on the technical community are identified.
NASA Astrophysics Data System (ADS)
KałuŻyński, P.; Maciak, E.; Herzog, T.; Wójcik, M.
2016-09-01
In this paper we propose low cost and easy in development fully working dye-sensitized solar cell module made with use of a different sensitizing dyes (various anthocyanins and P3HT) for increasing the absorption spectrum, transparent conducting substrates (vaccum spattered chromium and gold), nanometer sized TiO2 film, iodide and methyl viologen dichloride based electrolyte, and a counter electrode (vaccum spattered platinum or carbon). Moreover, some of the different technologies and optimization manufacturing processes were elaborated for energy efficiency increase and were presented in this paper.
Nam, Inho; Park, Jongseok; Park, Soomin; Bae, Seongjun; Yoo, Young Geun; Han, Jeong Woo; Yi, Jongheop
2017-05-24
Real-time analysis of changes in the atomic environment of materials is a cutting edge technology that is being used to explain reaction dynamics in many fields of science. Previously, this kind of analysis was only possible using heavy nucleonic equipment such as XANES and EXAFS, or Raman spectroscopy on a moderate scale. Here, a new methodology is described that can be used to track changes in crystalline developments during complex Li insertion reactions via the observation of structural color. To be specific, the changes in atomic crystalline and nanostructure are shown during Li insertion in a complex TiO 2 polymorph. Structural color corresponds to the refractive indices of materials originating from their atomic bonding nature and precise wave interferences in accordance with their nanostructure. Therefore, this new analysis simultaneously reveals changes in the nanostructure as well as changes in the atomic bonding nature of materials.
ERIC Educational Resources Information Center
Kitazoe, Noriko; Fujita, Naofumi; Izumoto, Yuji; Terada, Shin-ichi; Hatakenaka, Yuhei
2017-01-01
The purpose of this study was to investigate whether the individuals in the general population with high scores on the Autism Spectrum Quotient constituted a single homogeneous group or not. A cohort of university students (n = 4901) was investigated by cluster analysis based on the original five subscales of the Autism Spectrum Quotient. Based on…
Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah
2014-01-01
Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084
ERIC Educational Resources Information Center
Ayres, Kevin Michael; Mechling, Linda; Sansosti, Frank J.
2013-01-01
To successfully integrate technology into any educational program, practitioners need awareness of available technology, an understanding of how it can assist with instruction, knowledge of ways it can support day-to-day activities and, finally, the ability to teach students as well as educators to use the technology. The proliferation of advanced…
Xu, Ying; Zeng, Chang-chun; Cai, Xiu-yu; Guo, Rong-ping; Nie, Guang; Jin, Ying
2012-11-01
In this study, the optical data of tongue color of different syndromes in primary hepatic carcinoma (PHC) were detected by optical spectrum colorimetry, and the chromaticity of tongue color was compared and analyzed. The tongue color characteristics of different syndromes in PHC and the relationship between different syndromes and tongue color were also investigated. Tongue color data from 133 eligible PHC patients were collected by optical spectrum colorimetry and the patients were divided into 4 syndrome groups according to their clinical features. The syndrome groups were liver depression and spleen deficiency (LDSD), accumulation of damp-heat (ADH), deficiency of liver and kidney yin (DLKY), and qi stagnation and blood stasis (QSBS). The variation characteristics of chromaticity coordinates, dominant wavelength, excitation purity and the distribution in the International Commission on Illumination (CIE) LAB uniform color space were measured. At the same time, the differences of overall chromatism, clarity, chroma, saturation and hue were also calculated and analyzed. PHC patients in different syndrome groups exhibited differences in chromaticity coordinates. The dominant wavelength of QSBS was distinctly different from that of the other 3 syndromes. Excitation purity in the syndromes of LDSD, ADH and DLKY showed gradual increases (P<0.01). Different syndromes in the CIE LAB color three-dimensional space showed differences in tongue color distribution areas. The CIE hue-angle value of QSBS was negative, and different from that of the other 3 syndromes (P<0.01). CIE chroma in the syndromes of LDSD, ADH and DLKY showed gradual increases (P<0.01), the same as excitation purity. In the comparison of chromatism, tongue color variations in different syndromes were quantified by human observation. This study shows that tongue color diagnosis according to the syndrome classifications of traditional Chinese medicine can be quantified with optical spectrum colorimetry technology. Different syndromes in PHC exhibit distinct chromatisms of tongue color through the calculation and analysis of chromaticity parameters of CIE, combined with colorimetric system and CIE LAB color space, and these are consistent with the characteristics of clinical tongue color. Applying optical spectrum colorimetry technology to tongue color differentiation has the potential to serve as a reference point in standardizing traditional Chinese medicine syndrome classification in PHC.
ERIC Educational Resources Information Center
Diener, Marissa L.; Wright, Cheryl A.; Dunn, Louise; Wright, Scott D.; Anderson, Laura Linnell; Smith, Katherine Newbold
2016-01-01
This study explores the processes occurring during technology workshops which built on interests and enhanced social engagement for students with autism spectrum disorders (ASD). The workshops used a community based research design and focused on teaching a creative three-dimensional (3D) design programme (SketchUp™) to students with ASD. Seven…
ERIC Educational Resources Information Center
Lierheimer, Kristin S.; Murray, Mary M.; Wooldridge, Deborah G.; Smith, Sheila
2014-01-01
This chapter describes how an institution of higher education, Bowling Green State University (BGSU), partnered with the Ohio Center for Autism and Low Incidence (OCALI), a quasi-governmental agency, to meet the training needs of the local, state, national, and international community by providing an online autism spectrum disorders (ASD)…
A survey of fault diagnosis technology
NASA Technical Reports Server (NTRS)
Riedesel, Joel
1989-01-01
Existing techniques and methodologies for fault diagnosis are surveyed. The techniques run the gamut from theoretical artificial intelligence work to conventional software engineering applications. They are shown to define a spectrum of implementation alternatives where tradeoffs determine their position on the spectrum. Various tradeoffs include execution time limitations and memory requirements of the algorithms as well as their effectiveness in addressing the fault diagnosis problem.
Meta-Analysis of Parent-Mediated Interventions for Young Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Nevill, Rose E.; Lecavalier, Luc; Stratis, Elizabeth A.
2018-01-01
A number of studies of parent-mediated interventions in autism spectrum disorder have been published in the last 15 years. We reviewed 19 randomized clinical trials of parent-mediated interventions for children with autism spectrum disorder between the ages of 1 and 6 years and conducted a meta-analysis on their efficacy. Meta-analysis outcomes…
NASA Astrophysics Data System (ADS)
Studenny, John; Johnstone, Eric
1991-01-01
The acousto-optic spectrum analyzer has undergone a theoretical design review and a basic parameter tradeoff analysis has been performed. The main conclusion is that for the given scenario of a 55 dB dynamic range and for a one-second temporal resolution, a 3.9 MHz resolution is a reasonable compromise with respect to current technology. Additional configurations are suggested. Noise testing of the signal detection processor algorithm was conducted. Additive white Gaussian noise was introduced to pure data. As expected, the tradeoff was between algorithm sensitivity and false alarms. No additional algorithm improvements could be made. The algorithm was observed to be robust, provided that the noise floor was set at a proper level. The digitization scheme was mainly driven by hardware constraints. To implement an analog to digital conversion scheme that linearly covers a 55 dB dynamic range would require a minimum of 17 bits. The general consensus was that 17 bits would be untenable for very large scale integration.
Multispectral image analysis for object recognition and classification
NASA Astrophysics Data System (ADS)
Viau, C. R.; Payeur, P.; Cretu, A.-M.
2016-05-01
Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.
[Studies on the brand traceability of milk powder based on NIR spectroscopy technology].
Guan, Xiao; Gu, Fang-Qing; Liu, Jing; Yang, Yong-Jian
2013-10-01
Brand traceability of several different kinds of milk powder was studied by combining near infrared spectroscopy diffuse reflectance mode with soft independent modeling of class analogy (SIMCA) in the present paper. The near infrared spectrum of 138 samples, including 54 Guangming milk powder samples, 43 Netherlands samples, and 33 Nestle samples and 8 Yili samples, were collected. After pretreatment of full spectrum data variables in training set, principal component analysis was performed, and the contribution rate of the cumulative variance of the first three principal components was about 99.07%. Milk powder principal component regression model based on SIMCA was established, and used to classify the milk powder samples in prediction sets. The results showed that the recognition rate of Guangming milk powder, Netherlands milk powder and Nestle milk powder was 78%, 75% and 100%, the rejection rate was 100%, 87%, and 88%, respectively. Therefore, the near infrared spectroscopy combined with SIMCA model can classify milk powder with high accuracy, and is a promising identification method of milk powder variety.
Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L.; Dianes, José A.; del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W.; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio
2016-01-01
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra. PMID:27493588
Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L; Dianes, José A; Del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio
2016-08-01
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra.
On the performance of energy detection-based CR with SC diversity over IG channel
NASA Astrophysics Data System (ADS)
Verma, Pappu Kumar; Soni, Sanjay Kumar; Jain, Priyanka
2017-12-01
Cognitive radio (CR) is a viable 5G technology to address the scarcity of the spectrum. Energy detection-based sensing is known to be the simplest method as far as hardware complexity is concerned. In this paper, the performance of spectrum sensing-based energy detection technique in CR networks over inverse Gaussian channel for selection combining diversity technique is analysed. More specifically, accurate analytical expressions for the average detection probability under different detection scenarios such as single channel (no diversity) and with diversity reception are derived and evaluated. Further, the detection threshold parameter is optimised by minimising the probability of error over several diversity branches. The results clearly show the significant improvement in the probability of detection when optimised threshold parameter is applied. The impact of shadowing parameters on the performance of energy detector is studied in terms of complimentary receiver operating characteristic curve. To verify the correctness of our analysis, the derived analytical expressions are corroborated via exact result and Monte Carlo simulations.
Sensing Technologies for Autism Spectrum Disorder Screening and Intervention
Cabibihan, John-John; Javed, Hifza; Aldosari, Mohammed; Frazier, Thomas W.; Elbashir, Haitham
2016-01-01
This paper reviews the state-of-the-art in sensing technologies that are relevant for Autism Spectrum Disorder (ASD) screening and therapy. This disorder is characterized by difficulties in social communication, social interactions, and repetitive behaviors. It is diagnosed during the first three years of life. Early and intensive interventions have been shown to improve the developmental trajectory of the affected children. The earlier the diagnosis, the sooner the intervention therapy can begin, thus, making early diagnosis an important research goal. Technological innovations have tremendous potential to assist with early diagnosis and improve intervention programs. The need for careful and methodological evaluation of such emerging technologies becomes important in order to assist not only the therapists and clinicians in their selection of suitable tools, but to also guide the developers of the technologies in improving hardware and software. In this paper, we survey the literatures on sensing technologies for ASD and we categorize them into eye trackers, movement trackers, electrodermal activity monitors, tactile sensors, vocal prosody and speech detectors, and sleep quality assessment devices. We assess their effectiveness and study their limitations. We also examine the challenges faced by this growing field that need to be addressed before these technologies can perform up to their theoretical potential. PMID:28036004
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
... Government's role in sponsoring important basic and applied research and development. The workshop will also... Office (NCO) for Networking and Information Technology Research and Development (NITRD). ACTION: Notice..., 2011. SUMMARY: Representatives from Federal research agencies, private industry, and academia will...
With Corporate Help, We're Building the School of the Future Right Now.
ERIC Educational Resources Information Center
Herlihy, John J.; Day, C. William
1989-01-01
When Toyota Motor Manufacturing moved into a Kentucky community, it provided technological expertise and substantial financial backing to the school system. "Smart classrooms" are being designed with a spectrum of technological tools including computerized science laboratories and electronically linked media centers. (MLF)
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
AC Josephson effect applications in microwave systems
NASA Astrophysics Data System (ADS)
Larkin, Serguey Y.
1996-12-01
A complication of the tasks solving by the modem radliolocation, radionavigation and communication systems connected with the demand promotion to the resolution and accuracy of coordinates definition and increase in the volumes of transmitted information in satellite communication systems has resulted in boisterous mastering of millimeter wave bands. Success in microwave technology reached in 80' allowed such leading instrument developing companies as Hewlett Packard; EIP, lB millimeter etc. to set up an output of mm- and submm-wave bands devices and systems. It has streamlined Scientific Technological Progress in several spheres, since millimeter, through infra-red frequency range was closed to researchers for a long period of time because of the absence of necessary equipment. At present microwave devices of the short-wave part of mm- wave band and of submm- wave bands are used not only in radiolocation and communications. Unique diagnostic systems based on the analysis of the radiation parameters of different microwave sources were created. They have their application in medicine, thermonuclear energetics, radioastronomy, biology, nuclear physics, the physics of the solid state body, geology, etc. The above circumstances caused the beginning of the measuring microwave technology researches in 60 to 600 GHz frequency range: generators, power and frequency meters, spectrum analyzers. The task of working out equipment and techniques of the effective control as well as frequency and intensity measurements of the microwave signals in the investigated range is of the special interest. Here are some examples. The creation of a thermonuclear reactor in ITER project is considered to be the project of the century in the energetics sphere. One of the basic engineering tasks in the course of project realization is the creation of the diagnostic equipment realizing in real time spectrum analysis of thermonuclear plasma radiation at the so called cyclotron hannonics. Such analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.
NMR spectrum analysis for CrAs at ambient pressure
NASA Astrophysics Data System (ADS)
Kotegawa, H.; Nakahara, S.; Matsushima, K.; Tou, H.; Matsuoka, E.; Sugawara, H.; Harima, H.
2018-05-01
We report NMR spectrum analysis for CrAs, which was recently reported to be superconducting under pressure. The NMR spectrum obtained by the powdered single crystals shows a typical powder pattern reproduced by the electric field gradient (EFG) parameters and isotropic Knight shift, indicating anisotropy of Knight shift is not remarkable in CrAs. For the oriented sample, the spectrum can be understood by considering that the crystals are aligned for H ∥ b . The temperature dependence of Knight shift was successfully obtained from NMR spectrum with large nuclear quadrupole interaction.
Cárdenas, V; Cordobés, M; Blanco, M; Alcalà, M
2015-10-10
The pharmaceutical industry is under stringent regulations on quality control of their products because is critical for both, productive process and consumer safety. According to the framework of "process analytical technology" (PAT), a complete understanding of the process and a stepwise monitoring of manufacturing are required. Near infrared spectroscopy (NIRS) combined with chemometrics have lately performed efficient, useful and robust for pharmaceutical analysis. One crucial step in developing effective NIRS-based methodologies is selecting an appropriate calibration set to construct models affording accurate predictions. In this work, we developed calibration models for a pharmaceutical formulation during its three manufacturing stages: blending, compaction and coating. A novel methodology is proposed for selecting the calibration set -"process spectrum"-, into which physical changes in the samples at each stage are algebraically incorporated. Also, we established a "model space" defined by Hotelling's T(2) and Q-residuals statistics for outlier identification - inside/outside the defined space - in order to select objectively the factors to be used in calibration set construction. The results obtained confirm the efficacy of the proposed methodology for stepwise pharmaceutical quality control, and the relevance of the study as a guideline for the implementation of this easy and fast methodology in the pharma industry. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zemek, Peter G.; Plowman, Steven V.
2010-04-01
Advances in hardware have miniaturized the emissions spectrometer and associated optics, rendering them easily deployed in the field. Such systems are also suitable for vehicle mounting, and can provide high quality data and concentration information in minutes. Advances in software have accompanied this hardware evolution, enabling the development of portable point-and-click OP-FTIR systems that weigh less than 16 lbs. These systems are ideal for first-responders, military, law enforcement, forensics, and screening applications using optical remote sensing (ORS) methodologies. With canned methods and interchangeable detectors, the new generation of OP-FTIR technology is coupled to the latest forward reference-type model software to provide point-and-click technology. These software models have been established for some time. However, refined user-friendly models that use active, passive, and solar occultation methodologies now allow the user to quickly field-screen and quantify plumes, fence-lines, and combustion incident scenarios in high-temporal-resolution. Synthetic background generation is now redundant as the models use highly accurate instrument line shape (ILS) convolutions and several other parameters, in conjunction with radiative transfer model databases to model a single calibration spectrum to collected sample spectra. Data retrievals are performed directly on single beam spectra using non-linear classical least squares (NLCLS). Typically, the Hitran line database is used to generate the initial calibration spectrum contained within the software.
Park, Seong Ho; Han, Kyunghwa
2018-03-01
The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical images. Adoption of an artificial intelligence tool in clinical practice requires careful confirmation of its clinical utility. Herein, the authors explain key methodology points involved in a clinical evaluation of artificial intelligence technology for use in medicine, especially high-dimensional or overparameterized diagnostic or predictive models in which artificial deep neural networks are used, mainly from the standpoints of clinical epidemiology and biostatistics. First, statistical methods for assessing the discrimination and calibration performances of a diagnostic or predictive model are summarized. Next, the effects of disease manifestation spectrum and disease prevalence on the performance results are explained, followed by a discussion of the difference between evaluating the performance with use of internal and external datasets, the importance of using an adequate external dataset obtained from a well-defined clinical cohort to avoid overestimating the clinical performance as a result of overfitting in high-dimensional or overparameterized classification model and spectrum bias, and the essentials for achieving a more robust clinical evaluation. Finally, the authors review the role of clinical trials and observational outcome studies for ultimate clinical verification of diagnostic or predictive artificial intelligence tools through patient outcomes, beyond performance metrics, and how to design such studies. © RSNA, 2018.
The New Millennium Program: Validating Advanced Technologies for Future Space Missions
NASA Technical Reports Server (NTRS)
Minning, Charles P.; Luers, Philip
1999-01-01
This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument
Research and development of LANDSAT-based crop inventory techniques
NASA Technical Reports Server (NTRS)
Horvath, R.; Cicone, R. C.; Malila, W. A. (Principal Investigator)
1982-01-01
A wide spectrum of technology pertaining to the inventory of crops using LANDSAT without in situ training data is addressed. Methods considered include Bayesian based through-the-season methods, estimation technology based on analytical profile fitting methods, and expert-based computer aided methods. Although the research was conducted using U.S. data, the adaptation of the technology to the Southern Hemisphere, especially Argentina was considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z. J.; Wells, D.; Green, J.
Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switchingmore » the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.« less
Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Park, J. H.
1984-01-01
An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.
In-Space Propulsion Program Overview and Status
NASA Technical Reports Server (NTRS)
Wercinski, Paul F.; Johnson, Les; Baggett, Randy M.
2003-01-01
NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Solar Electric Propulsion, Aerocapture, Solar Sails, Momentum Exchange Tethers, Plasma Sails and other technologies such as Advanced Chemical Propulsion. The ISP Program intends to develop cost-effective propulsion technologies that will provide a broad spectrum of mission possibilities, enabling NASA to send vehicles on longer, more useful voyages and in many cases to destinations that were previously unreachable using conventional means. The ISP approach to identifying and prioritizing these most promising technologies is to use mission and system analysis and subsequent peer review. The ISP program seeks to develop technologies under consideration to Technology Readiness Level (TRL) -6 for incorporation into mission planning within 3-5 years of initiation. The NASA TRL 6 represents a level where a technology is ready for system level demonstration in a relevant environment, usually a space environment. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRA's) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA Headquarters Office of Space Science and implemented by the Marshall Space Flight Center in Huntsville, Alabama.
Schlosser, Ralf W; Koul, Rajinder K
2015-01-01
The purpose of this scoping review was to (a) map the research evidence on the effectiveness of augmentative and alternative communication (AAC) interventions using speech output technologies (e.g., speech-generating devices, mobile technologies with AAC-specific applications, talking word processors) for individuals with autism spectrum disorders, (b) identify gaps in the existing literature, and (c) posit directions for future research. Outcomes related to speech, language, and communication were considered. A total of 48 studies (47 single case experimental designs and 1 randomized control trial) involving 187 individuals were included. Results were reviewed in terms of three study groupings: (a) studies that evaluated the effectiveness of treatment packages involving speech output, (b) studies comparing one treatment package with speech output to other AAC modalities, and (c) studies comparing the presence with the absence of speech output. The state of the evidence base is discussed and several directions for future research are posited.
Knight, Victoria; McKissick, Bethany R; Saunders, Alicia
2013-11-01
A comprehensive review of the literature was conducted for articles published between 1993 and 2012 to determine the degree to which technology-based interventions can be considered an evidence-based practice to teach academic skills to individuals with Autism Spectrum Disorder (ASD). Criteria developed by Horner et al. (Except Child 71:165-178, 2005) and Gersten et al. (Except Child 71:149-164, 2005) were used to determine the quality of single-subject research studies and group experimental research studies respectively. A total of 29 [Corrected] studies met inclusion criteria. Of these studies, only three single-subject studies and no group studies met criteria for quality or acceptable studies. Taken together, the results suggest that practitioners should use caution when teaching academic skills to individuals with ASD using technology-based interventions. Limitations and directions for future research are discussed.
Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU
NASA Astrophysics Data System (ADS)
Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang
2017-10-01
Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.
The research on the temperature measurement technology of aluminum atomic emission spectroscopy
NASA Astrophysics Data System (ADS)
Hu, Xiaotao; Hao, Xiaojian; Tang, Huijuan; Sun, Yongkai
2018-02-01
Aimed to the testing requirement of the transient high temperature in the bore of barrel weapon, which has the problems of high temperature, high pressure, high overload and narrow adverse environment, the photoelectric pyrometer was researched based on the temperature measurement technology of double line of atomic emission spectrum and storage measurement technology, which used silicon photomultiplier. Al I 690.6nm and 708.5nm were selected as the temperature measurement element spectral lines, spectral line intensity was converted into a voltage value by silicon photomultiplier, the temperature was obtained through the ratio of two spectrum lines. The temperature is measured by the photoelectric thermometer and the infrared thermometer when heating aluminum by oxyhydrogen flame, and the relative error was 1.75%. Results show the temperature dependence of the two methods is better, and prove the feasibility of the method.
Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek
2017-07-07
Canada's third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data.
Multijunction Solar Cell Technology for Mars Surface Applications
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris
2006-01-01
Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.
Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek
2017-01-01
Canada’s third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data. PMID:28686198
den Brok, W L J E; Sterkenburg, P S
2015-01-01
Persons with an autism spectrum disorder and/or intellectual disability have difficulties in processing information, which impedes the learning of daily living skills and cognitive concepts. Technological aids support learning, and if used temporarily and in a self-controlled manner, they may contribute to independent societal participation. This systematic review examines the studies that applied self-controlled technologies. The 28 relevant studies showed that skills and concepts are learned through prompting, interaction with devices, and practicing in (realistic) virtual environments. For attaining cognitive concepts, advanced technologies such as virtual reality are effective. Five studies focussed on cognitive concepts and two on emotion concepts. More research is necessary to examine the generalization of results and effect of using technology for learning cognitive and emotional concepts. Implications for Rehabilitation Persons with a moderate to mild intellectual disability and/or with autism can use self-controlled technology to learn new activities of daily living and cognitive concepts (e.g. time perception and imagination). Specific kinds of technologies can be used to learn specific kinds of skills (e.g. videos on computers or handheld devices for daily living skills; Virtual Reality for time perception and emotions of others). For learning new cognitive concepts it is advisable to use more advanced technologies as they have the potential to offer more features to support learning.
Q & A with Ed Tech Leaders: Interview with John R. Savery
ERIC Educational Resources Information Center
Fulgham, Susan M.; Shaughnessy, Michael F.
2014-01-01
John R. Savery is Professor of Education and Director of Instructional Services at the University of Akron. His research and teaching interests focus on problem-based learning and technology-rich learning environments. As Director he supports faculty integration of instructional technology across the spectrum, from traditional classrooms to…
Adult Literacy and Technology Newsletter. Vol. 3, Nos. 1-4.
ERIC Educational Resources Information Center
Gueble, Ed, Ed.
1989-01-01
This document consists of four issues of a newsletter focused on the spectrum of technology use in literacy instruction. The first issue contains the following articles: "Five 'Big' Systems and One 'Little' Option" (Weisberg); "Computer Use Patterns at Blackfeet Community College" (Hill); "Software Review: Educational Activities' Science Series"…
ERIC Educational Resources Information Center
Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan
2015-01-01
Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…
The great observatories for space astrophysics
NASA Technical Reports Server (NTRS)
Harwit, M.; Neal, V.
1986-01-01
Motivated by the ancient urge to observe, measure, compute, and understand the nature of the Universe, the available advanced technology is used to place entire observatories into space for investigations across the spectrum. Stellar evolution, development and nature of the Universe, planetary exploration, technology, NASA's role, and careers in asronomy are displayed.
75 FR 70725 - Spectrum Policy Seminar for the Utility Sector
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... Wazer, Senior Advisor, Technology Law (202) 586-3421; [email protected] . For Media Inquires you may... comment process, the Department of Energy (DOE) issued a report entitled, ``Communications Requirements of Smart Grid Technologies. '' The complete text of the report, and of a second report addressing data...
Targeting and tailoring physical activity information using print and information technologies.
Napolitano, Melissa A; Marcus, Bess H
2002-07-01
With the large numbers of physically inactive individuals, it is important that interventions reach a broad spectrum of the population. This paper focuses on targeting and tailoring physical activity information, and the use of mediated interventions, specifically those using print, and other information technologies for promoting physical activity.
Using Technology to Support STEM Reading
ERIC Educational Resources Information Center
Schneps, Matthew H.; O'Keeffe, Jamie K.; Heffner-Wong, Amanda; Sonnert, Gerhard
2010-01-01
Tasks in science, technology, engineering, and mathematics (STEM) are unusually varied because they target phenomena occurring in diverse domains and call upon a wide range of abilities to perform them. The fact that STEM tasks cover such a broad spectrum of abilities makes these fields uncharacteristically inclusive: Individuals with disabilities…
A Meta-Analysis of the Social Communication Questionnaire: Screening for Autism Spectrum Disorder
ERIC Educational Resources Information Center
Chesnut, Steven R.; Wei, Tianlan; Barnard-Brak, Lucy; Richman, David M.
2017-01-01
The current meta-analysis examines the previous research on the utility of the Social Communication Questionnaire as a screening instrument for autism spectrum disorder. Previously published reports have highlighted the inconsistencies between Social Communication Questionnaire-screening results and formal autism spectrum disorder diagnoses. The…
Mechatronics technology in predictive maintenance method
NASA Astrophysics Data System (ADS)
Majid, Nurul Afiqah A.; Muthalif, Asan G. A.
2017-11-01
This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.
Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping
2015-01-01
Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
The spectrum of doubly ionized silver: Ag III
NASA Astrophysics Data System (ADS)
Saxena, Ankita; Ahmad, Tauheed
2017-04-01
Doubly ionized silver, isoelectronic with Rh I has ground configuration 4p64d9 and the excited configurations are of the type 4d8nl (n >3) and 4p54d10. The spectrum of Ag III has been studied in the wavelength region 350-2074 Å. The spectra needed for the analysis were recorded on 3-m normal incidence vacuum spectrograph at Antigonish Laboratory, Canada. The analysis of this spectrum was started by Gibbs and White establishing the ground doublet followed by Gilbert, Shadmi and lastly by Benschop et al. At present only two excited configurations 4d85p and 4d85s have been studied apart from the ground doublets. In the present work we have undertaken the study of two major configurations 4d8(5d+6s) which comprising of 83 energy levels,with the aid of Relativistic Hartree-Fock (HFR) method and least square fitted parametric calculations using Cowan Code. All the previously reported values for 4d85p and 4d85s have been confirmed except the two levels of 4d85p configuration. J value of one of the level at 135626.7 cm-1 has been changed from J=0.5 to J=1.5 and new level for J=0.5 is established at 135778.4 cm-1 . The work is still in progress and the new findings will be presented. Ankita Saxena would like to acknowledge the financial support through Inspire Fellowship Scheme through Department of Science and Technology (DST), India.
ERIC Educational Resources Information Center
Mechling, Linda C.; Ayres, Kevin M.; Foster, Ashley L.; Bryant, Kathryn J.
2015-01-01
The purpose of this study was to evaluate the ability of four high school-aged students with a diagnosis of autism spectrum disorder and moderate intellectual disability to generalize performance of skills when using materials different from those presented through video models. An adapted alternating treatments design was used to evaluate student…
The Modular Clock Algorithm for Blind Rendezvous
2009-03-26
and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training...capabilities in spectrum management and particularly in harvesting unused portions of pre-allocated band- width under DSA. The term “cognitive radio” was...of rendezvous and our role as the waiter . However, if the “child” refuses to move from non-common spectrum, rendezvous cannot occur. Bluetooth
Research and Technology Capabilities Available for Partnership, 2007-2008
2010-01-01
simulated aircraft environment to measure acoustic and/ or IR radiation and signature. Instrumentation is capable of 96 pressure channels and 105...temperature channels. Mobile Aircraft Infrared Measurement System (AIMS) is field deployable and is used to take full-spectrum IR measurements at our CTF...three phase power. The facility is utilized for the development of visible, IR and RF spectrum sensors/seekers, signature measurement collection of
ERIC Educational Resources Information Center
Vasquez-Terry, Teresa LaDoan
2013-01-01
The purpose of The REMLE Project was to develop a best practices model for using the iPad as an assistive technology device with families of individuals with Autism Spectrum Disorder. Implementation of a double-blind, randomized control trial during a six-week intervention utilizing the iPad was measured for effectiveness in empowerment, social…
Research on response spectrum of dam based on scenario earthquake
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Zhang, Yushan
2017-10-01
Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.
Reliability analysis of instrument design of noninvasive bone marrow disease detector
NASA Astrophysics Data System (ADS)
Su, Yu; Li, Ting; Sun, Yunlong
2016-02-01
Bone marrow is an important hematopoietic organ, and bone marrow lesions (BMLs) may cause a variety of complications with high death rate and short survival time. Early detection and follow up care are particularly important. But the current diagnosis methods rely on bone marrow biopsy/puncture, with significant limitations such as invasion, complex operation, high risk, and discontinuous. It is highly in need of a non-invasive, safe, easily operated, and continuous monitoring technology. So we proposed to design a device aimed for detecting bone marrow lesions, which was based on near infrared spectrum technology. Then we fully tested its reliabilities, including the sensitivity, specificity, signal-to-noise ratio (SNR), stability, and etc. Here, we reported this sequence of reliability test experiments, the experimental results, and the following data analysis. This instrument was shown to be very sensitive, with distinguishable concentration less than 0.002 and with good linearity, stability and high SNR. Finally, these reliability-test data supported the promising clinical diagnosis and surgery guidance of our novel instrument in detection of BMLs.
Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft
NASA Technical Reports Server (NTRS)
Wilkerson, Joseph B.; Smith, Roger L.
2008-01-01
An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was sized for a representative civil passenger transport mission, using current technology. Individual advanced technologies are quantified and applied to resize the aircraft, thereby quantifying the net benefit of that technology to the rotorcraft. Estimates of development cost, production cost and operating and support costs are made with a commercial cost estimating program, calibrated to Boeing products with adjustments for future civil production processes. A cost metric of cash direct operating cost per available seat-mile (DOC ASM) is used to compare the cost benefit of the technologies. The same metric is used to compare results with turboprop operating costs. Reduced engine SFC was the most advantageous advanced technology for both rotorcraft concepts. Structural weight reduction was the second most beneficial technology, followed by advanced drive systems and then by technology for rotorcraft performance. Most of the technologies evaluated in this report should apply similarly to conventional helicopters. The implicit assumption is that resources will become available to mature the technologies for fullscale production aircraft. That assumption is certainly the weak link in any forecast of future possibilities. The analysis serves the purpose of identifying which technologies offer the most potential benefit, and thus the ones that should receive the highest priority for continued development. This study directly addressed the following NASA Subsonic Rotary Wing (SRW) subtopics: SR W.4.8.I.J Establish capability for rotorcraft system analysis and SRW. 4.8.I.4 Conduct limited technology benefit assessment on baseline rotorcraft configurations.
75 FR 5241 - Maritime Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
... effective and efficient use of the spectrum available for maritime communications, accommodate technological innovation, avoid unnecessary regulatory burdens, and maintain consistency with international maritime...
Coexistence Analysis of Civil Unmanned Aircraft Systems at Low Altitudes
NASA Astrophysics Data System (ADS)
Zhou, Yuzhe
2016-11-01
The requirement of unmanned aircraft systems in civil areas is growing. However, provisioning of flight efficiency and safety of unmanned aircraft has critical requirements on wireless communication spectrum resources. Current researches mainly focus on spectrum availability. In this paper, the unmanned aircraft system communication models, including the coverage model and data rate model, and two coexistence analysis procedures, i. e. the interference and noise ratio criterion and frequency-distance-direction criterion, are proposed to analyze spectrum requirements and interference results of the civil unmanned aircraft systems at low altitudes. In addition, explicit explanations are provided. The proposed coexistence analysis criteria are applied to assess unmanned aircraft systems' uplink and downlink interference performances and to support corresponding spectrum planning. Numerical results demonstrate that the proposed assessments and analysis procedures satisfy requirements of flexible spectrum accessing and safe coexistence among multiple unmanned aircraft systems.
NASA Astrophysics Data System (ADS)
Zhang, G. Q.; To, S.
2014-08-01
Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Energy and Commerce.
A discussion of H.R. 1407, a bill to establish procedures to improve the allocation and assignment to the electromagnetic spectrum centered on the current policy of allocating portions of the spectrum through lotteries and auction. This report includes a copy of the bill, the text of testimony presented and materials submitted for the record, and…
Dynamic spectrum management: an impact on EW systems
NASA Astrophysics Data System (ADS)
Gajewski, P.; Łopatka, J.; Suchanski, M.
2017-04-01
Rapid evolution of wireless systems caused an enormous growth of data streams transmitted through the networks and, as a consequence, an accompanying demand concerning spectrum resources (SR). An avoidance of advisable disturbances is one of the main demands in military communications. To solve the interference problems, dynamic spectrum management (DSM) techniques can be used. Two main techniques are possible: centralized Coordinated Dynamic Spectrum Access (CDSA) and distributed Opportunistic Spectrum Access (OSA). CDSA enables the wireless networks planning automation, and systems dynamic reaction to random changes of Radio Environment (RE). For OSA, cognitive radio (CR) is the most promising technology that enables avoidance of interference with the other spectrum users due to CR's transmission parameters adaptation to the current radio situation, according to predefined Radio Policies rules. If DSM techniques are used, the inherent changes in EW systems are also needed. On one hand, new techniques of jamming should be elaborated, on the other hand, the rules and protocols of cooperation between communication network and EW systems should be developed.
Kong, Yan-mei; Liang, Jing-qiu; Wang, Bo; Liang, Zhong-zhu; Xu, Da-wei; Zhang, Jun
2009-04-01
Fourier transform spectrometer (FTS) is widely used in science and industry for the measurement of electromagnetic spectra, and it's trend of minimization is particularly pronounced in many applications. A novel model of a micro FTS with no moving parts is proposed and analyzed. During the analysis, the gradients which mainly introduce the phase error are accounted for in details. Based on these assumptions and the improved Mertz phase correcting method, the spectrum of the signal is simulated, given the real extended light source. The resolution can reach 3.43 nm@800 nm, with high SNR limiting resolving ability 6.8 dB. The novel micro FTS could be made by MOEMS technology, which has some advantages over the conventional micro dispersive spectrometers based on the traditional technology, and this method can also afford some new concepts on the design of spectrometers. The research work is underway to demonstrate the theory.
Magnetic biosensors: Modelling and simulation.
Nabaei, Vahid; Chandrawati, Rona; Heidari, Hadi
2018-04-30
In the past few years, magnetoelectronics has emerged as a promising new platform technology in various biosensors for detection, identification, localisation and manipulation of a wide spectrum of biological, physical and chemical agents. The methods are based on the exposure of the magnetic field of a magnetically labelled biomolecule interacting with a complementary biomolecule bound to a magnetic field sensor. This Review presents various schemes of magnetic biosensor techniques from both simulation and modelling as well as analytical and numerical analysis points of view, and the performance variations under magnetic fields at steady and nonstationary states. This is followed by magnetic sensors modelling and simulations using advanced Multiphysics modelling software (e.g. Finite Element Method (FEM) etc.) and home-made developed tools. Furthermore, outlook and future directions of modelling and simulations of magnetic biosensors in different technologies and materials are critically discussed. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA's Advanced Communications Technology Satellite (ACTS)
NASA Technical Reports Server (NTRS)
Gedney, R. T.
1983-01-01
NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazar, Sarah L.; Winters, Samuel T.; Kreyling, Sean J.
In 2016, the Office of International Nuclear Safeguards at the National Nuclear Security Administration (NNSA) within the Department of Energy (DOE) commissioned the Pacific Northwest National Laboratory (PNNL) to explore the potential implications of the digital currency bitcoin and its underlying technologies on the safeguards system. The authors found that one category of technologies referred to as Shared Ledger Technology (SLT) offers a spectrum of benefits to the safeguards system. While further research is needed to validate assumptions and findings in the paper, preliminary analysis suggests that both the International Atomic Energy Agency (IAEA) and Member States can use SLTmore » to promote efficient, effective, accurate, and timely reporting, and increase transparency in the safeguards system without sacrificing confidentiality of safeguards data. This increased transparency and involvement of Member States in certain safeguards transactions could lead to increased trust and cooperation among States and the public, which generates a number of benefits. This paper describes these benefits and the analytical framework for assessing SLT applications for specific safeguards problems. The paper will also describe other national security areas where SLT could provide benefits.« less
X-ray spectroscopy of the SSME plume
NASA Technical Reports Server (NTRS)
Olive, Dan F.
1988-01-01
In order to examine the potential of using SSME exhaust plume radiation in the soft X-ray spectrum as an early warning system of imminent engine failure, a low cost, low risk experiment was devised. An approach was established, equipment was leased, the system was installed and checked out, and data were successfully acquired demonstrating the proof-of-concept. One spectrum measurement of the SSME plume was acquired during a 300 second burn on the A-1 Test Stand. This spectrum showed a prominent, line emission feature at about 34.5 KeV, a result which was not expected, nor can it be explained at this time. If X-ray spectra are to be useful as a means of monitoring nominal engine operation, it will be necessary to explore this region of the EM spectrum in greater detail. The presence of structure in the spectrum indicates that this technology may prove to be useful as an engine health monitoring system.
[A basic research to share Fourier transform near-infrared spectrum information resource].
Zhang, Lu-Da; Li, Jun-Hui; Zhao, Long-Lian; Zhao, Li-Li; Qin, Fang-Li; Yan, Yan-Lu
2004-08-01
A method to share the information resource in the database of Fourier transform near-infrared(FTNIR) spectrum information of agricultural products and utilize the spectrum information sufficiently is explored in this paper. Mapping spectrum information from one instrument to another is studied to express the spectrum information accurately between the instruments. Then mapping spectrum information is used to establish a mathematical model of quantitative analysis without including standard samples. The analysis result is that the relative coefficient r is 0.941 and the relative error is 3.28% between the model estimate values and the Kjeldahl's value for the protein content of twenty-two wheat samples, while the relative coefficient r is 0.963 and the relative error is 2.4% for the other model, which is established by using standard samples. It is shown that the spectrum information can be shared by using the mapping spectrum information. So it can be concluded that the spectrum information in one FTNIR spectrum information database can be transformed to another instrument's mapping spectrum information, which makes full use of the information resource in the database of FTNIR spectrum information to realize the resource sharing between different instruments.
ERIC Educational Resources Information Center
Guernsey, Lisa
2012-01-01
Touch-screen technologies, on-demand multimedia, and mobile devices are prompting a rethinking of education. In a world of increasing fiscal constraints, state leaders are under pressure to capitalize on these new technologies to improve productivity and help students excel. The task is daunting across the education spectrum, but for those in…
Plugged in: Electronics use in youth and young adults with autism spectrum disorder.
MacMullin, Jennifer A; Lunsky, Yona; Weiss, Jonathan A
2016-01-01
Although electronic technology currently plays an integral role for most youth, there are growing concerns of its excessive and compulsive use. This study documents patterns and impact of electronics use in individuals with autism spectrum disorder compared to typically developing peers. Participants included 172 parents of typically developing individuals and 139 parents of individuals with an autism spectrum disorder diagnosis, ranging in age from 6 to 21 years. Parents completed an online survey of demographics and the frequency, duration, and problematic patterns of electronics use in their youth and young adults. Individuals with autism spectrum disorder were reported to use certain electronics more often in the last month and on an average day, and had greater compulsive Internet and video game use than individuals without autism spectrum disorder. Across both samples, males used video games more often than females. Compared to parents of individuals without autism spectrum disorder, parents of individuals with autism spectrum disorder were significantly more likely to report that electronics use was currently having a negative impact. The implications of problematic electronics use for individuals with autism spectrum disorder are discussed. © The Author(s) 2015.
Microreactor Cells for High-Throughput X-ray Absorption Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beesley, Angela; Tsapatsaris, Nikolaos; Weiher, Norbert
2007-01-19
High-throughput experimentation has been applied to X-ray Absorption spectroscopy as a novel route for increasing research productivity in the catalysis community. Suitable instrumentation has been developed for the rapid determination of the local structure in the metal component of precursors for supported catalysts. An automated analytical workflow was implemented that is much faster than traditional individual spectrum analysis. It allows the generation of structural data in quasi-real time. We describe initial results obtained from the automated high throughput (HT) data reduction and analysis of a sample library implemented through the 96 well-plate industrial standard. The results show that a fullymore » automated HT-XAS technology based on existing industry standards is feasible and useful for the rapid elucidation of geometric and electronic structure of materials.« less
Feasibility and demonstration of a cloud-based RIID analysis system
NASA Astrophysics Data System (ADS)
Wright, Michael C.; Hertz, Kristin L.; Johnson, William C.; Sword, Eric D.; Younkin, James R.; Sadler, Lorraine E.
2015-06-01
A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed.
Primordial power spectrum: a complete analysis with the WMAP nine-year data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun, E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: tarun@iucaa.ernet.in
2013-07-01
We have improved further the error sensitive Richardson-Lucy deconvolution algorithm making it applicable directly on the un-binned measured angular power spectrum of Cosmic Microwave Background observations to reconstruct the form of the primordial power spectrum. This improvement makes the application of the method significantly more straight forward by removing some intermediate stages of analysis allowing a reconstruction of the primordial spectrum with higher efficiency and precision and with lower computational expenses. Applying the modified algorithm we fit the WMAP 9 year data using the optimized reconstructed form of the primordial spectrum with more than 300 improvement in χ{sup 2}{sub eff}more » with respect to the best fit power-law. This is clearly beyond the reach of other alternative approaches and reflects the efficiency of the proposed method in the reconstruction process and allow us to look for any possible feature in the primordial spectrum projected in the CMB data. Though the proposed method allow us to look at various possibilities for the form of the primordial spectrum, all having good fit to the data, proper error-analysis is needed to test for consistency of theoretical models since, along with possible physical artefacts, most of the features in the reconstructed spectrum might be arising from fitting noises in the CMB data. Reconstructed error-band for the form of the primordial spectrum using many realizations of the data, all bootstrapped and based on WMAP 9 year data, shows proper consistency of power-law form of the primordial spectrum with the WMAP 9 data at all wave numbers. Including WMAP polarization data in to the analysis have not improved much our results due to its low quality but we expect Planck data will allow us to make a full analysis on CMB observations on both temperature and polarization separately and in combination.« less
Gerber, Jeffrey S; Ross, Rachael K; Bryan, Matthew; Localio, A Russell; Szymczak, Julia E; Wasserman, Richard; Barkman, Darlene; Odeniyi, Folasade; Conaboy, Kathryn; Bell, Louis; Zaoutis, Theoklis E; Fiks, Alexander G
2017-12-19
Acute respiratory tract infections account for the majority of antibiotic exposure in children, and broad-spectrum antibiotic prescribing for acute respiratory tract infections is increasing. It is not clear whether broad-spectrum treatment is associated with improved outcomes compared with narrow-spectrum treatment. To compare the effectiveness of broad-spectrum and narrow-spectrum antibiotic treatment for acute respiratory tract infections in children. A retrospective cohort study assessing clinical outcomes and a prospective cohort study assessing patient-centered outcomes of children between the ages of 6 months and 12 years diagnosed with an acute respiratory tract infection and prescribed an oral antibiotic between January 2015 and April 2016 in a network of 31 pediatric primary care practices in Pennsylvania and New Jersey. Stratified and propensity score-matched analyses to account for confounding by clinician and by patient-level characteristics, respectively, were implemented for both cohorts. Broad-spectrum antibiotics vs narrow-spectrum antibiotics. In the retrospective cohort, the primary outcomes were treatment failure and adverse events 14 days after diagnosis. In the prospective cohort, the primary outcomes were quality of life, other patient-centered outcomes, and patient-reported adverse events. Of 30 159 children in the retrospective cohort (19 179 with acute otitis media; 6746, group A streptococcal pharyngitis; and 4234, acute sinusitis), 4307 (14%) were prescribed broad-spectrum antibiotics including amoxicillin-clavulanate, cephalosporins, and macrolides. Broad-spectrum treatment was not associated with a lower rate of treatment failure (3.4% for broad-spectrum antibiotics vs 3.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 0.3% [95% CI, -0.4% to 0.9%]). Of 2472 children enrolled in the prospective cohort (1100 with acute otitis media; 705, group A streptococcal pharyngitis; and 667, acute sinusitis), 868 (35%) were prescribed broad-spectrum antibiotics. Broad-spectrum antibiotics were associated with a slightly worse child quality of life (score of 90.2 for broad-spectrum antibiotics vs 91.5 for narrow-spectrum antibiotics; score difference for full matched analysis, -1.4% [95% CI, -2.4% to -0.4%]) but not with other patient-centered outcomes. Broad-spectrum treatment was associated with a higher risk of adverse events documented by the clinician (3.7% for broad-spectrum antibiotics vs 2.7% for narrow-spectrum antibiotics; risk difference for full matched analysis, 1.1% [95% CI, 0.4% to 1.8%]) and reported by the patient (35.6% for broad-spectrum antibiotics vs 25.1% for narrow-spectrum antibiotics; risk difference for full matched analysis, 12.2% [95% CI, 7.3% to 17.2%]). Among children with acute respiratory tract infections, broad-spectrum antibiotics were not associated with better clinical or patient-centered outcomes compared with narrow-spectrum antibiotics, and were associated with higher rates of adverse events. These data support the use of narrow-spectrum antibiotics for most children with acute respiratory tract infections.
ERIC Educational Resources Information Center
Ben-Sasson, Ayelet; Lamash, Liron; Gal, Eynat
2013-01-01
The goal of this study was to examine whether a technological touch activated Collaborative Puzzle Game (CPG) increased positive social behaviors in children with high functioning autism spectrum disorder (HFASD). The CPG involved construction of a virtual puzzle by selecting and dragging pieces into the solution area on a touch screen table. The…
Federal Research and Development Funding: FY2011
2010-08-19
autism spectrum disorder cases. In support of the National Nanotechnology Initiative, NIH is requesting an increase of $22 million (6.0%) to a total...spectrum from basic viral research to vaccine development trials, would increase 3.2% to about $3.2 billion in FY2011. Overall funding on stem cell...in cancer, heart disease, and autism , particularly over $1 billion in research applying the technology produced by the Human Genome Project.39
The Chinese People’s Liberation Army and Information Warfare
2014-03-01
information confrontation operations across the elec- tromagnetic spectrum. In doing so, as Dr. Wortzel’s monograph explains, the PLA used innovative means...and in- formation confrontation operations across the electro- magnetic spectrum. As this monograph explains, the PLA used innovative means to...depend on information technology. Naviga- tion and positioning is no longer done with compasses or sextants, maps , or charts; it is done with satellite
NASA Astrophysics Data System (ADS)
KASCADE-Grande Collaboration; Cantoni, E.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blüumer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
The KASCADE-Grande experiment operates at Karlsruhe Institute of Technology (KIT) in Germany. It's aim is the study of the primary cosmic radiation, through Extensive Air Shower detection, in the range 1016 - 1018 eV. In this contribution, KASCADE-Grande recent results will be shown, especially drawing the attention on the measurement of the cosmic ray energy spectrum.
NASA Astrophysics Data System (ADS)
Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .
NASA Astrophysics Data System (ADS)
Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng
2014-12-01
Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.
ERIC Educational Resources Information Center
Vogt, Gregory L.
This educator's guide features activities for science, mathematics, and technology education. The activities in this curriculum guide were developed based on the hands-on approach. The guide starts with introductory information and is followed by five units: (1) "The Atmospheric Filter"; (2) "The Electromagnetic Spectrum"; (3)…
2011-02-28
activités quotidiennes que lors des interventions en situation de crise . Il existe de nouvelles technologies et applications qui peuvent accroître la...Motorola NEC Nortel Nokia-Siemens Samsung Qualcomm Texas Instruments 2. The introduction of new technology into a network will
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... maximum advertised speed, technology type and spectrum (if applicable) for each broadband provider... funding to collect the maximum advertised speed and technology type to which various classes of Community... businesses use the data to identify where broadband is available, the advertised speeds and other information...
An intrinsically safe facility for forefront research and training on nuclear technologies
NASA Astrophysics Data System (ADS)
Mansani, L.; Monti, S.; Ricco, G.; Ricotti, M.
2014-04-01
In this short paper the motivations for the development of fast spectrum lead-cooled reactors are briefly summarized. In particular the importance of subcritical research reactors, like the one described in this Focus Point, for the investigation of various scientifical and technological aspects and the training of students, is discussed.
The Future Outlook for School Facilities Planning and Design.
ERIC Educational Resources Information Center
Brubaker, C. William
School design is influenced by four major factors: the education program, the community site, education technology, and building technology. Schools of the future are discussed in relation to the factors affecting school design. It is probable that future schools will be involved in a broader spectrum of programs and will serve a more diverse…
Improving Vocabulary Skills through Assistive Technology: Rick's Story
ERIC Educational Resources Information Center
Lindsey-Glenn, Pam F.; Gentry, James E.
2008-01-01
This case study examines the use of two assistive technologies, the Franklin Language Master 6000b and Microsoft PowerPoint 2003, as visual support systems to aid in the vocabulary acquisition skills of a student with autism spectrum disorder (ASD). The intervention used children's literature and best practices in teaching vocabulary skills in…
Applications of Technology to Teach Social Skills to Children with Autism
ERIC Educational Resources Information Center
DiGennaro Reed, Florence D.; Hyman, Sarah R.; Hirst, Jason M.
2011-01-01
Children with autism spectrum disorder show deficits in social skills such as initiating conversation, responding in social situations, social problem-solving, and others. These deficits are targeted through the use of social skills interventions, some of which use a technology-based approach as a resource-efficient alternative to common forms of…
An Auction-Based Spectrum Leasing Mechanism for Mobile Macro-Femtocell Networks of IoT.
Chen, Xin; Xing, Lei; Qiu, Tie; Li, Zhuo
2017-02-16
The Internet of Things (IoT) is a vision of the upcoming society. It can provide pervasive communication between two or more entities using 4G-LTE (Long Term Evolution) communication technology. In 4G-LTE networks, there are two important problems: helping manage the spectrum demands of IoT devices and achieving much more revenue with the limited resource. This paper proposes a pricing framework to investigate the spectrum leasing in mobile heterogeneous networks with single macrocell and multiple femtocells. We modeled the leasing procedure between the macrocell service provider (MSP) and femtocell holders (FHs) as an auction to motivate the MSP to lease its spectrum resource. All FHs act as the bidders, and the monopolist MSP acts as the auctioneer. In the auction, FHs submit their bids to rent the spectrum resource so that they can make a profit by selling it to their subscribers. The MSP determines the spectrum leasing amount and chooses the winning FHs by solving the dynamic programming-based 0-1 knapsack problem. In our proposed framework, we focus on the spectrum pricing strategy and revenue maximization of the MSP. The simulation results show that the proposed scheme provides effective motivation for the MSP to lease the spectrum to FHs, and both the MSP and FHs can benefit from spectrum leasing.
Seneca, Sara; Vancampenhout, Kim; Van Coster, Rudy; Smet, Joél; Lissens, Willy; Vanlander, Arnaud; De Paepe, Boel; Jonckheere, An; Stouffs, Katrien; De Meirleir, Linda
2015-01-01
Next-generation sequencing (NGS), an innovative sequencing technology that enables the successful analysis of numerous gene sequences in a massive parallel sequencing approach, has revolutionized the field of molecular biology. Although NGS was introduced in a rather recent past, the technology has already demonstrated its potential and effectiveness in many research projects, and is now on the verge of being introduced into the diagnostic setting of routine laboratories to delineate the molecular basis of genetic disease in undiagnosed patient samples. We tested a benchtop device on retrospective genomic DNA (gDNA) samples of controls and patients with a clinical suspicion of a mitochondrial DNA disorder. This Ion Torrent Personal Genome Machine platform is a high-throughput sequencer with a fast turnaround time and reasonable running costs. We challenged the chemistry and technology with the analysis and processing of a mutational spectrum composed of samples with single-nucleotide substitutions, indels (insertions and deletions) and large single or multiple deletions, occasionally in heteroplasmy. The output data were compared with previously obtained conventional dideoxy sequencing results and the mitochondrial revised Cambridge Reference Sequence (rCRS). We were able to identify the majority of all nucleotide alterations, but three false-negative results were also encountered in the data set. At the same time, the poor performance of the PGM instrument in regions associated with homopolymeric stretches generated many false-positive miscalls demanding additional manual curation of the data.
Mobile element biology – new possibilities with high-throughput sequencing
Xing, Jinchuan; Witherspoon, David J.; Jorde, Lynn B.
2014-01-01
Mobile elements compose more than half of the human genome, but until recently their large-scale detection was time-consuming and challenging. With the development of new high-throughput sequencing technologies, the complete spectrum of mobile element variation in humans can now be identified and analyzed. Thousands of new mobile element insertions have been discovered, yielding new insights into mobile element biology, evolution, and genomic variation. We review several high-throughput methods, with an emphasis on techniques that specifically target mobile element insertions in humans, and we highlight recent applications of these methods in evolutionary studies and in the analysis of somatic alterations in human cancers. PMID:23312846
Dynamic gas temperature measurement system. Volume 2: Operation and program manual
NASA Technical Reports Server (NTRS)
Purpura, P. T.
1983-01-01
The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.
Acoustic analysis of the propfan
NASA Technical Reports Server (NTRS)
Farassat, F.; Succi, G. P.
1979-01-01
A review of propeller noise prediction technology is presented. Two methods for the prediction of the noise from conventional and advanced propellers in forward flight are described. These methods are based on different time domain formulations. Brief descriptions of the computer algorithms based on these formulations are given. The output of the programs (the acoustic pressure signature) was Fourier analyzed to get the acoustic pressure spectrum. The main difference between the two programs is that one can handle propellers with supersonic tip speed while the other is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.
NASA Astrophysics Data System (ADS)
Rogers, Jeff; Wernert, Eric; Moore, Elizabeth; Ward, Richard; Wetherill, Leah F.; Foroud, Tatiana
2007-01-01
Craniofacial anthropometry (the measurement and analysis of head and face dimensions) has been used to assess and describe abnormal craniofacial variation (dysmorphology) and the facial phenotype in many medical syndromes. Traditionally, anthropometry measurements have been collected by the direct application of calipers and tape measures to the subject's head and face, and can suffer from inaccuracies due to restless subjects, erroneous landmark identification, clinician variability, and other forms of human error. Three-dimensional imaging technologies promise a more effective alternative that separates the acquisition and measurement phases to reduce these variabilities while also enabling novel measurements and longitudinal analysis of subjects. Indiana University (IU) is part of an international consortium of researchers studying fetal alcohol spectrum disorders (FASD). Fetal alcohol exposure results in predictable craniofacial dysmorphologies, and anthropometry has been proven to be an effective diagnosis tool for the condition. IU is leading a project to study the use of 3D surface scanning to acquire anthropometry data in order to more accurately diagnose FASD, especially in its milder forms. This paper describes our experiences in selecting, verifying, supporting, and coordinating a set of 3D scanning systems for use in collecting facial scans and anthropometric data from around the world.
Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; McCracken, Mary; Blackorby, Jose
2012-01-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of students with an ASD in special education. Findings suggest that students with an ASD had the highest STEM participation rates although their college enrollment rate was the third lowest among 11 disability categories and students in the general population. Disproportionate postsecondary enrollment and STEM participation by gender, family income, and mental functioning skills were found for young adults with an ASD. Educational policy implications are discussed. PMID:23114569
Wei, Xin; Yu, Jennifer W; Shattuck, Paul; McCracken, Mary; Blackorby, Jose
2013-07-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of students with an ASD in special education. Findings suggest that students with an ASD had the highest STEM participation rates although their college enrollment rate was the third lowest among 11 disability categories and students in the general population. Disproportionate postsecondary enrollment and STEM participation by gender, family income, and mental functioning skills were found for young adults with an ASD. Educational policy implications are discussed.
20/30 GHz satellite systems technology needs assessment. [for domestic communications
NASA Technical Reports Server (NTRS)
Stevens, G.; Wright, D.
1978-01-01
The paper surveys the system and market work done at NASA-Lewis with regard to exploring the potential of the 20/30 GHz bands for domestic satellite communications. The 20/30 GHz bands appear attractive economically and, with certain technology advances, appear to offer a virtually unlimited spectrum resource. This attractiveness is especially relevant to high density trunking where there is sufficient traffic to justify dual-station site diversity. Ongoing system and market studies actively involve satellite system suppliers and carriers as well as the government in a cooperative, mutually beneficial effort. It is considered that this is the approach most likely to result in a spectrum-efficient acceptable-risk high-capacity 30/30 GHz satellite system which is relevant to anticipated markets.
Standardizing Activation Analysis: New Software for Photon Activation Analysis
NASA Astrophysics Data System (ADS)
Sun, Z. J.; Wells, D.; Segebade, C.; Green, J.
2011-06-01
Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.
Yang, Liang; Chen, Mingxiang; Lv, Zhicheng; Wang, Simin; Liu, Xiaogang; Liu, Sheng
2013-07-01
A simple and practical method for preparing phosphor glass is proposed. Phosphor distribution and element analysis are investigated by optical microscope and field emission scanning electron microscope (FE-SEM). The phosphor particles dispersed in the matrix are vividly observed, and their distributions are uniform. Spectrum distribution and color coordinates dependent on the thickness of the screen-printed phosphor layer coupled with a blue light emitting diode (LED) chip are studied. The luminous efficacy of the 75 μm printed phosphor-layer phosphor glass packaged white LED is 81.24 lm/W at 350 mA. This study opens up many possibilities for applications using the phosphor glass on a selected chip in which emission is well absorbed by all phosphors. The screen-printing technique also offers possibilities for the design and engineering of complex phosphor layers on glass substrates. Phosphor screen-printing technology allows the realization of high stability and thermal conductivity for the phosphor layer. This phosphor glass method provides many possibilities for LED packing, including thin-film flip chip and remote phosphor technology.
Power Spectrum Analysis of BNL Decay-Rate Data
2010-01-01
1/31 Power Spectrum Analysis of BNL Decay-Rate Data P.A. Sturrocka,*, J.B. Buncherb, E. Fischbachb, J.T. Gruenwaldb, D. Javorsek...Power Spectrum Analysis of BNL Decay-Rate Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...spectra in the rotational search band formed from BNL data and from ACRIM total solar irradiance data. Since rotation rate estimates derived from
NASA Technical Reports Server (NTRS)
Athale, R.; Lee, S. H.
1976-01-01
Various defects in mass-produced pictures transmitted to earth from a satellite are investigated. It is found that the following defects are readily detectable via Fourier spectrum analysis: (1) bit slip, (2) breakup causing loss of image, and (3) disabled track at the top of the imagery. The scratches made on the film during mass production, which are difficult to detect by visual observation, also show themselves readily in Fourier spectrum analysis. A relation is established between the number of scratches, their width and depth and the intensity of their Fourier spectra. Other defects that are found to be equally suitable for Fourier spectrum analysis or visual (image analysis) detection are synchronous loss without blurring of image, and density variation in gray scale. However, the Fourier spectrum analysis is found to be unsuitable for detection of such defects as pin holes, annotation error, synchronous loss with blurring of images, and missing image in the beginning of the work order. The design of an automated, real time system, which will reject defective films, is treated.
Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni
2016-10-01
This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei
2013-02-01
Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.
Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei
2013-02-01
Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie
2017-07-01
With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.
Opto-digital spectrum encryption by using Baker mapping and gyrator transform
NASA Astrophysics Data System (ADS)
Chen, Hang; Zhao, Jiguang; Liu, Zhengjun; Du, Xiaoping
2015-03-01
A concept of spectrum information hidden technology is proposed in this paper. We present an optical encryption algorithm for hiding both the spatial and spectrum information by using the Baker mapping in gyrator transform domains. The Baker mapping is introduced for scrambling the every single band of the hyperspectral image before adding the random phase functions. Subsequently, three thin cylinder lenses are controlled by PC for implementing the gyrator transform. The amplitude and phase information in the output plane can be regarded as the encrypted information and main key. Some numerical simulations are made to test the validity and capability of the proposed encryption algorithm.
NASA Astrophysics Data System (ADS)
Su, Zhi-Yuan; Wang, Chuan-Chen; Wu, Tzuyin; Wang, Yeng-Tseng; Tang, Feng-Cheng
2008-01-01
This study used the Hilbert-Huang transform, a recently developed, instantaneous frequency-time analysis, to analyze radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy. The acquired instantaneous frequency-time spectrum (Hilbert spectrum) is further compared with the Morlet wavelet spectrum. Results indicate that the Hilbert spectrum is especially suitable for analyzing the time series of non-stationary radial artery pulse signals since, in the Hilbert-Huang transform, signals are decomposed into different mode functions in accordance with signal’s local time scale. Therefore, the Hilbert spectrum contains more detailed information than the Morlet wavelet spectrum. From the Hilbert spectrum, we can see that radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy have different patterns. This approach could be applied to facilitate non-invasive diagnosis of fetus’ physiological signals in the future.
Spectrum Policy in the Age of Broadband: Issues for Congress
2010-01-29
smartphones and netbooks ; and cloud computing.31 Introduction of Auctions The FCC, acting on the statutory authority given to it by Congress, has broad...smartphones and netbooks ; and cloud computing. Fixed wireless and Wi-Fi are not new technologies but mobile broadband has given them new roles in meeting...pressroom_overview.php?newsid=770. . Spectrum Policy in the Age of Broadband: Issues for Congress Congressional Research Service 25 Smartphones and Netbooks Two of
Research in space commercialization, technology transfer, and communications, volume 2
NASA Technical Reports Server (NTRS)
Dunn, D. A.; Agnew, C. E.
1983-01-01
Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.
2-D Acousto-Optic Signal Processors for Simultaneous Spectrum Analysis and Direction Finding
1990-11-01
National Dfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS 00 AND DIRECTION FINDING (U) by NM Jim P.Y...Wr pdft .1w I0~1111191 3 05089 National DIfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS AND DIRECTION...Processing, J.T. Tippet et al., Eds., Chapter 38, pp. 715-748, MIT Press, Cambridge 1965. [6] A.E. Spezio," Acousto - optics for Electronic Warfare
ERIC Educational Resources Information Center
Vellonen, Virpi; Kärnä, Eija; Virnes, Marjo
2013-01-01
This paper introduces four principles for the establishment of a technology-enhanced learning environment with and for children with autism spectrum disorders and presents results on how the principles were actualized in relation to children's actions in the environment. The study was conducted as action research premised on the children's active…
Inventory of Major Information Systems and Services in Science and Technology.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
The purpose of this inventory is to list a number of "major" information services and systems in the field of science and technology, either in the government or in the private sector. If a distinction is made between traditional information systems such as libraries, documentation services etc., and the wide spectrum of mechanized…
Noncolocated Time-Reversal MUSIC: High-SNR Distribution of Null Spectrum
NASA Astrophysics Data System (ADS)
Ciuonzo, Domenico; Rossi, Pierluigi Salvo
2017-04-01
We derive the asymptotic distribution of the null spectrum of the well-known Multiple Signal Classification (MUSIC) in its computational Time-Reversal (TR) form. The result pertains to a single-frequency non-colocated multistatic scenario and several TR-MUSIC variants are here investigated. The analysis builds upon the 1st-order perturbation of the singular value decomposition and allows a simple characterization of null-spectrum moments (up to the 2nd order). This enables a comparison in terms of spectrums stability. Finally, a numerical analysis is provided to confirm the theoretical findings.
iScreen: Image-Based High-Content RNAi Screening Analysis Tools.
Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua
2015-09-01
High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.
Security inspection in ports by anomaly detection using hyperspectral imaging technology
NASA Astrophysics Data System (ADS)
Rivera, Javier; Valverde, Fernando; Saldaña, Manuel; Manian, Vidya
2013-05-01
Applying hyperspectral imaging technology in port security is crucial for the detection of possible threats or illegal activities. One of the most common problems that cargo suffers is tampering. This represents a danger to society because it creates a channel to smuggle illegal and hazardous products. If a cargo is altered, security inspections on that cargo should contain anomalies that reveal the nature of the tampering. Hyperspectral images can detect anomalies by gathering information through multiple electromagnetic bands. The spectrums extracted from these bands can be used to detect surface anomalies from different materials. Based on this technology, a scenario was built in which a hyperspectral camera was used to inspect the cargo for any surface anomalies and a user interface shows the results. The spectrum of items, altered by different materials that can be used to conceal illegal products, is analyzed and classified in order to provide information about the tampered cargo. The image is analyzed with a variety of techniques such as multiple features extracting algorithms, autonomous anomaly detection, and target spectrum detection. The results will be exported to a workstation or mobile device in order to show them in an easy -to-use interface. This process could enhance the current capabilities of security systems that are already implemented, providing a more complete approach to detect threats and illegal cargo.
Link Connectivity and Coverage of Underwater Cognitive Acoustic Networks under Spectrum Constraint
Wang, Qiu; Cheang, Chak Fong
2017-01-01
Extensive attention has been given to the use of cognitive radio technology in underwater acoustic networks since the acoustic spectrum became scarce due to the proliferation of human aquatic activities. Most of the recent studies on underwater cognitive acoustic networks (UCANs) mainly focus on spectrum management or protocol design. Few efforts have addressed the quality-of-service (QoS) of UCANs. In UCANs, secondary users (SUs) have lower priority to use acoustic spectrum than primary users (PUs) with higher priority to access spectrum. As a result, the QoS of SUs is difficult to ensure in UCANs. This paper proposes an analytical model to investigate the link connectivity and the probability of coverage of SUs in UCANs. In particular, this model takes both topological connectivity and spectrum availability into account, though spectrum availability has been ignored in most recent studies. We conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Simulation results show that our proposed model is quite accurate. Besides, our results also imply that the link connectivity and the probability of coverage of SUs heavily depend on both the underwater acoustic channel conditions and the activities of PUs. PMID:29215561
Towards Harmonious Coexistence in the Unlicensed Spectrum: Rational Cooperation of Operators
2017-01-01
5G New Radio (NR) operating in the unlicensed spectrum is accelerating the Fourth Industrial Revolution by supporting Internet of Things (IoT) networks or Industrial IoT deployments. Specifically, LTE-Advanced (LTE-A) is looking to achieve spectrum integration through coexistence with multi-radio access technology (RAT) systems in the same unlicensed bands with both licensed-assisted and stand-alone access. The listen-before-talk (LBT) mechanism is mainly considered to enable an LTE operator to protect other incumbent unlicensed systems. In this article, we investigate the behaviors of multiple LTE operators along with the deployment of WiFi networks in the unlicensed spectrum from both short- and long-term points of view. In countries without mandatory LBT requirements, we show that an LTE operator is susceptible to collusion with another LTE operator, thus exploiting scarce spectrum resources by deceiving other wireless networks into thinking that channels are always busy; hence, mandatory usage of LTE with LBT is highly recommended at national level to achieve harmonious coexistence in the unlicensed spectrum. We discuss several possible coexistence scenarios to resolve the operator’s dilemmaas well as to improve unlicensed spectrum efficiency among multi-RAT systems, which is viable in the near future. PMID:29064434
Towards Harmonious Coexistence in the Unlicensed Spectrum: Rational Cooperation of Operators.
Bae, Sunghwan; Kim, Hongseok
2017-10-24
5G New Radio (NR) operating in the unlicensed spectrum is accelerating the Fourth Industrial Revolution by supporting Internet of Things (IoT) networks or Industrial IoT deployments. Specifically, LTE-Advanced (LTE-A) is looking to achieve spectrum integration through coexistence with multi-radio access technology (RAT) systems in the same unlicensed bands with both licensed-assisted and stand-alone access. The listen-before-talk (LBT) mechanism is mainly considered to enable an LTE operator to protect other incumbent unlicensed systems. In this article, we investigate the behaviors of multiple LTE operators along with the deployment of WiFi networks in the unlicensed spectrum from both short- and long-term points of view. In countries without mandatory LBT requirements, we show that an LTE operator is susceptible to collusion with another LTE operator, thus exploiting scarce spectrum resources by deceiving other wireless networks into thinking that channels are always busy; hence, mandatory usage of LTE with LBT is highly recommended at national level to achieve harmonious coexistence in the unlicensed spectrum. We discuss several possible coexistence scenarios to resolve the operator's dilemmaas well as to improve unlicensed spectrum efficiency among multi-RAT systems, which is viable in the near future.
Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee
2007-05-08
A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.
Energy spectrum of 208Pb(n,x) reactions
NASA Astrophysics Data System (ADS)
Tel, E.; Kavun, Y.; Özdoǧan, H.; Kaplan, A.
2018-02-01
Fission and fusion reactor technologies have been investigated since 1950's on the world. For reactor technology, fission and fusion reaction investigations are play important role for improve new generation technologies. Especially, neutron reaction studies have an important place in the development of nuclear materials. So neutron effects on materials should study as theoretically and experimentally for improve reactor design. For this reason, Nuclear reaction codes are very useful tools when experimental data are unavailable. For such circumstances scientists created many nuclear reaction codes such as ALICE/ASH, CEM95, PCROSS, TALYS, GEANT, FLUKA. In this study we used ALICE/ASH, PCROSS and CEM95 codes for energy spectrum calculation of outgoing particles from Pb bombardment by neutron. While Weisskopf-Ewing model has been used for the equilibrium process in the calculations, full exciton, hybrid and geometry dependent hybrid nuclear reaction models have been used for the pre-equilibrium process. The calculated results have been discussed and compared with the experimental data taken from EXFOR.
Chikayama, Eisuke; Yamashina, Ryo; Komatsu, Keiko; Tsuboi, Yuuri; Sakata, Kenji; Kikuchi, Jun; Sekiyama, Yasuyo
2016-01-01
Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR) spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D2O) and 131 hydrophobic (extracted in CDCl3) experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N-oxide. PMID:27775560
Chikayama, Eisuke; Yamashina, Ryo; Komatsu, Keiko; Tsuboi, Yuuri; Sakata, Kenji; Kikuchi, Jun; Sekiyama, Yasuyo
2016-10-19
Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR) spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D₂O) and 131 hydrophobic (extracted in CDCl₃) experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N -oxide.
Sharma, Manoj; Gungor, Kivanc; Yeltik, Aydan; Olutas, Murat; Guzelturk, Burak; Kelestemur, Yusuf; Erdem, Talha; Delikanli, Savas; McBride, James R; Demir, Hilmi Volkan
2017-08-01
Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trends In Satellite Communication
NASA Technical Reports Server (NTRS)
Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.
1988-01-01
Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.
Antenna technology for advanced mobile communication systems
NASA Technical Reports Server (NTRS)
Rammos, Emmanuel; Roederer, Antoine; Rogard, Roger
1988-01-01
The onboard antenna front end is the key subsystem conditioning configuration and performance of mobile communication satellites. The objectives of this paper are to demonstrate this key role and to review L-band satellite antenna technology for earth coverage and regional applications. Multibeam arrays are first discussed, then unfurlable and inflatable reflector antennas are described. These technologies are now qualified in Europe for future mobile systems, for which the optimum choice of antenna technology has been found to be the key to efficient use of spectrum and power resources.
Study on micro-bend light transmission performance of novel liquid-core optical fiber
NASA Astrophysics Data System (ADS)
Ma, Junyan; Zhao, Zhimin; Wang, Kaisheng; Guo, Linfeng
2007-01-01
With the increasing development of material technology and electronic integration technology, optical fiber and its using in smart structure have become hot in the field of material research. And liquid-core optical fiber is a special kind of optical fiber, which is made using liquid material as core and polymer material as optical layer and protective covering, and it has the characteristics of large core diameter, high numerical aperture, large-scope and efficient spectrum transmission and long life for using. So the liquid-core optical fiber is very suitable for spectrum cure, ultraviolet solidification, fluorescence detection, criminal investigation and evidence obtainment, etc, and especially as light transfer element in some new structures for the measurement of some signals, such as concentration, voltage, temperature, light intensity and so on. In this paper, the novel liquid-core optical fiber is self-made, and then through the test of its light transmission performance in free state, the relation between axial micro-bend and light-intensity loss are presented. When the liquid-core optical fiber is micro-bent axially, along with the axial displacement's increase, output power of light is reducing increasingly, and approximately has linear relation to micro-displacement in a range. According to the results liquid-core fiber-optic micro-bend sensor can be designed to measure micro-displacement of the tested objects. Experimental data and analysis provide experimental basis for further application of liquid-core optical fiber.
Liu, Jie; Zhang, Fu-Dong; Teng, Fei; Li, Jun; Wang, Zhi-Hong
2014-10-01
In order to in-situ detect the oil yield of oil shale, based on portable near infrared spectroscopy analytical technology, with 66 rock core samples from No. 2 well drilling of Fuyu oil shale base in Jilin, the modeling and analyzing methods for in-situ detection were researched. By the developed portable spectrometer, 3 data formats (reflectance, absorbance and K-M function) spectra were acquired. With 4 different modeling data optimization methods: principal component-mahalanobis distance (PCA-MD) for eliminating abnormal samples, uninformative variables elimination (UVE) for wavelength selection and their combina- tions: PCA-MD + UVE and UVE + PCA-MD, 2 modeling methods: partial least square (PLS) and back propagation artificial neural network (BPANN), and the same data pre-processing, the modeling and analyzing experiment were performed to determine the optimum analysis model and method. The results show that the data format, modeling data optimization method and modeling method all affect the analysis precision of model. Results show that whether or not using the optimization method, reflectance or K-M function is the proper spectrum format of the modeling database for two modeling methods. Using two different modeling methods and four different data optimization methods, the model precisions of the same modeling database are different. For PLS modeling method, the PCA-MD and UVE + PCA-MD data optimization methods can improve the modeling precision of database using K-M function spectrum data format. For BPANN modeling method, UVE, UVE + PCA-MD and PCA- MD + UVE data optimization methods can improve the modeling precision of database using any of the 3 spectrum data formats. In addition to using the reflectance spectra and PCA-MD data optimization method, modeling precision by BPANN method is better than that by PLS method. And modeling with reflectance spectra, UVE optimization method and BPANN modeling method, the model gets the highest analysis precision, its correlation coefficient (Rp) is 0.92, and its standard error of prediction (SEP) is 0.69%.
New optimization model for routing and spectrum assignment with nodes insecurity
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-04-01
By adopting the orthogonal frequency division multiplexing technology, elastic optical networks can provide the flexible and variable bandwidth allocation to each connection request and get higher spectrum utilization. The routing and spectrum assignment problem in elastic optical network is a well-known NP-hard problem. In addition, information security has received worldwide attention. We combine these two problems to investigate the routing and spectrum assignment problem with the guaranteed security in elastic optical network, and establish a new optimization model to minimize the maximum index of the used frequency slots, which is used to determine an optimal routing and spectrum assignment schemes. To solve the model effectively, a hybrid genetic algorithm framework integrating a heuristic algorithm into a genetic algorithm is proposed. The heuristic algorithm is first used to sort the connection requests and then the genetic algorithm is designed to look for an optimal routing and spectrum assignment scheme. In the genetic algorithm, tailor-made crossover, mutation and local search operators are designed. Moreover, simulation experiments are conducted with three heuristic strategies, and the experimental results indicate that the effectiveness of the proposed model and algorithm framework.
[Research of spectrum characteristics for light conversion agricultural films].
Zhang, Song-pei; Li, Jian-yu; Chen, Juan; Xiao, Yang; Sun, Yu-e
2004-10-01
The solar spectrum and the function spectrum in chrysanthemum and tomato were determined in this paper. The research for a relation plant growth to solar spectrum showed that the efficiency of plant making use of ultraviolet light of 280-380 nm and yellow-green light of 500-600 nm and near IR spectra over 720 nm are lower, that the blue-purple light of 430-480 nm and red light of 630-690 nm are beneficial to enhancing photosynthesis and promoting plant growth. According to plant photosynthesis and solar spectrum characteristic, the author developed CaS:Cu+, Cl- blue light film, and red light film added with CaS:Eu2+, Mn2+, Cl- to convert green light into red light, and discussed the spectrum characteristic of red-blue double peak in agricultural film and rare earth organic complex which could convert ultraviolet light into red light. Just now, the study on light conversion regents in farm films is going to face new breakthrough and the technology of anti-stocks displacement to study red film which can convert near infrared light are worth to attention.
Zang, C H; Su, J F; Liu, Y C; Tang, C J; Fang, S J; Zhang, D M; Zhang, Y S
2011-11-01
ZnO nanoparticles embedded in BaF2 matrix were fabricated by rf magnetic sputtering technology. The optical properties of high quality ZnO nanoparticles, thermally post treated in a N2 atmosphere, were investigated by temperature-dependence photoluminescence measurement. Free exciton and localized exciton were observed at the low temperature. Free exciton peak was at 3.374 eV and localized exciton peak was at 3.420 eV, dominating the PL spectrum at 77 K. Free exciton transition was observed at 3.310 eV at room temperature, whereas the localized exciton transition was at 3.378 eV. The multiple-phonon Raman scattering spectrum showed that ZnO nanoparticles embedded in BaF2 matrix had a large deformation energy originated from lattice mismatch between ZnO and BaF2 matrix. Analysis of the fitting results from the temperature dependence of FWHM of ZnO exciton illustrated that the large value of gamma(ph) was good qualitative agreement with the large deformation potential.
Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences
NASA Technical Reports Server (NTRS)
Eitel, Jan U. H.; Hofle, Bernhard; Vierling, Lee A.; Abellan, Antonio; Asner, Gregory P.; Deems, Jeffrey S.; Glennie, Craig L.; Joerg, Phillip C.; LeWinter, Adam L.; Magney, Troy S.;
2016-01-01
Capturing and quantifying the world in three dimensions (x,y,z) using light detection and ranging (lidar) technology drives fundamental advances in the Earth and Ecological Sciences (EES). However, additional lidar dimensions offer the possibility to transcend basic 3-D mapping capabilities, including i) the physical time (t) dimension from repeat lidar acquisition and ii) laser return intensity (LRI?) data dimension based on the brightness of single- or multi-wavelength (?) laser returns. The additional dimensions thus add to the x,y, and z dimensions to constitute the five dimensions of lidar (x,y,z, t, LRI?1... ?n). This broader spectrum of lidar dimensionality has already revealed new insights across multiple EES topics, and will enable a wide range of new research and applications. Here, we review recent advances based on repeat lidar collections and analysis of LRI data to highlight novel applications of lidar remote sensing beyond 3-D. Our review outlines the potential and current challenges of time and LRI information from lidar sensors to expand the scope of research applications and insights across the full range of EES applications.
[Analysis of influencing factors of snow hyperspectral polarized reflections].
Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin
2010-02-01
Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.
Analysis of periodically patterned metallic nanostructures for infrared absorber
NASA Astrophysics Data System (ADS)
Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.
A hearing was held on Senate Bill 335, the Emerging Telecommunications Technologies Act of 1993, a bill that requires the federal government to transfer 200 megahertz of spectrum to the Federal Communications Commission (FCC) for new technologies. Integral to this measure, a bipartisan effort, is a provision that will allow the FCC to use…
ERIC Educational Resources Information Center
Westwood, Heather; Eisler, Ivan; Mandy, William; Leppanen, Jenni; Treasure, Janet; Tchanturia, Kate
2016-01-01
Interest in the link between Autism Spectrum Disorder (ASD) and Anorexia Nervosa (AN) has led to estimates of the prevalence of autistic traits in AN. This systematic review and meta-analysis assessed the use of the Autism-Spectrum Quotient (AQ) or abbreviated version (AQ-10) to examine whether patients with AN have elevated levels of autistic…
An Auction-Based Spectrum Leasing Mechanism for Mobile Macro-Femtocell Networks of IoT
Chen, Xin; Xing, Lei; Qiu, Tie; Li, Zhuo
2017-01-01
The Internet of Things (IoT) is a vision of the upcoming society. It can provide pervasive communication between two or more entities using 4G-LTE (Long Term Evolution) communication technology. In 4G-LTE networks, there are two important problems: helping manage the spectrum demands of IoT devices and achieving much more revenue with the limited resource. This paper proposes a pricing framework to investigate the spectrum leasing in mobile heterogeneous networks with single macrocell and multiple femtocells. We modeled the leasing procedure between the macrocell service provider (MSP) and femtocell holders (FHs) as an auction to motivate the MSP to lease its spectrum resource. All FHs act as the bidders, and the monopolist MSP acts as the auctioneer. In the auction, FHs submit their bids to rent the spectrum resource so that they can make a profit by selling it to their subscribers. The MSP determines the spectrum leasing amount and chooses the winning FHs by solving the dynamic programming-based 0–1 knapsack problem. In our proposed framework, we focus on the spectrum pricing strategy and revenue maximization of the MSP. The simulation results show that the proposed scheme provides effective motivation for the MSP to lease the spectrum to FHs, and both the MSP and FHs can benefit from spectrum leasing. PMID:28212317
, Ivone F. M.; Smoot, George F. 07/2006 Power Spectrum Analysis of Far-IR Background Fluctuations in 160 Microwave Background Anisotropies. Jeong, E.; Smoot, G. F. 2005 Power Spectrum Analysis of Far-IR Background
Effects of Sodium Citrate on the Ammonium Sulfate Recycled Leaching of Low-Grade Zinc Oxide Ores
NASA Astrophysics Data System (ADS)
Yang, Kun; Li, Shi-wei; Zhang, Li-bo; Peng, Jin-hui; Ma, Ai-yuan; Wang, Bao-bao
2016-03-01
The effects of sodium citrate on ammonium sulfate recycled leaching of low-grade zinc oxide ores were studied. By applying various kinds of detection and analysis techniques such as chemical composition analysis, chemical phase method, scanning electron microscopy and energy dispersive spectrum (SEM/EDS), X-ray diffraction (XRD) and Fourier-transforming infrared spectrum (FT-IR), zinc raw ore, its leaching slag and the functional mechanism of sodium citrate were investigated. Based on a comprehensive analysis, it can be concluded that in contrast to hemimorphite (Zn4Si2O7(OH)2 · H2O), amorphous smithsonite (ZnCO3) and zinc silicate (Zn2SiO4) prove to be refractory phases under ammonium sulfate leaching, while sodium citrate has a better chelating action with the refractory phases, resulting in a higher zinc leaching rate. Under conditions of [NH3]/[NH3]T molar ratio being 0.5, [NH3]T being 7.5 mol/L, [Na3C6H5O7] being 0.2 mol/L, S/L ratio being 1:5, temperature being 303 K, holding time being 1 h in each of the two stages, and stirring rate being 300 rpm, the leaching rate of zinc reached 93.4%. In this article, sulfate ammonium recycled technology also reveals its unique advantage in processing low-grade zinc oxide ores accompanied by high silicon and high alkaline gangue.
The New High Ground: An Analysis of Space-Based Systems in the Information Revolution'
NASA Astrophysics Data System (ADS)
Mitchell, Olivia S.
2002-09-01
The Revolution in Military Affairs (RMA) was developed in 1989 by Andrew Marshall of the Office of Net Assessment in Washington. Based on Marshal Nikolai Ogarkov's doctrine of the Military-Technical Revolution, the RMA is defined as: A major change in the nature of warfare brought about by the innovative application of new technologies which, combined with dramatic changes in military doctrine, operations, and organizational concepts, fundamentally alters the character and conduct of military operations. Though no official definition exists, these requirements of technological innovation, new doctrine and operations concepts, and organizational change were used in the analysis of the 1991 Gulf War, resulting in the conclusion of the existence of a new RMA. Known as the Information Revolution, this RMA is centered on stealth technology, precision munitions, advanced sensors and increased communications, command, control, computer and intelligence (C4I). From these advancements, doctrinal development has taken place in both joint and service centered documents. These new doctrines have introduced the operational concepts of dominant maneuver, precision engagement, focused logistics and full-dimensional protection, culminating in the new core competency of full-spectrum dominance. Organizational changes to allow for the achievement of these new concepts consists of an increased focus on inter-service connectivity for joint operations and the mutation of the traditional military hierarchy into smaller, more mobile forces deployable for rapid reactions and tailored to the specific threat.
NASA Astrophysics Data System (ADS)
Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye
2017-10-01
Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.
Near-infrared high-resolution real-time omnidirectional imaging platform for drone detection
NASA Astrophysics Data System (ADS)
Popovic, Vladan; Ott, Beat; Wellig, Peter; Leblebici, Yusuf
2016-10-01
Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).1 Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.2 In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015.
Molecular thermal transistor: Dimension analysis and mechanism
NASA Astrophysics Data System (ADS)
Behnia, S.; Panahinia, R.
2018-04-01
Recently, large challenge has been spent to realize high efficient thermal transistors. Outstanding properties of DNA make it as an excellent nano material in future technologies. In this paper, we introduced a high efficient DNA based thermal transistor. The thermal transistor operates when the system shows an increase in the thermal flux despite of decreasing temperature gradient. This is what called as negative differential thermal resistance (NDTR). Based on multifractal analysis, we could distinguish regions with NDTR state from non-NDTR state. Moreover, Based on dimension spectrum of the system, it is detected that NDTR state is accompanied by ballistic transport regime. The generalized correlation sum (analogous to specific heat) shows that an irregular decrease in the specific heat induces an increase in the mean free path (mfp) of phonons. This leads to the occurrence of NDTR.
Saadatzi, Mohammad Nasser; Pennington, Robert C; Welch, Karla C; Graham, James H
2018-06-20
The authors combined virtual reality technology and social robotics to develop a tutoring system that resembled a small-group arrangement. This tutoring system featured a virtual teacher instructing sight words, and included a humanoid robot emulating a peer. The authors used a multiple-probe design across word sets to evaluate the effects of the instructional package on the explicit acquisition and vicarious learning of sight words instructed to three children with autism spectrum disorder (ASD) and the robot peer. Results indicated that participants acquired, maintained, and generalized 100% of the words explicitly instructed to them, made fewer errors while learning the words common between them and the robot peer, and vicariously learned 94% of the words solely instructed to the robot.
Jåstad, Eirik O; Torheim, Turid; Villeneuve, Kathleen M; Kvaal, Knut; Hole, Eli O; Sagstuen, Einar; Malinen, Eirik; Futsaether, Cecilia M
2017-09-28
The amino acid l-α-alanine is the most commonly used material for solid-state electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron-nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.
Ultra Wideband (UWB) communication vulnerability for security applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, H. Timothy
2010-07-01
RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages overmore » conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.« less
Dynamic Singularity Spectrum Distribution of Sea Clutter
NASA Astrophysics Data System (ADS)
Xiong, Gang; Yu, Wenxian; Zhang, Shuning
2015-12-01
The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.
The 1943 K emission spectrum of H216O between 6600 and 7050 cm-1
NASA Astrophysics Data System (ADS)
Czinki, Eszter; Furtenbacher, Tibor; Császár, Attila G.; Eckhardt, André K.; Mellau, Georg Ch.
2018-02-01
An emission spectrum of H216O has been recorded, with Doppler-limited resolution, at 1943 K using Hot Gas Molecular Emission (HOTGAME) spectroscopy. The wavenumber range covered is 6600 to 7050 cm-1. This work reports the analysis and subsequent assignment of close to 3700 H216O transitions out of a total of more than 6700 measured peaks. The analysis is based on the Measured Active Rotational-Vibrational Energy Levels (MARVEL) energy levels of H216O determined in 2013 and emission line intensities obtained from accurate variational nuclear-motion computations. The analysis of the spectrum yields about 1300 transitions not measured previously and 23 experimentally previously unidentified rovibrational energy levels. The accuracy of the line positions and intensities used in the analysis was improved with the spectrum deconvolution software SyMath via creating a peak list corresponding to the dense emission spectrum. The extensive list of labeled transitions and the new experimental energy levels obtained are deposited in the Supplementary Material of this article as well as in the ReSpecTh (http://www.respecth.hu) information system.
Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao
2011-01-01
The identification techniques for 10 species of red tide algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red tide algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red tide algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red tide algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red tide algae and principal component analysis could work well.
[New method of mixed gas infrared spectrum analysis based on SVM].
Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua
2007-07-01
A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.
ERIC Educational Resources Information Center
Kondrick, Linda C.
The under-representation of women in physical science, technology, engineering, and mathematics (PSTEM) career fields is a persistent problem. This paper summarizes an extensive review of the literature pertaining to the many issues that surround this problem. The review revealed a wide range of viewpoints and a broad spectrum of research…
ERIC Educational Resources Information Center
Lacava, Paul G.; Golan, Ofer; Baron-Cohen, Simon; Myles, Brenda Smith
2007-01-01
Many individuals with autism spectrum conditions (ASC) have difficulty recognizing emotions in themselves and others. The present pilot study explored the use of assistive technology to teach emotion recognition (ER) to eight children with ASC. Participants were between the ages of 8 and 11 years and had a diagnosis of Asperger syndrome (AS). ER…
Technologies as support tools for persons with autistic spectrum disorder: a systematic review.
Aresti-Bartolome, Nuria; Garcia-Zapirain, Begonya
2014-08-04
This study analyzes the technologies most widely used to work on areas affected by the Autistic Spectrum Disorder (ASD). Technologies can focus on the strengths and weaknesses of this disorder as they make it possible to create controlled environments, reducing the anxiety produced by real social situations. Extensive research has proven the efficiency of technologies as support tools for therapy and their acceptation by ASD sufferers and the people who are with them on a daily basis. This article is organized by the types of systems developed: virtual reality applications, telehealth systems, social robots and dedicated applications, all of which are classified by the areas they center on: communication, social learning and imitation skills and other ASD-associated conditions. 40.5% of the research conducted is found to be focused on communication as opposed to 37.8% focused on learning and social imitation skills and 21.6% which underlines problems associated with this disorder. Although most of the studies reveal how useful these tools are in therapy, they are generic tools for ASD sufferers in general, which means there is a lack of personalised tools to meet each person's needs.
Technologies as Support Tools for Persons with Autistic Spectrum Disorder: A Systematic Review
Aresti-Bartolome, Nuria; Garcia-Zapirain, Begonya
2014-01-01
This study analyzes the technologies most widely used to work on areas affected by the Autistic Spectrum Disorder (ASD). Technologies can focus on the strengths and weaknesses of this disorder as they make it possible to create controlled environments, reducing the anxiety produced by real social situations. Extensive research has proven the efficiency of technologies as support tools for therapy and their acceptation by ASD sufferers and the people who are with them on a daily basis. This article is organized by the types of systems developed: virtual reality applications, telehealth systems, social robots and dedicated applications, all of which are classified by the areas they center on: communication, social learning and imitation skills and other ASD-associated conditions. 40.5% of the research conducted is found to be focused on communication as opposed to 37.8% focused on learning and social imitation skills and 21.6% which underlines problems associated with this disorder. Although most of the studies reveal how useful these tools are in therapy, they are generic tools for ASD sufferers in general, which means there is a lack of personalised tools to meet each person’s needs. PMID:25093654
How Does The Universe Work? The Physics Of The Cosmos Program (PCOS)
NASA Astrophysics Data System (ADS)
Sambruna, Rita M.
2011-09-01
The Physics of the Cosmos (PCOS) program incorporates cosmology, high-energy astrophysics, and fundamental physics projects aimed at addressing central questions about the nature of complex astrophysical phenomena such as black holes, neutron stars, dark energy, and gravitational waves. Its overarching theme is, How does the Universe work? PCOS includes a suite of operating (Chandra, Fermi, Planck, XMM-Newton, INTEGRAL) and future missions across the electromagnetic spectrum and beyond, which are in concept development and/or formulation. The PCOS program directly supports development of intermediate TRL (4-6) technology relevant to future missions through the Strategic Astrophysics Technology (SAT) program, as well as data analysis, theory, and experimental astrophysics via other R&A avenues (e.g., ADAP, ATP). The Einstein Fellowship is a vital and vibrant PCOS component funded by the program. PCOS receives community input via its Program Analysis Group, the PhysPAG (www.pcos.gsfc.nasa.gov/physpag.php), whose membership and meetings are open to the community at large. In this poster, we describe the detailed science questions addressed within PCOS, with special emphasis on future opportunities. Details about the PhysPAG operations and functions will be provided, as well as an update on future meetings.
Vu, Trung Nghia; Mrzic, Aida; Valkenborg, Dirk; Maes, Evelyne; Lemière, Filip; Goethals, Bart; Laukens, Kris
2014-01-01
Mass spectrometry-based proteomics experiments generate spectra that are rich in information. Often only a fraction of this information is used for peptide/protein identification, whereas a significant proportion of the peaks in a spectrum remain unexplained. In this paper we explore how a specific class of data mining techniques termed "frequent itemset mining" can be employed to discover patterns in the unassigned data, and how such patterns can help us interpret the origin of the unexpected/unexplained peaks. First a model is proposed that describes the origin of the observed peaks in a mass spectrum. For this purpose we use the classical correlative database search algorithm. Peaks that support a positive identification of the spectrum are termed explained peaks. Next, frequent itemset mining techniques are introduced to infer which unexplained peaks are associated in a spectrum. The method is validated on two types of experimental proteomic data. First, peptide mass fingerprint data is analyzed to explain the unassigned peaks in a full scan mass spectrum. Interestingly, a large numbers of experimental spectra reveals several highly frequent unexplained masses, and pattern mining on these frequent masses demonstrates that subsets of these peaks frequently co-occur. Further evaluation shows that several of these co-occurring peaks indeed have a known common origin, and other patterns are promising hypothesis generators for further analysis. Second, the proposed methodology is validated on tandem mass spectrometral data using a public spectral library, where associations within the mass differences of unassigned peaks and peptide modifications are explored. The investigation of the found patterns illustrates that meaningful patterns can be discovered that can be explained by features of the employed technology and found modifications. This simple approach offers opportunities to monitor accumulating unexplained mass spectrometry data for emerging new patterns, with possible applications for the development of mass exclusion lists, for the refinement of quality control strategies and for a further interpretation of unexplained spectral peaks in mass spectrometry and tandem mass spectrometry.
[Research on fast classification based on LIBS technology and principle component analyses].
Yu, Qi; Ma, Xiao-Hong; Wang, Rui; Zhao, Hua-Feng
2014-11-01
Laser-induced breakdown spectroscopy (LIBS) and the principle component analysis (PCA) were combined to study aluminum alloy classification in the present article. Classification experiments were done on thirteen different kinds of standard samples of aluminum alloy which belong to 4 different types, and the results suggested that the LIBS-PCA method can be used to aluminum alloy fast classification. PCA was used to analyze the spectrum data from LIBS experiments, three principle components were figured out that contribute the most, the principle component scores of the spectrums were calculated, and the scores of the spectrums data in three-dimensional coordinates were plotted. It was found that the spectrum sample points show clear convergence phenomenon according to the type of aluminum alloy they belong to. This result ensured the three principle components and the preliminary aluminum alloy type zoning. In order to verify its accuracy, 20 different aluminum alloy samples were used to do the same experiments to verify the aluminum alloy type zoning. The experimental result showed that the spectrum sample points all located in their corresponding area of the aluminum alloy type, and this proved the correctness of the earlier aluminum alloy standard sample type zoning method. Based on this, the identification of unknown type of aluminum alloy can be done. All the experimental results showed that the accuracy of principle component analyses method based on laser-induced breakdown spectroscopy is more than 97.14%, and it can classify the different type effectively. Compared to commonly used chemical methods, laser-induced breakdown spectroscopy can do the detection of the sample in situ and fast with little sample preparation, therefore, using the method of the combination of LIBS and PCA in the areas such as quality testing and on-line industrial controlling can save a lot of time and cost, and improve the efficiency of detection greatly.
Vocational Support Approaches in Autism Spectrum Disorder: A Synthesis Review of the Literature
ERIC Educational Resources Information Center
Nicholas, David B.; Attridge, Mark; Zwaigenbaum, Lonnie; Clarke, Margaret
2015-01-01
This synthesis-based analysis identifies and reviews studies evaluating vocational resources for adults with autism spectrum disorder. It is based on a larger systematic review of intervention studies in autism spectrum disorder, from which a critical interpretive synthesis was conducted on studies related to vocation and autism spectrum disorder.…
Heart Sound Biometric System Based on Marginal Spectrum Analysis
Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin
2013-01-01
This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515
Networking Omic Data to Envisage Systems Biological Regulation.
Kalapanulak, Saowalak; Saithong, Treenut; Thammarongtham, Chinae
To understand how biological processes work, it is necessary to explore the systematic regulation governing the behaviour of the processes. Not only driving the normal behavior of organisms, the systematic regulation evidently underlies the temporal responses to surrounding environments (dynamics) and long-term phenotypic adaptation (evolution). The systematic regulation is, in effect, formulated from the regulatory components which collaboratively work together as a network. In the drive to decipher such a code of lives, a spectrum of technologies has continuously been developed in the post-genomic era. With current advances, high-throughput sequencing technologies are tremendously powerful for facilitating genomics and systems biology studies in the attempt to understand system regulation inside the cells. The ability to explore relevant regulatory components which infer transcriptional and signaling regulation, driving core cellular processes, is thus enhanced. This chapter reviews high-throughput sequencing technologies, including second and third generation sequencing technologies, which support the investigation of genomics and transcriptomics data. Utilization of this high-throughput data to form the virtual network of systems regulation is explained, particularly transcriptional regulatory networks. Analysis of the resulting regulatory networks could lead to an understanding of cellular systems regulation at the mechanistic and dynamics levels. The great contribution of the biological networking approach to envisage systems regulation is finally demonstrated by a broad range of examples.
Design of a Gaze-Sensitive Virtual Social Interactive System for Children With Autism
Lahiri, Uttama; Warren, Zachary; Sarkar, Nilanjan
2013-01-01
Impairments in social communication skills are thought to be core deficits in children with autism spectrum disorder (ASD). In recent years, several assistive technologies, particularly Virtual Reality (VR), have been investigated to promote social interactions in this population. It is well known that children with ASD demonstrate atypical viewing patterns during social interactions and thus monitoring eye-gaze can be valuable to design intervention strategies. While several studies have used eye-tracking technology to monitor eye-gaze for offline analysis, there exists no real-time system that can monitor eye-gaze dynamically and provide individualized feedback. Given the promise of VR-based social interaction and the usefulness of monitoring eye-gaze in real-time, a novel VR-based dynamic eye-tracking system is developed in this work. This system, called Virtual Interactive system with Gaze-sensitive Adaptive Response Technology (VIGART), is capable of delivering individualized feedback based on a child’s dynamic gaze patterns during VR-based interaction. Results from a usability study with six adolescents with ASD are presented that examines the acceptability and usefulness of VIGART. The results in terms of improvement in behavioral viewing and changes in relevant eye physiological indexes of participants while interacting with VIGART indicate the potential of this novel technology. PMID:21609889
Design of a gaze-sensitive virtual social interactive system for children with autism.
Lahiri, Uttama; Warren, Zachary; Sarkar, Nilanjan
2011-08-01
Impairments in social communication skills are thought to be core deficits in children with autism spectrum disorder (ASD). In recent years, several assistive technologies, particularly Virtual Reality (VR), have been investigated to promote social interactions in this population. It is well known that children with ASD demonstrate atypical viewing patterns during social interactions and thus monitoring eye-gaze can be valuable to design intervention strategies. While several studies have used eye-tracking technology to monitor eye-gaze for offline analysis, there exists no real-time system that can monitor eye-gaze dynamically and provide individualized feedback. Given the promise of VR-based social interaction and the usefulness of monitoring eye-gaze in real-time, a novel VR-based dynamic eye-tracking system is developed in this work. This system, called Virtual Interactive system with Gaze-sensitive Adaptive Response Technology (VIGART), is capable of delivering individualized feedback based on a child's dynamic gaze patterns during VR-based interaction. Results from a usability study with six adolescents with ASD are presented that examines the acceptability and usefulness of VIGART. The results in terms of improvement in behavioral viewing and changes in relevant eye physiological indexes of participants while interacting with VIGART indicate the potential of this novel technology. © 2011 IEEE
Code of Federal Regulations, 2010 CFR
2010-10-01
... technologies that involve peer-to-peer (device-to-device) communications and that do not involve use of the licensee's or spectrum lessee's end-to-end physical network infrastructure (e.g., base stations, mobile...
The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices
NASA Technical Reports Server (NTRS)
Beam, Richard M.; Warming, Robert F.
1991-01-01
Toeplitz matrices occur in many mathematical, as well as, scientific and engineering investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with emphasis on non-normal matrices of arbitrarily large order and relatively small bandwidth. These are the type of matrices that appear in the investigation of stability and convergence of difference approximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for non-normal matrices) numerically unreliable. An asymptotic (matrix order approaches infinity) approach partitions the eigenvalue analysis of a quasi-Toeplitz matrix into two parts, namely the analysis for the boundary condition independent spectrum and the analysis for the boundary condition dependent spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix spectrum. Algorithms for computing both parts of the spectrum are presented. Examples are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are employed for non-normal matrices of large order. The analysis for the Toeplitz spectrum also leads to a diagonal similarity transformation that improves conventional numerical eigenvalue computations. Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue problem which occurs, for example, in the stability of Pade type difference approximations to differential equations.
2012-08-01
technology used in the COIN fight are not readily transferable to conflicts against enemies using A2/AD tactics, such as heavy electromagnetic attack...particularly when matched against a technology advanced enemy. Technologies unsuitable for an opposed electromagnetic spectrum are unsurvivable...increased numbers of weapons systems such as the MQ-1, MQ-9, and MC-12. Additionally, open-ended deployments of ISR assets such as the RC-135 RIVET
Garbis, Spiros D; Roumeliotis, Theodoros I; Tyritzis, Stavros I; Zorpas, Kostas M; Pavlakis, Kitty; Constantinides, Constantinos A
2011-02-01
The current proof-of-principle study was aimed toward development of a novel multidimensional protein identification technology (MudPIT) approach for the in-depth proteome analysis of human serum derived from patients with benign prostate hyperplasia (BPH) using rational chromatographic design principles. This study constituted an extension of our published work relating to the identification and relative quantification of potential clinical biomarkers in BPH and prostate cancer (PCa) tissue specimens. The proposed MudPIT approach encompassed the use of three distinct yet complementary liquid chromatographic chemistries. High-pressure size-exclusion chromatography (SEC) was used for the prefractionation of serum proteins followed by their dialysis exchange and solution phase trypsin proteolysis. The tryptic peptides were then subjected to offline zwitterion-ion hydrophilic interaction chromatography (ZIC-HILIC) fractionation followed by their online analysis with reversed-phase nano-ultraperformance chromatography (RP-nUPLC) hyphenated to nanoelectrospray ionization-tandem mass spectrometry using an ion trap mass analyzer. For the spectral processing, the sequential use of the SpectrumMill, Scaffold, and InsPecT software tools was applied for the tryptic peptide product ion MS(2) spectral processing, false discovery rate (FDR) assessment, validation, and protein identification. This milestone serum analysis study allowed the confident identification of over 1955 proteins (p ≤ 0.05; FDR ≤ 5%) with a broad spectrum of biological and physicochemical properties including secreted, tissue-specific proteins spanning approximately 12 orders of magnitude as they occur in their native abundance levels in the serum matrix. Also encompassed in this proteome was the confident identification of 375 phosphoproteins (p ≤ 0.05; FDR ≤ 5%) with potential importance to cancer biology. To demonstrate the performance characteristics of this novel MudPIT approach, a comparison was made with the proteomes resulting from the immunodepletion of the high abundant albumin and IgG proteins with offline first dimensional tryptic peptide separation with both ZIC-HILIC and strong cation exchange (SCX) chromatography and their subsequent online RP-nUPLC-nESI-MS(2) analysis.
Unmet needs: relevance to medical technology innovation?
McCarthy, Avril D; Sproson, Lise; Wells, Oliver; Tindale, Wendy
2014-01-01
This paper describes and discusses the role of unmet needs in the innovation of new medical technologies using the National Institute for Health Research Devices for Dignity (D4D) Healthcare Technology Co-operative as a case study. It defines an unmet need, providing a spectrum of classification and discusses the benefits and the challenges of identifying unmet need and its influence on the innovation process. The process by which D4D has captured and utilized unmet needs to drive technology innovation is discussed and examples given. It concludes by arguing that, despite the challenges, defining and reviewing unmet need is a fundamental factor in the success of medical technology innovation.
Recent Results for the ECHo Experiment
NASA Astrophysics Data System (ADS)
Hassel, C.; Blaum, K.; Goodacre, T. Day; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Filianin, P.; Fäßler, A.; Fleischmann, A.; Gastaldo, L.; Goncharov, M.; Hengstler, D.; Jochum, J.; Johnston, K.; Keller, M.; Kempf, S.; Kieck, T.; Köster, U.; Krantz, M.; Marsh, B.; Mokry, C.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Runke, J.; Saenz, A.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Simkovic, F.; Stora, T.; Thörle-Pospiech, P.; Türler, A.; Veinhard, M.; Wegner, M.; Wendt, K.; Zuber, K.
2016-08-01
The Electron Capture in ^{163}Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in ^{163}Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the ^{163}Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure ^{163}Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the ^{163}Ho ion-implantation was performed using a high-purity ^{163}Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about 1000 mathrm {Bq} of high-purity ^{163}Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c^2 (90 % C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity.
High-frequency acoustic spectrum analyzer based on polymer integrated optics
NASA Astrophysics Data System (ADS)
Yacoubian, Araz
This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.
Information technology-based standardized patient education in psychiatric inpatient care.
Anttila, Minna; Koivunen, Marita; Välimäki, Maritta
2008-10-01
This paper is a report of a study to describe nurses' experiences of information technology-based standardized patient education in inpatient psychiatric care. Serious mental health problems are an increasing global concern. Emerging evidence supports the implementation of practices that are conducive to patient self-management and improved patient outcomes among chronically ill patients with mental health problems. In contrast, the attitude of staff towards information technology has been reported to be contradictory in mental health care. After 1 year of using an Internet-based portal (Mieli.Net) developed for patients with schizophrenia spectrum psychosis, all 89 participating nurses were asked to complete questionnaires about their experiences. The data were collected in 2006. Fifty-six participants (63%) returned completed questionnaires and the data were analysed using content analysis. Nurses' experiences of the information technology-based standardized patient education were categorized into two major categories describing the advantages and obstacles in using information technology. Nurses thought that it brought the patients and nurses closer to each other and helped nurses to provide individual support for their patients. However, the education was time-consuming. Systematic patient education using information technology is a promising method of patient-centred care which supports nurses in their daily work. However, it must fit in with clinical activities, and nurses need some guidance in understanding its benefits. The study data can be used in policy-making when developing methods to improve the transparency of information provision in psychiatric nursing.
Analysis of writing inks on paper using direct analysis in real time mass spectrometry.
Jones, Roger W; McClelland, John F
2013-09-10
Ink analysis is central to questioned document examination. We applied direct analysis in real time mass spectrometry (DART MS) to ballpoint, gel, and fluid writing ink analysis. DART MS acquires the mass spectrum of an ink while it is still on a document without altering the appearance of the document. Spectra were acquired from ink on a variety of papers, and the spectrum of the blank paper could be subtracted out to produce a cleanly isolated ink spectrum in most cases. Only certain heavy or heavily processed papers interfered. The time since an ink is written on paper has a large effect on its spectrum. DART spectra change radically during the first few months after an ink is written as the more volatile components evaporate, but the spectra stabilize after that. A library-search study involving 166 well-aged inks assessed the ability to identify inks from their DART spectra. The aggregate success rate was 92%. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)
2001-01-01
A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.
The Torsional Spectrum of Doubly Deuterated Methanol CHD_2OH
NASA Astrophysics Data System (ADS)
Ndao, M.; Coudert, L. H.; Kwabia Tchana, F.; Barros, J.; Margulès, L.; Manceron, Laurent; Roy, P.
2014-06-01
Although the torsional spectrum of several isotopic species of methanol with a symmetrical CH_3 or CD_3 was analyzed some time ago, it is recently, and only for the monodeuterated species CH_2DOH, that such an analysis was extended to the case of an asymmetrical methyl group. In this talk, based on a Fourier transform high-resolution spectrum recorded in the 20 to 670 wn region, the first analysis of the torsional spectrum of doubly deuterated methanol CHD_2OH will be presented. The Q branch of many torsional subbands could be observed and their assignment was initiated using a theoretical torsion-rotation spectrum computed with an approach accounting for the torsion-rotation Coriolis coupling and for the dependence of the generalized inertia tensor on the angle of internal rotation. 46 torsional subbands were thus assigned. For 28 of them, their rotational structure could be assigned and fitted using an effective Hamiltonian expressed as a J(J+1) expansion; and for 2 of them microwave transitions within the lower torsional level could also be included in the analysis. In several cases these analysis revealed that the torsional levels are strongly perturbed. In the talk, the torsional parameters retrieved in the analysis of the torsional subband centers will be discussed. The results of the analysis of the rotational structure of the torsional subbands will be presented and we will also try to understand the nature of the perturbations. At last, preliminary results about the analysis of the microwave spectrum will be presented. El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309 Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spectrosc. 256 (2009) 204 Quade, Liu, Mukhopadhyay, and Su, J. Mol. Spectrosc. 192 (1998) 378 Pearson, Yu, and Drouin, J. Mol. Spectrosc. 280 (2012) 119
JPRS Report, Science & Technology, Japan, Joint Convention of Electrical and Information Engineers
1990-10-26
structure in which a thin vacuum vapor deposited film of diamine and aluminum quinoline complex ( Alq3 ) is laminated on a glass substrate on which an ITO...spectrum almost coincides with the luminous spectrum of Alq3 , which is a fluorescent substance and is known to be a luminescence from Alq3 . The...luminous mechanism of this EL device is roughly understood as follows. Alq3 has a high resistance together with being a fluorescent pigment of a high
2017-05-17
Do the SFA lessons drawn from the unconventional warfare focus of the post-9-11 paradigm hold true across the spectrum of conflict, or are there...relevance. Do the SFA lessons drawn from the unconventional warfare focus of the post-9-11 paradigm hold true across the spectrum of conflict, or...traditional warfare is fought changes from epoch to epoch as technology, armament, and other factors change, but certain immutable principles hold true
Properties of centralized cooperative sensing in cognitive radio networks
NASA Astrophysics Data System (ADS)
Skokowski, Paweł; Malon, Krzysztof; Łopatka, Jerzy
2017-04-01
Spectrum sensing is a functionality that enables network creation in the cognitive radio technology. Spectrum sensing is use for building the situation awareness knowledge for better use of radio resources and to adjust network parameters in case of jamming, interferences from legacy systems, decreasing link quality caused e.g. by nodes positions changes. This paper presents results from performed tests to compare cooperative centralized sensing versus local sensing. All tests were performed in created simulator developed in Matlab/Simulink environment.
Geosynchronous platform definition study. Volume 3: Geosynchronous mission characteristics
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the study were to examine the nature of currently planned and new evolutionary geosynchronous programs, to analyze alternative ways of conducting missions, to establish concepts for new systems to support geosynchronous programs in an effective and economical manner, and to define the logistic support to carry out these programs. In order to meet these objectives, it was necessary to define and examine general geosynchronous mission characteristics and the potentially applicable electromagnetic spectrum characteristics. An organized compilation of these data is given with emphasis on the development and use of the data. Fundamental geosynchronous orbit time histories, mission profile characteristics, and delivery system characteristics are presented. In addition, electromagnetic spectrum utilization is discussed in terms of the usable frequency spectrum, the spectrum potentially available considering established frequency allocations, and the technology status as it affects the ability to operate within specific frequency bands.
Benz, Mark G; Benz, Matthew W; Birnbaum, Steven B; Chason, Eric; Sheldon, Brian W; McGuire, Dale
2014-08-01
This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique.
Impressions of the Meson Spectrum: Hybrids & Exotics, present and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennington, Michael R.
2016-03-25
It has long been expected that the spectrum of hadrons in QCD would be far richer and extensive than experiment has so far revealed. While there have been experimental hints of this richness for some time, it is really only in the last few years that dramatic progress has been seen in the exploration both experimentally and in calculations on the lattice. Precision studies enabled by new technology both with detectors and high performance computations are converging on an understanding of the spectrum in strong coupling QCD. These methodologies are laying the foundation for a decade of potential discovery thatmore » electro and photoproduction experiments at Jefferson Lab, which when combined with key results on B and charmonium decays from both e+e? and pp colliders, should turn mere impressions of the light meson spectrum into a high definition picture.« less
The effect of Cd substitution doping on the bandgap and absorption spectrum of ZnO
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Li, Yong; Qu, Lingfeng; Zhao, Chunwang
2016-08-01
Many research papers have reported that in the ultraviolet area of 290-360 nm wavelength range, blueshift and redshift in the absorption spectrum occurred in ZnO with Cd doping; however, there is no reasonable theoretical explanation to this so far. To solve this problem, this study investigates the differences of blueshift and redshift in doping system by adopting plane-wave ultrasoft pseudopotential technology based on the density functional theory and applying LDA + U method to calculate band structures, density of states and absorption spectrum distribution of the models, which is on the basis of model geometry optimization. By increasing the Cd doping concentration, the following results are obtained: increased volume of the mixed system, raised total energy, a decrease in stability, narrowed bandgaps and a significant redshift in the absorption spectrum in the ultraviolet or visible light area.
ERIC Educational Resources Information Center
Dewinter, Jeroen; Van Parys, Hanna; Vermeiren, Robert; van Nieuwenhuizen, Chijs
2017-01-01
This qualitative study explored how adolescent boys with autism spectrum disorder experience their sexuality. Previous research has demonstrated that sexuality is a developmental task for boys with autism spectrum disorder, as it is for their peers. Case studies have suggested a relation between autism spectrum disorder and atypical sexual…
ERIC Educational Resources Information Center
Lugo Marín, Jorge; Rodríguez-Franco, Montserrat Alviani; Mahtani Chugani, Vinita; Magán Maganto, María; Díez Villoria, Emiliano; Canal Bedia, Ricardo
2018-01-01
Since their separation as independent diagnostics, autism spectrum disorders (ASD) and schizophrenia spectrum disorders (SSD) have been conceptualized as mutually exclusive disorders. Similarities between both disorders can lead to misdiagnosis, especially when it comes to average-IQ adults who were not identified during childhood. The aim of this…
Technology for small spacecraft
NASA Technical Reports Server (NTRS)
1994-01-01
This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.
FOCUSing on Innovative Solar Technologies
Rohlfing, Eric; Holman, Zak, Angel, Roger
2018-06-22
Many of ARPA-Eâs technology programs seek to break down silos and build new technological communities around a specific energy challenge. In this video, ARPA-Eâs Deputy Director for Technology Eric Rohlfing, discusses how the Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program is bringing together the photovoltaic (PV) and concentrated solar power (CSP) communities to develop hybrid solar energy systems. This video features interviews with innovators from the FOCUS project team made up by Arizona State University and the University of Arizona, and showcases how the FOCUS program is combining.
Mobile satellite communications technology - A summary of NASA activities
NASA Technical Reports Server (NTRS)
Dutzi, E. J.; Knouse, G. H.
1986-01-01
Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.
Precision and manufacturing at the Lawrence Livermore National Laboratory
NASA Technical Reports Server (NTRS)
Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.
1994-01-01
Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.
Advanced digital modulation: Communication techniques and monolithic GaAs technology
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.
1983-01-01
Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.
Precision and manufacturing at the Lawrence Livermore National Laboratory
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.
1994-02-01
Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.
Evaluation of electrosurgical interference to low-power spread-spectrum local area net transceivers.
Gibby, G L; Schwab, W K; Miller, W C
1997-11-01
To study whether an electrosurgery device interferes with the operation of a low-power spread-spectrum wireless network adapter. Nonrandomized, unblinded trials with controls, conducted in the corridor of our institution's operating suite using two portable computers equipped with RoamAbout omnidirectional 250 mW spread-spectrum 928 MHz wireless network adapters. To simulate high power electrosurgery interference, a 100-watt continuous electrocoagulation arc was maintained five feet from the receiving adapter, while device reported signal to noise values were measured at 150 feet and 400 feet distance between the wireless-networked computers. At 150 feet range, and with continuous 100-watt electrocoagulation arc five feet from one computer, error-corrected local area net throughput was measured by sending and receiving a large file multiple times. The reported signal to noise (N = 50) decreased with electrocoagulation from 36.42+/-3.47 (control) to 31.85+/-3.64 (electrocoagulation) (p < 0.001) at 400 feet inter-adapter distance, and from 64.53+/-1.43 (control) to 60.12+/-3.77 (electrocoagulation) (p < 0.001) at 150 feet inter-adapter distance. There was no statistically significant change in network throughput (average 93 kbyte/second) at 150 feet inter-adapter distance, either transmitting or receiving during continuous 100 Watt electrocoagulation arc. The manufacturer indicates "acceptable" performance will be obtained with signal to noise values as low as 20. In view of this, while electrocoagulation affects this spread spectrum network adapter, the effects are small even at 400 feet. At a distance of 150 feet, no discernible effect on network communications was found, suggesting that if other obstructions are minimal, within a wide range on one floor of an operating suite, network communications may be maintained using the technology of this wireless spread spectrum network adapter. The impact of such adapters on cardiac pacemakers should be studied. Wireless spread spectrum network adapters are an attractive technology for mobile computer communications in the operating room.
Factor Analysis of the Aberrant Behavior Checklist in Individuals with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Brinkley, Jason; Nations, Laura; Abramson, Ruth K.; Hall, Alicia; Wright, Harry H.; Gabriels, Robin; Gilbert, John R.; Pericak-Vance, Margaret A. O.; Cuccaro, Michael L.
2007-01-01
Exploratory factor analysis (varimax and promax rotations) of the aberrant behavior checklist-community version (ABC) in 275 individuals with Autism spectrum disorder (ASD) identified four- and five-factor solutions which accounted for greater than 70% of the variance. Confirmatory factor analysis (Lisrel 8.7) revealed indices of moderate fit for…
Geostationary platform systems concepts definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1980-01-01
The results of a geostationary platform concept analysis are summarized. Mission and payloads definition, concept selection, the requirements of an experimental platform, supporting research and technology, and the Space Transportation System interface requirements are addressed. It is concluded that platforms represent a logical extension of current trends toward larger, more complex, multifrequency satellites. Geostationary platforms offer significant cost savings compared to individual satellites, with the majority of these economies being realized with single Shuttle launched platforms. Further cost savings can be realized, however, by having larger platforms. Platforms accommodating communications equipment that operates at multiple frequencies and which provide larger scale frequency reuse through the use of large aperture multibeam antennas and onboard switching maximize the useful capacity of the orbital arc and frequency spectrum. Projections of market demand indicate that such conservation measures are clearly essential if orderly growth is to be provided for. In addition, it is pointed out that a NASA experimental platform is required to demonstrate the technologies necessary for operational geostationary platforms of the 1990's.
Military microwaves '84; Proceedings of the Conference, London, England, October 24-26, 1984
NASA Astrophysics Data System (ADS)
The present conference on microwave frequency electronic warfare and military sensor equipment developments consider radar warning receivers, optical frequency spread spectrum systems, mobile digital communications troposcatter effects, wideband bulk encryption, long range air defense radars (such as the AR320, W-2000 and Martello), multistatic radars, and multimode airborne and interceptor radars. IR system and subsystem component topics encompass thermal imaging and active IR countermeasures, class 1 modules, and diamond coatings, while additional radar-related topics include radar clutter in airborne maritime reconnaissance systems, microstrip antennas with dual polarization capability, the synthesis of shaped beam antenna patterns, planar phased arrays, radar signal processing, radar cross section measurement techniques, and radar imaging and pattern analysis. Attention is also given to optical control and signal processing, mm-wave control technology and EW systems, W-band operations, planar mm-wave arrays, mm-wave monolithic solid state components, mm-wave sensor technology, GaAs monolithic ICs, and dielectric resonator and wideband tunable oscillators.
NASA Astrophysics Data System (ADS)
Wu, Zhisheng; Tao, Ou; Cheng, Wei; Yu, Lu; Shi, Xinyuan; Qiao, Yanjiang
2012-02-01
This study demonstrated that near-infrared chemical imaging (NIR-CI) was a promising technology for visualizing the spatial distribution and homogeneity of Compound Liquorice Tablets. The starch distribution (indirectly, plant extraction) could be spatially determined using basic analysis of correlation between analytes (BACRA) method. The correlation coefficients between starch spectrum and spectrum of each sample were greater than 0.95. Depending on the accurate determination of starch distribution, a method to determine homogeneous distribution was proposed by histogram graph. The result demonstrated that starch distribution in sample 3 was relatively heterogeneous according to four statistical parameters. Furthermore, the agglomerates domain in each tablet was detected using score image layers of principal component analysis (PCA) method. Finally, a novel method named Standard Deviation of Macropixel Texture (SDMT) was introduced to detect agglomerates and heterogeneity based on binary image. Every binary image was divided into different sizes length of macropixel and the number of zero values in each macropixel was counted to calculate standard deviation. Additionally, a curve fitting graph was plotted on the relationship between standard deviation and the size length of macropixel. The result demonstrated the inter-tablet heterogeneity of both starch and total compounds distribution, simultaneously, the similarity of starch distribution and the inconsistency of total compounds distribution among intra-tablet were signified according to the value of slope and intercept parameters in the curve.
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
NASA Astrophysics Data System (ADS)
An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration
2017-01-01
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions. Supported in part by the Ministry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the MOST and MOE in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, the National Commission for Scientific and Technological Research of Chile
Nakai, Yasushi; Takiguchi, Tetsuya; Matsui, Gakuyo; Yamaoka, Noriko; Takada, Satoshi
2017-10-01
Abnormal prosody is often evident in the voice intonations of individuals with autism spectrum disorders. We compared a machine-learning-based voice analysis with human hearing judgments made by 10 speech therapists for classifying children with autism spectrum disorders ( n = 30) and typical development ( n = 51). Using stimuli limited to single-word utterances, machine-learning-based voice analysis was superior to speech therapist judgments. There was a significantly higher true-positive than false-negative rate for machine-learning-based voice analysis but not for speech therapists. Results are discussed in terms of some artificiality of clinician judgments based on single-word utterances, and the objectivity machine-learning-based voice analysis adds to judging abnormal prosody.
Heterodyne systems and technology, part 1. [conferences
NASA Technical Reports Server (NTRS)
1980-01-01
Various aspects of optical heterodyning are considered. Topics covered heterodyning throughout the electromagnetic spectrum including detectors, local oscillators, tunable diode lasers, astronomical systems, and environmental sensors, with both active and passive systems represented.
NASA/ESTO investments in remote sensing technologies (Conference Presentation)
NASA Astrophysics Data System (ADS)
Babu, Sachidananda R.
2017-02-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
ESTO Investments in Innovative Sensor Technologies for Remote Sensing
NASA Technical Reports Server (NTRS)
Babu, Sachidananda R.
2017-01-01
For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, C; Elgorriaga, I; McConaghy, C
2001-07-03
Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mWmore » for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.« less
Technology Use as a Support Tool by Secondary Students with Autism: A Mixed Methods Investigation
ERIC Educational Resources Information Center
Hedges, Susan H.
2016-01-01
The majority of students with Autism Spectrum Disorder (ASD) are leaving high school ill prepared to integrate successfully into adult life, which comes at a huge cost, not only to themselves and to their families, but also to society at large. Technology supports have the potential to improve their outcomes and thus enhance their quality of life.…
ERIC Educational Resources Information Center
Gentry, Tony; Kriner, Richard; Sima, Adam; McDonough, Jennifer; Wehman, Paul
2015-01-01
Personal digital assistants (PDAs) are versatile task organizers that hold promise as assistive technologies for people with cognitive-behavioral challenges. This delayed randomized controlled trial compared two groups of adult workers with autism spectrum disorder (ASD) to determine whether the use of an Apple iPod Touch PDA as a vocational…
ERIC Educational Resources Information Center
Parsons, Sarah; Guldberg, Karen; Porayska-Pomsta, Kaska; Lee, Rachael
2015-01-01
Storytelling is a powerful means of expression especially for voices that may be difficult to hear or represent in typical ways. This paper reports and reflects on our experiences of co-creating digital stories with school practitioners in a project focusing on embedding innovative technologies for children on the autism spectrum in classroom…
Nuclear fuel microsphere gamma analyzer
Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.
1977-01-01
A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.
Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng
2016-10-12
Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.
Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng
2016-01-01
Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel. PMID:27754316
CORSAIR-Calibrated Observations of Radiance Spectra from the Atmosphere in the Far- Infrared
NASA Astrophysics Data System (ADS)
Mlynczak, M. G.; Johnson, D.; Abedin, N.; Liu, X.; Kratz, D.; Jordan, D.; Wang, J.; Bingham, G.; Latvakoski, H.; Bowman, K.; Kaplan, S.
2008-12-01
The CORSAIR project is a new NASA Instrument Incubator Project (IIP) whose primary goal is to develop and demonstrate the necessary technologies to achieve SI-traceable, on-orbit measurements of Earth's spectral radiance in the far-infrared (far-IR). The far-IR plays a vital role in the energy balance of the Earth yet its spectrum has not been comprehensively observed from space for the purposes of climate sensing. The specific technologies being developed under CORSAIR include: passively cooled, antenna-coupled terahertz detectors for the far-IR (by Raytheon Vision Systems); accurately calibrated, SI-traceable blackbody sources for the far-IR (by Space Dynamics Laboratory); and high-performance broad bandpass beamsplitters (by ITT). These technologies complement those already developed under past Langley IIP projects (FIRST; INFLAME) in the areas of Fourier Transform Spectrometers and dedicated far-IR beamsplitters. The antenna-coupled far-IR detectors will be validated in the FIRST instrument at Langley. The SI-traceable far-IR blackbodies will be developed in conjunction with the National Institute of Standards and Technology (NIST). An overview of the CORSAIR technologies will be presented as well as their larger role in the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Upon successful completion of CORSAIR these IIP efforts will provide the necessary technologies to achieve the first comprehensive, accurate, high-resolution measurements from a satellite of the far-IR spectrum of the Earth and its atmosphere, enabling major advances in our understanding of Earth's climate.
Khandaker, Mitu
2009-01-01
Autism spectrum disorders (ASD) are a group of developmental neuropsychiatric disorders, comprised of three diagnostic entities - autistic disorder (AD), Asperger's disorder (AS), and Pervasive Developmental Disorder Not Otherwise Specified (including atypical autism) (PDD-NOS). A number of intervention techniques are currently used to reduce some of the associated challenges, with techniques ranging from behavioral therapy to dietary interventions and traditional counseling. This positional paper proposes the use of video games which leverage affective computing technologies as intervention in autism spectrum disorders in the context of the use of traditional play therapy with adolescents, who may feel uncomfortable engaging in traditional play with toys they may be too old for. It aims to explore the potential for greater 'social physics' made possible by affective computing technologies. This involves computationally 'recognizing' emotions in a user, often through the use of multimodal affective sensors, including facial expressions, postural shifts, and physiological signals such as heart rate, skin conductivity, and EEG signals. However, it is suggested that this should be augmented by researching the effect of social game design mechanisms on social-emotional development, particularly for those who experience difficulty with social interaction.
Sensitivity study and parameter optimization of OCD tool for 14nm finFET process
NASA Astrophysics Data System (ADS)
Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping
2016-03-01
Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.
NASA Astrophysics Data System (ADS)
Sones, Bryndol
2009-03-01
Since 2002, the Department of Physics at West Point has been the fortunate recipient of yearly attendance at the AAPT New Faculty Workshop. This sustained involvement has contributed directly to enhancements in our two-semester introductory physics program. Two aspects of West Point's environment make our involvement with the workshop especially fruitful: our diverse students and our frequent faculty turn-over. We teach to over 1100 students with majors across the entire spectrum. The majority of our faculty is an active duty Army officer here for just three years. At West Point, we rely on the workshop as a wellspring for faculty development, technological innovation, and pedagogical refinement. In the past few years, we have incorporated aspects of peer instruction, activity-based learning, and tutorials for student discovery. On the technological side, we now have TabletPCs for faculty, rf response cards (TurningPoint), high speed video analysis (LoggerPro) projects, and video tutoring capabilities (Camtashia). Student achievement is measured through our traditional course evaluation tools as well as nationally recognized standardize tests. Results will are discussed in the presentation.
A short history of health technology assessment in Germany.
Perleth, Matthias; Gibis, Bernhard; Göhlen, Britta
2009-07-01
To provide an overview of the development of health technology assessment (HTA) in Germany since the 1990s. Analysis of key documents (e.g. literature, laws, and other official documentation) and personal experiences. Health technology assessment (HTA) entered the political agenda in Germany only in the mid-1990s, basically as the result of a top-down approach toward more efficiency in health care, but with a strong impetus of an evidence-based medicine movement. Accordingly, HTA became part of several healthcare reform laws since 1997, which led to the establishment of the Federal Joint Committee (G-BA) and the Institute for Quality and Efficiency in Health Care (IQWiG) in 2004. This tandem construction aims at using evidence in decision-making processes for coverage and other decisions. These developments have led to a considerable impact of HTA in Germany. In addition, a broad spectrum of activities at universities and in other organizations, such as the German Institute for Medical Documentation and Information (DIMDI), can be observed that contribute to both teaching and research in HTA. German researchers in the field of HTA are actively involved in international projects, such as EUNetHTA, and contribute to scientific conferences and journals.
Energy spectrum analysis - A model of echolocation processing. [in animals
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Titlebaum, E. L.
1976-01-01
The paper proposes a frequency domain approach based on energy spectrum analysis of the combination of a signal and its echoes as the processing mechanism for the echolocation process used by bats and other animals. The mechanism is a generalized wide-band one and can account for the large diversity of wide-band signals used for orientation. The coherency in the spectrum of the signal-echo combination is shown to be equivalent to correlation.
Meta-analysis of Big Five personality traits in autism spectrum disorder.
Lodi-Smith, Jennifer; Rodgers, Jonathan D; Cunningham, Sara A; Lopata, Christopher; Thomeer, Marcus L
2018-04-01
The present meta-analysis synthesizes the emerging literature on the relationship of Big Five personality traits to autism spectrum disorder. Studies were included if they (1) either (a) measured autism spectrum disorder characteristics using a metric that yielded a single score quantification of the magnitude of autism spectrum disorder characteristics and/or (b) studied individuals with an autism spectrum disorder diagnosis compared to individuals without an autism spectrum disorder diagnosis and (2) measured Big Five traits in the same sample or samples. Fourteen reviewed studies include both correlational analyses and group comparisons. Eighteen effect sizes per Big Five trait were used to calculate two overall effect sizes per trait. Meta-analytic effects were calculated using random effects models. Twelve effects (per trait) from nine studies reporting correlations yielded a negative association between each Big Five personality trait and autism spectrum disorder characteristics (Fisher's z ranged from -.21 (conscientiousness) to -.50 (extraversion)). Six group contrasts (per trait) from six studies comparing individuals diagnosed with autism spectrum disorder to neurotypical individuals were also substantial (Hedges' g ranged from -.88 (conscientiousness) to -1.42 (extraversion)). The potential impact of personality on important life outcomes and new directions for future research on personality in autism spectrum disorder are discussed in light of results.
Thermal Cracking to Improve the Qualification of the Waxes
NASA Astrophysics Data System (ADS)
He, B.; Agblevor, F. A.; Chen, C. G.; Feng, J.
2018-05-01
Thermal cracking of waxes at mild conditions (430-500°C) has been reconsidered as a possible refining technology for the production of fuels and chemicals. In this study, the more moderate thermal cracking was investigated to process Uinta Basin soft waxes to achieve the required pour point so that they can be pumped to the refineries. The best thermal cracking conditions were set 420°C and 20 minutes. The viscosity and density of the final liquid product were respectively achieved as 2.63 mP•s and 0.784 g/cm3 at 40°C. The result of FT-IR analysis of the liquid product indicated that the unsaturated hydrocarbons were produced after thermal cracking, which was corroborated by the 13C NMR spectrum. The GC analysis of the final gas product indicated that the hydrogen was produced; the dehydrogenation reaction was also proved by the elemental analysis and HHV results. The pour point of the final liquid product met the requirement.
A cross-species socio-emotional behaviour development revealed by a multivariate analysis.
Koshiba, Mamiko; Senoo, Aya; Mimura, Koki; Shirakawa, Yuka; Karino, Genta; Obara, Saya; Ozawa, Shinpei; Sekihara, Hitomi; Fukushima, Yuta; Ueda, Toyotoshi; Kishino, Hirohisa; Tanaka, Toshihisa; Ishibashi, Hidetoshi; Yamanouchi, Hideo; Yui, Kunio; Nakamura, Shun
2013-01-01
Recent progress in affective neuroscience and social neurobiology has been propelled by neuro-imaging technology and epigenetic approach in neurobiology of animal behaviour. However, quantitative measurements of socio-emotional development remains lacking, though sensory-motor development has been extensively studied in terms of digitised imaging analysis. Here, we developed a method for socio-emotional behaviour measurement that is based on the video recordings under well-defined social context using animal models with variously social sensory interaction during development. The behaviour features digitized from the video recordings were visualised in a multivariate statistic space using principal component analysis. The clustering of the behaviour parameters suggested the existence of species- and stage-specific as well as cross-species behaviour modules. These modules were used to characterise the behaviour of children with or without autism spectrum disorders (ASDs). We found that socio-emotional behaviour is highly dependent on social context and the cross-species behaviour modules may predict neurobiological basis of ASDs.
Wang, Yi; Xiang, Ma; Wen, Ya-Dong; Yu, Chun-Xia; Wang, Luo-Ping; Zhao, Long-Lian; Li, Jun-Hui
2012-11-01
In this study, tobacco quality analysis of main Industrial classification of different years was carried out applying spectrum projection and correlation methods. The group of data was near-infrared (NIR) spectrum from Hongta Tobacco (Group) Co., Ltd. 5730 tobacco leaf Industrial classification samples from Yuxi in Yunnan province from 2007 to 2010 year were collected using near infrared spectroscopy, which from different parts and colors and all belong to tobacco varieties of HONGDA. The conclusion showed that, when the samples were divided to two part by the ratio of 2:1 randomly as analysis and verification sets in the same year, the verification set corresponded with the analysis set applying spectrum projection because their correlation coefficients were above 0.98. The correlation coefficients between two different years applying spectrum projection were above 0.97. The highest correlation coefficient was the one between 2008 and 2009 year and the lowest correlation coefficient was the one between 2007 and 2010 year. At the same time, The study discussed a method to get the quantitative similarity values of different industrial classification samples. The similarity and consistency values were instructive in combination and replacement of tobacco leaf blending.
GaN epitaxial layers grown on multilayer graphene by MOCVD
NASA Astrophysics Data System (ADS)
Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe
2018-04-01
In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.
An integrated strategy combining DNA walking and NGS to detect GMOs.
Fraiture, Marie-Alice; Herman, Philippe; Papazova, Nina; De Loose, Marc; Deforce, Dieter; Ruttink, Tom; Roosens, Nancy H
2017-10-01
Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mass Spectrometry in Studies of Protein Thiol Chemistry and Signaling: Opportunities and Caveats
Devarie Baez, Nelmi O.; Reisz, Julie A.; Furdui, Cristina M.
2014-01-01
Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers have been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses. PMID:25261734
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
This volume summarizes the basic requirements used as a guide to systems analysis, and is a basis for the selection of candidate Satellite Power Systems (SPS) point designs. Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point designs. Included is an updated version of earlier Rockwell concepts using klystrons as the specific microwave power amplification approach, as well as a more in-depth definition, analysis and preliminary point design on two concepts based on the use of advanced solid state technology to accomplish the task of high power amplification of the 2.45 GHz transmitted power beam to the Earth receiver. Finally, a preliminary definition of a concept using magnetrons as the microwave power amplifiers is presented.
Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin
2006-01-20
A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.
Wakefield, Andrew; Broyles, Moth; Stone, Emma L; Jones, Gareth; Harris, Stephen
2016-11-01
LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum "white" lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available "domestic" lights, one traditional (tungsten filament) and three modern (compact fluorescent, "cool-white" LED and "warm-white" LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the "cool-" and "warm-white" LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.
ERIC Educational Resources Information Center
Sharp, William G.; Berry, Rashelle C.; McCracken, Courtney; Nuhu, Nadrat N.; Marvel, Elizabeth; Saulnier, Celine A.; Klin, Ami; Jones, Warren; Jaquess, David L.
2013-01-01
We conducted a comprehensive review and meta-analysis of research regarding feeding problems and nutrient status among children with autism spectrum disorders (ASD). The systematic search yielded 17 prospective studies involving a comparison group. Using rigorous meta-analysis techniques, we calculated the standardized mean difference (SMD) with…
NASA Astrophysics Data System (ADS)
Wurm, Michael
2017-04-01
More than forty years after the first detection of neutrinos from the Sun, the spectroscopy of solar neutrinos has proven to be an on-going success story. The long-standing puzzle about the observed solar neutrino deficit has been resolved by the discovery of neutrino flavor oscillations. Today's experiments have been able to solidify the standard MSW-LMA oscillation scenario by performing precise measurements over the whole energy range of the solar neutrino spectrum. This article reviews the enabling experimental technologies: On the one hand multi-kiloton-scale water Cherenkov detectors performing measurements in the high-energy regime of the spectrum, on the other end ultrapure liquid-scintillator detectors that allow for a low-threshold analysis. The current experimental results on the fluxes, spectra and time variation of the different components of the solar neutrino spectrum will be presented, setting them in the context of both neutrino oscillation physics and the hydrogen fusion processes embedded in the Standard Solar Model. Finally, the physics potential of state-of-the-art detectors and a next generation of experiments based on novel techniques will be assessed in the context of the most interesting open questions in solar neutrino physics: a precise measurement of the vacuum-matter transition curve of electron-neutrino oscillation probability that offers a definitive test of the basic MSW-LMA scenario or the appearance of new physics; and a first detection of neutrinos from the CNO cycle that will provide new information on solar metallicity and stellar physics.
Schafer, Erin C; Wright, Suzanne; Anderson, Christine; Jones, Jessalyn; Pitts, Katie; Bryant, Danielle; Watson, Melissa; Box, Jerrica; Neve, Melissa; Mathews, Lauren; Reed, Mary Pat
The goal of this study was to conduct assistive technology evaluations on 12 children diagnosed with Autism Spectrum Disorder (ASD) to evaluate the potential benefits of remote-microphone (RM) technology. A single group, within-subjects design was utilized to explore individual and group data from functional questionnaires and behavioral test measures administered, designed to assess school- and home-based listening abilities, once with and once without RM technology. Because some of the children were unable to complete the behavioral test measures, particular focus was given to the functional questionnaires completed by primary teachers, participants, and parents. Behavioral test measures with and without the RM technology included speech recognition in noise, auditory comprehension, and acceptable noise levels. The individual and group teacher (n=8-9), parent (n=8-9), and participant (n=9) questionnaire ratings revealed substantially less listening difficulty when RM technology was used compared to the no-device ratings. On the behavioral measures, individual data revealed varied findings, which will be discussed in detail in the results section. However, on average, the use of the RM technology resulted in improvements in speech recognition in noise (4.6dB improvement) in eight children, higher auditory working memory and comprehension scores (12-13 point improvement) in seven children, and acceptance of poorer signal-to-noise ratios (8.6dB improvement) in five children. The individual and group data from this study suggest that RM technology may improve auditory function in children with ASD in the classroom, at home, and in social situations. However, variability in the data and the inability of some children to complete the behavioral measures indicates that individualized assistive technology evaluations including functional questionnaires will be necessary to determine if the RM technology will be of benefit to a particular child who has ASD. Copyright © 2016 Elsevier Inc. All rights reserved.